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Preface

Probability theory has been the only well-founded theory of uncertainty for a long
time. It was viewed either as a powerful tool for modelling random phenomena,
or as a rational approach to the notion of degree of belief. During the last thirty
years, in areas centered around decision theory, artificial intelligence and infor-
mation processing, numerous approaches extending or orthogonal to the existing
theory of probability and mathematical statistics have come to the front. The
common feature of those attempts is to allow for softer or wider frameworks for
representing uncertain information. Various approaches have appeared, either on
their own like fuzzy set theory, possibility theory, rough sets, or having their ori-
gin in probability theory itself, like imprecise probability, belief functions, fuzzy
random variables. Many of the latter come down to blending interval or fuzzy
interval analysis with probabilistic methods. These methods are softer than the
traditional theories and techniques because they are less Procrustean, they more
easily adapt to the actual nature of information.

Nearly ten years ago, the need was felt to establish a recurrent forum for
discussing such new trends that enlarge the statistical and uncertainty mod-
elling traditions, towards a flexible and more specific handling of incomplete or
subjective information. This idea resulted in the launching of the International
Conference on Soft Methods in Probability and Statistics (SMPS), organized for
the first time in Warsaw in 2002. Subsequent events in this series took place in
Oviedo in 2004 and then in Bristol in 2006.

This volume is a collection of selected papers presented at the 4th Interna-
tional Conference on Soft Methods in Probability and Statistics (SMPS’2008)
held in Toulouse, France, on September 8–10, 2008. It was organized by the
RPDMP team (Raisonnements Plausibles, Décision, Méthodes de Preuve) at
the Institut de Recherche en Informatique de Toulouse (IRIT), on the precincts
of Université Paul Sabatier.

The volume contains five sections. The first one is dedicated to papers based
on invited talks. Two of them are devoted to generalizations (or soft versions)
of Bayesian inference: Jean-Marc Bernard from Paris 5 University (France) con-
siders imprecise predictions in the framework of the Dirichlet model; Reinhard
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Viertl from the Technical University of Vienna (Austria) extends the Bayesian
setting to the handling of fuzzy data and fuzzy prior probabilities. The third
paper by Dominique Guyonnet, Senior Scientist at BRGM, Orléans (France’s
leading public institution in geoscience) considers the applications of soft meth-
ods to risk analysis in climate change problems. Finally some pages are devoted
to the pioneering works of Robert Féron on fuzzy random variables invented by
him in 1976.

Part II is devoted to contributions to the foundations of uncertainty theories
such as imprecise probability representations, possibility theory, the bridge to
linguistic information. Two contributions deal with the concepts of independence
and belief revision, respectively.

Part III contains numerous papers devoted to soft statistical methods, rang-
ing from the principles of statistical inference to detailed problems connected
with statistical tests (of independence, of the mean, of the variance, etc.) and
estimation. Part IV focuses on mathematical aspects of soft methods applied
to probability and statistics. Various contributions address issues in measure
theory, stochastic differential equations, convergence issues, the formalization of
variance, but also some discrete mathematical problems. It includes the contri-
butions to a special invited session on fuzzy set-valued analysis organized by
Luis J. Rodŕıguez-Muñiz. Papers on aggregation functions and algebraic issues
can also be found.

Part V is the application section, devoted to engineering. It ranges from compu-
tational methods for uncertainty propagation to regression, learning data-mining
and decision analysis. Applications include expert opinion fusion, structural anal-
ysis, and design optimization.

The editors are grateful to contributing authors, invited speakers, and all
Programme Committee members and additional referees who made it possible
to put together an attractive program for the conference. Thanks go to Janusz
Kacprzyk for his everlasting support to SMPS, to the Editorial staff of Springer
for producing the volume, carefully put together by M. Asunción Lubiano.

This conference has also benefited from the financial support of several orga-
nizations, without which the meeting could not have taken place. We are grateful
to the “Obra Social y Cultural”of the main Savings Bank in Asturias, CajAstur,
for generously supporting the production costs of the proceedings. This confer-
ence was also sponsored by Institut de Radioprotection et de Sûreté Nucléaire
(IRSN, Cadarache) and Université Paul Sabatier. It is placed under the auspices
of EUSFLAT (the European Society for Fuzzy Logic and Technology).

Toulouse, May 2008 Didier Dubois
M. Asunción Lubiano

Henri Prade
Maŕıa Ángeles Gil

Przemys�law Grzegorzewski
Olgierg Hryniewicz
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Contents XI

Fuzzy Kendall τττ Statistic for Autocorrelated Data
Olgierd Hryniewicz, Anna Szediw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Estimation

Mixture Model Estimation with Soft Labels
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The F. Riesz Representation Theorem and Finite Additivity
Gert de Cooman, Enrique Miranda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Set-Valued Stochastic Integrals with Respect to a Real Valued
Martingale
Jinping Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253



XII Contents

Differential Equations

On Stochastic Differential Equations with Fuzzy Set
Coefficients
Yukio Ogura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Strong Solution of Set-Valued Stochastic Differential Equation
Jungang Li, Shoumei Li . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Convergence Results

Convergences of Random Variables with Respect to Coherent
Upper Probabilities Defined by Hausdorff Outer Measures
Serena Doria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

On Convergence in Necessity and Its Laws of Large Numbers
Pedro Terán . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Combinatorics of Imprecise Probabilities

The Omnipresence of Cycle-Transitivity in the Comparison of
Random Variables
Bernard De Baets, Hans De Meyer, Karel De Loof . . . . . . . . . . . . . . . . . . . . 299

Geometry of Cores of Submodular Coherent Upper
Probabilities and Possibility Measures
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Université Paris Descartes,
Laboratoire de Psychologie Envi-
ronnementale (CNRS, UMR 8069),
71 avenue Edouard Vaillant, F-92774
Boulogne-Billancourt, France
Jean-Marc.Bernard@univ-
paris5.fr
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Sébastien Destercke
Institut de Radioprotection et
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Escuela de
Actuaŕıa, Av. Lomas Anáhuac s/n,
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Universitätsplatz 2,
D-39106 Magdeburg, Germany
cmoewes@iws.cs.uni-magdeburg.de

Manuel Montenegro
Departamento de Estad́ıstica e
I.O. y D.M.,
Universidad de Oviedo, 33007 Oviedo,
Spain
mmontenegro@uniovi.es
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Departament de Ciències Matemà-
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Università “La Sapienza”, via Scarpa
16, 00161 - Roma,
Italy
vantaggi@dmmm.uniroma1.it

Reinhard Viertl
Department of Statistics and
Probability Theory, Vienna University
of Technology, Wiedner
Hauptstraße 8-10, 1040 Wien, Austria
R.Viertl@tuwien.ac.at

Carl G. Wagner
Department of Mathematics, The
University of Tennessee, Knoxville,
TN 37996-1300, USA
wagner@math.utk.edu

Dabuxilatu Wang
School of Mathematics and
Information Sciences, Guangzhou
University, No. 230 WaiHuan XiLu,
University Town, Guangzhou, 510006,
P.R. China
dbxlt0@yahoo.com

Anna Wilbik
Systems Research Institute, Polish
Academy of Sciences,
ul. Newelska 6, 01-447 Warszawa,
Poland
wilbik@ibspan.waw.pl

Ralph L. Wojtowicz
Metron Inc., 11911 Freedom Drive,
Suite 800,



XXII List of Contributors

Reston, VA 20190, USA
wojtowicz@metsci.com
Web page:
http://www.adjoint-functors.net

Jinping Zhang
Department of Mathematics, Saga
University, Saga 840-8502, Japan
zhangjinping@bjut.edu.cn



Part I 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Invited Papers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Imprecise Probabilistic Prediction for
Categorical Data: From Bayesian Inference to the
Imprecise Dirichlet-Multinomial Model

Jean-Marc Bernard

Université Paris Descartes, Laboratoire de Psychologie Environnementale (CNRS, UMR 8069),
Boulogne-Billancourt, France

Abstract. From n categorical observations, what can be predicted about the next n′ ones? We
present a generalization of the Bayesian approach, the imprecise Dirichlet-multinomial model
(IDMM), which uses sets of Dirichlet-multinomial distributions to model prior ignorance. The
IDMM satisfies coherence, symmetry and several desirable invariance properties.

Keywords: Predictive inference, Rule of succession, Imprecise Dirichlet model, Prior ignorance.

1 Introduction

1.1 A Story with (Too) Many Rabbits

Some years ago, a friend proposed me the following puzzle: “A man takes you to a
room. There, on a table, stand two top-hats. The man asks you to pick one hat at random
and to raise the hat, and to your great surprise, you discover a rabbit under the hat. The
man then asks you: What is the probability that the other hat contains a rabbit too?”
At this stage, my friend looked at me, checking that the desired effect was reached. In
effect, I felt embarrassed because my probabilistic intuition told me that I could not
reasonably answer the question. The question even sounded somehow meaningless.

The puzzle went on: “Suppose now that there are 100 hats on the table and that the
man asks you to draw one hat, then another, and so on, and that, under each hat, you find
a rabbit, until there is only one hat left. Now the question is: What is the probability that
the last hat also contains a rabbit?” Now I felt somehow more embarrassed, because it
seemed to me that there was an answer to the question, and that, with some calculations,
I could put a figure on the requested probability, e.g. around 99

100 .
But then came the final stroke: “When moving from 2 hats to 100 hats, a question

which initially sounded meaningless has changed to a relevant question. After how
many hats does the question become meaningful?”

I had then realized that the Bayesian theory proposed answers to the rabbits story.
For instance, assuming that there are only K = 2 possibilities from the set C1 =
{rabbit,no− rabbit}, and that one is in a state of prior ignorance, Laplace’s famous
rule of succession provides the answers 2

3 and 100
101 to the 2-hats and 100-hats cases re-

spectively. But these probabilities become 4
5 and 102

103 if the set of possibilities is taken
as C2 = {rabbit, pigeon,other,nothing}. And other ways to define prior ignorance yield

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 3–9, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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a probability of 1 for the two cases indistinctly. Hence, in the 2-hats case, the answer
appears to depend too much on the prior and on the number of basic categories, and
this could explain the reluctance to give an answer in that case. In contrast, the 100-hats
case appears less problematic because these dependencies are less strong.

It now seems to me that the rabbits puzzle illustrates the advantages of using
imprecise probability models to express uncertainty, especially in situations of prior
ignorance. This paper presents an imprecise probability model, the imprecise Dirichlet-
multinomial model (IDMM) which possess several interesting properties: it generalizes
Bayesian inference, it yields probability intervals for events of interest, it proposes a
new definition of prior ignorance, it is invariant w.r.t. the possibility space C, and it
satisfies several other important properties including coherence. The IDMM has been
studied in great detail by Walley & Bernard [15] and can be seen as the predictive
counterpart of Walley’s Imprecise Dirichlet Model (IDM), see [13].

For example, under the IDMM, before observing any hat, the prior probability interval
of finding a rabbit is [0,1], a probability interval which expresses a maximal uncertainty
in Walley’s theory of imprecise probabilities (see [12]). After observing the first hat,
the IDMM yields the probability interval [ 1

2 ,1], and, after observing 99 hats, the interval
[ 99

100 ,1]. 1

1.2 The General Problem

The general problem of predictive inference can be stated as follows. Each observable
unit is classified into one of K categories or types from a set C, labeled 1,2, . . . ,K. We
observe the types of n distinct units. Let a =(a1, . . . ,aK) and f = a/n denote the counts
and (relative) frequencies of each type in the observed sample of size n, with∑k ak = n.2

The problem is to make inferences about a′ = (a′1, . . . ,a
′
K) or f ′ = a′/n′, the counts

or frequencies of each type in a future sample of n′ new units, where ∑k a′k = n′. The
rabbits examples refers to the special case n′ = 1 of immediate prediction, in which the
prediction bears on the next observation only.

The problem of probabilistic prediction for categorical data has been of great histor-
ical importance in Statistics. In the 18th century, Bayes discussed the problem in the
case of two categories, and Laplace proposed a generalization to the case of multiple
categories, The general problem, which Karl Pearson called “the fundamental problem
of practical statistics”, and the “rules of succession” proposed to answer the problem
of immediate prediction have been widely discussed since then, see [8, 15] and refer-
ences therein. Geisser [8] stresses that predictive inference is the most natural approach
to inference since it attempts at modeling observables (past and future) only, without
referring to an underlying population.

1.3 Laplace’s and Other Bayesian Rules of Succession

A rule of succession is a solution to the problem of immediate prediction, i.e. the
case n′ = 1. Laplace’s principle of indifference leads to the famous rule of succession
Prob(a′k = 1 |a) = ak+1

n+K .

1 For an IDMM with hyperparameter s = 1, see further.
2 In the sequel, all sums and products with index k run from 1 to K.
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More generally, Bayesian conjugate analysis (based on a Dirichlet-multinomial prior,
as we shall see) leads to the following rule,

Prob(a′k = 1 |a) =
ak +αk

n + s
, (1)

whereααα = (α1, . . . ,αK) are fixed positive reals, with ∑kαk = s. Each αk can be thought
of as a prior strength allocated to each category k.

Within the Bayesian framework, several approaches have been proposed for the pur-
pose of objective inference, i.e. for making inferences from a state of prior ignorance.
Each one leads to different choices for the prior strengthsααα , typically symmetrical, i.e.
αk = s/K, with a small value for s, either s = 0, 1, K/2 or K. See e.g. [7, 15]. The
problem with these objective Bayesian methods is not only that their answers differ, but
that they can differ substantially, especially when n is small compared to K. Another
problem is the dependence on the set C and the number of types K, whereas the way
observations are categorized can be partly arbitrary.

The IDMM described in this paper answers these difficulties by using a set of prior
distributions to characterize prior uncertainty, instead of a single prior distribution as
in the Bayesian approach. As a result, the predictive inferences produced by the IDMM
encompass several objective Bayesian methods, and also are invariant w.r.t. refinements
or coarsenings of the possibility space C.

2 Bayesian Predictions

2.1 Link between Past and Future Observations

In order to make inferences about the unknown a′ from the observed a, past and fu-
ture observations must be linked in some way. Intuitively, the idea is to think that past
and future observations are “homogeneous”, in other words that the observed counts
a constitute a “fair” representative of the combined (past + future) counts a+a′. We
denote by an asterisk the characteristics of the combined observations: n∗ = n + n′,
a∗ = a+a′, and f∗ = (nf + n′f ′)/(n + n′).

For instance, assume that the observed data were obtained by multiple hypergeomet-
ric sampling, i.e. n observations taken at random from the n∗ = n + n′ combined ones.
The probability of obtaining the counts a conditional on the combined counts a∗ is
then

Prob(a |a∗) =∏
k

(
a∗k
ak

)/(
n∗

n

)
∝∏

k

(
ak + a′k

ak

)
. (2)

More generally, the intuitive idea of homogeneity can be operationalized by an as-
sumption of exchangeability (or order-invariance): conditional on the counts of each
type in the n + n′ observations, each possible ordering of the n + n′ observations is
equally probable a priori. The exchangeability assumption is satisfied whether the size
of the sampled population is finite (multiple hypergeometric process), of size at least
n∗ = n + n′, or even infinite (multinomial process). Under that assumption, the proba-
bility of a, conditional on a∗, is always proportional to (2), and hence the probability
in (2) represents the likelihood of a∗ given a.
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2.2 Dirichlet-Multinomial (DiMn) Prior and Posterior

The conjugate family associated to the likelihood (2) is the Dirichlet-multinomial
(DiMn) family. The DiMn(ααα ,n∗) prior on a∗ with parametersααα = (α1, . . . ,αK), that is,

Probααα(a∗) =
(

n∗

a∗

)
α [a∗1]

1 · · ·α [a∗K ]
K

s[n∗] , (3)

when combined with the likelihood (2), yields a DiMn(a+ααα,n′) posterior on a′ con-
ditionally on a that is,

Probααα(a′ |a) =
(

n + n′

a+a′

)
(a1 +α1)[a

′
1] · · ·(aK +αK)[a

′
K ]

(n + s)[n′]
. (4)

In the above equations, the formulae for probabilities are expressed in terms of stan-
dard multinomial coefficients and of the ascending factorial function y[u], defined for all
integer u≥ 0 and real y by3

y[u] = y(y + 1) · · ·(y + u−1), for u > 0 and y[0] = 1. (5)

Note that the parameters ααα = (α1, . . . ,αK) act as prior strengths allocated to each
category and that updating is done by incrementing them with the observed counts
a = (a1, . . . ,aK). We shall also use an alternative parameterization in terms of s and the
relative prior strengths t = (t1, . . . ,tK) =ααα/s.

2.3 Some Properties of DiMn Distributions

Below, we list a few properties of the DiMn. Other properties and further references
may be found in [15] and [9, pp. 80–83 & 202–211].

• Expectations: The prior (posterior) expectations are given by the prior (posterior)
relative strengths, E( f ∗k ) = tk, and E( f ′k |a) = (ak + stk)/(n + s).

• Pooling: When pooling two categories k and l into a single one, the DiMn form is
conserved (with K− 1 categories instead of K), and the strengths associated with
the compound category k+ l are obtained by summation:αk +αl for prior strengths,
and ak + al for observed counts. Note that s is preserved by pooling.

• Links with the Dirichlet distribution: Suppose that the data are obtained by multi-
nomial sampling from an infinite population with true frequenciesθθθ = (θ1, . . . ,θK),
and that prior uncertainty is described by a Dirichlet distribution, θθθ ∼ Diri(ααα).
Then, the induced prior and posterior predictive distributions are exactly the ones
given in (3) and (4). As a consequence, as n′ → ∞ (and hence n∗ too), the prior
DiMn on f ′ (and f∗) tends to a Diri(ααα) and the posterior DiMn on f ′ |a tends to a
Diri(a+ααα).

3 There are alternative expressions in terms of generalized binomial coefficients and/or Gamma
functions, see [15].
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3 The Imprecise Dirichlet-Multinomial Model (IDMM)

3.1 The Idea of an Ignorance Zone

Each of the various objective Bayesian or frequentist methods that were proposed for
the predictive problem can in fact be seen or re-interpreted as derived from a DiMn
with some specific choice for the prior strengths ααα , all αk’s being always within [0,1].
The most usual objective Bayesian solutions use symmetrical DiMn priors: αk = 0 for
Haldane, αk = 1/K for Perks, αk = 1/2 for Jeffreys, αk = 1 for Bayes-Laplace (see
e.g. [2]). And frequentist solutions correspond to asymmetrical priors, but again with
small values for the αk’s [11]. From this closeness of these various ways to define prior
ignorance, has emerged the idea that ignorance could be defined by an ignorance zone
for vector ααα , rather by than a single ααα value (see [1, 2]). See also [10, 11] who came
close to this idea. This idea was formalized by Walley, see [12] for the general theory,
and [13] for the case of categorical data.

3.2 Definition of the IDMM

To model prior ignorance about the counts a∗, we use the set of DiMn distributions,
parameterized in terms of s and t =ααα/s:

{Probst : tk > 0 for k = 1, . . . ,K, ∑k tk = 1}, (6)

where s and n∗ are fixed. In (6), t ranges over the interior of the unit simplex. We call
the model (6) the imprecise Dirichlet-multinomial model (IDMM) with hyperparameter
s, which we write as IDMM(s).

Hence, the prior IDMM(s) is the set of all DiMn(ααα,n∗) prior distributions which sat-
isfyααα = st, tk > 0 and∑k tk = 1. After observing the frequencies a, the IDMM is updated
to the set of all DiMn(a+ st,n′) posterior distributions on a′ with the same constraints
on t, i.e.,

{Proba+st : tk > 0 for i = 1, . . . ,K, ∑k tk = 1}. (7)

The posterior set in (7) defines the posterior IDMM and models the uncertainty about
the future observations a′ after observing the data a. We can make inferences from
the IDMM by calculating posterior lower and upper (L&U) probabilities of any event
B or expectations of any function V = V (a′), which are denoted by Prob(B |a),
Prob(B |a), E(V |a), and E(V |a), by maximizing and minimizing Probst(B |a) =
∑a′∈B Probst(a′ |a) or Est(V |a) = ∑a′ V (a′)Probst(a′ |a) with respect to t, where
Probst(a′ |a) is given by (4).

The size of the IDMM prior and posterior sets of distributions are governed by the
constant s. Values within [1;2] for s have been proposed, in the context of the IDM as
a good compromise between (i) having not too weak inferences and (ii) encompassing
alternative Bayesian and frequentist models, see [13, 3] for detailed arguments.

3.3 Properties of Inferences from the IDMM

In the development of statistical methods, there has been a considerable attention on
the properties inferences should satisfy, especially for an objective inference: what do
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we learn about the future counts a′ or frequencies f ′ = a′/n′ from the observed data
a, regardless of any possible prior knowledge. Statisticians have proposed several prin-
ciples or properties that seem desirable for such inferences (see [4, Sect. 2.3 and 2.4],
and [12, 13, 14] for formal definitions, detailed discussions of why they seem desirable
or compelling, and other references). We list below the major properties that the IDMM
satisfies.

• IDMM rule of succession: For immediate prediction, i.e. n′ = 1, the IDMM produces
the imprecise rule of succession,

Prob(a′k = 1 |a) =
ak

n + s
and Prob(a′k = 1 |a) =

ak + s
n + s

(8)

In the rabbits example of Section 1.1, under the IDMM(s = 1), the predictive L&U
probabilities of finding another rabbit are [ 1

2 ;1] for the 2-hats case, and [ 99
100 ;1] for

the 100-hats case.
• Symmetry principle (SP): Prior uncertainty about any event relative to f ′ is invariant

w.r.t. permutations of the K categories of set C. This property is similar to Laplace’s
principle of indifference.

• Prior ignorance: The prior L&U probabilities of simple events, such as B = ( f ′k =
1,n′ = 1), and L&U expectations E( f ′k) are both [0;1], i.e. maximally imprecise
or vacuous. Both become non-vacuous as soon as n ≥ 1. This is in contrast with
the Bayesian approach which always yields a precise value for such events or
expectations.

• Likelihood principle (LP): Posterior inferences from the IDMM depend on the data
through the likelihood function (2) only. Formally, they satisfy the “likelihood prin-
ciple”. In particular, and in contrast with some alternative methods, they do not
depend on data that might have been observed but were not.

• Coherence principle (CP): This principle is typically put forward in a Bayesian or
generalized Bayesian context, in which uncertainty is described by personal proba-
bilistic assessments (possibly imprecise) and are behaviourally interpreted as defin-
ing acceptable betting rates. Coherence is a rationality criterion which ensures that
several bets or decisions induced by the overall model are mutually consistent. In-
ferences from the IDMM do satisfy coherence, in the strongest sense of Walley [12,
Sect. 2.5 & 7.1]. It generalizes, and in some way strengthens, the Bayesian concept
of coherence, see de Finetti [6, Chap. 3].

• Representation invariance principle (RIP): Inferences do not depend on what cat-
egories are distinguished, nor even on the number of categories, K. Formally they
satisfy the RIP proposed by [13]. The RIP states that posterior uncertainty about
any event B relative to f ′ should not depend on refinements or coarsenings of cate-
gories, provided that B remains unchanged. In effect, we saw that, when categories
are pooled, both the form of a DiMn distribution and the value of s are preserved, so
that the set of posterior DiMn distributions produced by the IDMM(s) is essentially
unchanged. For the rabbits example, this implies that the inferences remain the same
whether we take C1 = {rabbit,no−rabbit} or C2 = {rabbit, pigeon,other,nothing}
as our set of categories.

• Specificity property: De Cooman et al. [5] recently studied immediate predictions
assuming exchangeability and representation invariance. They showed that, among



Imprecise Probabilistic Prediction for Categorical Data 9

such predictive systems, the IDMM is characterized by an additional property of
specificity: when conditioning on a subset C∗ ⊂C of the categories, inferences de-
pend only on the counts in C∗.

The IDMM satisfies all these properties or principles jointly. In contrast, the SP and the
RIP are mutually exclusive for Bayesian models using proper priors [12, Sect. 5.5], and
frequentist methods typically violate the LP and the CP.

However imprecise models such as the IDMM or the related IDM provide a way to rec-
oncile all these alternative objective models [14]. If s is taken large enough, typically
s = 1 or s = 2, then the probability intervals produced by IDMM contain the correspond-
ing probabilities obtained from all alternative objective models either Bayesian or fre-
quentist, for the case K = 2, and from the most reasonable of these models for general
K (see [3, 13]).
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Fuzzy Bayesian Inference
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Abstract. Fuzziness of data is usually neglected is statistics. But real data are frequently not
precise numbers, but more or less imprecise. This imprecision is different from errors. Impreci-
sion of data can be modelled by special fuzzy subsets of the set of real numbers, and statistical
methods have to be generalized to fuzzy data.

Another kind of fuzziness is the fuzziness of a-priori information in Bayesian inference. It
is possible to apply so-called fuzzy probability distributions as a-priori distributions. The corre-
sponding generalization of Bayes’ theorem is basic for what is called fuzzy Bayesian inference.

Keywords: Bayesian inference, Bayes’ theorem, Decision analysis, Fuzzy Bayesian inference,
Fuzzy data, Fuzzy information, Fuzzy intervals, Fuzzy probability distributions, Fuzzy utility,
Non-precise numbers.

1 Introduction

In applications of Bayesian statistical methods frequently data are not precise numbers
or vectors, and the a-priori distributions are not exact probability distributions in the
standard sense. Therefore it is necessary to model real data in a suitable way to in-
corporate the fuzziness of data before they are analyzed by statistical methods. This
is possible by using special fuzzy subsets of the set of real numbers R, so-called non-
precise numbers. The mathematical description of non-classical a-priori distributions is
possible by so-called fuzzy probability distributions. Based on this Bayes’ theorem can
be adapted by generalizing the likelihood function to the situation of fuzzy data, based
on the extension principle of fuzzy set theory.

2 Fuzzy Data

One dimensional data obtained by measurement of continuous quantities are not precise
real numbers but more or less non-precise. This imprecision is different from errors and
is also called fuzziness. The best up to date mathematical model for measurement data
are so-called non-precise numbers.

Definition 1. A non-precise number x� is a fuzzy subset of R whose membership func-
tion ξ (·) obeys the following:

∀ δ ∈ (0;1] the δ -cut Cδ (x
�) := {x ∈R : ξ (x)≥ δ}

is non-empty and a finite union of compact intervals
[
aδ , j;bδ , j

]
, i. e.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 10–15, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Cδ (x
�) =

k j⋃
j=1

[
aδ , j;bδ , j

]
.

Remark 1. If all δ -cuts are compact intervals, then x� is called fuzzy interval.

In order to generalize statistical inference procedures to the situation of fuzzy data it
is necessary to propagate the imprecision of individual measurement results into the
sample space.

