
On a Linear Independence Test for Interval-Valued
Random Sets

Ángela Blanco1,2, Ana Colubi1, Norberto Corral1, and Gil González-Rodrı́guez2
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Abstract. The linear relationship between interval-valued random sets can arise in different
ways. Recently, a linear model based on the natural arithmetic for intervals has been studied.
In order to test whether the explanatory random set contributes significantly to explain the re-
sponse random set through that linear model, an asymptotic testing procedure is here proposed.
The empirical size of the test is illustrated by means of some simulations. The approach is also
applied to a case-study.

1 Introduction

The linear regression problem between interval-valued random sets has been previously
considered in the literature from different viewpoints (see, for instance, [4, 5, 6, 9],
[8, 12]).

In [8] a linear regression model for compact and convex random sets based on a set-
arithmetic approach has been established, and the estimators for the parameters have
been obtained by applying the least-squares criterion based on a generalized L2-type
metric (see also [7]). In this communication we propose to complement those studies
by proposing a linear independence test in the same context.

The organization of the paper is as follows. In Section 2 some preliminary concepts
about interval-valued random sets and the considered linear regression model are pre-
sented. In Section 3 we suggest a test statistic for the linear independence. The asymp-
totic distribution of the statistic in some particular cases is used to state the asymptotic
testing procedure. In Section 4 we show the results of some simulations in connection
with the empirical significance level. The test is applied to a case-study in Section 5.
Finally, in Section 6 some concluding remarks are commented.

2 Preliminaries

Let Kc(R) denote the class of nonempty compact intervals endowed with the natural
interval-arithmetic induced by the Minkowski addition and the product by a scalar;
namely, A + B = {a + b : a ∈ A,b ∈ B} and λ A = {λ a : a ∈ A}, for all A,B ∈ Kc(R)
and λ ∈ R.

Due to the lack of symmetric element with respect to the addition, the space
(Kc(R),+, ·) is not linear, but semilinear, so it is useful to consider the Hukuhara
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difference between A and B, defined as the interval C so that A = B +C (if it exists)
and denoted in this case as C = A−H B (see [11]). It is possible to assure the exis-
tence of A−H B if, and only if, infA− infB ≤ supA− supB; moreover, in this case
A−H B = [infA− infB,supA− supB].

The space (Kc(R),+, ·) can be embedded onto a convex cone of the square inte-
grable functions L (R) via the mapping s : Kc(R) −→ L (R) defined by s(A) = sA

for all A ∈ Kc(R), where sA denotes the support function of the interval A, namely,
sA : R → R such that sA(u) = supa∈A〈a,u〉 for every u ∈ R, 〈·, ·〉 being the usual inner
product on R. The support function is semilinear, that is, sA+B = sA +sB and sλ A = λ sA,
for A,B ∈ Kc(R) and λ ≥ 0. Furthermore, if A−H B exists, then sA−H B = sA − sB. The
function s allows us to deal with the space L (R), which can be endowed with an inner
product which entails a Hilbertian structure.

The least square method considered in [8] for the estimation process is based on a
generalized metric on Kc(R) via support functions (see [14]), which is defined for any
A,B ∈ Kc(R) as

dK(A,B) =
(∫

S0
(sA(u)− sB(u))(sA(v)− sB(v))dK(u,v)

)1/2
.

where S
0 is the unit sphere in R and K : R×R→R is a positive definite and symmetric

kernel such that K(u,v) = K(−u,−v) for any u,v ∈ S
0. The support function s is an

isometry between Kc(R) and a cone of the Hilbert subspace L (S0) ⊂ L (R) endowed
with the generic L2-type distance w.r.t. K. Thus, if 〈·, ·〉K denotes the corresponding
inner product, it is possible to express the dK metric on Kc(R) as dK(A,B) = 〈sA −
sB,sA − sB〉K .

Given a probability space (Ω ,A ,P), a mapping X : Ω → Kc(R) is said to be
an interval-valued random set associated with (Ω ,A ,P) if the corresponding vari-
ables infX and supX are real random variables. It can be shown that this condition
is equivalent to the A -βdH measurability, where βdH denotes the σ -field generated
by the topology induced by Hausdorff metric dH on Kc(R). X can be also charac-
terized by means of the random vector (midX ,sprX) where midX = (supX + infX)/2
and sprX = (supX − infX)/2 denote the mid-point and the spread of X , respectively.

If E(|X |) < ∞, where |X |(ω) = sup{|x| : x ∈ X(ω)} for any ω ∈ Ω , the expected
value of X in Kudō-Aumann’s sense (see [2]), is given by the expression

E(X) =
{

E( f )| f : Ω → R, f ∈ L 1(Ω), f ∈ Xa.s.(P)
}
.

