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Preface

Probability theory has been the only well-founded theory of uncertainty for a long
time. It was viewed either as a powerful tool for modelling random phenomena,
or as a rational approach to the notion of degree of belief. During the last thirty
years, in areas centered around decision theory, artificial intelligence and infor-
mation processing, numerous approaches extending or orthogonal to the existing
theory of probability and mathematical statistics have come to the front. The
common feature of those attempts is to allow for softer or wider frameworks for
representing uncertain information. Various approaches have appeared, either on
their own like fuzzy set theory, possibility theory, rough sets, or having their ori-
gin in probability theory itself, like imprecise probability, belief functions, fuzzy
random variables. Many of the latter come down to blending interval or fuzzy
interval analysis with probabilistic methods. These methods are softer than the
traditional theories and techniques because they are less Procrustean, they more
easily adapt to the actual nature of information.

Nearly ten years ago, the need was felt to establish a recurrent forum for
discussing such new trends that enlarge the statistical and uncertainty mod-
elling traditions, towards a flexible and more specific handling of incomplete or
subjective information. This idea resulted in the launching of the International
Conference on Soft Methods in Probability and Statistics (SMPS), organized for
the first time in Warsaw in 2002. Subsequent events in this series took place in
Oviedo in 2004 and then in Bristol in 2006.

This volume is a collection of selected papers presented at the 4th Interna-
tional Conference on Soft Methods in Probability and Statistics (SMPS’2008)
held in Toulouse, France, on September 8-10, 2008. It was organized by the
RPDMP team (Raisonnements Plausibles, Décision, Méthodes de Preuve) at
the Institut de Recherche en Informatique de Toulouse (IRIT), on the precincts
of Université Paul Sabatier.

The volume contains five sections. The first one is dedicated to papers based
on invited talks. Two of them are devoted to generalizations (or soft versions)
of Bayesian inference: Jean-Marc Bernard from Paris 5 University (France) con-
siders imprecise predictions in the framework of the Dirichlet model; Reinhard



VI Preface

Viertl from the Technical University of Vienna (Austria) extends the Bayesian
setting to the handling of fuzzy data and fuzzy prior probabilities. The third
paper by Dominique Guyonnet, Senior Scientist at BRGM, Orléans (France’s
leading public institution in geoscience) considers the applications of soft meth-
ods to risk analysis in climate change problems. Finally some pages are devoted
to the pioneering works of Robert Féron on fuzzy random variables invented by
him in 1976.

Part II is devoted to contributions to the foundations of uncertainty theories
such as imprecise probability representations, possibility theory, the bridge to
linguistic information. Two contributions deal with the concepts of independence
and belief revision, respectively.

Part IIT contains numerous papers devoted to soft statistical methods, rang-
ing from the principles of statistical inference to detailed problems connected
with statistical tests (of independence, of the mean, of the variance, etc.) and
estimation. Part IV focuses on mathematical aspects of soft methods applied
to probability and statistics. Various contributions address issues in measure
theory, stochastic differential equations, convergence issues, the formalization of
variance, but also some discrete mathematical problems. It includes the contri-
butions to a special invited session on fuzzy set-valued analysis organized by
Luis J. Rodriguez-Muniz. Papers on aggregation functions and algebraic issues
can also be found.

Part V is the application section, devoted to engineering. It ranges from compu-
tational methods for uncertainty propagation to regression, learning data-mining
and decision analysis. Applications include expert opinion fusion, structural anal-
ysis, and design optimization.

The editors are grateful to contributing authors, invited speakers, and all
Programme Committee members and additional referees who made it possible
to put together an attractive program for the conference. Thanks go to Janusz
Kacprzyk for his everlasting support to SMPS, to the Editorial staff of Springer
for producing the volume, carefully put together by M. Asuncién Lubiano.

This conference has also benefited from the financial support of several orga-
nizations, without which the meeting could not have taken place. We are grateful
to the “Obra Social y Cultural” of the main Savings Bank in Asturias, CajAstur,
for generously supporting the production costs of the proceedings. This confer-
ence was also sponsored by Institut de Radioprotection et de Stureté Nucléaire
(IRSN, Cadarache) and Université Paul Sabatier. It is placed under the auspices
of EUSFLAT (the European Society for Fuzzy Logic and Technology).

Toulouse, May 2008 Didier Dubois
M. Asuncién Lubiano

Henri Prade

Marfa Angeles Gil

Przemystaw Grzegorzewski

Olgierg Hryniewicz
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Imprecise Probabilistic Prediction for
Categorical Data: From Bayesian Inference to the
Imprecise Dirichlet-Multinomial Model

Jean-Marc Bernard

Université Paris Descartes, Laboratoire de Psychologie Environnementale (CNRS, UMR 8069),
Boulogne-Billancourt, France

Abstract. From n categorical observations, what can be predicted about the next n’ ones? We
present a generalization of the Bayesian approach, the imprecise Dirichlet-multinomial model
(IDMM), which uses sets of Dirichlet-multinomial distributions to model prior ignorance. The
IDMM satisfies coherence, symmetry and several desirable invariance properties.

Keywords: Predictive inference, Rule of succession, Imprecise Dirichlet model, Prior ignorance.

1 Introduction

1.1 A Story with (Too) Many Rabbits

Some years ago, a friend proposed me the following puzzle: “A man takes you to a
room. There, on a table, stand two top-hats. The man asks you to pick one hat at random
and to raise the hat, and to your great surprise, you discover a rabbit under the hat. The
man then asks you: What is the probability that the other hat contains a rabbit too?”
At this stage, my friend looked at me, checking that the desired effect was reached. In
effect, I felt embarrassed because my probabilistic intuition told me that I could not
reasonably answer the question. The question even sounded somehow meaningless.

The puzzle went on: “Suppose now that there are 100 hats on the table and that the
man asks you to draw one hat, then another, and so on, and that, under each hat, you find
a rabbit, until there is only one hat left. Now the question is: What is the probability that
the last hat also contains a rabbit?” Now I felt somehow more embarrassed, because it
seemed to me that there was an answer to the question, and that, with some calculations,
I could put a figure on the requested probability, e.g. around 19090.

But then came the final stroke: “When moving from 2 hats to 100 hats, a question
which initially sounded meaningless has changed to a relevant question. After how
many hats does the question become meaningful?”

I had then realized that the Bayesian theory proposed answers to the rabbits story.
For instance, assuming that there are only K = 2 possibilities from the set C; =
{rabbit,no — rabbit}, and that one is in a state of prior ignorance, Laplace’s famous
rule of succession provides the answers % and }g? to the 2-hats and 100-hats cases re-
spectively. But these probabilities become 3 and |03 if the set of possibilities is taken
as Cy = {rabbit, pigeon, other,nothing }. And other ways to define prior ignorance yield

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 3@ 2008.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2008
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a probability of 1 for the two cases indistinctly. Hence, in the 2-hats case, the answer
appears to depend too much on the prior and on the number of basic categories, and
this could explain the reluctance to give an answer in that case. In contrast, the 100-hats
case appears less problematic because these dependencies are less strong.

It now seems to me that the rabbits puzzle illustrates the advantages of using
imprecise probability models to express uncertainty, especially in situations of prior
ignorance. This paper presents an imprecise probability model, the imprecise Dirichlet-
multinomial model (IDMM) which possess several interesting properties: it generalizes
Bayesian inference, it yields probability intervals for events of interest, it proposes a
new definition of prior ignorance, it is invariant w.r.t. the possibility space C, and it
satisfies several other important properties including coherence. The IDMM has been
studied in great detail by Walley & Bernard [I35] and can be seen as the predictive
counterpart of Walley’s Imprecise Dirichlet Model (IDM), see [[13]].

For example, under the IDMM, before observing any hat, the prior probability interval
of finding a rabbit s [0, 1], a probability interval which expresses a maximal uncertainty
in Walley’s theory of imprecise probabilities (see [12]). After observing the first hat,
the IDMM yields the probability interval [}, 1], and, after observing 99 hats, the interval

99 1
[{o0-11-0

1.2 The General Problem

The general problem of predictive inference can be stated as follows. Each observable
unit is classified into one of K categories or types from a set C, labeled 1,2,...,K. We

observe the types of n distinct units. Leta = (ay, . ..,ax) and f = a/n denote the counts
and (relative) frequencies of each type in the observed sample of size n, with Y, a; = nl
The problem is to make inferences about a’ = (d},...,dx) or f’ =a’/n’, the counts

or frequencies of each type in a future sample of n’ new units, where ¥, aj = n'. The
rabbits examples refers to the special case n’ = 1 of immediate prediction, in which the
prediction bears on the next observation only.

The problem of probabilistic prediction for categorical data has been of great histor-
ical importance in Statistics. In the 18th century, Bayes discussed the problem in the
case of two categories, and Laplace proposed a generalization to the case of multiple
categories, The general problem, which Karl Pearson called “the fundamental problem
of practical statistics”, and the “rules of succession” proposed to answer the problem
of immediate prediction have been widely discussed since then, see [} [13] and refer-
ences therein. Geisser [8]] stresses that predictive inference is the most natural approach
to inference since it attempts at modeling observables (past and future) only, without
referring to an underlying population.

1.3 Laplace’s and Other Bayesian Rules of Succession

A rule of succession is a solution to the problem of immediate prediction, i.e. the
case n’ = 1. Laplace’s principle of indifference leads to the famous rule of succession

Prob(a,=1|a) = Z":Kl

! For an IDMM with hyperparameter s = 1, see further.
2 In the sequel, all sums and products with index k run from 1 to K.



Imprecise Probabilistic Prediction for Categorical Data 5

More generally, Bayesian conjugate analysis (based on a Dirichlet-multinomial prior,
as we shall see) leads to the following rule,
/ ag ~+ O
Prob(a;, =1|a) = nts (1)
where @ = (0, ..., o) are fixed positive reals, with Y; oy = s. Each oy can be thought
of as a prior strength allocated to each category k.

Within the Bayesian framework, several approaches have been proposed for the pur-
pose of objective inference, i.e. for making inferences from a state of prior ignorance.
Each one leads to different choices for the prior strengths @, typically symmetrical, i.e.
oy = s/K, with a small value for s, either s =0, 1, K/2 or K. See e.g. [7} 15]]. The
problem with these objective Bayesian methods is not only that their answers differ, but
that they can differ substantially, especially when #z is small compared to K. Another
problem is the dependence on the set C and the number of types K, whereas the way
observations are categorized can be partly arbitrary.

The IDMM described in this paper answers these difficulties by using a set of prior
distributions to characterize prior uncertainty, instead of a single prior distribution as
in the Bayesian approach. As a result, the predictive inferences produced by the IDMM
encompass several objective Bayesian methods, and also are invariant w.r.t. refinements
or coarsenings of the possibility space C.

2 Bayesian Predictions

2.1 Link between Past and Future Observations

In order to make inferences about the unknown a’ from the observed a, past and fu-
ture observations must be linked in some way. Intuitively, the idea is to think that past
and future observations are “homogeneous”, in other words that the observed counts
a constitute a “fair” representative of the combined (past + future) counts a + a’. We
denote by an asterisk the characteristics of the combined observations: n* = n+n’,
a*=a+a',and f* = (nf+n'f)/(n+n).

For instance, assume that the observed data were obtained by multiple hypergeomet-
ric sampling, i.e. n observations taken at random from the n* = n+n’ combined ones.
The probability of obtaining the counts a conditional on the combined counts a* is

then
a; n* a;+d,
Prob *) = k oc k. 2
oniala) =T1(E) /() =T1(",. ") @

More generally, the intuitive idea of homogeneity can be operationalized by an as-
sumption of exchangeability (or order-invariance): conditional on the counts of each
type in the n+ n’ observations, each possible ordering of the n + n’ observations is
equally probable a priori. The exchangeability assumption is satisfied whether the size
of the sampled population is finite (multiple hypergeometric process), of size at least
n* = n+n', or even infinite (multinomial process). Under that assumption, the proba-
bility of a, conditional on a*, is always proportional to (2), and hence the probability
in @) represents the likelihood of a* given a.
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2.2 Dirichlet-Multinomial (DiMn) Prior and Posterior

The conjugate family associated to the likelihood (@) is the Dirichlet-multinomial
(DiMn) family. The DiMn(a,n*) prior on a* with parameters & = (0o, ..., 0k ), that is,

ail.. ok

[
o
Proba<a*)=<2*) b )

when combined with the likelihood @), yields a DiMn(a + e,n’) posterior on a’ con-
ditionally on a that is,
n+n'> (a1 + on) - (ag + o) K] @

P}"Oba(a/|a) = (a+a, (n—|—S)[n/]

In the above equations, the formulae for probabilities are expressed in terms of stan-
dard multinomial coefficients and of the ascending factorial function y/, defined for all
integer u > 0 and real y byﬁ

Y =yy+1)--(y+u—1), foru>0and y¥=1. (5)

Note that the parameters o = (0,...,0x) act as prior strengths allocated to each
category and that updating is done by incrementing them with the observed counts
a=(ay,...,akx). We shall also use an alternative parameterization in terms of s and the
relative prior strengths t = (11,...,tx) = @/s.

2.3 Some Properties of DiMn Distributions

Below, we list a few properties of the DiMn. Other properties and further references
may be found in [13]] and [, pp. 80-83 & 202-211].

e Expectations: The prior (posterior) expectations are given by the prior (posterior)
relative strengths, E(f;) = t, and E(f] |a) = (ax+stx)/(n+35).

e Pooling: When pooling two categories k and / into a single one, the DiMn form is
conserved (with K — 1 categories instead of K), and the strengths associated with
the compound category k +/ are obtained by summation: ¢ + ¢ for prior strengths,
and ay, + a; for observed counts. Note that s is preserved by pooling.

e Links with the Dirichlet distribution: Suppose that the data are obtained by multi-
nomial sampling from an infinite population with true frequencies @ = (6y,...,0x),
and that prior uncertainty is described by a Dirichlet distribution, 8 ~ Diri(et).
Then, the induced prior and posterior predictive distributions are exactly the ones
given in (3) and @). As a consequence, as n’ — oo (and hence n* too), the prior
DiMn on f’ (and f*) tends to a Diri(a) and the posterior DiMn on f” | a tends to a
Diri(a+a).

3 There are alternative expressions in terms of generalized binomial coefficients and/or Gamma
functions, see [13].
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3 The Imprecise Dirichlet-Multinomial Model (IDMM)

3.1 The Idea of an Ignorance Zone

Each of the various objective Bayesian or frequentist methods that were proposed for
the predictive problem can in fact be seen or re-interpreted as derived from a DiMn
with some specific choice for the prior strengths @, all o;’s being always within [0, 1].
The most usual objective Bayesian solutions use symmetrical DiMn priors: o = 0 for
Haldane, oy = 1/K for Perks, o = 1/2 for Jeffreys, og = 1 for Bayes-Laplace (see
e.g. [2). And frequentist solutions correspond to asymmetrical priors, but again with
small values for the og’s [11]]. From this closeness of these various ways to define prior
ignorance, has emerged the idea that ignorance could be defined by an ignorance zone
for vector a, rather by than a single e value (see [1L 2]]). See also [T1]) who came
close to this idea. This idea was formalized by Walley, see [[12]] for the general theory,
and for the case of categorical data.

3.2 Definition of the IDMM

To model prior ignorance about the counts a*, we use the set of DiMn distributions,
parameterized in terms of s and t = &/s:

{Probs :t; >0 for k=1,....K, Yt =1}, (6)

where s and n* are fixed. In (@), ¢ ranges over the interior of the unit simplex. We call
the model (@) the imprecise Dirichlet-multinomial model (IDMM) with hyperparameter
s, which we write as IDMM(s).

Hence, the prior IDMM(s) is the set of all DiMn(et,n*) prior distributions which sat-
isfy o = st, tp > 0 and Y #; = 1. After observing the frequencies a, the IDMM is updated
to the set of all DiMn(a + st,n’) posterior distributions on a’ with the same constraints
ont,i.e.,

{Probgyst 1y >0 for i=1,....,K, Yyt =1}. @)

The posterior set in (7) defines the posterior IDMM and models the uncertainty about
the future observations a’ after observing the data a. We can make inferences from
the IDMM by calculating posterior lower and upper (L&U) probabilities of any event
B or expectations of any function V = V(a’), which are denoted by Prob(B|a),
Prob(B|a), E(V|a), and E(V|a), by maximizing and minimizing Proby(B|a) =
SaregProbs(a’ |a) or Eq(V|a) =Y, V(a')Probg(a’|a) with respect to ¢, where
Probg(a’ | a) is given by @).

The size of the IDMM prior and posterior sets of distributions are governed by the
constant s. Values within [1;2] for s have been proposed, in the context of the IDM as
a good compromise between (i) having not too weak inferences and (ii) encompassing
alternative Bayesian and frequentist models, see [3]] for detailed arguments.

3.3 Properties of Inferences from the IDMM

In the development of statistical methods, there has been a considerable attention on
the properties inferences should satisfy, especially for an objective inference: what do
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we learn about the future counts a’ or frequencies f/ = a’/n’ from the observed data
a, regardless of any possible prior knowledge. Statisticians have proposed several prin-
ciples or properties that seem desirable for such inferences (see [4} Sect. 2.3 and 2.4],
and for formal definitions, detailed discussions of why they seem desirable
or compelling, and other references). We list below the major properties that the ITDMM
satisfies.

IDMM rule of succession: For immediate prediction, i.e. n’ = 1, the IDMM produces
the imprecise rule of succession,

A

Prob(a;{:1|a):n+s _ Gts

/
and Prob(a;, =1|a)= s (8)
In the rabbits example of Section [[Il under the IDMM(s = 1), the predictive L&U
probabilities of finding another rabbit are [ ;1] for the 2-hats case, and [19090; 1] for
the 100-hats case.
Symmetry principle (SP): Prior uncertainty about any event relative to f’ is invariant
w.r.t. permutations of the K categories of set C. This property is similar to Laplace’s
principle of indifference.
Prior ignorance: The prior L&U probabilities of simple events, such as B = (f] =
1,n" = 1), and L&U expectations E(f]) are both [0;1], i.e. maximally imprecise
or vacuous. Both become non-vacuous as soon as n > 1. This is in contrast with
the Bayesian approach which always yields a precise value for such events or
expectations.
Likelihood principle (LP): Posterior inferences from the IDMM depend on the data
through the likelihood function (@) only. Formally, they satisfy the “likelihood prin-
ciple”. In particular, and in contrast with some alternative methods, they do not
depend on data that might have been observed but were not.
Coherence principle (CP): This principle is typically put forward in a Bayesian or
generalized Bayesian context, in which uncertainty is described by personal proba-
bilistic assessments (possibly imprecise) and are behaviourally interpreted as defin-
ing acceptable betting rates. Coherence is a rationality criterion which ensures that
several bets or decisions induced by the overall model are mutually consistent. In-
ferences from the IDMM do satisfy coherence, in the strongest sense of Walley
Sect. 2.5 & 7.1]. It generalizes, and in some way strengthens, the Bayesian concept
of coherence, see de Finetti [6, Chap. 3].
Representation invariance principle (RIP): Inferences do not depend on what cat-
egories are distinguished, nor even on the number of categories, K. Formally they
satisfy the RIP proposed by [[13]. The RIP states that posterior uncertainty about
any event B relative to f’ should not depend on refinements or coarsenings of cate-
gories, provided that B remains unchanged. In effect, we saw that, when categories
are pooled, both the form of a DiMn distribution and the value of s are preserved, so
that the set of posterior DiMn distributions produced by the IDMM(s) is essentially
unchanged. For the rabbits example, this implies that the inferences remain the same
whether we take C| = {rabbit,no — rabbit } or C; = {rabbit, pigeon, other,nothing }
as our set of categories.
Specificity property: De Cooman et al. [3] recently studied immediate predictions
assuming exchangeability and representation invariance. They showed that, among
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such predictive systems, the IDMM is characterized by an additional property of
specificity: when conditioning on a subset C* C C of the categories, inferences de-
pend only on the counts in C*.

The IDMM satisfies all these properties or principles jointly. In contrast, the SP and the
RIP are mutually exclusive for Bayesian models using proper priors Sect. 5.5], and
frequentist methods typically violate the LP and the CP.

However imprecise models such as the IDMM or the related IDM provide a way to rec-

oncile all these alternative objective models [14]. If s is taken large enough, typically
s = 1 or s = 2, then the probability intervals produced by IDMM contain the correspond-
ing probabilities obtained from all alternative objective models either Bayesian or fre-
quentist, for the case K = 2, and from the most reasonable of these models for general
K (see [3L[13]).
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Fuzzy Bayesian Inference

Reinhard Viertl
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Wien, Austria

Abstract. Fuzziness of data is usually neglected is statistics. But real data are frequently not
precise numbers, but more or less imprecise. This imprecision is different from errors. Impreci-
sion of data can be modelled by special fuzzy subsets of the set of real numbers, and statistical
methods have to be generalized to fuzzy data.

Another kind of fuzziness is the fuzziness of a-priori information in Bayesian inference. It
is possible to apply so-called fuzzy probability distributions as a-priori distributions. The corre-
sponding generalization of Bayes’ theorem is basic for what is called fuzzy Bayesian inference.

Keywords: Bayesian inference, Bayes’ theorem, Decision analysis, Fuzzy Bayesian inference,
Fuzzy data, Fuzzy information, Fuzzy intervals, Fuzzy probability distributions, Fuzzy utility,
Non-precise numbers.

1 Introduction

In applications of Bayesian statistical methods frequently data are not precise numbers
or vectors, and the a-priori distributions are not exact probability distributions in the
standard sense. Therefore it is necessary to model real data in a suitable way to in-
corporate the fuzziness of data before they are analyzed by statistical methods. This
is possible by using special fuzzy subsets of the set of real numbers R, so-called non-
precise numbers. The mathematical description of non-classical a-priori distributions is
possible by so-called fuzzy probability distributions. Based on this Bayes’ theorem can
be adapted by generalizing the likelihood function to the situation of fuzzy data, based
on the extension principle of fuzzy set theory.

2 Fuzzy Data

One dimensional data obtained by measurement of continuous quantities are not precise
real numbers but more or less non-precise. This imprecision is different from errors and
is also called fuzziness. The best up to date mathematical model for measurement data
are so-called non-precise numbers.

Definition 1. A non-precise number x* is a fuzzy subset of R whose membership func-
tion & (+) obeys the following:

V6 € (0;1] the d-cut Cs(x*):={xeR:&E(x) > 6}
is non-empty and a finite union of compact intervals [a57j;b57j], i e.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 10—2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008



Fuzzy Bayesian Inference 11

Ky

Cs(x") = | [as.j:0s,5] -
j=1

Remark 1. If all §-cuts are compact intervals, then x* is called fuzzy interval.

In order to generalize statistical inference procedures to the situation of fuzzy data it
is necessary to propagate the imprecision of individual measurement results into the
sample space.

For stochastic quantity X the set of all possible values of X is denoted by Mx and
called observation space. For samples Xi,---,X, of X the set of all possible values
(x1,--- ,xn) with x; € My is given by the Cartesian product My x --- x Mx = M} which
is called sample space of X .

For a fuzzy sample consisting of n non-precise numbers x7, - - - ,x; with correspond-
ing characterizing functions &;(-),---,&,(-) these n characterizing functions are com-
bined by the minimum t-norm in order to obtain the so-called vector-characterizing
Sfunction £ : R" — [0;1] of a fuzzy element x* in the sample space M}. The values
C(x1,--- ,x,) are obtained from the individual characterizing function &;(-) by

C(xr, o yxn) i=min{ &y (x1), -+, &)} V(g0 ,xp) €R™.

The fuzzy element x* is called fuzzy combined sample. It is the basis for the generaliza-
tion of Bayes’ theorem.

Data fuzziness has to be combined with the fuzziness of a-priori knowledge. There-
fore it is necessary to generalize a-priori distributions. This is done in the next section.

3 Fuzzy Probability Distributions

Standard probability distributions as a-priori distributions for parameters 6 in Bayes-
ian inference are a topic of critics. Therefore so-called soft models are more suitable
to express a-priori information. In the context of probabilistic a-priori information soft
models are so-called fuzzy probability distributions.

Definition 2. A fuzzy probability distribution P* on a measurable space (M, <) is a
function defined on the event system </ which assigns to every A € </ a fuzzy interval
P*(A) with 8-cuts [P5(A); P5(A)] obeying the following:

(1) P*(0) =0 (characterizing function Iy (-))

(2) P*(M) =1 (characterizing function I1y(-))

(3) For all 6 € (0;1] and all pairwise disjoint events Ay, --- , A, from </

Ps (LnJAi) < iPa(Ai)
i=1 i=1
and
Ps (UA,) > Z;Pa(A,-)
i=1 i=

A special case of fuzzy probability distributions is obtained from so-called fuzzy proba-
bility densities. These are special fuzzy valued real functions f*(-) whose values f*(x)
are fuzzy intervals. The 8-cuts of f*(x) are denoted by
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Cs[f ()] = [f5(x):fs(x)] V8 e (0:1].

Definition 3. Let (M, <7, 1) be a measure space and f*(-) be a fuzzy valued function
defined on M. If *(-) is fulfilling the following conditions

(1)V 6 € (0;1] the 6-level functions fa(-) and f §(-) are integrable with finite integrals

Is= [ f50)dutx) and 15 = [ f50)du()
M M

@ 1€ | [1,0dne);: [ fidue)
M M
(3) there exists a classical probability density f: M — [0;e0) with
[ix) <f) <filx) VxeM
then f*(-) is called fuzzy probability density.

Remark 2. Based on a fuzzy probability density f*(-) on a measure space (M,.<7, 1) a
fuzzy probability distribution P* on (M, .o/ ) is generated in the following way:
Defining the set .%5 of all classical probability densities f(-) on (M, .o/, 1) obeying

fs() <fx) < fs(x) VxeM
the fuzzy probability of A € &7 is defined by its 5-cuts
C5[P*(A)] = [P5(A):P5(A)] V& € (0:1]
with

Ps(4) = sup { [ aue): ) € 7
A

Ps(a)i=int{ [ f()du(x): () € s
A
The characterizing function Wp«(4)(-) of the fuzzy interval P*(A) is given by the repre-
sentation lemma:

II[P*(A) (x) = maX{S'ICE[P*(A)](X): 6 S [0, 1}} Vx eR

4 Bayes’ Theorem for Fuzzy A-Priori Density and Fuzzy Data

For continuous stochastic model X ~ f(- | ), 8 € O, where f(- | 0) denotes the prob-
ability density of X, Mx the observation space, continuous parameter space ©, a-priori
density 7(-) on ©, and observed complete sample xi,- - ,x,, the standard Bayes’ theo-
rem gives the a-posteriori density 7 (- | x;,--- ,x,) by its values
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(0| x1, - ,xn) = " voeo.

Remark 3. The function whose values are ﬁ f(x;i | @) is the likelihood function for

=

complete data denoted by ¢( -;xy,--- ,x,), considered as a function of the variable 6.

For fuzzy data x7,---,x) the likelihood function becomes a fuzzy valued function
£*(-,x*) whose values £*(0;x*) are assumed to be fuzzy intervals with characteriz-
ing functions Wy« (g.+)(-). The values of this characterizing function are obtained by
application of the so-called extension principle from fuzzy set theory:

[ sup{8(x): 4(O;x)=y} if T xe M} :L(0;x) =y
Wé*(ﬂ;x*)(y)—{o if 2 xe M L 0(6:x) = y VyeR

Taking the &-cuts of Wy«(g,+)(+) and denoting them by [05(6:x*);£5(6;x*)], for vari-
able 6 we obtain two classical real valued functions {5 (-;x* ) and £5(-;x* ), these are the
O-level functions.

Based on these functions the fuzzy a-posteriori density 7* (- | x7,--- ,x) =7 (- | x*)

is defined by its 8-level functions 7wg(- | x* ) and 7g (- | x* ) respectively, using the &-level
functions 7g(+) and 7ws(-) of the fuzzy a-priori density 7*(-) for all 6 € (0;1]:

75(0) - Ls(6:x7)

0|x") =
7178( | ) /% [na(e),ga(e;x*)+7t5(9)-Eﬁ(e;x*)] de
and e (6) £(6 *) voeo
0|x") = no e
”5( | ) /é [ﬂa(e)_ga(e;x*)+ﬂ5(6)~£5(6;x*)] de
(G}

This fuzzy a-posteriori density is the basis for Bayesian inference in case of fuzzy in-
formation.

Remark 4. The above definition of the §-level functions of the a-posteriori density keeps
the sequential nature of the updating procedure from standard Bayes’ theorem.

5 Applications of Fuzzy A-Posteriori Densities

In standard Bayesian inference the a-posteriori density can be used for different statis-
tical procedures: Confidence regions, predictive densities, calculation of probabilities
of parameter hypotheses, construction of Bayesian decisions based on utility functions
and others.

For fuzzy a-posteriori densities generalized procedures are available and described
below.
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5.1 Fuzzy Confidence Regions

Standard confidence regions for the parameter 6 of a stochastic model X ~ f(- | ),
0 € O in the Bayesian context are based on the a-posteriori density (- | D) of 6. A
confidence region C;_, for confidence level 1 — « is defined by

/ (6| D)do = 1 —a.
Ciqo

For fuzzy data D* = (x7,-- - ,x};) the combined fuzzy sample x* is the basis for the con-
struction of generalized confidence regions, which are fuzzy subsets of the parameter
space O.

Let {(-,---,-) be the vector-characterizing function of x*. For x € supp(x*), a-
posteriori density 77(- | x), and confidence level 1 — ¢ a corresponding confidence region
is denoted by Cy 1. The confidence set C}_, based on the fuzzy combined sample x*
is the fuzzy subset of ©® whose membership function ¢(+) is given by its values @(0) in
the following way:

_ fsup{l(x):0€CiqfifIxeM}:0€C g
"’(9)'_{ 0{ }ifﬁxeM;;:eecx’l_a}veE@
Remark 5. For classical samples x = (x1,--- ,x,) the membership function ¢(-) is the
indicator function of the standard confidence region Cy 1.

5.2 Predictive Densities

Standard predictive densities for X ~ f(- | 0), 8 € © based on 7 (- | D) are given by the
marginal density

p(x\D):/f(x\B)n:(G\D)dG VxeM.
(C]

For fuzzy a-posteriori densities 77*(- | D*) the integration of a fuzzy valued function is
necessary. This is possible by the generalized integral from Section 3}

P D)= £ 0)-7(8 | D) dB
(C]

Remark 6. The fuzzy valued function p*(- | D*) is a fuzzy density in the sense of
Section[3l This fuzzy density can be graphically displayed by several -level functions

ps(-| D¥) and py(- | D*).

5.3 Probabilities of Parameter Hypotheses

For parametric hypothesis 57 : 0 € Oy C O it is possible to calculate a-posteriori prob-
abilities based on fuzzy a-posteriori densities 7*(-|D*). This is an application of the
definition of fuzzy probabilities in Remark 2]in Section[3]

The a-posteriori probability of the hypothesis 77 is

PH | D) = /n*(@ | D*)d6
C})
which is a fuzzy interval whose support is a subset of [0; 1].
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5.4 Bayesian Decisions Based on Fuzzy Information

Standard Bayesian decisions based on classical probability distributions on the state
space O and utility functions U (-,-), where U(0,d) is the utility of the decision d € 2
if the considered system is in state 8 € ©, are defined by maximization of the expected
utility EU (6,d) where the Bayesian decision dp obeys

EU(6,dp) = maxEU(0,d).
de9

In case of continuous state space © and probability density 7(-) on ©, the expected
utility of the decision d is given by

EU(0,d) = /U(&d)n:((—))de.
6
If both, the utility function U*(6,d) and the probability density 7*(-) on © are fuzzy,
we obtain a generalized (fuzzy) expected utility
EU*(0,d) =][U*(9,d)7t*(9)d9.
e
This is again the integral of a fuzzy valued function g* () as defined in Definition[3 The

result is a fuzzy interval EU*(6,d) whose characterizing function &(-) is obtained from
its 6-cuts Cg [€(+)] with

Csle(")]

/ga(e)na(e)de;/g5(9)n5(9)d9 V6 e (0:1].
(¢} (C]

 [esies).

The characterizing function £(-) is obtained by the Representation lemma for member-
ship functions, i. e.

g(x) =max {8-Ijg;.05)(x) : 8 € [0:1]} VxeR.

References

1. Bandemer, H.: Mathematics of Uncertainty - Ideas, Methods, Application Problems. Springer,
Berlin (2006)

2. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic - Theory and Applications. Prentice Hall,

Upper Saddle River (1995)

Viertl, R.: Foundations of fuzzy Bayesian inference. J. Uncert. Syst. 2(3) (to appear, 2008)

4. Viertl, R.: Fuzzy models for precision measurements. Math Comput Simulat (in press, 2008)
doi:10.1016/j.matcom.2008.02.013

(O8]



Soft Methods for Treating Uncertainties: Applications in
the Field of Environmental Risks

Dominique Guyonnet, Gaél Bellenfant, and Olivier Bouc
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Abstract. In recent years, soft methods for treating uncertainties have reached the field of envi-
ronmental risks. This paper presents some specific characteristics of this field and how they can
affect the choice of methods and the way of representing results. Example applications illustrate
the use of such methods in several areas of environmental risks: soil and groundwater contam-
ination, health risks and risks related to the underground storage of carbon dioxide for climate
change mitigation. A potential drawback of these methods in a decision-making framework is the
fact that decision-makers do not like to work with multiple indicators, i.e. upper and lower bounds
on the probability of exceeding a certain risk threshold. A way to avoid this difficulty is proposed,
based on a weighted average of optimistic and pessimistic bounds on risk focal elements.

1 Introduction

Since a few decades, public awareness regarding the reality of environmental risks has
grown considerably, as practically all natural environments are being adversely im-
pacted by human activity. The most notable changes in public perception have occurred
in recent years as a result of tangible evidence that human activity is significantly al-
tering the Earth’s climate, with potentially drastic consequences for life on the planet.
Most industrialized countries have now enforced legislation aimed at regulating human
activity so that it can be compatible with a more sustainable development (see for ex-
ample Community legislation on water management: [[13]]; waste management: [[L6]], or
soil management: [4]). Legislation regarding environmental issues relies largely on the
notion of “risk”, which is defined here as the degree of “likelihood” that adverse effects
might result from a given human activity. Existing legislation typically propose thresh-
olds, e.g. for pollutant concentrations in water fit for human consumption, that should
not be exceeded.

The field of environmental risks is characterized by at least two important features:
(i) the considerable complexity of mechanisms involved and hence related uncertainties
and (ii) a general attitude of “aversion to risk”. Environmental issues are multidisci-
plinary by nature. A simple schematic of a typical framework relevant to environmental
issues is depicted in Figure [[] The source could be for example a chimney on an indus-
trial site sending pollutants into the atmosphere. The target could be a group of persons
living at some distance from the chimney. The vector is the natural mechanism through
which the targets may come into contact (become exposed) with the pollutants emitted
by the source. In this example it could be windborne pollutants inhaled by the targets
or else deposited pollutant uptake by vegetables grown and consumed by the targets,

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 16 2008.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Schematic of a typical framework in a context of environmental risk

etc. In general, the mechanisms and parameters that influence how targets may become
exposed to the source are complex and/or poorly understood, resulting in significant
uncertainties when assessing environmental risks.

The attitude of “aversion to risk” has some important consequences with respect to
the way uncertainties are treated in environmental risk assessments. In a many cases
the main question is whether or not an “acceptable” threshold might be exceeded at any
time in the future. For this reason the treatment of uncertainties in environmental risk
assessments often relies on limiting scenario calculations. Ranges of possible values
are defined for the parameters that are considered uncertain and interval-type analysis
(possibly using optimization techniques) is performed to examine consequences on the
estimation of risk. This may lead to the three possible outcomes depicted schemati-
cally in Figure P] Either (Figure Bh) the threshold lies above the maximum calculated
“possible” risk, in which case the risk is considered totally acceptable, or (Figure Bb)
it lies below the smallest calculated risk, in which case the risk is considered as to-
tally unacceptable. But in many cases (Figure Bt), the range of possible outcomes is so
wide that the threshold lies within this range, in which case it is necessary to be able to
discriminate between the relative likelihoods of possible outcomes.

In order to discriminate between levels of likelihood, researchers and decision-
makers in the field of environmental risks often rely on the use of unique probabil-
ity distributions (PDFs). The problem of course is that, in this field, we are typically
confronted with information that is incomplete/imprecise and therefore the choice of
unique PDFs is arbitrary. For example, in an analysis of uncertainties related to the risk
of propagation of chlorinated organic pollutants in groundwater, MacNab et al. [[[4]
defined twelve probability distributions for their model parameters, nine of which were
qualified as “postulated”. As shown by previous researchers (e.g. [[7]), this approach,
combined with the frequent hypothesis of parameter independence, may lead to very
unconservative conclusions with respect to risk.

by
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Fig. 2. Schematic of alternative responses to a risk threshold in environmental applications
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In recent years, a better understanding of the fundamental differences between
stochastic and epistemic uncertainties has pervaded to the field of environmental risks.
As a result, researchers in the field of environmental risks have drawn on alternative
methods for representing and propagating information relative to uncertain risk model
parameters (see for example, [8,[9, 1,2, 3]]). Of course this evolution does not imply that
“soft” methods for addressing uncertainties are becoming routine practice, for example
by consulting companies involved in environmental risk assessment studies. Barriers
with respect to a more widespread use of such methods in a decision-making framework
and possible ways to overcome such barriers are discussed at the end of this paper.

2 Different Types of Information Warrant Different Methods of
Information Representation and Propagation

A fuzzy set Possibly one of the most important reasons for using alterna-
tive methods for representing uncertainties in environmental risk assessments is:
consistency with available information. While the complexity of processes and mech-
anisms involved are such that it is not possible to claim “validity” of proposed risk
model predictions, investigators can at least hope to claim methodological “consis-
tency”. When an investigator, faced with incomplete/imprecise information, chooses
to overlook this basic information character and to “disguise” it in the form of stochas-
tic variability by postulating a unique PDF, he/she is misrepresenting reality, usually
for reasons of methodological comfort. The message that the authors of this paper have
been trying to bring forth to the environmental risk community is: first look at your data,
and then choose the most appropriate conceptual framework to represent and propagate
that data.

The types of information that are typically available in a context of environmental
risks can be of a very different nature. In ideal situations, there may be abundant in-
formation regarding for example time-series of rainfall or temperature, in which case a
stochastic representation may be the appropriate choice, relying on classical probability
theory. But in many cases, information is scarce and/or imprecise, and alternative in-
formation theories can be used instead (e.g. possibility theory: [19,[3]; evidence theory:
[T7]; random set theory: [13], etc.).

In order to promote a systematic treatment of uncertainties that takes into account
the basic nature of available information, we have attempted to develop a flowchart
destined to guide investigators. The entry point to this flowchart (Figure [3) is whether
or not the investigator wishes to represent a given risk model parameter by a single
value? There may be various reasons for choosing to use a single parameter value;
objective or subjective. For example, the investigator may know that the parameter is
indeed a single value (e.g. the height of a chimney stack), or he may know that he
will never have information regarding the parameter’s variability (whether spatial or
temporal) and therefore choose to use a single, albeit imprecise, value. Once the user of
the flowchart has chosen whether he wishes to use a single parameter value or not, he
is guided through a series of questions which help him select the most appropriate tool
for representing the information.
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The list of tools, which is by no means exhaustive, is drawn from the information
theories cited above and try to cover the variety of “degrees of precision” typically
encountered in the field of environmental risks. For example, if the user has a sufficient
number of precise measurements relative to his parameter, and the parameter variability
is temporal, then a single probability distribution function would seem the prime choice.
If this variability is spatial, then geostatistical techniques can be used. But if the user
must rely on incomplete information such as expert judgement, imprecise and scarce
measurements, etc., then intervals, fuzzy intervals, random sets, parametric probability
families, etc. may be more appropriate.

While inherently incomplete, the main benefit of the proposed flowchartis to bring the
user to realize that there is no one-all-fit-all method for representing uncertain informa-
tion. All depends on the type of information. Once an appropriate method of information
representation has been selected for all uncertain risk model parameters, this informa-
tion can be propagated using various techniques, the choice of which depends not only on
the information representation tools, but also on possible dependencies between model
parameters. Methods have been developed that are able to accommodate both stochas-
tic and epistemic uncertainties in a single computation of risk. A robust method, that has
been shown to be a systematically conservative counterpart of classical Monte Carlo cal-
culations performed under hypotheses of parameter independence, is the so-called “In-
dependent Random Set; IRS” method ([2,[3]]). This method combines the random sam-
pling of both PDFs (representing random variability) and fuzzy sets (representing incom-
plete/imprecise information) with optimisation techniques in order to estimate minimum
and maximum values of risk, thus defining focal elements. Repeated iteration leads to a
random set that can be expressed in terms of a minimum (optimistic) and maximum (pes-
simistic) level of probability of exceeding a given threshold. Such methods are illustrated
below by several applications in the field of environmental risks.

3 Example Applications

The applications presented below are illustrated schematically in order to provide the
reader with some insight into some typical problems addressed in the field of environ-
mental risks and also the types of uncertainties involved.

3.1 Soil Contamination

In Guyonnet et al. [9], soft methods were used to assess risks of exposure through the
consumption of vegetables, related to emissions from a chimney on a metallurgical
industrial site. Deposition of cadmium on the soils surrounding the site, and the con-
sumption of vegetables grown on these soils, were identified as a possible means of
exposure of local populations to this metal, which is known to have toxic effects on the
kidney ( ). Primary uncertainties in this study were related to (i) the distribution of
cadmium 1n the soils surrounding the industrial site, (ii) the amount of cadmium up-
take by plants grown on these soils, (iii) the amount of vegetables consumed by local
populations living around the site.

Regarding soil cadmium concentrations, a significant number of measurements were
analyzed using geostatistical methods in order to provide information on spatial vari-
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Fig. 3. Flowchart for helping choose the appropriate mode of information representation as a

function of the nature of the information

ability. Information regarding (ii) and (iii) was of a more epistemic nature and possi-

bility distributions were used. A so-called “hybrid” method was developed during this
study in order to propagate the different sources of information. This method combines

Monte Carlo sampling of PDFs (in this case related to soil cadmium concentrations)
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Fig. 4. Map of the “possibility” that the absorbed dose should exceed the reference dose (1 pg/d
kg™ 1. Graduation in km; Triangle = chimney location (from [9]).

with fuzzy calculus on possibility distributions. Results are expressed in terms of a
family of distributions of the probability of exceeding a threshold, which in this case
was ([18]) 1 microgram of cadmium per kilogram of person bodyweight. The method
is slightly different from the IRS method mentioned previously in that it assumes de-
pendence between possibilistic variables ([2]): a metadependence between information
sources attached to the variables and also a dependence between variables themselves.
However, results are very similar to those obtained with the IRS method.

Figure @] presents some results of the analysis expressed as the upper level of prob-
ability (possibility; [6]]) that the dose absorbed by a person consuming home-grown
vegetables and living in the vicinity of the site should exceed the maximum threshold
specified by the health authority. Possibilities of 0.45 of exceeding the reference dose
are found in the close vicinity of the chimney, and decrease below 0.1 at a certain dis-
tance from the chimney. Such a map could be used in a decision-making framework to
impose restrictions on the consumption of home-grown vegetables in this area.

3.2 Groundwater Contamination

In this example soft methods were used to assess the risk of exceeding a concentra-
tion threshold in groundwater located down-gradient from a contaminant spill ([3]).
The contaminant is trichloroethylene, which is frequently a problem for groundwater
because it is both persistent in the sub-surface (it does not degrade easily) and it is toxic
(carcinogenic) at very low concentrations. Primary uncertainties in this study were (i)
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orizontal plane-source

3-dimensional contaminant migration from
a horizontal plane-source at the water table

Iso-concentration curves
in the (x, 0, z) plane

Fig. 5. Conceptual model of the groundwater risk model (Baudrit et al. [3]])

the intensity of rainfall transporting contaminants down to the groundwater, (ii) dis-
solved trichloroethylene concentration in the infiltrating water, (iii) hydraulic conduc-
tivity of the aquifer and (iv) dispersion coefficients, which control pollutant dispersion
in the groundwater.

The variability of rainfall is readily known from meteorological records and this pa-
rameter could be adequately represented by a single probability distribution function.
On the other hand, it was preferred to represent the other three parameters using possi-
bility distributions. One interesting aspect of the analysis was the fact that the “model”
used to calculate concentrations down-gradient from the source, was more complex
than those used to-date for hybrid-type propagation. As such methods involve both it-
erative sampling and optimization, calculation times may rapidly become restrictive. In
that respect, the IRS method is faster than the “hybrid” method as there are only 2 X n
optimization problems due to the application of Monte Carlo sampling to the focal sets
(n being the number of random sampling iterations).

The conceptual model of the calculation tool is depicted in Figure[3l The actual cal-
culation tool is an analytical model that involves an integral and error functions. Results
in Figure [0 illustrate the range of uncertainty in groundwater concentration at a point
located down-gradient from the source resulting from uncertainty in risk model input
parameters. Also shown is the result obtained when unique PDFs are assumed, despite
the epistemic uncertainties, and applying the Monte Carlo method. The advantage of
the classical Monte Carlo method is that a unique value of probability of exceeding the
threshold is obtained. But this uniqueness is the result of the arbitrary selection of PDFs
in presence of incomplete/imprecise information. This point will be further discussed
below.

3.3 Risks Related to CCS: A Climate Change Mitigation Technology

Since a few years, BRGM has become strongly involved in the development of CCS;
carbon capture and storage. The objective of CCS is to capture the carbon dioxide
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Fig. 6. Comparison between various uncertainty propagation methods (from Baudrit et al. [3]])

emitted by large emittors (e.g. the steel industry) and to inject it into deep geologi-
cal traps. Such deep injection has already been practiced since many years by the oil
industry to enhance the productivity of oil fields, by pushing out residual oil. But in
France, primary targets are deep saline aquifers such as the Dogger reservoir of the Paris
Basin. The groundwater in this reservoir is so saline that it will never be considered as a
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potential groundwater resource. However, there are risks of CO, leakage through a vari-
ety of “features”; geological or man-made. Geological features include faults and other
discontinuities while man-made features are essentially abandoned wells which may
provide preferential pathways for CO, migration up to the ground surface. Such mi-
gration represents a health hazard because leaked CO,, being heavier than air, might
accumulate at ground surface and provoke asphyxia of nearby populations, as was the
case with the infamous natural CO, eruption at Lake Nyos in the North-West of Camer-
oun, where over 1700 people died as well as large numbers of cattle.

Figure [lillustrates the types of uncertainties involved in these risk calculations that
are currently ongoing. Calculations to-date have related primarily to the extent of the
CO, “bubble” around the injection point. But results will serve to calculate leakage
fluxes through abandoned wells located in the vicinity of the injection well.

4 Discussion and Conclusions

As was stated previously, the significant advantage of arbitrarily selecting PDFs in the
presence of incomplete/imprecise information and applying the Monte Carlo method is
that a single value for the probability of exceeding a given threshold can be obtained.
Decision-makers dealing with environmental risks often have difficulties let alone with
the notion of probability, without having also to deal with upper and lower bounds on
probability. In order to promote increased acceptance of soft methods in the field of
environmental risks, it is necessary to introduce an additional treatment step and to
provide a result that can be more easily “digested” by potential users.

In a context of “aversion to risk” one might suggest that the pessimistic bound on
probability be used as the unique indicator of the acceptability of risk. This approach,
while being conservative, presents the disadvantage of ignoring all the information lead-
ing to less pessimistic estimates of risk. It is proposed instead to adopt the approach of
Jaffray [[LT] [I2] in order to obtain a “reasonably conservative” estimation of risk. This
approach, based on earlier work by Hurwicz [[10] proposes to compute a single indica-
tor as a weighted average of focal element bounds. The proposed probability measure
is ([ILID):

Py =0en+ (1 —a)ey (1)

where ¢, and ey, are the minimum and maximum bounds of the focal elements.

The choice of weight « is subjective and reflects the attitude of the decision-maker
with respect to risk. The concept is illustrated in Figure[§] which presents the results of
a health risk calculation using a “hybrid” approach and a purely Monte Carlo approach.
An additional curve is presented and calculated according to Equation ([I)) using a value
o = 1/3. This means that a weight of 1/3 is applied to the optimistic limit values of the
focal elements, while a weight of 1 — 1/3 =2/3 is applied to the pessimistic values. In
a context of aversion to risk, it would seem normal to privilege the pessimistic values,
but without completely obliterating the optimistic one.

The curve is indicated in Figure[§] as a “Confidence Index”. This term is borrowed
from the field of meteorology. The meteorological community has extensive experi-
ence with respect to predicting natural events and also of communicating on these pre-
dictions with the general public. It is therefore significant that meteorologists should



Soft Methods for Treating Uncertainties 25

Plausibility
====Belief
""""""" Monte Carlo

i Confidence Index
(alpha=1/3)
— T
2E-5 3E-5
Excess risk threshold

Probability (Risk < Threshold)

Fig. 8. Indicators of the probability of lying below a certain threshold of risk

have adopted the term “Confidence Index” to communicate on the uncertainty related
to their predictions. In our view, the term holds value both from both a scientific and
a sociological viewpoint. Scientific, because it avoids referring to any particular uncer-
tainty paradigm (probabilistic, possibilistic, etc.). Sociological, because the notion of
“confidence’ has positive connotations. Referring to Figure §] one would state that the
computed risk is lower than the threshold (10~9), with a Confidence Index of 85%.

The subjectivity introduced by such an approach can easily be justified in a decision-
making framework as it does not attempt to “disguise” epistemic uncertainty in the form
of stochastic variability, but offers a practical way for the decision-maker to express his
level of aversion to risk. The risk assessor should try to faithfully transmit the available
information, so that the range of possible outcomes should be known. If this range
is judged too large, then measures might be taken in order to reduce uncertainties in
model input parameters (e.g. through measurement campaigns). Such an outcome never
ensues from a Monte Carlo analysis performed using postulated PDFs, as there is no
way of distinguishing, in the computed results, variability resulting from true stochastic
randomness from variability due to arbitrary assumptions.

Acknowledgement. The material presented in this paper is the result of a long collab-
oration between BRGM and IRIT at the Paul Sabatier University of Toulouse. Special
thanks are due to Didier Dubois, who has provided the primary guidance for these
developments.
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Abstract. Robert Féron invented fuzzy random variables in the mid-seventies. As such, his
works deserve due recognition among specialists of soft methods in probability and statistics.
This short paper surveys his contributions to information theory, generalized distances, and the
joint use of probability and fuzzy set theories. An extensive bibliography of his publications is
provided.

1 Robert Féron’s Career

Robert Féron was 33 years old when he obtained the Doctorat &s Sciences degree in
mathematics. He defended it on December 21, 1954, at the Faculté des Sciences de
I’Université of Paris, in front of a committee chaired by Maurice Fréchet and where
Robert Fortet and Daniel Dugué were the examiners.

The main part of this thesis, entitled “Information, Régression, Corrélation” [EI], was
the result of about ten years of research, in an area of mathematics considered as ap-
plied, where interesting progress was appearing. It is within the framework of the young
CNRS (National Centre for Scientific Research) that this research was taking place,
since Robert Féron had been accepted as “Stagiaire de Recherche” in 1945, and then as
“Attaché de Recherche”. After obtaining his “Doctorat d’Etat”, he was found worth be-
coming a “Chargé de Recherche” in 1957, and was then admitted on the very restrictive
list of people having the recognized capability to be appointed as “Maitre de Recherche”
(currently equivalent to 2nd-class “Directeur de Recherche”). But his career at CNRS
ended in 1958, when he became a “Maitre de Conférence” (currently equivalent to As-
sociate Professor) at the Faculté of Sciences of Université of Lyon. Among his new
colleagues were some members of the highly regarded SMR (Société Mathématique de
France), to which he had been belonging since 1946. He remained a Professor at this
University (now named “Université Lyon 17) until his retirement in 1986.

2 Contributions to Probability, Information, Correlation and
Generalized Distances

His thesis contains original developments in the area of the functional characteristics
of random variables. He first defined the concept of uncertainty in gathering different
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approaches already developed, by giving some coherent axiomatic foundations based
on the notion of cumulative probability distributions. It is noticeable that, to achieve
this purpose, Robert Féron used the concepts of probability space and of Borel sets of
R; this deserves to be pointed out if we remember that, in those times, some probability
scholars were still reluctant to use this approach, considered by them as being too much
oriented towards set-theoretic tools for their taste.

On such a basis, he then developed an original work on the concept of information
gain, studied in the case of pairs of random variables (X,Y), the starting idea being to
analyze to what extent the knowledge of information on the values taken by X entails a
reduction of the uncertainty pervading the values taken by Y. In this perspective, the use
of the probabilistic approach, based on measure theory, enables a unified, homogeneous
and consistent formalization of concepts previously defined in particular settings. Taking
as an example the concept of regression, especially of regression lines, the advantages
become clear, since the proposed model, always based on a probabilistic approach, en-
compasses different types of uncertainty measures, including the so-called typical values
introduced by Fréchet, some years before. The section devoted to the concept of correla-
tion unifies, without particular restrictions on the nature of the variables, Pearson corre-
lation ratio, the classical R?, but also ratios obtained by taking Fréchet’s typical deviation
as a measure of uncertainty. This was naturally generalized to n-tuples of variables.

His thesis ended with two independent chapters. One was devoted to the study of in-
dices liable to characterize the fact that two variables are linked by a functional; two
Gini connexion indices, simple or quadratic, and a Jordan index were examined. The
other chapter corresponds to a requirement, compulsory for obtaining this kind of thesis
at the time, namely treating a topic chosen by the committee. In this case, an attempt
at generalizing some notions of processes with independent random variables, of simple
Markov chains, of stochastic processes that are stationary or with independent increases.

Several of the results presented in his thesis led to publications either in the “Journal
de la Société Statistique de Paris”, or in the “Publications de I’Institut Statistique de
Paris”, alone or in collaboration with Claude Fourgeaud, but also as “Notes” in the
“Comptes Rendus de I’ Académie des Sciences (CRAS)” (3 such Notes were published
in years 1951-1952 [[1, 2, [17]).

Once in Lyon University, Robert Féron, without forgetting his scientific origins, ex-
tended his field of research. He launched a small research group, that grew with years,
and became a team officially associated to CNRS in the seventies. In particular, he
started at that time to be interested in problems coming from economics. Especially he
noticed that, quite often, the available mathematical tools were not always appropriate
for dealing with the economical, or more generally social sciences contexts, and he tried
to create specific mathematical tools accordingly.

He first devoted some time to a generalization of metric spaces, towards a weakening
of the axiomatics, in order to make them more appropriate to the handling of problems
that are no longer coming from “hard” sciences such as physics. He then took up again
one of Fréchet’s ideas, that amounts to no longer requiring the triangle inequality, and
developed it. The subject-matter of a 1966 CRAS note 6], this work led to the building
of a new concept of space, initially named F-topological space, as a tribute to Fréchet, but
maybe also in consonance with the author’s name. This work was then further developed
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within Féron’s research team, especially by Marcel Brissaud, who, in order to nicely
couple the concepts of non transitive graphs and of topology, systematically investigated
the weakening of Kuratowski’s axiomatics. This led to the definition of different kinds of
pre-topological spaces that generalize topological spaces. On such spaces, the classical
concepts of separability, connexity, compacity, continuity, subspace, product space, ...
are redefined sometimes with great subtleties and an unexpected diversity with respect
to classical topology.