For stochastic quantity X the set of all possible values of X is denoted by MX and
called observation space. For samples X1, · · · ,Xn of X the set of all possible values
(x1, · · · ,xn) with xi ∈MX is given by the Cartesian product MX ×·· ·×MX = Mn

X which
is called sample space of X .

For a fuzzy sample consisting of n non-precise numbers x�
1, · · · ,x�

n with correspond-
ing characterizing functions ξ1(·), · · · ,ξn(·) these n characterizing functions are com-
bined by the minimum t-norm in order to obtain the so-called vector-characterizing
function ζ : Rn → [0;1] of a fuzzy element x� in the sample space Mn

X . The values
ζ (x1, · · · ,xn) are obtained from the individual characterizing function ξi(·) by

ζ (x1, · · · ,xn) := min{ξ1(x1), · · · ,ξn(xn)} ∀ (x1, · · · ,xn) ∈Rn.

The fuzzy element x� is called fuzzy combined sample. It is the basis for the generaliza-
tion of Bayes’ theorem.

Data fuzziness has to be combined with the fuzziness of a-priori knowledge. There-
fore it is necessary to generalize a-priori distributions. This is done in the next section.

3 Fuzzy Probability Distributions

Standard probability distributions as a-priori distributions for parameters θ in Bayes-
ian inference are a topic of critics. Therefore so-called soft models are more suitable
to express a-priori information. In the context of probabilistic a-priori information soft
models are so-called fuzzy probability distributions.

Definition 2. A fuzzy probability distribution P� on a measurable space (M,A ) is a
function defined on the event system A which assigns to every A ∈A a fuzzy interval
P�(A) with δ -cuts

[
Pδ (A);Pδ (A)

]
obeying the following:

(1) P�( /0) = 0 (characterizing function I{0}(·))
(2) P�(M) = 1 (characterizing function I{1}(·))
(3) For all δ ∈ (0;1] and all pairwise disjoint events A1, · · · ,An from A

Pδ

(
n⋃

i=1

Ai

)
≤

n

∑
i=1

Pδ (Ai)

and

Pδ

(
n⋃

i=1

Ai

)
≥

n

∑
i=1

Pδ (Ai)

A special case of fuzzy probability distributions is obtained from so-called fuzzy proba-
bility densities. These are special fuzzy valued real functions f �(·) whose values f �(x)
are fuzzy intervals. The δ -cuts of f �(x) are denoted by
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Cδ
[

f �(x)
]
=
[

f δ (x); f δ (x)
] ∀ δ ∈ (0;1].

Definition 3. Let (M,A ,μ) be a measure space and f �(·) be a fuzzy valued function
defined on M. If f �(·) is fulfilling the following conditions

(1) ∀ δ ∈ (0;1] the δ -level functions f δ (·) and f δ (·) are integrable with finite integrals

Iδ =
∫
M

f δ (x)dμ(x) and Iδ =
∫
M

f δ (x)dμ(x)

(2) 1 ∈
⎡⎣ ∫

M

f
1
(x)dμ(x) ;

∫
M

f 1(x)dμ(x)

⎤⎦
(3) there exists a classical probability density f : M→ [0;∞) with

f
1
(x)≤ f (x) ≤ f 1(x) ∀ x ∈M

then f �(·) is called fuzzy probability density.

Remark 2. Based on a fuzzy probability density f �(·) on a measure space (M,A , μ) a
fuzzy probability distribution P� on (M,A ) is generated in the following way:

Defining the set Sδ of all classical probability densities f (·) on (M,A ,μ) obeying

f δ (x)≤ f (x)≤ f δ (x) ∀ x ∈M

the fuzzy probability of A ∈A is defined by its δ -cuts

Cδ [P�(A)] :=
[
Pδ (A);Pδ (A)

] ∀ δ ∈ (0;1]

with

Pδ (A) := sup

⎧⎨⎩
∫
A

f (x)dμ(x) : f (·) ∈Sδ

⎫⎬⎭
Pδ (A) := inf

⎧⎨⎩
∫
A

f (x)dμ(x) : f (·) ∈Sδ

⎫⎬⎭ .

The characterizing function ψP�(A)(·) of the fuzzy interval P�(A) is given by the repre-
sentation lemma:

ψP�(A)(x) = max
{
δ ·ICδ [P�(A)](x) : δ ∈ [0;1]

} ∀ x ∈ R

4 Bayes’ Theorem for Fuzzy A-Priori Density and Fuzzy Data

For continuous stochastic model X ∼ f (· | θ ), θ ∈Θ , where f (· | θ ) denotes the prob-
ability density of X , MX the observation space, continuous parameter spaceΘ , a-priori
density π(·) onΘ , and observed complete sample x1, · · · ,xn, the standard Bayes’ theo-
rem gives the a-posteriori density π(· | x1, · · · ,xn) by its values
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π(θ | x1, · · · ,xn) =
π(θ ) ·

n
∏
i=1

f (xi | θ )∫
Θ
π(θ ) · n

∏
i=1

f (xi | θ ) dθ
∀ θ ∈Θ .

Remark 3. The function whose values are
n
∏
i=1

f (xi | θ ) is the likelihood function for

complete data denoted by �( · ;x1, · · · ,xn), considered as a function of the variable θ .

For fuzzy data x�
1, · · · ,x�

n the likelihood function becomes a fuzzy valued function
��(·,x� ) whose values ��(θ ;x� ) are assumed to be fuzzy intervals with characteriz-
ing functions ψ��(θ ;x� )(·). The values of this characterizing function are obtained by
application of the so-called extension principle from fuzzy set theory:

ψ��(θ ;x�)(y) =
{

sup{ζ (x) : �(θ ;x)= y} if ∃ x ∈Mn
X : �(θ ;x) = y

0 if � ∃ x ∈Mn
X : �(θ ;x) = y

}
∀ y ∈ R

Taking the δ -cuts of ψ��(θ ;x�)(·) and denoting them by
[
�δ (θ ;x� );�δ (θ ;x� )

]
, for vari-

able θ we obtain two classical real valued functions �δ (·;x� ) and �δ (·;x� ), these are the
δ -level functions.

Based on these functions the fuzzy a-posteriori density π� (· | x�
1, · · · ,x�

n) = π� (· | x� )
is defined by its δ -level functions πδ (· | x� ) and πδ (· | x� ) respectively, using the δ -level
functions πδ (·) and πδ (·) of the fuzzy a-priori density π�(·) for all δ ∈ (0;1]:

πδ (θ | x�) = πδ (θ ) · �δ (θ ;x�)∫
Θ

1
2

[
πδ (θ ) · �δ (θ ;x�)+πδ (θ ) · �δ (θ ;x�)

]
dθ

and

πδ (θ | x�) = πδ (θ ) · �δ (θ ;x�)∫
Θ

1
2

[
πδ (θ ) · �δ (θ ;x�)+πδ (θ ) · �δ (θ ;x�)

]
dθ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
∀ θ ∈Θ

This fuzzy a-posteriori density is the basis for Bayesian inference in case of fuzzy in-
formation.

Remark 4. The above definition of the δ -level functions of the a-posteriori density keeps
the sequential nature of the updating procedure from standard Bayes’ theorem.

5 Applications of Fuzzy A-Posteriori Densities

In standard Bayesian inference the a-posteriori density can be used for different statis-
tical procedures: Confidence regions, predictive densities, calculation of probabilities
of parameter hypotheses, construction of Bayesian decisions based on utility functions
and others.

For fuzzy a-posteriori densities generalized procedures are available and described
below.
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5.1 Fuzzy Confidence Regions

Standard confidence regions for the parameter θ of a stochastic model X ∼ f (· | θ ),
θ ∈Θ in the Bayesian context are based on the a-posteriori density π(· | D) of θ̃ . A
confidence region C1−α for confidence level 1−α is defined by∫

C1−α

π(θ |D)dθ = 1−α.

For fuzzy data D� = (x�
1, · · · ,x�

n) the combined fuzzy sample x� is the basis for the con-
struction of generalized confidence regions, which are fuzzy subsets of the parameter
spaceΘ .

Let ζ (·, · · · , ·) be the vector-characterizing function of x�. For x ∈ supp(x�), a-
posteriori density π(· | x), and confidence level 1−α a corresponding confidence region
is denoted by Cx,1−α . The confidence set C�

1−α based on the fuzzy combined sample x�

is the fuzzy subset ofΘ whose membership function ϕ(·) is given by its values ϕ(θ ) in
the following way:

ϕ(θ ) :=
{

sup
{
ζ (x) : θ ∈Cx,1−α

}
if ∃ x ∈Mn

X : θ ∈Cx,1−α
0 if � ∃ x ∈Mn

X : θ ∈Cx,1−α

}
∀ θ ∈Θ

Remark 5. For classical samples x = (x1, · · · ,xn) the membership function ϕ(·) is the
indicator function of the standard confidence region Cx,1−α .

5.2 Predictive Densities

Standard predictive densities for X ∼ f (· | θ ), θ ∈Θ based on π(· |D) are given by the
marginal density

p(x |D) =
∫
Θ

f (x | θ ) π (θ | D)dθ ∀ x ∈M.

For fuzzy a-posteriori densities π�(· | D�) the integration of a fuzzy valued function is
necessary. This is possible by the generalized integral from Section 3:

p�(x |D�) :=−
∫
Θ

f (x | θ ) ·π�(θ |D�)dθ

Remark 6. The fuzzy valued function p�(· | D�) is a fuzzy density in the sense of
Section 3. This fuzzy density can be graphically displayed by several δ -level functions
pδ (· | D�) and pδ (· |D�).

5.3 Probabilities of Parameter Hypotheses

For parametric hypothesis H : θ ∈Θ0 ⊂Θ it is possible to calculate a-posteriori prob-
abilities based on fuzzy a-posteriori densities π�(·|D�). This is an application of the
definition of fuzzy probabilities in Remark 2 in Section 3.

The a-posteriori probability of the hypothesis H is

Pr(H |D�) =
∫
Θ0

π�(θ | D�)dθ

which is a fuzzy interval whose support is a subset of [0;1].
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5.4 Bayesian Decisions Based on Fuzzy Information

Standard Bayesian decisions based on classical probability distributions on the state
spaceΘ and utility functions U(·, ·), where U(θ ,d) is the utility of the decision d ∈D
if the considered system is in state θ ∈Θ , are defined by maximization of the expected
utility EU(θ ,d) where the Bayesian decision dB obeys

EU(θ ,dB) = max
d∈D

EU(θ ,d).

In case of continuous state space Θ and probability density π(·) on Θ , the expected
utility of the decision d is given by

EU(θ ,d) =
∫
Θ

U(θ ,d)π(θ )dθ .

If both, the utility function U�(θ ,d) and the probability density π�(·) on Θ are fuzzy,
we obtain a generalized (fuzzy) expected utility

EU�(θ ,d) =−
∫
Θ

U�(θ ,d)π�(θ )dθ .

This is again the integral of a fuzzy valued function g�(·) as defined in Definition 3. The
result is a fuzzy interval EU�(θ ,d) whose characterizing function ε(·) is obtained from
its δ -cuts Cδ [ε(·)] with

Cδ [ε(·)] =

⎡⎣ ∫
Θ

gδ (θ )πδ (θ )dθ ;
∫
Θ

gδ (θ )πδ (θ )dθ

⎤⎦ ∀ δ ∈ (0;1].

=
[
εδ ;εδ

]
.

The characterizing function ε(·) is obtained by the Representation lemma for member-
ship functions, i. e.

ε(x) = max
{
δ ·I[εδ ;εδ ](x) : δ ∈ [0;1]

} ∀ x ∈ R.
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Soft Methods for Treating Uncertainties: Applications in
the Field of Environmental Risks
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Abstract. In recent years, soft methods for treating uncertainties have reached the field of envi-
ronmental risks. This paper presents some specific characteristics of this field and how they can
affect the choice of methods and the way of representing results. Example applications illustrate
the use of such methods in several areas of environmental risks: soil and groundwater contam-
ination, health risks and risks related to the underground storage of carbon dioxide for climate
change mitigation. A potential drawback of these methods in a decision-making framework is the
fact that decision-makers do not like to work with multiple indicators, i.e. upper and lower bounds
on the probability of exceeding a certain risk threshold. A way to avoid this difficulty is proposed,
based on a weighted average of optimistic and pessimistic bounds on risk focal elements.

1 Introduction

Since a few decades, public awareness regarding the reality of environmental risks has
grown considerably, as practically all natural environments are being adversely im-
pacted by human activity. The most notable changes in public perception have occurred
in recent years as a result of tangible evidence that human activity is significantly al-
tering the Earth’s climate, with potentially drastic consequences for life on the planet.
Most industrialized countries have now enforced legislation aimed at regulating human
activity so that it can be compatible with a more sustainable development (see for ex-
ample Community legislation on water management: [15]; waste management: [16], or
soil management: [4]). Legislation regarding environmental issues relies largely on the
notion of “risk”, which is defined here as the degree of “likelihood” that adverse effects
might result from a given human activity. Existing legislation typically propose thresh-
olds, e.g. for pollutant concentrations in water fit for human consumption, that should
not be exceeded.

The field of environmental risks is characterized by at least two important features:
(i) the considerable complexity of mechanisms involved and hence related uncertainties
and (ii) a general attitude of “aversion to risk”. Environmental issues are multidisci-
plinary by nature. A simple schematic of a typical framework relevant to environmental
issues is depicted in Figure 1. The source could be for example a chimney on an indus-
trial site sending pollutants into the atmosphere. The target could be a group of persons
living at some distance from the chimney. The vector is the natural mechanism through
which the targets may come into contact (become exposed) with the pollutants emitted
by the source. In this example it could be windborne pollutants inhaled by the targets
or else deposited pollutant uptake by vegetables grown and consumed by the targets,

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 16–26, 2008.
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Fig. 1. Schematic of a typical framework in a context of environmental risk

etc. In general, the mechanisms and parameters that influence how targets may become
exposed to the source are complex and/or poorly understood, resulting in significant
uncertainties when assessing environmental risks.

The attitude of “aversion to risk” has some important consequences with respect to
the way uncertainties are treated in environmental risk assessments. In a many cases
the main question is whether or not an “acceptable” threshold might be exceeded at any
time in the future. For this reason the treatment of uncertainties in environmental risk
assessments often relies on limiting scenario calculations. Ranges of possible values
are defined for the parameters that are considered uncertain and interval-type analysis
(possibly using optimization techniques) is performed to examine consequences on the
estimation of risk. This may lead to the three possible outcomes depicted schemati-
cally in Figure 2. Either (Figure 2a) the threshold lies above the maximum calculated
“possible” risk, in which case the risk is considered totally acceptable, or (Figure 2b)
it lies below the smallest calculated risk, in which case the risk is considered as to-
tally unacceptable. But in many cases (Figure 2c), the range of possible outcomes is so
wide that the threshold lies within this range, in which case it is necessary to be able to
discriminate between the relative likelihoods of possible outcomes.

In order to discriminate between levels of likelihood, researchers and decision-
makers in the field of environmental risks often rely on the use of unique probabil-
ity distributions (PDFs). The problem of course is that, in this field, we are typically
confronted with information that is incomplete/imprecise and therefore the choice of
unique PDFs is arbitrary. For example, in an analysis of uncertainties related to the risk
of propagation of chlorinated organic pollutants in groundwater, MacNab et al. [14]
defined twelve probability distributions for their model parameters, nine of which were
qualified as “postulated”. As shown by previous researchers (e.g. [7]), this approach,
combined with the frequent hypothesis of parameter independence, may lead to very
unconservative conclusions with respect to risk.

Fig. 2. Schematic of alternative responses to a risk threshold in environmental applications
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In recent years, a better understanding of the fundamental differences between
stochastic and epistemic uncertainties has pervaded to the field of environmental risks.
As a result, researchers in the field of environmental risks have drawn on alternative
methods for representing and propagating information relative to uncertain risk model
parameters (see for example, [8, 9, 1, 2, 3]). Of course this evolution does not imply that
“soft” methods for addressing uncertainties are becoming routine practice, for example
by consulting companies involved in environmental risk assessment studies. Barriers
with respect to a more widespread use of such methods in a decision-making framework
and possible ways to overcome such barriers are discussed at the end of this paper.

2 Different Types of Information Warrant Different Methods of
Information Representation and Propagation

A fuzzy set Possibly one of the most important reasons for using alterna-
tive methods for representing uncertainties in environmental risk assessments is:
consistency with available information. While the complexity of processes and mech-
anisms involved are such that it is not possible to claim “validity” of proposed risk
model predictions, investigators can at least hope to claim methodological “consis-
tency”. When an investigator, faced with incomplete/imprecise information, chooses
to overlook this basic information character and to “disguise” it in the form of stochas-
tic variability by postulating a unique PDF, he/she is misrepresenting reality, usually
for reasons of methodological comfort. The message that the authors of this paper have
been trying to bring forth to the environmental risk community is: first look at your data,
and then choose the most appropriate conceptual framework to represent and propagate
that data.

The types of information that are typically available in a context of environmental
risks can be of a very different nature. In ideal situations, there may be abundant in-
formation regarding for example time-series of rainfall or temperature, in which case a
stochastic representation may be the appropriate choice, relying on classical probability
theory. But in many cases, information is scarce and/or imprecise, and alternative in-
formation theories can be used instead (e.g. possibility theory: [19, 5]; evidence theory:
[17]; random set theory: [13], etc.).

In order to promote a systematic treatment of uncertainties that takes into account
the basic nature of available information, we have attempted to develop a flowchart
destined to guide investigators. The entry point to this flowchart (Figure 3) is whether
or not the investigator wishes to represent a given risk model parameter by a single
value? There may be various reasons for choosing to use a single parameter value;
objective or subjective. For example, the investigator may know that the parameter is
indeed a single value (e.g. the height of a chimney stack), or he may know that he
will never have information regarding the parameter’s variability (whether spatial or
temporal) and therefore choose to use a single, albeit imprecise, value. Once the user of
the flowchart has chosen whether he wishes to use a single parameter value or not, he
is guided through a series of questions which help him select the most appropriate tool
for representing the information.
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The list of tools, which is by no means exhaustive, is drawn from the information
theories cited above and try to cover the variety of “degrees of precision” typically
encountered in the field of environmental risks. For example, if the user has a sufficient
number of precise measurements relative to his parameter, and the parameter variability
is temporal, then a single probability distribution function would seem the prime choice.
If this variability is spatial, then geostatistical techniques can be used. But if the user
must rely on incomplete information such as expert judgement, imprecise and scarce
measurements, etc., then intervals, fuzzy intervals, random sets, parametric probability
families, etc. may be more appropriate.

While inherently incomplete, the main benefit of the proposed flowchart is to bring the
user to realize that there is no one-all-fit-all method for representing uncertain informa-
tion. All depends on the type of information. Once an appropriate method of information
representation has been selected for all uncertain risk model parameters, this informa-
tion can be propagated using various techniques, the choice of which depends not only on
the information representation tools, but also on possible dependencies between model
parameters. Methods have been developed that are able to accommodate both stochas-
tic and epistemic uncertainties in a single computation of risk. A robust method, that has
been shown to be a systematically conservative counterpart of classical Monte Carlo cal-
culations performed under hypotheses of parameter independence, is the so-called “In-
dependent Random Set; IRS” method ([2, 3]). This method combines the random sam-
pling of both PDFs (representing random variability) and fuzzy sets (representing incom-
plete/imprecise information) with optimisation techniques in order to estimate minimum
and maximum values of risk, thus defining focal elements. Repeated iteration leads to a
random set that can be expressed in terms of a minimum (optimistic) and maximum (pes-
simistic) level of probability of exceeding a given threshold. Such methods are illustrated
below by several applications in the field of environmental risks.

3 Example Applications

The applications presented below are illustrated schematically in order to provide the
reader with some insight into some typical problems addressed in the field of environ-
mental risks and also the types of uncertainties involved.

3.1 Soil Contamination

In Guyonnet et al. [9], soft methods were used to assess risks of exposure through the
consumption of vegetables, related to emissions from a chimney on a metallurgical
industrial site. Deposition of cadmium on the soils surrounding the site, and the con-
sumption of vegetables grown on these soils, were identified as a possible means of
exposure of local populations to this metal, which is known to have toxic effects on the
kidney ([18]). Primary uncertainties in this study were related to (i) the distribution of
cadmium in the soils surrounding the industrial site, (ii) the amount of cadmium up-
take by plants grown on these soils, (iii) the amount of vegetables consumed by local
populations living around the site.

Regarding soil cadmium concentrations, a significant number of measurements were
analyzed using geostatistical methods in order to provide information on spatial vari-



20 D. Guyonnet, G. Bellenfant, and O. Bouc

Fig. 3. Flowchart for helping choose the appropriate mode of information representation as a
function of the nature of the information

ability. Information regarding (ii) and (iii) was of a more epistemic nature and possi-
bility distributions were used. A so-called “hybrid” method was developed during this
study in order to propagate the different sources of information. This method combines
Monte Carlo sampling of PDFs (in this case related to soil cadmium concentrations)
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Fig. 4. Map of the “possibility” that the absorbed dose should exceed the reference dose (1 μg/d
kg−1). Graduation in km; Triangle = chimney location (from [9]).

with fuzzy calculus on possibility distributions. Results are expressed in terms of a
family of distributions of the probability of exceeding a threshold, which in this case
was ([18]) 1 microgram of cadmium per kilogram of person bodyweight. The method
is slightly different from the IRS method mentioned previously in that it assumes de-
pendence between possibilistic variables ([2]): a metadependence between information
sources attached to the variables and also a dependence between variables themselves.
However, results are very similar to those obtained with the IRS method.

Figure 4 presents some results of the analysis expressed as the upper level of prob-
ability (possibility; [6]) that the dose absorbed by a person consuming home-grown
vegetables and living in the vicinity of the site should exceed the maximum threshold
specified by the health authority. Possibilities of 0.45 of exceeding the reference dose
are found in the close vicinity of the chimney, and decrease below 0.1 at a certain dis-
tance from the chimney. Such a map could be used in a decision-making framework to
impose restrictions on the consumption of home-grown vegetables in this area.

3.2 Groundwater Contamination

In this example soft methods were used to assess the risk of exceeding a concentra-
tion threshold in groundwater located down-gradient from a contaminant spill ([3]).
The contaminant is trichloroethylene, which is frequently a problem for groundwater
because it is both persistent in the sub-surface (it does not degrade easily) and it is toxic
(carcinogenic) at very low concentrations. Primary uncertainties in this study were (i)
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the intensity of rainfall transporting contaminants down to the groundwater, (ii) dis-
solved trichloroethylene concentration in the infiltrating water, (iii) hydraulic conduc-
tivity of the aquifer and (iv) dispersion coefficients, which control pollutant dispersion
in the groundwater.

The variability of rainfall is readily known from meteorological records and this pa-
rameter could be adequately represented by a single probability distribution function.
On the other hand, it was preferred to represent the other three parameters using possi-
bility distributions. One interesting aspect of the analysis was the fact that the “model”
used to calculate concentrations down-gradient from the source, was more complex
than those used to-date for hybrid-type propagation. As such methods involve both it-
erative sampling and optimization, calculation times may rapidly become restrictive. In
that respect, the IRS method is faster than the “hybrid” method as there are only 2×n
optimization problems due to the application of Monte Carlo sampling to the focal sets
(n being the number of random sampling iterations).

The conceptual model of the calculation tool is depicted in Figure 5. The actual cal-
culation tool is an analytical model that involves an integral and error functions. Results
in Figure 6 illustrate the range of uncertainty in groundwater concentration at a point
located down-gradient from the source resulting from uncertainty in risk model input
parameters. Also shown is the result obtained when unique PDFs are assumed, despite
the epistemic uncertainties, and applying the Monte Carlo method. The advantage of
the classical Monte Carlo method is that a unique value of probability of exceeding the
threshold is obtained. But this uniqueness is the result of the arbitrary selection of PDFs
in presence of incomplete/imprecise information. This point will be further discussed
below.

3.3 Risks Related to CCS: A Climate Change Mitigation Technology

Since a few years, BRGM has become strongly involved in the development of CCS;
carbon capture and storage. The objective of CCS is to capture the carbon dioxide
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emitted by large emittors (e.g. the steel industry) and to inject it into deep geologi-
cal traps. Such deep injection has already been practiced since many years by the oil
industry to enhance the productivity of oil fields, by pushing out residual oil. But in
France, primary targets are deep saline aquifers such as the Dogger reservoir of the Paris
Basin. The groundwater in this reservoir is so saline that it will never be considered as a
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potential groundwater resource. However, there are risks of CO2 leakage through a vari-
ety of “features”; geological or man-made. Geological features include faults and other
discontinuities while man-made features are essentially abandoned wells which may
provide preferential pathways for CO2 migration up to the ground surface. Such mi-
gration represents a health hazard because leaked CO2, being heavier than air, might
accumulate at ground surface and provoke asphyxia of nearby populations, as was the
case with the infamous natural CO2 eruption at Lake Nyos in the North-West of Camer-
oun, where over 1700 people died as well as large numbers of cattle.

Figure 7 illustrates the types of uncertainties involved in these risk calculations that
are currently ongoing. Calculations to-date have related primarily to the extent of the
CO2 “bubble” around the injection point. But results will serve to calculate leakage
fluxes through abandoned wells located in the vicinity of the injection well.

4 Discussion and Conclusions

As was stated previously, the significant advantage of arbitrarily selecting PDFs in the
presence of incomplete/imprecise information and applying the Monte Carlo method is
that a single value for the probability of exceeding a given threshold can be obtained.
Decision-makers dealing with environmental risks often have difficulties let alone with
the notion of probability, without having also to deal with upper and lower bounds on
probability. In order to promote increased acceptance of soft methods in the field of
environmental risks, it is necessary to introduce an additional treatment step and to
provide a result that can be more easily “digested” by potential users.

In a context of “aversion to risk” one might suggest that the pessimistic bound on
probability be used as the unique indicator of the acceptability of risk. This approach,
while being conservative, presents the disadvantage of ignoring all the information lead-
ing to less pessimistic estimates of risk. It is proposed instead to adopt the approach of
Jaffray [11, 12] in order to obtain a “reasonably conservative” estimation of risk. This
approach, based on earlier work by Hurwicz [10] proposes to compute a single indica-
tor as a weighted average of focal element bounds. The proposed probability measure
is ([11]):

Pα = αem +(1−α)eM (1)

where em and eM are the minimum and maximum bounds of the focal elements.
The choice of weight α is subjective and reflects the attitude of the decision-maker

with respect to risk. The concept is illustrated in Figure 8 which presents the results of
a health risk calculation using a “hybrid” approach and a purely Monte Carlo approach.
An additional curve is presented and calculated according to Equation (1) using a value
α = 1/3. This means that a weight of 1/3 is applied to the optimistic limit values of the
focal elements, while a weight of 1−1/3 = 2/3 is applied to the pessimistic values. In
a context of aversion to risk, it would seem normal to privilege the pessimistic values,
but without completely obliterating the optimistic one.

