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Abstract. This paper considers the problem of the possibility representation of measurement
uncertainty in the cases of information shortage: very few measurements, poor knowledge
about the underlying probability distribution. After having related possibility distribution to
probability confidence intervals, we present a procedure to build a possibility distribution for one
measurement issued from an unimodal probability distribution. We consider then the addition
of other measurements and more knowledge about the probability distribution. The key role of
the uniform distribution as the probability distribution leading to the least specific possibility
distribution is highlighted. The approach is compared and discussed versus the conventional one
based on the Student distribution.
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1 Introduction

In many application domains, it is important to take the measurement uncertainties into
account , [IE], especially in order to define around the measurement result an inter-
val which will contain the real value of the considered entity with specified confidence
[E], that is, a confidence interval [@]. Such an interval allows to define decision risks
later, as for example the risk to exceed an alarm threshold, etc. In practice, two main
theories are considered to deal with measurement uncertainty: interval calculus [@]
and probability theory [IQ]. As interval calculus only supplies the confidence interval
with 100% confidence, probability theory seems to be required to supply the other con-
fidence intervals. But to handle the whole set of confidence intervals (with all the con-
fidence levels) is quite complex by a probability approach. And choosing a particular
confidence level (e.g. 95% which means a .05 probability for the value to be out of the
interval) is rather arbitrary. Thus a possibility approach has been proposed in [B, , ]
and further developed by a few authors in a measurement context [E,%L , , ].
This paper further explores the connection between possibility distribution and confi-
dence intervals and addresses the possibility expression of measurement uncertainty for
situations where only very limited knowledge is available: very few measurements, un-
known unimodal probability density. In Section] we recall how a possibility distribution
can be built from confidence intervals. In the third section, we present the main contribu-
tion of the paper, i.e. how to define confidence intervals where only limited knowledge
is available about the underlying probability density (unimodal bounded/non-bounded,
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symmetric or not). The results are then applied to expression of uncertainty when only
very few measurements are available. The key role of the uniform distribution as the prob-
ability distribution leading to the least specific possibility distribution is highlighted. The
approach is compared and discussed versus the conventional one based on the Student
distribution. Some concluding remarks point out the interest of the approach and some
future developments.

2 Possibility Distribution Versus Confidence Intervals

2.1 Basics of the Possibility Theory

The possibility theory is one of the modern theories available to represent uncertainty
when information is scarce and/or imprecise [IE]. The basic notion is the possibility
distribution, denoted 7. Here, we consider possibility distributions defined on the real
line, i.e. 7 is an upper semi-continuous mapping from the real line to the unit inter-
val. Thus 7 is a fuzzy subset but with specific semantics for the membership function.
Indeed, a possibility distribution describes the more or less plausible values of some
uncertain variable X. The possibility theory provides two evaluations of the likelihood
of an event, for instance whether the value of a real variable X does lie within a certain
interval: the possibility IT and the necessity N. The normalized measures of possibility
IT and necessity N are defined from the possibility distribution 7 : R — [0, 1] such that
Sup,cg (x) = 1 as follows:

VACR, II(A) = sug)n:(x) and VACR, NA)=1-TII(A) = ig(l —n(x)).
x€ X

The possibility measure IT satisfies IT(A UB) = max(I1(A),I1(B)), VA, B C R.

The necessity measure N satisfies N(A N B) = min(N(A),N(B)), VA, B C R.

A possibility distribution 7; is more specific than m as soon as m; < m (in the
usual definition of inclusion of fuzzy sets), i.e. 7y is more informative than 7. In fact,
possibility measures are set functions similar to probability measures, but they rely
on axioms which involve the operations “maximum” and “minimum” instead of the
operations “addition” and “product” (if the measures are decomposable [B]).

2.2 Possibility Representation of Confidence Intervals

Let us assume that the random variable associated to the measurement results is denoted
X (a realization of X is denoted x), is continuous on the set of reals and is described
by a probability density function p, F being its corresponding probability distribution
function with F~! its inverse function if it exists (otherwise the pseudo-inverse func-
tion can be considered [@]). For every possible confidence level B € [0, 1], the corre-
sponding confidence interval is defined as an interval that contains the measurand (i.e.
the physical entity to be determined denoted pt) with probability > f. In other words,
a confidence interval of confidence level B (denoted Ig) is defined as an interval for

which the probability Py to be outside this interval Iﬁ does not exceed o def 1-B,ie.
P(u ¢ Iy) = c.

It is possible to link confidence intervals and possibility distribution in the following
way. A unimodal numerical possibility distribution may be viewed as a nested set of
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confidence intervals, which are the o cuts [xy,xq] = {x, T(x) > o} of 7. The degree
of certainty that [x,,,x¢] contains pt is N([x,,x¢]) (if continuous). Obviously, the confi-
dence intervals built around the same point x* are nested. It has been proven in [@] that
stacking confidence intervals of a probability distribution on top of one another leads
to a possibility distribution (denoted 7* having x* as modal value). In fact, in this way,
the a-cuts of %, i.e. Ay = {x, |7*(x) > '} are identified with the confidence interval
I;; of confidence level f = 1 — o around the nominal value x*. Thus, the possibility
distribution 7* encodes the whole set of confidence intervals in its membership func-
tion. Moreover, this possibility distribution satisfies IT*(A) > P(A), VA C R, with IT*
and P the possibility and probability measures associated respectively to * and p (the
underlying probability density function of the measurement results).