3 Contributions to Fuzzy Set Theory and Fuzzy Random
Variables

Fuzzy set theory and fuzzy logic originated in Zadeh’s 1965 seminal paper. After a few
years, several researchers, coming from various scientific areas, became interested in
this new idea. In France, among them, some were mathematicians, working in logic
as Daniel Ponasse (also in Lyon), or working on probabilities as Robert Féron. They
both examined the concept of fuzzy membership, the former studying the case where
membership values belong to a lattice, the later looking at the differences and simi-
larities with probability calculus. The few other researchers that were already working
on fuzzy sets in France around 1975 were Arnold Kaufmann, who made huge efforts to
develop and popularize the basic concepts of the new theory, while Claude Ponsard, pre-
maturely deceased, studied its first applications to spatial economics, and Elie Sanchez
introduced a fuzzy relational calculus and its applications in medicine.

Robert Féron has published several pieces of work on fuzzy sets since 1976. Several
of them appeared in the “Publications Econométriques”, a French journal he founded
and edited from 1967 to 1986, and others were published as CRAS notes. In summary,
in his work he considers a non empty set 2", equipped with a topological structure,
and a closed lattice .. A fuzzy set A is characterized by a mapping p4(.) from 2~
to .. A fuzzy set is regular if for all s in ., the sets {x € Z7; ua(x) > s} and {x €
25 ua(x) £ s} are closed sets in 2. % denotes the set of regular fuzzy sets and & a
o-algebra on % Lastly, (£2,.<7) is a measurable space. Then a random fuzzy set is a
measurable mapping from (Q,.%7) to (%',98). From this construction, it is possible to
get a generalization of the usual fuzzy concepts. Several particular cases are considered,
as, e.g., one where the topology of 2" is based on a metric, one where . is finite, and
one where . = [0, 1].

It is worth pointing out that such a generalization was motivated by practical mod-
eling issues, in order to go beyond the simple framework of standard fuzzy sets. For
instance, Robert Féron wrote in [IE, p- 84ﬂ:

Similarly, a generalization of the theory of random sets with closed values has
suggested us a generalization of the notion of random set and a theory that

! French text: De méme, une généralisation de la théorie des ensembles aléatoires a valeurs
fermées nous a suggéré une généralisation de la notion d’ensemble aléatoire et une théorie
qui permet de tirer encore des conclusions dans le cas ou on a un ensemble aléatoire flou.
L’ingénieur a ainsi un outil mathématique puissant pour opérer sur autre chose que des champs
aléatoires, puisque ici I’ensemble S n’est plus un sous-ensemble de R”, mais un treillis dis-
tributif fermé.
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still enables us to draw conclusions in the case where we have a random fuzzy
set. The engineer has thus a powerful mathematical tool for dealing with other
structures than random fields, since here the set S is no longer a subset of R”,
but a closed distributive lattice.

We see here the interest of tools that offer the highest possible generalization. Maybe
another illustration of similar views and attempts, is the famous integral developed at
the same time by Sugeno.

Robert Féron did not restrict his research area to the design of mathematical tools,
but he also thought of possible applications to economics, an area he had always been
interested in. It is in the seventies, two decades after the seminal works of Arrow and
Debreu, that one could see a blossoming of publications aiming at modeling the concept
of economy, involving a finite number of goods, agents having some information at their
disposal, as well as initial amounts, and who have to share out some wealth by possibly
forming coalitions; in this context the objective was, thanks to fixed point theorems,
to look for repartitions that no agent or group of agents could dispute, i.e. for “the
core of an economy”. Féron then pointed out that in a real context, coalitions possess
every reason to be random fuzzy setd], and he proposed an original model leading to
the concept of core of a fuzzy economy [E, ], which could be for instance exploited
in dynamical models, for forecasting purposes; however, being realistic, he remained
cautious in his conclusiongl:

We must however notice that the construction of such a dynamical model re-
quires a very difficult experimental study to be conducted on the actual behav-
ior of economic agents.

Robert Féron continued to work until his retirement and later as well since in 1988
he published a paper [16], in collaboration with his son Marc, where he applied his
results on random fuzzy sets to the evaluation, according to a finite number of criteria,
of industrial products, such as cars.

Unsurprisingly, in his works from years 1970-1980, Robert Féron did not forget his
previous research in the area of topology and pretopological structures, which led him
to open some new research directions that are still partly to investigate. Let us mention
along this line, his work on pre-uniform fuzzy structures. The concept of uniform struc-
ture, developed by Bourbaki should logically lead to such generalizations. This is what
he did along two directions simultaneously, by, on the one hand, weakening the unifor-
mity axioms (for instance only requiring that the family of entourages be a pre-filter
- we then speak of pre-entourages), and on the other hand by introducing the concept
of fuzzy uniform structure, allowing the entourages or the pre-entourages to be fuzzy
sets “ﬁi

Retrospectively, Robert Féron can be considered as a pioneer who always tried to
follow the difficult way that consists in proposing to adapt existing modeling tools for

2 The idea of fuzzy core in game theory had been introduced a few years before by Jean-Pierre
Aubin.

3 French text: Il convient toutefois de remarquer que la construction d’un tel modele dynamique
implique une étude expérimentale tres difficile a effectuer du comportement réel des agents
économiques.
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dealing with application domains, while the temptation was often to develop theories
only for their own sake, implicitly assuming that reality has to be adapted to the model!
Robert Féron can be regarded as one of the very first researchers in soft methods in
probability and statistics (using the name of the conference where the present homage
is presented), especially for having been the first to consider random fuzzy sets, while
at about the same time Fortet and Kambouzia, or Kampé de Fériet pointed out that the
contour function of a random set may be viewed as a fuzzy set. The scientific commu-
nity in fuzzy logic, and more specifically in soft methods in probability and statistics
is thus indebted to Professor Robert Féron for his early contribution to the theory of
random fuzzy sets, and their applications.

In fact, there is yet another important reason why the fuzzy set community has to pay
a tribute to Professor Féron. Indeed, in 1980, Robert Féron took the risk of organizing
a CNRS Round Table, entitled “Quelques applications concrétes utilisant les derniers
perfectionnements de la théorie du flou” (in English: “Some concrete applications using
the most recent advances in fuzzy set theory”), in Lyon (on June 23-24, 1980). Most of
the active researchers in fuzzy sets at that time participated to this meetinﬂ. This was
a time when fuzzy sets were severely criticized by many scientists, in spite of the ef-
forts made by a few others, and this was especially the case in France. Professor Féron
nevertheless managed to put together what turned to be a very important meeting for
the further development of the field. But what is perhaps still another remarkable in-
dication of how broad was Professor Féron’s understanding of the directions in which
fuzzy sets should be developed, is the fact that he invited in the organization committee
(which met on January 25, 1980) not only Kampé de Fériet, but also Gustave Cho-
quet (1915-2006), (together with several much younger fuzzy set researchers) at a time
where almost nobody had still a clear view of the importance of Choquet capacities and
integrals in relation with fuzzy sets and other non-classical approaches to the handling
of uncertainty and the modeling of preferenceﬁ

4 The list of participants included: Jean-Paul Auray, Bernadette Bouchon, Marcel Brissaud,
Christer Carlsson, Didier Dubois, Bernard Dubuisson, Alain Dussauchoy, Gérard Duru, Hu-
bert Emptoz, Siegfried Gottwald, Arnold Kaufmann, Joseph Kampé de Fériet, Peter Klement,
Abraham Kandel, Michel Lamure, Ramon Lopez de Mantaras, Robert Lowen, Noé¢l Malvache,
Constantin Negoita, Hung Nguyen, Serge Oppenchaim, Henri Prade, Daniel Ponasse, Michel
Prévot, Dan Ralescu, Enrique Ruspini, Elie Sanchez, Philippe Smets, Robert Vallée, Didier
Willeys, Lotfi Zadeh, Hans Zimmermann. Sorry for most probably forgetting many people.
Unfortunately, the proceedings of this meeting were never published, although the papers of
the main presentations were distributed to the participants.

5 As a last minute member of this committee (due to the support of Professor C. V. Negoita), the
last author of this note can however testify that apparently Professor Féron was not completely
successful in communicating his enthusiasm for fuzzy set theory to Professor Choquet. To be
fair, at that time, fuzzy sets were still in infancy, and had not much to offer, especially to
mathematics, and only a few mathematicians like Joseph Kampé de Fériet, or Robert Fortet
who had been working in information theory for many years, could foresee some interest in
such a risky, and still incompletely formalized topic. It also took some more years before
the parallel and the differences between Sugeno integral and Choquet integral could be more
deeply understood.
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4 Conclusion

The name of Robert Féron may not be familiar to a number of younger researchers in
fuzzy sets or imprecise probabilities, since many of his papers are not easily accessible
and most of them are in French, if we except ﬂ_]_é, @, ﬁ This note is a modest tribute
to a talented and very open-minded mathematician, with a broad vision of problems,
and a great generosity towards his colleagues. We hope that it will help enlarging the
recognition that he truly deserves.

Acknowledgement. This note was finalized with the kind help of Agnes Rico and Di-
dier Dubois.
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Relating Prototype Theory and Label Semantics

Jonathan Lawry! and Yongchuan Tang?
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Abstract. An interpretation of the label semantics framework is introduced based on prototype
theory. Within this interpretation it is shown that the appropriateness of an expression is char-
acterised by an interval constraints on a parameter €. Here € is an uncertain distance threshold
according to which an element x is sufficiently close to the prototype p; of a label L; for L; to be
deemed appropriate to describe x, if the distance between x and p; is less than or equal to €. Ap-
propriateness measures and mass functions are then defined in terms of an underlying probability
density function & on €.

1 Introduction

In classical logic a concept label L is defined by the set of elements from an underlying
universe which satisfies L (the extension of L) and more generally in Kripke semantics
5] as a mapping from a set of possible worlds into sets of elements (an interpretation
of L). Such an approach fails to capture certain aspects of our intuitive understanding
of concepts in natural language, in particular the role of similarity in establishing the
meaning of concept labels. Furthermore, a possible worlds model seems to overlook our
natural focus on understanding reality as represented by one particular possible world
(see [@] for discussion).

Prototype theory (Rosch [@]) is an alternative approach to concept representation ac-
cording to which decisions regarding the applicability of a concept label to a particular
instance are made on the basis of the similarity of that instance to a (set of) prototypical
element(s) for that concept. Prototypes may not correspond to actual perceptions of ob-
jects or experiences but instead may identify a particular point or region of conceptual
space 3] which is in some way representative of the concept. From this perspective the
human ability to rank elements in terms of the degree to which they satisfy a concept L
can be explained in terms of a comparison of their relative similarity (or distance) from
the prototype(s) for L.

Prototype theory has been proposed as the basis for a possible interpretation of mem-
bership functions in fuzzy set theory ([EL ]), where the membership of an element x in a
concept L is taken to be a scaled version of the similarity between x and the prototype(s)
for L [10]. This rather intuitive approach has the drawback that the prototype similar-
ity interpretation of membership does not naturally result in a truth-functional calculus
when concepts are combined (See Lawry [ﬁ] chapter 2 for a discussion). Consequently a
prototype based model of membership does not seem to capture the underlying calculus
of fuzzy set theory.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 35 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008
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Label semantics (Lawry le, 7, ]) is an uncertainty theory for vague concepts which
encodes the meaning of linguistic labels according to how they are used by a popula-
tion of communicating agents to convey information. From this perspective, the focus
is on the decision making process an intelligent agent must go through in order to iden-
tify which labels or expressions can actually be used to describe an object or value. In
other words, in order to make an assertion describing an object in terms of some set
of linguistic labels, an agent must first identify which of these labels are appropriate
or assertible in this context. Given the way that individuals learn language through an
ongoing process of interaction with the other communicating agents and with the envi-
ronment, then we can expect there to be considerable uncertainty associated with any
decisions of this kind. In label semantics we quantify this uncertainty in terms of appro-
priateness measures, linked to an associated mass function through a calculus which,
while not truth-function, can be functional in a weaker sense (See Lawry [|a] and [ﬂ]).
In the sequel we will propose a prototype theory interpretation of label semantics which
relates both appropriateness measures and mass functions to distance from prototypes
and naturally captures the label semantics calculus.

2 An Overview of Label Semantics

The underlying philosophy of label semantics [@] is very close to the epistemic view
of vagueness as expounded by Timothy Williamson [Iﬂ]. Williamson assumes that for
the extension of a vague concept there is a precise but unknown dividing boundary
between it and the extension of the negation of that concept. However, while there are
marked similarities between the epistemic theory and the label semantics view, there are
also some subtle differences. For instance, the epistemic view would seem to assume
the existence of some objectively correct, but unknown, definition of a vague concept.
Instead of this we argue that individuals when faced with decision problems regarding
assertions find it useful as part of a decision making strategy to assume that there is a
clear dividing line between those labels which are and those which are not appropriate
to describe a given instance. We refer to this strategic assumption across a population
of communicating agents as the epistemic stance, a concise statement of which is as
follows:

Each individual agent in the population assumes the existence of a set of la-
belling conventions, valid across the whole population, governing what lin-
guistic labels and expressions can be appropriately used to describe particular
instances.

The idea is that the learning processes of individual agents, all sharing the fundamental
aim of understanding how words can be appropriately used to communicate informa-
tion, will eventually converge to some degree on a set of shared conventions. The very
process of convergence then to some extent vindicates the epistemic stance from the
perspective of individual agents.

Label semantics proposes two fundamental and inter-related measures of the appro-
priateness of labels as descriptions of an object or value. We begin by assuming that for
all agents there is a fixed shared vocabulary in the form of a finite set of basic labels
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LA for describing elements from the underlying universe 2. A countably infinite set of
expressions LE can then be generated through recursive applications of logical connec-
tives to the basic labels in LA. The measure of appropriateness of an expression 6 € LE
as a description of instance x is denoted by pg(x) and quantifies the agent’s subjective
probability that 6 can be appropriately used to describe x. From an alternative perspec-
tive, when faced with describing instance x, an agent may consider each label in LA
and attempt to identify the subset of labels that are appropriate to use. This is a totally
meaningful endeavour for agents who adopt the epistemic stance. Let this complete set
of appropriate labels for x be denote by Z,. In the face of their uncertainty regarding
labelling conventions agents will also be uncertain as to the composition of %, and
we represent this uncertainty with a probability mass function mz, : 254 — [0, 1] defined
on subsets of labels. We now provide formal definitions for the set of expressions LE
and for mass functions my, following which we will propose a link between the two
measures [g(x) and m, for expression 0 € LE.

Definition 1 (Label Expressions)
The set of label expressions LE generated from LA, is defined recursively as follows: If
LelAthenLe LE; If0,¢ € LE then -0,0 A\ @,0V ¢ € LE.

Definition 2 (Mass Function on Labels)
Vx € Q a mass function on labels is a function my : 24 — [0,1] such that Y5CiA
my (S) = L.

Note that there is no requirement for the mass associated with the empty set to be zero.
Instead, m,(0) quantifies the agent’s belief that none of the labels are appropriate to de-
scribe x. We might observe that this phenomena occurs frequently in natural language,
especially when labelling perceptions generated along some continuum. For example,
we occasionally encounter colours for which none of our available colour descriptors
seem appropriate. Hence, the value m,(0) is an indicator of the describability of x in
terms of the labels LA.

The link between the mass function m, and the appropriateness measures fg (x) is
motivated by the intuition that the assertion ‘x is 8’ directly provides information de-
pendent on 6, as to what are the possible values for %,. For example, the assertion
‘x is blue’ would mean that blue is an appropriate label for x, from which we can in-
fer that blue € Z,. Similarly, the assertion ‘x is green and not blue’ would mean that
green is an appropriate label for x while blue is not, so that we can infer green € 7,
and blue ¢ 9. Another way of expressing this information is to say that %, must be
a member of the set of sets of labels which contain green but do not contain blue i.e.
D€ {SCLA:green €S, blue ¢ S}. More generally, we can define a functional map-
ping A from LE into 22 (i.e. the set containing all possible sets of label sets) for
which the assertion ‘x is 0” enables us to infer that ., € A(6). This mapping is defined
recursively as follows:

Definition 3 (1-mapping)
A :LE — 27 is defined recursively as follows: VL € LA, V0, ¢ € LE; (L) ={S€ .Z :
LeS); A(0A9)=2(0)NA(p): 1BV ¢) = 2(0) UA(p);: (=0) = A()-
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The A-mapping then provides us with a means of evaluating the appropriateness mea-
sure of an expression 6 directly from m,, as corresponding to the subjective belief that
Py € A(0) so that:

Definition 4 (Appropriateness Measures)
For any expression 0 € LE and x € L, the appropriateness measure [lg(x) can be
determined from the mass function m, according to:

VO ELE lg(x)= Y, my(S)
SeA(0)

From this relationship the following list of general properties hold for expressions 6
and ¢ in LE [Ia]:

Theorem 1 (Lawry [B, ﬂ])

If 0 |= @ then Vx € Q g(x) < pp(x)

If 0 = @ then Vx € Q lg(x) = Ue(x)

If 0 is a tautology then Vx € Q Uy (x) =1

If 0 is a contradiction then Vx € Q Lg(x) =0
Vx € Q pog(x) =1—pg(x)

Notice, here that the laws of excluded middle, non-contradiction and idempotence are
all preserved.

In practice an agent’s estimation of both m, and g (x) should depend on their expe-
rience of language use involving examples similar to x. Clearly the form of this knowl-
edge is likely to be both varied and complex. However, one natural type of assessment
for an agent to make would be to order or rank label in terms of their estimated ap-
propriateness for x. This order information could then be combined with estimates of
appropriateness measure values for the basic labels (i.e. elements of LA) in order to
provide estimates of values for compound expressions (i.e. elements of LE).

Definition 5 (Ordering on Labels)
For x € Q let < be an ordering on LA such that for L,L' € LA, L' < L means that L is
at least as appropriate as a label for x as L.

For any labels L;,L; € LA if L; <, L; it follows that if L; € %, then L; € % and con-
sequently when =< is a total ordering then the mass function m, must be nested. In
that case the following theorem shows that the min and max rules for conjunction and
disjunction hold for a restricted class of expressions:

Theorem 2 ([6, 11])

Let LENY C LE denote those expressions generated recursively from LA using only
the connectives \ and \. If the appropriateness of the basic labels as descriptions for
x is ranked according to a total ordering <. on LA then ¥0,¢ € LE™" it holds that

Honp (x) = min (.UB (x), e (x)) ; Hove (x) = max (IJG (x), Lo (x))

3 A Prototype Theory Interpretation of Label Semantics

Suppose that a distance metric d is defined on £ such that d : 2% — [0,0) and satisfies
d(x,x) = 0 and d(x,y) = d(y,x) for all elements x,y € Q. For each label L; € LA let
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Fig. 1. Identifying Z¢ as € varies; For g, & and &; shown in the diagram 25" = 0, > =
{L1,L2}, 2 = {L1, Lo, L3, La}

there be a single element p; € ol corresponding to a prototypical case for which L; is
certainly an appropriate description. Within this framework L; is deemed to be appro-
priate to describe an element x € 2 provided x is sufficiently close or similar to the
prototypical element p;. This is formalized by the requirement that x is within a maxi-
mal distance threshold € of p;. i.e. L; is appropriate to describe x if d(x, p;) < € where
€ > 0. From this perspective an agent’s uncertainty regarding the appropriateness of a
label to describe a value x is characterised by his or her uncertainty regarding the dis-
tance threshold €. Here we assume that this uncertainty is represented by a probability
density function 6 for € defined on [0, ). Within this interpretation a natural definition
of the description of an element %, and the associated mass function m, can be given
as follows:

Definition 6. For € € [0,00) 28 = {L; € LA : d(x,p;) < €} and my(F) = §({¢ :
7¢=F

Intuitively speaking Z¢ identifies the set of labels with prototypes lying within & of
x. Figure [T shows 2¢ in a hypothetical conceptual space as € varies. Notice that the
sequence Z¢ as € varies generates a nested hierarchy of label sets. Furthermore, the
distance metric d naturally generates a total ordering on the appropriateness of labels
for any element x, according to which label L; is as least as appropriate to describe x as
label L; if x is closer (or equidistant) to p; than to p; i.e. L; < L; iff d(x, p;) > d(x, p;).
The following theorem shows that this ordering constrains the labels contained in ¢
as suggested in Section 2}

Theorem 3. If L; <\ L; (as defined above) then Ve > 0 L; € Y implies that L; € .

! For simplicity of notation we assume that each label has a single prototype. However, the
case where there is a set of prototypes P, for L; can easily be accommodated by extending the
distance metric d such that d(x, P;) = inf{d(x, p;) : p; € Pi}.

2 For Lesbegue measurable set /, we denote §(I) = [; §(¢)de.
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Proof. Suppose 3x € Q for which L; <, L; and 3¢ > O such that L; € ¢ and L; & Zf.
From this it follows that d(x, p;) < € and d(x, p;) > € and hence L; A, L; which is a
contradiction as required. a

Also notice from Definition [6] that for L; € LA the appropriateness measure iy, (x) is
givenby 6({e:L; € Z¢}). Consequently, if we view Z¢ as a random set from [0, =) into
214 then py, (x) corresponds to the single point coverage function of Z£. This provides
us with a link to the random set interpretation of fuzzy sets (See [ﬁ]], ] or [[ﬁ] for an
exposition) except that in this case the random set maps to sets of labels rather than sets
of elements. Hence, the interpretation of label semantics as proposed above provides a
link between random set theory and prototype theory.

The following results show how the appropriateness of an expression 6 € LE to
describe an element x is equivalent to a constraint € € I(0,x), for some measurable
subset 7(6,x) of [0,00).

Definition 7. Vx € Q and 0 € LE, 1(0,x) C [0,) is defined recursively as follows:
VL; € LA, VO, € LE; I(L;,x) = [d(x,pi),>); 1(0 A @,x) =1(0,x) NI(¢@,x); 1(6V
0,x) =1(0,x)UI(¢p,x); [(-0,x) =1(0,x)°.

Theorem 4. VO € LE,\Vx € Q I(0,x) ={e: 2F € 1(0)}.
Corollary 1. V6 € LE, Vx € Q ug(x) = 6(1(0,x)).

Definition 8. We define k : LE"Y x © — [0,0) recursively as follows: Vx € Q, VL; €
LA, Y6,¢ € LE™Y; k(Li,x) = d(x,p;); k(60 A @,x) = max(k(0,x),k(¢,x)) and k(6 v
¢,x) = min(k(6,x),k(¢,x)).

Theorem 5. Vx € Q, Vx € LEMY, then 1(0,x) = [k(0,x),).

my({L1,L2})

my({L1,L2,L3})

/

my({L1,L2,L3,L4})

d(xvpl) d(x,pz) d(xvp3) d(x7p4) €

Fig. 2. Let LA = {L,Ly,L3,Ls} and Ly <, L3 <, L, <, L;. This figure shows the values of m,
as areas under 0.
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From Theorem[3] we have that

Hovp(x) = 8([k(8V @,x),°0)) = &([min(k(6,x), k(<P7X)),°°))
= max(§([k(6,x),0)), 6 ([k(@,x),°))) = max(tig (x), Lo (x))-

Similarly, p1ge(x) = min(ug (x), Uy (x)) as is consistent with Theorem 2]

Example 1. I(Li,x) = [d(x,p;),) , [I(-Li,x) = [0,d(x,p;)), I(Li N\ Ljx)
= [max(d(xapi)7d(xapj))7°°)’ I(Ll \v Ljax) = [min(d(xvpi)ad(x7pj))a°°)‘ Also
I(Li N\—Lj,x) = [d(x, p;),d(x,p;)) provided d(x, p;) < d(x,p;) and = 0 otherwise.

From Lawry [7] we have that for F C LA my(F) = WUg.(x) where o =
(Arer L) A (Argr —L). Hence, my(F) = 8(I(ou,x)) where I(or,x) = [max{d(x,p;) :
L; € F},min{d(x, p;) : L; ¢ F}) provided that max{d(x, p;) : L; € F} < min{d(x, p;) :
L; ¢ F} and = 0 otherwise.

Figure 2l shows the areas under § corresponding to the values of the mass function .

4 Conclusions

Label semantics is an epistemic theory of uncertainty for vague concepts based on
appropriateness measures and mass functions. The underlying calculus is not truth-
functional but can be functional in a weaker sense, with the min and max rules for
conjunction and disjunction being preserved for a restricted class of expressions.

Appropriateness measures and mass functions can be interpreted, within prototype
theory, as the probability that a distance threshold € lies in a measurable subset of [0, o)
as determined by the relevant label or expression. Here € represents an upper-bound on
the distance that an element x can be from the prototype p; for a label L;, in order that
L; is still deemed an appropriate description of x.
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Fuzzy Probabilities Based on the Likelihood Function
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Abstract. If we interpret the statistical likelihood function as a measure of the relative
plausibility of the probabilistic models considered, then we obtain a hierarchical description
of uncertain knowledge, offering a unified approach to the combination of probabilistic and
possibilistic uncertainty. The fundamental advantage of the resulting fuzzy probabilities with
respect to imprecise probabilities is the ability of using all the information provided by the data.

Keywords: Likelihood function, Hierarchical model, Fuzzy probabilities, Imprecise probabili-
ties, Statistical inconsistency.

1 Introduction

This paper presents a probabilistic-possibilistic hierarchical model based on the like-
lihood function. Thanks to the intuitivity and asymptotic properties of the likelihood
function, the hierarchical model is an ideal basis for inference and decision making:
this aspect is analyzed in [2]]. The hierarchical model can be interpreted as a fuzzy
probability measure, and offers a unified approach to the combination of probabilistic
and possibilistic uncertainty.

Fuzzy probabilities generalize imprecise probabilities by additionally considering
the relative plausibility of different values in the probability intervals (imprecise proba-
bilities correspond to the crisp case of fuzzy probabilities). By abandoning the crispness
of imprecise probabilities, the hierarchical model solves a fundamental problem of the
imprecise probability approach: its statistical inconsistency.

2 Hierarchical Model

Let £ be a set of probability measures on a measurable space (£2,.2/) such that o/
contains all singletons of . Each P € & is interpreted as a probabilistic model of
the reality under consideration. The interpretation of probability is not important: for
instance the elements of &2 can be statistical models, or describe the forecasts of a
group of experts.

When an event A € o7 is observed, the likelihood function

lik: P— P(A)

on & describes the relative ability of the probabilistic models in & to forecast the ob-
served data. Spurious modifications of the situation considered or of its mathematical

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 432008.
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representation can lead to likelihood functions proportional to /ik. Therefore, propor-
tional likelihood functions are considered equivalent; in fact, Fisher [8]] defined the like-
lihood of a statistical model as a quantity proportional to the probability of the observed
data. Hence, only ratios lik(P)/lik(P') of the values of lik for different P,P’ € 22 have
meaning: Kullback and Leibler 1] interpreted log[lik(P)/lik(P')] as the information
in A for discrimination in favor of P against P'. When the realization of a continuous
random object is observed, the usual definition of likelihood function in terms of density
can be seen as an approximation of /ik (see [2, Section 1.2]).

The likelihood function can thus be interpreted as a measure of the relative plausi-
bility of the probabilistic models in the light of the observed data alone. Under each
probabilistic model P € 2, the likelihood ratio lik(P)/lik(P") of P against a different
probabilistic model P’ € & almost surely increases without bound when more and more
data are observed, and consequently /ik tends to concentrate around P, if some regular-
ity conditions are satisfied. Thanks to this asymptotic property and to its intuitivity, the
likelihood function is an ideal basis for statistical inference and decision making (see
for an introduction to the likelihood approach to statistics).

Example 1. Let & = {P, : p € [0.1, 0.6]} be a set of probability measures on a measur-
able space (€2, .¢7), such that for each P, € & the random variables Xy, ..., Xj00 : 2 —
{0, 1} satisfy the following conditions: P,{Xo = 0} = }, and conditional on the realiza-
tion of X, the random variables Xj, . .., Xjoo are independent with P,{X; = 1| Xy =0} =
yand Py {X;=1|Xo=1} = pforalli€ {1,...,100}.

The realizations of Xj,...,Xjo0 are observed: 20 of them take the value 1. The re-
sulting likelihood function

ik Py L ()"

+5p70 (1= p)®

on & is concentrated around Py 5, which is the most plausible element of & in the light
of the observed data alone. The case with X; = 0 has almost no influence on the form
of the likelihood function, and in fact this case is extremely implausible in the light of
the observed data and of the probabilistic models considered.

The likelihood function /ik measures the relative plausibility of the elements of &7, but
a measure of the relative plausibility of the subsets of & is often needed. A simple and
effective way to obtain it consists in defining the plausibility of a set of probabilistic
models as the plausibility of its best element: the result is the set function

A —— sup lik(P)
pet

on the power set 27’ of 2 (in this paper, sup@ = 0). Proportional set functions of
this form are equivalent, since they correspond to equivalent likelihood functions: to
underline this relative meaning, the expression “relative plausibility measure” is used
in [2] to denote an equivalence class of proportional set functions of this form. Their
normalized version LR associates to each .77 C & the corresponding likelihood ratio
statistic

LR(p) — SPrer HK(P)

SUppe o Lik(P)
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Fig. 1. Profile likelihood function from Example[2Jand membership function of fuzzy probability
from Example 3]

The likelihood ratio test discards the hypothesis that the data were generated by some
P € 2 if LR() is sufficiently small.

Let g: & — ¢ be a function. The likelihood function /ik on £ induces the (normal-
ized) profile likelihood function

liky : y+— LR(g " {y}) o< sup  lik(P)
PeZ:g(P)=y

on & (in this paper, g~! denotes the set function associating to each subset of ¢ its
inverse image under g). The profile likelihood function /ik, measures the relative plau-
sibility of the values of g, on the basis of the above definition of plausibility for a set
of probabilistic models. The maximum likelihood estimate Yy, of g(P) is the y € &4
maximizing lik, () (that is, likg(faz) = 1), when such a y exists and is unique. The
likelihood-based confidence region for g(P) with cutoff point o € (0,1) is the set
{rve Y :liky(y) > o} it is the smallest G C ¢ such that LR{P € & : g(P) ¢ G} < a.

Example 2. Consider the situation of Example[I] and let g : & — [0, 1] associate to
each probabilistic model in & the probability of Xy = 0 conditional on the observed
realizations of X1, ..., Xj00:

(;)100

(3)™+p0 (1= pp

Figure [l shows the graph of the profile likelihood function ik, on [0,5-1077]: as ex-
pected, lik, is extremely concentrated near 0, because Xo = 1 is compatible with the
observed data, while Xy = 0 is not. In fact, the maximum likelihood estimate of g(P,)
is Puz ~ 0.04- 1077, and the likelihood-based confidence region for g(P,) with cutoff
point o = 0.01 corresponds approximately to the interval (0.04-1077,4.26-1077).

The probabilistic models in & and the likelihood function /ik on & can be interpreted
as the two levels of a hierarchical model of the reality under consideration. The two
levels describe different kinds of uncertain knowledge: in the first level the uncertainty
is stochastic, while in the second one it is about which of the probabilistic models in &2
is the best representation of the reality. It is important to underline that no probabilistic
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model in & is assumed to be in some sense “true”: the elements of &7 are simply
interpreted as more or less plausible representations of the reality (this interpretation of
the hierarchical model is shared by Edwards [7]]). By contrast, the use of a probability
measure on &, suggested by the Bayesian approach, carries the implicit assumption
that exactly one of the probabilistic models in &7 is “true” (see [2, Section 3.1]).

The definition of likelihood function implies that when an event A € .7 is observed,
the two levels &7 and lik of the hierarchical model are updated to

P ={P(-|A): P € 2, P(A) >0} (1)

andto lik': P'— sup lik(P) P(A),
PP P(-|A)=P'

respectively. When A is the first observed event, the prior likelihood function /ik can be
interpreted as a (subjective) measure of the relative plausibility of the probabilistic mod-
els in &2 according to the prior information. The choice of a prior likelihood function on
& seems to be better supported by intuition than the choice of a prior probability mea-
sure on &: in particular, a constant likelihood function describes complete ignorance
(in the sense of absence of information for discrimination between the probabilistic
models). In fact, if /ik is constant, then /ik is proportional to the profile likelihood func-
tion on £?’ induced by the observation A and the conditioning P — P(-|A). Moreover,
the choice of a prior likelihood function can be based on analogies with the likelihood
functions induced by hypothetical data (see also [3])).

3 Fuzzy Probabilities

A possibility distribution on a set ¢ is a function 7 : 4 — [0, 1]. The possibility measure
on ¢ with possibility distribution 7 is the set function

G +— sup7(7)
yeG

on 27 A possibility distribution 7z on & can also be considered as the membership func-
tion of a fuzzy subset of ¢ (see [[17]); when 7 is crisp (that is, 7 can take only the values
0 and 1), the subset is not fuzzy and 7 is its indicator function on ¢. The likelihood ratio
statistic LR is a possibility measure on &7 with possibility distribution proportional to
the likelihood function /ik on £2. In fact, the membership function of a fuzzy set has
often been interpreted as a likelihood function (see for example [10, [5]]), even though
proportional membership functions were not always considered equivalent (see for in-
stance [6]). In the present paper, membership functions and possibility distributions
are interpreted as proportional to likelihood functions. Hence, it suffices to consider
normalized fuzzy sets and normalized possibility measures (that is, supycq n(y)=1
is assumed), but grades of membership and degrees of possibility have only a relative
meaning.

The hierarchical model considered in the previous section can thus be interpreted
as consisting of a probabilistic level (described by &7) and a possibilistic level (de-
scribed by LR). That is, it can be interpreted as a probabilistic-possibilistic hierarchical
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description of uncertain knowledge about @ € €2. Both the purely probabilistic and the
purely possibilistic descriptions of uncertain knowledge about w € €2 appear as special
cases. In fact, when & is a singleton, the uncertainty about @ € € is purely proba-
bilistic (LR on & = {P} contains no information, since its meaning is only relative).
By contrast, when &7 consists of all the Dirac measures (that is, & = {0y : @ € Q}
with 8p{®@} = 1), the uncertainty about @ € Q is purely possibilistic (LR can be con-
sidered as a possibility measure on €2, since each 8, € & can be identified with the
corresponding @ € ().

The hierarchical model can also be interpreted as a fuzzy probability measure on
(Q,47), in the sense that it is a fuzzy subset of the set of all probability measures
on (Q,./), with membership function proportional to /ik on &7 and constant equal
to 0 outside &. More generally, the uncertain knowledge about the value g(P) of a
function g : & — ¥ is described by the induced possibility measure LRo g~ ! on ¥;
that is, by the fuzzy subset of ¢ with membership function lik,. In particular, when
g & — R, the uncertain knowledge about g(P) is described by a fuzzy number (that
is, a fuzzy subset of R). For example, g can associate to each probabilistic model P
the expectation g(P) = Ep(X) of a random variable X, or the probability g(P) = P(A)
of an event A € %7 the membership function /ik, describes then the fuzzy expectation
of X, or the fuzzy probability of A, respectively. Sometimes a fuzzy number can be a
satisfactory conclusion about the value of g(P), but it is often necessary to evaluate the
fuzzy number by a single real number (such as the maximum likelihood estimate 477.)
or by a couple of real numbers (such as the infimum and the supremum of a likelihood-
based confidence region {y € R : likg(y) > a}). The discussion on how to evaluate
a fuzzy number by one or more real numbers goes beyond the scope of the present
paper, but see [2, Section 4.1] for some interesting results (to each evaluation method
corresponds a likelihood-based decision criterion).

Example 3. The prior fuzzy probability measure on (£2,<7) considered in Examples[T]
and[2is crisp, in the sense that its membership function on the set of all probability mea-
sures on (£2,.7) is crisp. In fact, the only prior (non-stochastic) uncertainty is about the
value of the probability of X; = 1 conditional on Xo = 1 (withi € {1,...,100}), and the
only prior information about this value is that it lies in the interval [0.1, 0.6]. But the up-
dated fuzzy probability measure on (£2,.¢/) obtained after having observed the realiza-
tions of Xj,...,Xjqp is not crisp anymore: the fuzzy (conditional) probability of Xy = 0
has membership function /ik, (plotted in Figure[I). Hence, any reasonable evaluation
of the fuzzy (conditional) probability of X, = 0 by a real number (such as the maximum
likelihood estimate 37 ~ 0.04-10~7, or the lower and upper evaluations 0.04 - 10~
and 4.26 - 10~ considered at the end of Example[2)) would be approximately 0.

The hierarchical model offers a unified approach to the combination of probabilistic
and possibilistic uncertainty (in particular, fuzzy data would pose no problem). Since
membership functions and possibility distributions are interpreted as proportional to
likelihood functions, the rules for manipulating fuzzy probabilities are implied by the
well-established theories of probability and likelihood (the same holds for the approach
of De Cooman [4]], which uses a different interpretation of possibility measures). By
contrast, approaches based on the arithmetic of fuzzy numbers (see for example [
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face the problem of choosing and justifying such rules: the choice of a consistent way
of updating the fuzzy probability models in the light of data seems to be particularly
difficult.

4 Imprecise Probabilities

The mathematical representations of reality used in the classical and Bayesian ap-
proaches to statistics can be considered as special cases of the hierarchical model (see
[2, Section 3.2]). By contrast, the imprecise probability model cannot be considered
as a special case of the hierarchical model, because the updating rules are different.
The mathematical representation of reality used in the imprecise probability approach
to statistics can be described as a (convex) set & of probabilistic models, without in-
formation for discrimination between them. This corresponds to a hierarchical model
with constant likelihood function on &2, but the imprecise probability model is usu-
ally updated by regular extension (see [15, Appendix J]): that is, by conditioning each
P € & on the observed data, without considering the information provided by the like-
lihood function on &?. More precisely, when an event A € 7 is observed, the set &
is updated to the set &’ as in (), but the constant likelihood function on & is not
updated: the likelihood function on &’ is still constant; that is, the information in A for
discrimination between the elements of &2 is disregarded.

For instance, if the probabilistic models in & describe the opinions of a group of
Bayesian experts, then the updating by regular extension corresponds to update the
opinion of each expert without reconsidering her/his credibility, independently of how
bad her/his forecasts were when compared to the forecasts of the other experts. This is
not very reasonable, and in fact the updating by regular extension can lead to incon-
sistency, in the statistical sense of not tending to the correct conclusion, even when the
amount of information provided by the data tends to infinity.

Example 4. The set & of probabilistic models considered in Examples[Il 2 and 3] can
be interpreted as an imprecise probability measure on (£2,.<7). If it is updated by reg-
ular extension, when the realizations of Xj,...,Xjgp are observed, then the resulting
imprecise probability measure is described by the set &7’ In particular, the resulting
uncertain knowledge about the (conditional) probability of Xy = 0 is described by the
lower and upper probabilities
inf P'{Xo=0}~426-10"° and sup P{Xo=0}~1-6.77-10".
Pep! Pl

That is, despite the overwhelming information in favor of Xy = 1 against Xy = 0,
almost complete ignorance about the (conditional) probabilities of Xy = 0 and Xy = 1
is obtained when the imprecise probability model is updated by regular extension (it is
important to note that these results do not change when & is replaced by its convex
hull). In fact, the resulting interval probability of Xy = 0 is the support {y € [0,1] :
likg(7y) > 0} of the membership function lik, of the fuzzy (conditional) probability of
Xo = 0 (plotted in Figure[I): lik, is extremely concentrated near 0, but this information
is disregarded when updating the imprecise probability model by regular extension (the
present example was proposed by Wilson [[16]).
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The imprecise probability model can be seen as the crisp (and convex) case of the
fuzzy probability model, but in general the crispness of the fuzzy probability model
is lost when it is updated. Hence, from the point of view of the hierarchical model, the
regular extension forces the crispness of the updated model by disregarding a part of the
information provided by the data, and this can lead to statistical inconsistency. Many
authors (see for example [16} [12]) have replaced, in particular problems, the regular
extension with alternative updating rules making use of some information contained in
the likelihood function on 2. But no alternative rule updating & to a subset of &’
can assure the statistical consistency, because any discarded probabilistic model can
become the most plausible one in the light of new data.

5 Conclusion

Statistical inconsistency is a fundamental problem of the theory of imprecise proba-
bilities: a simple solution is to generalize imprecise probabilities to fuzzy probabilities,
and use the probabilistic-possibilistic hierarchical model presented in this paper. In fact,
fuzzy probabilities seem to be very intuitive: many authors (see for example [9}4]]) have
studied models similar to the hierarchical one to accommodate the fact that usually not
all the values in probability intervals are considered equally plausible.
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Abstract. By means of a logical condition between two partitions . and .Z’ (“weak logical
independence”), we find connections between probabilities and possibilities. We show that the
upper envelope of the extensions of a probability on .Z is a possibility on the algebra generated
by .#’. Moreover we characterize the set of possibilities obtained as extensions of a coherent
probability on an arbitrary set: in particular, we find the two “extreme” (i.e., dominated and
dominating) possibilities.

Keywords: Probabilistic inference, Weakly logical independence, Uncertainty measures,
Coherence.

1 Introduction

The classic approaches to knowledge acquisition or decision processes start from a
knowledge—base able to settle once for all the set of objects ruling the inferential pro-
cess (states of nature, events, “rules”, functions measuring uncertainty, etc.), requiring
also further conditions (such as closure of the family of events with respect to Boolean
operations). In particular, for semantic reasons a framework of reference (probability
theory, Dempster-Shafer theory, possibility theory, default logic, fuzzy set theory and
so on) is usually chosen once for all. Actually, often we need to manage uncertainty
relative to a set of events while having information only for a different family of events.
In fact, making inference essentially means extending a structured information (carried,
for example, by a particular measure of uncertainty) to “new” events, and this is done
by taking into account only the logical relations among the events of the two given
families.

In general, in the extension processes, the enlargements can lead to uncertainty mea-
sures different from the initial ones. For instance, in [2] it has been proved that, if we
start from a (coherent) assessment P on a set . of pairwise incompatible events, and
consider any algebra of events .7, then the lower [upper] envelope of the class of co-
herent probabilities extending P to .2’ U .7 is a belief [plausibility] function. Vice versa,
for any belief function Bel on an algebra o7, there exists a partition .Z and a relevant
probability P such that the lower bound of the class of probability extending P on <7 co-
incides with Bel (similarly for a plausibility function, and referring to the upper bound).
This result is independent of any logical relation between the partition % and that %’
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springerlink.com © Springer-Verlag Berlin Heidelberg 2008
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of atoms of 7. Obviously, any logical constraint between the two partitions rules the
numerical values of the belief (or plausibility) function.

In [3]] we proved that under suitable logical conditions between the partitions, the
upper envelope (i.e., plausibility) is a possibility and the lower envelope is a necessity.
Moreover, any possibility measure on an algebra <7, can be obtained as an enlarge-
ment of a probability distribution on a partition satisfying the same logical condition.
This logical condition between the partitions is a suitable weakening of logical indepen-
dence (see Sect. 3). A particular case is that corresponding to the logical independence
of the two aforementioned partitions, in which we get a plausibility equal to 1 on </ \ 0
for any P (which is also a noninformative possibility). These results are based on the
assumption that the initial information consists of a probability distribution on the ele-
ments of a partition of 2. But this is not realistic in real problems, so we study what
happens starting from a (coherent) probability on an arbitrary set of events & and en-
larging this assessment to an other finite set & : we need to handle a class of probability
Py (all those consistent with the coherent assessment) on the partition ¢ constituted by
the set of atoms generated by &. Clearly, for every distribution on Py, we obtain (as
lower and upper envelope of the relevant extension on &”) a coherent belief function
and a plausibility respectively, and when ¢ and ¢” are weakly logically independent
(¢ is the set of atoms generated by &”) we obtain a coherent necessity and a possi-
bility on &”, respectively. Obviously, it is interesting to characterize the class of these
measures and in particular to study whether there is a minimum and a maximum ele-
ment: in general this characterization is not possible, since the upper [lower] envelope
of plausibilities [belief function] is not a plausibility [belief]. On the contrary, we prove
that a characterization is possible when 4" and %" are weakly logically independent,
obtaining a class of possibilities such that both its upper and lower envelopes IT* and
II, are (respectively, the dominating and dominated) possibilities. This class contains
all the possibilities weakly comonotone with IT, and IT* (equivalent results hold for
necessities).

These results contribute to the deepening of hybrid models involving probability,
plausibility and possibility, which have been studied in many papers, e.g. [[Z, [ [9] [T0,
[13]): our approach is essentially syntactic and emphasizes an inferential point of
view.

2 Coherent Assessments and Their Enlargements

The axioms defining an uncertainty measure strictly refer to the assumption that its
domain is a Boolean algebra. Then dealing with an arbitrary set of events requires to
characterize assessments which are coherent (or consistent) with a specific measure on
a Boolean algebra containing this set.

In probability theory it is well known the concept of coherence introduced by de
Finetti [[6] through a betting scheme, or its dual version based on the solvability of a
linear system. An analogous notion of coherence for possibilities has been introduced
in [4].
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Definition 1. Let & = {E}, ..., E, } be a finite set of events and denote by < the algebra
generated by &. An assessment ¢ on & is a coherent possibility [probability] if there
exists a possibility [probability] @ defined on </ extending ¢ (i.e. Qe = Q).

The so—called fundamental theorem of probability assures that, given a coherent assess-
ment P on an arbitrary finite family &, it can be extended (possibly not in a unique way)
to any set &’ D &'; moreover, for each event E € &\ & there exist two events E, and
E* (possibly E, = 0 and E* = Q) that are, respectively, the “maximum” and the “min-
imum” union of atoms A, (generated by the initial family &) such that E, CE C E*. If
E is logical dependent on &, then E, = E = E*. Then, given the set {P} of all possible
extensions of P, coherent assessments of P(E) are all real numbers of a closed interval
[P+, p*], with

p« =inf P(E,) = inf erS(A,) , p* =sup P(E*) = sup Zrﬁ(Ar). (1)
ACE, A, CE*

We proved in [4] for a possibility IT a similar result: coherence of a possibility as-
sessment assures its extendibility to new events, and for any new event the coherent
possibility values belong to an interval [m,, %] with

T, = min (max H’(A,)) , 7" = max < max H’(A,)) ,
ACE. ACE*

where {I1'} is the set of all possible extensions of IT.

It is well known that by computing for some “new” events the relevant coherence
probability [possibility] intervals, not all the choices of values in these intervals lead
to “an overall” coherent probability [possibility]. In the probabilistic framework, if we
choose for any event the minimum [the maximum] value (which correspond essentially
to natural extension, see [[14]), we obtain a lower [upper] probability. Furthermore, in
the possibilistic setting we get different results: in fact, the upper envelope of possibil-
ities is still a possibility [4]], while the lower envelope of possibilities is not necessarily
a possibility.

3 Weakly Logically Independent Partitions

We recall that two partitions .Z,.%" of Q are logically independent if for every E; € .Z
and E; € ' onehas E; \E'j # 0 (or, equivalently, Q = VEzAE’j#V) E;forany E'j € £).
In [3] we introduced the following “weaker” condition: for any E’; € £, denote by A;
the minimal (with respect to the inclusion) event logically dependent on . containing

E’j, that is
Aj= \/ E.
E,‘/\E’j#@
(Obviously, A; is an element of the algebra </ spanned by .%). Given .£,.Z”, for any
E'; € " we consider the corresponding A; € 7.

Definition 2. The partition &' is weakly logically independent of the partition £ (in
symbols, L' 1,, L) if. for any given E'; € ', every other E'y, € ' (k # i) satisfies al
leat one of the following conditions
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-E'y CA;
-E'x NE; #0 for any E; C A;.

Clearly, if .Z,.%" are logically independent, then .’ L, %, but the vice versa does not
hold: let ¥ = {E,E‘}, &' = {F,F°} with F C E, then ¥’ 1,,.Z, but ¢’ and .£ are
not logically independent. As proved in [3] the notion of weakly logically independent
partitions is symmetric (i.e. &' 1,.¥ — £ 1,.%").

We recall now some properties of weakly logically independent partitions.

Proposition 1. Let £, %’ be two partitions of Q. If &' 1., L, then the following state-
ments hold:

1. foreveryE', E'j € L', A; CAjorAi CAj;

2. there exists E'; € ' such that E'; NEj # 0 forany E; € £;

3. ifthere exist E'; € " and Ej € £ such that E'; C Ej, then, for every E', € £, we
have E', NEj # 0.

4. there exists at most one Ey € & such that E'; C Ey for some E'; € .

Proposition [l easily implies that if . is a refinement of .¢”, then ¥’ J,, ..

Theorem 1. Let £ = {E\,....E;,....E,} and &' ={E'y,...,E'},...,E'\,} be two parti-
tions of Q. The following two conditions are equivalent:

1. £'1,%;
2. there exists a permutation of the indices 1, ...,m such that the corresponding events
Ay,...,Aj,...Ay are completely ordered by inclusion.

4 Possibility as Enlargement of a Coherent Probability

In [2 3] it has been proved that, if .Z,.%" are two partitions of £ and .o/’ the algebra
spanned by .#”, and P a probability distribution on .%, then, considering the family P of
probabilities P; extending P on .Z U <", the lower bound of P on .27’ is a belief function
(and the upper bound a plausibility function). Vice versa, for any belief function Bel on
an algebra 7’ there exists a partition of Q and a relevant probability distribution such
that the lower bound of the class of probability extending P on .’ coincides with Bel [2]]
(similarly for a plausibility function). This result is independent of any logical relation
between the partition % and that of atoms of .&7’. Obviously, the logical constraints rule
the numerical values of the belief (or plausibility) function.

In [3] we proved that if two partitions are weakly logically independent, then the
plausibility obtained as upper envelope of the class P is a possibility:

Theorem 2. Let ¥, be two partitions of £ and <’ the algebra spanned by .&'. Let
P be a probability distribution on . and P the upper envelope of the class P = {P'}
of all the probabilities extending P onto L U</ If &' 1,, %, then P is a possibility
measure on o'

This result is related to that given in [9]: any set of lower bounds on a nested class
Al,...,A,, induces an upper probability, that is a possibility. As shown in [3] a possibility
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can be obtained also when .’ /,, % (but not if the probability distribution is strictly
positive).

Theorem [3] shows how weakly logically independent partitions rule the transition
from probability to possibility and also the other way round.

Theorem 3. Consider a possibility measure I1 on an algebra </ and let £ be the set
of atoms of <. Then, there exists a partition £’ and a probability distribution on &’
such that:

1. ¢41,%,
2. the upper envelope P of the class P = {P'} of all the probabilities extending P on
L' U coincides on </ with the possibility measure I1.

Remark 1. In [3]] we proved that, given two logically independent partitions . and .#”,
the upper envelope of the extensions on .2 U</’ of a probability P on .¥ is a possibility
on «7" and, for any A € 7'\ 0, P(A) = 1. Thus, we get in this case the non informative
possibility independently of the initial probability distribution.

5 From a Coherent Probability to the Upper Possibility

All the results of the previous Section are based on the assumption that the initial infor-
mation is handled by a probability distribution on the elements of a partition of £2. Now
we start instead from a coherent probability on an arbitrary set of events &. Then, we
need to consider all the extensions on any other finite set &”. Since coherence implies
the existence of a class P = {P;} of probabilities on the set %" of atoms generated by &,
for any such probability distributions P, € P we have a plausibility [belief] as an upper
[lower] bound of the probabilities extending P, in &”; moreover if €' L,, 4" (with " the
set of atoms generated by &) for each P; € P we obtain a possibility.

In general it is not possible to characterize the set of plausibilities, since the upper
envelope of plausibilities is not a plausibility. In this Section we prove instead that,
when %" 1L,,%’, we obtain a class of possibilities such that both their upper and lower
envelopes are possibilities (i.e., that dominating and that dominated by all other possi-
bilities, respectively).

Theorem 4. Let &,&’ be two finite sets of events and € ,%’ the corresponding sets of
atoms generated by & and &'. Moreover, let P be a coherent probability on &, and P
the set of coherent probability extensions of P on & U&". If €L, ", then the upper
envelope of P on &' is a coherent possibility.

Proof. The coherent probability P on & can be extended on & U% and let P = {P’} be
the set of all the coherent probability extensions of P on & U% . Since € is finite [12]]
there exists a finite subset P,,, of P such that

P(C) = sup P'(C) = sup P'(C)
P'cP P'ePy,

for any C € €. Since €1, %", the upper envelope of the extensions of a probability
P’ € P, is a possibility distribution on the algebra &7’ generated by ¢” by Theorem[2l
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Then, we can consider the finite set {I1} of possibilities on 7’ associated to P,,. The
upper envelope IT* of {I1} is a possibility and then the restriction of IT* on & C &7’
is a coherent possibility. The coherent possibility IT* on &’ coincides with the upper
envelope of P on &”, in fact for any E € &’

IM*(E)=suplI(E)= sup Y, P/(C;)=sup » P'(C,)=P(E). O
P'€Py C,NEH0 P'ePC,\EF0
The coherent possibility IT* of the above result is the less informative, in the sense that it
dominates any possibility arising in the enlargement procedure. Now, we are interested
also to look for the most informative one, in the sense that is dominated by any other
one.

Theorem 5. Let &, &’ be two finite sets of events, € ,€’ the corresponding sets of atoms
generated by & and &' and of , <" the algebras spanned by &,&”, respectively. Given
a coherent probability P on &, consider the lower envelope P of the set P = {P'} of
extensions of P on </ and the function I, defined on </’ as follows: for any B € <’

II,(B)= inf P(A).

+(B) A€o/ :ADB ()

If €1, €', then I, is a coherent possibility on &'. Moreover, the upper envelope I
on " of the extensions of any P' € P dominates ITI..

Proof. If ¢’ L,, €, then by Theorem [I] there exists an ordering on the elements of ¢’ =
{E'{,..,E',} such that A; CA;, fori=1,...,m— 1. Hence, for any E’; € ¢ one has
IL(E')= inf P(A) =P(A)).

(E%) AepfuzlAQE/f () ()
In particular, since A,, = Q, it follows IT.(E’;,) = 1. Consider any F = \/ ., E';: there
exists j € J such that j < j forany j € J (with j # j), thenA; C AJ- and so
—_ ] —_— —_ . —_ /.
IL(F)= inf  P(A)=P(4;)= g}g}{P(Aj)} = max IL, (E")

then I1, is a possibility on &/’ and so IT, on & is a coherent possibility. Now, given
P’ € P, since ¢’ 1,,%, by Theorem 2] the upper envelope IT; of the extensions of P’
on o/ is a possibility and for any F € /', F = \/ ¢, E'j, there exists j € J such that
Aj QA]- forany jeJ, F QA]- and

II,(F)= inf P(A)=P(A;)<P'(A,)=IL(F). O

(F)=,_int_ P(A)=P(A) <P(4)=IL(F)

By the previous result we obtain a possibility I, that is dominated by any possibil-
ity obtained as the upper envelope of the extensions of a coherent probability (on the
assumption that the two sets of atoms are weakly logically independent). Note that in
general the minimum of a set of possibilities is not a possibility, while in the case that
the possibilities are obtained through the inferential procedure shown in Section d] their
infimum, that coincides with IT,, is still a possibility. Then, for any F € <7’ we get two
(possibly coincident) values IT,(F) and IT*(F). The following Theorem [6] shows that
any possibility IT weakly comonotone with (IT,, IT*) can be obtained as the upper enve-
lope of the extensions of a coherent probability, where weakly monotonicity is defined
as follows:
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Definition 3. A possibility IT on /' is weakly comonotone with (I1.,IT*) if I1,(F)
<II(F) <II*(F) for any F € o' and for any pair of atoms E';,E' ; € /' the following
conditions hold:

- l'fH*(E/,‘) < H*(E/j) or H*(E/i) < H*(E/j), then H(E/i) < H(E/j),
- lfH*(E/,‘) = H*(E/j) and H*(E/,‘) = H*(Elj), then H(Eli) = H(Elj).