The curve is indicated in Figure 8 as a “Confidence Index”. This term is borrowed
from the field of meteorology. The meteorological community has extensive experi-
ence with respect to predicting natural events and also of communicating on these pre-
dictions with the general public. It is therefore significant that meteorologists should
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Fig. 8. Indicators of the probability of lying below a certain threshold of risk

have adopted the term “Confidence Index” to communicate on the uncertainty related
to their predictions. In our view, the term holds value both from both a scientific and
a sociological viewpoint. Scientific, because it avoids referring to any particular uncer-
tainty paradigm (probabilistic, possibilistic, etc.). Sociological, because the notion of
“confidence” has positive connotations. Referring to Figure 8, one would state that the
computed risk is lower than the threshold (10−5), with a Confidence Index of 85%.

The subjectivity introduced by such an approach can easily be justified in a decision-
making framework as it does not attempt to “disguise” epistemic uncertainty in the form
of stochastic variability, but offers a practical way for the decision-maker to express his
level of aversion to risk. The risk assessor should try to faithfully transmit the available
information, so that the range of possible outcomes should be known. If this range
is judged too large, then measures might be taken in order to reduce uncertainties in
model input parameters (e.g. through measurement campaigns). Such an outcome never
ensues from a Monte Carlo analysis performed using postulated PDFs, as there is no
way of distinguishing, in the computed results, variability resulting from true stochastic
randomness from variability due to arbitrary assumptions.
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2 IRIT, CNRS and Université Toulouse 3, Toulouse, France

Abstract. Robert Féron invented fuzzy random variables in the mid-seventies. As such, his
works deserve due recognition among specialists of soft methods in probability and statistics.
This short paper surveys his contributions to information theory, generalized distances, and the
joint use of probability and fuzzy set theories. An extensive bibliography of his publications is
provided.

1 Robert Féron’s Career

Robert Féron was 33 years old when he obtained the Doctorat ès Sciences degree in
mathematics. He defended it on December 21, 1954, at the Faculté des Sciences de
l’Université of Paris, in front of a committee chaired by Maurice Fréchet and where
Robert Fortet and Daniel Dugué were the examiners.

The main part of this thesis, entitled “Information, Régression, Corrélation” [4], was
the result of about ten years of research, in an area of mathematics considered as ap-
plied, where interesting progress was appearing. It is within the framework of the young
CNRS (National Centre for Scientific Research) that this research was taking place,
since Robert Féron had been accepted as “Stagiaire de Recherche” in 1945, and then as
“Attaché de Recherche”. After obtaining his “Doctorat d’Etat”, he was found worth be-
coming a “Chargé de Recherche” in 1957, and was then admitted on the very restrictive
list of people having the recognized capability to be appointed as “Maı̂tre de Recherche”
(currently equivalent to 2nd-class “Directeur de Recherche”). But his career at CNRS
ended in 1958, when he became a “Maı̂tre de Conférence” (currently equivalent to As-
sociate Professor) at the Faculté of Sciences of Université of Lyon. Among his new
colleagues were some members of the highly regarded SMR (Société Mathématique de
France), to which he had been belonging since 1946. He remained a Professor at this
University (now named “Université Lyon 1”) until his retirement in 1986.

2 Contributions to Probability, Information, Correlation and
Generalized Distances

His thesis contains original developments in the area of the functional characteristics
of random variables. He first defined the concept of uncertainty in gathering different
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approaches already developed, by giving some coherent axiomatic foundations based
on the notion of cumulative probability distributions. It is noticeable that, to achieve
this purpose, Robert Féron used the concepts of probability space and of Borel sets of
R; this deserves to be pointed out if we remember that, in those times, some probability
scholars were still reluctant to use this approach, considered by them as being too much
oriented towards set-theoretic tools for their taste.

On such a basis, he then developed an original work on the concept of information
gain, studied in the case of pairs of random variables (X ,Y ), the starting idea being to
analyze to what extent the knowledge of information on the values taken by X entails a
reduction of the uncertainty pervading the values taken by Y . In this perspective, the use
of the probabilistic approach, based on measure theory, enables a unified, homogeneous
and consistent formalization of concepts previously defined in particular settings. Taking
as an example the concept of regression, especially of regression lines, the advantages
become clear, since the proposed model, always based on a probabilistic approach, en-
compasses different types of uncertainty measures, including the so-called typical values
introduced by Fréchet, some years before. The section devoted to the concept of correla-
tion unifies, without particular restrictions on the nature of the variables, Pearson corre-
lation ratio, the classical R2, but also ratios obtained by taking Fréchet’s typical deviation
as a measure of uncertainty. This was naturally generalized to n-tuples of variables.

His thesis ended with two independent chapters. One was devoted to the study of in-
dices liable to characterize the fact that two variables are linked by a functional; two
Gini connexion indices, simple or quadratic, and a Jordan index were examined. The
other chapter corresponds to a requirement, compulsory for obtaining this kind of thesis
at the time, namely treating a topic chosen by the committee. In this case, an attempt
at generalizing some notions of processes with independent random variables, of simple
Markov chains, of stochastic processes that are stationary or with independent increases.

Several of the results presented in his thesis led to publications either in the “Journal
de la Société Statistique de Paris”, or in the “Publications de l’Institut Statistique de
Paris”, alone or in collaboration with Claude Fourgeaud, but also as “Notes” in the
“Comptes Rendus de l’Académie des Sciences (CRAS)” (3 such Notes were published
in years 1951-1952 [1, 2, 17]).

Once in Lyon University, Robert Féron, without forgetting his scientific origins, ex-
tended his field of research. He launched a small research group, that grew with years,
and became a team officially associated to CNRS in the seventies. In particular, he
started at that time to be interested in problems coming from economics. Especially he
noticed that, quite often, the available mathematical tools were not always appropriate
for dealing with the economical, or more generally social sciences contexts, and he tried
to create specific mathematical tools accordingly.

He first devoted some time to a generalization of metric spaces, towards a weakening
of the axiomatics, in order to make them more appropriate to the handling of problems
that are no longer coming from “hard” sciences such as physics. He then took up again
one of Fréchet’s ideas, that amounts to no longer requiring the triangle inequality, and
developed it. The subject-matter of a 1966 CRAS note [6], this work led to the building
of a new concept of space, initially named F-topological space, as a tribute to Fréchet, but
maybe also in consonance with the author’s name. This work was then further developed
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within Féron’s research team, especially by Marcel Brissaud, who, in order to nicely
couple the concepts of non transitive graphs and of topology, systematically investigated
the weakening of Kuratowski’s axiomatics. This led to the definition of different kinds of
pre-topological spaces that generalize topological spaces. On such spaces, the classical
concepts of separability, connexity, compacity, continuity, subspace, product space, ...
are redefined sometimes with great subtleties and an unexpected diversity with respect
to classical topology.

3 Contributions to Fuzzy Set Theory and Fuzzy Random
Variables

Fuzzy set theory and fuzzy logic originated in Zadeh’s 1965 seminal paper. After a few
years, several researchers, coming from various scientific areas, became interested in
this new idea. In France, among them, some were mathematicians, working in logic
as Daniel Ponasse (also in Lyon), or working on probabilities as Robert Féron. They
both examined the concept of fuzzy membership, the former studying the case where
membership values belong to a lattice, the later looking at the differences and simi-
larities with probability calculus. The few other researchers that were already working
on fuzzy sets in France around 1975 were Arnold Kaufmann, who made huge efforts to
develop and popularize the basic concepts of the new theory, while Claude Ponsard, pre-
maturely deceased, studied its first applications to spatial economics, and Elie Sanchez
introduced a fuzzy relational calculus and its applications in medicine.

Robert Féron has published several pieces of work on fuzzy sets since 1976. Several
of them appeared in the “Publications Econométriques”, a French journal he founded
and edited from 1967 to 1986, and others were published as CRAS notes. In summary,
in his work he considers a non empty set X , equipped with a topological structure,
and a closed lattice S . A fuzzy set A is characterized by a mapping μA(.) from X
to S . A fuzzy set is regular if for all s in S , the sets {x ∈X ; μA(x) ≥ s} and {x ∈
X ; μA(x) ≮ s} are closed sets in X . Y denotes the set of regular fuzzy sets and B a
σ -algebra on Y . Lastly, (Ω ,A ) is a measurable space. Then a random fuzzy set is a
measurable mapping from (Ω ,A ) to (Y ,B). From this construction, it is possible to
get a generalization of the usual fuzzy concepts. Several particular cases are considered,
as, e.g., one where the topology of X is based on a metric, one where S is finite, and
one where S = [0,1].

It is worth pointing out that such a generalization was motivated by practical mod-
eling issues, in order to go beyond the simple framework of standard fuzzy sets. For
instance, Robert Féron wrote in [12, p. 84]1:

Similarly, a generalization of the theory of random sets with closed values has
suggested us a generalization of the notion of random set and a theory that

1 French text: De même, une généralisation de la théorie des ensembles aléatoires à valeurs
fermées nous a suggéré une généralisation de la notion d’ensemble aléatoire et une théorie
qui permet de tirer encore des conclusions dans le cas où on a un ensemble aléatoire flou.
L’ingénieur a ainsi un outil mathématique puissant pour opérer sur autre chose que des champs
aléatoires, puisque ici l’ensemble S n’est plus un sous-ensemble de Rn, mais un treillis dis-
tributif fermé.
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still enables us to draw conclusions in the case where we have a random fuzzy
set. The engineer has thus a powerful mathematical tool for dealing with other
structures than random fields, since here the set S is no longer a subset of Rn,
but a closed distributive lattice.

We see here the interest of tools that offer the highest possible generalization. Maybe
another illustration of similar views and attempts, is the famous integral developed at
the same time by Sugeno.

Robert Féron did not restrict his research area to the design of mathematical tools,
but he also thought of possible applications to economics, an area he had always been
interested in. It is in the seventies, two decades after the seminal works of Arrow and
Debreu, that one could see a blossoming of publications aiming at modeling the concept
of economy, involving a finite number of goods, agents having some information at their
disposal, as well as initial amounts, and who have to share out some wealth by possibly
forming coalitions; in this context the objective was, thanks to fixed point theorems,
to look for repartitions that no agent or group of agents could dispute, i.e. for “the
core of an economy”. Féron then pointed out that in a real context, coalitions possess
every reason to be random fuzzy sets2, and he proposed an original model leading to
the concept of core of a fuzzy economy [8, 9], which could be for instance exploited
in dynamical models, for forecasting purposes; however, being realistic, he remained
cautious in his conclusion3:

We must however notice that the construction of such a dynamical model re-
quires a very difficult experimental study to be conducted on the actual behav-
ior of economic agents.

Robert Féron continued to work until his retirement and later as well since in 1988
he published a paper [16], in collaboration with his son Marc, where he applied his
results on random fuzzy sets to the evaluation, according to a finite number of criteria,
of industrial products, such as cars.

Unsurprisingly, in his works from years 1970-1980, Robert Féron did not forget his
previous research in the area of topology and pretopological structures, which led him
to open some new research directions that are still partly to investigate. Let us mention
along this line, his work on pre-uniform fuzzy structures. The concept of uniform struc-
ture, developed by Bourbaki should logically lead to such generalizations. This is what
he did along two directions simultaneously, by, on the one hand, weakening the unifor-
mity axioms (for instance only requiring that the family of entourages be a pre-filter
- we then speak of pre-entourages), and on the other hand by introducing the concept
of fuzzy uniform structure, allowing the entourages or the pre-entourages to be fuzzy
sets [15].

Retrospectively, Robert Féron can be considered as a pioneer who always tried to
follow the difficult way that consists in proposing to adapt existing modeling tools for

2 The idea of fuzzy core in game theory had been introduced a few years before by Jean-Pierre
Aubin.

3 French text: Il convient toutefois de remarquer que la construction d’un tel modèle dynamique
implique une étude expérimentale très difficile à effectuer du comportement réel des agents
économiques.
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dealing with application domains, while the temptation was often to develop theories
only for their own sake, implicitly assuming that reality has to be adapted to the model!
Robert Féron can be regarded as one of the very first researchers in soft methods in
probability and statistics (using the name of the conference where the present homage
is presented), especially for having been the first to consider random fuzzy sets, while
at about the same time Fortet and Kambouzia, or Kampé de Fériet pointed out that the
contour function of a random set may be viewed as a fuzzy set. The scientific commu-
nity in fuzzy logic, and more specifically in soft methods in probability and statistics
is thus indebted to Professor Robert Féron for his early contribution to the theory of
random fuzzy sets, and their applications.

In fact, there is yet another important reason why the fuzzy set community has to pay
a tribute to Professor Féron. Indeed, in 1980, Robert Féron took the risk of organizing
a CNRS Round Table, entitled “Quelques applications concrètes utilisant les derniers
perfectionnements de la théorie du flou” (in English: “Some concrete applications using
the most recent advances in fuzzy set theory”), in Lyon (on June 23-24, 1980). Most of
the active researchers in fuzzy sets at that time participated to this meeting4. This was
a time when fuzzy sets were severely criticized by many scientists, in spite of the ef-
forts made by a few others, and this was especially the case in France. Professor Féron
nevertheless managed to put together what turned to be a very important meeting for
the further development of the field. But what is perhaps still another remarkable in-
dication of how broad was Professor Féron’s understanding of the directions in which
fuzzy sets should be developed, is the fact that he invited in the organization committee
(which met on January 25, 1980) not only Kampé de Fériet, but also Gustave Cho-
quet (1915-2006), (together with several much younger fuzzy set researchers) at a time
where almost nobody had still a clear view of the importance of Choquet capacities and
integrals in relation with fuzzy sets and other non-classical approaches to the handling
of uncertainty and the modeling of preference.5

4 The list of participants included: Jean-Paul Auray, Bernadette Bouchon, Marcel Brissaud,
Christer Carlsson, Didier Dubois, Bernard Dubuisson, Alain Dussauchoy, Gérard Duru, Hu-
bert Emptoz, Siegfried Gottwald, Arnold Kaufmann, Joseph Kampé de Fériet, Peter Klement,
Abraham Kandel, Michel Lamure, Ramon Lopez de Mantaras, Robert Lowen, Noël Malvache,
Constantin Negoita, Hung Nguyen, Serge Oppenchaim, Henri Prade, Daniel Ponasse, Michel
Prévot, Dan Ralescu, Enrique Ruspini, Elie Sanchez, Philippe Smets, Robert Vallée, Didier
Willeys, Lotfi Zadeh, Hans Zimmermann. Sorry for most probably forgetting many people.
Unfortunately, the proceedings of this meeting were never published, although the papers of
the main presentations were distributed to the participants.

5 As a last minute member of this committee (due to the support of Professor C. V. Negoita), the
last author of this note can however testify that apparently Professor Féron was not completely
successful in communicating his enthusiasm for fuzzy set theory to Professor Choquet. To be
fair, at that time, fuzzy sets were still in infancy, and had not much to offer, especially to
mathematics, and only a few mathematicians like Joseph Kampé de Fériet, or Robert Fortet
who had been working in information theory for many years, could foresee some interest in
such a risky, and still incompletely formalized topic. It also took some more years before
the parallel and the differences between Sugeno integral and Choquet integral could be more
deeply understood.
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4 Conclusion

The name of Robert Féron may not be familiar to a number of younger researchers in
fuzzy sets or imprecise probabilities, since many of his papers are not easily accessible
and most of them are in French, if we except [13, 14, 16]. This note is a modest tribute
to a talented and very open-minded mathematician, with a broad vision of problems,
and a great generosity towards his colleagues. We hope that it will help enlarging the
recognition that he truly deserves.

Acknowledgement. This note was finalized with the kind help of Agnès Rico and Di-
dier Dubois.
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3. Féron, R.: De la régression. Note CRAS 234, 2143–2145 (1952)
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Relating Prototype Theory and Label Semantics
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Abstract. An interpretation of the label semantics framework is introduced based on prototype
theory. Within this interpretation it is shown that the appropriateness of an expression is char-
acterised by an interval constraints on a parameter ε . Here ε is an uncertain distance threshold
according to which an element x is sufficiently close to the prototype pi of a label Li for Li to be
deemed appropriate to describe x, if the distance between x and pi is less than or equal to ε . Ap-
propriateness measures and mass functions are then defined in terms of an underlying probability
density function δ on ε .

1 Introduction

In classical logic a concept label L is defined by the set of elements from an underlying
universe which satisfies L (the extension of L) and more generally in Kripke semantics
[5] as a mapping from a set of possible worlds into sets of elements (an interpretation
of L). Such an approach fails to capture certain aspects of our intuitive understanding
of concepts in natural language, in particular the role of similarity in establishing the
meaning of concept labels. Furthermore, a possible worlds model seems to overlook our
natural focus on understanding reality as represented by one particular possible world
(see [3] for discussion).

Prototype theory (Rosch [9]) is an alternative approach to concept representation ac-
cording to which decisions regarding the applicability of a concept label to a particular
instance are made on the basis of the similarity of that instance to a (set of) prototypical
element(s) for that concept. Prototypes may not correspond to actual perceptions of ob-
jects or experiences but instead may identify a particular point or region of conceptual
space [3] which is in some way representative of the concept. From this perspective the
human ability to rank elements in terms of the degree to which they satisfy a concept L
can be explained in terms of a comparison of their relative similarity (or distance) from
the prototype(s) for L.

Prototype theory has been proposed as the basis for a possible interpretation of mem-
bership functions in fuzzy set theory ([1, 2]), where the membership of an element x in a
concept L is taken to be a scaled version of the similarity between x and the prototype(s)
for L [10]. This rather intuitive approach has the drawback that the prototype similar-
ity interpretation of membership does not naturally result in a truth-functional calculus
when concepts are combined (See Lawry [7] chapter 2 for a discussion). Consequently a
prototype based model of membership does not seem to capture the underlying calculus
of fuzzy set theory.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 35–42, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Label semantics (Lawry [6, 7, 8]) is an uncertainty theory for vague concepts which
encodes the meaning of linguistic labels according to how they are used by a popula-
tion of communicating agents to convey information. From this perspective, the focus
is on the decision making process an intelligent agent must go through in order to iden-
tify which labels or expressions can actually be used to describe an object or value. In
other words, in order to make an assertion describing an object in terms of some set
of linguistic labels, an agent must first identify which of these labels are appropriate
or assertible in this context. Given the way that individuals learn language through an
ongoing process of interaction with the other communicating agents and with the envi-
ronment, then we can expect there to be considerable uncertainty associated with any
decisions of this kind. In label semantics we quantify this uncertainty in terms of appro-
priateness measures, linked to an associated mass function through a calculus which,
while not truth-function, can be functional in a weaker sense (See Lawry [6] and [7]).
In the sequel we will propose a prototype theory interpretation of label semantics which
relates both appropriateness measures and mass functions to distance from prototypes
and naturally captures the label semantics calculus.

2 An Overview of Label Semantics

The underlying philosophy of label semantics [8] is very close to the epistemic view
of vagueness as expounded by Timothy Williamson [12]. Williamson assumes that for
the extension of a vague concept there is a precise but unknown dividing boundary
between it and the extension of the negation of that concept. However, while there are
marked similarities between the epistemic theory and the label semantics view, there are
also some subtle differences. For instance, the epistemic view would seem to assume
the existence of some objectively correct, but unknown, definition of a vague concept.
Instead of this we argue that individuals when faced with decision problems regarding
assertions find it useful as part of a decision making strategy to assume that there is a
clear dividing line between those labels which are and those which are not appropriate
to describe a given instance. We refer to this strategic assumption across a population
of communicating agents as the epistemic stance, a concise statement of which is as
follows:

Each individual agent in the population assumes the existence of a set of la-
belling conventions, valid across the whole population, governing what lin-
guistic labels and expressions can be appropriately used to describe particular
instances.

The idea is that the learning processes of individual agents, all sharing the fundamental
aim of understanding how words can be appropriately used to communicate informa-
tion, will eventually converge to some degree on a set of shared conventions. The very
process of convergence then to some extent vindicates the epistemic stance from the
perspective of individual agents.

Label semantics proposes two fundamental and inter-related measures of the appro-
priateness of labels as descriptions of an object or value. We begin by assuming that for
all agents there is a fixed shared vocabulary in the form of a finite set of basic labels
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LA for describing elements from the underlying universeΩ . A countably infinite set of
expressions LE can then be generated through recursive applications of logical connec-
tives to the basic labels in LA. The measure of appropriateness of an expression θ ∈ LE
as a description of instance x is denoted by μθ (x) and quantifies the agent’s subjective
probability that θ can be appropriately used to describe x. From an alternative perspec-
tive, when faced with describing instance x, an agent may consider each label in LA
and attempt to identify the subset of labels that are appropriate to use. This is a totally
meaningful endeavour for agents who adopt the epistemic stance. Let this complete set
of appropriate labels for x be denote by Dx. In the face of their uncertainty regarding
labelling conventions agents will also be uncertain as to the composition of Dx, and
we represent this uncertainty with a probability mass function mx : 2LA → [0,1] defined
on subsets of labels. We now provide formal definitions for the set of expressions LE
and for mass functions mx, following which we will propose a link between the two
measures μθ (x) and mx for expression θ ∈ LE .

Definition 1 (Label Expressions)
The set of label expressions LE generated from LA, is defined recursively as follows: If
L ∈ LA then L ∈ LE; If θ ,ϕ ∈ LE then ¬θ ,θ ∧ϕ ,θ ∨ϕ ∈ LE.

Definition 2 (Mass Function on Labels)
∀x ∈ Ω a mass function on labels is a function mx : 2LA → [0,1] such that ∑S⊆LA
mx (S) = 1.

Note that there is no requirement for the mass associated with the empty set to be zero.
Instead, mx( /0) quantifies the agent’s belief that none of the labels are appropriate to de-
scribe x. We might observe that this phenomena occurs frequently in natural language,
especially when labelling perceptions generated along some continuum. For example,
we occasionally encounter colours for which none of our available colour descriptors
seem appropriate. Hence, the value mx( /0) is an indicator of the describability of x in
terms of the labels LA.

The link between the mass function mx and the appropriateness measures μθ (x) is
motivated by the intuition that the assertion ‘x is θ ’ directly provides information de-
pendent on θ , as to what are the possible values for Dx. For example, the assertion
‘x is blue’ would mean that blue is an appropriate label for x, from which we can in-
fer that blue ∈ Dx. Similarly, the assertion ‘x is green and not blue’ would mean that
green is an appropriate label for x while blue is not, so that we can infer green ∈ Dx

and blue �∈ Dx. Another way of expressing this information is to say that Dx must be
a member of the set of sets of labels which contain green but do not contain blue i.e.
Dx ∈ {S⊆ LA : green ∈ S, blue �∈ S}. More generally, we can define a functional map-
ping λ from LE into 22LA

(i.e. the set containing all possible sets of label sets) for
which the assertion ‘x is θ ’ enables us to infer that Dx ∈ λ (θ ). This mapping is defined
recursively as follows:

Definition 3 (λ -mapping)
λ : LE → 2F is defined recursively as follows: ∀L ∈ LA, ∀θ , ϕ ∈ LE; λ (L) = {S∈F :
L ∈ S}; λ (θ ∧ϕ) = λ (θ )∩λ (ϕ); λ (θ ∨ϕ) = λ (θ )∪λ (ϕ); λ (¬θ ) = λ (θ )c.
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The λ -mapping then provides us with a means of evaluating the appropriateness mea-
sure of an expression θ directly from mx, as corresponding to the subjective belief that
Dx ∈ λ (θ ) so that:

Definition 4 (Appropriateness Measures)
For any expression θ ∈ LE and x ∈ Ω , the appropriateness measure μθ (x) can be
determined from the mass function mx according to:

∀θ ∈ LE μθ (x) = ∑
S∈λ (θ)

mx(S)

From this relationship the following list of general properties hold for expressions θ
and ϕ in LE [6]:

Theorem 1 (Lawry [6, 7])

• If θ |= ϕ then ∀x ∈Ω μθ (x)≤ μϕ(x)
• If θ ≡ ϕ then ∀x ∈Ω μθ (x) = μϕ(x)
• If θ is a tautology then ∀x ∈Ω μθ (x) = 1
• If θ is a contradiction then ∀x ∈Ω μθ (x) = 0
• ∀x ∈Ω μ¬θ (x) = 1− μθ(x)
Notice, here that the laws of excluded middle, non-contradiction and idempotence are
all preserved.

In practice an agent’s estimation of both mx and μθ (x) should depend on their expe-
rience of language use involving examples similar to x. Clearly the form of this knowl-
edge is likely to be both varied and complex. However, one natural type of assessment
for an agent to make would be to order or rank label in terms of their estimated ap-
propriateness for x. This order information could then be combined with estimates of
appropriateness measure values for the basic labels (i.e. elements of LA) in order to
provide estimates of values for compound expressions (i.e. elements of LE).

Definition 5 (Ordering on Labels)
For x ∈Ω let �x be an ordering on LA such that for L,L′ ∈ LA, L′ �x L means that L is
at least as appropriate as a label for x as L′.

For any labels Li,Lj ∈ LA if Li �x L j it follows that if Lj ∈ Dx then Li ∈ Dx and con-
sequently when �x is a total ordering then the mass function mx must be nested. In
that case the following theorem shows that the min and max rules for conjunction and
disjunction hold for a restricted class of expressions:

Theorem 2 ([6, 11])
Let LE∧,∨ ⊆ LE denote those expressions generated recursively from LA using only
the connectives ∧ and ∨. If the appropriateness of the basic labels as descriptions for
x is ranked according to a total ordering �x on LA then ∀θ ,ϕ ∈ LE∧,∨ it holds that
μθ∧ϕ (x) = min

(
μθ (x) ,μϕ (x)

)
, μθ∨ϕ (x) = max

(
μθ (x) ,μϕ (x)

)
.

3 A Prototype Theory Interpretation of Label Semantics

Suppose that a distance metric d is defined on Ω such that d :Ω 2 → [0,∞) and satisfies
d(x,x) = 0 and d(x,y) = d(y,x) for all elements x,y ∈ Ω . For each label Li ∈ LA let
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Fig. 1. Identifying Dεx as ε varies; For ε1, ε2 and ε3 shown in the diagram Dε1x = /0, Dε2x =
{L1,L2}, Dε3x = {L1,L2,L3,L4}

there be a single element pi ∈ Ω 1 corresponding to a prototypical case for which Li is
certainly an appropriate description. Within this framework Li is deemed to be appro-
priate to describe an element x ∈ Ω provided x is sufficiently close or similar to the
prototypical element pi. This is formalized by the requirement that x is within a maxi-
mal distance threshold ε of pi. i.e. Li is appropriate to describe x if d(x, pi)≤ ε where
ε > 0. From this perspective an agent’s uncertainty regarding the appropriateness of a
label to describe a value x is characterised by his or her uncertainty regarding the dis-
tance threshold ε . Here we assume that this uncertainty is represented by a probability
density function δ for ε defined on [0,∞). Within this interpretation a natural definition
of the description of an element Dx and the associated mass function mx can be given
as follows:

Definition 6. For ε ∈ [0,∞) Dεx = {Li ∈ LA : d(x, pi) ≤ ε} and mx(F) = δ ({ε :
Dεx = F})2.