A closed form expression of the possibility distribution 7™ (x) induced by confidence
intervals around the mode x* = M is obtained for unimodal continuous probability den-
sities p(x) strictly increasing on the left and decreasing on the right of M [EI]:

"X " oo
#0=[_pars [ p0dy=F+1-F@)=200)
for all x € [—eo,M], where ¢ is a decreasing mapping ¢ : [—oo,M] — [M, || § (M) =
M. 7™ (x) is the probability that the measurand y is outside the interval [x, ¢ (x)], i.e.
1 — M (x) is the confidence level of this interval.

3 Inferring a Possibility Distribution from a Small Sample

We will consider confidence intervals associated with an underlying probability density
being unimodal (i.e. having only one maximum, both local and global) with different
assumptions: bounded and non bounded, symmetric or not. Most of the following re-
sults are based on trivial properties of unimodal distribution described below.

Let us consider a unimodal probability density p with the mode M that will be iden-
tified to the measurand. Thus, p is non increasing for its argument values greater than
M, and non decreasing for its argument values less than M. Therefore, for any values
superior to M such that x3 > x, > x1, the average of p over [x;,x3] must be less than or
equal to its average over [x,x3]:

[ pdx _ [ pladx
X3 —X2 X3 —X]

2

Similarly, for any values less thap M such thap x1 <xp <ux3:
o2 p(x)dx - o2 p(x)dx 3)
Xy — X1 X3 — X1
Note that the equality in (Z) and (@) holds if p is constant on the considered domain.

3.1 Bounded Probability Density

Let us consider that X is defined by a probability density, its mode is denoted M and its
support [M — a, M + b]. Then the mode and the support of X — M are respectively 0 and
the interval [—a, b]. We have the following result:

Proposition 1. V¢ € [0,1], Pr[X —ta <M < X +1tb] > 1.
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Proof. PriX —ta<M <X +1tb] =Pr[-ta <X —M <tb]and Pr[—ta <X —M < tb] =

1—[p(x)dx— ft},’,p(x)dx
Then by applying @) to x; = —a, x» = —ta, x3 = 0 and @) tox; = 0, x; = b, x3 = b,
we obtain:

/_;m ()dx<(1—z)/_0a (x)dx and / dx<(1—t)/0bp(x)dx

Therefore: —ta b
/ dx+/ xX)dx < l—t)/ p(x)dx=1—1t
Then: Vt € [0,1], Pr[X —ta <M <X +1tb]| > 1—(1—1)=1. 0O
Therefore the corresponding possibility distribution is defined by:
vie M—aM], 7t @) < T and vxe MM4b), 2 () < _”2‘“”
a

Therefore, the possibility distribution defined by the triangular possibility distribution
having for support [M — a, M + b] is consistent with all the unimodal probability distri-
butions (symmetric or not) having M as modal value and [M — a, M + b] as support.

Note that the triangular possibility distribution is also the possibility distribution as-
sociated to the uniform probability density. Moreover, the triangular symmetric possi-
bility distribution with support [M — a,M + b] and mode M, is the least upper bound of
all the possibility transforms of symmetric probability distributions having M for modal
value and [M — a, M + b] for support. This result has been previously stated in [4] but in
another way.

3.2 Non Bounded Probability Density

As the support is known as infinite, the intervals have to be built from other information
from the random variable. Thus, we will consider intervals of the form X +7|X|. In fact,
instead of starting from the support as for bounded distributions, we propose to start
from the mode.

The following result holds for any unimodal distribution , ]:

Proposition 2

2
PriX —t|X| <M <X+1tX|]>1-— fort>1 @
1+1¢
Proof
M M
M| < — — >t =
Pr[|X — M| <t|X]|] Pr{l X‘it} Pr{Xelit}
=Pr|XeM ! =Pr|X-MeM ! —1
B 1+t 1+t
Thus

_F Mt_’1 for M >0

Fm —F(m ") form <0
r+1
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—tM —tM —tM
1,x2: ,x3:Mand(E|)tox1:

, X
r+1 t+1°77
x3 = M, we obtain respectively:
—t —t 2
F({M —F M < forM >0
t+1 t—1 t+1

< forM <0
l+l +1
<

Therefore: Pr[|X — M| < t|X]] and finally we obtain: PriX —¢|X| <M < X +

Then by applying @) to x; =
—tM
t—1’

r+1
2
X[ >1- . |
1+1¢
By the same reasoning, we obtain for a symmetric unimodal probability density:
Pr[X—t|X|§M§X+t\XH21—l_lH fort > 1 )

Note that the equality (&) holds for p uniform, and thus this probability distribution is
the least favourable in the sense that it gives the least specific possibility distribution
(for ¢ > 1). If the shape of the probability distribution is known, the inequality can be
reduced for high values of . For example, if it is Gaussian, the bound in (@) can be
improved [|I|]:

0.484
PrlX —(|X| <M <XrX[[>1- 0 forr>1 (6)

3.3 Case of One Measurement

Let us consider the case where only one single measurement is available. In this case it
is natural to consider that the observed value corresponds to the mode of the underlying
probability density. If the density is assumed to be non symmetric, we have from (@)

2
m(xg—1x0) = w(xp +1x0) = L4t forz > 1. If it is symmetric, we have from @) 7 (xo —
1
1x0) = w(xo+1x9) = L4y fortr > 1. If it is Gaussian, we have from (@) 7(xg —x9) =

0.484
m(xo+1xp) = 1 forr > 0.484.

Let us consider for example the case where a sensor provides a single value of 30°C
the associated probability distribution is supposed to be unimodal. Figure [Th) high-
lights the reduction of confidence interval lengths according to the amount of available
knowledge: when the distribution is non symmetric, when the distribution is symmet-
ric. When it is Gaussian, the use of the equation (&) leads to a reduction of confidence
interval lengths only for high values of 7. For low values of #, the exact expression will
also give reduced intervals but it has not yet been computed; the uniform distribution
being the least favorable forz > 1.

3.4 Case of one Measurement and a Guess

By making the variable change of X into X — A, in (), is replaced by X — A and M by
M — A, then the following result is deduced for any unimodal symmetric distribution:
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150100 50 0 50 100 150 200 0 20 30 40 S0
,,,,,,,,,,,, non: tric PR 2 mess (30 °328°)
ie  TTTTTTTTs 1 meas(30 °) and 1 guess(28 °)
******* Gauss —_— 2 Gaussian meas(30 °:28°)
a) b)

Fig. 1. Possibility distributions a) for one measurement b) for two measurements

1
PIX — X —A| <M <X+1X—A| 21— | forr>1 )

This result can be used to introduce via A some form of prior information (called a
guess, coming for example from an expert) concerning the dispersion. In fact, |x; — A|
can be viewed as the equivalent of the sample standard deviation used classically (see
Section[3.6)). The introduction of A allows to reduce the lengths of confidence intervals
obtained by one single measurement as it is illustrated in Figure [Ib).

3.5 Case of Two Measurements

Let us now consider the case where a second measurement x;, coming from the same
probability distribution as x; and considered as being independent from it. We propose
(in an equivalent way with classical propositions when two measurements are available)
to consider the confidence intervals of the form:

X +X, X —Xo Xi+X | |Xi—X
—t <M< t
2 ,  SME o, o,

In the case of symmetric unimodal distribution, we obtain by the same reasoning as the
one used in Section[3.2

X1 +X;
2

t X+ X t
—Z\Xl—Xz\SMS 1hAz

p
’ 2 )|

1
X|—X|| >1— 8
1—X2|| > at ®

The Fig. [db) illustrates the case where the sensor provides the two measurements x; =
30°C and x, =28°C.

3.6 Discussion Versus the Conventional Probability Approach

The above mathematical derivations formalize the idea that without any appeal to other
information (except unimodality), we can compute the actual length of the finite con-
fidence interval. It is remarkable that the confidence intervals thus created have finite
lengths, except for the 100% confidence level (see Fig.[Th). Indeed, this result seems to
contradict the standard statistical intuition that at least two measurements are required
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in order to have some idea about the dispersion (i.e. to have an estimation of the stan-
dard deviation o). Indeed, the conventional probability recommendation to deal with a
small number n (but n > 1) of measurement consists in using confidence intervals of
the form [E]:

X—1S/\v/n<M<X+tS/\/n )

where X = 3| X;/n is the sample mean, and S = [¥}_ | (X;i — X)/(n—1)] /2 the sample
standard deviation.

If the underlying probability distribution is Gaussian, the ¢ value is the one given by
the Student distribution for a given confidence level. An interesting remark is that for
n = 2, @) has the same form as (8). Indeed, in this case of two measurement, () is
equivalent to @) for a Gaussian distribution. The Fig.[Th) gives an example of the effect
on the possibility distribution specificity (for high values of #) of making the Gaussian
assumption.

4 Conclusion

A possibility distribution can encode a family of probability distributions. This fact has
been used as a basis for a transformation of a probability distribution into a possibility
distribution by using the notion of confidence intervals. Thus the possibility distribution
has been related to probability inequalities, especially for unimodal bounded (or not)
symmetric (or not) probability distributions. The obtained results have been used for a
possibility expression of measurement uncertainty in situations where only a very lim-
ited knowledge is available: one or two measurements, unknown unimodal probability
density. In fact, the proposed approach extends the conventional probability approach
of Student to the case of one single measurement and to the case of non Gaussian
distribution for two measurements. The results highlight the key role of the uniform
probability distribution that leads to the least specific possibility distribution at least for
high confidence levels. Further developments will consider how having more measure-
ments allows to shorten the confidence intervals and thus to increase the specificity of
the corresponding possibility distribution.
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