Theorem 6. Let 8,8, € ,€', o/ , /", P and I, as in TheoremBland consider the upper
envelope IT* on <" of the coherent extensions of P. If € 1,,€”, then I, and IT* are
possibilities on <f'. Moreover, I1, is dominated by IT* and, for any coherent possibility
IT on &' weakly comonotone with (I1,,IT*), there exists a coherent probability P on &
such that the upper envelope of the extensions of P on /' coincides with I1.

Proof. By Theorem[3]and by Theorem[d the functions IT* and IT* are possibilities and
I1.(F) < IT*(F) for any F € </'. Now, consider any possibility IT on &’ satisfying the
conditions in the hypothesis. Let us assume (without loss of generality, see Proposition
[[) that the partition 4’ = {Ej,...,E;} is ordered in a way that for any i < j one has
I1(E;) < II(E;) for any E;,E; € ¢". This order is compatible with that built starting
from IT, or IT*, then the partition ¢’ = {Fy, ..., F, } is such that 6" |, and consider-
ingE';,E'; € ¢"if i < j, then IT(E';) < II(E'}), since the associated A; and A ; are such
that A; C A;. Hence, there exists a probability on .7 such that P(A;) < P(A;) for any
i< jand P(Aj) =TI(E'j) —II(E'j_) for any j = 1,....k by putting IT(E’y) = I1(0).
This probability on <7 generates IT through the inferential process. O
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Non-well-Founded Probabilities on Streams

Andrew Schumann

Department of Philosophy and Science Methodology, Belarusian State University,
Minsk, Belarus

Abstract. In the paper we propose non-well-founded probabilities as a kind of fuzzy ones. They
are defined on the set of streams. We also show that the set of p-adic numbers can be understood as
a set of streams. In the set theory without the axiom of foundation, the powerset is not a Boolean
algebra in the general case. Therefore, if we tried to define probabilities on non-well-founded
data, i.e. on streams or p-adic numbers, then we couldn’t use the Kolmogorovian approach and
we should refer to non-Kolmogorovian models of probabilities. Probabilities on streams have a
lot of unexpected properties. For instance, p-adic probabilities may be negative rational numbers
as well as rational numbers that are larger than 1. Bayes’ formula doesn’t also hold in the general
case for non-well-founded probabilities.

1 Introduction

A non-well-founded (NWF) set theory belongs to axiomatic set theories that violate the
rule of well-foundedness and, as an example, allow sets to contain themselves: X € X.

Recall that a relation R is called well-founded if for every set x there is no in-
finitely descending chain ... Rx;Rx|Rxo = x. The foundation axiom postulates that the
set-membership relation € is well-founded: for every set x there exists no infinitely
descending chain --- € x, € x; € xo = x. Evidently, the statement X € X or X = {X}
doesn’t satisfy the foundation axiom.

In NWF set theories, the foundation axiom of Zermelo-Fraenkel set theory is re-
placed by axioms implying its negation. The theory of NWF sets has been explic-
itly applied in diverse fields such as logical modeling non-terminating computational
processes and behavior of interactive systems in computer science (process algebra,
coalgebra, logical programming based on coinduction and corecursion), linguistics
and natural language semantics (situation theory), logic (analysis of semantic para-
doxes). NWF sets have been also implicitly used in non-standard (more precisely, non-
Archimedean) analysis like infinitesimal and p-adic analysis.

Denying the foundation axiom in number systems implies setting the non-
Archimedean ordering structure. In this paper we consider probabilities on streams and
as well as on p-adic numbers and we show that these probabilities can be regarded only
as fuzzy ones, because for NWF mathematical objects, the powerset is not a Boolean
algebra in the general case. The conventional (Kolmogorov’s) probability theory is built
in the language of well-founded mathematics. It sets a framework of modern physics,
taking into account that physical reality is regarded in modern science as reality of sta-
ble repetitive phenomena (phenomena that have probabilities, i.e. do not fluctuate in the

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 59165]2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008
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standard real metric). The main corollary of our paper is that physical reality may be re-
garded as NWF in the framework of probabilities distributed on streams, in particular,
distributed on p-adic numbers.

2 Ordering Relations on Streams and p-adic Numbers

One of the most useful NWF mathematical object is a stream — a recursive data-type
of the form s = (a,s'), where s’ is another stream. The notion of stream calculus was
introduced by Escard6 and Pavlovi¢ [4]] as a means to do symbolic computation using
the coinduction principle instead of the induction one. Let A be any set. We define
the set A® of all streams over A as A® = {o: {0,1,2,...} — A}. For a stream o, we
call 6(0) the initial value of ¢. We define the derzvatzve 6(0) of a stream o, for all
n>0,by 6'(n) =c(n+1). For any n > 0, 6(n) is called the n-th element of o. It
can also be expressed in terms of higher-order stream derivatives, defined, for all k > 0,
by 60 = o; 6**1) = (6M))'. In this case the n-th element of a stream & is given by
o(n) = c(0). Also, the stream is understood as an infinite sequence of derivatives.
It will be denoted by an infinite sequence of values or by an infinite tuple: ¢ = ¢(0) ::
o(l):0(2):--um0(n—1):0", 6=(5(0),0(1),05(2),...).

Streams are defined by coinduction: two streams ¢ and 7 in A® are equal if they are
bisimilar: (i) 6(0) = 7(0) (they have the same initial value) and (ii) 6’ = 7’ (they have
the same differential equation). To set addition and multiplication by coinduction, we
should use the following facts about differentiation of sums and products by applying
the basic operations: (0 +7) = 0’ + 7, (0 x 1) = (|6(0)| x 7') + (0’ x 7), where
|o(0)] =(c(0),0,0,0,...). Now we can define them and as well as one another stream
operation as follows:

We can embed the real numbers into the streams by defining the following constant
stream. Let r € R. Then |r| = (r,0,0,0,...) is defined so: its differential equation is
|r|” = [0], its initial value is |r|(0) = r. We are to rely on our intuitions that it would be
natural to define the positive real numbers to be less than the positive streams.

Consider the set of streams [0, 1]® and extend the standard order structure on [0, 1]
to a partial order structure on [0, 1]®. Further define this order as follows:

Ojp,1je (1) For any streams 0,7 € [0,1], we set 0 < 7 if 6(n) < 7(n) forevery n € N,
For any streams 0,7 € [0,1]?, we set ¢ = 7 if 0, T are bisimilar. For any streams
0,7€[0,1]°, weset 0 < 7if o(n) < 7(n) for every n € N and there exists ny such
that 6 (ng) # t(np). (2) Each stream of the form |r| € [0,1]® (i.e. constant stream)
is less than inconstant stream ©.

Table 1. Coinductive definitions of sum, product and inverse

Differential equation Initial value Name
(o+1)=0"+7 (c+1)(0)=0(0)+7(0) Sum
(ox1) =(0o(0)x17)+(c'x1) (cxr)( )=0(0) x 7(0)  Product

(™Y =|—-1]x|c(0) | xo' x ! (e7H(0)=0c(0)! Inverse
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This ordering relation is not linear, but partial, because there exist streams o, 7 € [0,1]?,
which are incompatible.

Introduce two operations sup, inf in the partial order structure Oy jjo. Assume
that 0,7 € [0,1]® are either both constant streams or both inconstant streams. Then
their supremum and infimum are defined by coinduction: the differential equation
of supremum is (sup(o,7))’" = sup(o’,7’) and its initial value is (sup(c,7))(0) =
sup(c(0),7(0)), the differential equation of infimum is (inf(o, 7)) = inf(o’,7’) and
its initial value is (inf(o,7))(0) = inf(5(0), 7(0)). Suppose now that one and only one
of 0,7 € [0,1]® is constant, then an inconstant stream is greater than a constant one,
therefore their supremum gives an inconstant stream, but their infimum gives a constant
stream.

According to O jje, there exist the maximal stream [1] € [0, 1] and the minimal
stream [0] = |0 € [0, 1]®.

In 1897 the German mathematician Kurt Hensel presented an idea how to use an
analogy of Taylor and Laurent series to study algebraic numbers by expressing them as
an expansion in terms of powers of a prime number. He was mainly inspired by the work
of Kummer. This approach by Hensel led him to introduce the p-adic numbers. There
are many books which give a good introduction to the p-adic theory, see for instance
Koblitz [3]].

It can be easily shown that p-adic numbers may be represented as potentially infinite
data structures such as streams. Each stream of the form 0 = 6(0) :: (1) :: 0(2) 2 - -
o(n—1):: 6™ where o(n) € {0,1,...,p— 1} for every n € N, may be converted into
a p-adic integer by the following rule:

VneN, o(n)=> o(k) P*Ac(n) =0(0):o(1) - o(n). (1)
k=0
And vice versa, each p-dic integer may be converted into a stream taking rule (I). Such
a stream is called p-adic.
Extend rule (@) as follows. Suppose that we have a stream of the form ¢ = ¢(0) ::
o(1):0(2) -z o(n—1):: 6™, where 6(n) > 0 for every n € N. Then its p-adic
representation is

vneN,o ZT pEae(n)=1(0) (1) - t(m), )

where (i) € {0,1,...,p— 1} forevery i = 1,m and 31" 7(k) - p* = 3}_, o (k) - p*.

the case o (i) € {0,1,...,p— 1} forevery i = 1,n, we have n = m and then ¢ (i) =

forevery i = 1,n.) Such a stream is called p- adzc too. Its canonical form is 7(0) :: (1
- t(m) 2 T where t(n) € {0,1,...,p— 1} forevery n € N.

Using (d), @), we can show that sum, product and inverse have the same differential
equations and initial values as in stream calculus. This proves that p-adic numbers are
one of the natural interpretations of streams.

It is easily shown that the set A® of all p-adic streams includes the set of natural
numbers. Let n be a natural number. It has a finite p-adic expantion n = Y’ ; 0 - P~
Then we can identify n with a p-adic stream ¢ = 6(0) :: 6(1) :: --- : (m) = "D,
where 6 (i) = a; for i = 0,m and ¢ 1) = [0].

(In
(i)
)
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Extend the standard order structure on N to a partial order structure on p-adic streams
(i.e. on Zy).

1. For any p-adic streams 0, T€ Nwehave 0 < 7inNiff c < 7inZ,,

2. Each p-adic stream 6 = 6(0) :: 6(1) :: --- :: (m) 2 61, where (1) = [0]
(i.e. each finite natural number), is less than any infinite number 7, i.e. ¢ < 7 for
any 0 € Nand 7 € Z,\N.

Define this partial order structure on Z, as follows:

Oy, Leto = c(0):o(l):--nom—1): o™ andt= t(0) (1) nt(n—1)
(") be p-adic streams. (1) We set o < 7 if the following three conditions hold: (i)
there exists n such that 6 (n) < t(n); (i) o (k) < t(k) for all k > n; (iii) o is a finite
integer, i.e. there exists m such that ¢ = [0]. (2) We set 0 = 7 if 0 and T are
bisimilar. (3) Suppose that o, 7 are infinite integers. We set 6 < 7 by coinduction:
o < 1iff o(n) < t(n) for every n € N. We set 6 < 7 if we have o < 7 and there
exists ng € N such that o(ng) < t(np).

Now introduce two operations sup, inf in the partial order structure on Z,. Suppose
that p-adic streams o, T represent infinite p-adic integers. Then their sup and inf
may be defined by coinduction as follows: the differential equation of supremum is
(sup(o, 7)) = sup(o’,7’') and its initial value is (sup(o,7))(0) = sup(c(0),7(0)), the
differential equation of infimum is (inf(o,7))’ = inf(o’,7’) and its initial value is
(inf(o0,7))(0) = inf(c(0),7(0)). Now suppose that at most one of two streams o, T
represents a finite p-adic integer. In this case sup(o,7) = 7 if and only if o < 7 under
condition 0z, and inf(o, 7) = o if and only if ¢ < 7 under condition &7,

Itis important to remark that there exists the maximal p-adic stream N4 € Z, under
condition Oy, It is easy to see: Nyax = [p— 1] = 1= (p—1)+(p—1)-p+... +(p—
1)-pFe...

3 Non-well-Founded Probabilities

There is a problem how it is possible to define probabilities on stream structures if
we have no opportunity to put them on an algebra of subsets, taking into account the
following result:

Proposition 1. Define union, intersection and complement in the standard way. The
powerset P (A®), where A® is the set of all streams over A, is not a Boolean algebra.

Proof. Consider a counterexample on 7-adic streams. Let A} = {x: 0 < x <
...11234321} and Ay = {x: ...66532345 < x < ...66666} be subsets of Z;. It
is readily seen that —(A; NAy) = Z7, but (-A; U—Ay) C Zy, because —A] =
{x: .. 11234321 < x <...66666} and —=A; = {x: 0 < x < ...66532345}, therefore
Z7\ (FA1 U—-Ay) = A3 = {x: x = ...ysy43y2y1y0, where y; € {0,1,...,6} for each
i € N\{3}}. It is obvious that the set A3 is infinite. As a result, we obtain that
—(A] NAy) # —A; U—A; in the general case. a
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This proposition is a particular case of the following provable statement: if A is a NWF
set, then its powerset will not be a Boolean algebra in the general case.

In stream calculus and p-adic calculus we have, evidently, a different partial order-
ing relation and obtain different powersets 201”(A®), 2%r(A®), but in any case
there is no Boolean algebra, because the complement in them is not Boolean. The pow-
ersets 2101°(A?), 2%r(A®) should be interpreted as a corresponding class .Z" (A?)
of fuzzy subsets Y C A®, where V is equal one of sets [0, 1]®, Z,,.

We can try to get NWF probabilities on a NWF algebra .7V (A?) of fuzzy subsets
Y C A? that consists of the following: (1) union, intersection, and difference of two
NWF fuzzy subsets of A?; (2) @ and A®. In this case a finitely additive NWF probability
measure is a nonnegative set function P(-) defined for sets Y € %" (A®) that runs the
set V and satisfies the following properties: (1) P(A) > [0] for all A € FV(A®), (2)
P(A®) = |1] and P(0) = [0], (3) if A € FV(A®) and B € .F" (A®) are disjoint, then
P(AUB) = P(A)+P(B), (4) P(—A) = |1| +| — 1| x P(A) forall A € FV (A®).

This probability measure is called NWF probability. Their main originality is that
conditions (3), (4) are independent. As a result, in a probability space (X,.#V (X),P)
some Bayes’ formulas do not hold in the general case.

As an example of trivial NWF probability we can introduce the following function
defined on streams by coinduction: (1) P(c) = inf(o, [1]) x [1] ! for every o € [0,1],
(2) P(0) = inf(0, Nyax) X N,y for every o € Z,,.

Consider a random experiment . and by L = {sy,...,s, } denote the set of all pos-
sible results of this experiment. The set . is called the label set, or the set of attributes.
Suppose there are N realizations of .” and write a result x; after each realization. Then
we obtain the finite sample: x = (x,...,xy),Xx; € L. A collective is an infinite ideal-
ization of this finite sample: x = (x1,...,Xy,...),x; € L. Let us compute frequencies
vy (at;x) = ny(a;x) /N, where ny (o x) is the number of realizations of the attribute o
in the first N tests.

There exists the statistical stabilization of relative frequencies: the frequency
vy (or;x) approaches a limit as N approaches infinity for every label o € L. This limit
P(o) = limvy/(0r;x) is said to be the probability of the label o in the frequency theory
of probability. Sometimes this probability is denoted by P,(ot) to show a dependence
on the collective x. Notice that the limits of relative frequencies have to be stable with
respect to a place selection (a choice of a subsequence) in the collective.

The statistical stabilization of relative frequencies vy(o;x) can be considered not
only in the real topology on the field of rational numbers Q but also in any other topol-
ogy on Q. For instance, it is possible to construct the frequency theory in which prob-
abilities were defined as limits of relative frequencies vy (c;x) in the p-adic topology.
The frequency theory of p-adic probability was proposed in [2]. It is a kind of NWF
probability.

Since stream calculus and as well as p-adic calculus contain infinitely large numbers,
they give the possibility to consider statistical ensembles with an infinite number of
elements.

Define a NWF operation of cardinality /- / as follows: suppose X C A® and K(-) is
the conventional operation of cardinality. Represent X by a Cartesian product [T7_, X;,
where Xj is the set of all values of the form ¢ (0) belonging to all streams of X, X is the
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set of all values of the form ¢(1) belonging to all streams of X, etc. Then /X / is defined
by coinduction: its initial value is K (Xy), its differential equation is (/X /)" = /X'/. The
informal meaning of NWF operation of cardinality is that we obtain an infinite sequence
of conventional cardinalities K (Xp), K(X1), ..., K(Xy,), ... that coinductively calculates
not the number of streams from X but the number of their possible values at every step.
It is evident, therefore, that the values of /- / are streams.

We study now some ensembles S = Sy, which have a NWF volume N, i.e. /S/ =N,
where N is the stream of [0,1]® or Z,. Consider a sequence of ensembles S; having
volumes K(S;), j =0,1,... Get S =[I7_(S;. Then the cardinality /S/ = N. We may
imagine an ensemble S as being the population of a tower 7 = Tg, which has an infinite
number of floors with the following distribution of population through floors: popula-
tion of j-th floor is S;. Set T = HI;‘:O S X [Tp=k119m- This is population of the first
k+ 1 floors. Let A C S and let there exists: n(A) = khi?onk(A)’ where ni(A) = /ANT;/.

The quantity n(A) is said to be a NWF volume of the set A.
We define the probability of A by the standard proportional relation:

P(A) :=Ps(A) =n(A) x N,

where /S/ =N, n(A) = /ANS/.

We denote the family of all A C S, for which P(A) exists, by &s. The sets A € &5 are
said to be events. The ordered system (S, %, Ps) is called a NWF ensemble probability
space for the ensemble S.

Proposition 2. Let .7 be the NWF algebra of fuzzy subsets. Then F C Y.

Proof. Let A be a set of streams. Then n(A) = /A/ and the probability of A has the
form: P(A) = JA/ x /S/~".

For instance, let B = —A. Then /BNT;/ = /Ti/ +|— 1] x JANT;/. Hence there
exists I}im /BNT,/ =N+|—1] x /A/. This equality implies the standard formula:
P(-A) = [1|+]—1]| x P(A).

In particular, we have: P(S) = |[1]. O
Proposition 3. Ler A|,A, € 95 and Ay NAy = 0. Then Ay UA, € Y5 and P(A| UA;) =
P(A;)+P(Ay).

Proposition 4. Let A € ¥, Ps(A) # 0 and B € 9. Then B € Y and the following Bayes
formula holds:

Py(B) = Ps(B/A) = Ps(B) x Ps(A)~".

Proposition 5. Let N € Z,, N # 0 and let the ensemble S_y have the p-adic volume
—1 = Npax (it is the largest ensemble, because Npyqy is the largest p-adic integer in
accordance with Oy, ).

1. Then Sy € g_LI and Ps_| (Sy) = /Sn/ % /S_l/_1 — —N.
2. Then %s,, C ¥s_, and probabilities Ps, (A) are calculated as conditional proba-
bilities with respect to the subensemble Sy of ensemble S_i: Py (A) = Ps_, (Sfjv)

=Ps_(A)x Ps_ (Sn) ", A € %sy.
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If we take the p-adic case of NWF probability theory, then we observe essentially new
properties of relative frequencies that do not appear on real numbers. For example,
consider two attributes ¢; and ¢;. Suppose that in the first N := N, = (2’;10 2/ )2 tests
the label o has ny(0g;x) = 2k realizations, o has ny(0p;x) = 2];-:0 2/ realizations.
According to our intuition, their probabilities should be different, but in real probability
theory we obtain: Py(0r) = limny(0q;x)/N = P(0n) =limny(op;x) /N = 0. In 2-adic
probability theory we have Py () = 0 # P.(0n) = —1, because in Q,, 28 — 0, k — 0,
and —1=142+2%+- 42"+ ...

This example shows that in p-adic probability theory there are statistical phenomena
for that relative sequences of observed events have non-zero probabilities in the p-adic
metric, but do not have positive probabilities in the standard real metric.

4 Conclusion

Real probabilities are obtained as a result of a limiting process for rational frequencies
in real topology by means of the law of large numbers. Using these probabilities we
accept only well-founded phenomena. But we can introduce other forms of stability in
physical experiments, namely p-adic forms [2]], because besides the usual real topology,
there exist only the p-adic topologies p = 2,3,5,... (for more details see [3]). The
main reason is that p-adic numbers are, in fact, a unique alternative to real numbers:
there is no other possibility to complete the field of rational numbers and obtain a new
number field (Ostrovski’s theorem, see, for example, [3]]). In p-adic physics and in p-
adic probability theory we assume that reality is NWF. Since statistical stabilization (the
limiting process) can be considered not only in the real topology on the field of rational
numbers Q but also in p-adic topologies on QQ, we see that reality can be considered as
NWEF too.
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Abstract. We relate the epistemic irrelevance in Walley’s behavioural theory of imprecise
probabilities to the event-tree independence due to Shafer. In particular, we show that forward
irrelevance is equivalent to event-tree independence in particular event trees, suitably generalised
to allow for the fact that imprecise rather than precise probability models are attached to the
nodes in the tree. This allows us to argue that in a theory of uncertain processes, the asymmetrical
notion of epistemic irrelevance has a more important role to play than its more involved and
symmetrical counterpart called epistemic independence.

Keywords: Independence, Forward irrelevance, Event trees, Stochastic process.

1 Introduction

Assessments of independence between variables are very important and useful in mod-
elling uncertainty, as they allow for a reduction of complexity in many problems (e.g.,
in building joint models from marginal information, making statistical inferences, etc.).
Here, we are interested in the case where beliefs are modelled by lower and upper ex-
pectations for random variables or, equivalently [13]], by closed convex sets of (finitely
additive) probabilities, also called credal sets [2}, 3L [§]. In this imprecise probabilities
setting, there are many different notions of irrelevance and independence, each with a
different interpretation, but which generally coincide for models involving only precise
probabilities, i.e., classical Bayesian belief models; see Couso et al. [1]] for a review.
Starting from given imprecise marginals, these different types of irrelevance and inde-
pendence assessments will generally lead to different joint belief models, whereas they
all lead to the classical independent product when marginal beliefs are modelled by
precise, or Bayesian, probabilities. A discussion of this phenomenon can also be found
in De Cooman and Miranda [6]].

As far as we know, there are currently two important approaches to probability theory
that involve lower and upper expectations (also called previsions or prices, depending
on the interpretation): Walley’s [13] behavioural approach, and Shafer and Vovk’s [12]
game-theoretic framework, where event trees play a central role. De Cooman and Her-
mans [4] [5]] have shown that these two approaches can be related to each other, and they
have introduced imprecise probability trees as a bridge between them. By showing that
many results can be imported from one theory into the other, they make some progress
towards a more unified handling of uncertainty.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 6 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008
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Here, we take one more step towards such a unification, by studying, in Sect.[3 how
Walley’s epistemic irrelevance [[13] Chap. 9] can be related to the notion of event-tree
independence that is central in Shafer’s discussion of causal reasoning [[11]]. We discuss
the relevance of our findings in the Conclusions, where we also argue why in a theory
of uncertain processes, (forward) epistemic irrelevance may be more useful than its
symmetrical counterpart, epistemic independence. But let us first recall the basic ideas
behind Walley’s behavioural theory of coherent lower previsions (Sect.[2)), Shafer’s
event and probability trees [11]] (Sect.[3), and the imprecise probability trees that form
the connection between them [4] 3] (Sect. 4)).

2 Coherent Lower and Upper Previsions

In Walley’s theory, beliefs held by a subject about the actual value of a random variable
X on a finitd]] space 2 are modelled by coherent lower and upper previsions. We call
gamble a real-valued function f on 27, and denote by .Z(2Z") the set of all gambles on
2. f(X) is interpreted as an uncertain reward. A lower prevision P is a real-valued map
defined on some subset £ of £ (Z"). Its conjugate upper prevision P is then defined
on the set of gambles — % :={—f: f € J# } by P(f) := —P(—f). P(f) is interpreted
as the subject’s supremum buying price for the uncertain reward f(X), i.e., the smallest
price s such that the subject accepts to buy f(X) for any price i < s, meaning he accepts
the uncertain transaction f(X) — u. Given an event A C .2, its lower probability P(A)
is the lower prevision of its indicator l4, a gamble that assumes the value one on A
and zero elsewhere. The upper probability P(A) is defined likewise in terms of the
upper prevision P(I4). With a lower prevision P we can associate a closed convex set
of (dominating) probability mass functions: # (P) :={p € Zg: (Vf € ) (E,(f) >
P(f)}, where X4 is the set (simplex) of all probability mass functions on 2", and
Ep(f) =2 o f(x)p(x). We call .# (P) the credal set induced by P. A lower prevision
P is said to be coherent if and only if .# (P) # 0 and P(f) = min{E,(f): p € #(P)}
forall f in .7, i.e., if P is the lower envelope of .# (P).

3 Event Trees

An event tree is composed of situations linked together, and it represents what rele-
vant events may possibly happen in what particular order in the world, according to a
particular subject. It is formally equivalent to a rooted tree in graph theory. We restrict
ourselves to trees with finite depth and width. The notions we are about to introduce
are illustrated in Fig.[Il A situation is a node in the tree. The initial situation is the root
of the tree. A terminal situation is a leaf of the tree; all other situations, including the
initial one, are called non-terminal. A path is a sequence of situations from the initial to
a terminal situation. A path goes through a situation s if s belongs to it. The set €2 of all
possible paths, or equivalently, of all terminal situations, is called the sample space. Any
set of terminal situations is an event. Situations immediately following a non-terminal

! To make this discussion as simple as possible, we restrict ourselves to finite spaces throughout,
but it is straightforward to extend our results to infinite spaces.
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Fig. 1. Event tree with non-terminal situations (grey), terminal situations (black), and root [J.
U={uy,...,us} is a cut, r < uy and d(¢) = {uy,up}. Also, uy and r are disjoint, but not uy
and o.

situation s are called daughters of s, and the set of such daughters is denoted by d(s).
The link between a situation s and one of its daughters ¢ is called a move from s to 7.
If a situation s is before a situation ¢ in the tree, we say that s strictly precedes t, and
denote this as s < t; and if a situation s is before or equal to a situation #, we say that
s precedes t, and denote this as s < t. Two situations are called disjoint if there is no
path they both belong to. A cut is a set of disjoint situations, such that every path goes
through exactly one situation in the cut. If each situation in a cut V (strictly) precedes
some situation in another cut U, then V is said to (strictly) precede U, and we denote
thisas V < U (V < U).

4 Imprecise Probability Trees

Branching probabilities py for a non-terminal situation s are non-negative numbers sum-
ming up to one, each of them attached to a different move originating in s: we denote by
ps(t) the probability to go from s to its daughter 7; p; is a probability mass function on
d(s). A (precise) probability tree is an event tree for which every non-terminal situation
has such branching probabilities.

An imprecise probability tred is an event tree for which each non-terminal situa-
tion s has a closed convex set .#; of branching probabilities p;, describing a subject’s
uncertainty about which move is going to be observed just after s. With an imprecise
probability tree, we can associate coherent lower previsions. First of all, for any non-
terminal situation s, and for any gamble 4 on d(s), we can consider the lower prevision
P (h) =min{E, (h): ps € A}. P, and 4 are equivalent local predictive models for
what is going to be observed immediately after s. But we can also consider global pre-
dictive models: Let f be a gamble on the set of paths 2. For every situation ¢, we
consider the lower prevision P(f|¢) conditional on 7: the subject’s supremum buying
price for f, given that the actual path goes through 7.

The global models P(:|t) can be calculated from the local P, by backwards re-
cursion, using the Concatenation Formula [4, [3]: for any given situation ¢, P(f]t) =
P,(P(f|d(t))), where P(f|d(t)) is the gamble on d(¢) that assumes the value P(f]s) in
each s € d(t); and for a terminal situation @ € €2, we have P(f|®) = f(w).

Example 1. Let us illustrate this with the successive flipping of two coins. In the corre-
sponding event tree:

2 Shafer [T1l Chap. 12] uses the term ‘martingale tree’.
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the labels for the situations are explicit, e.g., #,? means that the first coin has landed
‘heads’, and the second still has to be flipped. As indicated on the edges of the tree,
the subject’s beliefs about the first coin are modelled by the imprecise probability as-
signments p(h) € [1/4,3/4] and p(¢) € [1/4,3/4]. If it lands ‘heads’, we keep the same
coin, otherwise the second flip is made with a fair coin (p(h) = p(t) = 1/2). We have
also indicated the different steps in the calculation of the lower and upper probability
of getting ‘heads’ at least once, using the Concatenation Formula.

5 Forward Irrelevance in Event Trees

Let us briefly recall the notion of forward irrelevance, discussed in detail by De Cooman
and Miranda [6], before relating it to independence in event trees.

For two random variables X; and X, if a subject says that X; is epistemically ir-
relevant to X;, this means that he assesses that learning the actual value of X; won’t
change his beliefs about the value of X;. For imprecise probability models, this notion
is asymmetric: the epistemic irrelevance of X to X, is not generally equivalent to the
epistemic irrelevance of X; to X; [ [6].

Assume that the uncertainty bears on random variables Xj, ..., Xy that assume
values in the respective finite sets 27, ..., Zn. For 1 <k < ¢ < N, we denote by
Xk = xi.‘:é% the Cartesian product of the k — ¢+ 1 sets 2y, ..., 2%, and by

Xo = (Xy,...,Xi) the associated joint random variable taking values in Z7;. Simi-
larly, x4 := (xp,...,x;) € Zpx denotes a generic value of Xy;. The random variables
Xi,...,Xy are assumed to be logically independent, meaning that Xy, can assume all
values in 2y, for all 1 < ¢ <k < N. A gamble f defined on 2.y is called Zy-
measurable if f(x;.y) = f(y1.y) for all x;.y and y.y in Z7.y such that xp, =y We
denote by £ (27 the set of all Zy,-measurable gambles, and by fy a generic gam-
ble in this set. Of course, we identify the index ‘k : k* with k.

An important problem is how to build joint belief models from partial ones. Let us
consider the specific example where the X constitute a stochastic process with time
variable k, implying in particular that the subject knows in advance that the value of
random variable X, will be revealed to him before that of X, |, where { =1,2,...,N—1.
This leads to a special event tree (also called a standard tree [11}, Chap. 2]) where the
nodes s have the general form x;.;, € 274, k=0,...,N. For k = 0 there is some abuse of
notation, as we let 27,0 := {00} and x. := [J. The sets 2. constitute special cuts of
the tree, where the value of X; is revealed. We have 27.1 < 212 < -+ < Z1.n, and this
sequence of cuts is also called a standard filter [11, Chap. 2]. It is clear that d(x;) =
{x14} X Zy1 fork=0,1,...,N — 1. The sample space of such a tree is Q = 2.y, and
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with the variable X there corresponds a set £ (.2} ) of Z;-measurable gambles on this
sample space. For instance, in the standard tree of Example [I] gambles characterising
the second coin flip are such that f(¢,h) = f(h,h) and f(¢,t) = f(h,t). Below, we see
the first two cuts of another standard tree, with 2 = {a,b} and 25 = {c, 3,7}

(0,7)
/// \\\ %:2

A natural way to specify partial beliefs consists in attaching, as explained in the pre-
vious section, to each of the non-terminal nodes x;.; a (coherent) local predictive lower
prevision P, on Z(d(x14)), i.e.,on Z(Zjy1), where k=0, 1,...,N — 1. This repre-
sents a subject’s beliefs about the value of Xj | given that the k previous variables X,
assume the values xy.,. For standard imprecise probability trees, the Concatenation For-
mula given above for deriving the global lower previsions P(-|x;.¢) on £ (Z1.y) from
the local models P, completely coincides with the formulae for Marginal Extension,
derived by Miranda and De Cooman [9].

A subject may make an assessment of forward irrelevance, meaning that for 1 <k <
N — 1, his beliefs about the ‘future’ random variable X | won’t be changed by learning
new information about the values of the "past’ random variables X|: the past random
variables X1, ..., Xy are epistemically irrelevant to the future random variable Xy, |, for
1 <k < N —1.This is expressed by the following condition involving the local models:
forall 0 <k <N — I, any gamble fi, in £ (Zi+1), and all xq in Z7:

Py (fir1) = P (fiv1)s )]

where Py is the so-called marginal lower prevision on £ (%} 1), which expresses
the subject’s beliefs about the value of X, irrespective of the values assumed by
the other random variables. Invoking the Concatenation Formula now leads to a very
specific way of combining the marginal lower previsions Py, ..., Py into a joint lower
prevision, reflecting the assessment of forward irrelevance. This joint lower prevision,
called the forward irrelevant product, is studied in detail by De Cooman and Miranda
[6], who also use it to prove very general laws of large numbers [7].

We now proceed to show that forward irrelevance is exactly the same thing as
Shafer’s notion of event-tree independence, when applied to standard imprecise proba-
bility trees. In Shafer’s terminology, a situation s influences a variable X if there
is at least one situation ¢ € d(s) such that the subject’s beliefs about the value of X are
modified when moving from s to ¢; for imprecise probability trees, this means that there
should be at least one gamble f whose value depends on the outcome of X for which
P(f|s) # P(f|t). Two variables X and Y are called event-tree independent if there is no
situation that influences both of them.

In a standard imprecise probability tree, a situation xi.; influences a variable X, if
there is at least one situation xy.,; in d(x1,) and at least one gamble f,, on £}, such
that P(fin|x1:6) 7 P(fm|X1:4+1)- The only situations x;. that can influence X, are such
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that £ < m, since in all other situations, the value of X, has already been revealed ‘for
some time’. In addition, it is easy to check that X,, is always influenced by any situation
X1:m—1 in the cut 2., right before the value of X, is revealed.

Theorem 1. Let X1, ..., Xy be N random variables. Then there is forward irrelevance,
or in other words, the random variables X\.; are epistemically irrelevant to Xy for
1 <k <N-—1ifand only if the random variables X, ..., Xy are event-tree independent
in the corresponding standard imprecise probability tree.

Proof. We deal with the ‘only if” part first. Suppose the random variables Xj.y are
forward irrelevant. Consider any X; and f € £ (%), where 1 <k < N. Then it follows
from the forward irrelevance condition () and the Concatenation Formula that P, (f;) =
Py . (fv) = P(filxix—1) forall x4y in 27 1. Applying the Concatenation Formula
again leads to P(fi[x1:x—2) = Py, ,(P(filx1x—2,")) = Py, (Pe(fk)) = P(fi), and if
we continue the backwards recursion, we see that

Py(fi) = P(filx1x-1) = P(filx1x—2) = --- = P(fi|x1:2) = P(fi|x1) = P(fi|DD).

This implies that the only situations that (may) influence X; are the ones in the cut
21«1 immediately before X is revealed. Therefore, no situation can influence more
than one variable, and there is event-tree independence.

Next, we turn to the ‘if” part. Assume that all variables are event-tree independent in
the standard tree. This implies that no variable X; can be influenced by a situation xj.y
corresponding to a time ¢ < k— 1 [If X; were influenced by such a situation, then we
know that this situation also always influences Xy 1, and £+ 1 < k, a contradiction]. So
forall x1.,_1 € Z7.x_1 and all fr € g(%{)

P(filxtx-1) = P(filx1x—2) = - = P(filx12) = P(filx1) = P(fi| D).

Now of course P(f|J) = P(fi) = Py(fx), where P, is the marginal lower prevision for
Xi and it follows from the Concatenation Formula that P(fi|x1x—1) = Py, (f¢) This
shows that (I is satisfied, so there is forward irrelevance. O

6 Conclusions

What is the message we want to convey in this paper? In the theory of coherent lower
previsions [13]], there are essentially two behavioural notions that generalise classi-
cal independenceﬁ epistemic irrelevance and the derived notion of epistemic indepen-
dence. Assessing that two random variables X; and X, are epistemically independent
amounts to assessing that (i) X; is epistemically irrelevant to X,, meaning that getting
to know the value of X; doesn’t change our subject’s beliefs about X;; and (ii) X, is
epistemically irrelevant to X;.

Suppose we want to consider a theory of uncertain processes where probabilities
aren’t necessarily precise. What will be the most useful or meaningful counterpart of the

3 There are other generalisations, such as strong independence [[]], but these have a sensitivity
analysis interpretation, rather than a behavioural one; see also Chap. 9]. Our comments
below don’t bear on such other types of independence.
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important notion of independence in the classical theory of random processes? There
are a number of reasons for preferring the asymmetric notion of epistemic irrelevance,
and its generalisation to many variables, called forward irrelevance, to that of epistemic
independence. We begin with arguments of perhaps less importance, and then go on to
present the most compelling one.

First of all, when a notion that is (more or less) automatically symmetrical, breaks
apart into two asymmetrical counterparts when using a more powerful language, sym-
metry becomes something that has to be justified: it can’t be imposed without giving it
another thought.

Secondly, an assessment of epistemic independence is stronger, and leads to higher
joint lower previsions. As lower previsions represent supremum buying prices, higher
values represent stronger commitments, and these may be unwarranted when it is only
epistemic irrelevance that our subject really wants to model.

Thirdly, joint lower previsions based on an epistemic irrelevance assessment are gen-
erally speaking straightforward to calculate, as the discussion of the Concatenation For-
mula in Sect. [3] testifies. But calculating joint lower previsions from marginals based
on an epistemic independence assessment is quite often a very complicated affair
Sect. 9.3.2].

Finally, and most importantly, when considering an uncertain process, the subject
knows that the values of the random variables X;, will be revealed one after the other,
and that the value of X will be revealed before that of X, ;. If he states that X; and X; |
are epistemically independent, this amounts to his assessing that (i) getting to know the
value of X; won’t change his beliefs about X, | [forward irrelevance]; and (ii) getting to
know the value of X;,; won’t change his beliefs about X} [backward irrelevance]. But
since the subject knows that he will always know the value of X before that of X |, (ii)
is effectively a counter-factual statement for him: “if I got to the value of X;.;; first, then
learning that value wouldn’t affect my beliefs about X;. It’s not clear that making such
an assessment has any real value, and we feel it is much more natural in such situations
context to let go of (ii) and therefore to resort to epistemic (forward) irrelevance.

This line of reasoning can also be related to Shafer’s [10] idea that conditioning is
never automatic, and must always be associated with a protocol. A subject can only
meaningfully condition a probability model on events that he envisages may happen
(according to the established protocol). In the specific situation described above, condi-
tioning the belief model about X on the variable X; | could only legitimately be done
if it were possible to find out the value of X; | without getting to know that of X}, quod
non. Therefore, it isn’t legitimate to consider the conditional lower prevision Py (+| Xy 1)
expressing the beliefs about X; conditional on Xj, |, and we therefore can’t meaning-
fully impose (ii), as it requires that P, (-|Xy+1) = P;. Again, this leads to epistemic
(forward) irrelevance, instead of epistemic independence.

In his book on causal reasoning [11]], Shafer seems to propose the notion of an event
tree in order to develop and formalise his ideas about protocols and conditioning. We
have seen in Theorem [I] that for standard event trees, which correspond to uncertain
processes, the general notion of event-tree independence that he develops in his book,
is effectively equivalent to the notion of forward irrelevance.



Relating Epistemic Irrelevance to Event Trees 73

References

10.
11.
12.
13.

. Couso, I., Moral, S., Walley, P.: Examples of independence for imprecise probabilities. Risk

Decis Policy 5, 165-181 (2000)

Cozman, F.G.: Credal networks. Artificial Intelligence 120, 199-233 (2000)

Cozman, F.G.: Graphical models for imprecise probabilities. Internat. J. Approx. Rea-
son 39(2-3), 167-184 (2005)

De Cooman, G., Hermans, F.: On coherent immediate prediction: Connecting two theories
of imprecise probability. In: De Cooman, G., Vejnarova, J., Zaffalon, M. (eds.) Proceedings
of the Fifth International Symposium on Imprecise Probability: Theories and Applications
(ISIPTA 2007, Prague, Czech Republic), SIPTA, pp. 107-116 (2007)

De Cooman, G., Hermans, F.: Imprecise probability trees: Bridging two theories of imprecise
probability. Artificial Intelligence (in press, 2008) doi:10.1016/j.artint.2008.03.001

De Cooman, G., Miranda, E.: Forward irrelevance. J. Statist. Plan Infer. (in press, 2008a)
doi:10.1016/j.jspi.2008.01.012

De Cooman, G., Miranda, E.: Weak and strong laws of large numbers for coherent lower
previsions. J. Statist. Plan Infer. (in press, 2008b)doi:10.1016/].jspi.2007.10.020

Levi, L.: The Enterprise of Knowledge. MIT Press, London (1980)

Miranda, E., De Cooman, G.: Marginal extension in the theory of coherent lower previsions.
Internat. J. Approx. Reason 46(1), 188-225 (2007)

Shafer, G.: Conditional probability. Internat. Statist. Rev. 53, 261-277 (1985)

Shafer, G.: The Art of Causal Conjecture. MIT Press, Cambridge (1996)

Shafer, G., Vovk, V.: Probability and Finance: It’s Only a Game! Wiley, New York (2001)
Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London
(1991)



Probability Revision, the Uniformity Rule, and the
Chan-Darwiche Metric
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Abstract. The author has proposed a rule of probability revision dictating that identical learning
be reflected in identical ratios of new to old odds. Following this rule ensures that the final result
of a sequence of probability revisions is undisturbed by an alteration in the temporal order of the
learning prompting these revisions. There is also a close connection between this rule and an
intriguing metric on probability measures introduced by Chan and Darwiche.

Keywords: Bayes factor, Chan-Darwiche metric, Probability revision.

1 The Commutativity Principle

Consider the following belief revision schema, representing two possible sequential
revisions of the probability measure p:

p—q—r and p— 85—t

Suppose that the revisions of p to g, and of s to #, are prompted by identical learning,
and that the revisions of g to r, and of p to s, are prompted by identical learning. It
is then widely held that it ought to be the case that » = . As van Fraassen [7] puts
it, two persons who undergo identical learning experiences on the same day, but in a
different order, ought to agree in the evening if they had exactly the same opinions in
the morning. Call this the Commutativity Principle.

A simple rule of probability revision ensures that the Commutativity Principle is sat-
isfied. This Uniformity Rule, occurring in particular cases in Wagner [8, [0} [T0} [T1]], and
given general formulation in Wagner [[12]], dictates that identical learning be reflected
in identical ratios of new to old odds, also known as Bayes factors. This note explores
the connection between the Uniformity Rule and an intriguing metric on probability
measures introduced by Chan and Darwiche [1]]. The upshot is that revisions of two
different probability measures based on identical learning, when effected by the Uni-
formity Rule, move us the same Chan-Darwiche distance from the priors in question.

2 Terminology and Notation

A sigma algebra A of subsets of €2 is purely atomic if the family A* of atomic events in
A is countable, and constitutes a partition of £2. Every finite algebra is purely atomic,
whatever the cardinality of €2, and if Q is countable, then every sigma algebra on € is

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 7 2008.
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purely atomic ([6, Theorems 1.6.1, 1.6.2]). If ¢ is a revision of probability measure p,
and A and B are events, then the probability factor (or relevance quotient) IT, ,(A) is
the ratio

q(4)
p(A)
of new to old probabilities, and the Bayes factor B, ,(A : B) is to ratio

H%P(A) =

%
. 4
Bop(A:B) =10 (1)
p(B)
. o . p(EJA)
of new to old odds. When ¢(.) = p(.|E), then (@ is simply the likelihood ratio (E|B)
p
More generally,
Il p(A)
Byp(A:B)=_TP" " 2)
A 1 6)

a simple, but useful, identity.

In what follows we assume for simplicity that all probability measures are strictly
coherent, i.e., that all nonempty events have positive probability. With the addition of
certain technical conditions, however, Theorem[Ilbelow holds for arbitrary probabilities.

3 Bayes Factors and Commutativity
The following theorem demonstrates that the Commutativity Principle is satisfied for

purely atomic sigma algebras when identical learning is represented by identical Bayes
factors at the level of atomic events.

Theorem 1. Suppose that the probabilities in the revision schema

are defined on a purely atomic sigma algebra A, with A* denoting the set of atomic
events in A. If the Bayes factor identities

Byp(A:B)=PBs(A:B), forallA,BecA”, 3)
and
Brg(A:B) =P ,(A:B), forallA,BeA* 4)

hold, then r =t. Indeed, for all A € A*, we have the explicit formula
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B)s(B) ®)

Proof. The identity (@) is equivalent to
1(A)q(B)s(B) _ q(A)s(A)i(B)
p(B) p(A)

Fixing A in (@), and summing over all B € A* then yields () for 1(A), since

> t(B)=1.

BeA*

, forallA,Bec A", (6)

The proof of @) for r(A) follows from @) in exactly analogous fashion. ]

Remark 1. If p, q, r, s and t are well-defined and in place and (3) and @) hold, then,
necessarily, the sum in the denominator of the right-hand side of (&) converges. If only
P, q, and s are in place at the outset and the aforementioned sum converges, then (3))
defines probabilities r and ¢ satisfying (@) and @). So @) furnishes a recipe for con-
structing a probability measure r that would be the appropriate revision of ¢ if, in the
probabilistic state g, one were to undergo learning identical to that which prompted the
revision of p to s. Similarly, (3) furnishes a recipe for constructing a probability mea-
sure ¢ that would be the appropriate revision of s if, in the probabilistic state s, one were
to undergo learning identical to that which prompted the revision of p to g. However, it
is easy to construct examples where the sum in the denominator of (3)) fails to converge.
Then there exists no probability measure ¢ satisfying (3)) and no probability r satisfying
@). Thus from the perspective of the Uniformity Rule, it is impossible in the concep-
tual state reflected in s (respectively, q) to experience learning identical to that which
prompted the revision of p to g (respectively, of p to s).

4 The Chan-Darwiche Metric

When 2 is finite the Uniformity Rule has intriguing connections with a metric on prob-
ability measures introduced by Chan and Darwiche [[1l]. Assume for simplicity that all
probabilities are strictly coheren{], and defined on all subsets of . Define the Chan-
Darwiche distance CD(p,q) by

CD(p,q) :=log(R) —log(r), (7
where (@) (@)
L qlo .9 (0]

R:= gleaép(w) and r:= 31615 (@)’ ®)

! On the set all probability measures on the power set of Q, CD is, strictly speaking, no longer
a metric, since it can take the extended real number oo as a value. Indeed, with the stipulation
that 8 =1,CD(p,q) < o iff p and ¢ have exactly the same support, i.e., iff {® € Q : p(@) >
0} ={we Q:q(w) >0}
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It is straightforward to show that CD is a metric on the set of all strictly coherent prob-
ability measure on the power set of €2, i.e., that

CD(p,q) 20, with CD(p,q)=0 iff p=gq.
CD(p,q) =CD(q,p), and
CD(p,q) < CD(p,p') +CD(p',q).
CD(p,q) yields uniform bounds on the Bayes factors 3, ,(A : B) :
Theorem 2. For all nonempty events A,B € 2,

exp(—CD(p,q)) < By.p(A,B) < exp(CD(p,q)). )

q(®)
Proof. Suppose that max ()

® = ®;. Then

and min ZEZ; are attained, respectively, at ® = @, and

q(o)p(o) _ () < q(@2)p(w)

(10)
p(on) plan)
Summing (I0) over all @ € A, and over all @ € B yields
q(on) _ q(A) q(B) _ q(a)
plor) ~ p(A)  p(B) ~ p(w)
whence,
q(oy) q(an)
|:]1( ):| < qP(A) < |: ( ):| 11
q(m) (B) q(wy) an
[ (@2 J Mo [ (0 J
which is equivalent to (9) by @) of SectionRlabove, [@), and (). O

Remark 2. Note that the bounds in (9) are sharp, the upper bound being attained when
A={m} and B={®, }, and the lower bound when A = {®, } and B = { @, }.

In view of (II)) and the preceding remark, it is clear that CD(p,q) may be equivalently
defined by the formulas

CD(p,q) = ,max log By (A : B)_ max logﬁq,,({w} whB a2

The number log B, ,(A : B) has been termed the weight of evidence by 1.J. Good [3].
According to Good, Alan Turing was an enthusiastic advocate of using weights of evi-
dence to measure the gain or loss of plausibility of one hypothesis vis-d-vis another as
a result of the receipt of new evidence. Such weights were routinely used in the code-
breaking work at Bletchley Park, where Good and Turing were colleagues during World
War II ([3]). Indeed, Turing coined the term ban (after the town of Banbury, where the

2 Upon reading Chan-Darwiche [T]], T communicated this result to the authors, who incorporated
it in Chan-Darwiche [2]].
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sheets were printed on which weights of evidence were recorded) for the unit weight
of evidence, with logarithms taken to the base 10. One-tenth of a ban was termed a
deciban (abbreviated db, in obvious analogy with acoustic notation). See Jeffrey ([5,
pp. 32-32]) and Good [4] for further details.

Formula (I2)) thus provides a particularly salient formulation of the Chan-Darwiche
distance, as well as an attractive and evocative unit of measurement. Moreover, there is
a hand-in-glove fit between the Uniformity Rule and the Chan-Darwiche distance: If p
is revised to g, and p’ is revised to ¢/, based on identical learning, and we construct ¢’
in accord with the Uniformity Rule, then CD(p,q) = CD(p’,q’). So revisions based on
identical learning, carried out acording to the dictates of the Uniformity Rule, move us
the same CD-distance (i.e., the same number of decibans) from the priors in question.
As can be seen from the elementary example,

(] o]
D11 /.2 03
Py pP-s5 s
41 /. 8 3
q- 5 s 911 1

where CD(p,q) = CD(p',q') = 2log?2, this fails to be the case for other measures of
distance, including the Euclidean distance

1
2

ED(p.q):= | Y. (p(o) —q(w))*| |

[}

the variation distance
V(p,q) : = max{|p(A) —q(A)|: A C Q}
1
=, 2lp(0) —q(0)],
w

the Hellinger distance
H(p.g) = 3 [Vp(o)~ va()]

and the Kullback-Leibler information number

KL(p,q) := Y ,q(w)log (ZEZ%) :
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On Nonparametric Predictive Inference for
Bernoulli Quantities with Set-Valued Data

Frank P.A. Coolen

Dept. of Mathematical Sciences, Durham University, Durham, United Kingdom

Abstract. Coolen [3] introduced lower and upper probabilities for m future Bernoulli random
quantities, based on the number of successes in n trials and adding few structural assumptions.
These results form part of the statistical approach called ‘Nonparametric Predictive Inference’. In
this paper, we explore the generalization of these results for the case with data only available in
the form of a set of values for the number of successes in the first n trials. A special case of such
inferences occurs in applications to basic acceptance sampling problems in quality control.

1 Introduction

Statistical inference in situations with incomplete data has received much attention in
the literature, reflecting its importance in many applications. Manski presents a
wide range of methods to partially identify probability distributions based on incom-
plete data, considering a wide range of reasons for data to be incomplete and present-
ing historical notes and further references. The manner in which inferential methods
based on different foundations deal with incomplete data differs substantially, in par-
ticular when methods using precise probabilities are compared to methods in which
uncertainty is quantified via lower and upper probabilities. For example, if some data
are not reported precisely but only to belong in a particular range of values, precise
Bayesian methods simply include the probability for all these possible data values in
the likelihood function used in the updating calculations to derive the posterior distri-
bution. Methods that allow imprecision to be taken into account, by the use of lower
and upper probabilities, can deal with such data differently, namely by considering
best- and worst-case data possibilities, within the range of values reported, and as
such no further assumptions on values within this range need to be included in the
inferences.

De Cooman and Zaffalon [8]] present a detailed theory for updating imprecise proba-
bilities based on incomplete (set-valued) data, within the framework of coherent impre-
cise probability presented by Walley [[13]]. Related to this work, Zaffalon [16] focuses
specifically on predictive inference. Weichselberger has been developing a novel
interval-probabilistic statistical approach, called ‘symmetrical probability’, for which
results in case of set-valued data have also been presented.

Coolen [3] presented an inferential approach for Bernoulli quantities, which uses
lower and upper probabilities and differs from the generalized Bayes approach by Wal-
ley [13]. This approach, which fits in the more general framework of ‘nonparamet-
ric predictive inference’ (NPI) [ 4], takes a fundamentally different view to learning

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 85 2008.
springerlink.com © Springer-Verlag Berlin Heidelberg 2008
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from data than generalized Bayes methods, as it only considers events of the form A
is followed by B, without any assumptions on the single events A or B. An example of
an application of this approach is comparison of proportions data for different groups
[3, 6. NPI for Bernoulli quantities [3]] has, so far, been presented for events of the
form Y" = s is followed by ¥"[" € R, with ¥/ the number of successes in trials i to
J.and R C {0,1,...,m}. So, it was assumed that the number of successes in the first
n trials observed is known to be equal to s. This raises the question of how NPI for
Bernoulli quantities deals with set-valued information, which occurs if the number of
successes in the first n trials is not precisely known, but if only ¥|" € S is known, with
S c{0,1,...,n}. This is explored in the current paper, general theory including a dis-
cussion of principles of such inference will be presented elsewhere.

NPI is different in nature to Walley’s generalized Bayes approach, with a fundamen-
tally different view on the manner in which data are used. In Walley’s theory, in line
with precise Bayesian methods, one updates prior lower and upper probabilities, using
a generalized Bayes’ rule, to derive posterior lower and upper probabilities, so learning
from data is modelled via conditioning based on an all-encompassing parametric model
and prior distributions. In NPI there are no non-trivial statements (i.e. non-vacuous
lower and upper probabilities for non-trivial events) for the single events involving only
Y|'or Yn"jlm. As such, when generalizing to set-valued data of the form Y| € S, inference
is not based on conditioning on this event, and the precise meaning of an event ‘Y|' € §
is followed by er’jlm € R’ must be considered with great care. It turns out that, for such
events with set-valued data, the difference between NPI and other approaches becomes
clearer than for precise data.

Section ] of this paper is a brief summary of the NPI approach for Bernoulli quanti-
ties [3]], with some details on the derivations of the main results as needed to generalize
the method to set-valued data, Section [3] discusses key aspects of this generalization.
In Section[] we briefly consider a special case, with data Y{' >y, which is relevant for
acceptance sampling. The paper ends with some concluding remarks in Section[3l

2 Nonparametric Predictive Inference for Bernoulli Random
Quantities

Nonparametric prediction of Bernoulli random quantities uses Hill’s assumption A ;)
[10], and defines direct predictive lower and upper probabilities for future observations,
based on available data. This fits in the framework of nonparametric predictive inference
(NPT) with strong internal consistency and frequentist properties [T} 4.