The expected value of an interval-valued random set is an element of Kc(R), that can
be expressed in terms of the classical expectations of the real random variables infX
and supX as

[
E(infX),E(supX)

]
. Furthermore, if E(|X |2) < ∞, the variance of X is

defined as σ2
X = E

((
dK(X ,E[X ])

)2
)

(see [10], [13]). It can be also expressed in terms

of the inner product in L (S0) as σ2
X = E

(
〈sX − E(sX ),sX − E(sX )〉K

)
. Finally, the

covariance between two random sets X and Y can be defined via support functions as

σX ,Y = E
(〈

sX −E(sX),sY −E(sY )
〉

K

)
whenever this expectation exists.

Let X ,Y : Ω −→ Kc(R) be two interval-valued random sets, and
{

Xi,Yi
}n

i=1 a
simple random sample obtained from (X ,Y ). The sample mean of X is defined by
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X = (X1 + X2 + . . . + Xn)/n. It should be remarked that the Aumann expected value
for a random set is coherent with the interval-arithmetic in the sense of the Strong Law
of Large Numbers, which means that the preceding concept of sample mean converge
a.s.-[P] to the Aumann expectation (see, for instance, [1]). The sample variance of X
is given by σ̂2

X = dK(X ,X)2 (analogously Y and σ̂2
Y ). Finally, σ̂X ,Y denotes the sample

covariance of X and Y , and it is defined as σ̂X ,Y =
〈
sX − sX ,sY − sY

〉
K .

2.1 Simple Linear Regression Model

The Simple Linear Regression Model between X and Y on the basis of the interval-
arithmetic approach is formalized as Y = aX + ε , where a ∈ R and ε : Ω −→ Kc(R) is
a random set such that E(ε|X) = B ∈Kc(R) and σε,X = 0 (see [9], [8]). The population
linear regression function associated with this model is given by E(Y |x) = ax + B for
any x ∈ Kc(R).

The theoretical constants of the linear regression function can be expressed in terms
of the moments of X and Y as B = E(Y )−H aE(X) and

a =

⎧⎪⎪⎨
⎪⎪⎩

σX ,Y

σ2
X

if a ≥ 0

−σ−X ,Y

σ2
X

if a ≤ 0
(1)

The estimates for the regression parameters have been obtained in [8]. In this commu-
nication we restrict ourselves to the case a ≥ 0 as a first step. Note that in this way some
of the difficulties that entail the lack of linearity of the space Kc(R) are avoided.

Following the ideas in [8] for the estimation process, we can obtain the corresponding
estimates for the particular situation in which a ≥ 0.

Let (X ,Y ) be two interval-valued random sets satisfying the considered linear model
Y = aX + ε , with a ≥ 0, and let

{
Xi,Yi

}n
i=1 be a simple random sample obtained from

(X ,Y ). Since Yi = aXi + εi, we have that Yi −H aXi exists for all i = 1, . . . ,n, then the
estimator of a should be searched within the set

Ã =
{

c ≥ 0 : ∃Yi −H cXi, for all i = 1 . . .n
}
. (2)

The set of feasible solutions Ã can be represented by means of a non-empty compact
real interval as [0, â0], with â0 ≥ 0.

The least squares estimation problem is expressed as

Minimize 1
n ∑n

i=1 dK(Yi,aXi + B)2

subject to a ∈ Ã.

The solutions for this minimization problem, and then, the estimators for the regression
model parameters, can be expressed in terms of moments of X and Y as

â = min
{

â0,max
{

0,
σ̂X ,Y

σ̂2
X

}}
(3)

and B̂ = Y −H âX .
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3 Linear Independence Test

Let X ,Y : Ω → Kc(R) be two interval-valued random sets such that Y = aX + ε , with
a ≥ 0 and ε : Ω → Kc(R) fulfilling E(ε|X) = B ∈ Kc(R) and σX ,ε = 0.

The aim in this work is to develop a test to determine whether X contributes to
explain Y through the linear model or not. Since we have assumed that a ≥ 0, this is
equivalent to test

H0 : a = 0
H1 : a > 0

(4)

In this work we propose testing H0 by means of the statistic

Tn =
√

nmax
{

0,
σ̂X ,Y

σ̂2
X

}
(5)

Remark 1. From (3), the intuitive statistic for the test would be

T̃n =
√

nmin
{

â0,max
{

0,
σ̂X ,Y

σ̂2
X

}}

because it uses the information given by the linear model. Unfortunately, the asymptotic
behaviour of T̃n is not easy to find, because the term â0 is difficult to handle. Nonethe-
less, given a significance level α and k ≥ 0 such that P(Tn > k|H0) → α as n → ∞,
it is possible to check that P(T̃n > k|H0) is asymptotically lower or equal to α . Thus,
the critical region {T̃n > k} allows us to solve asymptotically the test (4) by using the
statistic T̃n with a significance level β ≤ α .

Remark 2. Both statistics T̃n and Tn depend on σ̂X ,Y , that converges almost-sure to zero
under H0. Indeed, since the random intervals X and Y are linear independent under H0,
then σX ,Y = 0, and the strong consistency of the covariance guarantees the convergence.