Intuitively speaking Dεx identifies the set of labels with prototypes lying within ε of
x. Figure 1 shows Dεx in a hypothetical conceptual space as ε varies. Notice that the
sequence Dεx as ε varies generates a nested hierarchy of label sets. Furthermore, the
distance metric d naturally generates a total ordering on the appropriateness of labels
for any element x, according to which label Lj is as least as appropriate to describe x as
label Li if x is closer (or equidistant) to p j than to pi i.e. Li �x L j iff d(x, pi)≥ d(x, p j).
The following theorem shows that this ordering constrains the labels contained in Dεx
as suggested in Section 2:

Theorem 3. If Li �x L j (as defined above) then ∀ε ≥ 0 Li ∈Dεx implies that L j ∈Dεx .

1 For simplicity of notation we assume that each label has a single prototype. However, the
case where there is a set of prototypes Pi for Li can easily be accommodated by extending the
distance metric d such that d(x,Pi) = inf{d(x, pi) : pi ∈ Pi}.

2 For Lesbegue measurable set I, we denote δ (I) =
∫

I δ (ε)dε .
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Proof. Suppose ∃x ∈Ω for which Li �x L j and ∃ε ≥ 0 such that Li ∈Dεx and Lj �∈Dεx .
From this it follows that d(x, pi) ≤ ε and d(x, p j) > ε and hence Li ��x L j which is a
contradiction as required. ��
Also notice from Definition 6, that for Li ∈ LA the appropriateness measure μLi(x) is
given by δ ({ε : Li ∈Dεx }). Consequently, if we view Dεx as a random set from [0,∞) into
2LA then μLi(x) corresponds to the single point coverage function of Dεx . This provides
us with a link to the random set interpretation of fuzzy sets (See [1], [2] or [4] for an
exposition) except that in this case the random set maps to sets of labels rather than sets
of elements. Hence, the interpretation of label semantics as proposed above provides a
link between random set theory and prototype theory.

The following results show how the appropriateness of an expression θ ∈ LE to
describe an element x is equivalent to a constraint ε ∈ I(θ ,x), for some measurable
subset I(θ ,x) of [0,∞).

Definition 7. ∀x ∈ Ω and θ ∈ LE, I(θ ,x) ⊆ [0,∞) is defined recursively as follows:
∀Li ∈ LA, ∀θ ,ϕ ∈ LE; I(Li,x) = [d(x, pi),∞); I(θ ∧ ϕ ,x) = I(θ ,x) ∩ I(ϕ ,x); I(θ ∨
ϕ ,x) = I(θ ,x)∪ I(ϕ ,x); I(¬θ ,x) = I(θ ,x)c.

Theorem 4. ∀θ ∈ LE,∀x ∈Ω I(θ ,x) = {ε : Dεx ∈ λ (θ )}.
Corollary 1. ∀θ ∈ LE, ∀x ∈Ω μθ (x) = δ (I(θ ,x)).

Definition 8. We define k : LE∧,∨ ×Ω → [0,∞) recursively as follows: ∀x ∈ Ω , ∀Li ∈
LA, ∀θ ,ϕ ∈ LE∧,∨; k(Li,x) = d(x, pi); k(θ ∧ϕ ,x) = max(k(θ ,x),k(ϕ ,x)) and k(θ ∨
ϕ ,x) = min(k(θ ,x),k(ϕ ,x)).

Theorem 5. ∀x ∈Ω , ∀x ∈ LE∧,∨, then I(θ ,x) = [k(θ ,x),∞).

ε

δ (ε)

d(x, p1) d(x, p2) d(x, p3) d(x, p4)

mx( /0)

mx({L1})

mx({L1,L2})

mx({L1,L2,L3})

mx({L1,L2,L3,L4})

Fig. 2. Let LA = {L1,L2,L3,L4} and L4 �x L3 �x L2 �x L1. This figure shows the values of mx

as areas under δ .



Relating Prototype Theory and Label Semantics 41

From Theorem 5 we have that

μθ∨ϕ(x) = δ ([k(θ ∨ϕ ,x),∞)) = δ ([min(k(θ ,x),k(ϕ ,x)),∞))
= max(δ ([k(θ ,x),∞)),δ ([k(ϕ ,x),∞))) = max(μθ (x),μϕ (x)).

Similarly, μθ∧ϕ(x) = min(μθ (x),μϕ (x)) as is consistent with Theorem 2.

Example 1. I(Li,x) = [d(x, pi),∞) , I(¬Li,x) = [0,d(x, pi)), I(Li ∧ Lj,x)
= [max(d(x, pi),d(x, p j)),∞), I(Li ∨ Lj,x) = [min(d(x, pi),d(x, p j)),∞). Also
I(Li∧¬Lj,x) = [d(x, pi),d(x, p j)) provided d(x, pi) < d(x, p j) and = /0 otherwise.

From Lawry [7] we have that for F ⊆ LA mx(F) = μαF (x) where αF =
(
∧

L∈F L)∧ (
∧

L�∈F ¬L). Hence, mx(F) = δ (I(αF ,x)) where I(αF ,x) = [max{d(x, pi) :
Li ∈ F},min{d(x, pi) : Li �∈ F}) provided that max{d(x, pi) : Li ∈ F} < min{d(x, pi) :
Li �∈ F} and = /0 otherwise.

Figure 2 shows the areas under δ corresponding to the values of the mass function mx.

4 Conclusions

Label semantics is an epistemic theory of uncertainty for vague concepts based on
appropriateness measures and mass functions. The underlying calculus is not truth-
functional but can be functional in a weaker sense, with the min and max rules for
conjunction and disjunction being preserved for a restricted class of expressions.

Appropriateness measures and mass functions can be interpreted, within prototype
theory, as the probability that a distance threshold ε lies in a measurable subset of [0,∞)
as determined by the relevant label or expression. Here ε represents an upper-bound on
the distance that an element x can be from the prototype pi for a label Li, in order that
Li is still deemed an appropriate description of x.
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Fuzzy Probabilities Based on the Likelihood Function
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Abstract. If we interpret the statistical likelihood function as a measure of the relative
plausibility of the probabilistic models considered, then we obtain a hierarchical description
of uncertain knowledge, offering a unified approach to the combination of probabilistic and
possibilistic uncertainty. The fundamental advantage of the resulting fuzzy probabilities with
respect to imprecise probabilities is the ability of using all the information provided by the data.

Keywords: Likelihood function, Hierarchical model, Fuzzy probabilities, Imprecise probabili-
ties, Statistical inconsistency.

1 Introduction

This paper presents a probabilistic-possibilistic hierarchical model based on the like-
lihood function. Thanks to the intuitivity and asymptotic properties of the likelihood
function, the hierarchical model is an ideal basis for inference and decision making:
this aspect is analyzed in [2]. The hierarchical model can be interpreted as a fuzzy
probability measure, and offers a unified approach to the combination of probabilistic
and possibilistic uncertainty.

Fuzzy probabilities generalize imprecise probabilities by additionally considering
the relative plausibility of different values in the probability intervals (imprecise proba-
bilities correspond to the crisp case of fuzzy probabilities). By abandoning the crispness
of imprecise probabilities, the hierarchical model solves a fundamental problem of the
imprecise probability approach: its statistical inconsistency.

2 Hierarchical Model

Let P be a set of probability measures on a measurable space (Ω ,A ) such that A
contains all singletons of Ω . Each P ∈P is interpreted as a probabilistic model of
the reality under consideration. The interpretation of probability is not important: for
instance the elements of P can be statistical models, or describe the forecasts of a
group of experts.

When an event A ∈A is observed, the likelihood function

lik : P �−→ P(A)

on P describes the relative ability of the probabilistic models in P to forecast the ob-
served data. Spurious modifications of the situation considered or of its mathematical
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representation can lead to likelihood functions proportional to lik. Therefore, propor-
tional likelihood functions are considered equivalent; in fact, Fisher [8] defined the like-
lihood of a statistical model as a quantity proportional to the probability of the observed
data. Hence, only ratios lik(P)/lik(P′) of the values of lik for different P,P′ ∈P have
meaning: Kullback and Leibler [11] interpreted log[lik(P)/lik(P′)] as the information
in A for discrimination in favor of P against P′. When the realization of a continuous
random object is observed, the usual definition of likelihood function in terms of density
can be seen as an approximation of lik (see [2, Section 1.2]).

The likelihood function can thus be interpreted as a measure of the relative plausi-
bility of the probabilistic models in the light of the observed data alone. Under each
probabilistic model P ∈P , the likelihood ratio lik(P)/lik(P′) of P against a different
probabilistic model P′ ∈P almost surely increases without bound when more and more
data are observed, and consequently lik tends to concentrate around P, if some regular-
ity conditions are satisfied. Thanks to this asymptotic property and to its intuitivity, the
likelihood function is an ideal basis for statistical inference and decision making (see
[13] for an introduction to the likelihood approach to statistics).

Example 1. Let P = {Pp : p∈ [0.1, 0.6]} be a set of probability measures on a measur-
able space (Ω ,A ), such that for each Pp ∈P the random variables X0, . . . ,X100 :Ω →
{0,1} satisfy the following conditions: Pp{X0 = 0}= 1

2 , and conditional on the realiza-
tion of X0 the random variables X1, . . . ,X100 are independent with Pp{Xi = 1 |X0 = 0}=
1
2 and Pp{Xi = 1 |X0 = 1}= p for all i ∈ {1, . . . ,100}.

The realizations of X1, . . . ,X100 are observed: 20 of them take the value 1. The re-
sulting likelihood function

lik : Pp �−→ 1
2

(
1
2

)100
+ 1

2 p20 (1− p)80

on P is concentrated around P0.2, which is the most plausible element of P in the light
of the observed data alone. The case with X0 = 0 has almost no influence on the form
of the likelihood function, and in fact this case is extremely implausible in the light of
the observed data and of the probabilistic models considered.

The likelihood function lik measures the relative plausibility of the elements of P , but
a measure of the relative plausibility of the subsets of P is often needed. A simple and
effective way to obtain it consists in defining the plausibility of a set of probabilistic
models as the plausibility of its best element: the result is the set function

H �−→ sup
P∈H

lik(P)

on the power set 2P of P (in this paper, sup∅ = 0). Proportional set functions of
this form are equivalent, since they correspond to equivalent likelihood functions: to
underline this relative meaning, the expression “relative plausibility measure” is used
in [2] to denote an equivalence class of proportional set functions of this form. Their
normalized version LR associates to each H ⊆P the corresponding likelihood ratio
statistic

LR(H ) =
supP∈H lik(P)
supP∈P lik(P)

.
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Fig. 1. Profile likelihood function from Example 2 and membership function of fuzzy probability
from Example 3

The likelihood ratio test discards the hypothesis that the data were generated by some
P ∈H if LR(H ) is sufficiently small.

Let g : P→ G be a function. The likelihood function lik on P induces the (normal-
ized) profile likelihood function

likg : γ �−→ LR(g−1{γ})∝ sup
P∈P :g(P)=γ

lik(P)

on G (in this paper, g−1 denotes the set function associating to each subset of G its
inverse image under g). The profile likelihood function likg measures the relative plau-
sibility of the values of g, on the basis of the above definition of plausibility for a set
of probabilistic models. The maximum likelihood estimate γ̂ML of g(P) is the γ ∈ G
maximizing likg(γ) (that is, likg(γ̂ML) = 1), when such a γ exists and is unique. The
likelihood-based confidence region for g(P) with cutoff point α ∈ (0,1) is the set
{γ ∈ G : likg(γ) > α}: it is the smallest G⊆ G such that LR{P ∈P : g(P) /∈ G} ≤ α .

Example 2. Consider the situation of Example 1, and let g : P → [0,1] associate to
each probabilistic model in P the probability of X0 = 0 conditional on the observed
realizations of X1, . . . ,X100:

g : Pp �−→
( 1

2

)100(
1
2

)100
+ p20 (1− p)80

.

Figure 1 shows the graph of the profile likelihood function likg on [0, 5 · 10−7]: as ex-
pected, likg is extremely concentrated near 0, because X0 = 1 is compatible with the
observed data, while X0 = 0 is not. In fact, the maximum likelihood estimate of g(Pp)
is γ̂ML ≈ 0.04 · 10−7, and the likelihood-based confidence region for g(Pp) with cutoff
point α = 0.01 corresponds approximately to the interval (0.04 ·10−7, 4.26 ·10−7).

The probabilistic models in P and the likelihood function lik on P can be interpreted
as the two levels of a hierarchical model of the reality under consideration. The two
levels describe different kinds of uncertain knowledge: in the first level the uncertainty
is stochastic, while in the second one it is about which of the probabilistic models in P
is the best representation of the reality. It is important to underline that no probabilistic
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model in P is assumed to be in some sense “true”: the elements of P are simply
interpreted as more or less plausible representations of the reality (this interpretation of
the hierarchical model is shared by Edwards [7]). By contrast, the use of a probability
measure on P , suggested by the Bayesian approach, carries the implicit assumption
that exactly one of the probabilistic models in P is “true” (see [2, Section 3.1]).

The definition of likelihood function implies that when an event A ∈A is observed,
the two levels P and lik of the hierarchical model are updated to

P ′ = {P( · |A) : P ∈P, P(A) > 0} (1)

and to lik′ : P′ �−→ sup
P∈P :P( · |A)=P′

lik(P)P(A),

respectively. When A is the first observed event, the prior likelihood function lik can be
interpreted as a (subjective) measure of the relative plausibility of the probabilistic mod-
els in P according to the prior information. The choice of a prior likelihood function on
P seems to be better supported by intuition than the choice of a prior probability mea-
sure on P: in particular, a constant likelihood function describes complete ignorance
(in the sense of absence of information for discrimination between the probabilistic
models). In fact, if lik is constant, then lik′ is proportional to the profile likelihood func-
tion on P ′ induced by the observation A and the conditioning P �→ P( · |A). Moreover,
the choice of a prior likelihood function can be based on analogies with the likelihood
functions induced by hypothetical data (see also [3]).

3 Fuzzy Probabilities

A possibility distribution on a set G is a function π : G → [0,1]. The possibility measure
on G with possibility distribution π is the set function

G �−→ sup
γ∈G
π(γ)

on 2G . A possibility distribution π on G can also be considered as the membership func-
tion of a fuzzy subset of G (see [17]); when π is crisp (that is, π can take only the values
0 and 1), the subset is not fuzzy and π is its indicator function on G . The likelihood ratio
statistic LR is a possibility measure on P with possibility distribution proportional to
the likelihood function lik on P . In fact, the membership function of a fuzzy set has
often been interpreted as a likelihood function (see for example [10, 5]), even though
proportional membership functions were not always considered equivalent (see for in-
stance [6]). In the present paper, membership functions and possibility distributions
are interpreted as proportional to likelihood functions. Hence, it suffices to consider
normalized fuzzy sets and normalized possibility measures (that is, supγ∈G π(γ) = 1
is assumed), but grades of membership and degrees of possibility have only a relative
meaning.

The hierarchical model considered in the previous section can thus be interpreted
as consisting of a probabilistic level (described by P) and a possibilistic level (de-
scribed by LR). That is, it can be interpreted as a probabilistic-possibilistic hierarchical
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description of uncertain knowledge about ω ∈Ω . Both the purely probabilistic and the
purely possibilistic descriptions of uncertain knowledge about ω ∈Ω appear as special
cases. In fact, when P is a singleton, the uncertainty about ω ∈ Ω is purely proba-
bilistic (LR on P = {P} contains no information, since its meaning is only relative).
By contrast, when P consists of all the Dirac measures (that is, P = {δω : ω ∈ Ω}
with δω{ω} = 1), the uncertainty about ω ∈ Ω is purely possibilistic (LR can be con-
sidered as a possibility measure on Ω , since each δω ∈P can be identified with the
corresponding ω ∈Ω ).

The hierarchical model can also be interpreted as a fuzzy probability measure on
(Ω ,A ), in the sense that it is a fuzzy subset of the set of all probability measures
on (Ω ,A ), with membership function proportional to lik on P and constant equal
to 0 outside P . More generally, the uncertain knowledge about the value g(P) of a
function g : P → G is described by the induced possibility measure LR ◦ g−1 on G ;
that is, by the fuzzy subset of G with membership function likg. In particular, when
g : P → R, the uncertain knowledge about g(P) is described by a fuzzy number (that
is, a fuzzy subset of R). For example, g can associate to each probabilistic model P
the expectation g(P) = EP(X) of a random variable X , or the probability g(P) = P(A)
of an event A ∈ A : the membership function likg describes then the fuzzy expectation
of X , or the fuzzy probability of A, respectively. Sometimes a fuzzy number can be a
satisfactory conclusion about the value of g(P), but it is often necessary to evaluate the
fuzzy number by a single real number (such as the maximum likelihood estimate γ̂ML)
or by a couple of real numbers (such as the infimum and the supremum of a likelihood-
based confidence region {γ ∈ R : likg(γ) > α}). The discussion on how to evaluate
a fuzzy number by one or more real numbers goes beyond the scope of the present
paper, but see [2, Section 4.1] for some interesting results (to each evaluation method
corresponds a likelihood-based decision criterion).

Example 3. The prior fuzzy probability measure on (Ω ,A ) considered in Examples 1
and 2 is crisp, in the sense that its membership function on the set of all probability mea-
sures on (Ω ,A ) is crisp. In fact, the only prior (non-stochastic) uncertainty is about the
value of the probability of Xi = 1 conditional on X0 = 1 (with i ∈ {1, . . . ,100}), and the
only prior information about this value is that it lies in the interval [0.1, 0.6]. But the up-
dated fuzzy probability measure on (Ω ,A ) obtained after having observed the realiza-
tions of X1, . . . ,X100 is not crisp anymore: the fuzzy (conditional) probability of X0 = 0
has membership function likg (plotted in Figure 1). Hence, any reasonable evaluation
of the fuzzy (conditional) probability of X0 = 0 by a real number (such as the maximum
likelihood estimate γ̂ML ≈ 0.04 · 10−7, or the lower and upper evaluations 0.04 · 10−7

and 4.26 ·10−7 considered at the end of Example 2) would be approximately 0.

The hierarchical model offers a unified approach to the combination of probabilistic
and possibilistic uncertainty (in particular, fuzzy data would pose no problem). Since
membership functions and possibility distributions are interpreted as proportional to
likelihood functions, the rules for manipulating fuzzy probabilities are implied by the
well-established theories of probability and likelihood (the same holds for the approach
of De Cooman [4], which uses a different interpretation of possibility measures). By
contrast, approaches based on the arithmetic of fuzzy numbers (see for example [14, 1])
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face the problem of choosing and justifying such rules: the choice of a consistent way
of updating the fuzzy probability models in the light of data seems to be particularly
difficult.

4 Imprecise Probabilities

The mathematical representations of reality used in the classical and Bayesian ap-
proaches to statistics can be considered as special cases of the hierarchical model (see
[2, Section 3.2]). By contrast, the imprecise probability model cannot be considered
as a special case of the hierarchical model, because the updating rules are different.
The mathematical representation of reality used in the imprecise probability approach
to statistics can be described as a (convex) set P of probabilistic models, without in-
formation for discrimination between them. This corresponds to a hierarchical model
with constant likelihood function on P , but the imprecise probability model is usu-
ally updated by regular extension (see [15, Appendix J]): that is, by conditioning each
P ∈P on the observed data, without considering the information provided by the like-
lihood function on P . More precisely, when an event A ∈ A is observed, the set P
is updated to the set P ′ as in (1), but the constant likelihood function on P is not
updated: the likelihood function on P ′ is still constant; that is, the information in A for
discrimination between the elements of P is disregarded.

For instance, if the probabilistic models in P describe the opinions of a group of
Bayesian experts, then the updating by regular extension corresponds to update the
opinion of each expert without reconsidering her/his credibility, independently of how
bad her/his forecasts were when compared to the forecasts of the other experts. This is
not very reasonable, and in fact the updating by regular extension can lead to incon-
sistency, in the statistical sense of not tending to the correct conclusion, even when the
amount of information provided by the data tends to infinity.

Example 4. The set P of probabilistic models considered in Examples 1, 2, and 3 can
be interpreted as an imprecise probability measure on (Ω ,A ). If it is updated by reg-
ular extension, when the realizations of X1, . . . ,X100 are observed, then the resulting
imprecise probability measure is described by the set P ′. In particular, the resulting
uncertain knowledge about the (conditional) probability of X0 = 0 is described by the
lower and upper probabilities

inf
P′∈P ′P

′{X0 = 0} ≈ 4.26 ·10−9 and sup
P′∈P ′

P′{X0 = 0} ≈ 1−6.77 ·10−7.

That is, despite the overwhelming information in favor of X0 = 1 against X0 = 0,
almost complete ignorance about the (conditional) probabilities of X0 = 0 and X0 = 1
is obtained when the imprecise probability model is updated by regular extension (it is
important to note that these results do not change when P is replaced by its convex
hull). In fact, the resulting interval probability of X0 = 0 is the support {γ ∈ [0,1] :
likg(γ) > 0} of the membership function likg of the fuzzy (conditional) probability of
X0 = 0 (plotted in Figure 1): likg is extremely concentrated near 0, but this information
is disregarded when updating the imprecise probability model by regular extension (the
present example was proposed by Wilson [16]).
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The imprecise probability model can be seen as the crisp (and convex) case of the
fuzzy probability model, but in general the crispness of the fuzzy probability model
is lost when it is updated. Hence, from the point of view of the hierarchical model, the
regular extension forces the crispness of the updated model by disregarding a part of the
information provided by the data, and this can lead to statistical inconsistency. Many
authors (see for example [16, 12]) have replaced, in particular problems, the regular
extension with alternative updating rules making use of some information contained in
the likelihood function on P . But no alternative rule updating P to a subset of P ′
can assure the statistical consistency, because any discarded probabilistic model can
become the most plausible one in the light of new data.

5 Conclusion

Statistical inconsistency is a fundamental problem of the theory of imprecise proba-
bilities: a simple solution is to generalize imprecise probabilities to fuzzy probabilities,
and use the probabilistic-possibilistic hierarchical model presented in this paper. In fact,
fuzzy probabilities seem to be very intuitive: many authors (see for example [9, 4]) have
studied models similar to the hierarchical one to accommodate the fact that usually not
all the values in probability intervals are considered equally plausible.
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Abstract. By means of a logical condition between two partitions L and L ′ (“weak logical
independence”), we find connections between probabilities and possibilities. We show that the
upper envelope of the extensions of a probability on L is a possibility on the algebra generated
by L ′. Moreover we characterize the set of possibilities obtained as extensions of a coherent
probability on an arbitrary set: in particular, we find the two “extreme” (i.e., dominated and
dominating) possibilities.

Keywords: Probabilistic inference, Weakly logical independence, Uncertainty measures,
Coherence.

1 Introduction

The classic approaches to knowledge acquisition or decision processes start from a
knowledge–base able to settle once for all the set of objects ruling the inferential pro-
cess (states of nature, events, “rules”, functions measuring uncertainty, etc.), requiring
also further conditions (such as closure of the family of events with respect to Boolean
operations). In particular, for semantic reasons a framework of reference (probability
theory, Dempster-Shafer theory, possibility theory, default logic, fuzzy set theory and
so on) is usually chosen once for all. Actually, often we need to manage uncertainty
relative to a set of events while having information only for a different family of events.
In fact, making inference essentially means extending a structured information (carried,
for example, by a particular measure of uncertainty) to “new” events, and this is done
by taking into account only the logical relations among the events of the two given
families.

In general, in the extension processes, the enlargements can lead to uncertainty mea-
sures different from the initial ones. For instance, in [2] it has been proved that, if we
start from a (coherent) assessment P on a set L of pairwise incompatible events, and
consider any algebra of events A , then the lower [upper] envelope of the class of co-
herent probabilities extending P to L ∪A is a belief [plausibility] function. Vice versa,
for any belief function Bel on an algebra A , there exists a partition L and a relevant
probability P such that the lower bound of the class of probability extending P on A co-
incides with Bel (similarly for a plausibility function, and referring to the upper bound).
This result is independent of any logical relation between the partition L and that L ′

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 51–58, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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of atoms of A . Obviously, any logical constraint between the two partitions rules the
numerical values of the belief (or plausibility) function.

In [3] we proved that under suitable logical conditions between the partitions, the
upper envelope (i.e., plausibility) is a possibility and the lower envelope is a necessity.
Moreover, any possibility measure on an algebra A , can be obtained as an enlarge-
ment of a probability distribution on a partition satisfying the same logical condition.
This logical condition between the partitions is a suitable weakening of logical indepen-
dence (see Sect. 3). A particular case is that corresponding to the logical independence
of the two aforementioned partitions, in which we get a plausibility equal to 1 on A \ /0
for any P (which is also a noninformative possibility). These results are based on the
assumption that the initial information consists of a probability distribution on the ele-
ments of a partition of Ω . But this is not realistic in real problems, so we study what
happens starting from a (coherent) probability on an arbitrary set of events E and en-
larging this assessment to an other finite set E ′ : we need to handle a class of probability
P0 (all those consistent with the coherent assessment) on the partition C constituted by
the set of atoms generated by E . Clearly, for every distribution on P0, we obtain (as
lower and upper envelope of the relevant extension on E ′) a coherent belief function
and a plausibility respectively, and when C and C ′ are weakly logically independent
(C ′ is the set of atoms generated by E ′) we obtain a coherent necessity and a possi-
bility on E ′, respectively. Obviously, it is interesting to characterize the class of these
measures and in particular to study whether there is a minimum and a maximum ele-
ment: in general this characterization is not possible, since the upper [lower] envelope
of plausibilities [belief function] is not a plausibility [belief]. On the contrary, we prove
that a characterization is possible when C and C ′ are weakly logically independent,
obtaining a class of possibilities such that both its upper and lower envelopes Π∗ and
Π∗ are (respectively, the dominating and dominated) possibilities. This class contains
all the possibilities weakly comonotone with Π∗ and Π ∗ (equivalent results hold for
necessities).

These results contribute to the deepening of hybrid models involving probability,
plausibility and possibility, which have been studied in many papers, e.g. [7, 8, 9, 10,
11, 13]: our approach is essentially syntactic and emphasizes an inferential point of
view.

2 Coherent Assessments and Their Enlargements

The axioms defining an uncertainty measure strictly refer to the assumption that its
domain is a Boolean algebra. Then dealing with an arbitrary set of events requires to
characterize assessments which are coherent (or consistent) with a specific measure on
a Boolean algebra containing this set.