Suppose that we have a sequence of n + m exchangeable Bernoulli trials [9], each
with success and failure as possible outcomes, and data consisting of s successes ob-
served in n trials. A sufficient representation of the data for our inferences is Y|' = s, due
to the exchangeability of all trials. We are interested in the number of successes in trials
n+lton+mLetR={r,...,r; },with1 <t <m+1and0<r <m<...<r <m,
and let (*77°) = 0. The NPI upper probability for the event ¥","" € R, given data Y]’ =s,
fors € {0,...,n},is [3]
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P! ER|Y] =) =

() Bl

The lower probability can be derived via the conjugacy property,

P! eR| Y] =5)=1-PY) " €{0,1,....m}\R|Y]' =)

This is justified in [3]], and agrees with the fact that these lower and upper probabilities
are F-probability in the theory of interval probability [1}, [14]. The key aspects of this
theory are explained below.

In NPI for Bernoulli random quantities [3]], past observations are related to future
random quantities via an assumed underlying latent variable representation, such that
each value is represented by a point on the real line, with a threshold such that all points
to one side of the threshold represent ‘successes’, and all points to the other side of the
threshold represent ‘failures’. No knowledge about this threshold is assumed. This rep-
resentation is very similar to that used by Bayes [2]], with the exception that Bayes made
explicit assumptions on the threshold, which in the later development of Bayesian statis-
tical methodology corresponded to the assumption of a prior distribution. In NPI, with
the latent variable representation, past observations are related to future observations
via Hill's A, [10]. Suppose that the ordered values of the latent variables correspond-
ing to the n observations are u(1) <u(z) <... <u(,). These n values define a partition of
the real line, consisting of n+ 1 intervals. Hill’s A, states that a future random quantity
U,+1 has equal probability 1/(n+ 1) to be in each of these intervals, in our NPI setting
this U, is the latent variable corresponding to the first future observation, which will
again be a success or failure, depending on which side of the threshold U, is.

When interested in m future observations, the same assumption needs to be made
for each future observation consecutively, so one needs to assume Ay, ..., A,y pm—1)- In
fact, assuming A, ,,_1) is sufficient, as Hill [10] shows that the assumption A, implies
Ay for all k < n. Under these assumptions, the following result holds (3L10]. Suppose
that there is no interest in precisely which of the first n observations are successes or
failures, so that one considers the number of successes as a sufficient statistic, and the
same is assumed for the m future observations of interest. Then, under the assumption
Afpam—1)» all (™) different orderings of the underlying latent variables on the real
line, which represent the first n observations and the m future observations, have the
same probability, also after information about the number of successes in the first n
observations has become available. Denoting these ("*"™) different orderings by O;
for j=1,...,(""™), the above lower and upper probabilities are derived by counting
orderings [3]: for the lower probability, only those orderings are included for which
Y{" = s must be followed by Y/ € R, while for the upper probability all orderings are

n+1
included for which ¥{" = s can be followed by ¥;""|" € R.

3 Set-Valued Data

We now explore the generalization of NPI for Bernoulli random quantities with set-
valued data, so we assume that the information on the first # trials is only Y{' € S, with
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S c{0,1,...,n}. For completeness of the NPI theory, it is important to derive general
expressions for the lower and upper probabilities for the events that Y|' € S is followed
by Yn"jl’” € R, for any sets S,R (we assume throughout that these sets are not empty).
The combinatorial problems involved in deriving general formulae have not yet been
solved, we hope to present these elsewhere in the near future, together with a more
detailed discussion of this theory and further comparison with other approaches. We
now explore this generalization by discussing the derivation of such lower and upper
probabilities and some of their properties, and by a basic example.

We consider again the (”;m) different orderings O; of the n latent variables repre-
senting the n observations on the real line together with the m latent variables repre-
senting the m future observations, all these orderings remain equally likely under the
assumption A, ,,1). With these set-valued data, the reasoning that leads to the lower
and upper probabilities for the event (Y,"{" € R| ¥{' € S) remains the same as discussed
Section 2] [3]]. The lower probability for this event is derived by counting all orderings
O; for which Y|* € § must be followed by Yn"jl’” € R, while the upper probability is de-
rived by counting all orderings O; for which Y|' € S can be followed by Y"'|" € R. It
is important to emphasize that, for the lower probability, an O; is only included in the
count if for each s € S, Y|' = s must be followed by Yn"jlm € R, whereas for the upper
probability an O; is already included if there is at least one s € S for which Y{' = s can
be followed by Y;’jlm € R. Hence, the actual events that correspond to the lower and
upper probabilities for (Y,f’jl’” € R|Y]' € §) differ substantially, in a way that could be
described as ‘most conservative’, and which also ensures that the conjugacy property
remains valid, so

PO e R Y €S)=1—PX" "€ {0,1,....m}\R | Y] €S)

Basic logic and set theory imply some important general properties for these lower and
upper probabilities. Let S; C S, then for all R,

PY""ER|YE€S)) >PY'["ER|Y'ES,)

n+l1 n+l1
P(Y!"€R| Y €S)) < PV €R[YE€S,)

so one could say that this NPI lower (upper) probability decreases (increases) in S. For
all R that are strict subsets of {0, 1,...,m}, we have P(Y:jlm ER|Y€{0,1,...,n}) =
0 and P(Y'" € R| Y] €{0,1,...,n}) = 1, reflecting that with § = {0,1,...,n} no
information is provided about the number of successes in the first n trials. In precise
Bayesian statistics, this situation results in just the prior probability for the event Y, [" €
R, which also implies that nothing has been learned to update this prior probability, but
of course does require one to have such a prior probability in the first place. Obviously,
for any given set S, these lower and upper probabilities are increasing in R. As part of
our detailed study of NPI with set-valued data, we will consider more such properties
of these lower and upper probabilities as functions of S and R.

An important issue for uncertainty quantification is the interpretation of (lower and
upper) probabilities. As mentioned before, the lower probability P(er‘jl’” ER|YES)
and upper probability P(Y,:‘jl’” € R|Y[' € §) are conservative, as is clear from the way
they are derived. They can be used without further assumptions about the specific un-

derlying reasons for reporting S instead of a specific unique value for Y}, which is in
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Table 1. NPI lower and upper probabilities, n =4 and m = 2

x1/15 R={0} {1} {2} {0,1}  {0,2} {1,2}
S={0} (10,15) (0,5) (0,1) (1,15) (10,15) (O,5)
{1} (6,10) (3,8) (1,3) (12,14) (7,12) (5,9)

{2} (3,6) (4,9 (3,6) (9,12) (6,11) (9,12)

{3} (1,3) (3,8 (6,100 (5,9 (7,12) (12,14)

{4} (0,1) (0,5) (10,15) (0,5) (10,15) (14,15)
{1,2} (3,10) (2,11) (1,6) (9,14) (4,13) (5,12)
{1,3} (1,10) (1,12) (1,10) (5,14) (3,14) (5,14)
{2,3} (1,6) (2,11) (3,10) (5,12) (4,13) (9,14)
{1,2,3} (1,10) (1,13) (1,10) (5,14) (2,14) (5,14)
{0,1,2,3} (1,15) (0,14) (0,10) (5,15) (1,15) (0,14)
{1,2,3,4} (0,10) (0,14) (1,15) (0,14) (1,15) (5,15)
{0,1,3,4} (0,15) (0,14) (0,15) (0,15) (1,15) (0,15)

line with alternative approaches for dealing with set-valued data in imprecise probabil-
ity theory, but which cannot be achieved with precise probabilities. We present a basic
example to illustrate these NPI lower and upper probabilities, and discuss some more
features.

Example 1. To illustrate NPI for Bernoulli quantities with set-valued data, we consider
n = 4 available observations and m = 2 future observations. The underlying assumed
data representation has (g) = 15 different orderings of past and future observations,
each having probability 1/15 under the inferential assumption in this paper. Table [I]
gives lower and upper probabilities for a variety of events and set-valued data, repre-
sented as pairs (15P(YS € R| Y}t € 5),15P(YS e R| Y} € 5)), so as indicated the values
of the lower and upper probabilities are those given in the table multiplied by 1/15.
The final case, with S = {0,1,3,4}, only leads to non-vacuous NPI lower and up-
per probabilities for two sets R (due to conjugacy), which is due only to the specific
ordering of the 4 past and 2 future observations in which the latter two are in between
the second and third ordered past observation, in the underlying assumed data represen-
tation. Clearly, for that specific ordering none of the values in this S can be followed
by precisely one future success, for all other orderings this is possible for at least one
of the values in S. These results illustrate clearly the decreasing (increasing) nature of
the lower (upper) probabilities if S becomes larger. Imprecision is pretty large, which
is due to the specific manner in which the lower and upper probabilities are derived,
and their conservative nature, yet it should not be too surprising. For example, if one
gets information that, out of 4 trials, the number of successes was either 1 or 3, clearly
this information does not reveal much, in particular if one has no idea why this spe-
cific information was given. Most remarkable, perhaps, are some of these inferences
for R = {1}. For example, when one compares the values corresponding to S = {1},
S = {3} and S = {1,3}, one might perhaps be surprised that, for the latter case, the
lower and upper probabilities are not also equal to 3/15 and 8/15, respectively. This
is an important feature of the NPI approach, where it differs fundamentally from other
approaches, including imprecise probabilistic approaches which are Walley-coherent
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and Weichselberger’s symmetrical probability [15]]. Such behaviour of these
NPI lower and upper probabilities as function of S are currently being studied in more
detail, and will be reported on in a future paper.

4 Acceptance Sampling

A special case of the theory in Section[3 for which the NPI lower and upper proba-
bilities are easily derived, occurs in basic problems of quality control, when decisions
are required about acceptance of a batch of products on the basis of tests on a sample.
Some results are briefly discussed in this section, a detailed account will be presented
elsewhere [[7].

For acceptance sampling, one is often interested in the event (Y;‘jl’" >r| Y] >s), for
example if one can test n products and has to set a minimum number of successful tests
for these, if one wishes to have at least r successful products in the related batch of m
further products. Using the reasoning with the orderings O; as in Section[3] it follows
easily that for NPI for Bernoulli random quantities, the following relations hold,

P > r| Y] 2s) = P > r | Y =)

) ECE)

PYI =r| Y Z5) =P "> r| Y =n)=1

and

These results clearly indicate the conservativeness of the NPI lower and upper probabili-
ties with set-valued data, but the example in SectionBlmade clear that similar reductions
of the observation set to a single extreme value does not generally work.

One particularly nice result for such NPI-based acceptance sampling [7]] occurs when
non-destructive sampling is considered. This means that products can be tested without
affecting their functionality for future use, so in our setting a total batch would consist
of t = n+ m products of which n were to be tested. Suppose that one requires that all
products in the batch must function with NPI lower probability p, then it turns out that
the minimum required number of products, out of these 7, that have to be tested (and
of course must all function) should at least be pt. For example, for a total batch of
size t = 100, one would have to test at least 100p products, none of which should fail,
to achieve NPI lower probability of p for the event that all 100 products will function
successfully. No matter one’s judgement about the NPI approach, one cannot argue
against the beauty of this result.

5 Concluding Remarks

Statistical inferential methods that fully utilize the richness of opportunities provided by
lower and upper probabilities are still in their infancy when compared to precise proba-
bilistic methods. Although robust Bayes-like methods have become popular, following
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Walley [13]], they do not appear to fully utilize these opportunities, in particular as up-
dating remains a form of conditioning, hence it is assumed that all that can ever happen
is taken into account in the model and assessments at the prior stage. NPI provides an
interesting alternative, that has several advantages, for example its general agreement
with empirical probabilities, its strong internal consistency [[I], and its strong frequentist
properties (the underlying latent variables are exactly calibrated in the sense of Law-
less and Fredette [11]]). The preliminary results reported in this paper make clear that
more research is needed, not only into NPI but also more generally on properties of sta-
tistical inference with lower and upper probabilities, in particular the relation between
inference, imprecision, and information.
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Abstract. This paper considers the problem of the possibility representation of measurement
uncertainty in the cases of information shortage: very few measurements, poor knowledge
about the underlying probability distribution. After having related possibility distribution to
probability confidence intervals, we present a procedure to build a possibility distribution for one
measurement issued from an unimodal probability distribution. We consider then the addition
of other measurements and more knowledge about the probability distribution. The key role of
the uniform distribution as the probability distribution leading to the least specific possibility
distribution is highlighted. The approach is compared and discussed versus the conventional one
based on the Student distribution.
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1 Introduction

In many application domains, it is important to take the measurement uncertainties into
account , [IE], especially in order to define around the measurement result an inter-
val which will contain the real value of the considered entity with specified confidence
[E], that is, a confidence interval [@]. Such an interval allows to define decision risks
later, as for example the risk to exceed an alarm threshold, etc. In practice, two main
theories are considered to deal with measurement uncertainty: interval calculus [@]
and probability theory [IQ]. As interval calculus only supplies the confidence interval
with 100% confidence, probability theory seems to be required to supply the other con-
fidence intervals. But to handle the whole set of confidence intervals (with all the con-
fidence levels) is quite complex by a probability approach. And choosing a particular
confidence level (e.g. 95% which means a .05 probability for the value to be out of the
interval) is rather arbitrary. Thus a possibility approach has been proposed in [B, , ]
and further developed by a few authors in a measurement context [E,%L , , ].
This paper further explores the connection between possibility distribution and confi-
dence intervals and addresses the possibility expression of measurement uncertainty for
situations where only very limited knowledge is available: very few measurements, un-
known unimodal probability density. In Section] we recall how a possibility distribution
can be built from confidence intervals. In the third section, we present the main contribu-
tion of the paper, i.e. how to define confidence intervals where only limited knowledge
is available about the underlying probability density (unimodal bounded/non-bounded,
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symmetric or not). The results are then applied to expression of uncertainty when only
very few measurements are available. The key role of the uniform distribution as the prob-
ability distribution leading to the least specific possibility distribution is highlighted. The
approach is compared and discussed versus the conventional one based on the Student
distribution. Some concluding remarks point out the interest of the approach and some
future developments.

2 Possibility Distribution Versus Confidence Intervals

2.1 Basics of the Possibility Theory

The possibility theory is one of the modern theories available to represent uncertainty
when information is scarce and/or imprecise [IE]. The basic notion is the possibility
distribution, denoted 7. Here, we consider possibility distributions defined on the real
line, i.e. 7 is an upper semi-continuous mapping from the real line to the unit inter-
val. Thus 7 is a fuzzy subset but with specific semantics for the membership function.
Indeed, a possibility distribution describes the more or less plausible values of some
uncertain variable X. The possibility theory provides two evaluations of the likelihood
of an event, for instance whether the value of a real variable X does lie within a certain
interval: the possibility IT and the necessity N. The normalized measures of possibility
IT and necessity N are defined from the possibility distribution 7 : R — [0, 1] such that
Sup,cg (x) = 1 as follows:

VACR, II(A) = sug)n:(x) and VACR, NA)=1-TII(A) = ig(l —n(x)).
x€ X

The possibility measure IT satisfies IT(A UB) = max(I1(A),I1(B)), VA, B C R.

The necessity measure N satisfies N(A N B) = min(N(A),N(B)), VA, B C R.

A possibility distribution 7; is more specific than m as soon as m; < m (in the
usual definition of inclusion of fuzzy sets), i.e. 7y is more informative than 7. In fact,
possibility measures are set functions similar to probability measures, but they rely
on axioms which involve the operations “maximum” and “minimum” instead of the
operations “addition” and “product” (if the measures are decomposable [B]).

2.2 Possibility Representation of Confidence Intervals

Let us assume that the random variable associated to the measurement results is denoted
X (a realization of X is denoted x), is continuous on the set of reals and is described
by a probability density function p, F being its corresponding probability distribution
function with F~! its inverse function if it exists (otherwise the pseudo-inverse func-
tion can be considered [@]). For every possible confidence level B € [0, 1], the corre-
sponding confidence interval is defined as an interval that contains the measurand (i.e.
the physical entity to be determined denoted pt) with probability > f. In other words,
a confidence interval of confidence level B (denoted Ig) is defined as an interval for

which the probability Py to be outside this interval Iﬁ does not exceed o def 1-B,ie.
P(u ¢ Iy) = c.

It is possible to link confidence intervals and possibility distribution in the following
way. A unimodal numerical possibility distribution may be viewed as a nested set of
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confidence intervals, which are the o cuts [xy,xq] = {x, T(x) > o} of 7. The degree
of certainty that [x,,,x¢] contains pt is N([x,,x¢]) (if continuous). Obviously, the confi-
dence intervals built around the same point x* are nested. It has been proven in [@] that
stacking confidence intervals of a probability distribution on top of one another leads
to a possibility distribution (denoted 7* having x* as modal value). In fact, in this way,
the a-cuts of %, i.e. Ay = {x, |7*(x) > '} are identified with the confidence interval
I;; of confidence level f = 1 — o around the nominal value x*. Thus, the possibility
distribution 7* encodes the whole set of confidence intervals in its membership func-
tion. Moreover, this possibility distribution satisfies IT*(A) > P(A), VA C R, with IT*
and P the possibility and probability measures associated respectively to * and p (the
underlying probability density function of the measurement results).

A closed form expression of the possibility distribution 7™ (x) induced by confidence
intervals around the mode x* = M is obtained for unimodal continuous probability den-
sities p(x) strictly increasing on the left and decreasing on the right of M [EI]:

"X " oo
R0 = [_pars [ p0dy=F+1-F @) =200)
for all x € [—eo,M], where ¢ is a decreasing mapping ¢ : [—oo,M] — [M, ]| ¢ (M) =
M. 7™ (x) is the probability that the measurand y is outside the interval [x, ¢(x)], i.e.
1 — M (x) is the confidence level of this interval.

3 Inferring a Possibility Distribution from a Small Sample

We will consider confidence intervals associated with an underlying probability density
being unimodal (i.e. having only one maximum, both local and global) with different
assumptions: bounded and non bounded, symmetric or not. Most of the following re-
sults are based on trivial properties of unimodal distribution described below.

Let us consider a unimodal probability density p with the mode M that will be iden-
tified to the measurand. Thus, p is non increasing for its argument values greater than
M, and non decreasing for its argument values less than M. Therefore, for any values
superior to M such that x3 > x, > x1, the average of p over [x;,x3] must be less than or
equal to its average over [x,x3]:

[ pdx _ [ pladx
X3 —X2 X3 —X]

2

Similarly, for any values less thap M such thap x1 <xp <ux3:
o2 p(x)dx - o2 p(x)dx 3)
Xy — X1 X3 — X1
Note that the equality in (Z) and (@) holds if p is constant on the considered domain.

3.1 Bounded Probability Density

Let us consider that X is defined by a probability density, its mode is denoted M and its
support [M — a, M + b]. Then the mode and the support of X — M are respectively 0 and
the interval [—a, b]. We have the following result:

Proposition 1. V¢ € [0,1], Pr[X —ta <M < X +1tb] > 1.
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Proof. PriX —ta<M <X +1tb] =Pr[-ta <X —M <tb]and Pr[—ta <X —M < tb] =

1—[p(x)dx— ft},’,p(x)dx
Then by applying @) to x; = —a, x» = —ta, x3 = 0 and @) tox; = 0, x; = b, x3 = b,
we obtain:

/_;m ()dx<(1—z)/_0a (x)dx and / dx<(1—t)/0bp(x)dx

Therefore: —ta b
/ dx+/ xX)dx < l—t)/ p(x)dx=1—1t
Then: Vt € [0,1], Pr[X —ta <M <X +1tb]| > 1—(1—1)=1. 0O
Therefore the corresponding possibility distribution is defined by:
vie M—aM], 7t @) < T and vxe MM4b), 2 () < _”2‘“”
a

Therefore, the possibility distribution defined by the triangular possibility distribution
having for support [M — a, M + b] is consistent with all the unimodal probability distri-
butions (symmetric or not) having M as modal value and [M — a, M + b] as support.

Note that the triangular possibility distribution is also the possibility distribution as-
sociated to the uniform probability density. Moreover, the triangular symmetric possi-
bility distribution with support [M — a,M + b] and mode M, is the least upper bound of
all the possibility transforms of symmetric probability distributions having M for modal
value and [M — a, M + b] for support. This result has been previously stated in [4] but in
another way.

3.2 Non Bounded Probability Density

As the support is known as infinite, the intervals have to be built from other information
from the random variable. Thus, we will consider intervals of the form X +7|X|. In fact,
instead of starting from the support as for bounded distributions, we propose to start
from the mode.

The following result holds for any unimodal distribution , ]:

Proposition 2

2
PriX —t|X| <M <X+1tX|]>1-— fort>1 @
1+1¢
Proof
M M
M| < — — >t =
Pr[|X — M| <t|X]|] Pr{l X‘it} Pr{Xelit}
=Pr|XeM ! =Pr|X-MeM ! —1
B 1+t 1+t
Thus

_F Mt_’1 for M >0

Fm —F(m ") form <0
r+1
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—tM —tM —tM
1,x2: ,x3:Mand(E|)tox1:

, X
r+1 t+1°77
x3 = M, we obtain respectively:
—t —t 2
F({M —F M < forM >0
t+1 t—1 t+1

< forM <0
l+l +1
<

Therefore: Pr[|X — M| < t|X]] and finally we obtain: PriX —¢|X| <M < X +

Then by applying @) to x; =
—tM
t—1’

r+1
2
X[ >1- . |
1+1¢
By the same reasoning, we obtain for a symmetric unimodal probability density:
Pr[X—t|X|§M§X+t\XH21—l_lH fort > 1 )

Note that the equality (&) holds for p uniform, and thus this probability distribution is
the least favourable in the sense that it gives the least specific possibility distribution
(for ¢ > 1). If the shape of the probability distribution is known, the inequality can be
reduced for high values of . For example, if it is Gaussian, the bound in (@) can be
improved [|I|]:

0.484
PrlX —(|X| <M <XrX[[>1- 0 forr>1 (6)

3.3 Case of One Measurement

Let us consider the case where only one single measurement is available. In this case it
is natural to consider that the observed value corresponds to the mode of the underlying
probability density. If the density is assumed to be non symmetric, we have from (@)

2
m(xg—1x0) = w(xp +1x0) = L4t forz > 1. If it is symmetric, we have from @) 7 (xo —
1
1x0) = w(xo+1x9) = L4y fortr > 1. If it is Gaussian, we have from (@) 7(xg —x9) =

0.484
m(xo+1xp) = 1 forr > 0.484.

Let us consider for example the case where a sensor provides a single value of 30°C
the associated probability distribution is supposed to be unimodal. Figure [Th) high-
lights the reduction of confidence interval lengths according to the amount of available
knowledge: when the distribution is non symmetric, when the distribution is symmet-
ric. When it is Gaussian, the use of the equation (&) leads to a reduction of confidence
interval lengths only for high values of 7. For low values of #, the exact expression will
also give reduced intervals but it has not yet been computed; the uniform distribution
being the least favorable forz > 1.

3.4 Case of one Measurement and a Guess

By making the variable change of X into X — A, in (), is replaced by X — A and M by
M — A, then the following result is deduced for any unimodal symmetric distribution:
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150100 50 0 50 100 150 200 0 20 30 40 S0
,,,,,,,,,,,, non: tric PR 2 mess (30 °328°)
ie  TTTTTTTTs 1 meas(30 °) and 1 guess(28 °)
******* Gauss —_— 2 Gaussian meas(30 °:28°)
a) b)

Fig. 1. Possibility distributions a) for one measurement b) for two measurements

1
PIX — X —A| <M <X+1X—A| 21— | forr>1 )

This result can be used to introduce via A some form of prior information (called a
guess, coming for example from an expert) concerning the dispersion. In fact, |x; — A|
can be viewed as the equivalent of the sample standard deviation used classically (see
Section[3.6)). The introduction of A allows to reduce the lengths of confidence intervals
obtained by one single measurement as it is illustrated in Figure [Ib).

3.5 Case of Two Measurements

Let us now consider the case where a second measurement x;, coming from the same
probability distribution as x; and considered as being independent from it. We propose
(in an equivalent way with classical propositions when two measurements are available)
to consider the confidence intervals of the form:

X +X, X —Xo Xi+X | |Xi—X
—t <M< t
2 ,  SME o, o,

In the case of symmetric unimodal distribution, we obtain by the same reasoning as the
one used in Section[3.2

X1 +X;
2

t X+ X t
—Z\Xl—Xz\SMS 1hAz

p
’ 2 )|

1
X|—X|| >1— 8
1—X2|| > at ®

The Fig. [db) illustrates the case where the sensor provides the two measurements x; =
30°C and x, =28°C.

3.6 Discussion Versus the Conventional Probability Approach

The above mathematical derivations formalize the idea that without any appeal to other
information (except unimodality), we can compute the actual length of the finite con-
fidence interval. It is remarkable that the confidence intervals thus created have finite
lengths, except for the 100% confidence level (see Fig.[Th). Indeed, this result seems to
contradict the standard statistical intuition that at least two measurements are required
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in order to have some idea about the dispersion (i.e. to have an estimation of the stan-
dard deviation o). Indeed, the conventional probability recommendation to deal with a
small number n (but n > 1) of measurement consists in using confidence intervals of
the form [E]:

X—1S/\v/n<M<X+tS/\/n )

where X = 3| X;/n is the sample mean, and S = [¥}_ | (X;i — X)/(n—1)] /2 the sample
standard deviation.

If the underlying probability distribution is Gaussian, the ¢ value is the one given by
the Student distribution for a given confidence level. An interesting remark is that for
n = 2, @) has the same form as (8). Indeed, in this case of two measurement, () is
equivalent to @) for a Gaussian distribution. The Fig.[Th) gives an example of the effect
on the possibility distribution specificity (for high values of #) of making the Gaussian
assumption.

4 Conclusion

A possibility distribution can encode a family of probability distributions. This fact has
been used as a basis for a transformation of a probability distribution into a possibility
distribution by using the notion of confidence intervals. Thus the possibility distribution
has been related to probability inequalities, especially for unimodal bounded (or not)
symmetric (or not) probability distributions. The obtained results have been used for a
possibility expression of measurement uncertainty in situations where only a very lim-
ited knowledge is available: one or two measurements, unknown unimodal probability
density. In fact, the proposed approach extends the conventional probability approach
of Student to the case of one single measurement and to the case of non Gaussian
distribution for two measurements. The results highlight the key role of the uniform
probability distribution that leads to the least specific possibility distribution at least for
high confidence levels. Further developments will consider how having more measure-
ments allows to shorten the confidence intervals and thus to increase the specificity of
the corresponding possibility distribution.
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Abstract. Robustness is an important problem in statistics. However, robustness of statistical
procedures for vague data cannot be limited to insensitivity to departures from assumptions on
the underlying distributions. Since the shapes of membership functions applied for modelling
vague data are generally strongly subjective one may ask about the influence of these shapes on
further decisions.Thus the robustness of the statistical procedures to data representation is also
of interest.

Keywords: Membership function, Robustness, Vague data.

1 Introduction

As stringent assumptions on distributions lead sometimes to serious difficulties in statis-
tics, the problem becomes much more serious in the presence of imprecise data, where
we still do not have satisfactory goodness-of-fit techniques. A remedy for this prob-
lem might be the use of distribution-free methods (e.g. some nonparametric tests for
fuzzy data were suggested in [2], [5]] or [7]). However, if we process fuzzy data an-
other aspect of robustness appears. Statistical procedures depend strongly on the shapes
of membership function utilized for modelling data. Moreover, different persons may
assign distinct membership functions to the same vague objects since modelling vague-
ness cannot be completely free from subjectivity. There we are faced with a kind of
paradox especially that using fuzzy modelling we make every endeavor to be flexible
yet we are still very restricted by the very choice of the precise form of the membership
functions.

Since the shape of membership functions applied for modelling vague data is gen-
erally strongly subjective one should ask about the possible influence of that shape on
further decisions. Therefore, we need some tools to evaluate the robustness of the statis-
tical procedures to data representation. In the present paper we propose a few measures
for evaluating and comparing this kind of robustness.

2 Robustness in Statistics - The General Idea

The notion of robustness has been introduced to statistics by Box and Anderson [1]
as follows: “To fulfill the needs of the experimenter, statistical criteria should be: (i)

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 100— 2008.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2008
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sensitive to change in the specific factor tested, (ii) insensitive to change, of a magnitude
likely to occur in practice, in extraneous factors”. A statistical procedure which satisfies
the first requirement is said to be powerful or efficient, while the procedure that satisfies
the second is called robust.

A robust procedure performs well not only under assumptions that have been postu-
lated but also under departures from the ideal model. This ideal model will be called a
core model. To get a satisfying quantitative description of robustness we have to specify
two other objects: an extension of the core model corresponding to departures from the
ideal that are likely to occur and a measure quantifying the behavior of the discussed
property under deviation from the core model described by the extended model.

Robust estimation when gross errors occur has been studied primarily and estima-
tors that are relatively unaffected by the presence of outliers were of interest (see, e.g.,
Huber [9]] and Hampel [8]]). Later various statistical techniques which admit departures
from the assumptions on the underlying distribution were proposed. Another concept
of robustness can be found in the Bayesian analysis to denote the inference that will be
unaffected by any possible mis-specification of the prior distribution. However, here we
will present another concept for quantifying robustness which seems to be the closest
to the original definition of robustness given by Box and Anderson. This approach was
suggested by Zielifiski .

3 A Quantitative Approach to Robustness

Let My = (27, o/, %) denote a core model, where &y C & is a subfamily of the set
& of all possible probability measures on .¢7. Facing any statistical decision problem
(estimation, hypothesis testing, etc.) we choose a suitable statistic 7'. Its distribution
that corresponds to P € & will be denoted by PT. Moreover, let T = {PT : P € 2},
DL ={P": P e Py}, etc.

Let 7t : 2 — 27 be a function such that P € 7t(P). It means that for each distribution

P € &P we get a neighborhood 7(P) C &. Moreover, let &, = |J m(P). Then the
Pe,

statistical structure My = (2, <7, %) will be called the extension of the core model
M (or, more precisely, w-extension of the core model). Now, let p denote a real valued
function on 2! . Then we get a following definition.

Definition 1. A function ry : Zy — R defined as

rr(P) =sup{p(Q"): Q € n(P)} —inf{p(Q") : Q € n(P)} (1)

is called p-robustness of statistic T with respect to the m-extension M| of the core
model M.

If p used in given statistical problem has its traditional name (like power, bias, width
of the confidence interval, risk, etc.) this very name is also used for function rr (i.e. we
consider the power-robustness, the bias-robustness, etc.).

Using function 7 we can compare the robustness of different statistical procedures.
We say that statistic 7' is more robust than statistic S if r7 (P) < rg(P) for each P € &
and r7(P) < rg(P) for some P € &. A statistic T is called uniformly most robust in a
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given class .7 of statistics if r7(P) < ry(P) for any P € & and for any U € .7. And
we say that statistic 7 is absolutely robust if r7(P) = 0 for each P € .

The last approach to robustness is not only the most general on the ground of the
classical statistical inference but it seems also to be the most suitable one for our pur-
pose to extend the discussion on robustness to the statistical inference for imprecise
data. Actually, here not only distributional robustness but insensitivity to the particu-
lar shape of the membership functions applied for modelling fuzzy data is of interest
as well.

4 Modelling Vague Data

Consider a random experiment with vague outcomes described by fuzzy numbers. Let
us recall that a fuzzy subset A of the real line R, with the membership function pi4 :
R — [0,1], is a fuzzy number if and only if A is normal (i.e. there exists an element x
such that pa (xp) = 1), A is fuzzy convex (i.e. pa(Ax; + (1 —2A)x2) > pa(x1) A pa(x2),
Vx1,x0 € R, VA € [0,1]), pa is upper semicontinuous and suppA is bounded, where
suppA = cl({x € R: us(x) > 0}), and ¢l is the closure operator.

The or—cut of a fuzzy number A is a nonfuzzy set A = {x € R: pa(x) > o}. It is
easily seen that every o-cut of a fuzzy number is a closed interval A, = [AL AY], where
AL =inf{x € R: ua(x) > o} and AY = sup{x € R : us(x) > ao}. A space of all fuzzy
numbers will be denoted by FN(R).

We assume that the outcomes of our experiment are realizations of n-dimensional
fuzzy random sample Y1, .. .,Y, which may be treated as a fuzzy perception of the usual
random sample Xi,...,X,. There are several definitions of a fuzzy random variable
([T}, [T1)- Here we simply assume that a mapping ¥ : Q — FN(R) is called a fuzzy
random variable if {Y (o, ) : o € (0,1]} is a set representation of X (w) for all @ € Q
and for each o« € (0, 1] both Y2 = YL (w) and Y{ =YY (w), are usual real-valued random
variables on a probability space (Q,A,P).

It is obvious that there is a significant subjectivity in attributing membership function
to observations. Moreover, even for similar contexts, fuzzy sets representing the same
concepts may vary considerably. Then the crucial problem is to check whether given
application is not overly sensitive to variations in shape of the membership functions
applied for modelling data. Thus we need tools that help in characterizing the sensi-
tivity of the statistical procedures to the particular choice of the membership function.
Below we suggest how to construct quantitative measures useful both for the compari-
son and for evaluating robustness of the procedures under study. To distinguish this kind
of robustness and the distributional robustness discussed in the previous section, the in-
sensitivity to shape of the membership functions will be called further on as robustness
to data representation.

5 Robustness to Data Representation

Let %, i=1,...,n denote a set of all possible fuzzy numbers that are realizations of
Y (% C FN(R)). Without loss of generality we will identify ¥; with its membership

n
function pty,. Then %, = |J %; creates a sample space of the core model.
i=1
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Now, let & : % — 2FN®) denote a function such that each % C k(%). It means that
for each family of membership functions %; C %y we obtain a neighborhood x (%) C

FN(R). Moreover, let %, = U K(%;). This family of fuzzy numbers becomes the

extension of our core model % (or more precisely, k-extension of the core model).

To solve a statistical problem we use a suitable statistic T = T(Yy,...,Y,). Let ?!/0
denote a family of all possible values of T provided data come from the core model,
while ., denotes a family of all possible values of T in the extended model. Finally,

let { denote a real valued function on %,7,.

Definition 2. A function SUST : %) — R defined as
SUST(Y1,....Yn) =sup{l(T(Zi,...,Zy)) : Zi € x(%),i=1,...,n} 2)
—inf{l(T(Zi,...,Zn)) : Zi € x(%),i=1,...,n}

is called a total {-susceptibility to data representation of statistic T with respect to the
K-extension %, of the core model %.

Using function SU ST we can compare the robustness to data representation of different
statistical procedures. So we say that statistic 7 is more robust to data representation
than statistic S if it has smaller susceptibility, i.e.

SUST(Yl,...,Yn)<SUSS(Y1,...,Y,,). 3)

We may also say that statistic 7' is uniformly most robust to data representation in
a given class .7 of statistics if and only if SUS7(Y1,...,Y,) < SUSy(Y1,...,Y,) for
U € 7. Similarly, we can say that statistic T is absolutely robust to data representation
it SUSr(%y,...,Y,) =0.

The suggested measure of robustness to data representation tells us what can happen
if we admit possible departures from the core model for all observations simultane-
ously. However, it might be also interesting to quantify how sensitive is given statistical
procedure under departures from the core model on a single observation only.

Definition 3. A function ASt : %) — R deﬁned as

AST(Y17 a ZSMS Y17 L) )7 (4)
where
sus! (Y1,...,Y,) = sup{C(T(Z1,...,2,)): Z1 € M,....Zi | € %y,
Z; € K(@,’%Z,;H E@+],, Ly Eg/} 5
—inf{C(T(Zh... Z)) Z]E@], Zi 16@71,

Z; € K(%)7Zi+l € %"{‘177"'72}’! € %}

is called an average individual {-susceptibility to data representation of statistic T
with respect to the K-extension %,y of the core model %.

Definition 4. A function MISt : %) — R defined as
MISt(Yy,....Yn) = rrllax sus! (Y1,...,Y,), (6)

s1
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where sus! (Yy,...,Y,) is given by @), is called a maximal individual {-susceptibility
to data representation of statistic T with respect to the K-extension %,y of the core
model %.

The suggested measures of robustness to data representation are useful for comparing
different procedures but looking on their value it is hardly to say whether the robustness
of given procedure is high or weak. Thus we propose another measure which could is
defined provided the susceptibility to data representation with respect to the maximal
possible extension of the core model is finite. More precisely, let us assume that the
supremum of the {-susceptibility to data representation of statistic 7 with respect to
any K-extension, is finite, i.e. if

MSUS = sup SUSt(Y1,...,Y,) < oo, @)

KeA

where % is a family of all functions creating possible k-extensions. Then we get a
following measure.

Definition 5. A function Ry : %) — R defined as
SUSr(Yh,...,Y)
8
MSUS ®)
is called a total {-robustness to data representation of statistic T with respect to the K
-extension %,y of the core model %.

RT(Yla"'7Yn) =1-

As it is easily seen 0 < Ry < 1 and the bigger value of Ry the higher robustness of the
procedure under study. Given statistical procedure is absolutely robust if and only if
Rr = 1. Obviously, assuming that MSUS is finite one can define an average individual
{-robustness to data representation of statistic 7', i.e.

AST(Y17"'aYn)
MSUS ©)

and a maximal individual {-robustness to data representation of statistic 7 with
respect to the k-extension %, of the core model %, i.e.

AR;(Yy,... . Y,) =1—

MISy(Y1,....Y,)
MIRr (Y1,....Y,)=1— 10
T( 1, ) n) MSUS ( )
6 Example
Suppose Yi,...,Ys denote a fuzzy perception of random sample Xi,...,Xs from the

normal distribution N(6,0) described as follows: ¥; =“about 17, ¥, =“about 27,
Y3 =“about 37, ¥, =“about 4” and Y5 =“about 5”. Suppose these data are mod-
elled by triangular fuzzy numbers characterized by following «-cuts, respectively:
Ma=0,2—0a], H)e=[1+,3—0a], V3)a=2+0,4— 0, (Ya)e =[3+0,5— 0,
(Ys)a = [4+4 a,6 — ], where a € (0,1]. Moreover, let us assume that the standard de-
viation o is equal to 1 while the mean 6 remains unknown. Our aim is to verify a null
hypothesis H : 6 = 4 against the alternative K : 6 # 4 on the significance level y = 0.05.

According to [6] for testing hypothesis on the mean H : 8 = 6, against the alternative
K : 0 # 0, there exist a fuzzy test ¢ : %) — F({0,1}) of a form
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(Y1, Yn) = 11 (60)|0+ (1 — ur(60))/1, (11)
where IT = I1(Yy,...,Y,) is an appropriate fuzzy confidence interval for 6. In our sta-
tistical model IT is a fuzzy number with following o-cuts

o} o}
Ho(Yi,....Y) = [(¥)5 —uy_yp Jn (Y5 +u1_yp \/n], (12)

where Y is a sample average and u;_,, is a quantile of order 1 — y/2 from the standard
normal distribution.

After simple calculations we obtain a fuzzy sample average Y given by o-cuts
(Y)o = [2+ @,4 — o and substituting u;_,/» = up.975 = 1.96, n =5 and 6 = 1 into
(@2) we conclude that Iy (Y7,...,Ys) = [1.1235 + o,4.8765 — o]. Combining this o-
cut and 6y = 4 with () we get @(Yy,...,¥s) = 0.8765|0+ 0.1235|1 which may be
interpreted as “rather accept H”. Now we will try to check how much is our conclusion
robust to the particular shapes of the membership functions describing data.

Let us assume that the core model % is given by these triangular membership
functions while the extended model %,,; would be given by a family of all possible
fuzzy numbers having the same core and support as the original observations Y1, ..., Ys,
i.e. the neighborhood k(%) is a family of all fuzzy numbers {Z € FN(R) : coreZ =
coreY;, suppZ = suppY; }.

Suppose  is the level of acceptance, i.e. {(@(Y1,...,Ys5)) = u(6y), where IT is now
evaluated for the extended model. It can be shown that the supremum of iz, . 7 ) (6o)
over all possible functions given by the extended model is obtained for the widest pos-
sible fuzzy confidence interval IT' = [1.1235,4.8765] while the infimum is reached for
the most narrow possible fuzzy confidence interval IT” = [2.1235,3.8765]. Hence we
getSUSy(Y1,...,Ys) = (4) — U (4) = 1 — 0= 1. Since our extended model admits
all possible membership functions we can also say that MSUS, = 1. Hence Ry = 0,
which means that our test turns out to be very sensitive to data representation.

Now let us consider how sensitive is our test under departures from the core model on
a single observation only. The supremum of [z, ... 7,)(60) over single nontriangular
membership function and four triangular is obtained for the fuzzy confidence interval
IT" with a-cuts I}, = [1.1235+ 0.80,4.8765 — 0.8x] while the infimum is reached for
the fuzzy confidence interval IT"” with o-cuts IT), = [1.3234 + 0.8¢¢,4.6765 — 0.8¢].
Hence we get ASy(Y1,...,Ys) = up(4) — Uy (4) = 1 — 0.8457 = 0.1543 which pro-
duces ARy = 0.8457 and MIR, = 0.8457. Thus if we admit departures from the trian-
gular membership function on a single observations only the conclusion proposed by
our test is about 85% robust.

One may also ask whether robustness of the level of acceptance of our test depends
on 6y in the null hypothesis H : 6 = 6y. It can be shown that our test is absolutely
robust if 6y € (2.1235,3.8765) since then we always get p7(6p) = 1 and if 6y is lower
than 1.1235 or greater than 4.8765 for which we get u7(6y) = 0. For other values of
6y we get Ry, = 0 provided we allow all possible departures from the triangular fuzzy
numbers. If we consider departures from the core model on a single observation only
for all possible values of the parameter 6y we obtain 0 < AS, < 0.25.

It is worth noting that these seemingly so poor robustness of our test was obtained
when all possible departures from the triangular membership functions were allowed.
This way our core model has been enlarged too much because we have included into
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%, even such fuzzy sets which are quite far from the core model. Thus actually it is
not so surprising that under such huge extended model we have obtained so strange
results. Please note, that very similar situations also happen in classical statistics if we
extend the core model too much (e.g., it was shown in [3]], and that the size
of any two-sample nonparametric test can come arbitrarily close to 1 when all kind of
dependencies are allowed). It seems that for %, closer of the core model the estimated
robustness surely will not be so striking.

7 Conclusions

In the paper we have suggested some tools for describing and quantifying robustness to
data representation. We do not claim the these tools are the most efficient ones. Actually
the primary goal of that paper was rather to draw attention to the problem of robustness
to data representation which seems to be very important in statistics for vague data.
Presumably it would be difficult to construct such statistical procedures for fuzzy data
that disregard completely the actual shape of the membership functions applied for
modelling data. However, we may try to eliminate the impact of the particular form of
membership functions as much as possible or even reduce it to the acceptable degree.
Moreover, this aspect cannot substitute the traditional area of studies on robust statistics,
i.e. distributional robustness, but should be considered in parallel. Therefore, the aim of
the robust statistics for vague data is to derive statistical procedures which are both
distribution-free and robust to the choice of the particular form of membership function
describing data.
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Abstract. The linear relationship between interval-valued random sets can arise in different
ways. Recently, a linear model based on the natural arithmetic for intervals has been studied.
In order to test whether the explanatory random set contributes significantly to explain the re-
sponse random set through that linear model, an asymptotic testing procedure is here proposed.
The empirical size of the test is illustrated by means of some simulations. The approach is also
applied to a case-study.

1 Introduction

The linear regression problem between interval-valued random sets has been previously
considered in the literature from different viewpoints (see, for instance, [lj, BL , @],
(8. 120).

In [8] a linear regression model for compact and convex random sets based on a set-
arithmetic approach has been established, and the estimators for the parameters have
been obtained by applying the least-squares criterion based on a generalized L,-type
metric (see also [EI]). In this communication we propose to complement those studies
by proposing a linear independence test in the same context.

The organization of the paper is as follows. In Section 2] some preliminary concepts
about interval-valued random sets and the considered linear regression model are pre-
sented. In Section Blwe suggest a test statistic for the linear independence. The asymp-
totic distribution of the statistic in some particular cases is used to state the asymptotic
testing procedure. In Section Bl we show the results of some simulations in connection
with the empirical significance level. The test is applied to a case-study in Section
Finally, in Section [f]some concluding remarks are commented.

2 Preliminaries

Let Z;(R) denote the class of nonempty compact intervals endowed with the natural
interval-arithmetic induced by the Minkowski addition and the product by a scalar;
namely, A+B={a+b:acAb¢cB}and AA = {Aa:ac A}, for all A,B € %.(R)
and A € R.

Due to the lack of symmetric element with respect to the addition, the space
(A(R),+,-) is not linear, but semilinear, so it is useful to consider the Hukuhara

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 111 2008.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2008
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difference between A and B, defined as the interval C so that A = B+ C (if it exists)
and denoted in this case as C = A —y B (see ). It is possible to assure the exis-
tence of A —y B if, and only if, infA — inf B < supA — sup B; moreover, in this case
A —pg B =[infA —infB,supA — supB].

The space (#;(R),+,-) can be embedded onto a convex cone of the square inte-
grable functions .Z(R) via the mapping s : ;(R) — Z(R) defined by s(A) = s4
for all A € #:(R), where s4 denotes the support function of the interval A, namely,
54 : R — R such that s4 (1) = sup,4 (a,u) for every u € R, (-,-) being the usual inner
product on R. The support function is semilinear, that is, s4 g = 54 + s and s34 = Asa,
for A,B € #:(R) and A > 0. Furthermore, if A —y B exists, then s4—, 3 = s4 — sp. The
function s allows us to deal with the space .Z’(R), which can be endowed with an inner
product which entails a Hilbertian structure.

The least square method considered in [§8] for the estimation process is based on a
generalized metric on .7, (R) via support functions (see (l14l]), which is defined for any
A,B € #:(R) as

dx(A,B) = (/SO(SA(u) — (1)) (54 (v) — 58())dK (u,)) "

where SV is the unit sphere in R and K : R x R — R is a positive definite and symmetric
kernel such that K (u,v) = K(—u,—v) for any u,v € S°. The support function s is an
isometry between .#.(IR) and a cone of the Hilbert subspace . (S°) C .Z(R) endowed
with the generic Ly-type distance w.r.t. K. Thus, if (-,-)x denotes the corresponding
inner product, it is possible to express the dx metric on J£.(R) as dx(A,B) = (s4 —
SB,SA — SB>K~

Given a probability space (£2,.47,P), a mapping X : Q — J#:(R) is said to be
an interval-valued random set associated with (2,47, P) if the corresponding vari-
ables infX and supX are real random variables. It can be shown that this condition
is equivalent to the o/-f;, measurability, where f;, denotes the o-field generated
by the topology induced by Hausdorff metric dy on J#(R). X can be also charac-
terized by means of the random vector (midX, sprX) where midX = (supX +infX)/2
and sprX = (supX —infX)/2 denote the mid-point and the spread of X, respectively.

If E(]X|) < oo, where |X|(®) = sup{|x| : x € X(w)} for any o € Q, the expected
value of X in Kudo-Aumann’s sense (see [2]), is given by the expression

E(X) = {E(f)|f QR feLY(Q),f EXa.s.(P)}.

The expected value of an interval-valued random set is an element of JZ;(R), that can
be expressed in terms of the classical expectations of the real random variables infX
and supX as [E(infX),E(supX)]. Furthermore, if E(|X|?) < oo, the variance of X is

defined as 67 = E ((dK(X,E[X]))2> (see [I10], [L3])). It can be also expressed in terms
of the inner product in .Z(S°) as o7 = E((sx —E(sx),sx — E(sx)>K>. Finally, the
covariance between two random sets X and Y can be defined via support functions as
oxy=E (<sx —E(sx),sy — E(Sy)>K> whenever this expectation exists.

Let X,Y : Q — #:(R) be two interval-valued random sets, and {X,-,Y,}?z1 a
simple random sample obtained from (X,Y). The sample mean of X is defined by
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X =(X;+Xo+...+X,)/n. It should be remarked that the Aumann expected value
for a random set is coherent with the interval-arithmetic in the sense of the Strong Law
of Large Numbers, which means that the preceding concept of sample mean converge

a.s.-[P] to the Aumann expectation (see, for instance, ]). The sample variance of X
is given by 67 = dx(X,X)? (analogously Y and &2). Finally, 8x y denotes the sample
covariance of X and Y, and it is defined as 6x y = <sX —Sx,Sy — sY>K.

2.1 Simple Linear Regression Model

The Simple Linear Regression Model between X and Y on the basis of the interval-
arithmetic approach is formalized as Y = aX + €, wherea € Rand € : Q — J.(R) is
arandom set such that E(¢|X) = B € #.(R) and o, x = 0 (see [9], [8]). The population
linear regression function associated with this model is given by E (Y |x) = ax+ B for
any x € J:(R).

The theoretical constants of the linear regression function can be expressed in terms
of the moments of X and Y as B=E(Y) —y aE(X) and

Oxy

S ifa>o0
0%
a={ * (1)
Jifa<o
Ox

The estimates for the regression parameters have been obtained in [§]. In this commu-
nication we restrict ourselves to the case a > 0 as a first step. Note that in this way some
of the difficulties that entail the lack of linearity of the space J#;(R) are avoided.

Following the ideas in [] for the estimation process, we can obtain the corresponding
estimates for the particular situation in which a > 0.

Let (X,Y) be two interval-valued random sets satisfying the considered linear model
Y = aX + €, with a > 0, and let {Xi, Y,}:l: ! be a simple random sample obtained from
(X,Y). Since ¥; = aX; + €;, we have that ¥; —p aX; exists for all i = 1,...,n, then the
estimator of a should be searched within the set

A={c>0:3¥;—pycX; foralli=1...n}. )

The set of feasible solutions A can be represented by means of a non-empty compact
real interval as [0,4°], with a° > 0.
The least squares estimation problem is expressed as

Minimize | $7, di (¥;,aX; + B)>
subjectto a € A.

The solutions for this minimization problem, and then, the estimators for the regression
model parameters, can be expressed in terms of moments of X and Y as

(. Oxy
a:mln{ 9, max {0, = } (3)
Ox

and B=Y —p aX.
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3 Linear Independence Test

Let X,Y : Q — J.(R) be two interval-valued random sets such that ¥ = aX + &, with
a>0ande: Q — % (R) fulfilling E(e|X) = B € #:(R) and 6x ¢ = 0.

The aim in this work is to develop a test to determine whether X contributes to
explain Y through the linear model or not. Since we have assumed that a > 0, this is
equivalent to test

H() ca=0
Hi:a>0 )
In this work we propose testing Hy by means of the statistic
o
T, = v/nmax {0, i(zy 5)
Ox

Remark 1. From (@), the intuitive statistic for the test would be
~ (. 6,
T, = \/nmm{ao,max {o, fzy }
Ox

because it uses the information given by the linear model. Unfortunately, the asymptotic
behaviour of 7, is not easy to find, because the term &Y is difficult to handle. Nonethe-
less, given a significance level o and k > 0 such that P(T, > k|Hp) — o as n — oo,
it is possible to check that P(7,, > k|Hy) is asymptotically lower or equal to ¢. Thus,
the critical region {ﬁ > k} allows us to solve asymptotically the test (@) by using the
statistic 7, with a significance level f < a.

Remark 2. Both statistics Tn and 7, depend on 8y y, that converges almost-sure to zero
under Hy. Indeed, since the random intervals X and Y are linear independent under Hy,
then oy y = 0, and the strong consistency of the covariance guarantees the convergence.

If 0 < oy, 0y, Ox y < oo, the asymptotic distribution of \/n8x y under Hy can be shown
to be a normal distribution, with mean value 0 and variance o, where 7 is the real-
valued random variable defined as

N = (sx = SE(x)>Se — SE(e) K-

Since the sample variance 63 is consistent w.r.t. 62, by means of the Slutsky Theorem
we obtain that \/n8y y /62 converges in law to a distribution N (0, oy /03).

Finally, since the function max{0, } is continuous, by means of the Continuous
Function Theorem we can assure that 7, converges in law to the corresponding function
of the normal distribution above, that is,

T, % max {0,N(0,0, /02)}.

Remark 3. The population variance o is often unknown, so it would be necessary to
estimate it by 6)% and then, the obtained asymptotic distribution corresponds to

63T, =, max {0,N(0,0y)}
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For this reason, we could solve the test equivalently with the statistic

Tn/ = (AF)%T,Z = \/nmax{0,6x7y}
whose asymptotic distribution under Hy does not depend on o3.

As a result, we can conclude that to test (#) at the nominal significance level o, Hy
should be asymptotically rejected whenever

T, > max{0,zq }, (6)

where z4, is the 100(1 — ) fractile of the normal distribution N (0, 6y).

Remark 4. In practice, the population variance (5% is usually unknown, so we should
approximate this parameter by its estimator, 6%.

4 Simulation Studies

To illustrate the empirical behaviour of the asymptotic procedure suggested in Section[3]
some simulations have been carried out. Let X and Y be two interval-valued random sets
such that midX, midY ~ N(0, 1), sprX,sprY ~ %12 are independent random variables.

Samples of intervals {(x;,y;) }7_, for different sizes n have been generated in order to
apply the suggested test. We have developed two different tests. 7| represents the the-
oretical test in which the variance of 1 is known, and T2' denotes the test in which the
population variance of 1 is aproximated by 6. In Table [[] we present the percentage
of rejections of Hy at a significance level & = 0.05 in 10,000 iterations for each differ-
ent sample size and each test. The results indicate that the test 7, is conservative. As
expected, in both tests the empirical size is closer to the theoretical one as the sample
size increases, although large sample sizes are required in order to obtain suitable re-
sults. In addition, Tl’ seems to be more accurate than T2' , because Tl’ uses the population
information instead of the sample one.

Remark 5. In the case of dealing with small samples, asymptotic procedures do not
apply. In these situations, alternative techniques should be developed in order to solve
the linear independence test considered in this work. For instance, conditions to find the
exact distribution of the statistic may be investigated. However, in general they mean

Table 1. Simulation results: empirical size at oo = 0.05

Sample size 1! T,
100 5.25 4.56
200 5.24 4.6
500 5.18 4.62
1000 5.11 4.72

5000 5.03 4.75
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the addition of important restrictions to the problem. Bootstrap procedures are another
possible way to solve the test more widely applicable.

S Case-Study: The Blood Pressure Data-Set

In order to show the application of the asymptotic procedure to test the linear indepen-
dence, we have applied the suggested procedure to a real-life sample data set. Data have
been previously used in some works (see, for instance, (6. They have been supplied
by the Hospital Valle del Nalon in Asturias (Spain), and correspond to the range of the
systolic X and diastolic Y blood pressure over a day for 59 patients. In Table B]some of
the sample data are presented (full sample data set is available at 6.

Table 2. Some data of the ranges of systolic (X) and diastolic (¥') blood pressure

X 11.8-17.3 10.4-16.1 13.1-18.6 10.5-15.7 12-17.9 10.1-194 ...
Y 63-10.2 7.1-11.8 5.8-11.3 6.2-11.8 5.9-9.4 48-11.6 ...

If we test the linear independence between X and Y by using the asymptotic test
suggested in Section Blat nominal significance level oo = 0.05, we obtain that the value
of the typified statistic is 7* = 6.027, which is greater than max{0, z9 o5 } = 1.645. Thus,
the null hypothesis should be rejected, and we conclude that there is a linear relationship
between the fluctuation of the systolic and the diastolic blood pressure in terms of the
model considered in this communication.

6 Concluding Remarks

In this communication, an asymptotic procedure for testing the linear independence
between two interval-valued random sets by considering a particular case has been sug-
gested. Furthermore, its suitability for large samples has been demonstrated by means
of some simulations. It should be underlined that the results are not accurate for moder-
ate and small sample sizes. We are analyzing currently other techniques, like bootstrap
procedures, which are often better in these cases.