If 0 < σX ,σY ,σX ,Y < ∞, the asymptotic distribution of
√

nσ̂X ,Y under H0 can be shown
to be a normal distribution, with mean value 0 and variance ση , where η is the real-
valued random variable defined as

η = 〈sX − sE(X),sε − sE(ε)〉K .

Since the sample variance σ̂2
X is consistent w.r.t. σ2

X , by means of the Slutsky Theorem
we obtain that

√
nσ̂X ,Y /σ̂2

X converges in law to a distribution N(0,ση/σ2
X).

Finally, since the function max{0, } is continuous, by means of the Continuous
Function Theorem we can assure that Tn converges in law to the corresponding function
of the normal distribution above, that is,

Tn
L−→ max

{
0,N(0,ση/σ2

X)
}
.

Remark 3. The population variance σ2
X is often unknown, so it would be necessary to

estimate it by σ̂2
X and then, the obtained asymptotic distribution corresponds to

σ̂2
X Tn

L−→ max
{

0,N(0,ση )
}



On a Linear Independence Test for Interval-Valued Random Sets 115

For this reason, we could solve the test equivalently with the statistic

T ′
n = σ̂2

X Tn =
√

nmax{0, σ̂X ,Y}
whose asymptotic distribution under H0 does not depend on σ2

X .

As a result, we can conclude that to test (4) at the nominal significance level α , H0

should be asymptotically rejected whenever

T ′
n > max

{
0,zα

}
, (6)

where zα is the 100(1−α) fractile of the normal distribution N(0,ση ).

Remark 4. In practice, the population variance σ2
η is usually unknown, so we should

approximate this parameter by its estimator, σ̂2
η .

4 Simulation Studies

To illustrate the empirical behaviour of the asymptotic procedure suggested in Section 3,
some simulations have been carried out. Let X and Y be two interval-valued random sets
such that midX ,midY ∼ N(0,1), sprX ,sprY ∼ χ2

1 are independent random variables.
Samples of intervals {(xi,yi)}n

i=1 for different sizes n have been generated in order to
apply the suggested test. We have developed two different tests. T ′

1 represents the the-
oretical test in which the variance of η is known, and T ′

2 denotes the test in which the
population variance of η is aproximated by σ̂η . In Table 1 we present the percentage
of rejections of H0 at a significance level α = 0.05 in 10,000 iterations for each differ-
ent sample size and each test. The results indicate that the test T ′

2 is conservative. As
expected, in both tests the empirical size is closer to the theoretical one as the sample
size increases, although large sample sizes are required in order to obtain suitable re-
sults. In addition, T ′

1 seems to be more accurate than T ′
2, because T ′

1 uses the population
information instead of the sample one.

Remark 5. In the case of dealing with small samples, asymptotic procedures do not
apply. In these situations, alternative techniques should be developed in order to solve
the linear independence test considered in this work. For instance, conditions to find the
exact distribution of the statistic may be investigated. However, in general they mean

Table 1. Simulation results: empirical size at α = 0.05

Sample size T ′
1 T ′

2

100 5.25 4.56

200 5.24 4.6

500 5.18 4.62

1000 5.11 4.72

5000 5.03 4.75
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the addition of important restrictions to the problem. Bootstrap procedures are another
possible way to solve the test more widely applicable.

5 Case-Study: The Blood Pressure Data-Set

In order to show the application of the asymptotic procedure to test the linear indepen-
dence, we have applied the suggested procedure to a real-life sample data set. Data have
been previously used in some works (see, for instance, [6]). They have been supplied
by the Hospital Valle del Nalón in Asturias (Spain), and correspond to the range of the
systolic X and diastolic Y blood pressure over a day for 59 patients. In Table 2 some of
the sample data are presented (full sample data set is available at [6]).

Table 2. Some data of the ranges of systolic (X) and diastolic (Y ) blood pressure

X 11.8-17.3 10.4-16.1 13.1-18.6 10.5-15.7 12-17.9 10.1-19.4 . . .

Y 6.3-10.2 7.1-11.8 5.8-11.3 6.2-11.8 5.9-9.4 4.8-11.6 . . .

If we test the linear independence between X and Y by using the asymptotic test
suggested in Section 3 at nominal significance level α = 0.05, we obtain that the value
of the typified statistic is T ∗ = 6.027, which is greater than max{0,z0.05}= 1.645. Thus,
the null hypothesis should be rejected, and we conclude that there is a linear relationship
between the fluctuation of the systolic and the diastolic blood pressure in terms of the
model considered in this communication.

6 Concluding Remarks

In this communication, an asymptotic procedure for testing the linear independence
between two interval-valued random sets by considering a particular case has been sug-
gested. Furthermore, its suitability for large samples has been demonstrated by means
of some simulations. It should be underlined that the results are not accurate for moder-
ate and small sample sizes. We are analyzing currently other techniques, like bootstrap
procedures, which are often better in these cases.

In the particular case we have analyzed, only positive coefficients for X have been
considered. In this way some difficulties due to the lack of linearity of Kc(R) are
avoided. We are also analyzing at present the general case.
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