In probability theory it is well known the concept of coherence introduced by de
Finetti [6] through a betting scheme, or its dual version based on the solvability of a
linear system. An analogous notion of coherence for possibilities has been introduced
in [4].
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Definition 1. Let E = {E1, ...,En} be a finite set of events and denote by A the algebra
generated by E . An assessment ϕ on E is a coherent possibility [probability] if there
exists a possibility [probability] Φ defined on A extending ϕ (i.e. Φ|E = ϕ).

The so–called fundamental theorem of probability assures that, given a coherent assess-
ment P on an arbitrary finite family E , it can be extended (possibly not in a unique way)
to any set E ′ ⊃ E ; moreover, for each event E ∈ E ′ \E there exist two events E∗ and
E∗ (possibly E∗ = /0 and E∗ =Ω ) that are, respectively, the “maximum” and the “min-
imum” union of atoms Ar (generated by the initial family E ) such that E∗ ⊆ E ⊆ E∗ . If
E is logical dependent on E , then E∗ = E = E∗. Then, given the set {P̃} of all possible
extensions of P, coherent assessments of P̃(E) are all real numbers of a closed interval
[p∗, p∗], with

p∗ = inf P̃(E∗) = inf ∑r
Ar⊆E∗

P̃(Ar) , p∗ = sup P̃(E∗) = sup ∑r
Ar⊆E∗

P̃(Ar) . (1)

We proved in [4] for a possibility Π a similar result: coherence of a possibility as-
sessment assures its extendibility to new events, and for any new event the coherent
possibility values belong to an interval [π∗,π∗] with

π∗ = min

(
max

Ar⊆E∗
Π ′(Ar)

)
, π∗ = max

(
max

Ar⊆E∗
Π ′(Ar)

)
,

where {Π ′} is the set of all possible extensions of Π .
It is well known that by computing for some “new” events the relevant coherence

probability [possibility] intervals, not all the choices of values in these intervals lead
to “an overall” coherent probability [possibility]. In the probabilistic framework, if we
choose for any event the minimum [the maximum] value (which correspond essentially
to natural extension, see [14]), we obtain a lower [upper] probability. Furthermore, in
the possibilistic setting we get different results: in fact, the upper envelope of possibil-
ities is still a possibility [4], while the lower envelope of possibilities is not necessarily
a possibility.

3 Weakly Logically Independent Partitions

We recall that two partitions L ,L ′ of Ω are logically independent if for every Ei ∈L
and E ′j ∈L ′ one has Ei∧E ′ j �= /0 (or, equivalently,Ω =

∨
Ei∧E ′ j �= /0 Ei for any E ′ j ∈L ′).

In [3] we introduced the following “weaker” condition: for any E ′ j ∈L ′, denote by A j

the minimal (with respect to the inclusion) event logically dependent on L containing
E ′ j, that is

A j =
∨

Ei∧E ′ j �= /0

Ei .

(Obviously, A j is an element of the algebra A spanned by L ). Given L ,L ′, for any
E ′ j ∈L ′ we consider the corresponding A j ∈A .

Definition 2. The partition L ′ is weakly logically independent of the partition L (in
symbols, L ′⊥w L ) if, for any given E ′i ∈L ′, every other E ′k ∈L ′ (k �= i) satisfies al
leat one of the following conditions



54 G. Coletti, R. Scozzafava, and B. Vantaggi

- E ′k ⊆ Ai

- E ′k ∧E j �= /0 for any E j ⊆ Ai.

Clearly, if L ,L ′ are logically independent, then L ′⊥w L , but the vice versa does not
hold: let L = {E,Ec}, L ′ = {F,Fc} with F ⊂ E , then L ′⊥w L , but L ′ and L are
not logically independent. As proved in [3] the notion of weakly logically independent
partitions is symmetric (i.e. L ′⊥w L =⇒L⊥w L ′).

We recall now some properties of weakly logically independent partitions.

Proposition 1. Let L ,L ′ be two partitions ofΩ . If L ′⊥w L , then the following state-
ments hold:

1. for every E ′i,E ′ j ∈L ′, A j ⊆ Ai or Ai ⊆ A j;
2. there exists E ′i ∈L ′ such that E ′i∧E j �= /0 for any E j ∈L ;
3. if there exist E ′i ∈L ′ and E j ∈L such that E ′i ⊆ E j, then, for every E ′r ∈L ′, we

have E ′r ∧E j �= /0 .
4. there exists at most one Ek ∈L such that E ′i ⊆ Ek for some E ′i ∈L ′.

Proposition 1 easily implies that if L is a refinement of L ′, then L ′ �⊥w L .

Theorem 1. Let L = {E1, ...,Ei, ...,En} and L ′ = {E ′1, ...,E ′ j, ...,E ′m} be two parti-
tions of Ω . The following two conditions are equivalent:

1. L ′⊥w L ;
2. there exists a permutation of the indices 1, ...,m such that the corresponding events

A1, ...,A j, ...Am are completely ordered by inclusion.

4 Possibility as Enlargement of a Coherent Probability

In [2, 5] it has been proved that, if L ,L ′ are two partitions of Ω and A ′ the algebra
spanned by L ′, and P a probability distribution on L , then, considering the family P of
probabilities Pi extending P on L ∪A ′, the lower bound of P on A ′ is a belief function
(and the upper bound a plausibility function). Vice versa, for any belief function Bel on
an algebra A ′ there exists a partition of Ω and a relevant probability distribution such
that the lower bound of the class of probability extending P on A ′ coincides with Bel [2]
(similarly for a plausibility function). This result is independent of any logical relation
between the partition L and that of atoms of A ′. Obviously, the logical constraints rule
the numerical values of the belief (or plausibility) function.

In [3] we proved that if two partitions are weakly logically independent, then the
plausibility obtained as upper envelope of the class P is a possibility:

Theorem 2. Let L ,L ′ be two partitions of Ω and A ′ the algebra spanned by L ′. Let
P be a probability distribution on L and P the upper envelope of the class P = {P′}
of all the probabilities extending P onto L ∪A ′. If L ′⊥w L , then P is a possibility
measure on A ′.

This result is related to that given in [9]: any set of lower bounds on a nested class
A1, ...,Am induces an upper probability, that is a possibility. As shown in [3] a possibility
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can be obtained also when L ′ �⊥w L (but not if the probability distribution is strictly
positive).

Theorem 3 shows how weakly logically independent partitions rule the transition
from probability to possibility and also the other way round.

Theorem 3. Consider a possibility measure Π on an algebra A and let L be the set
of atoms of A . Then, there exists a partition L ′ and a probability distribution on L ′
such that:

1. L ′⊥w L ,
2. the upper envelope P of the class P = {P′} of all the probabilities extending P on

L ′ ∪A coincides on A with the possibility measure Π .

Remark 1. In [3] we proved that, given two logically independent partitions L and L ′,
the upper envelope of the extensions on L ∪A ′ of a probability P on L is a possibility
on A ′ and, for any A ∈A ′ \ /0, P(A) = 1. Thus, we get in this case the non informative
possibility independently of the initial probability distribution.

5 From a Coherent Probability to the Upper Possibility

All the results of the previous Section are based on the assumption that the initial infor-
mation is handled by a probability distribution on the elements of a partition ofΩ . Now
we start instead from a coherent probability on an arbitrary set of events E . Then, we
need to consider all the extensions on any other finite set E ′. Since coherence implies
the existence of a class P = {Pi} of probabilities on the set C of atoms generated by E ,
for any such probability distributions Pi ∈ P we have a plausibility [belief] as an upper
[lower] bound of the probabilities extending Pi in E ′; moreover if C⊥w C ′ (with C ′ the
set of atoms generated by E ′) for each Pi ∈ P we obtain a possibility.

In general it is not possible to characterize the set of plausibilities, since the upper
envelope of plausibilities is not a plausibility. In this Section we prove instead that,
when C⊥w C ′, we obtain a class of possibilities such that both their upper and lower
envelopes are possibilities (i.e., that dominating and that dominated by all other possi-
bilities, respectively).

Theorem 4. Let E ,E ′ be two finite sets of events and C ,C ′ the corresponding sets of
atoms generated by E and E ′. Moreover, let P be a coherent probability on E , and P
the set of coherent probability extensions of P on E ∪E ′. If C⊥w C ′, then the upper
envelope of P on E ′ is a coherent possibility.

Proof. The coherent probability P on E can be extended on E ∪C and let P = {P′} be
the set of all the coherent probability extensions of P on E ∪C . Since C is finite [12]
there exists a finite subset Pm of P such that

P(C) = sup
P′∈P

P′(C) = sup
P′∈Pm

P′(C)

for any C ∈ C . Since C⊥w C ′, the upper envelope of the extensions of a probability
P′ ∈ Pm is a possibility distribution on the algebra A ′ generated by C ′ by Theorem 2.
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Then, we can consider the finite set {Π} of possibilities on A ′ associated to Pm. The
upper envelope Π ∗ of {Π} is a possibility and then the restriction of Π ∗ on E ′ ⊆ A ′
is a coherent possibility. The coherent possibility Π ∗ on E ′ coincides with the upper
envelope of P on E ′, in fact for any E ∈ E ′

Π ∗(E)= supΠ(E)= sup
P′∈Pm

∑
Cr∧E �= /0

P′(Cr)= sup
P′∈P
∑

Cr∧E �= /0

P′(Cr)= P(E). ��

The coherent possibilityΠ ∗ of the above result is the less informative, in the sense that it
dominates any possibility arising in the enlargement procedure. Now, we are interested
also to look for the most informative one, in the sense that is dominated by any other
one.

Theorem 5. Let E ,E ′ be two finite sets of events, C ,C ′ the corresponding sets of atoms
generated by E and E ′ and A ,A ′ the algebras spanned by E ,E ′, respectively. Given
a coherent probability P on E , consider the lower envelope P of the set P = {P′} of
extensions of P on A and the function Π∗ defined on A ′ as follows: for any B ∈A ′

Π∗(B) = inf
A∈A :A⊇B

P(A).

If C⊥w C ′, then Π∗ is a coherent possibility on E ′. Moreover, the upper envelope Π1

on A ′ of the extensions of any P′ ∈ P dominatesΠ∗.

Proof. If C ′⊥w C , then by Theorem 1 there exists an ordering on the elements of C ′ =
{E ′1, ...,E ′m} such that Ai ⊆ Ai+1 for i = 1, ...,m−1. Hence, for any E ′i ∈ C ′ one has

Π∗(E ′i) = inf
A∈A :A⊇E ′i

P(A) = P(Ai).

In particular, since Am =Ω , it follows Π∗(E ′m) = 1. Consider any F =
∨

j∈J E ′ j: there
exists j ∈ J such that j < j for any j ∈ J (with j �= j), then A j ⊆ A j and so

Π∗(F) = inf
A∈A :A⊇F

P(A) = P(A j) = max
j∈J
{P(A j)}= max

E ′ i⊆F
Π∗(E ′i)

then Π∗ is a possibility on A ′ and so Π∗ on E ′ is a coherent possibility. Now, given
P′ ∈ P, since C ′⊥w C , by Theorem 2 the upper envelope Π1 of the extensions of P′
on A ′ is a possibility and for any F ∈ A ′, F =

∨
j∈J E ′ j, there exists j ∈ J such that

A j ⊆ A j for any j ∈ J, F ⊆ A j and

Π∗(F)= inf
A∈A :A⊇F

P(A) = P(A j)≤P′(A j)=Π1(F). ��

By the previous result we obtain a possibility Π∗ that is dominated by any possibil-
ity obtained as the upper envelope of the extensions of a coherent probability (on the
assumption that the two sets of atoms are weakly logically independent). Note that in
general the minimum of a set of possibilities is not a possibility, while in the case that
the possibilities are obtained through the inferential procedure shown in Section 4 their
infimum, that coincides with Π∗, is still a possibility. Then, for any F ∈A ′ we get two
(possibly coincident) values Π∗(F) and Π ∗(F). The following Theorem 6 shows that
any possibilityΠ weakly comonotone with (Π∗,Π ∗) can be obtained as the upper enve-
lope of the extensions of a coherent probability, where weakly monotonicity is defined
as follows:
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Definition 3. A possibility Π on A ′ is weakly comonotone with (Π∗,Π ∗) if Π∗(F)
≤Π(F)≤Π ∗(F) for any F ∈A ′ and for any pair of atoms E ′i,E ′ j ∈A ′ the following
conditions hold:

- if Π∗(E ′i) <Π∗(E ′ j) or Π ∗(E ′i) <Π ∗(E ′ j), then Π(E ′i)≤Π(E ′ j),
- if Π∗(E ′i) =Π∗(E ′ j) and Π ∗(E ′i) =Π ∗(E ′ j), then Π(E ′i) =Π(E ′ j).

Theorem 6. Let E ,E ′, C ,C ′, A ,A ′, P andΠ∗ as in Theorem 5 and consider the upper
envelope Π ∗ on A ′ of the coherent extensions of P. If C⊥w C ′, then Π∗ and Π ∗ are
possibilities on A ′. Moreover,Π∗ is dominated by Π ∗ and, for any coherent possibility
Π on A ′ weakly comonotone with (Π∗,Π ∗), there exists a coherent probability P on E
such that the upper envelope of the extensions of P on A ′ coincides with Π .

Proof. By Theorem 5 and by Theorem 4 the functionsΠ ∗ and Π ∗ are possibilities and
Π∗(F)≤Π ∗(F) for any F ∈A ′. Now, consider any possibility Π on A ′ satisfying the
conditions in the hypothesis. Let us assume (without loss of generality, see Proposition
1) that the partition C ′ = {E1, ...,Ek} is ordered in a way that for any i < j one has
Π(Ei) ≤ Π(E j) for any Ei,E j ∈ C ′. This order is compatible with that built starting
from Π∗ or Π ∗, then the partition C ′ = {F1, ...,Fm} is such that C ′⊥w L and consider-
ing E ′i,E ′ j ∈ C ′ if i < j, thenΠ(E ′i)≤Π(E ′ j), since the associated Ai and A j are such
that Ai ⊆ A j. Hence, there exists a probability on A such that P(Ai) ≤ P(A j) for any
i < j and P(A j) = Π(E ′ j)−Π(E ′ j−1) for any j = 1, ...,k by putting Π(E ′0) = Π( /0).
This probability on A generates Π through the inferential process. ��
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Non-well-Founded Probabilities on Streams

Andrew Schumann

Department of Philosophy and Science Methodology, Belarusian State University,
Minsk, Belarus

Abstract. In the paper we propose non-well-founded probabilities as a kind of fuzzy ones. They
are defined on the set of streams. We also show that the set of p-adic numbers can be understood as
a set of streams. In the set theory without the axiom of foundation, the powerset is not a Boolean
algebra in the general case. Therefore, if we tried to define probabilities on non-well-founded
data, i.e. on streams or p-adic numbers, then we couldn’t use the Kolmogorovian approach and
we should refer to non-Kolmogorovian models of probabilities. Probabilities on streams have a
lot of unexpected properties. For instance, p-adic probabilities may be negative rational numbers
as well as rational numbers that are larger than 1. Bayes’ formula doesn’t also hold in the general
case for non-well-founded probabilities.

1 Introduction

A non-well-founded (NWF) set theory belongs to axiomatic set theories that violate the
rule of well-foundedness and, as an example, allow sets to contain themselves: X ∈ X .

Recall that a relation R is called well-founded if for every set x there is no in-
finitely descending chain . . .Rx2Rx1Rx0 = x. The foundation axiom postulates that the
set-membership relation ∈ is well-founded: for every set x there exists no infinitely
descending chain · · · ∈ x2 ∈ x1 ∈ x0 = x. Evidently, the statement X ∈ X or X = {X}
doesn’t satisfy the foundation axiom.

In NWF set theories, the foundation axiom of Zermelo-Fraenkel set theory is re-
placed by axioms implying its negation. The theory of NWF sets has been explic-
itly applied in diverse fields such as logical modeling non-terminating computational
processes and behavior of interactive systems in computer science (process algebra,
coalgebra, logical programming based on coinduction and corecursion), linguistics
and natural language semantics (situation theory), logic (analysis of semantic para-
doxes). NWF sets have been also implicitly used in non-standard (more precisely, non-
Archimedean) analysis like infinitesimal and p-adic analysis.

Denying the foundation axiom in number systems implies setting the non-
Archimedean ordering structure. In this paper we consider probabilities on streams and
as well as on p-adic numbers and we show that these probabilities can be regarded only
as fuzzy ones, because for NWF mathematical objects, the powerset is not a Boolean
algebra in the general case. The conventional (Kolmogorov’s) probability theory is built
in the language of well-founded mathematics. It sets a framework of modern physics,
taking into account that physical reality is regarded in modern science as reality of sta-
ble repetitive phenomena (phenomena that have probabilities, i.e. do not fluctuate in the

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 59–65, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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standard real metric). The main corollary of our paper is that physical reality may be re-
garded as NWF in the framework of probabilities distributed on streams, in particular,
distributed on p-adic numbers.

2 Ordering Relations on Streams and p-adic Numbers

One of the most useful NWF mathematical object is a stream – a recursive data-type
of the form s = 〈a,s′〉, where s′ is another stream. The notion of stream calculus was
introduced by Escardó and Pavlović [4] as a means to do symbolic computation using
the coinduction principle instead of the induction one. Let A be any set. We define
the set Aω of all streams over A as Aω = {σ : {0,1,2, . . .} → A}. For a stream σ , we
call σ(0) the initial value of σ . We define the derivative σ(0) of a stream σ , for all
n ≥ 0, by σ ′(n) = σ(n + 1). For any n ≥ 0, σ(n) is called the n-th element of σ . It
can also be expressed in terms of higher-order stream derivatives, defined, for all k≥ 0,
by σ (0) = σ ; σ (k+1) = (σ (k))′. In this case the n-th element of a stream σ is given by
σ(n) = σ (n)(0). Also, the stream is understood as an infinite sequence of derivatives.
It will be denoted by an infinite sequence of values or by an infinite tuple: σ = σ(0) ::
σ(1) :: σ(2) :: · · · :: σ(n−1) :: σ (n), σ = 〈σ(0),σ(1),σ(2), . . . 〉.

Streams are defined by coinduction: two streams σ and τ in Aω are equal if they are
bisimilar: (i) σ(0) = τ(0) (they have the same initial value) and (ii) σ ′ = τ ′ (they have
the same differential equation). To set addition and multiplication by coinduction, we
should use the following facts about differentiation of sums and products by applying
the basic operations: (σ + τ)′ = σ ′+ τ ′, (σ × τ)′ = (|σ(0)| × τ ′) + (σ ′ × τ), where
|σ(0)|= 〈σ(0),0,0,0, . . .〉. Now we can define them and as well as one another stream
operation as follows:

We can embed the real numbers into the streams by defining the following constant
stream. Let r ∈ R. Then |r| = 〈r,0,0,0, . . .〉 is defined so: its differential equation is
|r|′ = [0], its initial value is |r|(0) = r. We are to rely on our intuitions that it would be
natural to define the positive real numbers to be less than the positive streams.

Consider the set of streams [0,1]ω and extend the standard order structure on [0,1]
to a partial order structure on [0,1]ω . Further define this order as follows:

O[0,1]ω (1) For any streams σ ,τ ∈ [0,1]ω , we set σ ≤ τ if σ(n)≤ τ(n) for every n∈N.
For any streams σ ,τ ∈ [0,1]ω , we set σ = τ if σ , τ are bisimilar. For any streams
σ ,τ ∈ [0,1]ω , we set σ < τ if σ(n)≤ τ(n) for every n ∈N and there exists n0 such
that σ(n0) �= τ(n0). (2) Each stream of the form |r| ∈ [0,1]ω (i.e. constant stream)
is less than inconstant stream σ .

Table 1. Coinductive definitions of sum, product and inverse

Differential equation Initial value Name

(σ + τ)′ = σ ′ + τ ′ (σ + τ)(0) = σ (0)+ τ(0) Sum
(σ × τ)′ = (|σ (0)|× τ ′)+(σ ′ × τ) (σ × τ)(0) = σ (0)× τ(0) Product
(σ−1)′ = |−1|× |σ (0)−1|×σ ′ ×σ−1 (σ−1)(0) = σ (0)−1 Inverse
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This ordering relation is not linear, but partial, because there exist streams σ ,τ ∈ [0,1]ω ,
which are incompatible.

Introduce two operations sup, inf in the partial order structure O[0,1]ω . Assume
that σ ,τ ∈ [0,1]ω are either both constant streams or both inconstant streams. Then
their supremum and infimum are defined by coinduction: the differential equation
of supremum is (sup(σ ,τ))′ = sup(σ ′,τ ′) and its initial value is (sup(σ ,τ))(0) =
sup(σ(0),τ(0)), the differential equation of infimum is (inf(σ ,τ))′ = inf(σ ′,τ ′) and
its initial value is (inf(σ ,τ))(0) = inf(σ(0),τ(0)). Suppose now that one and only one
of σ ,τ ∈ [0,1]ω is constant, then an inconstant stream is greater than a constant one,
therefore their supremum gives an inconstant stream, but their infimum gives a constant
stream.

According to O[0,1]ω , there exist the maximal stream [1] ∈ [0,1]ω and the minimal
stream [0] = |0| ∈ [0,1]ω .

In 1897 the German mathematician Kurt Hensel presented an idea how to use an
analogy of Taylor and Laurent series to study algebraic numbers by expressing them as
an expansion in terms of powers of a prime number. He was mainly inspired by the work
of Kummer. This approach by Hensel led him to introduce the p-adic numbers. There
are many books which give a good introduction to the p-adic theory, see for instance
Koblitz [3].

It can be easily shown that p-adic numbers may be represented as potentially infinite
data structures such as streams. Each stream of the form σ = σ(0) ::σ(1) :: σ(2) :: · · · ::
σ(n−1) :: σ (n), where σ(n) ∈ {0,1, . . . , p−1} for every n ∈ N, may be converted into
a p-adic integer by the following rule:

∀n ∈ N, σ(n) =
n

∑
k=0

σ(k) · pk∧σ(n) = σ(0) :: σ(1) :: · · · :: σ(n). (1)

And vice versa, each p-dic integer may be converted into a stream taking rule (1). Such
a stream is called p-adic.

Extend rule (1) as follows. Suppose that we have a stream of the form σ = σ(0) ::
σ(1) :: σ(2) :: · · · :: σ(n− 1) :: σ (n), where σ(n) ≥ 0 for every n ∈ N. Then its p-adic
representation is

∀n ∈N,σ(n) =
m

∑
k=0

τ(k) · pk ∧σ(n) = τ(0) :: τ(1) :: · · · :: τ(m), (2)

where τ(i) ∈ {0,1, . . . , p−1} for every i = 1,m and ∑m
k=0 τ(k) · pk =∑n

k=0σ(k) · pk. (In
the case σ(i) ∈ {0,1, . . . , p−1} for every i = 1,n, we have n = m and then σ(i) = τ(i)
for every i = 1,n.) Such a stream is called p-adic too. Its canonical form is τ(0) :: τ(1) ::
· · · :: τ(m) :: τ(m+1), where τ(n) ∈ {0,1, . . . , p−1} for every n ∈ N.

Using (1), (2), we can show that sum, product and inverse have the same differential
equations and initial values as in stream calculus. This proves that p-adic numbers are
one of the natural interpretations of streams.

It is easily shown that the set Aω of all p-adic streams includes the set of natural
numbers. Let n be a natural number. It has a finite p-adic expantion n = ∑m

k=0αk · pk.
Then we can identify n with a p-adic stream σ = σ(0) :: σ(1) :: · · · :: σ(m) :: σ (m+1),
where σ(i) = αi for i = 0,m and σ (m+1) = [0].
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Extend the standard order structure on N to a partial order structure on p-adic streams
(i.e. on Zp).

1. For any p-adic streams σ , τ ∈ N we have σ ≤ τ in N iff σ ≤ τ in Zp,
2. Each p-adic stream σ = σ(0) :: σ(1) :: · · · :: σ(m) :: σ (m+1), where σ (m+1) = [0]

(i.e. each finite natural number), is less than any infinite number τ , i.e. σ < τ for
any σ ∈ N and τ ∈ Zp\N.

Define this partial order structure on Zp as follows:

OZp Let σ = σ(0) :: σ(1) :: · · · :: σ(n−1) :: σ (n) and τ = τ(0) :: τ(1) :: · · · :: τ(n−1) ::

τ(n) be p-adic streams. (1) We set σ < τ if the following three conditions hold: (i)
there exists n such that σ(n) < τ(n); (ii) σ(k)≤ τ(k) for all k > n; (iii) σ is a finite
integer, i.e. there exists m such that σ (m) = [0]. (2) We set σ = τ if σ and τ are
bisimilar. (3) Suppose that σ , τ are infinite integers. We set σ ≤ τ by coinduction:
σ ≤ τ iff σ(n) ≤ τ(n) for every n ∈ N. We set σ < τ if we have σ ≤ τ and there
exists n0 ∈ N such that σ(n0) < τ(n0).

Now introduce two operations sup, inf in the partial order structure on Zp. Suppose
that p-adic streams σ , τ represent infinite p-adic integers. Then their sup and inf
may be defined by coinduction as follows: the differential equation of supremum is
(sup(σ ,τ))′ = sup(σ ′,τ ′) and its initial value is (sup(σ ,τ))(0) = sup(σ(0),τ(0)), the
differential equation of infimum is (inf(σ ,τ))′ = inf(σ ′,τ ′) and its initial value is
(inf(σ ,τ))(0) = inf(σ(0),τ(0)). Now suppose that at most one of two streams σ , τ
represents a finite p-adic integer. In this case sup(σ ,τ) = τ if and only if σ ≤ τ under
condition OZp and inf(σ ,τ) = σ if and only if σ ≤ τ under condition OZp .

It is important to remark that there exists the maximal p-adic stream Nmax ∈Zp under
condition OZp . It is easy to see: Nmax = [p−1] =−1 = (p−1)+(p−1) · p+ . . .+(p−
1) · pk + . . .

3 Non-well-Founded Probabilities

There is a problem how it is possible to define probabilities on stream structures if
we have no opportunity to put them on an algebra of subsets, taking into account the
following result:

Proposition 1. Define union, intersection and complement in the standard way. The
powerset P(Aω), where Aω is the set of all streams over A, is not a Boolean algebra.