In the particular case we have analyzed, only positive coefficients for X have been
considered. In this way some difficulties due to the lack of linearity of JZ;(R) are
avoided. We are also analyzing at present the general case.
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Abstract. In this paper we study the problem of independence of two continuous random vari-
ables using the fact that there exists a unique copula that characterizes independence, and that
such copula is of Archimedean type. We use properties of the empirical diagonal to build
nonparametric independence tests for small samples, under the assumption that the underlying
copula belongs to the Archimedean family, giving solution to an open problem proposed by
Alsina et al. [2]].

1 Introduction

A bivariate copula is a function C : [0,1]% — [0, 1] with the following properties: For
every u,v in [0,1], C(u,0) =0 = C(0,v), C(u,1) = u and C(1,v) = v, and for every
uy,up,vy,vy in [0,1] such that u; < wuy and vy < vy, C(uz,v2) — C(ua,vi) — Cluy,va) +
C(uy,v1) > 0. Also, W(u,v) < C(u,v) < M(u,v), where W(u,v) := max(u+v—1,0)
and M(u,v) := min(u,v), where W and M are themselves copulas, known as the
Fréchet-Hoeffding lower and upper bounds, respectively. The diagonal section of a bi-
variate copula, 6¢(u) := C(u,u), is a nondecreasing and uniformly continuous function
on [0,1] where: i) §¢(0) =0 and 8¢(1) = 1;1ii) 0 < S¢(uz) — d¢c(uy) < 2(uy —uy) for
all uy,up in [0, 1] with u; < up;iil) max(2u—1,0) < d¢(u) <u. A copula C is said to be
Archimedean, see [17], if C(u,v) = @!=U[@(u) + ¢(v)], where @, called the generator
of the copula, is a continuous, convex, strictly decreasing function from [0, 1] to [0, ]
such that (1) =0, and ¢!~ is the pseudo-inverse of ¢ given by: @!=1(r) := ¢~ (r)
if 0 <1< @(0), and @l~1(z) := 0 if (0) <t < co. Its diagonal section is given by
Sc(u) = @l"1[2¢(u)]. One may ask, as observed in [6], given §, what can be said
about ¢ ? The following result is part of what was proved in [9] and [3]:

Theorem 1. If C is an Archimedean copula whose diagonal 0 satisfies 6'(1—) = 2 then
C is uniquely determined by its diagonal.

From now on we will refer to the condition 6'(1—) = 2 as Frank’s condition. An im-
portant example of an Archimedean copula that satisfies Frank’s condition is the case of
the product copula IT(u,v) = uv, which characterizes a couple of independent contin-
uous random variables, via Sklar’s Theorem [20], and so it is uniquely determined by
its diagonal section &8y7(u) = u?. Frank’s condition is satisfied by 13 out of 22 copulas
in the catalog of Archimedean copulas provided by [17].
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2 The Empirical Diagonal and Some Properties

In the case of Archimedean bivariate copulas, the diagonal section contains all the in-
formation we need to build the copula, provided that Frank’s condition 8'(1—) = 2 is
satisfied, and in such case this leads us to concentrate in studying and estimating the
diagonal. The main benefit of this fact is a reduction in the dimension of the estimation,
from 2 to 1 in the case of bivariate copulas.

Let S:= {(x1,y1),-..,(xs,yn)} denote a sample of size n from a continuous random
vector (X,Y). The empirical copula is the function C, given by (see [17])

l. . 1 n
Cn< J):nZI{kax(i)JkSy(j)}’
k=1

’
nn

where x(;) and y ;) denote the order statistics of the sample, for i and j in {1,...,n},and
Ca(1,0)=0=C,(0, fl) . The domain of the empirical copula s the grid {0, 1/n,...(n—
1)/n,1}? and its range is the set {0,1/n,...,(n—1)/n,1}.

Remark 1. The domain of the empirical copula is just a rescaling of the set {0, 1,..., n}.
Hence the empirical copula can be thought as equivalent to a discrete copula as noticed
in [15] and [16]. Moreover, an empirical copula is an example of an irreducible discrete
copula as defined in [13]. An empirical copula is not a copula, but a (two-dimensional)
subcopula, for details of subcopulas see [17]. We should notice also the following
relationship between the empirical copula and the empirical joint distribution function
Hy : Ca(550) = Halx(iys())-

Definition 1. The empirical diagonal is the function 8,(j/n) := C,(j/n,j/n) for j =
0,1,...,n,and 6,(0) :=0.

It is clear from above that &, is a nondecreasing function of j. Moreover, by Fréchet-
Hoeffding bounds for subcopulas we have that max(2j/n—1,0) < 6,(j/n) < j/n, and
it is also straightforward to prove that the difference 6, ((j+1)/n) — 0,(j/n) equals one
of the values {0, 1/n,2/n}. These properties also follow from properties of the diagonal
section in discrete copulas and quasi-copulas, see or [14].

We will call an admissible diagonal path any path {8,(j/n) : j = 0,1,...,n}
satisfying the Fréchet-Hoeffding bounds, that is any path between the paths
{max(2j/n—1,0):j=0,1,...,n}and {j/n: j=0,1,...,n}, with jumps of size 0,1 /n,
or 2/n between consecutive steps. The proof of the following theorem is in [[7]]:

Theorem 2. Let S = {(X1,Y1),...,(Xn,Ys)} be a random sample from the random
vector of continuous random variables (X,Y). If X and Y are independent and if
T = (1o=0,t1,...,t0—1,tn = 1) is an admissible diagonal path, then

1 n
Pr[T=(to=0,t1,....tn-1,tn=1)] = o 1170,
)

where, for j=1,...,n: f(j)=1ifn(tj—tj—1) =0; f(j) =2(j —ntj—1)— 1 ifn(t; —
ti-1) = 1sand f(j) = (j—1—ntj1)* if n(tj —1;-1) = 2.
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3 A Nonparametric Test for Independence under the
Archimedean Family of Bivariate Copulas

In this section we give solution to an open problem proposed in [2]] and [3]:

Can one design a test of statistical independence based on the assumptions
that the copula in question is Archimedean and that its diagonal section
is 8(u) = u*?

As a corollary of Sklar’s Theorem, see [20L[19][17]], we know that if X and Y are contin-
uous random variables, then X and Y are independent if and only if their corresponding
copula is C(u,v) = uv. It is customary to use the notation IT(u,v) := uv, and to call
it the product or independence copula. Recall that the product copula is Archimedean
and it is characterized by the diagonal section 8 (u) = u?. If we are interested in ana-
lyzing independence of two continuous random variables, the previous results suggest
to measure some kind of closeness between the empirical diagonal and the diagonal
section of the product copula. Moreover, a nonparametric test of independence can be
carried out, as suggested by [2,[21]], using the diagonal section. Let (X,Y) be a random
vector of continuous random variables with Archimedean copula C, then the following
hypothesis are equivalent:

Ho: X andY are independent < Hy:C=1I1 <&  H{ :6c(u)= . (1)

Using the results of the previous sections, we wish to propose a statistical test based on
the empirical diagonal because under Hy we know the exact distribution of the empirical
diagonal (Theorem[2)) and so we could theoretically obtain the exact distribution of any
test statistic based on it. A first idea would be to work with a Cramér-von Mises type
test statistic based on the empirical diagonal:

2

CvM,, = ! E(Sn(j)—j2>2, )

n—l.f1 n n
j=

rejecting Hy whenever CvM,, > ky for o a given test size. The performance of a
test based on (@) will be analyzed later in a short simulation study. Under some
Archimedean families, a test based on () can be improved under certain alternatives
by the following idea: It is straightforward to verify that under H( the expectation
E[5,(j/n)]=38n(j/n) = j?/n®sowe define for j=1,...,n— 1 the quotient & (j/n) :=
|6,(j/n) — j*/n*|/ (j/n—max(2j/n — 1,0)) as a way of measuring pointwise close-
ness to independence, noticing that the denominator just standardizes dividing by the
distance between the Fréchet-Hoeffding bounds at point j/n, in the spirit of a correction
as in [4]]. Tt is straightforward to verify that 0 < & (j/n) <max(j/n, 1 —j/n) <1-1/n.
We propose as a test statistic

¢ . | "i‘ : (1) 3)
"Tn—147\n/’
j=
rejecting Hy whenever S, > ki(a), for o a given test size. Before we proceed, let

us denote by Oy (#) = u and O (#) = max(2u — 1,0) the upper and lower Fréchet-
Hoeffding diagonal bounds, respectively. For u in [0, 1] the average distance between
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Orr(u) and Op(u) is 1/6 while the average distance between Op(u) and Sy (u) is
1/12, this means that the diagonal that represents independence is, on average, twice
closer to the lower than to the upper Fréchet-Hoeffding diagonal bound, thus inde-
pendence is far from being in the middle of such bounds, and so we should con-
sider the possibility of taking this into account in defining a test statistic. We define
h(j/n) = (j/n— j*/n?)/(j*/n* —max(2j/n—1,0)) as a factor to be multiplied by
& (j/n) for those observations for which 8, (j/n) < j?/n?, in order to compensate some-
how the non-equal closeness of the independence diagonal to the Fréchet-Hoeffding
bounds. In other words, let us define v(j/n) := h(j/n)E(j/n)if §,(j/n) < j*/n?, and
v(j/n) = E(j/n) it 8,(j/n) > j?/n?.

We have that 4(j/n) is symmetric with respect to 1/2 and that 1 <h(j/n) <h(1/n)=
h(1 —1/n)=n— 1. We now propose the following test statistic

1 n—1

J
Ay = ( )
=, 2V @
j=
rejecting Hy when A, > kp(ot), for o a given test size. The test statistics (3) and @)
alone lead to biased tests of independence, but an appropriate combination of both leads
to an approximately unbiased independence test, by using the decision rule

reject Hy whenever S, > kj or A, > ko, 5

where Prob ({Sn >k}U{A, >k} H 0) < a, for k; and k, chosen appropriately, ac-
cording to a given test size o.. From their definitions it is immediate to verify that
0 <S8, <A, <3/4—1/4n. Even though the election of (ki,k;) is not unique, in order
to obtain an approximately unbiased test, a good choice for the alternative hypotheses
we will consider is (k,ky) such that oy = Pr(S, > ki |Hy) ~ Pr(A, > ko |Hp) = o2
We cannot prove this in general for all possible alternatives since the power of the test
for 8 # 6 depends on the distribution under the alternative hypothesis, but it seems to
work adequately in the following simulations for the given alternatives.

Since the main goal of the present work is to give solution to the open problem pro-
posed by [2]], building the required independence test, we include a short simulation
study just to show that the proposed tests work, without pretending that they are ex-
tremely powerful, and we made some comparisons against a few well-known indepen-
dence tests, without pretending that they constitute an exhaustive list of independence
tests:

e Spearman’s test, see [11]].
e The modified Hoeffding test as introduced in [J3]].
e Atestin [12].

The simulated power comparisons presented here were obtained with sample sizes
n = 15,50, o = 0.05. Every Monte Carlo experiment reported here has been sim-
ulated 10,000 times, using some one-parameter Archimedean and Non-Archimedean
copulas as alternatives. In both cases we will consider families of copulas {Cg } with
one-dimensional parameter 6 such that there exists a unique 8¢ such that Cg, = II or
limg_.g,Cq = II. The null hypothesis (1) becomes Hy : 0 = Oy versus the alternative
H - 0 75 90.
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Alternative: Raftery n =50 Alternative: Frank n =50
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Fig. 1. Left: EGB vs CvM under Raftery. Right: EGB vs CvM under Frank

We will denote by CvM and EGB the tests proposed by the authors in () and (@),
respectively. Under some families of copulas, there is a clear outperformance of EGB
over CvM, for example, with the Raftery family as alternative; but under some other
families it is almost the opposite, for example, with the Frank family as alternative,
see Fig. [[l The proposed tests EGB and CvM will be compared against the already
mentioned tests: R (Spearman), B ([3]]), and V ([12])).

Archimedean alternatives. We compared the test powers for Hy : 8 = 0 against Hj :
0 # 0 under the following alternative families of Archimedean copulas, for details see
[17]]: Clayton, Frank, Nelsen’s catalog number 4.2.7, Ali-Mikhail-Haq, and Gumbel-
Barnett. In all cases these copulas satisfy Cg = IT if and only if 8 =0, or limg _.(Cy =
IT, and satisfy Frank’s condition §’(1—) = 2. For example, for the Clayton family see
Fig.

Non-Archimedean alternatives. An obvious question is what happens with the pro-
posed EGB and CvM tests outside the Archimedean world. As proved in it is pos-
sible to build copulas different from the product (or independence) copula IT(u,v) = uv

Alternative : CLAYTON n=50

power

0.0 02 04 06 0.8 1.0

T T T T T T T
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

theta
—————— EGB o000 CvM (squares) B (solid circles) R (triangles) V

Fig. 2. All tests under Clayton
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with the same diagonal as IT, but they are singular, and such copulas rarely appear in
real problems. What really might be an issue for the proposed EGB and CvM tests is
the fact that there are absolutely continuous non-Archimedean copulas which have the
same diagonal as IT, as proved in [8], or as a consequence of the results in [18]], so
outside the Archimedean world the proposed EGB and CvM tests may face dependence
structures that they will not be able to detect. Anyway, we performed similar simulation
studies under some well-known non-Archimedean families of copulas, with surprising
results. We compared the test powers for Hy : 0 = 6 against H, : 8 # 0 under the
following alternative non-Archimedean families of copulas: Raftery, Cuadras-Augé,
Farlie-Gumbel-Morgenstern, and Plackett (for details of these families see [17]). In
all cases these copulas satisfy Cy = IT if and only if 6 = 0, or limg _,0Cy = II, with
6y = O for the first three families, and 6y = 1 for the last one.

Summary of results. We made a summary of the power comparisons in the format
suggested by [12]]: For each test statistic, we have calculated the difference between
the power of the test and the maximal power of the tests under consideration at the
given alternative. For each graph this difference is maximized over the alternatives in
the graph. This number can be seen as a summary for the behavior of the test in that
graph, although of course some information of the graph is lost. In Table [[l we present
percentage differences in maximal power of the five tests under comparison at various
alternatives, so that the lower the difference number in the table, the better is the relative
performance of the test.

Table 1. Relative power performance

n =15 Alternative Copula EGB CvM R B V
Clayton 31 43 35 78 50
Frank 40 37 34 75 54
Nelsen 4.2.7 36 49 5 77 9
Ali-Mikhail-Haq 43 37 33 76 55
Gumbel-Barnett 24 45 13 78 44
Raftery 19 29 29 5 31
Cuadras-Augé 25 25 37 0 41
Farlie-Gumbel-Morgenstern 48 37 32 77 57
Plackett 42 38 33 73 53

n =50 Alternative Copula EGB CvM R B V
Clayton 27 32 24 56 44
Frank 42 27 24 50 52
Nelsen 4.2.7 28 49 22 70 15
Ali-Mikhail-Haq 40 28 24 50 53
Gumbel-Barnett 20 33 8 58 42
Raftery 4 31 32 20 34
Cuadras-Augé 12 16 32 8 37

Farlie-Gumbel-Morgenstern 44 26 25 51 53
Plackett 40 26 18 43 49
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In practice, when using a nonparametric test for independence we usually do not
know what alternative we are dealing with, so what is valuable about a test is its ability
to maintain an acceptable performance under different alternatives, rather than being
the best under specific ones. In this sense, it seems that in general terms, the R test
would be the best choice among the tests considered, followed by the EGB and CvM
proposed tests.

4 Final Remark

If the underlying copula of a random vector (X,Y) is of the Archimedean type, indepen-
dence tests can be carried out by defining appropriate test statistics based on the empir-
ical diagonal. Such statistics are discrete random variables and their exact distribution
may be obtained using Theorem[2] so no asymptotic approximations are required, which
may be specially helpful with small samples.
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Abstract. We provide a new description of the notion of fuzzy p-value, within the context of
the theory of imprecise probabilities. The fuzzy p-value is viewed as a representation of a certain
second-order possibility measure. According to Walley, any second-order possibility measure
can be converted into a pair of lower and upper probabilities. Thus, we can convert the fuzzy
p-value into an interval in the real line. We derive a construction of imprecise (but non fuzzy)
tests, which are formally similar to recent tests used to manage with set-valued data.

Keywords: Imprecise probabilities, Hypothesis testing, Fuzzy p-value, Second-order possibility
measure.

1 Introduction

Uncertainty about measurements arises naturally in a variety of circumstances (see [[7]
for a detailed description). This is the reason why the development of procedures for
hypothesis testing with imprecise observations has recently gained increasing attention.
When the data set contains intervals rather than points, we are not always able to take
a clear decision about the null hypothesis. In the recent literature, imprecise tests are
proposed to deal with such situations (see [[7]], for instance). According to this approach,
an interval of upper and lower bounds of the critical value can be computed from the
data set. When both bounds are on one side of the significance level, the decision (reject
or accept) is clear. But when that interval and the significance threshold do overlap, we
are not allowed to take a decision. In such situations, multi-valued test functions are
defined. They can take the values {1} (reject), {0} (accept) and {0, 1} (undecided). This
idea has been extended to the case of fuzzy-valued samples, under different approaches.
Specifically, Filtzmoser & Viertl [8] and Denceux et al. [6] independently introduce the
concept of fuzzy p-value. The concept of fuzzy test is then derived in a natural way
by Denceux et al. [6]]. But what should we do when a crisp decision is needed? They
propose a particular defuzzification of the test output, in order to take a decision. Here
we will propose an alternative construction, based on an interval-valued assignation for
the critical level. We will justify why such defuzzification of the fuzzy p-value makes
sense. We will show that it is in accordance with the possibilistic interpretation of fuzzy
random variables developed in [3].
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2 Fuzzy p-Values and Fuzzy Tests

2.1 Fuzzy p-Value Associated to a Fuzzy Random Sample

Let X*: Q — R be a random variable with distribution function F* and let X* =
(X[,....X;) : " — R" be a simple random sample of size n from F* (a collection
of n iid random variables with common distribution F*. They represent n independent
observations of X*.) Let now the Borel-measurable mapping ¢ : R” — {0, 1} represent
a non-randomized test for

Hy:0 €0y versus H;:0¢c0.

Both hypotheses refer to a certain parameter of the df F*. We will denote by R
the critical region of ¢, ie, R = {x € R":¢(x) = 1}. Let supgcq, Eg(¢(X)) =
supge@, Po(Reject Hy) denote the size of the test ¢. Suppose that for every o € (0, 1)
we have a size o test ¢, with rejection region R, and let x* = (x7,...,x;;) arealization
of the sample. The p-value of x* is defined as the quantity pyy (x*) = inf{a:x* € Ry }.

Let us now assume that we have got imprecise information about x*, and such impre-
cise information is given by means of a fuzzy subset of R”, X € .Z# (R"). According to
the possibilistic interpretation of fuzzy setdl], %(x) represents the possibility grade that
the “true” realization x* coincides with the vector x. Denceux et al. [[6] and Filzmoser &
Viertl [8] independently extend the concept of p-value, introducing the notion of fuzzy
p-value. Each of those papers deals with a specific problem, but both definitions lead
to the same general notion. We will call the fuzzy p-value of the fuzzy sample X to the
fuzzy set ext(pyar)(X) determined by the membership function:

ext(pyal) (%) (p) = sup{%(x):3x € R", with pya(x) = p}, Vp € [0,1]. (1)

According to the possibilistic interpretation of fuzzy sets, the membership
ext(pvar) (X)(p) represents the possibility grade of the equality pyy(x*) = p, accord-
ing to the imprecise information we have about x* described by X. The last fuzzy set is
closely related to the nested family of sets (pvai(X;5))se(o,1) defined as follows:

pval(Xs) = {pval(x) X E iﬁ}, Vo e [0, 1}.

For some particular situations studied in [6]] and [8], it is the family of §—cuts of
ext(pyar) (X). In the general case, it is just a gradual representation of the fuzzy p-value.
In other words, the membership function of ext(py ) (X) can be derived from such nested
family as follows: -

ext(pva) (X)(p) = sup{8: p € pva(Xs)}-
But we should assume some continuity properties to assure that (pya(X;))se(o,1 is the
family of § —cuts. In general, only the following relation holds:

[pval(i)}a C pvai(Xs) < [pva(X)]s, V6,
where [pyal(X)]5 and [pya(X)]5 respectively denote the strong and the weak J—cut.

! We show in [2, 3] some specific situations where such a membership function is derived from
an imprecise perception of some x*.
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2.2 Fuzzy Test Associated to the Fuzzy p-Value

First of all, let us specify the meaning of the expression “fuzzy test” in our context:
The null and the alternative hypotheses are referred to the distribution of the original
random variable, F*, so they are customary hypotheses in usual statistical problems.
But the test is a fuzzy-valued function, i.e., it is a mapping that assigns, to each possible
fuzzy sample X € % (R"), a fuzzy subset of {0, 1}. That fuzzy subset reflects the pos-
sibility grades of rejection and acceptance of the null hypothesis, in accordance with
the information provided by the fuzzy random sample. Some recent papers in the liter-
ature about statistics with imprecise data fit this formulation (see [6], for instance.) Let
the reader notice that this approach is not related to other different works in the fuzzy
statistics literature (see [9]] for a detailed description), where the test functions are crisp,
but they are referred to a certain parameter of the probability distribution induced by
a fuzzy random variable on a certain o-algebra of fuzzy events. This approach would
not be useful in our context, where the frv represents the imprecise description of an
otherwise standard random variable (see [}, 3| [4]] for more detailed comments.)

In this paper, we will follow Denceux et al. [6] to construct a fuzzy test from a fuzzy
p-value function. They specify the calculations for the Kendall and the Mann-Whitey-
Wilcoxon tests. We will give here a more general description.

Let (@a)qe(0,1) be a family of tests for Hy against Hy, where @q : R" — {0,1} is
a test of size a, for each o € (0,1). Let pyy : R* — [0,1] and ext(pyar) : Z (R") —
Z([0,1]) respectively denote the crisp and the fuzzy p-value functions, in accordance

with the formulae given in the last section. We can construct the fuzzy test Pxt(pear)

from eNxt(pva]) as follows:

Pai(poy) ®) (1) = sup{ext(pva) (X)(p) :p < @}, and
q)eNxt(pval)(i) 0) = Sup{é{t(pval)(i) (p):p>a}.

According to the interpretation of ext(pya)(X)(p), the membership value
(Pé;t(pval)(i)(l) represents the possibility grade that py,(x*) is less than or equal
to o or, in other words, the possibility that x* belongs to the rejection region. Similarly,
Pi(poar) (x)(0) represents the possibility of accepting (no rejecting) the null hypothesis.
Thus, (pé;t<pval>(i) represents a fuzzy decision. In the cases where a crisp decision is
needed, this fuzzy subset may be defuzzified. Denceux et al. 6] suggest the following
rule: rejecting the null hypothesis whenever ¢, (X)(1) > (pg;t(pval)(i) (%)(0) and
accepting (no rejecting) it otherwise. In Section ﬁ we will propose a different rule
based on the theory of imprecise probabilities. First, we need to give an alternative
description of the fuzzy p-value.

2.3 An Alternative Approach to the Concept of Fuzzy p-Value

Let us now give an alternative approach to the notion of fuzzy p-value. Let us first
consider, for each particular realization x € R”, the Borel measurable mapping D(x) :
R" — {0, 1} defined by:
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D(X) (y) — {1 if Pval (y) < pval(x)

0 otherwise.

D(x)(y) takes the value 1 when the sample y is “less compatible” with the null hypoth-
esis than x is. Thus, for a fixed x € R”, we have:

sup PB(D(X) = 1) = Sup P@({y eR" :pval(Y) < pval(x)})'
0€6y 0cO,

Let us now remind that ¢, is assumed to be a test of size o, i.e.,

sup Eg (e (X)) = sup Pp(Re) = 0.
0cO, 0c0Oy

Hence, we can prove that D(x) satisfies the equality:

sup Pg(D(x) = 1) = pyai(x).

CISION)
For the sake of simplicity, let us assume that the sizes of the ox—tests are associated to
a certain value of the parameter 6y € @y, i.e., let us assume that:

sup PG(RO() :PG()(RO() =o, Vo e (071)
0c0O,

(The above condition holds, for instance, when the null hypothesis is simple and also for
the most common unilateral and bilateral tests.) In that case, D(x) is a Bernoulli random
variable with parameter py,(x), under the distribution Fg,. In other words, pya(x) =
Pg,({D(x) = 1}), ¥x € R". (The p-value of x represents the probability, under the null
hypothesis, of getting a sample which is “less compatible” with Hy than x is.) Let 2~
represent the class of binary random variables that can be defined on R" and let us now
use the extension principle to extend D : R" — 2" to .Z (R"). Le., let us define the
mapping ext(D) : .F (R") — . (Z") as follows:

ext(D)(X)(Z) = sup{X(x):D(x)=Z2},VZ e 2.

Let us note that ext(D)(X) is a possibility distribution over .2 and represents our im-
precise information about D(x*), according to our imprecise perception of the realiza-
tion x*, represented by X. More specifically, for each binary random variable Z € 27,
ext(D)(X)(Z) represents the possibility grade that D(x*) coincides with Z. Each binary
random variable induces a Bernoulli distribution, B(p). Thus, according to [3]], we can
derive a possibility distribution on the class of the Bernoulli measures. From now on,
we will denote the class of all Bernoulli distributions by &,((¢,1}), since it is the class
of probability measures that can be defined over ({0, 1}). This possibility measure,
I, is determined by the possibility distribution 7tz : & ,(0,1) — [0, 1]:

nz(B(p)) = sup{D(X)(Z):P=B(p)}, Vp € [0,1].

In words, x(B(p)) represents the degree of possibility that the probability measure
B(pvai(x*)) induced by D(x*) coincides with B(p). In other words, % (B(p)) represents
the degree of possibility of the equality pya(x*) = p. Mathematically,
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7z (B(p)) = sup{D(X)(2): Pz = B(p)} = sup{D(X)(Z): P(Z=1) = p}
= sup{X(x): P(D(x) = 1) = p} = ext(pwa) (%) (p), ¥p € [0,1].

Summarizing, the fuzzy p-value is closely related to a certain second-order possibility
measure [3]]. Section 3] will be based on this alternative description of the fuzzy p-value.

3 Defuzzification of the Fuzzy p-Value

In Section 21l we have shown how the fuzzy p-value can be interpreted in terms of a
second order possibility measure. In fact, ext(pyy ) (X) represents a possibility distribu-
tion over the class of possible values of the parameter of a Bernoulli random variable,
and we have identified it with a second-order possibility measure Il defined over the
class of all Bernoulli distributions. According to Section Z211 IT; and ext(pyq)(X) are
connected by the formula:

ext(pval) (%) (p) = 7(B(p)) = Dz ({B(p)}) )

According to Walley [10], any second-order possibility measure (which is an upper
probability over the class of standard probabilities) can be reduced into a pair of upper
and lower probabilities. Let us briefly describe Walley’s procedure in our particular
situation. We will consider the product space &, 11) X #2({0,1}) and:

e The possibility measure ITx on &, (o,1})- (In our particular problem, it represents
our imprecise knowledge about the probability distribution of the random variable
D(x*).)

e The “transition probability” P} : P01} % #2({0,1}) — [0,1] given by the
formula:

P3(A,P) :=P(A), VA € p({0,1}),P € P (0.1)-

(It represents the following conditional probability information: if P were the true
Bernoulli distribution associated to D(x*), then the probability of occurrence of the
event D(x*) € A should be P(A). In particular, for A = {1}, and P = B(p), the
quantity P1({1},B(p)) = p represents the probability of occurrence of the event
D(x*) = 1 according to the conditional information “D(x*) induces the probability
measure B(p)”.)

In this setting, Walley constructs, by means of natural extension techniques, an upper-
lower joint model. Thus, the available information about the marginal distribution on
the second space £({0,1}) is described, in a natural way, by a pair of lower and up-
per probabilities, Py, and Py . In particular, Py, ({1}) and Pw ({1}) will represent the
tightest bounds for the probability of the event D(x*) = 1 or, in other words, the tightest
bounds for the p-value, pya (x*). To specify how this reduction is made, let us first recall
that the second-order possibility measure ITg can be identified with the class of second-
order probability measures {P:P < ITg}. If P were the “true” second-order probability
that governs the “random’f} experiment associated to the choice of the “true” Bernoulli

2 Note that we are here interpreting the uncertainty associated to the perception of x* as “ran-
domness”, since this imprecise perception is described by a possibility measure, which is, in
turn, an upper probability.
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distribution, then the probability of occurrence of the event {1} (i.e., the “true” p-value)
should be computed as follows (if we combine degrees of belief about events and about
probabilities of events into the same model):

/Pz{l}Pd]P’ /P{l}d]P’ P).

Since all we know about PP is that it is dominated by the possibility measure Ilx, the
lowest upper bound for the probability of occurrence of the event D(x*) = {1} is deter-
mined by

Pw({1})= sup /]P’2 {1},P) d(P) = sup /P (1})dP(P).
Similar arguments lead us to represent the highest lower bound of the probability by:

Py({1}) = inf /Pz{l} P)dB(P) = inf /P ({1})dP(P).

Thus, the Walley reduction allows us to convert the fuzzy p-value into the crisp interval
[pva (%), pvai(X)] = [Pw ({1}), Pw ({1})]. Furthermore, according to Walley [10], these
upper and lower bounds can be alternatively computed as follows:

1 1
w19 = [ Po1ds, Py({1h)= [ Ps({1})ds
where, for each index, 6 € [0, 1], Ps and Pg are defined as follows:
Ps({1}) =sup{Q({1}):Q € Z10.1}),11x({Q}) > &} and
Ps({1}) =inf{Q({1}):0 € P 0.1}, Ox({Q}) > 8}
Theorem 1

P5({1}) = sup[ext(pva) (%)]5 and P5({1}) = inflext(pva) (%)]5, V6 € [0,1].

According to the last theorem, the combination of first and second-order probabilities
into the same model converts the fuzzy p-value, ext(pyy ) (X) into the interval:

1 __
Pval(X) = [pal (X), pval (X)] = [/0 inf[eXt(Pval)(i)]Sdav/O suplext(pya) (X)]sdS| . (3)

The extreme points of such interval represent the most accurate bounds for the true p-
value, pya1(x*), based on our imprecise knowledge of x*. Let us denote by (pp \® the
vai

multi-valued o—test associated to such interval
{0} ifpva(X) = Jy inflext(pya)(®)]5 46 >
0 0® =0 {1} if paa(®) = fi suplext(pa)(®)]5 d6 < o
{0,1}  otherwise.
The following relation between B (®) and the Denceux et al. [[6] defuzzification of
Pexi(pear) holds:

Theorem 2. derZDMH((Pf;t(pvﬂl)) C Py (5)-
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According to this result, the multi-valued test proposed in this paper is more times in-
conclusive than the Denceux et al. defuzzification is. I.e., whenever (pp (®) leads us
val

to a clear decision (reject or accept the null hypothesis), defuz((p&t(pm)) also leads to

the same decision. But, for some fuzzy samples defuzDMH(qo&t(p 1)) is conclusive and
. . . . val
By () 18 DOL This could be viewed as an argument against the use of ¢ ot (%)° Neverthe-

val
less, it is not clear whether a higher number of inconclusive tests is a disadvantage or an
improvement. The dependence between the degree of imprecision of the data-set and
how many times a given test is inconclusive is not clear, and should be further studied
in future works.

4 Concluding Remarks

We have proposed a new construction of crisp tests from fuzzy data, based on the
theory of imprecise probabilities. The new tests are obtained as functions of the
fuzzy p-values associated to the fuzzy samples, but they cannot be obtained as direct
defuzzifications of the initial fuzzy tests.
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Testing ‘Two-Sided’ Hypothesis about the Mean of
an Interval-Valued Random Set
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Abstract. Interval-valued observations arise in several real-life situations, and it is convenient
to develop statistical methods to deal with them. In the literature on Statistical Inference
with single-valued observations one can find different studies on drawing conclusions about
the population mean on the basis of the information supplied by the available observations.
In this paper we present a bootstrap method of testing a ‘two-sided’ hypothesis about the
(interval-valued) mean value of an interval-valued random set based on an extension of the ¢
statistic for single-valued data. The method is illustrated by means of a real-life example.

Keywords: Random interval, Interval mean, Hypothesis testing.

1 Introduction

In previous papers it has been pointed out that in many real-life situations observations
are essentially (or customary) interval-valued rather than single-valued. For instance,
some observations correspond to ranges or fluctuations (like price fluctuations, blood
pressure fluctuations, income ranges, and so on), or they are engineering/physical data
(as descriptions of amount, bounds, and limits, speed, mass, etc.), or interval-censoring
times, or simply incomplete data which are treated as grouped ones.

In the last decade the interest for the statistical analysis of interval-valued data has
increased, especially in which concerns descriptive aspects. In 2000 Billard and Diday
and Gil et al. [7] (see also [8], [9], [16], for a more detailed study) have considered
different approaches for the regression (and also the correlation in the second one) anal-
ysis of interval-valued data: the symbolic data analysis and the random sets approach.
The last approach has been also considered to deal with other descriptive problems (see,
for instance, [13]]).

An approach, which has been shown to be certainly valuable for the statistical man-
agement of interval-valued data, is the one based on the mid-spread (or centre-radium)
approach and the use of interval arithmetic (see, for instance, Gil et al. [8]], [9], and
Marino and Palumbo [[14])).

In some recent papers (cf. Montenegro et al. [17], Gil et al. [6], Gonzdlez-Rodriguez
et al. [10]) we have developed some inferential procedures on the problems of least-
squares regression and correlation between interval-valued random elements. The sta-
tistical analysis of these random elements has been developed by modelling them as
particular random sets, using the set-valued arithmetic and a suitable metric between

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 133 2008.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2008
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interval-valued observations. This view allows us to capture the whole information on
the considered problem and, hence, the approach means a sound and operational way
to handle these data.

On the other hand, tests of the hypothesis that a population mean equals a particu-
lar value have been often studied when they refer to single-valued data. The Student’s
t statistics is the best known one when we handle data coming from a normal (or a
nearly normal) population. In case of dealing with interval-valued data the assumption
of normality does not make sense; more precisely, the few models for normally dis-
tributed random intervals become quite restrictive in practice, so it would be more real-
istic to look for asymptotic distribution free results or, even better, to develop bootstrap
techniques.

In this paper, we introduce a bootstrap approach to testing about the interval-valued
mean of an interval-valued random set in a population on the basis of a sample of
interval-valued observations. The introduced test involves a statistic extending the well-
known ¢, and particularizing to the interval case the test we have developed in previous
papers for fuzzy-valued data (see [I1]], [13]). In fact, we have paid attention to express
the new statistic in terms of the mids and spreads of intervals, and we conclude that the
statistic can be viewed as a special convex linear combination of the squared Student
statistic of the mids and the squared Student statistic of the spreads.

The result will be finally illustrated with a real-life example.

2 Preliminaries

In this paper we will assume that interval-valued observations are considered to be
obtained from random mechanisms which are modelled by means of certain convex
compact random sets.

Let .#:(R) be the class of nonempty compact intervals. JZ;(R) can be endowed with
a semilinear structure induced by the product by a scalar and the Minkowski addition
from the usual interval arithmetic, that is,

[A-infl, A -supl] if A >0

T s ool / .
I+1' = [infl +infl’ ;supl +supl’], A -1 {[l-supl,ldnfl] FA<0

for I,I' € #:(R) and any A € R.

To quantify the deviation/dissimilarity between the hypothetical interval-valued
mean and the true one, we will make use of a metric on .7 (R) extending the Eu-
clidean one, and being easy-to-use and interpret. More precisely, we will consider the
W-distance on J#:(R) which is defined for two intervals I,I' € J#.(R) as follows:

dw(I.I') = \//[0 : [f7(2) = £ (A))* dW(A)

with f;(1) = Asup/+ (1 — A)inf] forall A € [0,1], and W being formalized by means
of a probability measure on the measurable space ([0, 1],,%’[0’1]) associated with a non-
degenerate symmetric probability distribution on [0, 1] (%o ;] being the Borel o-field
on [0, 1)).
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The W-distance is a particularization of a metric recently introduced (although in
a more general space) by Korner and Nither (see [12]], and also [9]]). The generalized
distance dy is equivalent to the generalized metric df by Bertoluzza, Corral, and Salas

21, with 2 = (A1, 22, A1), Ay > 0,4 = 1 — 24, >0,

d (1) = \//M [ X1 (inf 1 = inf 1) + Ao (mid/ —mid1") 4 A (sup —sup )| dW (A).

More precisely, the last generalized metric dT is indeed a particular case of dy in which
W(0) =W(1) =24, and W(.5) = 4. Conversely, by choosing 4, =2 [, AZdW(A)—.5
and A =2—4 Jjo A2dW (L) we can conclude that d> = dy, so that they correspond
in fact to the same family of distances. It should be remarked that frequently choos—

ing W on [0, 1] is more intuitive in practice than choosing l whereas handling 7 be-
comes easier and simpler than handling W, especially when we deal with simulation
studies.

The measure W has no stochastic meaning, although we can formally deal with
it in a probabilistic context and hence we can work with the probability space
([0,1],%0,1,W ) and define o = Jio.y (24 — 1)2dW (1) =241 € (0, 1]. Due to the sym-
metry assumed for W, we can easily prove for arbitrary 1,1’ € %, (R) that

[dw (1,1'))? = [mid] — mid ') + o3 [sprl — sprl’]?

(with the mid and spread corresponding to the centre and radium of each interval, re-
spectively). It can be concluded that the greater szv the greater the influence of the
Euclidean distance between the spreads of / and I’ on dy (I,1'), this influence attaining
the maximum value 1 at a discrete W with W(0) = W (1) = .5, = 0 otherwise.

Given a probability space (Q,.47,P), a mapping X : Q — #:(R) being dy-Borel
measurable is said to be an interval-valued random set (IVRS for short) associated
with (Q,.7,P). The concept of IVRS can be equivalently formalized in terms of the
Borel o-field generated by the topology induced by the well-known Hausdorff metric
dy on #:(R). Borel-measurability guarantees that one can properly refer to concepts
like statistical independence of IVRSs, distribution induced by an IVRS, and so on.

If X : Q — JZ.(R) is an interval-valued random set associated with (£2,.<7, P), and
E (max {|infX|,|supX|}) < oo, the mean value of X (in Aumann’s sense [1]]) is defined
as the compact interval

E*[X] = [E(infX), E (supX)].

It should be emphasized that several arguments support considering dy in the setting of
this paper in contrast to the better known metric dy. Thus,

e dy is usually more operational and easy to compute and interpret than dy in devel-
oping simple statistics (see, for instance, Blanco et al. [3]]);

e Since dy is an L>-type metric, when one considers the extension of the least squares
approach this metric is especially well-adapted; furthermore, EA[X] is the Fréchet-
expectation when one considers the dy metric, that is,
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Jmin E (I (X.U)7) = E ([aw(x.E'3)]).

whereas

ymin (a6 U)F) # E ([dn (0B )

e Although W has not been fixed, one usually considers W to be the Lebesgue measure
on [0, 1]; however, the possibility of choosing different W will allow us to discuss
whether such a choice affects the power of the test in Section 3, that is, to perform
a sensitivity analysis with respect to the choice of W and look for the most suitable
choices.

3 Bootstrap One-Sample Test about the Mean Value of an
Interval-Valued Random Set

The aim of this section is introducing a statistic to test the null hypothesis that the
mean value of an IVRS equals a specified compact interval on the basis of a sample of
(interval-valued) observations from it. For this purpose we will particularize the boot-
strap approach in .

Let X : Q — J.(R) be an IVRS associated with the probability space (£2,.7,P)
and such that max {|infX|,|supX|} € L*(Q,.</,P). Let X,...,X, be IVRSs which are
independent and identically distributed as X (i.e., a simple random sample from X'), and
let X|",..., X, be a bootstrap sample obtained from X{,...,X,. On the basis of the result
in [11]], we can state that.

In testing the null hypothesis Hy : EA[X] = I € J#.(R) (which is equivalent to test-
ing Ho : dw (EA[X],I) = 0) at the nominal significance level o € [0,1], Hy should be
rejected whenever

2
oW g + (1 _TCW) spr = Zas

where 74, is the 100(1 — o) fractile of the bootstrap distribution of

* * ok \2 2
T, =my (tmid) + (1 nW) (tspr)
and with
) N2 2
- ((mldX) —mldl) - ((ser)n—sprI) B Sr%nd
fid = N T g T T Lo
Smld Sspr Smld 0 Sﬁpr
where

(midX), EmldX /n, {mldX (midX)n]z/(n —1),

mid

—

(sprX), = ZSer,-/m 52, =
i=1 i=1

i {ser (ser)n]z/(n —1),

and the associated bootstrap estimates
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(19031, o), )’

(t:;id) = —— ) (ts*pr) = )
(Smia)* (S2,)"
n;/ _ (SI%lid)*
(Sr%lid)* + GVzV (Sspr)*

where

—
=)
o
><

—
5.
o
>

*
=

P

\
—
S
|
—_
S—

(midX*), ZmldX /n, (S/r%nd\)* D

(sprX*), = ZSPer [n, (82,)% = [ser (sprX*), ]2/(;1 —1).
i=1 i=1

4 TIllustrative Example

The following real-life example illustrates the application of the bootstrap test in Sec-
tionBlto data supplied by the Department of Nephrology of the Hospital Valle del Nal6n
in Langreo (Asturias, Spain). Data in Table [ correspond to the “range of the pulse rate
over a day” observed in a sample of 59 patients (suffering different types of illness)
from a population of 3,000 who are hospitalized per year.

Values of X are obtained from several registers of the pulse rate of each patient
measured at different moments (usually 60 to 70) over a concrete day. Pulse rate data
are often collected by taking into account simply the lowest and highest registers during
a day (actually, some devices used for this purpose only record and memorize these
extreme values during a day); in these cases, the whole registers for a day and the
associated variation can distort the information on the characteristic which is considered
to be relevant: the range.

The interval [60, 100] is often assumed to be the adequate pulse rate fluctuation in a
population of healthy adults. In testing the null hypothesis Hy : E4(X) = [60,100] on
the basis of the available sample information, we will apply the method in Section 3 (by
considering 10,000 bootstrap iterations), and we conclude that:

e If we consider W to be the Lebesgue measure on ([0, 1], %o 1)), the p-value of the
test for the sample information is given by .0003,

e If we consider W to be the discrete measure weighting only the distances between
the extreme points (i.e., W(0) = W(1) = .5) the p-value of the test for the sample
information is given by .0010,

e If we consider W to be the discrete measure weighting uniformly the distances be-
tween the extreme points and the mid’s (i.e., W(0) = W(.5) = W(1) = 1/3) the
p-value of the test for the sample information is given by .0004,

e If we consider W to be the continuous measure associated with a beta distribution
B(2,2) (or, equivalently for purposes of defining dy, W weighting 0 and 1 with
weights equal to .1, and .5 with weight equal to .8), the p-value of the test for the
sample information is given by .0004,
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Table 1. Data on the ranges of pulse rate (X)

X
58-90 54-78 56-133
47-68 53-103 37-75
32-114 47-86 61-94
61-110 70-132 44-110
62-89 63-115 46-83
63-119 47-83 52-98
51-95 56-103 56-84
49-78 71-121 54-92
43-67 68-91 53-120
55-102 62-100 49-88
64-107 52-78 75-124
54-84 55-84 58-99
47-95 61-101 59-78
56-90 65-92 55-89
44-108 38-66 55-80
63-109 48-73 70-105
62-95 59-98 40-80
48-107 59-87 56-97
26-109 49-82 37-86

61-108 48-77

so that Hy is scarcely sustainable (i.e., the range for the pulse rate of the people at the
Nephrology Unit cannot be seriously claimed to coincide with that for healthy people),
irrespectively of the considered measure W.

5 Concluding Remarks

In the above example we have developed a discussion on the p-value of the test for
different choices of the measure W in the considered metric. This discussion suggests a
more general one which could be developed in the future in connection with the effects
of the choice of W on the conclusions of the test (that is a sensitivity analysis concerning
the power of the test) as well as on the ‘imprecision’ (width) of the hypothetical interval
(in this respect, the one considered in the example in Section[]is rather wide).

On the other hand, another problem to be considered is that concerning one-sided
hypothesis for the situation in this paper. The main problem should be that of formally
stating the hypothesis, since there is no universally accepted total ordering on the space
of intervals.

Acknowledgement. The research in this paper has been partially supported by the
Spanish Ministry of Education and Science Grant MTM2006-07501. This financial
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Abstract. In this communication we present a procedure to test whether the variance of a fuzzy
random variable (FRV) is a given value or not by using asymptotic techniques. The variance
considered here is defined in terms of a generalized metric in order to quantify the variability of
the fuzzy values of the FRV about its expected value. We present some simulations to show the
empirical behavior of the test in different situations and an illustrative example to demonstrate its
use in practice.

Keywords: Fuzzy random variable, Generalized metric between fuzzy numbers, Variance of a
fuzzy random variable, Hypothesis testing.

1 Introduction

The concept of FRV, in Puri and Ralescu’s sense [12]], is an extension of the notion of
random set. FRVs in this sense are models for random mechanisms associating fuzzy
values with experimental outcomes. The fuzzy mean of a FRV has been introduced
as a fuzzy-valued measure to summarize the “central tendency” of the variable (see
[12]). In this communication, we consider a real-valued variance, defined by Korner and
Niither in [9]] and which is based on a generic .%>-distance, to measure the dispersion
or variability of the fuzzy values of a FRV about its mean.

Different statistical hypothesis testing problems based on fuzzy data have been stud-
ied previously in the literature. Regarding the one-sample test for the fuzzy mean,
Korner 8] and Montenegro et al. have developed the first asymptotic procedures.
On the other hand, in [10] it has been analyzed the problem of testing hypotheses for
the variance of a FRV in some particular cases.

Studies in include results about hypothesis testing for the variance of simple
FRVs (i.e., those taking on a finite number of different values). The techniques in [10]
have been based on large samples theory and an operational metric on the space of
fuzzy numbers with compact support introduced by Bertoluzza et al. [1]]. In this com-
munication we generalize these studies by considering a wider class of non-necesarily
simple FRVs. The results are based on the Dg-metric defined by Korner and Néther (see
[9]), and it should be noted that the generalization has required techniques completely
different from those applied in [10].

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 140 2008.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2008
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In Section 2] we will introduce the concept of FRV, metric and variance that we will
consider. In Section[3 the one-sample test for the variance will be stated and an asymp-
totic procedure will be proposed. The empirical size of the test will be illustrated by
means of some simulations in Section [l In Section [3] the approach will be exempli-
fied through a case study and finally we will conclude with some remarks and future
research directions.

2 Preliminaries

Consider the p-dimensional Euclidean space RP with the usual norm || - ||. Denote by
. (RP) the class of the nonempty compact convex subsets of RP and by .%.(RP) the
class of the compact convex fuzzy sets on RP, thatis, .7, (RP) = {U:RP — [0,1] | Uy €
J(RP) Vo €[0,1]} (where Uy, denotes the a-level of the fuzzy set U for all o €
(0, 1], and Uy is the closure of the support of U).

The space .#.(RP) can be endowed with a semilinear structure by means of the sum
and the product by a scalar defined by applying Zadeh’s extension principle [14]. This
arithmetic agrees levelwise with the Minkowski sum and the product by a scalar (i.e.,
UdV)g=Uxg+Veg={u+viucUy,v e Vy} and (AU)y = AUy = {Au|u € Uy}
forall U,V € Z.(RP), L € R and € [0, 1]). On the other hand, it will be useful to
consider the Hukuhara difference of U,V € Z.(RP), U —y V, which is defined (if it
exists) as the element W € .Z.(RP) such that U =V o W.

A key element for the developments in [8] is the support function (see, for instance,
Klement et al. [7]). The support function mapping can be defined as

51 F(RP) — 2(SP1 % [0,1])
in such a way that s(U) is the support function of U, sy, that is,

su(u,o) = sup (u,w), ueSPL o el0,1],
weUg
where (-,-) denotes the inner product in RP and SP~1 denotes the unit sphere in RP, that
is, SP1={ucRP||ul|=1}.

The support function preserves the semi-linear structure of .%.(RP), that is, if U,V €
Z(RP), A >0, then sy = sy + sy, and s, = Asy. Moreover, if U,V € .Z.(RP) are
so that the Hukuhara difference U —p V exists, it can be shown that sy ;v = sy — sv.

Several authors (see, for instance, [[7] and [3]]) have stated that isometries from
Z.(RP) onto a cone of the Lebesgue integrable functions .Z(SP~! x [0,1]) can be built
on the basis of several metrics by using the support function. In this context, Kérner and
Nither [9] consider a generalized family of metrics Dg on .%,(IRP), which are given by

D%((U,V) = /(SU(uva) _SV(uva))(sU(vvﬁ) - SV(vvﬁ))dK(uvaavvﬁ)v
(sP-1)x[0,1])2
where K is a definite positive and symmetric kernel.
The family of metrics Dk represents a generic L, distance on the Banach space

Z(SP~1 x [0,1]), whence each D induces an isometry between .7, (RP) and the con-
vex cone s(-Z(RP)) C .Z(SP~1 x [0,1]).
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If (-,-)x stands for the inner product in .#(SP~! x [0,1]) with respect to the kernel
K and || - ||k is the norm associated with that inner product, the metrics Dg can be
alternatively expressed as

Dx(U,V) = (su —sv,su —sv)k = |[su —sv||%-

Given the probability space (Q,.o, %), a fuzzy random variable is a Dg-Borel mea-
surable mapping 2" : Q — %.(RP). This definition is equivalent to the classical Puri
& Ralescu’s one [12] (see [2] and [9]).

Whenever || Zo|| = sup,c; |IX]| € LN Q, o/, P) we can define the fuzzy mean
of ', E(%Z"), or fuzzy expected value (see [12]]), as the unique fuzzy set such that
(E(Z°))q = Aumman’s integral of the random set(2") for all o € [0.1]. If p =1 it
can be shown that (E(.2"))q = [E(inf(Zy), E(sup(Zy)] for all o € [0,1].

Moreover, if E(||.25||*) < co, we can define the Dg-variance (or variance for short)
of 2 (see [9]) as

o} = E(D}(2 E(2),
or, equivalently, in terms of the support function,

0y =E((s2 —sg(2),52° — SE(2))K)-

Finally, to illustrate the empirical behavior of the test, triangular fuzzy numbers in R
will be considered. This kind of fuzzy set is determined by 3 values: the center, the left
spread and the right spread, and its alpha-cuts can be expressed as:

(T(Le,r), = le+l(a—1),c+r(1—a)]
where ¢ € R is the center, I € RT and r € RT are, respectively, the left and the right
spread.

3 Stating the One-Sample Testing Problem for the Variance of a
Fuzzy Random Variable

Given a simple random sample of n independent observations, 27, ..., 2, from aFRV
Z, the aim of this commumcatlon is to test the null hypothesis Hy : 63 = 60 Versus the
alternative one H, : 0% # o3 or, equivalently, testing Hy : E (D%(2,E(Z)))) = o4
versus Hy : E(D% (2 ,E(Z))) # o for a given 6p € R™.

In the same way, we are interested in testing one-sided hypotheses for the variance
of a FRY, that is, testing the null hypotheses Hy : Gé; > Gg or Hy : Gé; < Gg.

In this setting the sample mean, 2, = ,ll (Z1&- & Zy), will be a fuzzy estimator of

~ 1 & )
E(2°) and the sample variance, 6% = Y D% (2, 2 ), will be the analogue real-
Toong
valued estimator of Gﬁf
To test the considered null hypothesis the following statistic is proposed:

vn (6% —og)

(13 mnra-a)

i=1

T, =
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The properties of the support function and the metric Dg guarantee (see [13])) that

{vn (3 -ad)} 2w (0.E([D}(2 E(2) -3 ])).
In addition, it can be proved (see [13]]) that

1Z 9 \2 as.

> (Dk (25270 ~6%) == E([Dd(2.E(2) -0 ]?).
=1
Z
Therefore, {T,}, — A4(0,1).
In this way, if the null hypothesis Hy holds then the test statistic 7, is asymptotically

normal.

On this basis, the testing procedure with asymptotic significance level o can be writ-
ten as follows:

Asymptotic testing procedure:

a) Two-sided test

To test the null hypothesis H : O'V%[ = 0'3 against the alternative hypothesis H; :

0% # 0§ , Hy should be rejected whenever |T;,| > Z(1—a)/2» Where z(;_g) 5 is the

[(1— a)/2]-quantile of the distribution N(0, 1). The p-value of this test is approxi-

mately given by p =2[1 — @(|T,,|)], where @ is ac.d.f. of ar.v. A47(0,1).

b) One-sided tests
(i) To test the null hypothesis Hy : 62 > o against the alternative  H : 05 <
Gg , Hp should be rejected whenever 7, < z,, wWhere z is the ¢-quantile of
the distribution N(0, 1). The p-value of this test is approximately given by p =
O(T,).

(ii) To test the null hypothesis Hy : 05 < of against the alternative H : 05 > o7 ,
Hj should be rejected whenever T, > zj_q, where z]_, is the (1 — o/)-quantile
of the distribution N (0, 1). The p-value of this test is approximately given by
p=1-0(T,).

4 Simulation Studies

In this section we will show that in order to apply in practice the asymptotic one sample
test for the variance of a FRV using the Dg metric we need at least moderate or large
sample sizes.

We have considered a triangular FRV 2~ with the left spread behaving as the x32
random variable, center varying as the N(1,2) random variable, and the right spread
behaving as the )(82 random variable. In this section, the generalized distance has been
chosen to be the Bertoluzza et al. one [I]] with the Lebesgue measures on [0, 1]. The
variance of 2" is, approximately, Gﬁg = 6.4437, so the null hypotheses we are going
to consider are Hy : Gé; =6.4437,Hy : Gé; > 6.4437 and H,, : Gé; < 6.4437. We have
carried out 100000 simulations of the test (which implies a sample error of 0.002 at
most with a confidence of 95%) using the previous asymptotic testing procedures for
two-sided and one-sided tests at some significance levels (). The results for different
sample sizes n are gathered in Table[]l
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Table 1. Empirical percentage of rejections under Hy

Hy:0% =6.4437 Hy: 0% >6.4437 Hy: 07 < 6.4437
n\100-g 1 5 10 1 5 nw 1 5 10
50 0.3 1.84 530 6.65 13.72 19.56 5.12 10.58 15.63
100 020 239 6.18 430 10.84 1644 3.18 7.84 12.97
500  0.45 3.50 8.08 2.11 7.17 1245 1.50 5.53 10.79
1000 0.56 3.78 837 1.53 629 11.70 1.44 5.59 10.20
5000 0.80 4.67 926 1.27 5.67 10.69 1.07 5.02 10.05
10000 0.84 4.77 945 1.13 557 995 098 494 9.89

Table [I] shows that when n > 1000, the empirical percentage of rejections is quite
close to the nominal significance level. It means that in order to apply the asymptotic
procedure proposed in this communication, large sample sizes are required.