Proof. Consider a counterexample on 7-adic streams. Let A1 = {x : 0 ≤ x ≤
. . .11234321} and A2 = {x : . . .66532345 ≤ x ≤ . . .66666} be subsets of Z7. It
is readily seen that ¬(A1 ∩ A2) = Z7, but (¬A1 ∪ ¬A2) ⊂ Z7, because ¬A1 =
{x : . . .11234321 < x ≤ . . .66666} and ¬A2 = {x : 0 ≤ x < .. .66532345}, therefore
Z7 \ (¬A1 ∪¬A2) = A3 = {x : x = . . .y5y43y2y1y0, where yi ∈ {0,1, . . . ,6} for each
i ∈ N\{3}}. It is obvious that the set A3 is infinite. As a result, we obtain that
¬(A1∩A2) �= ¬A1∪¬A2 in the general case. ��
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This proposition is a particular case of the following provable statement: if A is a NWF
set, then its powerset will not be a Boolean algebra in the general case.

In stream calculus and p-adic calculus we have, evidently, a different partial order-
ing relation and obtain different powersets P [0,1]ω (Aω), PZp(Aω), but in any case
there is no Boolean algebra, because the complement in them is not Boolean. The pow-
ersets P [0,1]ω (Aω), PZp(Aω) should be interpreted as a corresponding class FV (Aω )
of fuzzy subsets Y ⊂ Aω , where V is equal one of sets [0,1]ω , Zp.

We can try to get NWF probabilities on a NWF algebra FV (Aω) of fuzzy subsets
Y ⊂ Aω that consists of the following: (1) union, intersection, and difference of two
NWF fuzzy subsets of Aω ; (2) /0 and Aω . In this case a finitely additive NWF probability
measure is a nonnegative set function P(·) defined for sets Y ∈FV (Aω) that runs the
set V and satisfies the following properties: (1) P(A) ≥ [0] for all A ∈ FV (Aω), (2)
P(Aω) = |1| and P( /0) = [0], (3) if A ∈ FV (Aω ) and B ∈ FV (Aω ) are disjoint, then
P(A∪B) = P(A)+ P(B), (4) P(¬A) = |1|+ |−1|×P(A) for all A ∈FV (Aω).

This probability measure is called NWF probability. Their main originality is that
conditions (3), (4) are independent. As a result, in a probability space 〈X ,FV (X),P〉
some Bayes’ formulas do not hold in the general case.

As an example of trivial NWF probability we can introduce the following function
defined on streams by coinduction: (1) P(σ) = inf(σ , [1])× [1]−1 for every σ ∈ [0,1]ω ,
(2) P(σ) = inf(σ ,Nmax)×N−1

max for every σ ∈ Zp.
Consider a random experiment S and by L = {s1, . . . ,sm} denote the set of all pos-

sible results of this experiment. The set S is called the label set, or the set of attributes.
Suppose there are N realizations of S and write a result x j after each realization. Then
we obtain the finite sample: x = (x1, . . . ,xN),x j ∈ L. A collective is an infinite ideal-
ization of this finite sample: x = (x1, . . . ,xN , . . .),x j ∈ L. Let us compute frequencies
νN(α;x) = nN(α;x)/N, where nN(α;x) is the number of realizations of the attribute α
in the first N tests.

There exists the statistical stabilization of relative frequencies: the frequency
νN(α;x) approaches a limit as N approaches infinity for every label α ∈ L. This limit
P(α) = limνN(α;x) is said to be the probability of the label α in the frequency theory
of probability. Sometimes this probability is denoted by Px(α) to show a dependence
on the collective x. Notice that the limits of relative frequencies have to be stable with
respect to a place selection (a choice of a subsequence) in the collective.

The statistical stabilization of relative frequencies νN(α;x) can be considered not
only in the real topology on the field of rational numbers Q but also in any other topol-
ogy on Q. For instance, it is possible to construct the frequency theory in which prob-
abilities were defined as limits of relative frequencies νN(α;x) in the p-adic topology.
The frequency theory of p-adic probability was proposed in [2]. It is a kind of NWF
probability.

Since stream calculus and as well as p-adic calculus contain infinitely large numbers,
they give the possibility to consider statistical ensembles with an infinite number of
elements.

Define a NWF operation of cardinality / ·/ as follows: suppose X ⊆ Aω and K(·) is
the conventional operation of cardinality. Represent X by a Cartesian product∏∞j=0 Xj,
where X0 is the set of all values of the form σ(0) belonging to all streams of X , X1 is the
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set of all values of the form σ(1) belonging to all streams of X , etc. Then /X/ is defined
by coinduction: its initial value is K(X0), its differential equation is (/X/)′= /X ′/. The
informal meaning of NWF operation of cardinality is that we obtain an infinite sequence
of conventional cardinalities K(X0), K(X1), . . . , K(Xm), . . . that coinductively calculates
not the number of streams from X but the number of their possible values at every step.
It is evident, therefore, that the values of / ·/ are streams.

We study now some ensembles S = SN , which have a NWF volume N, i.e. /S/ = N,
where N is the stream of [0,1]ω or Zp. Consider a sequence of ensembles S j having
volumes K(S j), j = 0,1, . . . Get S = ∏∞j=0 S j. Then the cardinality /S/ = N. We may
imagine an ensemble S as being the population of a tower T = TS, which has an infinite
number of floors with the following distribution of population through floors: popula-
tion of j-th floor is S j. Set Tk = ∏k

j=0 S j×∏∞m=k+1 /0m. This is population of the first
k + 1 floors. Let A⊂ S and let there exists: n(A) = lim

k→∞
nk(A), where nk(A) = /A∩Tk/.

The quantity n(A) is said to be a NWF volume of the set A.
We define the probability of A by the standard proportional relation:

P(A) := PS(A) = n(A)×N−1,

where /S/ = N, n(A) = /A∩S/.
We denote the family of all A⊂ S, for which P(A) exists, by GS. The sets A ∈ GS are

said to be events. The ordered system 〈S,GS,PS〉 is called a NWF ensemble probability
space for the ensemble S.

Proposition 2. Let F be the NWF algebra of fuzzy subsets. Then F ⊆ GS.

Proof. Let A be a set of streams. Then n(A) = /A/ and the probability of A has the
form: P(A) = /A/×/S/−1.

For instance, let B = ¬A. Then /B∩ Tk/ = /Tk/ + | − 1| × /A∩ Tk/. Hence there
exists lim

k→∞
/B∩ Tk/ = N + | − 1| × /A/. This equality implies the standard formula:

P(¬A) = |1|+ |−1|×P(A).
In particular, we have: P(S) = |1|. ��

Proposition 3. Let A1,A2 ∈ GS and A1∩A2 = /0. Then A1∪A2 ∈ GS and P(A1∪A2) =
P(A1)+ P(A2).

Proposition 4. Let A∈ GS, PS(A) �= 0 and B∈ GA. Then B∈ GS and the following Bayes
formula holds:

PA(B) = PS(B/A) = PS(B)×PS(A)−1.

Proposition 5. Let N ∈ Zp, N �= 0 and let the ensemble S−1 have the p-adic volume
−1 = Nmax (it is the largest ensemble, because Nmax is the largest p-adic integer in
accordance with OZp ).

1. Then SN ∈ GS−1 and PS−1(SN) = /SN/×/S−1/
−1 =−N.

2. Then GSN ⊂ GS−1 and probabilities PSN (A) are calculated as conditional proba-
bilities with respect to the subensemble SN of ensemble S−1: PSN (A) = PS−1(

A
SN

)
= PS−1(A)×PS−1(SN)−1,A ∈ GSN .
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If we take the p-adic case of NWF probability theory, then we observe essentially new
properties of relative frequencies that do not appear on real numbers. For example,
consider two attributes α1 and α2. Suppose that in the first N := Nk = (∑k

j=0 2 j)2 tests

the label α1 has nN(α1;x) = 2k realizations, α2 has nN(α2;x) = ∑k
j=0 2 j realizations.

According to our intuition, their probabilities should be different, but in real probability
theory we obtain: Px(α1) = limnN(α1;x)/N = Px(α2) = limnN(α2;x)/N = 0. In 2-adic
probability theory we have Px(α1) = 0 �= Px(α2) = −1, because in Q2, 2k → 0, k→ 0,
and −1 = 1 + 2 + 22 + · · ·+ 2n + . . .

This example shows that in p-adic probability theory there are statistical phenomena
for that relative sequences of observed events have non-zero probabilities in the p-adic
metric, but do not have positive probabilities in the standard real metric.

4 Conclusion

Real probabilities are obtained as a result of a limiting process for rational frequencies
in real topology by means of the law of large numbers. Using these probabilities we
accept only well-founded phenomena. But we can introduce other forms of stability in
physical experiments, namely p-adic forms [2], because besides the usual real topology,
there exist only the p-adic topologies p = 2,3,5, . . . (for more details see [3]). The
main reason is that p-adic numbers are, in fact, a unique alternative to real numbers:
there is no other possibility to complete the field of rational numbers and obtain a new
number field (Ostrovski’s theorem, see, for example, [3]). In p-adic physics and in p-
adic probability theory we assume that reality is NWF. Since statistical stabilization (the
limiting process) can be considered not only in the real topology on the field of rational
numbers Q but also in p-adic topologies on Q, we see that reality can be considered as
NWF too.
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Relating Epistemic Irrelevance to Event Trees

Sébastien Destercke1 and Gert de Cooman2

1 Institut de Radioprotection et de Sureté Nucléaire (IRSN), Cadarache, France
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Abstract. We relate the epistemic irrelevance in Walley’s behavioural theory of imprecise
probabilities to the event-tree independence due to Shafer. In particular, we show that forward
irrelevance is equivalent to event-tree independence in particular event trees, suitably generalised
to allow for the fact that imprecise rather than precise probability models are attached to the
nodes in the tree. This allows us to argue that in a theory of uncertain processes, the asymmetrical
notion of epistemic irrelevance has a more important role to play than its more involved and
symmetrical counterpart called epistemic independence.

Keywords: Independence, Forward irrelevance, Event trees, Stochastic process.

1 Introduction

Assessments of independence between variables are very important and useful in mod-
elling uncertainty, as they allow for a reduction of complexity in many problems (e.g.,
in building joint models from marginal information, making statistical inferences, etc.).
Here, we are interested in the case where beliefs are modelled by lower and upper ex-
pectations for random variables or, equivalently [13], by closed convex sets of (finitely
additive) probabilities, also called credal sets [2, 3, 8]. In this imprecise probabilities
setting, there are many different notions of irrelevance and independence, each with a
different interpretation, but which generally coincide for models involving only precise
probabilities, i.e., classical Bayesian belief models; see Couso et al. [1] for a review.
Starting from given imprecise marginals, these different types of irrelevance and inde-
pendence assessments will generally lead to different joint belief models, whereas they
all lead to the classical independent product when marginal beliefs are modelled by
precise, or Bayesian, probabilities. A discussion of this phenomenon can also be found
in De Cooman and Miranda [6].

As far as we know, there are currently two important approaches to probability theory
that involve lower and upper expectations (also called previsions or prices, depending
on the interpretation): Walley’s [13] behavioural approach, and Shafer and Vovk’s [12]
game-theoretic framework, where event trees play a central role. De Cooman and Her-
mans [4, 5] have shown that these two approaches can be related to each other, and they
have introduced imprecise probability trees as a bridge between them. By showing that
many results can be imported from one theory into the other, they make some progress
towards a more unified handling of uncertainty.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 66–73, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Here, we take one more step towards such a unification, by studying, in Sect. 5, how
Walley’s epistemic irrelevance [13, Chap. 9] can be related to the notion of event-tree
independence that is central in Shafer’s discussion of causal reasoning [11]. We discuss
the relevance of our findings in the Conclusions, where we also argue why in a theory
of uncertain processes, (forward) epistemic irrelevance may be more useful than its
symmetrical counterpart, epistemic independence. But let us first recall the basic ideas
behind Walley’s behavioural theory of coherent lower previsions [13] (Sect. 2), Shafer’s
event and probability trees [11] (Sect. 3), and the imprecise probability trees that form
the connection between them [4, 5] (Sect. 4).

2 Coherent Lower and Upper Previsions

In Walley’s theory, beliefs held by a subject about the actual value of a random variable
X on a finite1 space X are modelled by coherent lower and upper previsions. We call
gamble a real-valued function f on X , and denote by L (X ) the set of all gambles on
X . f (X) is interpreted as an uncertain reward. A lower prevision P is a real-valued map
defined on some subset K of L (X ). Its conjugate upper prevision P is then defined
on the set of gambles−K := {− f : f ∈K } by P( f ) :=−P(− f ). P( f ) is interpreted
as the subject’s supremum buying price for the uncertain reward f (X), i.e., the smallest
price s such that the subject accepts to buy f (X) for any price μ < s, meaning he accepts
the uncertain transaction f (X)− μ . Given an event A⊆X , its lower probability P(A)
is the lower prevision of its indicator IA, a gamble that assumes the value one on A
and zero elsewhere. The upper probability P(A) is defined likewise in terms of the
upper prevision P(IA). With a lower prevision P we can associate a closed convex set
of (dominating) probability mass functions: M (P) := {p ∈ ΣX : (∀ f ∈K )(Ep( f ) ≥
P( f )}, where ΣX is the set (simplex) of all probability mass functions on X , and
Ep( f ) :=∑x∈X f (x)p(x). We call M (P) the credal set induced by P. A lower prevision
P is said to be coherent if and only if M (P) �= /0 and P( f ) = min{Ep( f ) : p ∈M (P)}
for all f in K , i.e., if P is the lower envelope of M (P).

3 Event Trees

An event tree is composed of situations linked together, and it represents what rele-
vant events may possibly happen in what particular order in the world, according to a
particular subject. It is formally equivalent to a rooted tree in graph theory. We restrict
ourselves to trees with finite depth and width. The notions we are about to introduce
are illustrated in Fig. 1. A situation is a node in the tree. The initial situation is the root
of the tree. A terminal situation is a leaf of the tree; all other situations, including the
initial one, are called non-terminal. A path is a sequence of situations from the initial to
a terminal situation. A path goes through a situation s if s belongs to it. The set Ω of all
possible paths, or equivalently, of all terminal situations, is called the sample space. Any
set of terminal situations is an event. Situations immediately following a non-terminal

1 To make this discussion as simple as possible, we restrict ourselves to finite spaces throughout,
but it is straightforward to extend our results to infinite spaces.
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t

u1

u2

u3

u4

ω

U

Fig. 1. Event tree with non-terminal situations (grey), terminal situations (black), and root �.
U = {u1, . . . ,u4} is a cut, t < u1 and d(t) = {u1,u2}. Also, u4 and t are disjoint, but not u4
and ω .

situation s are called daughters of s, and the set of such daughters is denoted by d(s).
The link between a situation s and one of its daughters t is called a move from s to t.
If a situation s is before a situation t in the tree, we say that s strictly precedes t, and
denote this as s < t; and if a situation s is before or equal to a situation t, we say that
s precedes t, and denote this as s ≤ t. Two situations are called disjoint if there is no
path they both belong to. A cut is a set of disjoint situations, such that every path goes
through exactly one situation in the cut. If each situation in a cut V (strictly) precedes
some situation in another cut U , then V is said to (strictly) precede U , and we denote
this as V ≤U (V < U).

4 Imprecise Probability Trees

Branching probabilities ps for a non-terminal situation s are non-negative numbers sum-
ming up to one, each of them attached to a different move originating in s: we denote by
ps(t) the probability to go from s to its daughter t; ps is a probability mass function on
d(s). A (precise) probability tree is an event tree for which every non-terminal situation
has such branching probabilities.

An imprecise probability tree2 is an event tree for which each non-terminal situa-
tion s has a closed convex set Ms of branching probabilities ps, describing a subject’s
uncertainty about which move is going to be observed just after s. With an imprecise
probability tree, we can associate coherent lower previsions. First of all, for any non-
terminal situation s, and for any gamble h on d(s), we can consider the lower prevision
Ps(h) = min{Eps(h) : ps ∈Ms}. Ps and Ms are equivalent local predictive models for
what is going to be observed immediately after s. But we can also consider global pre-
dictive models: Let f be a gamble on the set of paths Ω . For every situation t, we
consider the lower prevision P( f |t) conditional on t: the subject’s supremum buying
price for f , given that the actual path goes through t.

The global models P(·|t) can be calculated from the local Ps by backwards re-
cursion, using the Concatenation Formula [4, 5]: for any given situation t, P( f |t) =
Pt(P( f |d(t))), where P( f |d(t)) is the gamble on d(t) that assumes the value P( f |s) in
each s ∈ d(t); and for a terminal situation ω ∈Ω , we have P( f |ω) = f (ω).

Example 1. Let us illustrate this with the successive flipping of two coins. In the corre-
sponding event tree:

2 Shafer [11, Chap. 12] uses the term ‘martingale tree’.
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p?,?(h,?)∈[1/4,3/4]
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the labels for the situations are explicit, e.g., h,? means that the first coin has landed
‘heads’, and the second still has to be flipped. As indicated on the edges of the tree,
the subject’s beliefs about the first coin are modelled by the imprecise probability as-
signments p(h) ∈ [1/4,3/4] and p(t) ∈ [1/4,3/4]. If it lands ‘heads’, we keep the same
coin, otherwise the second flip is made with a fair coin (p(h) = p(t) = 1/2). We have
also indicated the different steps in the calculation of the lower and upper probability
of getting ‘heads’ at least once, using the Concatenation Formula.

5 Forward Irrelevance in Event Trees

Let us briefly recall the notion of forward irrelevance, discussed in detail by De Cooman
and Miranda [6], before relating it to independence in event trees.

For two random variables X1 and X2, if a subject says that X1 is epistemically ir-
relevant to X2, this means that he assesses that learning the actual value of X1 won’t
change his beliefs about the value of X2. For imprecise probability models, this notion
is asymmetric: the epistemic irrelevance of X1 to X2 is not generally equivalent to the
epistemic irrelevance of X2 to X1 [1, 6].

Assume that the uncertainty bears on random variables X1, . . . , XN that assume
values in the respective finite sets X1, . . . , XN . For 1 ≤ k ≤ � ≤ N, we denote by
X�:k := ×k

i=�Xi the Cartesian product of the k− � + 1 sets X�, . . . , Xk, and by
X�:k := (X�, . . . ,Xk) the associated joint random variable taking values in X�:k. Simi-
larly, x�:k := (x�, . . . ,xk) ∈X�:k denotes a generic value of X�:k. The random variables
X1, . . . ,XN are assumed to be logically independent, meaning that X�:k can assume all
values in X�:k, for all 1 ≤ � ≤ k ≤ N. A gamble f defined on X1:N is called X�:k-
measurable if f (x1:N) = f (y1:N) for all x1:N and y1:N in X1:N such that x�:k = y�:k. We
denote by L (X�:k) the set of all X�:k-measurable gambles, and by f�:k a generic gam-
ble in this set. Of course, we identify the index ‘k : k’ with ‘k’.

An important problem is how to build joint belief models from partial ones. Let us
consider the specific example where the Xk constitute a stochastic process with time
variable k, implying in particular that the subject knows in advance that the value of
random variable X� will be revealed to him before that of X�+1, where � = 1,2, . . . ,N−1.
This leads to a special event tree (also called a standard tree [11, Chap. 2]) where the
nodes s have the general form x1:k ∈X1:k, k = 0, . . . ,N. For k = 0 there is some abuse of
notation, as we let X1:0 := {�} and x1:0 := �. The sets X1:k constitute special cuts of
the tree, where the value of Xk is revealed. We have X1:1 < X1:2 < · · ·< X1:N , and this
sequence of cuts is also called a standard filter [11, Chap. 2]. It is clear that d(x1:k) =
{x1:k}×Xk+1 for k = 0,1, . . . ,N−1. The sample space of such a tree isΩ = X1:N , and
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with the variable Xk there corresponds a set L (Xk) of Xk-measurable gambles on this
sample space. For instance, in the standard tree of Example 1, gambles characterising
the second coin flip are such that f (t,h) = f (h,h) and f (t, t) = f (h, t). Below, we see
the first two cuts of another standard tree, with X1 = {a,b} and X2 = {α,β ,γ}.

a b

(a,α) (a,β ) (a,γ) (b,α) (b,β ) (b,γ)

X1

X1:2

A natural way to specify partial beliefs consists in attaching, as explained in the pre-
vious section, to each of the non-terminal nodes x1:k a (coherent) local predictive lower
prevision Px1:k

on L (d(x1:k)), i.e., on L (Xk+1), where k = 0,1, . . . ,N−1. This repre-
sents a subject’s beliefs about the value of Xk+1 given that the k previous variables X1:k

assume the values x1:k. For standard imprecise probability trees, the Concatenation For-
mula given above for deriving the global lower previsions P(·|x1:�) on L (X1:N) from
the local models Px1:k

completely coincides with the formulae for Marginal Extension,
derived by Miranda and De Cooman [9].

A subject may make an assessment of forward irrelevance, meaning that for 1≤ k≤
N−1, his beliefs about the ‘future’ random variable Xk+1 won’t be changed by learning
new information about the values of the ’past’ random variables X1:k: the past random
variables X1, . . . , Xk are epistemically irrelevant to the future random variable Xk+1, for
1≤ k≤ N−1. This is expressed by the following condition involving the local models:
for all 0≤ k ≤ N−1, any gamble fk+1 in L (Xk+1), and all x1:k in X1:k:

Px1:k
( fk+1) = Pk+1( fk+1), (1)

where Pk+1 is the so-called marginal lower prevision on L (Xk+1), which expresses
the subject’s beliefs about the value of Xk+1, irrespective of the values assumed by
the other random variables. Invoking the Concatenation Formula now leads to a very
specific way of combining the marginal lower previsions P1, . . . , PN into a joint lower
prevision, reflecting the assessment of forward irrelevance. This joint lower prevision,
called the forward irrelevant product, is studied in detail by De Cooman and Miranda
[6], who also use it to prove very general laws of large numbers [7].

We now proceed to show that forward irrelevance is exactly the same thing as
Shafer’s notion of event-tree independence, when applied to standard imprecise proba-
bility trees. In Shafer’s [11] terminology, a situation s influences a variable X if there
is at least one situation t ∈ d(s) such that the subject’s beliefs about the value of X are
modified when moving from s to t; for imprecise probability trees, this means that there
should be at least one gamble f whose value depends on the outcome of X for which
P( f |s) �= P( f |t). Two variables X and Y are called event-tree independent if there is no
situation that influences both of them.

In a standard imprecise probability tree, a situation x1:k influences a variable Xm if
there is at least one situation x1:k+1 in d(x1:k) and at least one gamble fm on Xm such
that P( fm|x1:k) �= P( fm|x1:k+1). The only situations x1:k that can influence Xm are such
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that k < m, since in all other situations, the value of Xm has already been revealed ‘for
some time’. In addition, it is easy to check that Xm is always influenced by any situation
x1:m−1 in the cut X1:m−1 right before the value of Xm is revealed.

Theorem 1. Let X1, . . . , XN be N random variables. Then there is forward irrelevance,
or in other words, the random variables X1:k are epistemically irrelevant to Xk+1 for
1≤ k≤N−1 if and only if the random variables X1, . . . , XN are event-tree independent
in the corresponding standard imprecise probability tree.

Proof. We deal with the ‘only if’ part first. Suppose the random variables X1:N are
forward irrelevant. Consider any Xk and fk ∈L (Xk), where 1≤ k≤N. Then it follows
from the forward irrelevance condition (1) and the Concatenation Formula that Pk( fk)=
Px1:k−1

( fk) = P( fk|x1:k−1) for all x1:k−1 in X1:k−1. Applying the Concatenation Formula
again leads to P( fk|x1:k−2) = Px1:k−2

(P( fk|x1:k−2, ·)) = Px1:k−2
(Pk( fk)) = Pk( fk), and if

we continue the backwards recursion, we see that

Pk( fk) = P( fk|x1:k−1) = P( fk|x1:k−2) = · · ·= P( fk|x1:2) = P( fk|x1) = P( fk|�).

This implies that the only situations that (may) influence Xk are the ones in the cut
X1:k−1 immediately before Xk is revealed. Therefore, no situation can influence more
than one variable, and there is event-tree independence.

Next, we turn to the ‘if’ part. Assume that all variables are event-tree independent in
the standard tree. This implies that no variable Xk can be influenced by a situation x1:�
corresponding to a time � < k− 1 [If Xk were influenced by such a situation, then we
know that this situation also always influences X�+1, and �+1 < k, a contradiction]. So
for all x1:k−1 ∈X1:k−1 and all fk ∈L (Xk):

P( fk|x1:k−1) = P( fk|x1:k−2) = · · ·= P( fk|x1:2) = P( fk|x1) = P( fk|�).

Now of course P( fk|�) = P( fk) = Pk( fk), where Pk is the marginal lower prevision for
Xk, and it follows from the Concatenation Formula that P( fk|x1:k−1) = Px1:k−1

( fk). This
shows that (1) is satisfied, so there is forward irrelevance. ��

6 Conclusions

What is the message we want to convey in this paper? In the theory of coherent lower
previsions [13], there are essentially two behavioural notions that generalise classi-
cal independence:3 epistemic irrelevance and the derived notion of epistemic indepen-
dence. Assessing that two random variables X1 and X2 are epistemically independent
amounts to assessing that (i) X1 is epistemically irrelevant to X2, meaning that getting
to know the value of X1 doesn’t change our subject’s beliefs about X2; and (ii) X2 is
epistemically irrelevant to X1.

Suppose we want to consider a theory of uncertain processes where probabilities
aren’t necessarily precise. What will be the most useful or meaningful counterpart of the

3 There are other generalisations, such as strong independence [1], but these have a sensitivity
analysis interpretation, rather than a behavioural one; see also [13, Chap. 9]. Our comments
below don’t bear on such other types of independence.
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important notion of independence in the classical theory of random processes? There
are a number of reasons for preferring the asymmetric notion of epistemic irrelevance,
and its generalisation to many variables, called forward irrelevance, to that of epistemic
independence. We begin with arguments of perhaps less importance, and then go on to
present the most compelling one.

First of all, when a notion that is (more or less) automatically symmetrical, breaks
apart into two asymmetrical counterparts when using a more powerful language, sym-
metry becomes something that has to be justified: it can’t be imposed without giving it
another thought.

Secondly, an assessment of epistemic independence is stronger, and leads to higher
joint lower previsions. As lower previsions represent supremum buying prices, higher
values represent stronger commitments, and these may be unwarranted when it is only
epistemic irrelevance that our subject really wants to model.

Thirdly, joint lower previsions based on an epistemic irrelevance assessment are gen-
erally speaking straightforward to calculate, as the discussion of the Concatenation For-
mula in Sect. 5 testifies. But calculating joint lower previsions from marginals based
on an epistemic independence assessment is quite often a very complicated affair [13,
Sect. 9.3.2].