5 TIllustrative Examples

The days of certain month are classified in accordance with their temperature (see [10]).
The classes considered in [10] correspond to linguistic “values” like COLD, COOL,
NORMAL, WARM and HOT. According to this classification, the type of day in a
given area during July could be viewed as a fuzzy random variable .2~ whose values
are the preceding linguistic ones, which could be identified by means of some fuzzy
numbers like those with support contained in [8,40] (measured in °C ). We are going to
described them in terms of triangular fuzzy sets represented in Fig. [l

Example 1. Firstly, we consider the population 2| of the days of July (31 days) during
30 years. Assume that in this period there was 151 COLD, 175 COOL, 199 NORMAL,

; NORMAL
\ cooL WARM
coLp HOT
8 14 19 24 29 34 a0

Fig. 1. The variable temperature at triangular fuzzy regions



Asymptotic Tests for the Variance of a FRV Using the Dg-Metric 145

224 WARM, and 181 HOT days and that a weatherman considers typical a standard
deviation in the “temperature” lower than or equal to 8.66 degrees. Then, to test whether
the standard deviation in £2; satisfies such a condition, we can consider the variance
and the test in Section 3. The estimate of the population variance of 2" in €2y is 8% =
73.8261 and the corresponding p-value is 0.9922, whence the hypothesis of typical
variability cannot be discarded at the usual significance levels.

Example 2. Assume now that the weatherman considers that the deviation in the “tem-
perature” should be equal to 8.66 degrees. We can use again the corresponding test
in Section 3 to obtain a p-value equal to 0.0156. Then the weatherman’s hypothesis
should be rejected at the significance levels 0.05 and 0.1, but it may be accepted at the
significance level 0.01.

6 Concluding Remarks

The main advantage of the asymptotic tests for the variance introduced in this commu-
nication compared with previous works in the literature is that these techniques can be
applied to non-necessary simple FRVs. Moreover, this test can be used for fuzzy data
in .%.(IRP), and not only for fuzzy numbers in .%.(R).

Although this procedure can be easily applied to large samples, the asymptotic results
show that the use of bootstrap techniques for smaller or moderate sample sizes could
be more efficient, as we have proposed in [13]].

In addition, the statistic proposed in this communication can be compared with the
classical one (established in terms of a quotient instead of a difference as we proposed
here) in order to analyze similarities and differences.

The theoretical results developed previously are mainly focussed on the significance
level (type I error), so an interesting open problem in connection with this subject is the
study of the power function (type II error) associated with the test in order to establish
its capability. We are currently working on this point as well as on the problem of test-
ing the equality of the variances of two or more FRV’s.

Acknowledgement. The research in this paper has been partially supported by the
Spanish Ministry of Education and Science Grant MTM2006-07501. Its financial sup-
port is gratefully acknowledged.
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Abstract. A new measure of skewness for real-valued random variables based on fuzzy tools
has been recently introduced. The measure is derived from certain fuzzy representations of real-
valued random variables which can be used to characterize the distribution of the original vari-
ables through the expected value of the ‘fuzzified’ random variables. In this communication, the
empirical behaviour of an asymptotic testing procedure for the symmetry of real random variables
based on this approach will be examined by simulating different distributions. Some advantages
of the proposed test will be illustrated by means of these simulations.

1 Introduction

In [8] and [3]] it was shown the possibility of testing about the goodness-of-fit and the
equality of distributions of real-valued random variables through some testing proce-
dures about fuzzy expected values of certain fuzzifications. Specifically, it was shown
that this approach presents some advantages; among them, a good average empirical be-
haviour in comparison with the usual traditional techniques (like the y?, Kolmogorov-
Smirnov, and so on).

On the other hand, a new skewness measure based on the fuzzifications in was
proposed in [7]. In this communication, the aim is focused on the empirical analysis of
an asymptotic testing procedure concerning this new measure.

The most commonly used tests for symmetry about a known value for continuous
univariate distributions are based on either linear rank statistics (see [12]], [6]), or some
empirical distribution/density function estimators (see [2], [15]). On the other hand,
some tests based on the likelihood ratio are available for discrete distributions (see [3])).
It should be noted that most of these tests are not consistent against any nonsymmet-
ric alternative, although they are asymptotically suitable for detecting alternatives in
particular families of distributions.

The asymptotic test that will be empirically analyzed in this communication is valid
for continuous and discrete distributions, can be used under very mild conditions and is
consistent against any nonsymmetric alternative (see [11]]). We will show that moder-
ate/large sample sizes are required to obtain suitable empirical sizes and that the asymp-
totic power is similar or better than the corresponding to that of other methods in many
cases.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 147 2008.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2008



148 M.A. Lubiano, A. Colubi, and G. Gonzdlez-Rodriguez

Since the approach is based on the expected value of a fuzzy random variable, in
Section [2l we include some preliminaries concerning these random elements and the
characterization of real distributions through a fuzzy set. In Section[3lwe will present the
measure of the symmetry of a random variable about a known value. The performance
of the test will be illustrated with some simulation studies in Section [l Finally, some
relevant conclusions and future directions related to the study developed in this paper
will be commented.

2 Preliminaries

We will consider the class .Z.(R), which contains fuzzy sets U : R — [0, 1] whose a-
levels are nonempty compact intervals of R, that is, Uy, € J#:(R) forall & € [0, 1], where
Uy ={xeR|U(x) > a}) forall a € (0,1], and Uy is the closure of the support of U.
Zadeh’s extension principle [I7] allows us to endow the space %, (R) with a sum and a
product by a scalar satisfying that

(U+V)a :Ua+Va:{u+v|u€Ua,v€Va}7 (AU)(X:AUO( :{AM|MEU(X}

forall U,V € Z#.(R), A € Rand a € [0,1]. The space (.Z.(R),+,-) is not linear.

Z¢(R) can be embedded onto a convex cone of the squared integrable functions
Z({-1,1} x[0,1]) by means of the support function (see [13]], [4]]). The support func-
tion of U € Z(R) is defined so that sy (u, &) = sup,,cy, (u,w) forany u € {—1,1} and
o € [0, 1], where (-,-) denotes the usual inner product in R.

For different statistical studies concerning imprecise random elements, the distance
Dk introduced by [[14] is especially valuable and easy to handle (see, for instance, [10]).
The Dg-distance between two fuzzy numbers U,V € .Z.(R) is defined by

Dk (U,V)]* = (sy — sy, su — sv)k

e (@) =5v(000) (03 8) = sv(v.B) K (.1, B)
where K is a positive definite and symmetric kernel. Thus D is in fact a generic L,
distance on the Banach space .2’ ({—1,1} x [0, 1]).

Fuzzy random variables (see [16]) were introduced to model random mechanisms
leading to imprecise values which are modelled by means of fuzzy sets. In this setting,
the fuzzy expected value plays the usual role of a central summary measure.

Given a probability space (Q,<7,P), 2 : Q — Z.(R) is a Fuzzy Random Variable
(FRV) (in Puri & Ralecu’s sense, 1986) if the a-level mappings 25, : Q — J#.(R), are
random sets for all o € [0, 1], that is, Borel-measurable mappings when the Hausdorff
metric dy is considered on % (R). This is equivalent to define an FRV as a Dg-Borel
measurable mapping on .%.(R).

If an FRV 2" is integrably bounded (that is, max{inf 2,sup 2o} € L' (Q,.%, P)),
its expected value (or mean) is the unique E(2°) € Z.(R) such that (E(2)) =
Aumman’s integral of the random set 2, = [inf Zy,sup Zy] for all o € [0,1]

(see [16]).
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In 3] it is shown that when a real-valued random variable is transformed into a fuzzy-
valued one by simply considering certain triangular numbers centered on the original
values, the expected value of the obtained fuzzy random variable captures all the in-
formation of the original distribution whenever the random variable takes at most 4
different values. This result is used to make inferences about these random variables
with good results. However, in order to establish the characterization for general distri-
butions, more complex fuzzy sets than the triangular ones should be considered. On the
basis of this idea, a family of interesting fuzzy representations is proposed in [8].

Consider the mapping Y© : R — .Z.(R) which transforms each value x € R into the

fuzzy number whose a-level sets are (Y“(x)) , =

[0 = (1= 0100, fio(x) 4 (1 — @) /105

for all o € [0,1], where f; : R = R, fr: R — R, fr(x) < fr(x) for all x € R, and
hy : R — (0,4-90), hg : R — (0, +o0) are continuous and bijective. The fuzzification y©
can be seen as a modification of a triangular one in which different degrees of curvature
for the infimum and supremum functions are allowed. The curvature will entail different
shapes for the characterizing fuzzy set depending on the distributions.

In [8] it is proved that if X : Q — R is a random varlable and f1(X), fr(X) €
L'(Q, 4/, P), then the function Gx : R — [0, 1] such that Gx(r) = E (y* o X | P) () for
all 7 € R can be interpreted as a [0, 1]-valued characteristic functwn associated with
the distribution of the random variable X. In other words, E (Y o X |P) = E (¥ oY | P)
if and only if X and Y are identically distributed.

3 Statistical Inferences on a Skewness Measure of RVs

A random variable X : 2 — R is symmetric about a known center 6 € R if, and only
if, X — 0 and 6 — X are identically distributed, that is, F (6 —x) = 1 — F(6 + x) where
F denote the cumulative distribution function.

The above characterization of the symmetry of a random variable X can be ex-
pressed in terms of the characterizing fuzzy representation introduced by [8] as fol-
lows: if f1(X —6),/L(0 —X), fr(X — 6),fz(60 —X) € L'(Q,/,P), we have that X
is symmetric about 6 if, and only if, E(y“ o (X — 0)) = E(y“ o (6 — X)) and hence

D [E(F o (X~ 0)),E( o (6-X))| 0.

Intuitively, the greater this distance the lower the symmetry of X. Thus, in order to
quantify the degree of skewness of X about 8 we consider the Y -skewness measure
about 0 defined in [7] as

ke(X,0) = (DK [E(;Fo (X—0)),E (Yo ((-)—X))D2.

Under the above conditions, if we consider a simple random sample (Xi,...,X,) ob-
tained from X, the analogue estimator of k,c (X, 6) given by

K:(x,0) = [De (1o (X = 0], [ o (0-x), )|
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1 n
where [y oX], = z 7“0 X;, has been proved to be asymptotically unbiased and con-
=
sistent (see [L1]]).
On the other hand, testing the null hypothesis Hj : X is symmetric about 6 is equiva-
lent to testing whether the FRVs 7 o (X — 0) and y© o (6 — X) have the same expected
value or not, that is,

H():E(yco(X—G)> :E(;Fo(e—x)) vs. Hy ;E(;Fo(x—e)) ;éﬁ(fo(e—x)), (1)

i.e.,
H() : kyc(X,O) =0vs. H] :kyc(X79) 7&0

provided that k,(X, 0) exists.

In the following asymptotic approach to test the symmetry of X about 6 has
been stated. Let (X', ...,X,,) with m € N large enough be a (re-)sample obtained from
(X17...7Xn):

In testing () at the nominal significance level ¢ € [0, 1], Hy should be rejected
whenever

T = \/nRic(X.0) = VnDx ([0 (X~ 0)],.[1 (0~ X)), ) > 2.

where z4 is the 100(1 — ¢) fractile of the distribution of the statistic

T = [B] = vinDx (10 (6~ )], + o (6 - X)),
[0 (0= X)), +[Fo(x~0)],)

The distribution of the statistic 7,,, can be approximated by MonteCarlo method in
order to compute the p-value of the test.

Remark 1. Note that if n = m the asymptotic test for symmetry is equivalent to use a
bootstrap technique. The empirical conclusions obtained about the test of equality of
(fuzzy) means values of two FRV measured on the same population in [9] indicate that
the bootstrap approach may be more suitable than the asymptotic one for small and
moderated sample sizes.

In the next section, we will examine the empirical behaviour of the proposed test with
different discrete/continuous and symmetric/asymmetric distributions and we will com-
pare this test with other approaches in the literature.

4 Simulation Results

Each simulation is the result of 10,000 iterations of the test at a nominal significance
level .05. We have considered both the asymptotic and the bootstrap version of the
test. The number of bootstrap replications has been 1000, and we have considered m =
10,000 in the asymptotic case.
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The Dg-distance considered in the simulations is the (W, ¢)-distance introduced by
[1]] where W and ¢ have been chosen to be the Lebesgue measure on [0, 1].
A useful choice of characterizing fuzzy representation is the one determined by

fr(x) = fr(x) =0,

ifx>0
hL(x): 1+x

1—x ifx<O0
and

hg(x) forall xe R

1

hi.(x)
This choice provides us with fuzzy sets quite similar to triangular ones, the 1-level set is
the singleton {0}, and it presents a convex curvature in the negative part and a concave
one in the positive one.

Example 1. We have considered test for symmetry about the mean value of different
symmetric distributions: Normal, Cauchy, ¢ Student and binomial.

Table [Tl summarizes the obtained results for the percentage of rejections at the nominal
significance level .05 and sample sizes of n = 20, 100. On the basis of these simulations,
we get that the behaviour is very similar for all distributions. The bootstrap technique
is much more accurate for the small size and it is conservative. The results are more
similar as the sample size increases.

Example 2. In Table [2] the evolution of the power of the test for different degrees of
asymmetry is shown. We have considered the normal distribution N(4,1) as a case of
symmetric distribution, a xf as a skewed distribution, and a mixture of the previous
distributions with mixing proportion ¢ = .5 as an intermediate situation. The expected
value of the three variables is 4, thus we will focus on the symmetry about 6 = 4.

Table [2| shows that the power of test (i.e. the percentage of rejections at the nominal
significance level .05) is higher for more asymmetric distributions and it increases as
the sample size does.

Example 3. In this example we compare our approach to test the symmetry of random
variables with the results for other methods given in [13]]. The sign test (denoted by

Table 1. Empirical percentage of rejections under Hy at significance level oo = .05

n=20 n=100
Distribution Hy  Asymptotic Bootstrap Asymptotic Bootstrap
N(0,1) 0=0 6.98 4.34 5.24 4.77
Cauchy 60=0 7.04 4.67 5.33 491
13 0=0 7.11 4.56 5.06 4.76
B(5,0.5) 6=25 7.46 4.28 5.15 4.89
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Table 2. Empirical percentage of rejections under Hy at significance level oc = .05

n=20 n =100
Distribution Asymptotic Bootstrap Asymptotic Bootstrap
N(4,1) 7.33 4.69 5.24 4.87
.5-mixture 10.03 6.47 15.16 14.09
xf 13.87 8.41 32.44 30.99

N), the signed rank test (7), and the test (/,) based on density estimates studied in
which has good performance for some multimodal densities will be considered. We
have focused on the normal distribution, the ¢-distribution with 3 degrees of freedom
and some k-mixtures of normal distributions denoted by M (k, i) whose densities are

lkl

Zd) —ip+(k=1)p/2—m)

where ¢ denotes the standard normal density.

All the distributions considered here are symmetric about 6 = 0, however, in order
to establish the comparisons w.r.t. the power, we have also tested the symmetry about
60 =0.1and 6 =0.5.

TableBlshows the obtained percentage of rejections at the nominal significance level
.05 and sample size n = 100. The test considered in this communication has better
power than the other ones in the case of normal distributions, and a similar power with
other unimodal densities as ¢-distributions. However, for multimodal distributions, it
seems that a better option can always be found, namely, the signed rank test for M(3,3)
and I, for M(3,5). It should be noted that all this preliminary results have been made

Table 3. Empirical percentage of rejections under Hy at significance level oo = .05

N(0,1) f3
6 N T L ke N T L ke
0 561 49 502 524 579 5.11 4.85 5.06
0.1 13.72 15.94 11.22 16.89 12.65 12.73 10.45 13.24
0.5 97.90 99.75 98.38 99.83 95.17 97.01 94.44 96.72

M(3,3) M(3,5)
6 N T L ke N T I ke
0 547 496 413 552 548 495 498 525
0.1 643 638 479 6.54 643 6.03 6.66 6.34
0.5 28.37 43.09 32.90 34.24 26.92 32.76 79.18 19.04
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for a very particular choice of fuzzification, and other fuzzifications should be analyzed
to verify its behaviour in these situations.

5 Concluding Remarks

In this communication some empirical results concerning a new test for symmetry based
on fuzzy tools have been shown. The test can be applied for both continuous and dis-
crete distributions under mild conditions and, on the contrary to what happens with
most of the usual procedures, it is consistent against any nonsymmetric alternative. The
statistic depends on the choice of a fuzzification within a family. A simple fuzzifica-
tion has been chosen in this preliminary study. The simulations indicate that the test is
suitable for the usual uni-modal distributions, however there are better options for some
multimodal ones. Further studies concerning other fuzzifications, families of distribu-
tions, and power against particular alternatives are currently being developed.

Acknowledgement. The research in this paper has been partially supported by the
Spanish Ministry of Education and Science Grant MTM2006-07501. Its financial sup-
port is gratefully acknowledged.
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Fuzzy Kendall 7 Statistic for Autocorrelated Data

Olgierd Hryniewicz and Anna Szediw

Systems Research Institute, Polish Academy of Science, Warsaw, Poland

Abstract. Kendall’s 7 statistic has found many practical applications. Recently, it has been pro-
posed by Hryniewicz and Szediw as the basis for the Kendall control chart for monitoring autocor-
related production processes. They have shown that this chart has good statistical characteristics
only for large samples. Unfortunately, in such a case existing algorithms for the calculation of
the fuzzy Kendall’s 7 statistic are not sufficiently effective. In the paper we investigate a simple
heuristic algorithm for the calculation of fuzzy Kendall’s 7 that makes the implementation of the
proposed chart applicable in statistical quality control.

Keywords: Time series, Fuzzy data, Kendall 7.

1 Introduction

Statistical data presented in a form of time series are usually either autocorrelated or in-
terdependent in a more complicated way. The existence of such dependencies may make
the statistical analysis of such data much more difficult. In some applications, how-
ever, such time-related dependencies are not frequent, and much simpler statistical tools
are required. For example, in statistical quality control it is usually assumed that con-
secutive observations of monitored production processes are independent. When this
assumption is true, simple statistical methods - which may be used even by workers -
are sufficient for the control of a process. However, when data observed from a pro-
cess are dependent, statistical analysis becomes very complicated. As a matter of fact,
shop-floor practitioners are usually unable to work with autocorrelated data without an
assistance of specialists. Moreover, in many cases it is necessary to use specialized soft-
ware. Therefore, there is a practical need to detect autocorrelation in data as quickly as
possible. Statistical tools available for such analysis are available, but generally they
have been developed for dealing with normally distributed autoregression processes. In
practice, however, we usually do not know whether the investigated process can be de-
scribed by the normal autoregressive model. Thus, there is a need to develop a simple
(for practitioners) non-parametric (distribution-free) tool that would be useful for the
detection of autocorrelation in data. Such a tool - a Kendall control chart - has been
proposed by Hryniewicz and Szediw [4]. The generalization of the Kendall control
chart, when observed data are fuzzy, has been introduced recently by Hryniewicz and
Szediw [3]. This statistical procedure is based on the fuzzy Kendall statistic which has
been originally introduced by Hébert et al. [2] and Denceux et al. [1]] who considered it
as a statistic based on fuzzy ranks.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 155— 2008.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2008
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The main problem with practical implementation of the fuzzy Kendall control chart
is computational one. The algorithms proposed by Hébert et al. [2] (exact) and Denceux
et al. (approximate) are, according to those authors, effective only for relatively
small samples (not larger than 20). However, investigations of the crisp version of the
Kendall control chart presented in [4] have revealed that the required sample sizes
should be much larger (at least 50 observations). Therefore, there is a need to find a
fast approximate algorithm which may be useful for the analysis of such large sam-
ples. In the second section of the paper we propose a simple heuristic algorithm that
might be useful for a fast approximate computation of the membership function of the
fuzzy Kendall 7 statistic. Some properties of this algorithm are investigated in the third
section of the paper.

2 Kendall Test for Autocorrelated Fuzzy Data

LetZ,2,,...,7Z, denote a random sample of n consecutive process observations. These
observations can be transformed into two-dimensional vector (X;,Y;), where X; = Z; and
Yi=Z;1 fori=1,2,...,n— 1. Then, the Kendall’s T sample statistic which measures
the association between random variables X and Y is given by the following formula
4 n—1
W, VL (1)
where
card{(Xj,Yj) :Xj < X[,Yj < Yl} .

Vi= di=1,..

n—2
In this paper we assume that our observations are imprecise, and may be modeled by
fuzzy random variables, understood as fuzzy perceptions of ordinary random variables.
It means that there exist non-fuzzy (crisp) original values of measured quantities, but
due to the imprecise character of measurements they are perceived as imprecise fuzzy
values. In such a case we can use a fuzzy version of the Kendall’s 7 statistic, originally
introduced in the papers by Hébert et al. and Denceux et al. [1]], who also proposed
useful methods for the calculation of its membership function.

In the case of statistical data given in a form of a time series we may use the fuzzy
Kendall 7 for an autocorrelated time series originally proposed in Hryniewicz [3]] for the
analysis of serial fuzzy binomial data. In [3] a more general case has been considered
where the series of consecutive observations is described by a vector of fuzzy data
(Z1,25,...,Z,). In order to compute the fuzzy version of the Kendall’s 7 statistic for
the considered fuzzy time series let us assume that each fuzzy observation is described
by a membership function u;(z), i =1,...,n.

Let us notice now that each fuzzy data point Z; is completely defined by the set of its
o-cuts [ZS‘L,Zf‘U}, 0 < o0 < 1. Hence, the fuzzy equivalent of V; given by (@), denoted
by V,, is defined as a convex hull of the set of its o-cuts [V,O,‘~7 V1,0 <o < 1, where

n—1. 2)

Ve min CardJ-?gi{(ZijH) 12 <Zi,2j4+1 < Zi+1}
BT ez, 72, n—2

i=1,...n

3)
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and

VI — max Cardj7é[{(Zj,Zj+1) 125 < ziyzjy1 < Zit1} )
W eize 7)) n—2

1
i=1,...,n

fori=1,...,n— 1. Having the a-cuts [V\7,V,%]. 0 <a <1 foralli=1,....,n we
can straightforwardly calculate the a-cuts of the fuzzy Kendall’s 7 statistic [, %],
0 < a <1, and thus obtain its membership function.

The calculation of the membership function of the fuzzy Kendall’s 7 statistic may
be, in a general case, a difficult and computationally intensive task. When the num-
ber of fuzzy observations in a whole set of observations is small we can use a general
methodology proposed by Hébert et al. for the exact calculations of the member-
ship function of the fuzzy Kendall statistic. Another possibility is to use algorithms of
stochastic optimization based on the Monte-Carlo simulations, such as an algorithm
proposed in Denceux et al. [1]]. However, for the particular cases, such as that of the
fuzzy Kendall control chart, when the number of analyzed fuzzy observations may be
quite large, these general methods suffer from the “curse of dimensionality”, and can-
not be efficiently used in practice. Therefore, there is a need to design a much faster
approximate algorithm that might be used in such cases (especially in cases when there
is a need to compute many ¢-cuts of the membership function of 7). First such algo-
rithm has been proposed in [5]]. However, the results of extensive simulations show that
it has to be improved. In this paper we present the result of such improvement.

The construction of the optimization algorithm will be apparent if we consider the
influence of the pattern of consecutive observations on the value of Kendall’s 7. In
Figure [Tl we present a possible crisp sample with individual points belonging to re-
spective a-cuts of fuzzy data points which leads to the maximum value of Kendall’s 7,
namely 1. The maximal value of the Kendall’s 7, equal to 1, is attained when consecu-
tive points form a monotonically increasing or decreasing series.

. ——_

\<‘\_\/ ——in
, /\ \\\\\ AN e
AR 5 6 7 8 9 10 M 12 13 14 15 16 17%3%94;0
, \/\\/{/\\
, \Y/'\\/

Fig. 1. Possible configuration of observations of a time series for the maximum value of the
Kendall’s 7
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In general, for the given value of o the largest value of T should be attained for a
series of values ziL IS [zg‘L,zﬁ‘U}, i=1,...,n,0 < o <1 that form a monotone (or nearly
monotone) increasing (decreasing) series. To find such a series we can start with the
series 77 =z, i=1,...,n,0 < o0 < 1. In the next steps we can increase certain values
of this series tkeeping in mind that they have to belong to their ¢c-cuts) in order to arrive
at a monotone (or nearly monotone) increasing series. The same procedure should be
repeated in search of a monotone (or nearly monotone) decreasing series. In this case
we can start with the series z; = zg‘U, i=1,...,n,0 < a<1,and in the next steps we
should decrease certain values of this series in order to arrive at a monotone (or nearly
monotone) decreasing series.

Let us describe this heuristic algorithm in a more formal way. For notational conve-
nience we omit the symbol o which refers to a chosen a-cut. The upper limit of the
a-cut for the fuzzy value of Kendall’s 7 is computed according to Algorithm 1.

Algorithm 1
begin
set € to a small value
k=0
Ty = Z+1L

loopl: k=k+1

if [(zks1, 2 2g) or (zr1u <zg)] then
if (aksrL = 2) | then 7y =z L
if (aksru <zp)| then iy = Z1u

elsezy | =z +¢€

if k<n—1gotoloopl

use (z},...,z,) forthe calculation of T

k=0

Yy = UU

loop2: k=k+1
if [(zk1 = 7g) or (st <zp)] then
if (a1, > 2) | then iy = 2k v
if [(zrr1v <zp)] then Z = zks1L
elsezp | =z —¢€
if k=n—1stop
else goto loop2

use (z5,...,zy) forthe calculation of Ty »
Ty = max(Ty,1,T,2)
end

Now let us consider the problem of finding the minimal value of 7. In Figure 2] we
present a possible crisp sample with individual points belonging to respective o.-cuts
of fuzzy data points which leads to the minimum value of Kendall’s 7, namely -1. As
we can see, this minimal value of the Kendall’s 7 is attained when consecutive points
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——MIN
—— MAX
== MIN-TAU

Fig. 2. Possible configuration of observations of a time series for the minimum value of the
Kendall’s 7

numbered by even numbers form a monotonically decreasing series and simultaneously
consecutive points numbered by odd numbers form a monotonically increasing series,
or vice versa. In both cases the increasing and decreasing series should not intersect.

In general, the lowest value of 7 should be attained for a series of values z¥ €
[zﬁ‘L,zE‘U], i=1,...,n, 0 < o <1 that form an alternating series of values such that
the odd (even) observations form a decreasing (or nearly decreasing) series, and the
even (odd) observations form an increasing (or nearly increasing) series. To find such a
series we can start with the series z{'; ,z9';;,25'; ... or with the series z{';;,2z5', , 25, - -
In the next step we can increase certain values initially defined by the lower limits of
the a-cuts and decrease certain values initially defined by the upper limits of the o-cuts
in order to arrive at an alternating (or nearly alternating) series. The lower limit of the
a-cut for the fuzzy value of Kendall’s 7 is computed using an algorithm which is simi-
lar to the algorithm presented above. The formal description of this heuristic algorithm,
which too long for the presentation in this paper, can be found in [3]].

The application of both algorithms does not guarantee that the computed pair (7., Ty )
is the true o-cut for the fuzzy value of the Kendall’s 7. However, in case of large sam-
ple sizes it gives a quite good approximation. It may also serve for the generation
of the starting sequence of ranks in the algorithm proposed by Denceux et al. [1]]. In
the next section we present some results of simulation experiments which support this
claim.

3 Analysis of the Accuracy of the Calculated Minimal and
Maximal Values of Kendall 7

The accuracy of the proposed heuristic algorithms can be precisely evaluated only
in case of small samples. However, in certain applications of the Kendall’s 7 large
and very large samples are required. In such a case we are not able, as for now, to
calculate exact values for the limits of 7. Therefore, we have decided to compare
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the results obtained by the application of our approximate algorithm with the results
obtained in a simple simulation experiment. In our simulation experiment fuzzy data
were represented by their o-cuts. For all simulated observations their a-cuts were given
as intervals [X —w, X + w], where random values X were generated from a normal au-
toregressive process characterized by the mean value equal to 0, standard deviation
equal to 1, and the autocorrelation coefficient p. In the first of our experiments we have
found that the intervals calculated using the proposed heuristic algorithm are on average
better than the intervals calculated using the simulation algorithm proposed in [1]] when
we used the starting point representing the mid-points of observed intervals. In the next
experiment we compared our algorithm with the algorithm based on random generation
of original (crisp) observations. In our experiment for each fuzzy sample in the inner
simulation loop we simulated 100 000 crisp samples in such a way, that each point of
the simulated crisp sample was chosen randomly from the a-cut of the respective fuzzy
observation. In every case the set of results simulated in the inner loop was extended
with the result obtained using our heuristic algorithm, i.e. the result of 100 000 simula-
tions entered the average computed in the outer loop of the simulation experiment only
in this case when it has been better than our approximate solution. In the simulation ex-
periment we varied the values of the autoregression coefficient p, sample size n, and the
width of the ¢-cut. For each considered combination of these parameters we simulated
1000 fuzzy random samples.

From the results of those simulation experiments we have found that in case of the
upper limits of a-cuts for sample sizes equal or larger than 50 items the random search
for better solutions with the help of 100 000 simulations does not provide better results
than the proposed heuristic algorithm. Even if we find a better solution, the difference
between this solution and our approximate solution is very small. For sample sizes
smaller than 50 this difference may be practically significant. Unfortunately, we have
not obtained such good approximations for the lower limits of ¢-cuts.

Very promising results have been observed when we used vectors of ranks corre-
sponding to the lower and upper limits of the calculated heuristic intervals as the initial
vectors for the simulation of linear extensions of partial orders generated by observed

Table 1. Comparison of intervals computed using heuristic and 2 simulation methods

p method low. limit up. limit piMin piMax

hint  0,2358 0,7501 - -
0,8 linext 0,1603 0,7518 95,2 1838
irawd 0,2193 0,7501 38,0 0,0

hint -0,1607 0,2635 - -
0,0 linext -0,2174 0,2956 98,8 97,6
irawd -0,2084 0,2641 80,3 33

hint -0,6919 -0,2503 - -
-0,8 linext -0,7087 -0,2193 76,5 93,0
irawd -0,7109 -0,2379 48,1 249
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fuzzy ranks [[1]]. In Table [[l we present the comparison of intervals computed this way
(linext) with the heuristically computed intervals (hint), and intervals computed using
raw Monte Carlo data according to the algorithm described above (irawd). In the exper-
iment we simulated 1000 fuzzy (interval-valued) vectors (with rather imprecise data),
and in each case we performed 10° runs of the algorithm that simulates linear extension
of ranks, and 500 000 runs of the algorithm that generates original values of observa-
tions. In the fifth (piMin) and sixth (piMax) column of Table [[lwe present percentages
of cases when we obtained better interval limits by combining our heuristic algorithm
with either the simulation of linear extensions of ranks or the simulation of original
values of observations for lower and upper limits, respectively.

From the results presented in Table[Tlwe see that neither of the compared algorithms
is consistently better than the other one. We have to keep in mind, however, that these
results are based on a relatively small number of simulations (1000).

4 Discussion

The fuzzy version of the Kendall’s 7 statistics considered in this paper seems to be a
useful statistical tool for practitioners who have to look for dependencies in time se-
ries. However, due to the imprecise character of data necessary computations become
prohibitively time consuming. The proposed heuristic algorithm makes necessary com-
putations fast and sufficiently accurate in case of the upper limits of the o-cuts of the
Kendall’s 7 statistic. These limits may be improved by combining our algorithm with
additional simulations, but the improvement does not seem to be very significant, es-
pecially for positively correlated observations. In case of lower limits significantly bet-
ter results have been obtained when we use the hybrid algorithm which combines the
heuristic algorithm proposed by Hryniewicz and Szediw [3] and the Monte Carlo algo-
rithm proposed by Denceux et al. [T]]. The results presented in Table [l show, however,
that further investigations have to be done in order to improve the accuracy of approx-
imations. In the applications of the fuzzy Kendall’s 7 in quality control this accuracy
is needed for the investigation of an interesting and important problem which is still
waiting for its solution, namely the influence of fuzziness of data on important charac-
teristics of a control chart, such as e.g. the average run length ARL (the average time to
signal).
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Abstract. This paper addresses classification problems in which the class membership of
training data is only partially known. Each learning sample is assumed to consist in a feature
vector and an imprecise and/or uncertain “soft” label m; defined as a Dempster-Shafer basic
belief assignment over the set of classes. This framework thus generalizes many kinds of
learning problems including supervised, unsupervised and semi-supervised learning. Here, it
is assumed that the feature vectors are generated from a mixture model. Using the General
Bayesian Theorem, we derive a criterion generalizing the likelihood function. A variant of the
EM algorithm dedicated to the optimization of this criterion is proposed, allowing us to compute
estimates of model parameters. Experimental results demonstrate the ability of this approach to
exploit partial information about class labels.

Keywords: Dempster-Shafer theory, Transferable Belief Model, Mixture models, EM algorithm,
Classification, Clustering, Partially supervised learning, Semi-supervised learning.

1 Introduction

Machine learning classically deals with two different problems: supervised learning
(classification) and unsupervised learning (clustering). However, other paradigms exist
such as semi-supervised learning [@], and partially-supervised learning [EL .o, |ﬁ|].
In the former approach, one use a mix of unlabelled and labelled examples, whereas
in the latter, one can define constraints on the possible classes of the examples. The
importance for such problems comes from the fact that labelled data are often difficult
to obtain, while unlabelled or partially labelled data are easily available.

The investigations reported in this paper follow this path, in the context of belief
functions. In this way, both the uncertainty and the imprecision of class labels may be
handled. The considered training sets are of the form X* = {(xy,my),.. llﬁxN, my)},
where m; is a basic belief assignment, or Dempster-Shafer mass function [14] encoding
our knowledge about the class of example i. The m;s (hereafter referred to as “soft
labels”) may represent different kinds of knowledge, from precise to imprecise and
from certain to uncertain. Thus, previous problems are special cases of this general
formulation. Other studies have already proposed solutions in which class labels are
expressed by possibility distributions or belief functions [Ia, ]. In this article, we present
a new approach to solve learning problems of this type, which completes a preliminary
study by Vannoorenberghe and Smets [21]]. This solution is based on mixture models,
and therefore assumes a generative model for the data.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 165 2008.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2008
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This article is organized as follows. Background material on belief functions and
estimation of parameters in mixture models using the EM algorithm will first be recalled
in Sections 2 and [3] respectively. The problem of learning from data with soft labels
will then be addressed in Section[4d] through the definition of a learning criterion, and
of an EM type algorithm dedicated to its optimization. Finally we will presented some
simulations results in Section[3l

2 Background on Belief Functions

2.1 Belief Functions on a Finite Frame

The theory of belief functions was introduced by Dempster [@] and Shafer [IEI]. The in-
terpretation adopted throughout this paper will be that of the Transferable Belief Model
(TBM) introduced by Smets [20]. The first building block of belief function theory is
the basic belief assignment (bba), which models the beliefs held by an agent regard-
ing the actual value of a given variable taking values in a finite domain (or frame of
discernment) Q, based on some body of evidence. A bba m® is a mapping from 2¢
to [0,1] verifying ¥ ,com® (@) = 1. The subsets @ for which m?(®) > 0 are called
the focal sets. Several kind of belief functions are defined according to the structure of
focal sets. In particular, a bba is Bayesian if its focal sets are singletons, it is consonant
if its focal sets are nested and a it is categorical if it has only one focal set. Bbas are
in one to one correspondence with other representations of the agent’s belief, including
the plausibility function defined as:

pl% ()= Y m?a), YoclQ. (1)
anw#0

The quantity p/*?(w) is thus equal to the sum of the basic belief masses assigned to
propositions that are not in contradiction with @. The plausibility function associated
to a Bayesian bba is a probability measure. If m® is consonant, then pI? is a possibility
measure: it verifies pl“? (a2 U B) = max(pl** (o), pi**(B)), for all o, B C Q.

2.2 Conditioning and Combination

Given two bbas mlQ and m? supported by two distinct bodies of evidence, we may build
a new bba mlg@2 = mP>@m$ that corresponds to the conjunction of these two bodies
of evidence:
A
migp(@) = Y, mit(e)ms (m), YoCQ. 2)
o Nop=w

This operation is usually referred to as the unnormalized Dempster’s rule or the TBM
conjunctive rule. If the frame of discernment is supposed to be exhaustive, the mass
of the empty set is usually reallocated to other subsets, leading to the definition of the
normalized Demspter’s rule & defined as:

0 ifo=0
miza(@) = § @) o0 6, )

1—mlﬂ@2(@)
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which is well defined provided mlg@2 (0) # 1. Note that, if m$? (or m$?) is Bayesian, then

m?$2(w) is also Bayesian. The combination of a bba m*? with a categorical bba focused
on o C Q using the TBM conjunctive rule is called (unnormalized) conditioning. The
resulting bba is denoted m**(w|ct). Probabilistic conditioning is recovered when m
is Bayesian, and normalization is performed. Using this definition, we may rewrite the
conjunctive combination rule: m?@z(w) =Y acam(0)mi (o|a),Yo C Q, which is
a counterpart of the total probability theorem in probability theory [EL ]. This ex-
pression provides a shortcut to perform marginal calculations on a product space when
conditional bbas are available ]. Consider two frames 2 and ©, and a set of con-
ditional belief functions m®(-|w) for all @ C Q. Each conditional bba m®?(-|w)
represents the agent’s belief on © in a context where @ holds. The combination of these
conditional bbas with a bba m*? on Q yields the following plausibility on O:

pl®(0) =Y m?(w)pl®?6lo), voCo. )

wCQ

This property bears some resemblance with the total probability theorem, except that
the sum is taken over the power set of €2 and not over Q2. We will name it the fotal
plausibility theorem.

2.3 Independence, Continuous Belief Functions and Bayes Theorem

The usual independence concept of probability theory does not easily find a coun-
terpart in belief function theory, where different notions must be used instead. The
simplest form of independence defined in the context of belief functions is cognitive
independence ([@], p. 149). Frames 2 and © are said to be cognitively independent
with respect to pl/*?*© iff we have pI**®(w x 0) = pI (w) pI®(0),Vo C Q,V0 C 6.
Cognitive independence boils down to probabilistic independence when pl?*© is a
probability measure.

The TBM can be extended to continuous belief functions on the real line, assuming
focal sets to be real intervals [19]. In this context, the concept of bba is replaced by
that of basic belief density (bbd), defined as a mapping m® from the set of closed real
intervals to [0, o) such that [ [**m®([x,y])dydx < 1. By convention, the one’s
complement of this integral is allocated to @. As in the discrete case, pI®([a,b]) is
defined as an integral over all intervals whose intersection with [a,b] is non-empty.
Further extension of these definitions to RY,d > 1 is possible and it is also possible
to define belief functions on mixed product spaces involving discrete and continuous
frames.

The Bayes’ theorem of probability theory is replaced in the framework of belief
functions by the Generalized Bayesian Theorem (GBT), [18]. This theorem provides a
way to reverse conditional belief functions without any prior knowledge. Let us suppose
two spaces, 2 the observation space and © the parameter space. Assume that our
knowledge is encoded by a set of conditional bbas m? 1©(.|6;), 6; € ©, which express
our belief in future observations conditionally on each 6;, and we observe a realization
x C 2. The question is: given this observation and the set of conditional bbas, what
is our belief on the value of ©@? The answer is given by the GBT and states that the
resulting plausibility function on @ has the following form:
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pl®' 7 (01x) = pI” P (x]6) = 1 - [T (1= pi”1°(x]6)). ®)
06,0

When a prior bba m(‘? on O is available, it should be combined conjunctively with the
bba defined by (@). The classical Bayes’ theorem is recovered when the conditional
bbas m” 19(.|6;) and the prior bba m{ are Bayesian.

3 Mixture Models and the EM Algorithm

After this review of some tools from belief functions theory, the next part is dedicated
to the probabilistic formulation of the clustering problem in terms of mixture model.
We will therefore present the data generation scheme underlying mixture models and
the solution to parameter estimation in the unsupervised case.

3.1 Mixture Models

Mixture models suppose the following data generation scheme:

e The true class labels {yy,...,yy} of data points are realizations of independent and
identically distributed (i.i.d) random variables Yi,...,Yny ~ Y taking their values in
the set of all K classes %" = {cy,...,cx} and distributed according to a multinomial

distribution .# (1, 7y, ..., k). The m; are thus the class proportions and they verify
Zle 7, = 1. The information on the true class labels of samples coming from such
variables can also be expressed by a binary variable z; € {0,1}X, such that z;; = 1
if y; = ¢, and z; = 0 otherwise.

e The observed values {xj,...,xy} are drawn using the class conditional density in
relation with the class label. More formally, X;,...,Xy ~ X are continuous ran-
dom variables taking values in 2", with conditional probability density functions
f(X‘Y:Ck):f(X;ek), Vke{laaK}

The parameters that need to be estimated are therefore the proportions 7w = (7, ..., 7k)
and the parameters of the class conditional densities 01, ..., 0. To simplify the nota-
tions, the vector of all model parameters is denoted ¥ = (7y,..., 7k, 61,...,0k). In
unsupervised learning problems, the available data are only the i.i.d realizations of X,
X" = {xy,...,xn}, provided by the generative model. To learn the parameters and the
associated clustering, the log-likelihood must be computed according to the marginal
density Zszl e f (xi; 0 ) of X;. This leads to the unsupervised log-likelihood criterion:

N K
L(¥:X")=YIn <z o f (i ek)) . (6)
i=1 k=1

3.2 EM Algorithm

The log-likelihood function defined by (@) is difficult to optimize and may lead to a set
of different local maxima. The EM algorithm 4] is nowadays the classical solution to
this problem. The missing data of the clustering problem are the true class labels y; of
learning examples. The basis of the EM algorithm can be found in the decomposition
of the likelihood function in two terms :
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N K K
e f(xi56)
L(¥:X") £ 0 (£ (xi3.04)) — 1910 , %
Zikgi Zikgl ¢ Sy T f (i3 0)
Q('Pv'lj(@) H(lyj/(q))
with: @ @
T f(xi;0,7
) = By zielxi] =P(za = 1% 9 x;) = "* 0 6,) ®)

SEo i 00)
Such a decomposition is useful to define an iterative ascent strategy thanks to the
form of H. As a consequence of Jensen’s inequality we may write H (¥4 w(@)) —
H(W,¥9) > 0,v¥. Consequently, the maximization of the auxiliary function
@ t) — argmaxy Q(¥,¥) is sufficient to improve the likelihood. Furthermore, be-
cause the sum over the classes is outside the logarithm in the Q function, the optimiza-
tion problems are decoupled and the maximization is simpler. The EM algorithm can be
described as follows. It starts with initial estimates ¥(*) and alternates two steps : the E
step where the #;; are computed according to the current parameters estimates, defining
a new Q function maximized during the M step. Thanks to (Z), this defines a sequence
of parameter estimates with increasing likelihood values. Finally, the mixture model
setting and the EM algorithm can be adapted to handle specific learning problems such
as the semi-supervised [10] and the partially supervised cases (.

4 Extension to Imprecise and Uncertain Labels

4.1 Derivation of a Generalized Likelihood Criterion

Our method extends the approach described above to handle imprecise and uncertain
class labels defined by belief functions. In this section, we shall assume the learning
set to be of the form X" = {(x;,m{),..., (xy,my )}, where each m;” is a bba on the
set % of classes, encoding all available information about the class of example i. As
before, the x; will be assumed to have been generated according to the mixture model
defined in Section[31l Our goal is to extend the previous method to estimate the model
parameters from such dataset. For that purpose, an objective function generalizing the
likelihood function needs to be defined.

The concept of likelihood function has strong relations with that of possibility and,
more generally, plausibility, as already noted by several authors Eg ]. Further-
more, selecting the simple hypothesis with highest plausibility given the observations
X™ is a natural decision strategy in the belief function framework [2]. We thus pro-
pose as an estimation principle to search for the value of parameter y with maximal
conditional plausibility given the data: { = argmaxy pI* (y|X™). The correctness of
the intuition leading to this choice of criterion as an estimation principle seems to be
confirmed by the fact that the logarithm of pI* (y|X™) is an immediate generalization
of criterion (@), and the other likelihood criteria used for semi-supervised learning and
partially supervised learning of mixture model, as shown by the following proposition.

Proposition 1. If the samples {xX,...,xy} are drawn independently according to the
generative mixture model setting and if the soft labels {m,,...,my} are independent
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Jfrom the parameters values, then the logarithm of the conditional plausibility of ‘¥
given X" is given by

i=1

N K
In (pl‘f’(wxi”)) =>In <2 Plik~7'ckf(xi;9k)> +v, ©)
k=1

where the ply. are the plausibilities of each class k for each sample i according to soft
labels m; and v is a constant independent of .

Proof. Using the GBT (@), the plausibility of parameters can be expressed from the
plausibility of the observed values. By making the conditional independence assump-
tion, this plausibility can be decomposed as a product over samples. Using the Total
Plausibility Theorem (@), we may express the plausibility of an observed value as:

pl7ixily) = 3 m*(Cly)pl” 17 (xi|C, ), (10)
ccw

where m”i (.|y) is a bba representing our beliefs regarding the class of example i. This
bba comes from the combination of two information sources: the “soft” label m;” and
the proportions 7, which induce a Bayesian bba m” (-|1). As these two sources are sup-
posed to be distinct, they can be combined using the conjunctive rule @). As m” (-|rr)
is Bayesian, the same property holds for the result of the combination m” (.|y) and we
have m” ({c; }|w) = pli ;. Therefore, in the right-hand side of (I0), the only terms in
the sum that need to be considered are those corresponding to the singletons. Conse-
quently, we only need to express plZil% (x;|cy, y) for all k. There is a difficulty at this
stage, since pl %V/'( |ck, W) is the continuous probability measure with density function
f(x;0;): consequently, the plausibility of any single value would be null if observa-
tions x; had an infinite precision. However, observations always have a finite precision,
so that what we denote by pl%il% (x;|c, w) is in fact the plausibility of a infinitesimal
region around x; with volume dx;; ...dx;, (where p is the feature space dimension).
We thus have 1)1%‘7%'(X,-|ck7 y) = f(x;04)dx;; ... dx;,. Using all this results we obtain
pl? (wX") =TIV, [(Z£_, plamif (xi:0k)) dxi1 ... dx;p] . The terms dux;; can be consid-
ered as multiplicative constants that do not affect the optimization problem. By taking
the logarithm we get (9), which completes the proof. ]

Remark 1. Our approach can be shown to extend unsupervised, partially supervised
and semi-supervised learning when the labels are, respectively, vacuous, categorical,
and either vacuous or certain. This justifies denoting criterion, @) as L(¥,X™), as it
generalizes the classical log-likelihood function.

4.2 EM Algorithm for Imprecise and Uncertain Labels

Once the criterion is defined, the remaining work concerns its optimization. This
section presents a variant of the EM algorithm dedicated to this task. To build an EM
algorithm able to optimize L(¥;X™), we follow a path that parallels the one recalled in
Section At iteration ¢, our knowledge of the class of example i given the cur-
rent parameter estimates comes from three sources: the class label mly of example 7; the
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current estimates 71(?) of the proportions; the vector x; and the current parameter esti-
mate 69, which, using the GBT (Q)), gives a plausibility over %/. By combining these
three items of evidence using Dempster’s rule (3)), we get a Bayesian bba. Let us denote

by tl.(kq) the mass assigned to {c;} after combination. We have

sk pler? f(x;0\9)

Using this expression, we may decompose the log-likelihood in two parts, as in (7).

N K
(@) e plix f (X33 0x)
Dn (7 plis f (x13 01)) £91n (12)
e ; ; ik S e ply f(xi5 01

HM><

P
Xlll

This decomposition can be established thanks to basic properties of logarithmic func-
tions and the fact that 2 = 1. Therefore, using the same argument as for the clas-
sical EM algorithm (Sectlon , an algorithm which alternates between computing
using (II) and maximization of the first term in the right hand side of (I2) will increase
our criterion. This algorithm is therefore the classical EM algorithm, except for the E
step, where the posterior distributions f;; are weighted by the plausibility of each class
During the M step the proportions are updated classically using n(qH N Zl 1 t;k .
multivariate normal densities functions are considered, f(x;0;) = A (x; s, Zi), the1r
parameters are updated using the following equations:

1 N 1 N
w= g S 5= Y- - Y a3)
ity =l Xty i=l

4.3 Comparison with Previous Work

The idea of adapting the EM algorithm to handle soft labels can be traced back to the
work of Vannoorenberghe and Smets , which was recently extended to categorical
data by Jraidi et al. [[12]. These authors proposed a variant of the EM algorithm called
CrEM (Credal EM), based on a modification of the auxiliary function Q('F, (@) ). How-
ever, our method differs from this previous approach in several respects. First, the CrEM
algorithm was not derived as optimizing a generalized likelihood criterion such as (©);
consequently, its interpretation was unclear, the relationship with related work (see Re-
mark [T)) could not be highlighted and, most importantly, the convergence of the algo-
rithm was not proven. Furthermore, in our approach, the soft labels m appear in the
criterion and in the update formulas for posterior probabilities (IT)) only in the form of
the plausibilities pli of the singletons. In constrast, the CrEM algorithm uses the 2171
values in each bba m . This fact has an important consequence, as the computations
involved in the E step of the CrEM algorithm have a complexity in O(2!?1) whereas
our solution only involves calculations which scale with the cardinality of the set of
classes.
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5 Simulations

The experiment presented in this section aimed at using information on class labels sim-
ulating expert opinions. As a reasonable setting, we assumed that the expert supplies,
for each sample i, his/her more likely label ¢; and a measure of doubt p;. This doubt is
represented by a number in [0, 1], which can be seen as the probability that the expert
knows nothing about the true label. To handle this additional information in the belief
function framework, it is natural to discount the categorical bba associated to the guessed
label with a discount rate p; ([@], p- 251). Thus, the imperfect labels built from expert
opinions are simple bbas such that m?” ({cy-}) = 1 — p; for some k*, and m?’ (%) = p;.
The corresponding plausibilities are ply+ = 1 and ply = p; for all k # k*.

Simulated data sets were build as follows. Two data sets of size N € {2000,4000}
were generated in a ten-dimensional feature space from a two component normal mix-
ture with common identity covariance matrix and balanced proportions. The distance
between the two centers was kept fixed at § = 2. For each training sample i, a number
pi was drawn from a specific probability distribution to define the doubt expressed by a
hypothetical expert on the class of that sample. With probability (1 — p;), the true label
of sample i was kept and with probability p; the expert’s label was drawn uniformly in
the set of all class. The probability distribution used to draw the p; specifies the expert’s
labelling error rate. For our experiments we used Beta distributions with expected value
equal to {0.1,...,0.8} and variance kept equal to 0.2.

The results of our approach were compared to supervised learning using the po-
tentially wrong expert’s labels; unsupervised learning, which does not use any infor-
mation on class label coming from experts, and a strategy based on semi-supervised
learning which takes into account the reliability of labels supplied by the p;. This strat-
egy considers each sample as labelled if the expert’s doubt is moderate (p; < 0.5) and
as unlabelled otherwise (p; > 0.5). Figure [1] shows the averaged performances of the
different classifiers trained with one hundred independent training sets. As expected,
when the expert’s doubt increases, the error rate of supervised learning also increases.

N=2000 N=4000

error (%)

Empirical classification error
Empirical classification

Fig. 1. Empirical classification error (%, estimated on a test set of 5000 observations) averaged
over one hundred independent training sets, as a function of expert’s mean doubt and for different
sample size. For all methods, the EM algorithm was initialized with the true parameter values.
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Our solution based on soft labels does not suffer as much as supervised learning and
adaptive semi-supervised learning from label noise. Whatever the dataset size, our so-
lution takes advantage of additional information on the reliability of labels to keep good
performances. Finally, our approach clearly outperforms unsupervised learning, when
the number of samples is low (N = 2000).

6 Conclusions

The approach presented in this paper, based on concepts coming from maximum likeli-
hood estimation and belief function theory, offers an interesting way to deal with imper-
fect and imprecise labels. The proposed criterion has a natural expression that is closely
related to previous solutions found in the context of probabilistic models, and has also
a clear and justified origin in the context of belief functions. Moreover, the practical
interest of imprecise and imperfect labels, as a solution to deal with label noise, has
been highlighted by an experimental study using simulated data.
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Abstract. In this paper, we propose an adaptation of the Parzen Rosenblatt cumulative distri-
bution function estimator that uses maxitive kernels. The result of this estimator, on every point
of the domain of F, the cumulative distribution to be estimated, is interval valued instead of
punctual valued. We prove the consistency of our approach with the classical Parzen Rosenblatt
estimator, since, according to consistency conditions between the maxitive kernel involved in the
imprecise estimator and the summative kernel involved in the precise estimator, our imprecise
estimate contains the precise Parzen Rosenblatt estimate.

Keywords: Parzen Rosenblatt, Cumulative distribution, Imprecise functional estimation, Possi-
bility distribution, Choquet integral.

1 Introduction

The probability density function (pdf) f and the cumulative distribution function
(cdf) F of a random variable X on £ C R are fundamental concepts for describing
and representing real data in statistics. These representations are linked by Vo € €,
F(®w) = [®, f(u)du. When they cannot be specified, estimates of these functions
may be performed by using a sample of n observations independent and identically
distributed (X1, ...,X,) of X. These observations are summarized by the empirical dis-
tribution defined by ¢, = rll T 5Xw where 5x, is the Dirac distribution on X; or by
the empirical cumulative distribution function defined on Q2 by E,(x) = rll Y lix<ys
where 14 is the characteristic function on A.

Different methods have been proposed in the literature for estimating or manipu-
lating the pdf or the cdf underlying a sample of observations. The Parzen Rosenblatt
method is one of the most efficient non-parametric techniques [10, [IT]]. It belongs to
the class of functional estimation methods.

Generally speaking, functional estimation [1]] consists of estimating, for all x € Q,
a function & : 2 — R from another function g : 2 — R related to 4. The nature of
this relation between s and g can take different form: g can be replaced by a sequence
(gn)n>0, such that g, — h, when n — o0, h can be a modification of g (or & is a
filtered signal obtained from the signal g), or g can be a discretization of 4 that has to be
recovered by interpolation. So, the estimate of 4, at x € €2, is function of g and x, which
can be expressed as /i(x) = (g, x).
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For the Parzen Rosenblatt pdf estimator, the function g is the empirical distribution
en, h is the pdf to be estimated f. The estimator 4 is defined for all x € €2, by:

W) = fo, (0 = | 3 Rar— X0, n
i=1

with K the kernel used to perform this estimate and A the bandwidth. Note that x4 (x) =
i k(3 ). When g is the empirical cumulative distribution E,, the cdf F is the function /

to be estimated and the estimator / is defined for all x € Q, by:

R(x) = F, (x) = [ 1 Foy () 2)

In the Parzen Rosenblatt like methods, and more generally in all the functional esti-
mation methods, the particular role of the kernel is to define a neighborhood that can
be shifted to any location of 2. The classical (precise) approach makes use of summa-
tive kernels. A summative kernel can be seen as a probability distribution, defining a
probabilistic neighborhood around each location x of €.

This paper considers a new approach (imprecise) that makes use of maxitive ker-
nels. A maxitive kernel can be seen as a possibility distribution, defining a possibilistic
neighborhood around each location x of €2. The main consequence of replacing a sum-
mative kernel by a maxitive kernel is that the estimated value is an interval [A(x),(x)],
instead of a single value /(x). We are interested in the relation between the point esti-
mate obtained with the classical approach and the interval estimate obtained with our
approach.

The paper is organized as follows. In Section 2] we present the classical functional
estimation using a summative kernel. In Section 3] functional estimation with maxitive
kernels is exposed. In Section [ the imprecise functional estimation is presented and
mathematically justified. In Section[3] we apply our method to the Parzen Rosenblatt
cdf estimator. Before concluding, we discuss in Section [@] of the choice of the involved
maxitive kernel. The method is illustrated by an experiment.