Finally, and most importantly, when considering an uncertain process, the subject
knows that the values of the random variables Xk will be revealed one after the other,
and that the value of Xk will be revealed before that of Xk+1. If he states that Xk and Xk+1

are epistemically independent, this amounts to his assessing that (i) getting to know the
value of Xk won’t change his beliefs about Xk+1 [forward irrelevance]; and (ii) getting to
know the value of Xk+1 won’t change his beliefs about Xk [backward irrelevance]. But
since the subject knows that he will always know the value of Xk before that of Xk+1, (ii)
is effectively a counter-factual statement for him: “if I got to the value of Xk+1 first, then
learning that value wouldn’t affect my beliefs about Xk”. It’s not clear that making such
an assessment has any real value, and we feel it is much more natural in such situations
context to let go of (ii) and therefore to resort to epistemic (forward) irrelevance.

This line of reasoning can also be related to Shafer’s [10] idea that conditioning is
never automatic, and must always be associated with a protocol. A subject can only
meaningfully condition a probability model on events that he envisages may happen
(according to the established protocol). In the specific situation described above, condi-
tioning the belief model about Xk on the variable Xk+1 could only legitimately be done
if it were possible to find out the value of Xk+1 without getting to know that of Xk, quod
non. Therefore, it isn’t legitimate to consider the conditional lower prevision Pk(·|Xk+1)
expressing the beliefs about Xk conditional on Xk+1, and we therefore can’t meaning-
fully impose (ii), as it requires that Pk(·|Xk+1) = Pk. Again, this leads to epistemic
(forward) irrelevance, instead of epistemic independence.

In his book on causal reasoning [11], Shafer seems to propose the notion of an event
tree in order to develop and formalise his ideas about protocols and conditioning. We
have seen in Theorem 1 that for standard event trees, which correspond to uncertain
processes, the general notion of event-tree independence that he develops in his book,
is effectively equivalent to the notion of forward irrelevance.
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Probability Revision, the Uniformity Rule, and the
Chan–Darwiche Metric

Carl G. Wagner
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Abstract. The author has proposed a rule of probability revision dictating that identical learning
be reflected in identical ratios of new to old odds. Following this rule ensures that the final result
of a sequence of probability revisions is undisturbed by an alteration in the temporal order of the
learning prompting these revisions. There is also a close connection between this rule and an
intriguing metric on probability measures introduced by Chan and Darwiche.

Keywords: Bayes factor, Chan-Darwiche metric, Probability revision.

1 The Commutativity Principle

Consider the following belief revision schema, representing two possible sequential
revisions of the probability measure p:

p −→ q−→ r and p −→ s−→ t.

Suppose that the revisions of p to q, and of s to t, are prompted by identical learning,
and that the revisions of q to r, and of p to s, are prompted by identical learning. It
is then widely held that it ought to be the case that r = t. As van Fraassen [7] puts
it, two persons who undergo identical learning experiences on the same day, but in a
different order, ought to agree in the evening if they had exactly the same opinions in
the morning. Call this the Commutativity Principle.

A simple rule of probability revision ensures that the Commutativity Principle is sat-
isfied. This Uniformity Rule, occurring in particular cases in Wagner [8, 9, 10, 11], and
given general formulation in Wagner [12], dictates that identical learning be reflected
in identical ratios of new to old odds, also known as Bayes factors. This note explores
the connection between the Uniformity Rule and an intriguing metric on probability
measures introduced by Chan and Darwiche [1]. The upshot is that revisions of two
different probability measures based on identical learning, when effected by the Uni-
formity Rule, move us the same Chan-Darwiche distance from the priors in question.

2 Terminology and Notation

A sigma algebra A of subsets ofΩ is purely atomic if the family A∗ of atomic events in
A is countable, and constitutes a partition of Ω . Every finite algebra is purely atomic,
whatever the cardinality of Ω , and if Ω is countable, then every sigma algebra on Ω is
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purely atomic ([6, Theorems 1.6.1, 1.6.2]). If q is a revision of probability measure p,
and A and B are events, then the probability factor (or relevance quotient) Πq,p(A) is
the ratio

Πq,p(A) :=
q(A)
p(A)

of new to old probabilities, and the Bayes factor βq,p(A : B) is to ratio

βq,p(A : B) :=
q(A)
q(B)
p(A)
p(B)

(1)

of new to old odds. When q(.) = p(.|E), then (1) is simply the likelihood ratio
p(E|A)
p(E|B)

.

More generally,

βq,p(A : B) =
Πq,p(A)
Πq,p(B)

, (2)

a simple, but useful, identity.
In what follows we assume for simplicity that all probability measures are strictly

coherent, i.e., that all nonempty events have positive probability. With the addition of
certain technical conditions, however, Theorem 1below holds for arbitrary probabilities.

3 Bayes Factors and Commutativity

The following theorem demonstrates that the Commutativity Principle is satisfied for
purely atomic sigma algebras when identical learning is represented by identical Bayes
factors at the level of atomic events.

Theorem 1. Suppose that the probabilities in the revision schema

p −→ q
↓

↓ r

s −→ t

are defined on a purely atomic sigma algebra A, with A∗ denoting the set of atomic
events in A. If the Bayes factor identities

βq,p(A : B) = βt,s(A : B), for all A,B ∈A∗, (3)

and

βr,q(A : B) = βs,p(A : B), for all A,B ∈ A∗ (4)

hold, then r = t. Indeed, for all A ∈ A∗, we have the explicit formula
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r(A) = t(A) =

[
q(A)s(A)

p(A)

]
∑B∈A∗

q(B)s(B)
p(B)

(5)

Proof. The identity (3) is equivalent to

t(A)q(B)s(B)
p(B)

=
q(A)s(A)t(B)

p(A)
, for all A,B ∈ A∗. (6)

Fixing A in (6), and summing over all B ∈ A∗ then yields (5) for t(A), since

∑
B∈A∗

t(B) = 1.

The proof of (5) for r(A) follows from (4) in exactly analogous fashion. ��
Remark 1. If p, q, r, s and t are well-defined and in place and (3) and (4) hold, then,
necessarily, the sum in the denominator of the right-hand side of (5) converges. If only
p, q, and s are in place at the outset and the aforementioned sum converges, then (5)
defines probabilities r and t satisfying (3) and (4). So (5) furnishes a recipe for con-
structing a probability measure r that would be the appropriate revision of q if, in the
probabilistic state q, one were to undergo learning identical to that which prompted the
revision of p to s. Similarly, (5) furnishes a recipe for constructing a probability mea-
sure t that would be the appropriate revision of s if, in the probabilistic state s, one were
to undergo learning identical to that which prompted the revision of p to q. However, it
is easy to construct examples where the sum in the denominator of (5) fails to converge.
Then there exists no probability measure t satisfying (3) and no probability r satisfying
(4). Thus from the perspective of the Uniformity Rule, it is impossible in the concep-
tual state reflected in s (respectively, q) to experience learning identical to that which
prompted the revision of p to q (respectively, of p to s).

4 The Chan-Darwiche Metric

WhenΩ is finite the Uniformity Rule has intriguing connections with a metric on prob-
ability measures introduced by Chan and Darwiche [1]. Assume for simplicity that all
probabilities are strictly coherent1, and defined on all subsets of Ω . Define the Chan-
Darwiche distance CD(p,q) by

CD(p,q) := log(R)− log(r), (7)

where

R := max
ω∈Ω

q(ω)
p(ω)

and r := min
ω∈Ω

q(ω)
p(ω)

. (8)

1 On the set all probability measures on the power set of Ω , CD is, strictly speaking, no longer
a metric, since it can take the extended real number ∞ as a value. Indeed, with the stipulation
that 0

0 = 1, CD(p,q) < ∞ iff p and q have exactly the same support, i.e., iff {ω ∈Ω : p(ω) >
0}= {ω ∈Ω : q(ω) > 0}.
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It is straightforward to show that CD is a metric on the set of all strictly coherent prob-
ability measure on the power set of Ω , i.e., that

CD(p,q) � 0, with CD(p,q) = 0 iff p = q.

CD(p,q) = CD(q, p), and

CD(p,q) � CD(p, p′)+CD(p′,q).

CD(p,q) yields uniform bounds on the Bayes factors βq,p(A : B) :

Theorem 2. For all nonempty events A,B ∈ 2Ω ,

exp(−CD(p,q)) � βq,p(A,B) � exp(CD(p,q)). (9)

Proof. Suppose that max q(ω)
p(ω) and min q(ω)

p(ω) are attained, respectively, at ω = ω2 and
ω = ω1. Then

q(ω1)p(ω)
p(ω1)

� q(ω) � q(ω2)p(ω)
p(ω2)

. (10)

Summing (10) over all ω ∈ A, and over all ω ∈ B yields

q(ω1)
p(ω1)

� q(A)
p(A)

,
q(B)
p(B)

� q(ω2)
p(ω2)

whence, [
q(ω1)
p(ω1)

]
[

q(ω2)
p(ω2)

] � Πq,p(A)
Πq,p(B)

�

[
q(ω2)
p(ω2)

]
[

q(ω1)
p(ω1)

] (11)

which is equivalent to (9) by (2) of Section 2 above, (7), and (8). ��
Remark 2. Note that the bounds in (9) are sharp, the upper bound being attained when
A = {ω2} and B = {ω1}, and the lower bound when A = {ω1} and B = {ω2}.
In view of (11) and the preceding remark, it is clear that CD(p,q) may be equivalently
defined by the formulas

CD(p,q) = max
φ �=A,B⊂Ω

logβq,p(A : B) = max
ω,ω ′∈Ω

logβq,p({w} : {w′}).2 (12)

The number logβq,p(A : B) has been termed the weight of evidence by I.J. Good [3].
According to Good, Alan Turing was an enthusiastic advocate of using weights of evi-
dence to measure the gain or loss of plausibility of one hypothesis vis-á-vis another as
a result of the receipt of new evidence. Such weights were routinely used in the code-
breaking work at Bletchley Park, where Good and Turing were colleagues during World
War II ([5]). Indeed, Turing coined the term ban (after the town of Banbury, where the

2 Upon reading Chan-Darwiche [1], I communicated this result to the authors, who incorporated
it in Chan-Darwiche [2].
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sheets were printed on which weights of evidence were recorded) for the unit weight
of evidence, with logarithms taken to the base 10. One-tenth of a ban was termed a
deciban (abbreviated db, in obvious analogy with acoustic notation). See Jeffrey ([5,
pp. 32–32]) and Good [4] for further details.

Formula (12) thus provides a particularly salient formulation of the Chan-Darwiche
distance, as well as an attractive and evocative unit of measurement. Moreover, there is
a hand-in-glove fit between the Uniformity Rule and the Chan-Darwiche distance: If p
is revised to q, and p′ is revised to q′, based on identical learning, and we construct q′
in accord with the Uniformity Rule, then CD(p,q) = CD(p′,q′). So revisions based on
identical learning, carried out acording to the dictates of the Uniformity Rule, move us
the same CD-distance (i.e., the same number of decibans) from the priors in question.
As can be seen from the elementary example,

ω1 ω2 ω1 ω2

p : 1
2

1
2 p′ : 2

5
3
5

q : 4
5

1
5 q′ : 8

11
3
11 ,

where CD(p,q) = CD(p′,q′) = 2log2, this fails to be the case for other measures of
distance, including the Euclidean distance

ED(p,q) :=
[
∑
ω

(p(ω)−q(ω))2
] 1

2

,

the variation distance

V (p,q) : = max{|p(A)−q(A)| : A⊂Ω}
=

1
2∑ω

|p(ω)−q(ω)|,

the Hellinger distance

H(p,q) :=∑
ω

[√
p(ω)−

√
q(ω)

]2
,

and the Kullback-Leibler information number

KL(p,q) :=∑
ω

q(ω) log

(
q(ω)
p(ω)

)
.
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On Nonparametric Predictive Inference for
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Abstract. Coolen [3] introduced lower and upper probabilities for m future Bernoulli random
quantities, based on the number of successes in n trials and adding few structural assumptions.
These results form part of the statistical approach called ‘Nonparametric Predictive Inference’. In
this paper, we explore the generalization of these results for the case with data only available in
the form of a set of values for the number of successes in the first n trials. A special case of such
inferences occurs in applications to basic acceptance sampling problems in quality control.

1 Introduction

Statistical inference in situations with incomplete data has received much attention in
the literature, reflecting its importance in many applications. Manski [12] presents a
wide range of methods to partially identify probability distributions based on incom-
plete data, considering a wide range of reasons for data to be incomplete and present-
ing historical notes and further references. The manner in which inferential methods
based on different foundations deal with incomplete data differs substantially, in par-
ticular when methods using precise probabilities are compared to methods in which
uncertainty is quantified via lower and upper probabilities. For example, if some data
are not reported precisely but only to belong in a particular range of values, precise
Bayesian methods simply include the probability for all these possible data values in
the likelihood function used in the updating calculations to derive the posterior distri-
bution. Methods that allow imprecision to be taken into account, by the use of lower
and upper probabilities, can deal with such data differently, namely by considering
best- and worst-case data possibilities, within the range of values reported, and as
such no further assumptions on values within this range need to be included in the
inferences.

De Cooman and Zaffalon [8] present a detailed theory for updating imprecise proba-
bilities based on incomplete (set-valued) data, within the framework of coherent impre-
cise probability presented by Walley [13]. Related to this work, Zaffalon [16] focuses
specifically on predictive inference. Weichselberger [15] has been developing a novel
interval-probabilistic statistical approach, called ‘symmetrical probability’, for which
results in case of set-valued data have also been presented.

Coolen [3] presented an inferential approach for Bernoulli quantities, which uses
lower and upper probabilities and differs from the generalized Bayes approach by Wal-
ley [13]. This approach, which fits in the more general framework of ‘nonparamet-
ric predictive inference’ (NPI) [1, 4], takes a fundamentally different view to learning
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from data than generalized Bayes methods, as it only considers events of the form A
is followed by B, without any assumptions on the single events A or B. An example of
an application of this approach is comparison of proportions data for different groups
[5, 6]. NPI for Bernoulli quantities [3] has, so far, been presented for events of the
form Y n

1 = s is followed by Y n+m
n+1 ∈ R, with Y j

i the number of successes in trials i to
j, and R ⊂ {0,1, . . . ,m}. So, it was assumed that the number of successes in the first
n trials observed is known to be equal to s. This raises the question of how NPI for
Bernoulli quantities deals with set-valued information, which occurs if the number of
successes in the first n trials is not precisely known, but if only Y n

1 ∈ S is known, with
S ⊂ {0,1, . . . ,n}. This is explored in the current paper, general theory including a dis-
cussion of principles of such inference will be presented elsewhere.

NPI is different in nature to Walley’s generalized Bayes approach, with a fundamen-
tally different view on the manner in which data are used. In Walley’s theory, in line
with precise Bayesian methods, one updates prior lower and upper probabilities, using
a generalized Bayes’ rule, to derive posterior lower and upper probabilities, so learning
from data is modelled via conditioning based on an all-encompassing parametric model
and prior distributions. In NPI there are no non-trivial statements (i.e. non-vacuous
lower and upper probabilities for non-trivial events) for the single events involving only
Y n

1 or Y n+m
n+1 . As such, when generalizing to set-valued data of the form Y n

1 ∈ S, inference
is not based on conditioning on this event, and the precise meaning of an event ‘Y n

1 ∈ S
is followed by Y n+m

n+1 ∈ R’ must be considered with great care. It turns out that, for such
events with set-valued data, the difference between NPI and other approaches becomes
clearer than for precise data.

Section 2 of this paper is a brief summary of the NPI approach for Bernoulli quanti-
ties [3], with some details on the derivations of the main results as needed to generalize
the method to set-valued data, Section 3 discusses key aspects of this generalization.
In Section 4, we briefly consider a special case, with data Y n

1 ≥ y, which is relevant for
acceptance sampling. The paper ends with some concluding remarks in Section 5.

2 Nonparametric Predictive Inference for Bernoulli Random
Quantities

Nonparametric prediction of Bernoulli random quantities uses Hill’s assumption A(n)
[10], and defines direct predictive lower and upper probabilities for future observations,
based on available data. This fits in the framework of nonparametric predictive inference
(NPI) with strong internal consistency and frequentist properties [1, 4].

Suppose that we have a sequence of n + m exchangeable Bernoulli trials [9], each
with success and failure as possible outcomes, and data consisting of s successes ob-
served in n trials. A sufficient representation of the data for our inferences is Y n

1 = s, due
to the exchangeability of all trials. We are interested in the number of successes in trials
n+1 to n+m. Let R = {r1, . . . ,rt}, with 1≤ t ≤m+1 and 0≤ r1 < r2 < .. . < rt ≤m,
and let

(s+r0
s

)
= 0. The NPI upper probability for the event Y n+m

n+1 ∈ R, given data Y n
1 = s,

for s ∈ {0, . . . ,n}, is [3]
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P(Y n+m
n+1 ∈ R | Y n

1 = s) =(
n + m

n

)−1 t

∑
j=1

[(
s+ r j

s

)
−
(

s+ r j−1

s

)](
n− s+ m− r j

n− s

)
The lower probability can be derived via the conjugacy property,

P(Y n+m
n+1 ∈ R | Y n

1 = s) = 1−P(Y n+m
n+1 ∈ {0,1, . . . ,m}\R | Y n

1 = s)

This is justified in [3], and agrees with the fact that these lower and upper probabilities
are F-probability in the theory of interval probability [1, 14]. The key aspects of this
theory are explained below.

In NPI for Bernoulli random quantities [3], past observations are related to future
random quantities via an assumed underlying latent variable representation, such that
each value is represented by a point on the real line, with a threshold such that all points
to one side of the threshold represent ‘successes’, and all points to the other side of the
threshold represent ‘failures’. No knowledge about this threshold is assumed. This rep-
resentation is very similar to that used by Bayes [2], with the exception that Bayes made
explicit assumptions on the threshold, which in the later development of Bayesian statis-
tical methodology corresponded to the assumption of a prior distribution. In NPI, with
the latent variable representation, past observations are related to future observations
via Hill’s A(n) [10]. Suppose that the ordered values of the latent variables correspond-
ing to the n observations are u(1) < u(2) < .. . < u(n). These n values define a partition of
the real line, consisting of n+1 intervals. Hill’s A(n) states that a future random quantity
Un+1 has equal probability 1/(n+1) to be in each of these intervals, in our NPI setting
this Un+1 is the latent variable corresponding to the first future observation, which will
again be a success or failure, depending on which side of the threshold Un+1 is.

When interested in m future observations, the same assumption needs to be made
for each future observation consecutively, so one needs to assume A(n), . . . ,A(n+m−1). In
fact, assuming A(n+m−1) is sufficient, as Hill [10] shows that the assumption A(n) implies
A(k) for all k ≤ n. Under these assumptions, the following result holds [3, 10]. Suppose
that there is no interest in precisely which of the first n observations are successes or
failures, so that one considers the number of successes as a sufficient statistic, and the
same is assumed for the m future observations of interest. Then, under the assumption
A(n+m−1), all

(n+m
n

)
different orderings of the underlying latent variables on the real

line, which represent the first n observations and the m future observations, have the
same probability, also after information about the number of successes in the first n
observations has become available. Denoting these

(n+m
n

)
different orderings by O j

for j = 1, . . . ,
(n+m

n

)
, the above lower and upper probabilities are derived by counting

orderings [3]: for the lower probability, only those orderings are included for which
Y n

1 = s must be followed by Y n+m
n+1 ∈ R, while for the upper probability all orderings are

included for which Y n
1 = s can be followed by Y n+m

n+1 ∈ R.

3 Set-Valued Data

We now explore the generalization of NPI for Bernoulli random quantities with set-
valued data, so we assume that the information on the first n trials is only Y n

1 ∈ S, with
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S ⊂ {0,1, . . . ,n}. For completeness of the NPI theory, it is important to derive general
expressions for the lower and upper probabilities for the events that Y n

1 ∈ S is followed
by Y n+m

n+1 ∈ R, for any sets S,R (we assume throughout that these sets are not empty).
The combinatorial problems involved in deriving general formulae have not yet been
solved, we hope to present these elsewhere in the near future, together with a more
detailed discussion of this theory and further comparison with other approaches. We
now explore this generalization by discussing the derivation of such lower and upper
probabilities and some of their properties, and by a basic example.

We consider again the
(n+m

n

)
different orderings O j of the n latent variables repre-

senting the n observations on the real line together with the m latent variables repre-
senting the m future observations, all these orderings remain equally likely under the
assumption A(n+m−1). With these set-valued data, the reasoning that leads to the lower
and upper probabilities for the event (Y n+m

n+1 ∈ R |Y n
1 ∈ S) remains the same as discussed

Section 2 [3]. The lower probability for this event is derived by counting all orderings
O j for which Y n

1 ∈ S must be followed by Y n+m
n+1 ∈ R, while the upper probability is de-

rived by counting all orderings O j for which Y n
1 ∈ S can be followed by Y n+m

n+1 ∈ R. It
is important to emphasize that, for the lower probability, an O j is only included in the
count if for each s ∈ S, Y n

1 = s must be followed by Y n+m
n+1 ∈ R, whereas for the upper

probability an O j is already included if there is at least one s ∈ S for which Y n
1 = s can

be followed by Y n+m
n+1 ∈ R. Hence, the actual events that correspond to the lower and

upper probabilities for (Y n+m
n+1 ∈ R | Y n

1 ∈ S) differ substantially, in a way that could be
described as ‘most conservative’, and which also ensures that the conjugacy property
remains valid, so

P(Y n+m
n+1 ∈ R | Y n

1 ∈ S) = 1−P(Y n+m
n+1 ∈ {0,1, . . . ,m}\R | Y n

1 ∈ S)

Basic logic and set theory imply some important general properties for these lower and
upper probabilities. Let S1 ⊂ S2, then for all R,

P(Y n+m
n+1 ∈ R | Y n

1 ∈ S1) ≥ P(Y n+m
n+1 ∈ R | Y n

1 ∈ S2)

P(Y n+m
n+1 ∈ R | Y n

1 ∈ S1) ≤ P(Y n+m
n+1 ∈ R | Y n

1 ∈ S2)

so one could say that this NPI lower (upper) probability decreases (increases) in S. For
all R that are strict subsets of {0,1, . . . ,m}, we have P(Y n+m

n+1 ∈ R | Y n
1 ∈ {0,1, . . . ,n}) =

0 and P(Y n+m
n+1 ∈ R | Y n

1 ∈ {0,1, . . . ,n}) = 1, reflecting that with S = {0,1, . . . ,n} no
information is provided about the number of successes in the first n trials. In precise
Bayesian statistics, this situation results in just the prior probability for the event Y n+m

n+1 ∈
R, which also implies that nothing has been learned to update this prior probability, but
of course does require one to have such a prior probability in the first place. Obviously,
for any given set S, these lower and upper probabilities are increasing in R. As part of
our detailed study of NPI with set-valued data, we will consider more such properties
of these lower and upper probabilities as functions of S and R.

An important issue for uncertainty quantification is the interpretation of (lower and
upper) probabilities. As mentioned before, the lower probability P(Y n+m

n+1 ∈ R | Y n
1 ∈ S)

and upper probability P(Y n+m
n+1 ∈ R | Y n

1 ∈ S) are conservative, as is clear from the way
they are derived. They can be used without further assumptions about the specific un-
derlying reasons for reporting S instead of a specific unique value for Y n

1 , which is in
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Table 1. NPI lower and upper probabilities, n = 4 and m = 2

×1/15 R = {0} {1} {2} {0,1} {0,2} {1,2}
S = {0} (10,15) (0,5) (0,1) (1,15) (10,15) (0,5)

{1} (6,10) (3,8) (1,3) (12,14) (7,12) (5,9)
{2} (3,6) (4,9) (3,6) (9,12) (6,11) (9,12)
{3} (1,3) (3,8) (6,10) (5,9) (7,12) (12,14)
{4} (0,1) (0,5) (10,15) (0,5) (10,15) (14,15)

{1,2} (3,10) (2,11) (1,6) (9,14) (4,13) (5,12)
{1,3} (1,10) (1,12) (1,10) (5,14) (3,14) (5,14)
{2,3} (1,6) (2,11) (3,10) (5,12) (4,13) (9,14)

{1,2,3} (1,10) (1,13) (1,10) (5,14) (2,14) (5,14)
{0,1,2,3} (1,15) (0,14) (0,10) (5,15) (1,15) (0,14)
{1,2,3,4} (0,10) (0,14) (1,15) (0,14) (1,15) (5,15)
{0,1,3,4} (0,15) (0,14) (0,15) (0,15) (1,15) (0,15)

line with alternative approaches for dealing with set-valued data in imprecise probabil-
ity theory, but which cannot be achieved with precise probabilities. We present a basic
example to illustrate these NPI lower and upper probabilities, and discuss some more
features.

Example 1. To illustrate NPI for Bernoulli quantities with set-valued data, we consider
n = 4 available observations and m = 2 future observations. The underlying assumed
data representation has

(6
2

)
= 15 different orderings of past and future observations,

each having probability 1/15 under the inferential assumption in this paper. Table 1
gives lower and upper probabilities for a variety of events and set-valued data, repre-
sented as pairs (15P(Y 6

5 ∈ R |Y 4
1 ∈ S),15P(Y 6

5 ∈ R | Y 4
1 ∈ S)), so as indicated the values

of the lower and upper probabilities are those given in the table multiplied by 1/15.
The final case, with S = {0,1,3,4}, only leads to non-vacuous NPI lower and up-

per probabilities for two sets R (due to conjugacy), which is due only to the specific
ordering of the 4 past and 2 future observations in which the latter two are in between
the second and third ordered past observation, in the underlying assumed data represen-
tation. Clearly, for that specific ordering none of the values in this S can be followed
by precisely one future success, for all other orderings this is possible for at least one
of the values in S. These results illustrate clearly the decreasing (increasing) nature of
the lower (upper) probabilities if S becomes larger. Imprecision is pretty large, which
is due to the specific manner in which the lower and upper probabilities are derived,
and their conservative nature, yet it should not be too surprising. For example, if one
gets information that, out of 4 trials, the number of successes was either 1 or 3, clearly
this information does not reveal much, in particular if one has no idea why this spe-
cific information was given. Most remarkable, perhaps, are some of these inferences
for R = {1}. For example, when one compares the values corresponding to S = {1},
S = {3} and S = {1,3}, one might perhaps be surprised that, for the latter case, the
lower and upper probabilities are not also equal to 3/15 and 8/15, respectively. This
is an important feature of the NPI approach, where it differs fundamentally from other
approaches, including imprecise probabilistic approaches which are Walley-coherent
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[8, 13, 16] and Weichselberger’s symmetrical probability [15]. Such behaviour of these
NPI lower and upper probabilities as function of S are currently being studied in more
detail, and will be reported on in a future paper.

4 Acceptance Sampling

A special case of the theory in Section 3, for which the NPI lower and upper proba-
bilities are easily derived, occurs in basic problems of quality control, when decisions
are required about acceptance of a batch of products on the basis of tests on a sample.
Some results are briefly discussed in this section, a detailed account will be presented
elsewhere [7].