2 Functional Estimation with Summative Neighborhoods

In functional estimation, a summative kernel can be considered as a weighted neighbor-
hood of a given location, called its mode, formally similar to a probability distribution.

Definition 1. Summative kernels are R -valued functions x defined on a domain £,
verifying the summativity property: [ k(x)dx = 1.

Note that any given monomodal summative kernel k, can be the basis for a family of
summative kernels tuned by a location-scale parameter 0 = (u,A), with u a translation
factor and A > 0 its bandwidth. Any element of this family is obtained, for u € €2 and
A >0, by

1 o—u

K(

A A
When seen as a probability distribution, a summative kernel x has a relevant mean-
ing in the scope of uncertainty theories. It induces a probability measure given by

K4 (w) = ), Yo € Q. 3)
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P¢(A) = [, x(w)dw, YA C Q. The value P¢(A) can be interpreted as the degree of
probability for a realization of the underlying uncertain phenomenon to fall in A.

Estimation of a given function of 4 : £ — R in a summative neighborhood 3 of a
given location x with bandwidth A is given by the expectation of its related function g
according to the probability measure Py

h(x) = Exs (g)- “)

This approach can be found in for functional estimation in statistics. [7] presents
digital signal processing methods that can be reformulated as functional estimators (@).

3 Functional Estimation with Maxitive Neighborhoods

A maxitive kernel is also a weighted neighborhood of a given location, called its mode,
formally similar to a possibility distribution or membership function of a normalized
fuzzy subset [3].

Definition 2. A maxitive kernel is a [0, 1]-valued function w, defined on a domain €2,
verifying the maxitivity property: sup .o m(®) = 1.

Note that any given monomodal maxitive kernel 7, defined on €2, can be the basis for
a family of maxitive kernels tuned by a location-scale parameter 6 = (u,A), with u a
translation factor and A its bandwidth. Any element of this family is obtained, for u € 2
and A > 0, by

(o) =a(® ")

, Vo € Q. (5)
A possibility distribution 7 has a relevant meaning in the scope of uncertainty theories.
7 induces a possibility measure given by IT;(A) = sup,cq T(®), VA C Q. The value
IT;(A) can be interpreted as the degree of possibility for a realization of the underlying
uncertain phenomenon to fall in A.

Now, when the summative neighborhood k7 is replaced by a maxitive neighborhood
m} of a given location x with bandwidth A, the Lebesgue integral in estimator (@) has
to be replaced by the Choquet integral [2}[9]] of g.

4 Imprecise Functional Estimation

A possibility measure is a special case of concave Choquet capacity v [135]]. The conju-
gate v of such a capacity, defined by v¢(A) =1 — v(A¢),VA C €, is a convex capac-
ity. A concave capacity v can encode a special family of probability measures, noted
core(v) and defined by

core(vV) ={P¢, | VAC Q,v°(A) < Pc(A) < V(A)}. (6)

David Schmeidler and Dieter Denneberg proved the following theorem ([12, Proposi-
tion 3] and [2 Proposition 10.3]) for capacities.

Theorem 1. The capacity v is concave if and only if for all g such that C,,(|g]) < oo,
then VK |Py € core(v), Cye(g) <Ex(g) <Cy(g).



178 K. Loquin and O. Strauss

From Theorem[]] since a maxitive kernel defines a possibility measure, a maxitive kernel-
based estimation of 4, generalizing expression () is interval valued. The upper and lower
bounds are the Choquet integrals of g computed with respectively H”“Z and Nrx, which
are capacities (or non additive measures) associated to 7} a maxitive neighborhood of x,
with bandwidth A. Nrx is the conjugate of the possibility measure Iy, called a necessity
measure. These remarks leads to the following corollary of Theorem [T}

Corollary 1. Imprecise functional estimation
Let 0 be a maxitive kernel, then Vx € £ and VA > 0,

V(P € core(TTy ), iy (¢) < Ex(g) < Cry (g). ™

Imprecise estimation of a given function of 4 : £ — R in a maxitive neighborhood 7}
of a given location x with bandwidth A is given by the Choquet integrals of its related
function g according to the possibility and necessity measures Iy and Ny

(1), h(x)] = [Ca (), Co (8)] ®)

According to Corollary [T} an estimate fz(x) of h obtained with a summative kernel x,
such that P belongs to core(Hﬂz ), belongs to the estimated interval (8). Besides, the
estimation bounds are attained, i.e. there exist two summative kernels 11 and pt, whose
associated probability measures P, and P, are in core(Iy; ), such that Ep (g) = Cy, - (g)

and By (g) = Crr,, (g)-

Replacing a summative kernel by a maxitive kernel for estimating a function £ aims at
taking into account the imperfect knowledge of the modeler to choose a particular x.
The specificity [16, /8] of the maxitive kernel chosen by the modeler for performing this
imprecise estimation reflects his knowledge. The most specific is the maxitive neigh-
borhood, the smallest is the encoded set. Indeed, if 7 is more specific than 7/, some
summative kernels encoded by 7’ will not be encoded by 7. The smaller is the encoded
set of summative neighborhoods, the closer are the estimation bounds with this method.

5 Imprecise Cumulative Distribution Function Estimation

The Parzen Rosenblatt density estimator (I)) can be expressed as the estimation of the
pdf f, with the empirical distribution g = ¢,, (summarizing the observations) according
to a summative neighborhood x (see expression @Ah):

f”KA (X) = ]EK”X (en) 9)

Corollary[T] associated with expression (9) suggests that an imprecise estimation of the
Parzen Rosenblatt pdf estimator should be performed by computing the Choquet inte-
gral of the empirical distribution e, according to a maxitive kernel (encoding a family of
summative kernels). This direct approach is however not applicable here, since the Cho-
quet integral of the empirical distribution does not exist. Indeed, the computation of this
integral only exists for bounded functions. The empirical distribution is not bounded.
Actually, the Dirac delta functions, forming e,, are not functions but mathematical con-
structions, called distributions.
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Nevertheless, the Parzen Rosenblatt cdf estimator (2)) involves the empirical cumu-
lative distribution E,, which is a bounded function. Theorem [2] expresses the Parzen
Rosenblatt cdf estimate at a point x, as the estimation of the cdf F with the cumulative
empirical distribution g = Ej, according to a summative neighborhood of x, k.

Theorem 2. Let x be a summative kernel and A > 0 and n > 0, then Vx € £,
Fug, (x) = ]E;cg (Ep). (10)

Proof. First, note that fx, (x) = [o&a(®)e,(x — @)dw. Indeed, [, Ka(w)e,(x —
0)do =131, [oKka(0)8x(x— w)do =3 | ks (x—X;). Thus,

Fhui, (%) :/_); (/Q K‘A(w)en(u—a))da))du
:/Q (/;en(u—w)d@m(w)dw,

E, is the cumulative distribution associated to the empirical distribution, i.e. E,(®) =
J®_en(u)du. Then by successive changes of variable v := u — @ and ¢ := x — @, we
obtain:

Fo, (x) = /Q En(x— 0) ks (0)do

- /Q En(t)ia (x—1)dt
:Eq(En)~
O

Since E, is bounded, an imprecise estimation of F at x can be obtained with a maxitive
kernel 7} .

Theorem 3. Let w be a maxitive kernel, then Vx € , ¥Vn > 0 and VA > 0,
VKar|Px,, € core(Iys), (CNng (En) < Fux,, (x) < CH”“Z (Ep). (11)

We now present the computation of the imprecise Parzen Rosenblatt cdf estimate.
First, observe that E, is a simple function that can be expressed on Q by E,(®) =
> rll]l[X(i)aX([+ e where (.) indicates a permutation of the observations such that

Xy < X(i+1)- Thus, the Choquet integral of E, can be rewritten as Cp, (E,) =
. A
,1? i Iy ({0 € Q : Ey(@) > | }). It can easily be observed that {® € Q : E,(®) >
2} =1weQ:o>Xg;}. Since the summation does not depend on the order of the
summed elements, Cry , (Ep) = rll 1 Hﬂz ({w € Q: ® > X;}). With similar develop-
A

ments on Cy (Ey), we obtain:
A

-

Crrg (En) = (1—Nn2({w€!2:w<X,-})),

S = IS =
'M=

(I—Hnj({a)eQ:w<Xi})).
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As exposed in [3L5], Fry (1) = Nz ({@ € 2 : @ <u}) is the lower cdf of the set of cdf
associated to the summative kernels of core(IIy; ). It is the lower cdf of a p-box [6],

whose upper cdf is given by Frx (u) = IIz; ({@ € 2 : @ < u}). As shown in [J], we
have:

0 ifu<x, ma(u)  ifu<x,
Fry (u) = . and  Fy (u) = .
A 1 —mi(u) otherwise, A 1 otherwise.

We thus obtain the imprecise cdf estimate:

1 n
Crrg (B = Y (W00 L) + L)) (12)
i=1
1 .
Cryy (En) = nZ((l—nA(Xi))]l[xzxi]). (13)

Il
=

6 Experiment and Choice of a Maxitive Kernel

As in the case of the summative kernel methods, the problem of the choice of a partic-
ular maxitive kernel for performing imprecise functional estimation can be discussed.
The choice of the summative kernel shape « is often considered as insignificant in the
non-parametric statistics community. The main argument is that the asymptotic behav-
ior (when n — +-e0) of Fj,, and f,x, depend more on A than on the choice of « [14} [1]].
However, the asymptotic conditions are barely fulfilled. In non-asymptotic conditions,
the shape of the estimate strongly depend on the shape of k. Moreover, the knowledge
of the modeler is generally insufficient for choosing the appropriate kernel. Instead of
choosing one particular summative kernel, we propose to the modeler to choose a fam-
ily of summative kernels matching his knowledge via the choice of a maxitive kernel.

In such kernel methods, where a summative kernel is considered as a neighborhood,
it seems sensible to assume that the chosen basic kernel to be shifted and dilated with
expression (@) is centered, even and with a support included in [—1,1]. Therefore, it
naturally leads to choose a basic maxitive kernel  encoding these particular summative
kernels. As shown in [4]], the triangular maxitive kernel 7 is the most specific of such
maxitive kernels. The triangular possibility distribution is defined on Q2 by T'(w) = (1 —
|®])1[j|<1]- We now illustrate Theorem 3] by performing the summative and maxitive
estimates of the cdf underlying a set of 107 observations of the duration in minutes of
the eruptions of the Old Faithful geyser in Yellowstone National Park[] Each precise
estimate has been performed by using four different summative kernels x4 : uniform,
Epanechnikov, triweight and cosine kernels, with A = 0.3. The definitions of the used
kernels can be found in [8]]. The imprecise estimate is obtained by using a triangular
maxitive kernel 7 with the same A. As illustrated on Figure [Tl every precise estimates
of the cumulative distribution are included in the imprecise estimation interval.

! This example, taken from [[I3], is a popular benchmark in nonparametric estimation.
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Fig. 1. Imprecise cumulative distribution estimate

7 Conclusion

In this paper, we proposed an extension of the Parzen Rosenblatt cdf estimate, which
takes into account a possible lack of knowledge of the appropriate summative kernel
to be involved. Compared to the classical method, our method results in an interval
estimate instead of a point estimate. The imprecision of the obtained estimate consis-
tently reflects the lack of knowledge of the modeler, quantified by the specificity of the
involved maxitive kernel. We put this sensible imprecise cdf estimation into a wider
framework of imprecise functional estimation. Now, the next significant step, in soft
statistics, is likely to be the imprecise estimation of the pdf.
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Abstract. We propose a non-parametric density estimator based on label semantics, a framework
for computing with words which allows to describe a numerical instance or set of instances in
linguistic terms and to condition on a linguistic description. This will be the basis of the proposed
density estimator, which is MSE consistent under certain regularity conditions. Experimental re-
sults illustrate the potential of the proposal.

Keywords: Density estimation, Computing with Words, Label semantics.

1 Introduction

Probability density estimation constitutes a classical approach to pattern classifier de-
sign as well as being useful in a broad range of applications. The approaches to density
estimation are usually classified as parametric and non-parametric (cf. [10], [T1]]). In
parametric estimation, it is assumed that the density f underlying the data belongs to
a family of functions f(-;0) with parameters 8 = (6, ...,6;). A density estimate f is
tPen obtained by computing from the data an estimate 6 of the parameters 6 and having
r=r ('7 9) :

Non-parametric approaches do not assume a particular distribution shape. They are
necessary when the distribution does not fit a known distribution model and are widely
used in the field of pattern recognition and classification, neurocomputing, image pro-
cessing and communications among others. Non-parametric methods comprise fixed
and varying width histograms, naive estimator, kernel or Parzen estimator (perhaps, the
most popular one), nearest neighbour methods, variable kernel method, orthogonal se-
ries estimators, maximum penalised likelihood estimators and general weight function
estimators. The latter can be thought of as a unifying concept (histogram, kernel esti-
mates or orthogonal series estimate can be seen as particular cases) and as a method to
obtain estimators which do not fall into any of the other classes.

Despite the existing variety of methods, the problem of density estimation is far from
being solved and is still subject to new research. For instance, a non-parametric density
estimator is proposed in [1]] that relies on topological self-organisation as a development
of a nearest-neighbour density estimator; in [3]] we find a new method of kernel den-
sity estimation with a varying adaptive window size; in [2]] a semiparametric density
estimator is obtained as the product of nonparametric and (conditionally) parametric
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factors and this estimator is used to design a classifier, and in [[7]], the authors propose a
histogram density estimator where the bins are fuzzy sets.

Label semantics provides a framework where, for a given set of labels LA, it is
possible to give a linguistic description of a single numerical value x or a whole set of
data instances xi,...,x, and it is also possible to compute the probability of any value
x given a linguistic description. In this paper we propose to use as a non-parametric
density estimate the density that results from conditioning on the linguistic description
of the whole sample. We see that the proposed estimate is MSE consistent and provide
experimental results to illustrate the estimate’s behaviour.

2 Label Semantics

Label semantics provide an alternative approach to the paradigm of computing with
words and have been successfully applied to solving classification and prediction prob-
lems [4]], [5]]. In this section we briefly introduce the ideas most relevant to our work.

The fundamental notion underlying label semantics is that when individuals make
assertions of the kind ‘X is fall’ they are essentially providing information about what
labels are appropriate for the value of some underlying variable. For simplicity, we
assume that for a given context only a finite set of words is available.

Let x be a variable into a domain of discourse £2. Then, a finite set of words or labels
LA ={Ly,...,L,} are identified as possible descriptions of the elements of the universe
€. For a specific value x € 2, an individual / identifies a subset of LA, as the set of
words with which it is appropriate to label x. This set is denoted 2/, to stand for the
description of x given by /.

Consider the expression ‘Bill is tall’, where Bill’s height is represented by variable
h, and suppose that there is a fixed finite set of possible labels for &, LA, both known and
completely identical for any individual who will make or interpret a statement regarding
Bill’s height. Given these assumptions, the above statement as asserted by a particular
individual / might be interpreted as meaning that according to I, tall is an appropriate
label for the value of variable /. That is, suppose I knows that 7 = H and that given
this information he/she is able to identify a subset of LA consisting of those words
appropriate as labels for the value H. This set is &/, the description of & given by 7, and
we have that tall € 7.

If we allow / to vary across a population of individuals V, we naturally obtain a
random set %, from V into the power set of LA, where Z,(I) = Z!. A probability
distribution or mass assignment can be defined, dependent on the prior distribution over
the population V. We can view the random set Z, as a description of the variable x in
terms of the labels LA.

Definition 1. For LA a set of labels describing values in £2, a mass assignment on labels
is a function m : 214 — [0, 1] such that
Y m(T)=1 (1)
TCLA
Notice that in Definition [I] there is no requirement for the mass associated with the
empty set to be zero. In the context of label semantics, m,(0) quantifies the belief that
no labels are appropriate to describe x.
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Definition 2. For x € Q the label description of x is a random set from V into the power
set of LA, denoted 9, with associated distribution m, given by

VS C LA, my(S) =Pr({I € V : DL = 5}) )

Consider again the statement ‘Bill is zall’. If we allow [ to vary across the population
of individuals V we can determine a probability distribution for the random set Dj, by
defining VS C LA, my(S) =Pr({I € V : 2] = S}).

Definition 3. Given labels LA together with an associated mass assignment m, Vx € €2,
the set of focal elements for LA is given by:

F ={S€LA:3xc Q mi(S)>0} 3)

Another high level measure associated with my is the quantification of the degree of
appropriateness of a particular word L € LA as a label of x.

Definition 4. The appropriateness degree of a particular word L € LA as a label of x is
defined as follows:

Vxe QVLELA, w(x)= Y m(S) “4)
SCLA:LES

Clearly, yz. is a function from € into [0, 1] and therefore can technically be viewed as
a fuzzy set. However, the term ‘appropriateness degree’ is used partly because it more
accurately reflects the underlying semantics and partly to highlight the quite distinct
calculus for these functions introduced in the label semantics framework [3]].

We now make the additional consonance assumption that value descriptions are con-
sonant random sets. In the current context consonance requires the restriction that in-
dividuals in V differ regarding what labels are appropriate for a value only in terms
of generality or specificity. Certainly, given that the meaning of labels in LA must be
sufficiently invariant across V to allow for effective communication then some strong
restriction on %, should be expected. The consonance restriction could be justified by
the idea that all individuals share a common ordering on the appropriateness of labels
for a value and that the composition of 2/ is consistent with this ordering for each 1.
For further considerations on the consonance assumption, see [3], [6].

Proposition 1. Given the consonance assumption, m, can be completely determined
Sfrom the values of ur(x) for L € LA. Let {ty(x) : L € LA} = {y1,...,yn} ordered such
that y; > yip1 fori=1,....n—1. Then, for S;={L € LA : uy(x) > y;},i=1,...,nthe
value description is given by:

me(0) =1—y1, me(S;) =yi—viy1,i=1,...,n— 1, m(Sy) = yn 5)

The above has considerable practical advantages, since we no longer need to have any
knowledge of the underlying population of individuals V in order to determine .
Rather, for reasoning with label semantics in practice we need only define appropriate-
ness degrees [y, for L € LA corresponding to the imprecise definition of each label.
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For many types of data analysis it is useful to be able to estimate the distribution
underlying variables given the information contained in a data set D = {Xj,...,X,}.
In the current context, our knowledge of D is represented by a mass assignment mp
defined as follows:

Definition 5. A mass assignment conditional on the information provided by D is
given by:

VS € LA,mp(S) = Y Pp(Xi)mx,(S) (6)
i=1

where Pp(X;) corresponds to the probability of X; being chose at random from D and
my, is the mass assignment on 9x, i=1,...,n.

The following definition provides a means of evaluating a distribution on the base vari-
able x conditional on mp.

Definition 6. Let x be a variable into Q with prior distribution p(x), LA be a set of
labels for x and m be a posterior mass assignment for the set of appropriate labels of x
(i.e., Dy). Then, the posterior distribution of x conditional on m is given by:

vxe 2uplm) = pv) 3, ")

(S 7
2 pm(s) " (S) (7

where pm is the prior mass assignment generated by the prior distribution p according
to

pm(S) = [ m($)p (v)dx ®)

This definition is motivated by the following argument. By the Theorem of Total
Probability:

plxlm) = Z p(x| Dy = S)Pr(Zx = S) = Z P(x[ 2 = S)m(S) 9

SCLA SCLA

Also,

Pr(Z, = Sx)p(x) _ my(S)p(x)
Pr(2,=S)  pm(S)
Making the relevant substitutions and then simplifying gives the expression in

Definition[@
Notice that in the case where VS C LA, m(S) = pm(S) it follows that

p(x[Zx=S8) = (10)

Vx € Q, p(x|my) = p(x) (11)

This is intuitive, since if the mass assignment m provides no new information, the con-
ditional density p(x|m) is not expected to differ from the prior p(x).

3 Density Estimation from Data

Let D = {Xj,...,X,} be a sample of data and let us assume that the underlying vari-
able x takes values in a closed interval 2 = [[,u] C R according to an unknown density
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function f. Let us also assume that the appropriateness degrees (i have a trapezoidal
shape for all L € LA. These definitions may be obtained by uniformly partitioning the
universe €2, so the subinterval where p,(x) = 1 has a constant width for all L € LA.
Alternatively, it is possible to use a Percentile Method, whereby each label covers ap-
proximately the same number of data elements. This method is quite intuitive and has
been successfully used in several applications of label semantics to data mining and
machine learning (for instance, in [8] and [9]). In both cases, appropriateness degrees
form a pairwise overlapping full linguistic covering as follows:

Definition 7. The labels in LA form a full linguistic covering of the universe € if for ev-
ery value x € € there exists a label such that its appropriateness degree as a descriptor
ofxis I:

VxeQ dLelA: yup =1 (12)

Additionally, if only two labels can overlap at a time, the covering is said to be pairwise
overlapping, that is, for every value x in the universe there exist at most two labels with
nonzero appropriateness degrees:

VxeQ Fijef{l,...m}:{LelA:u(x)#0}={L;,L;} (13)

Given a full linguistic covering of universe €2 built from a sample D, the consonance
assumption allows to completely determine m, for any x € £2 based on the appropri-
ateness values Uy (x) for L € LA. Tt is then possible to determine the mass assignment
conditional on D, mp and use label semantics to provide the following density estimator.

Definition 8. Let D = {X|,...,X,} be a sample of data where the underlying variable
x takes values in a closed interval Q = [l,u] C R according to an unknown density
function f. Let LA be a set of labels forming a full linguistic covering of the universe
Q. The density estimate f is obtained by conditioning on the mass obtained from D,
mp, assuming a uniform prior distribution on €2, that is:

Vx € Q, f(x) = p(x|mp) = Cq z mp(S)

«(S 14
2 pm(s)™ (5) (14)

where Cq is the constant function of the uniform density in 2, mp is the mass assign-
ment conditional on the information provided by D, pm is the prior mass assignment
generated by the uniform distribution and my is the mass assignment for x € 2 deter-
mined from {ug(x) : L € LA}.

Notice that there is certain formal similarity between (I4) and the fuzzy histogram
estimator [[7]. However, the motivation here is clearly very different, as the estimator
is obtained using label semantics calculus as a posterior distribution conditional on the
information provided by the data. Indeed, it would be possible to drop the assumption
of a uniform prior distribution in £2 to account for some prior knowledge of the data.

Definition 9. A measure of the discrepancy of the density estimator f from the true
density f at a single point is the mean square error [[[1]]:

MSEx(f) = E{f(x) = f(x)}? (15)
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The proposed estimate is consistent with MSE under certain regularity conditions:

Theorem 1. Let f be a C? function with bounded derivatives and let LA be a uniform
Sfull linguistic covering of 2. Then V¥x € Q, f is consistent in the MSE, that is, if m
denotes the number of labels in LA and n the sample size:

m— oo, —eo=> MSE,(f) — 0. (16)
m
Proof. (Sketch of proof) The proof is very similar to that of binned kernel estimators
(cf. [10]), using the decomposition of MSE as a combination of bias and variance at x,
MSE,(f) = {Ef(x) — f(x)}*> — varf(x). Given the smoothness of f, both the bias and
the variance can be rewritten using a Taylor series expansion. The resulting expressions

can be seen to be bounded by functions that converge to 0 as the number of labels tends
to infinity. O

4 Experimental Results

We now present experimental results for a toy problem where the density to be estimated
is a normal mixture density given by:

£ =

) (N(2,3)+N(8,0.5)) 17

We have generated a random sample of 100 data instances. From this sample, we have
obtained trapezoidal definitions of five linguistic labels {vs,s,m,l,vl} which could be
seen as corresponding to “very small”, “small”, “medium”, “large” and “very large”

0.45

Fig. 1. Estimated density: f (dotted line) and f (solid line), with estimated density values for the
sample D
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using a percentile method. For these labels, the mass assignment conditional on the
sample D is given by:

mp = {vs}:0.151, {s}:0.12, {s,vs} : 0.107, {m} : 0.063, {m,s} : 0.043,
{1}:0.095, {I,m} :0.165, {vi}:0.105, {vl,1} :0.151. (18)

Figure [l shows the estimated density function f against the original one f as well as
the estimated values of the sample data f(X;), i = 1,...,n. The average squared error
Ise (F(X;)— £(X;))?is 9.13-10~ 7. If a uniform partition is used instead to obtain the
label definitions, the average squared error is 9.704 - 107°.

5 Conclusions and Future Work

We have proposed a non-parametric density estimator in the framework of label seman-
tics. It can be proved that this estimator is MSE consistent and we have illustrated its
good behaviour with experimental results on a toy problem. In the future, the theoretical
properties of the estimator should be further studied, contemplating the use of different
definitions for appropriateness degrees or the possibility of introducing some prior knowl-
edge about the underlying density function. Also, the approach should be further tested
using data sets from the literature and comparing the results to those of other methods.
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Abstract. Fuzzy representations of a real-valued random variable have been introduced with the
aim of capturing relevant information on the distribution of the variable, through the correspond-
ing fuzzy-valued mean value. In particular, characterizing fuzzy representations of a random
variable allow us to capture the whole information on its distribution. One of the implications
from this fact is that tests about fuzzy means of fuzzy random variables can be applied to de-
velop goodness-of-fit tests. In this paper we present empirical comparisons of goodness-of-fit
tests based on some convenient fuzzy representations with well-known procedures in case the
null hypothesis relates to some specified Binomial distributions.

Keywords: Fuzzy representation of a random variable, Fuzzy random variable, Fuzzy mean,
Goodness-of-fit test.

1 Introduction

First of all we should clarify that this paper does not deal with statistics with fuzzy
data but with statistics referred to real-valued ones. In this way, fuzzy random variables
are not considered here to model mechanisms generating fuzzy data, but as an auxil-
iary tool: by considering an appropriate fuzzy transformation of a real-valued random
variable one can obtain a fuzzy random variable whose mean value characterizes the
distribution of the original one. A crucial point in this functional characterization is due
to the fact that it corresponds to a functionally-valued “mean value”, so we can make
use of well-known results for the means of functional random elements.

In previous papers (see Gonzélez-Rodriguez et al. [3], and Colubi et al. [3], [4]) a
special family of fuzzy-valued functions defined on R has been introduced. The com-
position of each function in this family with any real-valued random variable leads to
a fuzzy random variable in Puri and Ralescu’s sense [10]]: the so-called fuzzy represen-
tation of the original random variable. Moreover, functions in the family have been
chosen to ensure that the functional mean value of the fuzzy representation of a random
variable captures relevant information on the distribution of this variable. In some cases
such a relevant information concerns the whole distribution. In these cases we will refer
to characterizing fuzzy representations.

Goodness-of-fit tests are used to test whether a sample of data can be considered to
come from a population with a specific distribution. Many goodness-of-fit methods can

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 190— 2008.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2008
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be applied to any (or, at least, to a very wide class of) univariate distribution(s). The
best known goodness-of-fit statistics can be viewed as certain random dissimilarities
or distances between a characterizing functional (distribution function, probability or
density function, etc.) of the distribution of the variable under the null hypothesis and
an estimator of this functional.

On the other hand, the sample mean of a fuzzy random variable is a consistent es-
timator of the population one. As a consequence, the sample mean of a characterizing
fuzzy representation of a sample from a random variable X will become a consistent
estimate of the exact distribution of X (more precisely, a consistent estimate of the pop-
ulation mean value of the fuzzy representation of X).

If we consider a distance between fuzzy values, then we can immediately suggest the
goodness-of-fit statistic given by the distance between the sample mean of a character-
izing fuzzy representation of the random sample from X and the population mean value
of the fuzzy representation of X. In the literature, one can find several studies devoted
to the one-sample testing about the mean value of a fuzzy random variable (see Korner
[7], Montenegro et al. [9], Gonzalez-Rodriguez et al. [6]]), which can be directly applied
to carry out the proposed goodness-of-fit test.

In this paper, some preliminaries about fuzzy values, fuzzy random variables and the
associated mean values, as well as a metric between fuzzy values are first recalled. Once
two convenient characterizing fuzzy representations of a random variable are presented,
we will develop some empirical statistical studies to compare the associated goodness-
of-fit tests with classical omnibus tests for goodness-of-fit.

2 Preliminaries

In this section we recall some notions on fuzzy values and fuzzy means which are
required to formalize the suggested characterization of random variables.

Let .%.(R) denote the space of fuzzy numbers, where a fuzzy number is a function
U: R — [0,1] such that the o-level of U (where Uy, = {x € R|U(x) > o} if o0 > 0,
=cl{x € R|U(x) > 0} otherwise) is a nonempty compact interval [infUy, supUy]| for
each o € [0,1].

Some basic operations between data will be later used, namely, the sum and the
product by a ‘scalar’. The application of Zadeh’s extension principle [T1]] on .Z.(R) is
equivalent to consider the interval-valued arithmetic for the corresponding a-levels, so
that for each o € [0,1], if U,V € .Z.(R) and A € R

(U+V)g = [infUy +infVy,supUy 4 supVy],

AUy = [A-infUq, A -supUq] if A >0
%=\ [A-supUg, A - infUg] if A <0

(F:(R),+,-) is not a linear but a semilinear space (since there is no inverse element for
the sum).

To compare fuzzy values it will be useful to consider a distance between fuzzy num-
bers. Bertoluzza et al. has introduced the D;’}, metric which has been shown to be
valuable and operational in this setting. Given U,V € .%.(R),
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DY(U.V) = \//01 [/01 [ (supUq —supVa) + (1 = &) (infUs —infVs)|* dW ()| do(c0),

where W and ¢ are normalized weighted measures on [0, 1] (formalized as probability
measures on ([0, 1], %o 17)), W being associated with a non-degenerate distribution, and
@ being associated with a strictly increasing distribution function on [0, 1]. It should be
pointed out that W and ¢ have no stochastic meaning. To consider W is equivalent to
consider a measure weighting points 0, 1 and a certain #o(W) € (0, 1). Metric Dj, is an
L,-distance on the cone of the image of .%.(R) through the support function (see, for
instance, [8]]).

Fuzzy random variables (FRVs for short) in Puri and Ralescu’s sense represent a
well-formalized model in the probabilistic setting. Given a probability space (£2,.<7, P),
a mapping 2 : Q — Z.(R) is said to be a fuzzy random variable associated with the
space, if it is Borel-measurable w.r.t. %D& (o-field generated by the topology induced

by Df, on .Z(R)). Borel-measurability guarantees that one can properly refer to con-
cepts like statistical independence of FRVs, distribution induced by an FRYV, etc.

As a measure for the ‘central tendency’, Puri and Ralescu [10] have introduced the
concept of (fuzzy) mean value of an FRV. If 2" : Q — .%.(R) is an FRV associated with
the probability space (€2,.27,P) and such that max {|inf 2|, | sup 20|} is integrable,
the fuzzy expected value (or fuzzy mean) of 2 is the fuzzy number i = E (2) e Z.(R)
such that for all & € [0, 1]

Lo = Aumann integral of 2 = [E (inf Z|P), E(sup Z«|P)] .

Given n random observations from 2~ (say 21,..., %), the fuzzy sample mean
given by |
%n:n-[%+...+%n}

can be considered, on one hand, as an ‘unbiased fuzzy-valued estimator’ of fi. On the
other hand, 2", can be used to state the statistics for one-sample two-sided tests about the
mean of an FRV. Thus, to test the null hypothesis Hy : [I = U € .%.(R) (or, equivalently, to
test Hp : Dﬁ, (ﬂ, U ) =0, the use of central limit theorems or their bootstrapped approaches
for generalized spaces-valued random elements allows us to consider techniques in this
context (see Korner [[7]], Montenegro et al. [9], Gonzélez-Rodriguez et al. [6])).

3 Fuzzy Representations of Random Variables: Characterizing
Representations

Let X : Q — R be a real-valued random variable (RV for short) associated with the
probability space (Q,<7,P). A y-fuzzy representation of X (see [3]]) is the output of
the composition of a ‘fuzzifying’ measurable mapping v : R — .%.(R) with X, so that
yoX:Q — Z.(R)is an FRV.

The interest of fuzzy representations in statistics lies in the fact that y can be defined
so that the (fuzzy) mean value of the y-fuzzy representation of RV X, yo X, can capture
information on either some relevant parameters or features of the distribution of X, or
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the type of distribution (discrete or continuous), or even on the whole distribution of X,
leading to the so-called characterizing fuzzy representations.

In it has been stated that for RVs taking on a small number of different values
(up to 4) a triangular representation of variable values (that is, a mapping transforming
each variable value into a triangular fuzzy number) characterizes the distribution of the
variable. However, this conclusion fails when there are more than 4 different variable
values. The last assertion has motivated the introduction of alternate transformations
in which either by incorporating curvatures or angles into fuzzy values it is possible
to capture the whole information on the distribution of the variable. In previous papers
(see [31, [41, [3]) characterizing fuzzy representations have been considered.

In this paper we are going to make use of two generalized fuzzy representations
which will be studied in connection with the binomial distribution. Let y: R — .%.(R)
be the mapping transforming each value x € R

e cither into the fuzzy number y*(x) such that
(fh(x))a = [ (x)—(1— a)l/hL(x)’fR(x) (1 a)l/hR(x)

for all @ € [0,1] where f; : R — R, fr : R — R, fr,fr € L'(Q,4,P), fi(x) <
Sfr(x)forallx € R, and Ay, : R — (0,+),hg : R — (0,+0c0) are continuous and
bijective,

where the functional 7y : R — 7% (R) is given for o € [0, 1] by

e () (™) oz

[O,t2<11__f(();)>} if fi)<oa<1

and f : [0,4+o0) — [0, 1] is an injective function.

e or into the fuzzy number

X — X0

Y7 (x) = Ly +sig(x—x0) s (
[V ()] =

Examples of fuzzy representations of the above-described type for an RV taking on
values 0,1,2,3,4 can be found in Figure[ll

These two fuzzy representations characterize the whole distribution of the original
variable in case it is binomial, since if X : 2 — R and Y : 2 — R are two binomial
RVs associated with (22,7, P), E(yoX |P) = E(yoY | P) if, and only if, X and Y are
identically distributed.

The above characterization result could be applied to both, discrete and continuous
variables, although we constrain in this paper to binomial ones. Furthermore, a very
relevant implication from the characterizing property is that probabilistic and statis-
tical results for the ‘mean values’ of generalized space-valued random elements can
be applied to develop statistical inferences or probabilistic results on the distribution
of an RV.
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0 1 2 3 4 01234

Fig. 1. Fuzzy representations " (on the left) and y7°! (on the right) of an RV taking on values 0,
1,2,3and 4

On the other hand, it should be remarked that there are more examples of fuzzy rep-
resentations characterizing the distributions of random variables. The above recalled
ones are just some examples we have considered in previous papers and showing suit-
able properties. Both representations, and especially the second one, are focussed on
relevant parameters and features of the distribution of the variable. More precisely, the
mean values of these fuzzy representations allow to easily identify and are very much
influenced by the variable mean, variance, asymmetry, etc.

4 Goodness-of-Fit Tests for Binomial Distributions Based on
Characterizing Fuzzy Representations: Method and Some
Empirical Comparisons

In case we particularize the one-sample test about the mean value of an FRV (in
Section @) to a characterizing fuzzy representation of an RV, like those in Section
we clearly obtain a goodness-of-fit test. In case the hypothetical distribution is a speci-
fied binomial this test can be stated as follows:

Let (Q,4/,P) be a probability space, and X be an RV associated with it. Con-
sider the null hypothesis Hy : X ~ B(ng, po), which is equivalent to the null hypothesis

Dy, (E(po),E(yo B(no,po))> = 0 for a characterizing mapping y: R — .Z.(R) be
like those in Section[3]
At the nominal significance level a € [0,1], Hy should be rejected whenever

[D“ﬁ, ((po)n,E(yo B("oJ’o)))] ’
([of (vox., (YoX)n)]z)n

where z, = 100(1 — o) fractile of the distribution of 7, under Hy and this critical value
can be obtained by means of Monte Carlo method.

The application of the above testing method can be made in an easy way, and it could
be extended to any specified hypothetical distribution (not just binomial ones). Then, a
key discussion to be made at this stage is that of how it performs in comparison with

Tn = > Zos
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Table 1. Testing Hy : X ~~ B(4, p = .5) at the significance level oe = .05, ¢ = % (0,1)

true value % reject. % reject. % reject. % reject. % reject. % reject.
of p 212 KS LR CVM  y* yPo!
0.5 4918  3.049 4.64 4987 4.729 4.64
0.6 16.007 14.997 13.83 23.949 23.333 23.011
0.7 54.303 56.301 51.15 71.554 72.547 72.244
0.4 15.931 15.173 13913 19.401 23.346 22.868
0.3 54.134  56.181 51.128 64.367 72.64 72.241

well-known ‘general” goodness-of-fit tests like chi-square (x?), Kolmogorov-Smirnov
(KS), likelihood ratio (LR), Cramér-Von Mises (CVM), the test above when y = y“h,
and when y = y7°!.

Indeed, as for the traditional techniques, there is a need for developing simulation
studies, since theoretical conclusions are generally unfeasible. A deep discussion on
this point will be a very complex task that will be tackled in the future. In this paper, we
present an introductory discussion for a very particular case: the hypothetical distribu-
tion being a B(4, po) and considering the transformations in Figure 1. For this purpose,
we have examined several situations, that is, different values of pg. For each of these sit-
uations we have first simulated by means of the Monte Carlo method 100,000 samples
of size 10 from the B(4, py) to approximate the critical value z4. Later, to analyze the
empirical achievement of the nominal significance level (.05) and the power of different
tests, we have simulated by means of the Monte Carlo method 100,000 samples of size
10 from the B(4, p) and compute the percentage of rejections of Hy. Each case has been
studied for W = Lebesgue measure, ¢ = % (0,1) and ¢ = (1,4) in D}},.

Tables [[I4] show some of the results obtained in this empirical analysis. In all these
tables the first row of numbers correspond to the accomplishment of the nominal sig-
nificance level (5%), whereas the other rows are related to the power of the tests for
different ‘deviations’ from the hypothetical distribution.

Conclusions we state below are drawn on the basis of a few simulation studies gath-
ered in Tables [[I4 Nevertheless, we have developed some more simulations for other
hypothetical values of ng and pg, and other deviations from these values, although a
deep discussion would require a much more exhaustive analysis. Anyway, we can state
that introductory studies show a quite good behavior of the goodness-of-fit tests based

Table 2. Testing Hy : X ~~ B(4, p = .5) at the significance level oe = .05, ¢ = (1,4)

true value % reject. % reject. % reject. % reject. % reject. % reject.
of p 21> KS LR CVM " yrol
5 4.925 3.093 4.946 4.95 4701  4.627
.6 15913 15.078 14.271 23.729 23.093 22.788
i 54.234 56.201 51.433 71.437 72372 71.948
4 16.019 14.995 14.234 19.395 23.382 23.07
3 53.901 56.021 51.165 63.946 72.097 71.791
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Table 3. Testing Hy : X ~ B(4, p = .75) at the significance level & = .05, ¢ = % (0,1)

true value % reject. % reject. % reject. % reject. % reject. % reject.

of p
0.75
0.85
0.95
0.65
0.55

2

X KS
4984  3.859
2.603  20.963

42.371  90.267
24461 24.25

63.926 67.469

LR
4.944
14.754
86.619
25.119
68.717

CVM
4.809
28.872
95.537
24.574
67.229

,ysh
4.989
26.312
95.112
34.246
81.077

,ypol
4.969
28.306
95.514
32.732
80.073

Table 4. Testing Hy : X ~» B(4, p = .25) at the significance level oz = .05, ¢ = B(1,4)

true value % reject. % reject. % reject. % reject. % reject. % reject.

of p 212 KS LR CVM  y* yo!
025 4991 4.067 4.946 4.853 4.687 497
035 23911 24.166 24.124 28.493 32571 32.466
0.45  62.037 67.501 67.559 74.025 79.913 79.801
0.15  2.027 21.018 14.788 26.986 26.26 28.256
0.05 4204 90.304 86.555 95302 95.165 95.555

on characterizing fuzzy representations in comparison with the best known ones. Al-
though there is not a uniformly most powerful test, in most of the examined situations
and for most of the deviations from the hypothesis, either the test based on the ¥ or
the one based on the y?° is the most powerful one.

In addition to the need for a deep comparative analysis of the goodness-of-fit tech-
niques, a challenging open problem is the one related to the choice of the weighting
measure ¢ as well as the 7 or y?°! functions. That is, a sensitivity analysis should be
also carried out.

Acknowledgement. The research in this paper has been partially supported by the
Spanish Ministry of Education and Science Grant MTM2006-07501. This financial
support is gratefully acknowledged.

References

1. Bertoluzza, C., Corral, N., Salas, A.: On a new class of distances between fuzzy numbers.
Mathware Soft. Comput. 2, 71-84 (1995)

2. Colubi, A., Gonzdlez-Rodriguez, G.: Triangular fuzzification of random variables and power
of distribution tests: Empirical discussion. Comp. Statist. Data Anal. 51, 47424750 (2007)

3. Colubi, A., Gonzdlez-Rodriguez, G., Gil, M.A.: A new characterization of discrete random
variables by means of fuzzy sets: Graphical features. In: Abstracts of the 56th Session of the
International Statistical Institute (ISI 2007, Lisbon, Portugal), p. 165 (2007)



10.

11.

Empirical Comparisons of Goodness-of-Fit Tests 197

Colubi, A., Gonzélez-Rodriguez, G., Lubiano, M.A., Montenegro, M.: Exploratory analysis
of random variables based on fuzzification. In: Lawry, J., Miranda, E., Bugarin, A., Li, S.,
Gil, M.A., Grzegorzewski, P., Hryniewicz, O. (eds.) Soft Methods for Integrated Uncertainty
Modelling. Advances in Soft Computing, vol. 37, pp. 95-102. Springer, Berlin (2006)
Gonzdlez-Rodriguez, G., Colubi, A., Gil, M.A.: A fuzzy representation of random vari-
ables: an operational tool in exploratory analysis and hypothesis testing. Comp. Statist. Data
Anal. 51, 163-176 (2006)

Gonzdlez-Rodriguez, G., Montenegro, M., Colubi, A., Gil, M.A.: Bootstrap techniques and
fuzzy random variables: synergy in hypothesis testing with fuzzy data. Fuzzy Sets Syst. 157,
2608-2613 (2006)

Korner, R.: An asymptotic o-test for the expectation of random fuzzy variables. J. Statist.
Plann. Inference 83, 331-346 (2000)

Korner, R., Nither, W.: On the variance of random fuzzy variables. In: Bertoluzza, C., Gil,
M.A., Ralescu, D.A. (eds.) Statistical Modeling, Analysis and Management of Fuzzy Data.
Studies in Fuzziness and Soft Computing, vol. 87, pp. 22-39. Physica-Verlag, Heildelberg
(2002)

Montenegro, M., Colubi, A., Casals, M.R., Gil, M.A.: Asymptotic and bootstrap techniques
for testing the expected value of a fuzzy random variable. Metrika 59, 3149 (2004)

Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409422
(1986)

Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reason-
ing, Part 1. Inform. Sci. 8, 199-249; Part 2. Inform. Sci. 8, 301-353; Part 3. Inform. Sci. 9,
43-80 (1975)



Part IV

Mathematical Aspects



Invited Session:
Fuzzy Set-Valued Analysis



A Generalization of Hukuhara Difference

Luciano Stefanini

Department of Economics and Quantitative Methods (DEMQ) and Faculty of conomics,
University of Urbino, Urbino, Italy

Abstract. We propose a generalization of the Hukuhara difference. First, the case of compact
convex sets is examined; then, the results are applied to generalize the Hukuhara difference
of fuzzy numbers, using their compact and convex level-cuts. Finally, a similar approach is
seggested to attempt a generalization of division for real intervals and fuzzy numbers.
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1 General Setting

We consider a metric vector space X with the induced topology and in particular the
space X =R", n > 1, of real vectors equipped with standard addition and scalar multi-
plication operations. Following Diamond and Kloeden (see [3]), denote by ¢ (X) and
¢ (X) the spaces of nonempty compact and compact convex sets of X. Given two sub-
sets A,B C X and k € R, Minkowski addition and scalar multiplication are defined by
A+B={a+blacA,bec B} and kA = {kala € A} and it is well known that addition is
associative and commutative and with neutral element {0}. If k = —1, scalar multipli-
cation gives the opposite —A = (—1)A = {—ala € A} but, in general, A + (—A) # {0},
i.e. the opposite of A is not the inverse of A in Minkowski addition (unless A = {a} is a
singleton). Minkowski difference is A —B=A+ (—1)B={a—bla€ A,b € B}. A first
implication of this fact is that, in general, even if it true that (A+C =B+C) <= A=B,
addition/subtraction simplification is not valid, i.e. (A+ B) — B # A.

To partially overcome this situation, Hukuhara [4]] introduced the following H-
difference A© B =C <= A = B+ C and an important property of © is that A© A =
{0}, VA € R" and (A + B) © B = A, VA, B € R"; H-difference is unique, but a neces-
sary condition for A © B to exist is that A contains a translate {c} + B of B. In general,
A — B # A©B. From an algebraic point of view, the difference of two sets A and B
may be interpreted both in terms of addition as in © or in terms of negative addition,
i,e. AHB=C <= B=A+(—1)C where (—1)C is the opposite set of C. Operations
© and H are compatible each other and this suggests a generalization of Hukuhara
difference:

Definition 1. Let A, B € 7 (X); we define the generalized difference of A and B as the
set C € (X)) such that
_ (i) A=B+C
ACB=C = {or(ii)B:A+(—l)C' M

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 203-2101 2008.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2008



204 L. Stefanini

Proposition 1. (Unicity of A ©¢ B)
If C = A Oy B exists, it is unique and if also A O B exists then AOy B =AOB.

Proof. See [1]. O

The generalized Hukuhara difference A ©, B will be called the gH-difference of
A and B.

Proposition 2. If A O, B exists, it has the following properties:

1. A© A = {0};

2. (A+B)OgB=A;

3. If AQy4 B exists then also (—B) ©4 (—A) does and —(A ©4B) = (—B) @4 (—A);

4. (A—B)+B=C —= A—B=C0O,B:

5. In general, B— A = A — B does not imply A = B; but (A©gB) = (BOgA) =C if
and only if C = {0} and A = B;

6. If BO4 A exists then either A+ (B©,A) = B or B— (B24A) = A and both equalities
hold if and only if BO4 A is a singleton set.

Proof. See [[]. O

If X=R", n>1 is the real n—dimensional vector space with internal product (x,y)
and corresponding norm ||x|| = \/(x,x), we denote by #" and #{ the spaces of
(nonempty) compact and compact convex sets of R", respectively. If A C R" and
"V = {ulu € R",||u|| = 1} is the unit sphere, the support function associated to A is

s4 : R" — R defined by s4(«) = sup{{(u,a)|a € A}, u € R".

If A # 0 is compact, then s4 () € R, Vu € 7"~ For properties of the support functions
see e.g. [3] or [5].

We can express the generalized Hukuhara difference (gH-difference) of compact
convex sets A,B € %/ by the use of the support functions. Consider A,B,C € JZ
with C = A O, B as defined in (D); let s4, s, sc and s(—1)c be the support functions of
A, B, C, and (—1)C respectively. In case (i) we have s4 = sp + s¢ and in case (ii) we
have sp = s4 +5(_1)c- S0, Vu € -l
se(u) = <sA(u) —sp(u) <sA(u) —sp(u) in case (i) )

~ \ sp(—u) —sa(—u) s(—1)8(u) = s(—1)a(u) in case (ii) ’

Now, sc in (@) is a correct support function if it is continuous, positively homogeneous
and subadditive and this requires that, in the corresponding cases (i) and (i), s4 — sp
and/or s_p — s_4 be support functions, assuming that s4 and sp are.

Consider s; = s4 —sp and s, = sp —s4. Continuity of 51 and s, is obvious. To see their
positive homogeneity let 1 > 0; we have sy (tu) = sa(tu) — sp(tu) = tsa(u) —tsp(u) =
ts1(u) and similarly for s,. But s; and/or s, may fail to be subadditive and the following
four cases, related to the definition of gH-difference, are possible (for a proof see [7]]).

Proposition 3. Let sy and sp be the support functions of A,B € /' and consider s\ =
SA — SB, S2 = Sp — Sa;, the following four cases apply:
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1. If s1 and s, are both subadditive, then A Og4 B exists; (i) and (ii) are satisfied simul-
taneously and A©q B = {c};

2. If sy is subadditive and s is not, then C = A O¢ B exists, (i) is satisfied and sc =
SA — SB,

3. If 51 is not subadditive and s; is, then C = A O4 B exists, (ii) is satisfied and sc =
S_B—S_A,

4. If s1 and sy are both not subadditive, then A Og4 B does not exist.

Proposition 4. If C = A ©, B exists, then ||C|| = p2(A, B) and the Steiner points satisfy
Oc = 04 — Op.

2 The Case of Compact Intervals in R”

In this section we consider the gH-difference of compact intervals in R". If n = 1,
i.e. for unidimensional compact intervals, the gH-difference always exists. In fact, let
A=[a",a"| and B=[b~,b"] be two intervals; the gH-difference is

N lg- — b 4o gt — bt 4ot
N R O P it
so that [a™,a™] O, [b,b"] = [c,c"] is always defined by ¢~ = min{a™ — b~ ,a" —
b*}, ¢t =max{a” —b~,a” —b*}. Conditions (i) and (ii) are satisfied simultaneously
if and only if the two intervals have the same length and ¢~ = ¢*. Also, the result is
{0}ifand only ifa~ =b~ anda® =b".

Two simple examples on real compact intervals illustrate the generalization (from
3l p. 8); [-1,1]©[—1,0] = [0, 1] as in fact (i) is [-1,0] 4 [0,1] = [—1, 1] but [0,0] O,
[0,1] =[~1,0] and [0, 1] ©, [~ 1, 1] = [0, 1] satisfy (ii).

Let now A = x”_|A; and B = x| B; where A; = [a; ,a]], B; = [b; ,b;] are real
compact intervals (x?_, denotes the cartesian product).

In general, considering D = x!_(A; ©¢ B;), we may have A©,B# D e.g. AO, B
may not exist as for the example A; = [3,6], Ay = [2,6], By = [5,10], B, = [7,9] for
which (A Oy B)) = [~4,-2], (Ay O By) = [~5,-3], D = [-4,—-2] x [-5,-3] and
B+D=[1,8x[2,6]#A, A+ (—1)D=[5,10] x [5,11] # B.

But if A O, B exists, then equality will hold. In fact, consider the support function
of A (and similarly for B), defined by s4(u) = m)flx{(mx) la; <x;<a},ue sl
it can be obtained simply by s4(u) = ¥ wia + ¥ wa; as the box-constrained

u; >0 u; <0
maxima of the linear objective functions (u,x) above are attained at vertices x(u) =
(X1 (), ... Xi (), ... X (u)) of A, .. Xi(u) € {a; ,a; },i=1,2,...,n. Then, being s_(u) =

sa(—u) = — ¥ wia — 3 wa;, one obtains s_p(u) —s_a(u) = ¥ wui(a; —b; )+
u;<0 u;>0 u;>0

X ui(af —b).

u; <0

From the relations above, we deduce that the gH-difference A O, B exists if and only
if one of the two conditions are satisfied:
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(i) C=xLla; —b;,af —b]]
provided that a; —b; <a — b}, Vi
C=xlaf b a; —b;]

i
AOgB=C <
or (i) { provided thata; —b; >a — b}, Vi

Examples are given in [[7]. We end this section with a comment on the simple interval
equation
A+X=B 3)

where A = [a~,a™], B=[b~,b"]| are given intervals and X = [x,x"| is an interval to
be determined satisfying (3). We have seen that, for unidimensional intervals, the gH-
difference always exists. Denote by [(A) = at —a~ the length of interval A. It is well
known from classical interval arithmetic that an interval X satisfying () exists only if
1(B) > I(A) (in Minkowski arithmetic we have /(A 4+ X) > max{/(A),[(X)}); in fact, no
X exists with x~ < x" if /(B) < I(A) and we cannot solve (3) unless we interpret it as
B—X =A.1If we do so, we get
a+x =b" . x =b —a

case [(B) <I(A): {a*ﬁ—x* I O

b-—xt=a . x =bt—a"
(:asel(B)zl(A):{l]+_)C:a+ e v

We then obtain that X = B ©, A is the unique solution to (3) and it always exists, i.e.

Proposition 5. Let A, B € J#¢(R); the gH-difference X = B4 A always exists and ei-
ther A+ (BOyA) =B or B— (BO,A) =A.

From Property [6] of Proposition2] a similar result is true for equation A + X = B with
A,B € J#¢(R") but for n > 1 the gH-difference may non exist.

3 gH-Difference of Fuzzy Numbers

A general fuzzy set over a given set (or space) X of elements (the universe) is usually
defined by its membership function p : X — T C [0, 1] and a fuzzy (sub)set u of X is
uniquely characterized by the pairs (x, tt,(x)) for each x € X the value p,(x) € [0,1]
is the membership grade of x to the fuzzy set u. We will consider particular fuzzy sets,
called fuzzy numbers, defined over X = R having a particular form of the membership
function. Let u, be the membership function of a fuzzy set u over X. The support of
u is the (crisp) subset of points of X at which the membership grade p,(x) is positive:
supp(u) = {xjx € X, w,(x) > 0}. For o €]0,1], the oc—level cut of u (or simply the
o — cut) is defined by [u]q = {x[x € X, p,(x) > a} and for a = 0 (or o — +0) by the
closure of the support [u]o = cl{x|x € X, u,(x) > 0}.

A well-known property of the level — cuts is [u]q C [u]g for oo > B (i.e. they are
nested).

A particular class of fuzzy sets u is when the support is a convex set and the member-
ship function is quasi-concave i.e. u,((1 —7)x’ 4+ £x") > min{, (x'), 1, (x”")} for every
X', x" € supp(u) and r € [0, 1]. Equivalently, L, is quasi-concave if the level sets [u],, are
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convex sets for all o € [0, 1]. A third property of the fuzzy numbers is that the level-cuts
[u] o are closed sets for all o € [0, 1].

By using these properties, the space .# of (real unidimensional) fuzzy numbers is
structured by an addition and a scalar multiplication, defined either by the level sets or,
equivalently, by the Zadeh extension principle. Let u, v € % have membership functions
Wy, Wy and a — cuts [u]q, [V]a, o € [0,1] respectively. The addition u + v € .% and the
scalar multiplication ku € .% have level cuts

[u+V]o = (U] + [v]e and [ku]q = k[u]q. 4)

In the fuzzy or in the interval arithmetic contexts, equation # = v+ w is not equivalent
tow=u—v=u+(—1)vortov=wu—w=u+(—1)w and this has motivated the
introduction of the following Hukuhara difference (3, [3]). The generalized Hukuhara
difference is (implicitly) used by Bede and Gal (see [1]]) in their definition of generalized
differentiability of a fuzzy-valued function.

Definition 2. Given u,v € %, the H-difference is defined by u©v=w << u=v+w;
if uO v exists, it is unique and its o« — cuts are [u O V] = [uy — vy, ul —vy]. Clearly,
ucou=1{0}.

The Hukuhara difference is also motivated by the problem of inverting the addition:
if x,y are crisp numbers then (x + y) —y = x but this is not true if x,y are fuzzy. It is
possible to see that (see [2])), if u and v are fuzzy numbers (and not in general fuzzy
sets), then (u+v) © v = u i.e. the H-difference inverts the addition of fuzzy numbers.

Definition 3. Given u,v € %, the gH-difference is the fuzzy number w, if it exists, such
that

(i) u=v+w
or (i) v=u+(—1w
If u©gv exists, its ot — cuts are given by [u©Ogv]q = [min{uy, — vy, ul — v}, max{u,
—Vg, iy —vi and u©v=uO,vifuOv exists. If (i) and (ii) are satisfied simultane-
ously, then w is a crisp number. Also, u©qu =uOu={0}.

uOgV=W<:>{ 5)

A definition of w = u O v for multidimensional fuzzy numbers can be obtained in terms
of support functions in a way similar to ()

o/ sulpia) = sy(pra) in case (i)
Sw(p,a) - <s(1)v(p;a) —S(,l)u(p;a) in case (ll) , o€ [071] (6)

where, for a fuzzy number u, the support functions are considered for each o — cut and
defined to characterize the (compact) o — cuts [u]:

sy R"x[0,1] — R defined by
su(psa) = sup{(p,x) |x € [u]} for each p e R", o € [0, 1].
In the unidimensional fuzzy numbers, the conditions for the definition of w = u O, v are

wg = min{uy — vy, ul, — vy}
wg, = max{uy, —vg,ul —v}

Wla = (weswE] = [ O e { @

provided that w,, is nondecreasing, wg, is nonincreasing and w, < wg. If u©Ogv is a
proper fuzzy number, it has the same properties illustrated in Section [T for intervals.
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Proposition 6. If u O, v exists, it is unique and has the following properties:

1. uOgu=0;

2. (u+v)ogv=u;

3. Ifu©gv exists then also (—v) O4 (—u) does and {0} Og (U ©4v) = (—v) Of (—u);

4. (u—v)+v=w <<= u—v=w0gv;

5. (uOev) = (vogu) =wifand only if (w = {0} and u = v);

6. If vOq u exists then either u+ (v Oqu) = u orv— (vOgqu) = u and if both equalities
hold then v Ogu is a crisp set.

If the gH-differences [u]q @4 [V]¢ do not define a proper fuzzy number, we can use the
nested property and obtain a proper fuzzy number by

uSeV]a == | ([ulp ©¢ [VIp); (8)

B>a

As each gH-difference [u]g O, [v]g exists for B € [0,1] and (8) defines a proper fuzzy
number, it follows that uégv can be considered as a generalization of Hukuhara differ-
ence for fuzzy numbers, existing for any u,v. A second possibility for a gH-difference of
fuzzy numbers may be obtained following a suggestion by Diamond and Kloeden ([[3]))
and defining z = uégv to be the fuzzy number whose o — cuts are as near as possible to
the gH-differences [u|o Og [v]o, for example by minimizing the functional (wy > 0 and
Yo > 0 are weighting functions)

1
G(zlu,v) = /wa Zg — (UOgV)y ] + Yo [z — (UOgv)§ ]2)doc

0
such that z,, T,z |, 2o < z4 Vo € [0,1].
A discretized version of G(z|u,v) can be obtained by choosing a partition 0 = o <
oy < ...< oy = 10f [0,1] and defining the discretized G(z|u,v) as

+12.

G (z2lu,v) = Zw’[i (uOgv); ] +% [z — @og) ]
we minimize Gy(z|u,v) w1th the given data (1O, v); = min{u,, — vy ,ug — vy,
and (uOgv);" = max{ug, — v, ,ul — v} subject to the constraints z5 <z, < ... <
7y < z;g < 1;71 <...< za“ . We obtain a linearly constrained least squares problem

min z(z—W)TDz(z—w) st.Ez > OwhereD:diag{\/wo,... VON, /Wy W0}
R2N+

zZ€

2= (2020 5Ty AN AN 0%0 s Wi = (UO) T, Wi = (uOgv) T, w= (wg Wy,
.,W&,w;;,Wﬁil,...,wa“),andElsthe (N,N + 1) matrix
—11 0 ...... 0
E = R
0O 0 ...... —-11

which can be solved by standard efficient procedures (see the classical book [6]
Chap. 23]). If, at solution z", we have z* = w, then we obtain the gH-difference as
defined in (@).
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4 Generalized Division

An idea silmilar to the gH-difference can be used to introduce a division of real in-
tervals and fuzzy numbers. We consider here only the case of real compact intervals
A=la",a"|andB=[b",b"| withb~ >0o0rb" <0 (i.e.0 ¢ B).
The interval C = [¢~,c"] defining the multiplication C = AB is given by
¢ =min{a b ,a bt,a"h ,a"h"}, ¢ =max{a b ,a b",a"h ,a"h"}
and the multiplicative “inverse” (it is not the inverse in the algebraic sense) of an interval
B is defined by B~ = [ .., L |; we define the generalized division (g-division) < as
follows:
A+¢B=C <= (i)A=BC or (iij) B=AC™".

If both cases (i) and (ii) are valid, we have CC~! = C~!C={1},ie.C={c},C ' = {1}
with ¢ # 0. It is easy to see that A =+, B always exists and is unique for givenA = [a~,a™|

and B = [b~,b"] with 0 ¢ B. It is easy to see that it can be obtained by the following
rules:

Case 1. If (a= <a" <0and b~ <bT <0)or (0<a” <a"and 0 < b~ < b™) then
c_:min{Z:,Zi}zo, c+:max{z;;§}20;

Case2. If (a= <a" <0and0< b <b")or(0<a <a'and b~ <b" <0) then
c*:min{Z;,Zf}go, c*zmax{Z;Zf}SO;

Case 3. If (@~ <0,a” >0and b~ <b* <0)thenc™ =% <0, ¢ =9 >0;
Case 4. If (@~ <0,a" >0and0 < b~ <b™)thenc™ =¥, <0, ¢ =% >0.

Remark 1. 1f 0 €]b™,b ™| the g-division is undefined; for intervals B = [0,b"] or B =
[6~,0] the division is possible but obtaining unbounded results C of the form C =] —
oo, ct] or C = [¢™,+oo[: we work with B = [¢,b™] or B = [b™, €| and we obtain the
result by the limit for e — 0. Example: for [—2, —1]+4[0,3] we consider [-2,—1] +,
[£,3] = [cg ,cf] with (Case 2.) ¢; = min{ *, '} and ¢ = max{ 2, '} and obtain
the result C = [—e0, — 1] at the limit ¢ — 0.

Proposition 7. For any A = [a™,a"] and B = [b~,b"| with 0 & B, we have (here 1 is
the same as {1}):

I. B+B=1,B+,B'={bb"}(={b}ifb- =bt =b)
2. (AB)+,B=A;
3. 1+¢B=Bland1+,B'=B.

In the case of fuzzy numbers u, v € .% having membership functions i, U, and o — cuts
Uo = ug,ul], Vo = Vg, vEl, 0 ¢ Vo Yo € [0,1], the g-division +4 can be defined
as the operation that calculates the fuzzy number w = u +, v € .# having level cuts
Wa = [we,wg] (here [w]g' =[ L, L]

w7 wy

Wa+¢Ma=Wa < { Ez) 1]

provided that w is a proper fuzzy number.
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Abstract. In this work Bobylev’s definition of differential of a fuzzy set-valued mapping is
studied. Its connections with other common definitions of derivative and differential are analyzed.

Keywords: Bobylev differential, Fuzzy-valued mapping, Hukuhara derivative, s-Differential,
Strong generalized differential.

1 Introduction

We study the relationships among Bobylev’s differential ([4]) and other definitions si-
multaneously and posteriorly introduced. By developing this task, we will find that
Bobylev’s definition can generalize some of those definitions, as well as it is general-
ized by some others.

This topic on differentials can be used not only in a pure Mathematical Analysis
framework, but also in connection with other disciplines like Probability or Statistics
(see, for instance, [[13} 16} [17]).

In Section 2] we introduce some notation and preliminaries. In Section 3] we recall
Bobylev’s definitions. In Section @ we study the relationships among Bobylev’s defini-
tions and previous ones. Finally, some open problems are addressed.

2 Notation and Preliminaries

2 (R") will denote the class of compact subsets of R” (JZ.(R") will stand for the
convex case). .7 (R") will denote the class of fuzzy subsets A : R" — [0, 1] with o-cuts
Ag in A (R"), for o € [0,1] (being Ag = cl{x € R" : A(x) > 0}). F#(R") will stand
when Ay € A (R"), for a € [0, 1].

The class .Z.(R") is endowed (see or [8]) with a semilinear structure, by defin-
ing (A+ B)y = Ay + By, (Minkowski’s addition) and (AA)y, = AAg, being A,B €
F(R"), A € R. We will also use the generalized Hausdorff distance ([10]), given by
de(A,B) = supyc(o 1] dH(Aa, Ba), for A,B € F(R"), dy being the HausdorfT distance.

For A € Z#.(R"), if the mapping o0 — A, is continuous with respect to the Euclidean
and the dy metrics, we will say that A € .Z..(R"). In [11] it is proved that (%, (R"), d-.)
is complete and closed and it can be isometrically embedded into the Hilbert space of
continuous real-valued functions from [0,1] x $"~! with the usual || - ||. norm, by the
embedding:
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ji Zee®RY) = €([0,1] x 1)

given by j(A) = sa. Moreover, %..(R") is the greatest subclass of .%.(R") that can be
isometrically embedded into €([0, 1] x §*~1).

Puri and Ralescu’s definition of support function (see [[10], [11]]) for A € Z..(R")
and S"~! the unit sphere in R” is given by s4 : [0,1] x "1 — R, with sa (o, p) =
SUpyea, < P,X >, being < -,- > the inner product in R". In the compact convex case,
the supremum is attained. In [10] is also proved how the support function characterizes
the fuzzy set. Other properties, mainly inheritated from the set-valued case can be found
in [10], (6] and [11].

In [6] and an overview of several definitions of differential can be found, in-
cluding De Blasi’s definition, the w-differential and the conical differential (introduced
in [9] based on the set-valued case in [1]]), and the s-differential (introduced in [14])),
which is only defined for mappings going into .%..(IR"). Other definitions can also be
found in, for instance, or [12]]. We can also consider the Fréchet differential of the
support function, which is a special case of the s-differential. Of course, in those defini-
tions of differential using Puri and Ralescu’s support function, we should yield into the
class Z..(R") to guarantee the well-definition, since in .7, (R") \ .%..(R") the isometry
by j does not hold in general.

3 Bobylev’s Definitions

Bobylev introduced ([3]]) a concept of support function of a fuzzy set in Z#.(R"),
we will use ¢ for distinguishing it from the support function by Puri and Ralescu
s. For A € Z.(R"), the support function is given by @4 : B" — R, with @4(k) =
SUP{yern:a(x)> |4} 1< K»x >}, B" being the ball in R” centered at 0 € R" with radius 1.

In [3]] it is demonstrated that @4 is unique and its main properties are stated: (1)
uppersemicontinuity, (2) positive homogeneity, (3) quasiadditiveness, (4) normality,
(5) ¢ is a bounded operator, (6) @(0) = 0.

If we denote by @”" the family of all functions ¢ : B" — R satisfying above condi-
tions (1) to (6), we have ([3]]) that @" is the set of all support functions of fuzzy sets in
Z.(R"). If we denote by " the set of all functions ¢ : B" — R satisfying above con-
ditions (5) and (6), " can be endowed with a linear structure by means of pointwise
algebraic operations.

Then, a norm can be defined on ¥" by ||@|[yn = sup,cpn 03 { “ﬂ(x)l } @" is a closed

l
subset of ¥" and it is nonseparable in the sense of norm || - ||y». Bobylev defines the
distance between two fuzzy subsets A, B € .7 (R") as dy(A, B) = || 4 — @p||w». Bobylev
proves that the space (.#.(R"),d,) is complete and nonseparable.

In it is demonstrated a relationship between s4 and ¢4, and the equivalence
between d.. and dp. Based on those results we are obtaining the results in the following
section.

In [4]] Bobylev introduced a concept of differential for fuzzy-valued mappings. The
definition of the differential is based on the support function, since it yields on a Hilbert
space.
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Definition 1. Given O an open subset of R!, and a fuzzy-valued mapping F : O —
Fc(R"), F is said to be Bobylev-differentiable at ty € O if the mapping Qp(): O —
Q" C V", given by Qr(y, is Fréchet differentiable at ty (with respect to the Euclidean
norm and the norm || - ||yn) (being (p,’;to :RE — W™ its differential) and, uniformly in

t € R!, there exist a fuzzy set FB(1) € Z.(R") such that (p,/;to (1) = Prs()-
0]

4 Differentials

In this section we examine the relationships between Bobylev differential and others
introduced in the literature, these are De Blasi differential ([3}[6]), Hukuhara derivative
([7, @), s-differential ([13} [14]) and strong generalized differential ([2])). In [6],
and [2]] some of the properties of these definitions and relationships among them are
studied.

Within the class % (R"), the s-differential is the most general definition, thus, we
are starting by proving what happens with the Bobylev differential of a mapping taking
on values on %..(R"). Unfortunately we cannot guarantee, in general, that the Bobylev
differential yields in the same class than the mapping. We can see it in the following
example.

Example 1. Let us consider the mapping F : (0.5,2) — Z(R) where F(t) : R — [0, 1]
is given by:
2x, if x € (0,0.25);
0.5, if x € [(0.25,1 — 0.25)
orx € [2 +0.25,3t — 0.25);
2x—1)+1, ifxefr—0.251);
1, ifx e [t,2r);
1—2(x—2¢),ifx € [2¢,2t +0.25);
2(3t—x),  ifxe[3r—0.25,30);
0, else.

Next result states that within the class .%..(R") the s-differential generalizes the
Bobylev differential.

Proposition 1. Let O be an open subset of R! and let F : O — F..(R") be a mapping.
Let F be Bobylev differentiable at g € O with FE (t) € F.(R"), for everyt € R (being
F,OB (t) the set in the Bobylev differential, in Definition[l). Then F is also s-differentiable
at ty, and its s-differential is given by:

Fy(t) = SEB()»
for everyt € RL.

Remark 1. It is obvious that, under hypothesis in Proposition[I] the Bobylev differentia-
bility implies not only the s-differentiability but also the Fréchet differentiability of the
associated support function, that is, sp(y : O — €'([0,1] x §"~!) associating 1 — sp(,).
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The converse of Proposition[Ilis not true in general. It is easy to find counterexamples,
going from nonlinearity (required for the Bobylev differential but for the s-differential)
to the existence of that set (we have denoted EOB(-)) having as support function the
Fréchet differential of the mapping ¢ (). The following are two of them.

Example 2. Consider the mapping F : (.5,2) — Z.(R) where F(r) : R — [0,1] is
given by:
2 +1), ifxe[7' 50

t 02t
F(r)(x) = 1, 1fx€[2t,2lt)
—2(xt—1),ifxe [, )

0, else.

F is not Bobylev differentiable at 1, because there does not exist a fuzzy set F (1) €
Z(R) such that whose Bobylev support function is the Fréchet differential of ¢p(.) at
1in Y (see Definition[I). Otherwise, let us suppose that F is Bobylev differentiable at
1, and, whence, there exist such a fuzzy set F2(t) € Z.(R) such that o, (t) = @5y
for every 7 € R. Due to Proposition[Il it must hold F{(r) = sps(,). But it is impossible

for F{(t) to be the Puri and Ralescu support function of any fuzzy set in .%.(R) since
F|(t )( p) is increasing in its first parameter (¢), for fixed 7 and p, and support functions
must be nonincreasing in o (see, for instance, [6] or [10]).

But even when assuming the existence of such a set F,’() as in Counterexample 21
Bobylev differentiability can fail because of the Fréchet differentiability, as we show in
the following counterexample.

Example 3. Consider the mapping F : R — .Z..(R?) given by F(t) = 1,5. This map-
ping is s-differentiable at O (see, for instance, [13])). But it is not Bobylev differentiable
at 0, since the support function associated with every 7 € R is @ ;) B*> — R, given by:

Ory(k)=  sup  <kx>.
{1 o () > [}

From the definition of < -,- > it follows that @, (k) = [t|||k[|. Thus, @f(,), obviously
cannot be Fréchet differentlable at 0.

When the mapping takes values not only on .%..(R") but on the general class %, (R"),
we can state the forthcoming results, starting with the Hukuhara derivative.

Proposition 2. Ler O be an open interval of R and let F : O — Z.(R") be a mapping.
If F is Hukuhara derivable at ty € O, then F is also Bobylev differentiable at ty € O and
its differential is given by:

(ptlo (t) = t(th(t()) ’

fort € R, and F"(ty) being the Hukuhara derivative of F at 1.

The converse of Proposition [2] is not true in general. Counterexamples can be con-
structed from the set-valued analysis (see, for instance, [1]]).
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Example 4. Consider the mapping F : (0,27) — .%.(R), given by:

L+ ) e i x € [=(2+sint), 0];
F(H(x)=< 1 if x € (0,2 + sin¢];

0, else;

X
2-sint?

which corresponds to the triangular fuzzy number with maximum at 0 and based on
the interval [—(2 + sint),2 + sinz]. It is easy to see that this mapping is not Hukuhara
derivable at any point fg € (0,27) (see [6]).

When we consider the more general case of the strongly generalized differential ([2]),
based on the Hukuhara derivative, we can check that it is also a particular case of the
Bobylev differential.

Proposition 3. Ler O be an open interval of R and let F : O — Z.(R") be a mapping. If
F is strongly generalized differentiable at to € O, then F is also Bobylev differentiable
at ty € O and its differential is given by:

(pt/() (t) = t(PFS<I‘0) I

fort € R, and F*(ty) being strong generalized differential of F at to.

The converse result of Proposition [3]is not true, in general. We can consider the func-
tion in Example @ and it holds also as a counterexample for the strongly generalized
differentiable case.

On the other hand, Bobylev differentiability is a particular case of De Blasi differ-
entiability when working in the general class .%,(R"), as we can see in the following
result:

Proposition 4. Let O be an open subset of R! and let F : O — Z.(R") be a mapping.
If F is Bobylev differentiable at ty € O, then F is also De Blasi differentiable at ty € O
and its De Blasi differential is given by:

DF(1) =F; (1),
for everyt € R!, being th (t) the set appearing in the Bobylev differential of F at ty.

Converse result of Proposition @l is not true, in general, since the lack of linearity and
continuity of the De Blasi differential.

Example 5. Consider a fuzzy set A € .%.(R") and the mapping F : R — .Z.(R") given
by F(t) = |t|A. Obviously, F is De Blasi differentiable at 0, since it is continuous and
positively homogeneous, therefore F is its own De Blasi differential at 0. But F' can-
not be Bobylev differentiable at 0 since it would imply that # — |f| would be Fréchet
differentiable at 0.
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5 Future Lines

Some open problems can be addressed.

e To define a relaxed-conditions differential based on Bobylev’s one, as the s-
differential is to the Puri and Ralescu’s support function, and to study the properties
of this new concept. This would keep good properties of Fréchet-type differentials
but relaxing conditions within a more general space.

e To study other types of embeddings (like that in [19]]), so that the continuity con-
dition on the o-cuts can be omitted. Thus, s-differential and Bobylev differential
could make easy to be compared.

To study the problem of the Steiner point with Bobylev definition.

To analyze the integral defined by Bobylev in [4] and its relationships with other
concepts of integral for fuzzy-valued mappings, and, more precisely, with the con-
cept of fuzzy expected value of a fuzzy random variable. Main problems to be stud-
ied here come from the non-separability of the space (.%.(R"), d.. ), thus some other
distances could be considered.

e To study the differential equations related to this concept of differential.
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On Boundary Value Problems for Fuzzy
Differential Equations

Rosana Rodriguez-Lépez

Departamento de Andlisis Matemadtico, Facultad de Matemadticas, Universidad de Santiago de
Compostela, Santiago de Compostela, Spain

Abstract. In many real phenomena, it is interesting to study the periodic behavior of the
magnitudes involved. If a certain natural process is subject to imprecise factors, its modelization
can be made by using fuzzy differential equations or fuzzy dynamical systems. The special
properties of the functions which are differentiable in the sense of Hukuhara (in particular,
the solutions to fuzzy differential equations) make it difficult to handle periodic phenomena
by means of fuzzy differential models. We include some considerations on the analysis of
boundary value problems associated with fuzzy differential equations from the point of view of
Hukuhara-differentiability.

Keywords: Fuzzy differential equations, Boundary value problems, Periodic solutions.

1 Introduction

We consider the space E! of one-dimensional fuzzy numbers, that is, elements x : R —
[0, 1] satisfying the following properties:

x is normal: there exists 7 € R with x(7) =1,
X is upper semicontinuous,
x is fuzzy-convex: x(Af; + (1 — A)z) > min{x(¢;),x(2)}, forall 11,1, € R, A €
0,1,
e The support of x, supp(x) = cl ({t € R : x(t) > 0}) is a bounded subset of R,

equipped with the metric de(x,y) = sup,cpo 1 du([x]*,[y]*), x,y € E', where dy rep-
resents the Hausdorff distance in Ji/cl (the set of nonempty compact convex subsets of
R). See [[1}, 3], for details.

We analyze the existence of solutions for a periodic boundary value problem asso-
ciated to the fuzzy differential equation u'(r) = f(t,u(r)), t € I = [to, T|, where 1y € R,
to<T,and f:Ix E' —s E'. We consider #y = 0, although an analogous reasoning can
be followed for any fixed 7y € R.

For each x € E!, we denote the level sets of x by [x]* = [xu, X4 ], Va € [0,1].

We study the boundary value problem

u'(t) = f(t.u(),t€1=[0,T],  Au(0)=u(T), (1)

where T >0, f : I x E' — E', and A > 0. For the compact interval /, we consider the
complete metric spaces C(I,E') = {x: I — E'|x s continuous}, and C' (I,E') = {x:
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I — E'|x, ¥ are continuous}, where X', the derivative of x, is considered in the sense
of Hukuhara.
A solution to () is a function u € C' (I, E") satisfying conditions in ().

2 CaseA >1

Theorem 1. Suppose that fis continuous and k-lipschitzian with respect to the second

AKT
variable, that is, d..(f(t,x),f(t,y)) < kdw(x,y), ¥x,y € E', where A1 < 1. Then

problem (1)) has a unique solution.

Proof. Problem (1) can be written as the equivalent problem
1
u(t) = u(0) + / F(s,u(s))ds, 1 € 0,T],  Au(0) = u(T). @)
0

The boundary condition produces A u( )=u(T) =u(0)+ [, £(s,u(s))ds, which, in the
u(s

ordinary case, is reduced to u(0) = fo Sf(s,u(s))ds. In the fuzzy case, passing to the
level sets, we get A[u(0)ar,u(0)q )= A(0)ts At (0] = (T = [e(0)r 4(0)ur] +
o £, u(s))ds] . In consequence,

0=, L ([ satnas) o won= b ([ sacas)

which makes sense since A > 1, producing the fuzzy number u(0) =
/1171 Ji f(s,u(s))ds. Hence, to find a solution to the periodic boundary value
problem (2), we have to solve the integral equation

o rsatsas /tf(&u(s))ds
_/< +l> S (s u(s) ds+/ l—lf(su())ds
:/0 l_lf(&u(s))ds—k/t /l_lf(&u(s))ds:/o G(t,5)f(s,u(s))ds,

A

A—1’
G(t,s) =

ifO<s<t<T,
1 .

A1 fo<tr<s<T.

We define the operator 7 by [«/u](t) = [, G(t,5)f(s,u(s))ds. By hypotheses, < :

C(I,E") — C(I,E"). Now, we check that . has a unique fixed point. Indeed,
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D( A u, ' v) = supde (A u(t), o v(t))

tel

— supd.. ( /0 " G5 f(s,u(s)) ds, /0 " Gles) f(s,v(s))ds)

tel

<sp ([} e Gt S 561 s

tel

+/tT 2 1_ 1d°° (f(s,u(s)), f(s,v(s))) ds>

A 1
<sup(l_lkH—l_lk(T—t))D(u,v)

tel
< b sup((h = Dke+kT)D(u,)
A—1 e
1 AKT

= (A= DRT+RT)D(u,y) = 7 D).

The estimate on the constants and the Contractive Mapping Principle provide the ex-
istence of a unique fixed point u for /. Note that, for such a function u, we get

Au(0) = fOT A’llf(&u(s))ds = u(T), and the proof is finished. O
Next, we improve Theorem [[l by replacing the estimate jluiTl < 1 by the sharper one
kT

<L
InA

Theorem 2. Suppose that f is continuous and k-lipschitzian with respect to the second

variable and < 1. Then problem (1) has a unique solution.

T
InA
Proof. We define again the operator [«7u](t) = fOT G(t,s)f(s,u(s))ds, where G(z,s) is
defined in the proof of Theorem 1, and consider the complete distance in C(I,E') given
by D (u,v) = sup,;des(u(t),v(t))e P!, foru,v € C(I,E"'), where p > 0. Then

Dy (u,d/'v) = supde(u(t),v(t))e P’

tel

tel

Ak [t o k T s _pt
SS[I;? l—l/oe ds+l—1/t eP*ds | e P'Dpy (u,v)

1—e P! p(T—t) _ |
:sup< Ak “T g ke )Dp(u,v)

< sup (/Ot AA_ 1kdcx, (u(s),v(s)) ds—i—/tT A 1_ 1kdcx, (u(s),v(s)) ds) e P!

rer \A—1 p A—1 p

_ K sup (ﬂt(l—efp’)+ep(T7’)—l)Dp (u,v)

(A—=1)p 11
k
— _ poT —pt
_(l—l)pstlel?(k 1+ (e A)e P ) Dy (u,v).

Now, taking p = } InA > 0, we get e’ = A and, in consequence,
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k
Dp(u,ov) < (A —1)p stlé? (A =14 (T —2)e P") Dy (u,v)
(A— D)k T
(l—l)}l ADP(M’V)_lnlDP(M’v)

It is easy to check that the value p = }ln/l > 0 produces the best estimate on the
constants. The Contractive Mapping Principle provides the existence of a unique fixed
point for <7, and the proof is concluded. O

3 Case0<A<1

Solutions u of problem () satisfy that diam([u(¢)]) is nondecreasing in the vari-
able ¢, for each a € [0, 1] fixed, therefore the boundary condition Au(0)y = u(T )4,
Au(0)gr = u(T)gr and A € [0,1] imply that diam([u(T)]*) = w(T)ar — u(T)y =
A(u(0)gr —u(0)y) = Adiam([u(0)]?) < u(0)4r — u(0)y = diam([u(0)]%).

If 0 < A < 1 and u(0) is not crisp, then for some a, diam([u(T)]*) < diam([u(0)]%),
hence we can not find a solution to (I)). For the existence of solution, it is necessary that
Au(0) = u(T) = u(0) + fy f(s,u(s))ds, hence

T

T
(A =D (@(0))ar = /0 (f(s,u(s)ards, (A =1)(u(0))ar = /0 (f(s,u(s)))ar ds,

in consequence, (A — 1)diam([u(0)]*) = fOT diam([f(s,u(s))]*)ds > 0, and

diam([u(0)]*) > 0 leads to a contradiction. Therefore, the unique possibility is

diam([u(0)]°) = 0.

If A = 1, and diam([u(0)]?) > 0, then the diameter has to be a constant function in the
variable ¢, and diam([u(T)]*) = diam([u(0)]?), for each a € |0, 1]. On the other hand, if
diam([u(0)]*) = 0, for every a, then the initial condition is crisp and the solution is also
crisp.

If A € (0,1), and uy is crisp, then the solution is crisp.

For a different approach to periodic boundary value problems for fuzzy differential
equations, see [8], where the development of the monotone iterative technique is illus-
trated by considering an impulsive problem.

For A = 1, the problem under consideration is

u'(t) = f(t,u(t)),t € 1=10,T], u(0) = u(T). 3)

We analyze some necessary conditions to obtain (periodic) solutions to problem (3)).
The equivalent integral expression and the boundary condition imply that u(0) =
u(T) = u(0) + fo f(s,u(s))ds, that is, x(oy = u(0) —4 u(0) = [y f(s,u(s))ds. This
expression is equivalent to

0= /OT(f(&u(S)))az ds < /(]T(f(s,u(s)))ards =0, forevery a € [0,1].

Hence [y ((f(s,u(s)))ar — (f(s,u(s)))as) ds = 0, foreverya € [0,1] and, by con-
til;uity, (f(s,u(8)))a = (f(s,u(s)))ar, for every a € [0,1], s € I, and 0 =
f() (f(sa”(s)))alds.
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Next, we study some necessary conditions to obtain solutions with the property that
the diameter of the a-level set is a constant function in the variable ¢, for every a € [0, 1]
fixed. Indeed, for each a € [0, 1],

diam([u(t)]*)

—dlamq al+/ f(s,u(s)))ar ds, (u ur+/ (s,u(5)))ar SD

= diam([u(0)]* +/ diam([f (s,u(s))]*)ds.

For this function to be constant in the variable ¢, for each a fixed, it is necessary
that diam([f(s,u(s))]*) = 0, for every a,s. Assuming that f is continuous, the so-
lution u has level sets with constant diameter if, for every a € [0,1], and every s,
diam([f (s,u(s))]*) = 0, that is, if f(¢,u(r)) is crisp, forevery ¢t € I.

In particular, if f(,x) is crisp, for every t € I and every x € E!, then the diameter
of each level set for the solutions to the initial value problem associated to equation
u'(t) = f(t,u(r)), t € I, is constant. Note that this does not mean that the solutions
are crisp, but diam([u(t)]*) = diam([u(0)]?), for every ¢t € I and a € [0, 1], that is, the
diameter of each level set of the solution is the diameter of the corresponding level set
of the initial condition. Under this assumption, there could be fuzzy periodic solutions.

Example 1. Consider the fuzzy initial value problem

u/(t) =Xppte I= [OvT]a M(O) = X[o,1]- 4)

Passing to the level sets, we get the equations X' =y = 3, x(0) = 0, y(0) = 1, hence
x(t) = 3t, y(t) = 1+ 31, for every ¢, and the solution u to @) is given by [u(¢)]* =
[3¢,1+ 31], for every ¢ and a, that is, u(t) = x[3;,143) = X{31} + X[0,1]> ¢ € I. Note that
diam([u(t)]*) = 1 = diam([u(0)]*), forevery r € I and a € [0, 1].

Example 2. Now, consider the fuzzy initial value problem
Lt/(t) :X{3}vt €l= [O7T]a M(O) = Uo, (@)

where up = (0; 1, 1) is the triangular fuzzy number given by

_Jrt+1,te[-1,0],
o(t) = { 1—t,t€0,1],

whose levelsets are [up]* = [—(1 —a),1 —a], for every a € [0,1]. Passing to the level
sets, we get the equations ¥’ =y’ = 3, x(0) = —(1 —a), y(0) = 1 —a, hence x(¢) =
—(1—a)+3t,y(t) = (1 —a)+3t,t €1, and the solution to (3) is the function u given
by [u(t)]* = [—(1—a) +3t,(1 —a) + 3¢, for every ¢ € I and a € [0, 1], that is, u(t) =
X{31) +uo, t € I. Note that diam([u(t)]*) = 2(1 — a) = diam([u(0)]), for every ¢ € I
and a € [0, 1]. We remark that u(¢) is also a triangular fuzzy number, for each ¢, that is,

u(t)=(3t;1,1).

Then, assuming that the right-hand side in the equation is a crisp function, we obtain
solutions with constant diameter, and we obtain T-periodic solutions u to the fuzzy



On Boundary Value Problems for Fuzzy Differential Equations 223

differential equation in the sense of Hukuhara if fOT f(s,u(s))ds = xjoy. This is the
situation if, for instance, there exists ¢ : I — R such that f(s,x) = X{c(s)}» for every

s€landx € E!, and fOTf(s,x)ds:x{o},Verl (fOTc(s)ds:O).

Example 3. Take f(t,x) = —1+ 21, fort € [ = [0,T] and x € R, which is a continuous
T
crisp function satisfying that [, f(s,x)ds = [ (-1+ %s) ds = [—s+ “;]0 =0, for

every x € R.
Consider the fuzzy initial value problem

W(t)=xp yp20t €1=10,T],  u(0) =¥, (6)

which can be easily solved, obtaining that [u(z)]¢ = [—t + ’Tz A=+ ﬂ , foreveryt €
I and a € [0,1], that is, u(t) = x{7t+,?} + Xjo,1)» t € I. Besides, u(T) = xjo,1)- Hence
MO=H )
everyt € [ and every a € [0, 1].
If we take the triangular fuzzy number uy = (0;1,1), then [u(r)]* =
—(1—a —H—’z, l—a)—t+" , Vt, Va, which defines a triangular fuzzy num-
T T g y
ber u(t) = x{_t+,Tz} +(0;1,1), for every ¢ € I. Besides, diam([u(t)]”) =2(1 —a) =
diam([uo]®), Vt € I,a € [0,1]. Note that [u(T)]* = [u(0)]%, Va € [0,1], then u(0) =
(0;1,1) = u(T).

t € 1, is a T-periodic solution for (@), and diam([u(z)]*) = 1, for

Example 4. For the problem
M/(t)+X{1}ZX{%}M(t)7tEI: [O7T]7 M(O)ZM(T)a (7)

we have, at least, the periodic solution u(r) = x (y If we start at a crisp initial condition,
2

the periodic solutions are crisp, since diam([u(t)]*) = 0, for every t € I and every a €

[0, 1]. If the initial condition is not crisp, it is necessary for the diameter of the solution

to be constant.

Remark 1. If 0 < A < 1, the boundary condition Au(0) = u(T) and the integral
representation of the solution imply that u(0), = 11_1 Jo (f(s,u(s))), ds, u(0)qr =
All fOT (f(s,u(s))),, ds. However, if (f(s,u(s))); < (f(s,u(s))),, for s in a set of posi-
tive measure, taking into account that A < 1, then u(0),; > u(0),,, and we do not obtain
a fuzzy number. Hence, the unique possibility to obtain a solution to the boundary value
problem is that (f(s,u(s))), = (f(s,u(s))),, for almost every s (by continuity, for all
s), and ug crisp. In this case, u(0) = Al_l fOT Sf(s,u(s))ds, and the solution is crisp.

Remark 2. 1f f : I x E' — E' is such that f(t, X)) = X{g(r.x)}- for every 1 € I and
x € R, where g : I x R — R, and the crisp equation y'(¢) = g(¢,y(¢)), t € I, has a real
solution y satisfying that Ay(0) = y(T'), then u(t) = )y}, € 1, is a solution to the
boundary value problem (T)).
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Remark 3. Suppose that f : I x E' — E! is such that f(¢,x) € R, for every ¢ €
I and x € R, and, besides, assume that for all symmetric triangular fuzzy num-
ber x, [f(t,x)]* = [f(t,mp([x]*)), f(z,mp([x]*))], foreveryt € I, a € [0,1], where
mp([x]*) represents the midpoint of the interval [x]%. Suppose also that the crisp
equation u'(t) = f(¢t,u(tr)) has a real solution u. Then the function given by
the corresponding triangular fuzzy numbers [i@(7)]” = [—(1 — a) + u(t),] —a +
u(t)], Va € [0,1], and ¢ € 1, is such that [@'(r)]* = [u(¢),u' (1)] = [f(t,u(?)), f(t,u(r))]
= [f(z,i(1))]%, Ya € [0,1], t € I, hence i is a solution to the fuzzy equation. Note that,
for x a symmetric triangular fuzzy number, {mp([x]*)} = [x]!, for every a € [0,1]. We
remark that, if the solution u to the crisp equation satisfies that Au(0) = u(T), then
Ai(0) = A(u(0);1,1) = (Au(0);A,A) = (u(T); A, ), which is equal to #(T) if L = 1.
Thus, this method is useful to finding periodic solutions.

Remark 4. Suppose that f(¢,x) is a fuzzy function and that there exist h; (t,a), ha(t,a),
such that iy (¢,a) < 0 < hy(t,a), hy(¢,a) is nondecreasing in a, h,(t,a) is nonincreas-

ing in a, for each ¢ fixed, hy, hy are left-continuous in a, aahtl (t,a) <0, aa]’;z (t,a) >0,
hi(T,a) — Ah1(0,a) = hy(T,a) — Ahy(0,a), for every a € [0,1], and diam([f(1,X)]*) =
W (t,a) — h}(t,a), foreveryt € ,x € E', and a € [0,1]. For ¢ € I and x € R, we define

f(tax) :f(tax{x}+7(t))ar_h/2(tva) :f(t7X{x} +7(t))al _h/l (tVa)v

where [F(2)]? = [h1(t,a),ha(t,a)], fort € I and a € [0,1]. Suppose that the real boundary
value problem

u/(t) = f(tal’t(t))v rel= [07 T]v AM(O) = M(T) + [h](T,CZ) - lh](OJl)], (8)

has a solution u(r), which also satisfies that Au(0) = u(T) + [h2(T,a) — Ah2(0,a)].
Then & given by [i(1)]* = [u(t) + hi(t,a),u(t) + ha(t,a)], Vi € I, a € [0, 1], is such that
[@ (1)) = [ (1) + Ky (,0),u/ (1) + Wy (t,0)] = [ (2, u(2)) + By (1, 0), (8, u(t)) + Ry (1, 0)] =
[f(t,ii(1))]%, Va, t, where we have used that a(t) = Xfu(r)) +7(t), and i is a solution to
the fuzzy equation. Besides, Aii(0) = ii(T). It is clear that, if we assume the more re-
strictive hypothesis h; (T,a) — Ah(0,a) = hy(T,a) — Aha(0,a) = 0, for every a € [0, 1],
and the solution u to the crisp equation satisfies that 2u(0) = u(T), then Aii(0) = i(T).
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On Fuzzy Sets Convolution, Fuzzy Lipschitz Sets
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Abstract. In this paper we present some counterexamples to a result related to fuzzy Lipschitz
sets and fuzzy sets convolution. Using the concept of fuzzy triangular set of rank p is presented
an alternative proof of a interesting density result over fuzzy sets which was previosly proved by
using the result belied.

Keywords: Fuzzy sets convolution, Lipschitz fuzzy sets, Triangular fuzzy sets, Density, Haus-
dorff metric.

1 Introduction

There exist many situations where it is necessary to approximate an arbitrary normal
upper semincontinuos fuzzy set with compact support by fuzzy sets with more con-
venient properties, for example, by continuous fuzzy sets or lipschitzians fuzzy sets
(see [2]).

In this direction, Colling and Kloeden shows that the normal compact- convex
fuzzy sets with compact support on R” can be approximate by continuous fuzzy sets in
D-metric. Also, in [3] the authors prove that the space of level-lipschitzian fuzzy sets on
R" is a dense subspace of the normal compact- convex and level-continuous fuzzy sets
with compact support in relation to D-metric. They generalized their work to Banach
spaces with interesting a-pplication to the characterization of relative compactness in
spaces of fuzzy sets and the existence of fuzzy differential equations (see [4]).

In [3] is established another density result over fuzzy sets where a fundamental step
in the proof is given by result below (see notation in the next section).

Proposition 1. Let u,v € # (R"). If v e ZL(R") then uVv € £ (R").

This article presents some counter-examples to proposition above, and later we present
some concepts and results that allow us to prove properly the density result obtained

in [3].
2 Peliminaries

Let (.:#(R"),D) be the metric space of compacts, upper semicontinuous and normal
fuzzy sets of R” with D the supremum metric, .2 (R") is the set of elementes in .# (R")

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 226 2008.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2008
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having membership funtion being Lipschitz on their support and #Vv is the convolution
between fuzzy sets u, v given by:

(uVv)(x) = sup {u(y) Av(x—y)},
yER"

with A denoting minimum on [0, 1].
Using Proposition [I] with v = X8, (0)» membership function of the open ball with
center at 0 and radio [1,, it can be proxfed that
Proposition 2. (.Z(R"),D) is dense in (% (R"),D).
Proof. For details see [3]. ]

We are going to show some counter-example to Proposition [[] and in Section [3 an
alternative proof of Proposition[2]is presented.

2.1 Counter-Example 1
Let u,v be (see Fig.[[land2)) defined as:
] — 0,1, if 0<a<1/4
{172}, if 1/d<a<li
and
V= XB,(0) = X[-1,1]

Since u,v € Z#(R), are both normals and have compact o.—cuts. Clearly v is fuzzy
Lipschitz. Lets see what happens with «Vv. Because for u,v € .% (R) we have [uVv]* =
[u]® + [v]* this implies that

V% =[0,1]+[-1,1]=[~1,2], if 0<a<1/4

nd
: [uWv)* ={1/2}+[-1,1]=[-1/2,3/2], if 1/4<a<].

This contradicts Proposition[Ilbecause the set #Vv is not fuzzy Lipschitz as we can easily
see from Figure 3] If exist a number K > 0 such that |(uVv)(x) — (uVv)(z)| < K|x—z]

u(x)
1
*
I
4l
L o x
0 1/2 1

Fig. L ] =[0,1), if 0<o<1/4,[u]®={1/2}, if 1/4<a<l
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v(z)

1

Qo ———— —
—Q — — — — —4
8

Fig. 2.v = xp,(0) = X[-1,1]

uVo(z)
1
! ?
| |
[ [
| |
—0 |l/4 —
o—1 Lo x
~1-1/2 3/2 2
Fig. 3. Fuzzy number uVyv is not fuzzy Lipschitz
for all x,z € [uVv]® = [~1,2] then we would have particularly for x = 3/2 and any z €
(3/2,2]
|@Vv)(3/2) = V)@ _
3/2 2| -
[1—1/4|
<K
13/2—z] —
Bl
3/2—2 —

which is clearly absurd because z can be as close to 3/2 as we want it.

The authors in [5]] did not consider that x —y and z — y can not be simultaneosly in
supp(v) =[—1,1] for x,z € supp(uVv) and y € supp(v).

Our counterexample also invalidates the argument in the proof of Proposition
founded in [3]], since the proof uses Proposition [l with v = XB, (0)-

P
Note that #Vv is not fuzzy Lipschitz, because differential ratios ("VV)(xi:EMVV)(Z) are
not bounded around 3 /2 or —1/2. Note also that u has a similar property around 1,/2 and
in fact many other counterexamples can be constructed using fuzzy numbers u having
this property.

2.2 Counter-Example 2

Previous counterexample have the characteristic that level set function of u, [u](") :
[0,1] — K(R") are discontinuous. So, if we restrict our attention to fuzzy sets u with
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continuous level set function, can we get a valid result in the way of Proposition[I? The
answer is again negative.

Let u € .7 (R) defined by

Vi—1+1 if 0<x<1
ux) =< —Vx—1+1 if 1<x<2
0 otherwise

which have level sets given by [u]* = [1 — (1 — )3, 1 + (1 — )] for & € [0, 1].

u(z)

1

0 1 2
Fig. 4. [u]* =[1 - (1 — )3, 14+ (1 —)?)

So we have that u has continuous level set application but « is not Lipschitz on R”
not even fuzzy Lipschitz on their support, so obviously a trivial counterexample can be
made taking v = Y}, but if we are looking for a less trivial counterexample it is enough
consider v = xp, (o) = X[-1,1] as before.

In this situation, for any o € [0, 1]
W =[1-(1-a)P 1+ (1 —a)]+[-11]=[-(1-a)’ 2+ (1 —a)]
which give us by using Representation Theorem the next membership function
1+vx if —1<x<0
1 if 0<x<2
1-Vx—2 if 2<x<3
0 otherwise

uVy(x) =

uVou(x)

1

—1 0 1 2

Fig. 5. uVv(x) is not Lipschitz
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This fuzzy number is not Lipschitz and nor fuzzy Lipschitz, because again there is
no bounded differential ratios, around 0 and 2 (See Figure[3).

3 Triangular Fuzzy Sets and Density

It is evident from arguments presented in [3]], that if we assume that function v is Lips-
chitz over whole R”, then:

Proposition 3. Let be u,v € # (R"). If v is Lipschitz on R" then uVv € .Z(R").

We are going to keep this result on mind and try to prove Proposition 2l The idea is to
use triangular fuzzy sets instead characteristic function.

Definition 1. For any p € R p > 0 we define T, € F (R") (triangular fuzzy set of rank
p)as: [Tp]% = B(1_q),(0), for all o € [0,1].

Note that from definition of 7},, we have that 7,(x) = 0 if and only if ||x|| > 1/p and if
|lx]| < 1/p then for Representation Theorem que have
Ty(x) =supz{a : x € [T,]*}
=sup{a:x € B[0,(1—0a)/p]}

=sup{a: |x|| < (1—-a)/p} M
= sup{oc <1 _P”xH}
Tp(x) = 1—pllx]|

As is suggested by taking n = 1 (see Figure [6), 7), should be Lipschitz on whole R”,
this actually can be proved.

Lemma 1. For every p > 0, T, is Lipschitz on R" of rank p.

Proof. Let x,y € R". If T),(x) = T,,(y) it is obvious that | T),(x) — T,,(y)| < K||x —y|| for
every K > 0. Lets suppose that Tj,(x) < T},(y).

If T, (x) = O then ||x|| > 1/pand 0 < T,,(y) so ||y|| < 1/p, then T,,(y) = 1 —p||y||. In
this case we have

Tp(x) = T,(y)| = Tp(y) = 1= pllyll = p(1/p = lI¥Il) < (Il = Iy ]I) < pllx =yl

Fig. 6. T, forn=1
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If 7,,(x) > O then

T (x) = T, = Tp(y) = Tp(x) = 1 = pliyll = 1+ pllxl| = p(lix] = [Iy[) < pllx =yl

O
Corollary 1. Let u € % (R"). If v is a triangular fuzzy set on R" then uVv € £ (R").

Proof. Tt follows immediately of Proposition[3]and Lemmal[I] O

Using triangular fuzzy sets and last corollary it is possible to prove the density of fuzzy
Lipschitz sets on (% (R"),D) with just a minor modification of arguments used in [3]].

Proposition 4. (Z(R"),D) is dense in (# (R"),D).

Proof. Let u € .Z(R") arbitrary and let 7}, be as before, p € Z™.
Setting u, = uVT),, we have from Corollary [l that u, € £ (R") forall p € Z*.
Using properties of Hausdorff metric and a-cuts, we have for each o € [0, 1]

H([up]®, [u]*) = H([uVvp]*, [u]*)
H([u]*+ B0, (1 — o)/ pl, [u]*+{0})

2
< H(B[0,(1-a)/p],{0})
=(1—a)/p.
Taking sup over o0 we get D(up,u) < 1/p, for each p € Z* and taking p — e we get
the desired result. o

Remark 1. The section on convolution and Choquet integral established in [3] is correct
when uses the results given in this work.
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Abstract. Probability boxes are among the most simple and popular models used in imprecise
probability theory, and many practical results concerning them exist in the literature. Never-
theless, little attention has been paid to their formal characterisation in the setting of Walley’s
behavioural theory of imprecise probabilities. This paper tries to remedy this situation by formal-
ising, generalising and extending existing results as well as by giving new ones, within Walley’s
framework.
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1 Introduction

Imprecise probability [7] is a generic term referring to uncertainty models where the
available information does not allow singling out a unique probability measure. Unlike
classical probability models, which are uniquely determined by their values on events,
general imprecise probability models are determined by bounds on expectations of ran-
dom variables [[7, p. 82, §2.7.3]. This more advanced mathematical description allows
more flexibility in the representation, but also implies more complexity when treating
uncertainty.

For this reason, it is of interest to consider particular imprecise probability models
that yield simpler mathematical descriptions, at the expense of generality, but gaining
ease of use, elicitation, and graphical representation. One of such models is considered
in this paper: pairs of lower and upper cumulative distribution functions, also called
probability boxes, or briefly, p-boxes [3]]. Practical aspects of this model have been
extensively studied in the literature, but little attention has been given to their formal
characterisation in terms of lower and upper expectations, or, equivalently, of coherent
lower previsions (they are briefly studied in [6} [7], and in cumulative distribution
functions associated with a sequence of moments are considered).

This paper aims at such study, and considers a generalised version of p-boxes, de-
fined on any (not necessarily finite) totally ordered space. In [2], a similar extension on
total pre-ordered finite spaces is considered. This paper formulation covers generalised
p-boxes defined on totally ordered finite spaces as well as on closed real intervals. More
generally, such treatment also admits p-boxes on product spaces (by considering an ap-
propriate order), and thus admits imprecise multivariate distributions through p-boxes
as well.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 235 2008.
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The paper is organised as follows: Section2l provides a brief introduction to the the-
ory of coherent lower previsions. Section[3lthen introduces and studies the p-box model
from the point of view of lower previsions. Section[ provides a first expression for the
natural extension of a p-box, and studies its main properties. In Section[3 we prove that
any p-box can be approximated as a limit of discrete p-boxes, and that this limit holds
into the natural extensions. Finally, we end in Section[6] with main conclusions and open
problems. Due to limitations of space, proofs have been omitted.

2 Preliminaries

Let us briefly introduce coherent lower previsions; see [7] for more details. Let Q be
the possibility space. A subset of €2 is called an event. A gamble on £ is a bounded
real-valued function on €2. The set of all gambles on (2 is denoted by .Z’(£2), or simply
by .Z if the possibility space is clear from the context. A particular type of gamble is
the indicator of an event A, which is the gamble that takes the value 1 on elements of
A and the value 0 elsewhere, and is denoted by I, or simply by A if no confusion is
possible.

A lower prevision P is a real-valued functional defined on an arbitrary subset .Z" of
Z.1f f is a gamble, P(f) is interpreted as the maximum buying price for the (uncertain)
reward f. It can be argued that lower previsions model a subject’s belief about the true
state x in £2. A lower prevision defined on a set of indicators of events is usually called
a lower probability.

A lower prevision on ¢ is called coherent when for all p in N, all fy, fi, ..., fp in
S and all A, Ay, ..., A, in R,

SUp,eo [ Ai(fi = P(fi) — Ao(fo — P(fo))(x)] = 0.
A lower prevision on the set . of all gambles is coherent if and only if

(C1) P(f) > inff,
(C2) P(Lf) = AP(f), and
(C3) P(f+8)>P(f)+P(g)

for all gambles f, g and all non-negative real numbers A. A lower prevision on .&
satisfying (C3) with equality for all gambles f and g is called a linear prevision on £,
and the set of all linear previsions on .Z is denoted by &?. A lower prevision P on ¢
can also be characterised by the set

M (P)={0eZ: (VfeA)(Q(f) = P(f))}

Then P is coherent if and only if P(f) = mingc 4 (p) Q(f) forall f € 2.

Given a coherent lower prevision P on JZ, its natural extension to a larger set %] D
J is the pointwise smallest coherent (i.e., least-committal) lower prevision on %] that
agrees with P on %", The procedure of natural extension is transitive 6, p. 98]: if £,
is the natural extension of P to %] and E, is the natural extension of E| to % 2D %],
then E, is also the natural extension of P to .#>. The natural extension to all gambles is
usually denoted by E. It holds that E(f) = minge 4 (p) Q(f) forany f € Z.
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A particular class of coherent lower previsions of interest in this paper are completely
monotone lower previsions [[Il]. A lower prevision P defined on a lattice of gambles 7
is called n-monotone when forall p € N, p <n,and all f, fi, ..., fp in £

Zlg{l,...,p}(_l)lllp(f/\/\ielfi) >0,

and is called completely monotone when it is n-monotone for all n € N.

3 Characterising p-Boxes

Let (2, <) be an order complete chain. Let x < y be a brief notation for x <y and x 2 y.
So < is transitive, reflexive, and anti-symmetric, and for any two elements x, y € Q2
we have either x < y, x =y, or x > y. For simplicity, we assume that £2 has a smallest
element Og and a largest element 1.

We call cumulative distribution function any non-decreasing function F : Q — [0, 1]
that satisfies F(1g) = 1. F(x) provides information about the cumulative probability
on the interval [0, x]. Note that we do not need to impose F(0g) = 0. Also note that
cumulative distribution functions are not assumed to be right-continuous. Given a cu-
mulative distribution F on £ and a value x € , F(x") is the right-limit and F (x~) is
the left-limit,

F(x")=infF(y)= lim F(y) F(x )=supF(y)= lim F(y)

y>x VX, y>X y<x y—x, y<x
and F(15) =1 and F(0,) =0.

Definition 1. A generalised probability box, or generalised p-box, is a pair (F,F) of
cumulative distribution functions from Q to [0,1], satisfying F < F. If Q is a closed
interval on R, then we call the pair (F,F) a p-box.

A generalised p-box is interpreted as a lower and an upper cumulative distribution func-
tion. In Walley’s framework, this means that a generalised p-box is interpreted as a
lower prevision (actually a lower probability) P ;- on the set of events

H ={0q,x]: xe Q}U{(y 1a]: ye Q}

by
P p([00,x]) := F(x) and P p((y; 1o]) = 1 = F(y).
In the particular case of p-boxes it was mentioned by [[7, Section 4.6.6] and proven by
(6, p. 93] that Py , is coherent. It is straightforward to show that generalised p-boxes
are coherent as well.
Given a generalised p-box, we can consider the set of cumulative distribution func-
tions that lie between F and F,

@(F,F)={F: F<F<F}.

We can easily express the natural extension E . ;. in terms of @(F,F): E . is the lower
envelope of the natural extensions of the F between F and F':
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Epp(f)= inf Eg(f) (D

FE®D(F,F)

for all gambles f on €2. A similar result for p-boxes in the unit interval can be found in
Section 4.6.6].

Next, we study the natural extension of a generalised p-box, that is, what information
a generalised p-box provides about the buying prices for the gambles which are not in
. For this, we shall regularly invoke the field of events .7 generated by the domain
J, i.e., events of the type

(00, x1] U (x2,x3] U~ -~ U (X2, X204 1]
forx; <xp <x3 < -+ <xppyin Q (if nis O then this is [0g,x;]) and
(x2,23] U+ - U (X2, X2 11]

forx; <x3 <--- <X2p411n .

Since the procedure of natural extension is transitive, in order to calculate the nat-
ural extension of Py ;. to all gambles we shall first consider the extension from %" to
A, then the natural extension from .57 to the set of all events, and finally the natural
extension from the set of all events to the set of all gambles. The first of these steps is
achieved by the following proposition:

Proposition 1. Given A = [0¢g,x;] U (x2,x3] U -+ U (X251, %2041,

EF,F(A) =F(x;)+ z max{0, F (xo1) — F(x2x) }
k=1

and given A = (xp,x3) U+~ U (X2, X2n+1),

Epp(4) =kimax{o,F<xzk+1> ~ Fl)}.
=1

We now describe the natural extension of a generalised p-box by a Choquet integral.

4 The Natural Extension as a Choquet Integral

As shown in [4} Section 3.1], the natural extension E of a cumulative distribution
function F on [0,1] is completely monotone. It is fairly easy to generalise this result
to cumulative distribution functions on a totally ordered space 2. In this section we
establish this for generalised p-boxes.

Theorem 1. The natural extension Ep, . of Pp. p to Z(Q) is given by the Choquet in-
tegral (C) [ dPRF*, where PRF* is the inner measure ofPF7F,

Pl (A)= sup  PIL(C). 2)
Ces CCA

Moreover;, E 1 is a completely monotone lower prevision.
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The remainder of this section is devoted to the study of this natural extension, in order
to provide more manageable expressions for it. We shall characterise E by the values
it takes on intervals of the form [0gq,x], (x,¥],[0g,x) and (x,y), for x <y in Q, through
the lower oscillation of gambles and full components of events, as explained further on.
For ease of notation, we shall denote E . . by E when no confusion is possible.

Let us cons