For acceptance sampling, one is often interested in the event (Y n+m
n+1 ≥ r |Y n

1 ≥ s), for
example if one can test n products and has to set a minimum number of successful tests
for these, if one wishes to have at least r successful products in the related batch of m
further products. Using the reasoning with the orderings Oj as in Section 3, it follows
easily that for NPI for Bernoulli random quantities, the following relations hold,

P(Y n+m
n+1 ≥ r | Y n

1 ≥ s) = P(Y n+m
n+1 ≥ r | Y n

1 = s)

=
(

n + m
m

)−1 m

∑
j=r

(
s−1 + j

j

)(
n− s+ m− j

m− j

)
and

P(Y n+m
n+1 ≥ r | Y n

1 ≥ s) = P(Y n+m
n+1 ≥ r | Y n

1 = n) = 1

These results clearly indicate the conservativeness of the NPI lower and upper probabili-
ties with set-valued data, but the example in Section 3 made clear that similar reductions
of the observation set to a single extreme value does not generally work.

One particularly nice result for such NPI-based acceptance sampling [7] occurs when
non-destructive sampling is considered. This means that products can be tested without
affecting their functionality for future use, so in our setting a total batch would consist
of t = n + m products of which n were to be tested. Suppose that one requires that all
products in the batch must function with NPI lower probability p, then it turns out that
the minimum required number of products, out of these t, that have to be tested (and
of course must all function) should at least be pt. For example, for a total batch of
size t = 100, one would have to test at least 100p products, none of which should fail,
to achieve NPI lower probability of p for the event that all 100 products will function
successfully. No matter one’s judgement about the NPI approach, one cannot argue
against the beauty of this result.

5 Concluding Remarks

Statistical inferential methods that fully utilize the richness of opportunities provided by
lower and upper probabilities are still in their infancy when compared to precise proba-
bilistic methods. Although robust Bayes-like methods have become popular, following
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Walley [13], they do not appear to fully utilize these opportunities, in particular as up-
dating remains a form of conditioning, hence it is assumed that all that can ever happen
is taken into account in the model and assessments at the prior stage. NPI provides an
interesting alternative, that has several advantages, for example its general agreement
with empirical probabilities, its strong internal consistency [1], and its strong frequentist
properties (the underlying latent variables are exactly calibrated in the sense of Law-
less and Fredette [11]). The preliminary results reported in this paper make clear that
more research is needed, not only into NPI but also more generally on properties of sta-
tistical inference with lower and upper probabilities, in particular the relation between
inference, imprecision, and information.
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Inferring a Possibility Distribution from Very Few
Measurements
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Abstract. This paper considers the problem of the possibility representation of measurement
uncertainty in the cases of information shortage: very few measurements, poor knowledge
about the underlying probability distribution. After having related possibility distribution to
probability confidence intervals, we present a procedure to build a possibility distribution for one
measurement issued from an unimodal probability distribution. We consider then the addition
of other measurements and more knowledge about the probability distribution. The key role of
the uniform distribution as the probability distribution leading to the least specific possibility
distribution is highlighted. The approach is compared and discussed versus the conventional one
based on the Student distribution.

Keywords: Possibility theory, Probability theory, Uncertainty, Scarce measurements.

1 Introduction

In many application domains, it is important to take the measurement uncertainties into
account [11], [16], especially in order to define around the measurement result an inter-
val which will contain the real value of the considered entity with specified confidence
[8], that is, a confidence interval [9]. Such an interval allows to define decision risks
later, as for example the risk to exceed an alarm threshold, etc. In practice, two main
theories are considered to deal with measurement uncertainty: interval calculus [14]
and probability theory [9]. As interval calculus only supplies the confidence interval
with 100% confidence, probability theory seems to be required to supply the other con-
fidence intervals. But to handle the whole set of confidence intervals (with all the con-
fidence levels) is quite complex by a probability approach. And choosing a particular
confidence level (e.g. 95% which means a .05 probability for the value to be out of the
interval) is rather arbitrary. Thus a possibility approach has been proposed in [5, 6, 15]
and further developed by a few authors in a measurement context [2, 7, 12, 13, 17].

This paper further explores the connection between possibility distribution and confi-
dence intervals and addresses the possibility expression of measurement uncertainty for
situations where only very limited knowledge is available: very few measurements, un-
known unimodal probability density. In Section 2, we recall how a possibility distribution
can be built from confidence intervals. In the third section, we present the main contribu-
tion of the paper, i.e. how to define confidence intervals where only limited knowledge
is available about the underlying probability density (unimodal bounded/non-bounded,
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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symmetric or not). The results are then applied to expression of uncertainty when only
very few measurements are available. The key role of the uniform distribution as the prob-
ability distribution leading to the least specific possibility distribution is highlighted. The
approach is compared and discussed versus the conventional one based on the Student
distribution. Some concluding remarks point out the interest of the approach and some
future developments.

2 Possibility Distribution Versus Confidence Intervals

2.1 Basics of the Possibility Theory

The possibility theory is one of the modern theories available to represent uncertainty
when information is scarce and/or imprecise [18]. The basic notion is the possibility
distribution, denoted π . Here, we consider possibility distributions defined on the real
line, i.e. π is an upper semi-continuous mapping from the real line to the unit inter-
val. Thus π is a fuzzy subset but with specific semantics for the membership function.
Indeed, a possibility distribution describes the more or less plausible values of some
uncertain variable X . The possibility theory provides two evaluations of the likelihood
of an event, for instance whether the value of a real variable X does lie within a certain
interval: the possibility Π and the necessity N. The normalized measures of possibility
Π and necessity N are defined from the possibility distribution π : R→ [0, 1] such that
supx∈Rπ(x) = 1 as follows:

∀A⊂ R, Π(A) = sup
x∈A
π(x) and ∀A⊂ R, N(A) = 1−Π(Ā) = inf

x∈A
(1−π(x)).

The possibility measureΠ satisfies Π(A∪B) = max(Π(A),Π(B)), ∀A, B⊂R.
The necessity measure N satisfies N(A∩B) = min(N(A),N(B)), ∀A, B⊂ R.
A possibility distribution π1 is more specific than π2 as soon as π1 ≤ π2 (in the

usual definition of inclusion of fuzzy sets), i.e. π1 is more informative than π2. In fact,
possibility measures are set functions similar to probability measures, but they rely
on axioms which involve the operations “maximum” and ”minimum” instead of the
operations “addition” and “product” (if the measures are decomposable [3]).

2.2 Possibility Representation of Confidence Intervals

Let us assume that the random variable associated to the measurement results is denoted
X (a realization of X is denoted x), is continuous on the set of reals and is described
by a probability density function p, F being its corresponding probability distribution
function with F−1 its inverse function if it exists (otherwise the pseudo-inverse func-
tion can be considered [9]). For every possible confidence level β ∈ [0,1], the corre-
sponding confidence interval is defined as an interval that contains the measurand (i.e.
the physical entity to be determined denoted μ) with probability ≥ β . In other words,
a confidence interval of confidence level β (denoted Iβ ) is defined as an interval for

which the probability Pout to be outside this interval Iβ does not exceed α def= 1−β , i.e.
P(μ /∈ Iβ ) = α .

It is possible to link confidence intervals and possibility distribution in the following
way. A unimodal numerical possibility distribution may be viewed as a nested set of
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confidence intervals, which are the α cuts [xα ,xα ] = {x, π(x) ≥ α} of π . The degree
of certainty that [xα ,xα ] contains μ is N([xα ,xα ]) (if continuous). Obviously, the confi-
dence intervals built around the same point x∗ are nested. It has been proven in [12] that
stacking confidence intervals of a probability distribution on top of one another leads
to a possibility distribution (denoted π∗ having x∗ as modal value). In fact, in this way,
the α-cuts of π∗, i.e. Aα = {x, |π∗(x) ≥ α} are identified with the confidence interval
I∗β of confidence level β = 1−α around the nominal value x∗. Thus, the possibility
distribution π∗ encodes the whole set of confidence intervals in its membership func-
tion. Moreover, this possibility distribution satisfies Π ∗(A) ≥ P(A), ∀A ⊂ R, with Π ∗
and P the possibility and probability measures associated respectively to π∗ and p (the
underlying probability density function of the measurement results).

A closed form expression of the possibility distribution πM(x) induced by confidence
intervals around the mode x∗ = M is obtained for unimodal continuous probability den-
sities p(x) strictly increasing on the left and decreasing on the right of M [4]:

πM(x) =
∫ x

−∞
p(y)dy+

∫ +∞

φ(x)
p(y)dy = F(x)+1−F (φ(x)) = πM(φ(x)) (1)

for all x ∈ [−∞,M], where φ is a decreasing mapping φ : [−∞,M] �→ [M,∞] |φ(M) =
M. πM(x) is the probability that the measurand μ is outside the interval [x,φ(x)], i.e.
1−πM(x) is the confidence level of this interval.

3 Inferring a Possibility Distribution from a Small Sample

We will consider confidence intervals associated with an underlying probability density
being unimodal (i.e. having only one maximum, both local and global) with different
assumptions: bounded and non bounded, symmetric or not. Most of the following re-
sults are based on trivial properties of unimodal distribution described below.

Let us consider a unimodal probability density p with the mode M that will be iden-
tified to the measurand. Thus, p is non increasing for its argument values greater than
M, and non decreasing for its argument values less than M. Therefore, for any values
superior to M such that x3 ≥ x2 ≥ x1, the average of p over [x2,x3] must be less than or
equal to its average over [x1,x3]:∫ x3

x2
p(x)d x

x3−x2
≤
∫ x3

x1
p(x)d x

x3−x1
(2)

Similarly, for any values less than M such that x1 ≤ x2 ≤ x3:∫ x2
x1

p(x)d x

x2−x1
≤
∫ x3

x1
p(x)d x

x3−x1
(3)

Note that the equality in (2) and (3) holds if p is constant on the considered domain.

3.1 Bounded Probability Density

Let us consider that X is defined by a probability density, its mode is denoted M and its
support [M−a,M +b]. Then the mode and the support of X−M are respectively 0 and
the interval [−a,b]. We have the following result:

Proposition 1. ∀t ∈ [0,1], Pr[X − ta≤M ≤ X + tb]≥ t.
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Proof. Pr[X− ta≤M ≤ X + tb] = Pr[−ta≤ X−M ≤ tb] and Pr[−ta≤ X−M ≤ tb] =
1− ∫−ta

−a p(x)d x− ∫ b
tb p(x)d x.

Then by applying (3) to x1 =−a, x2 =−ta, x3 = 0 and (2) to x1 = 0, x2 = tb, x3 = b,
we obtain:∫ −ta

−a
p(x)d x ≤ (1− t)

∫ 0

−a
p(x)d x and

∫ b

tb
p(x)d x ≤ (1− t)

∫ b

0
p(x)d x

Therefore: ∫ −ta

−a
p(x)d x+

∫ b

tb
p(x)d x≤ (1− t)

∫ b

−a
p(x)d x = 1− t

Then: ∀t ∈ [0,1], Pr[X− ta≤M ≤ X + tb]≥ 1− (1− t)= t. ��
Therefore the corresponding possibility distribution is defined by:

∀x ∈ [M−a,M], πM(x)≤ x+a−M
a

and ∀x ∈ [M,M +b], πM(x)≤ −x+M +b
b

Therefore, the possibility distribution defined by the triangular possibility distribution
having for support [M−a,M + b] is consistent with all the unimodal probability distri-
butions (symmetric or not) having M as modal value and [M−a,M + b] as support.

Note that the triangular possibility distribution is also the possibility distribution as-
sociated to the uniform probability density. Moreover, the triangular symmetric possi-
bility distribution with support [M−a,M + b] and mode M, is the least upper bound of
all the possibility transforms of symmetric probability distributions having M for modal
value and [M−a,M +b] for support. This result has been previously stated in [4] but in
another way.

3.2 Non Bounded Probability Density

As the support is known as infinite, the intervals have to be built from other information
from the random variable. Thus, we will consider intervals of the form X± t|X |. In fact,
instead of starting from the support as for bounded distributions, we propose to start
from the mode.

The following result holds for any unimodal distribution [1, 10]:

Proposition 2

Pr[X− t|X | ≤M ≤ X + t|X |]≥ 1− 2
1 + t

for t ≥ 1 (4)
Proof

Pr[|X−M| ≤ t|X |] = Pr

[∣∣∣∣1− M
X

∣∣∣∣≥ t

]
= Pr

[
M
X
∈ 1± t

]
= Pr

[
X ∈M

1
1± t

]
= Pr

[
X−M ∈M

(
1

1± t
−1

)]

Thus

Pr

[
X−M ∈M

(
1

1± t
−1

)]
=

⎧⎪⎪⎨⎪⎪⎩
F

(
M
−t

t +1

)
−F

(
M
−t

t−1

)
for M ≥ 0

F

(
M
−t

t−1

)
−F

(
M
−t

t +1

)
for M ≤ 0
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Then by applying (2) to x1 =
−tM
t−1

, x2 =
−tM
t + 1

, x3 = M and (3) to x1 =
−tM
t + 1

, x2 =
−tM
t−1

, x3 = M, we obtain respectively:

F

(
M
−t

t +1

)
−F

(
M
−t

t−1

)
≤ 2

t +1
for M ≥ 0

F

(
M
−t

t−1

)
−F

(
M
−t

t +1

)
≤ 2

t +1
for M ≤ 0

Therefore: Pr[|X −M| ≤ t|X |] ≤ 2
t + 1

and finally we obtain: Pr[X − t|X | ≤ M ≤ X +

t|X |]≥ 1− 2
1 + t

. ��

By the same reasoning, we obtain for a symmetric unimodal probability density:

Pr[X− t|X | ≤M ≤ X + t|X |]≥ 1− 1
1+ t

for t ≥ 1 (5)

Note that the equality (5) holds for p uniform, and thus this probability distribution is
the least favourable in the sense that it gives the least specific possibility distribution
(for t ≥ 1). If the shape of the probability distribution is known, the inequality can be
reduced for high values of t. For example, if it is Gaussian, the bound in (5) can be
improved [1]:

Pr[X− t|X | ≤M ≤ X + t|X |]≥ 1− 0.484
t−1

for t ≥ 1 (6)

3.3 Case of One Measurement

Let us consider the case where only one single measurement is available. In this case it
is natural to consider that the observed value corresponds to the mode of the underlying
probability density. If the density is assumed to be non symmetric, we have from (4)

π(x0− tx0) = π(x0 + tx0) =
2

1 + t
for t ≥ 1. If it is symmetric, we have from (5) π(x0−

tx0) = π(x0 + tx0) =
1

1 + t
for t ≥ 1. If it is Gaussian, we have from (6) π(x0− tx0) =

π(x0 + tx0) =
0.484
t−1

for t ≥ 0.484.

Let us consider for example the case where a sensor provides a single value of 30oC
the associated probability distribution is supposed to be unimodal. Figure 1a) high-
lights the reduction of confidence interval lengths according to the amount of available
knowledge: when the distribution is non symmetric, when the distribution is symmet-
ric. When it is Gaussian, the use of the equation (6) leads to a reduction of confidence
interval lengths only for high values of t. For low values of t, the exact expression will
also give reduced intervals but it has not yet been computed; the uniform distribution
being the least favorable for t ≥ 1.

3.4 Case of one Measurement and a Guess

By making the variable change of X into X −A, in (4), is replaced by X−A and M by
M−A, then the following result is deduced for any unimodal symmetric distribution:
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a) b)

Fig. 1. Possibility distributions a) for one measurement b) for two measurements

Pr[X− t|X−A| ≤M ≤ X + t|X−A|]≥ 1− 1
1+ t

for t ≥ 1 (7)

This result can be used to introduce via A some form of prior information (called a
guess, coming for example from an expert) concerning the dispersion. In fact, |x1−A|
can be viewed as the equivalent of the sample standard deviation used classically (see
Section 3.6). The introduction of A allows to reduce the lengths of confidence intervals
obtained by one single measurement as it is illustrated in Figure 1b).

3.5 Case of Two Measurements

Let us now consider the case where a second measurement x2, coming from the same
probability distribution as x1 and considered as being independent from it. We propose
(in an equivalent way with classical propositions when two measurements are available)
to consider the confidence intervals of the form:

X1 +X2

2
− t
|X1−X2|

2
≤M ≤ X1 +X2

2
+ t
|X1−X2|

2

In the case of symmetric unimodal distribution, we obtain by the same reasoning as the
one used in Section 3.2:

Pr

[
X1 +X2

2
− t

2
|X1−X2| ≤M ≤ X1 +X2

2
+

t
2
|X1−X2|

]
≥ 1− 1

1+ t
(8)

The Fig. 1b) illustrates the case where the sensor provides the two measurements x1 =
30oC and x2 = 28oC .

3.6 Discussion Versus the Conventional Probability Approach

The above mathematical derivations formalize the idea that without any appeal to other
information (except unimodality), we can compute the actual length of the finite con-
fidence interval. It is remarkable that the confidence intervals thus created have finite
lengths, except for the 100% confidence level (see Fig. 1a). Indeed, this result seems to
contradict the standard statistical intuition that at least two measurements are required



98 G. Mauris

in order to have some idea about the dispersion (i.e. to have an estimation of the stan-
dard deviation σ ). Indeed, the conventional probability recommendation to deal with a
small number n (but n > 1) of measurement consists in using confidence intervals of
the form [8]:

X̄− tS/
√

n≤M ≤ X̄ + tS/
√

n (9)

where X̄ =∑n
i=1 Xi/n is the sample mean, and S = [∑n

i=1(Xi− X̄)/(n−1)]1/2 the sample
standard deviation.

If the underlying probability distribution is Gaussian, the t value is the one given by
the Student distribution for a given confidence level. An interesting remark is that for
n = 2, (9) has the same form as (8). Indeed, in this case of two measurement, (8) is
equivalent to (9) for a Gaussian distribution. The Fig. 1a) gives an example of the effect
on the possibility distribution specificity (for high values of t) of making the Gaussian
assumption.

4 Conclusion

A possibility distribution can encode a family of probability distributions. This fact has
been used as a basis for a transformation of a probability distribution into a possibility
distribution by using the notion of confidence intervals. Thus the possibility distribution
has been related to probability inequalities, especially for unimodal bounded (or not)
symmetric (or not) probability distributions. The obtained results have been used for a
possibility expression of measurement uncertainty in situations where only a very lim-
ited knowledge is available: one or two measurements, unknown unimodal probability
density. In fact, the proposed approach extends the conventional probability approach
of Student to the case of one single measurement and to the case of non Gaussian
distribution for two measurements. The results highlight the key role of the uniform
probability distribution that leads to the least specific possibility distribution at least for
high confidence levels. Further developments will consider how having more measure-
ments allows to shorten the confidence intervals and thus to increase the specificity of
the corresponding possibility distribution.
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Abstract. Robustness is an important problem in statistics. However, robustness of statistical
procedures for vague data cannot be limited to insensitivity to departures from assumptions on
the underlying distributions. Since the shapes of membership functions applied for modelling
vague data are generally strongly subjective one may ask about the influence of these shapes on
further decisions.Thus the robustness of the statistical procedures to data representation is also
of interest.
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1 Introduction

As stringent assumptions on distributions lead sometimes to serious difficulties in statis-
tics, the problem becomes much more serious in the presence of imprecise data, where
we still do not have satisfactory goodness-of-fit techniques. A remedy for this prob-
lem might be the use of distribution-free methods (e.g. some nonparametric tests for
fuzzy data were suggested in [2], [5] or [7]). However, if we process fuzzy data an-
other aspect of robustness appears. Statistical procedures depend strongly on the shapes
of membership function utilized for modelling data. Moreover, different persons may
assign distinct membership functions to the same vague objects since modelling vague-
ness cannot be completely free from subjectivity. There we are faced with a kind of
paradox especially that using fuzzy modelling we make every endeavor to be flexible
yet we are still very restricted by the very choice of the precise form of the membership
functions.

Since the shape of membership functions applied for modelling vague data is gen-
erally strongly subjective one should ask about the possible influence of that shape on
further decisions. Therefore, we need some tools to evaluate the robustness of the statis-
tical procedures to data representation. In the present paper we propose a few measures
for evaluating and comparing this kind of robustness.

2 Robustness in Statistics - The General Idea

The notion of robustness has been introduced to statistics by Box and Anderson [1]
as follows: “To fulfill the needs of the experimenter, statistical criteria should be: (i)

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 100–107, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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sensitive to change in the specific factor tested, (ii) insensitive to change, of a magnitude
likely to occur in practice, in extraneous factors”. A statistical procedure which satisfies
the first requirement is said to be powerful or efficient, while the procedure that satisfies
the second is called robust.

A robust procedure performs well not only under assumptions that have been postu-
lated but also under departures from the ideal model. This ideal model will be called a
core model. To get a satisfying quantitative description of robustness we have to specify
two other objects: an extension of the core model corresponding to departures from the
ideal that are likely to occur and a measure quantifying the behavior of the discussed
property under deviation from the core model described by the extended model.

Robust estimation when gross errors occur has been studied primarily and estima-
tors that are relatively unaffected by the presence of outliers were of interest (see, e.g.,
Huber [9] and Hampel [8]). Later various statistical techniques which admit departures
from the assumptions on the underlying distribution were proposed. Another concept
of robustness can be found in the Bayesian analysis to denote the inference that will be
unaffected by any possible mis-specification of the prior distribution. However, here we
will present another concept for quantifying robustness which seems to be the closest
to the original definition of robustness given by Box and Anderson. This approach was
suggested by Zieliński [12] .

3 A Quantitative Approach to Robustness

Let M0 = (X ,A ,P0) denote a core model, where P0 ⊂P is a subfamily of the set
P of all possible probability measures on A . Facing any statistical decision problem
(estimation, hypothesis testing, etc.) we choose a suitable statistic T . Its distribution
that corresponds to P ∈P will be denoted by PT . Moreover, let PT = {PT : P ∈P},
PT

0 = {PT : P ∈P0}, etc.
Let π : P0→ 2P be a function such that P∈ π(P). It means that for each distribution

P ∈P0 we get a neighborhood π(P) ⊂P . Moreover, let P1 =
⋃

P∈P0

π(P). Then the

statistical structure M0 = (X ,A ,P1) will be called the extension of the core model
M0 (or, more precisely, π-extension of the core model). Now, let ρ denote a real valued
function on PT

1 . Then we get a following definition.

Definition 1. A function rT : P0 → R defined as

rT (P) = sup{ρ(QT ) : Q ∈ π(P)}− inf{ρ(QT ) : Q ∈ π(P)} (1)

is called ρ-robustness of statistic T with respect to the π-extension M1 of the core
model M0.

If ρ used in given statistical problem has its traditional name (like power, bias, width
of the confidence interval, risk, etc.) this very name is also used for function rT (i.e. we
consider the power-robustness, the bias-robustness, etc.).

Using function rT we can compare the robustness of different statistical procedures.
We say that statistic T is more robust than statistic S if rT (P)≤ rS(P) for each P ∈P0

and rT (P) < rS(P) for some P ∈P0. A statistic T is called uniformly most robust in a
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given class T of statistics if rT (P) ≤ rU (P) for any P ∈P0 and for any U ∈ T . And
we say that statistic T is absolutely robust if rT (P) = 0 for each P ∈P0.

The last approach to robustness is not only the most general on the ground of the
classical statistical inference but it seems also to be the most suitable one for our pur-
pose to extend the discussion on robustness to the statistical inference for imprecise
data. Actually, here not only distributional robustness but insensitivity to the particu-
lar shape of the membership functions applied for modelling fuzzy data is of interest
as well.

4 Modelling Vague Data

Consider a random experiment with vague outcomes described by fuzzy numbers. Let
us recall that a fuzzy subset A of the real line R, with the membership function μA :
R→ [0,1], is a fuzzy number if and only if A is normal (i.e. there exists an element x0

such that μA(x0) = 1), A is fuzzy convex (i.e. μA(λx1 +(1−λ )x2)≥ μA(x1)∧μA(x2),
∀x1,x2 ∈ R, ∀λ ∈ [0,1]), μA is upper semicontinuous and suppA is bounded, where
suppA = cl({x ∈ R : μA(x) > 0}), and cl is the closure operator.

The α−cut of a fuzzy number A is a nonfuzzy set Aα = {x ∈ R : μA(x) ≥ α}. It is
easily seen that every α-cut of a fuzzy number is a closed interval Aα = [AL

α ,A
U
α ], where

AL
α = inf{x ∈ R : μA(x) ≥ α} and AU

α = sup{x ∈ R : μA(x) ≥ α}. A space of all fuzzy
numbers will be denoted by FN(R).

We assume that the outcomes of our experiment are realizations of n-dimensional
fuzzy random sample Y1, . . . ,Yn which may be treated as a fuzzy perception of the usual
random sample X1, . . . ,Xn. There are several definitions of a fuzzy random variable
([10], [11]). Here we simply assume that a mapping Y : Ω → FN(R) is called a fuzzy
random variable if {Y (α,ω) : α ∈ (0,1]} is a set representation of X(ω) for all ω ∈Ω
and for eachα ∈ (0,1] both Y L

α =Y L
α (ω) and YU

α =YU
α (ω), are usual real-valued random

variables on a probability space (Ω ,A,P).
It is obvious that there is a significant subjectivity in attributing membership function

to observations. Moreover, even for similar contexts, fuzzy sets representing the same
concepts may vary considerably. Then the crucial problem is to check whether given
application is not overly sensitive to variations in shape of the membership functions
applied for modelling data. Thus we need tools that help in characterizing the sensi-
tivity of the statistical procedures to the particular choice of the membership function.
Below we suggest how to construct quantitative measures useful both for the compari-
son and for evaluating robustness of the procedures under study. To distinguish this kind
of robustness and the distributional robustness discussed in the previous section, the in-
sensitivity to shape of the membership functions will be called further on as robustness
to data representation.

5 Robustness to Data Representation

Let Yi, i = 1, . . . ,n denote a set of all possible fuzzy numbers that are realizations of
Yi (Yi ⊂ FN(R)). Without loss of generality we will identify Yi with its membership

function μYi . Then Y0 =
n⋃

i=1
Yi creates a sample space of the core model.
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Now, let κ : Y0 → 2FN(R) denote a function such that each Yi ⊂ κ(Yi). It means that
for each family of membership functions Yi ⊂ Y0 we obtain a neighborhood κ(Yi) ⊂
FN(R). Moreover, let Yext =

n⋃
i=1
κ(Yi). This family of fuzzy numbers becomes the

extension of our core model Y0 (or, more precisely, κ-extension of the core model).
To solve a statistical problem we use a suitable statistic T = T (Y1, . . . ,Yn). Let Y T

0
denote a family of all possible values of T provided data come from the core model,
while Y T

ext denotes a family of all possible values of T in the extended model. Finally,
let ζ denote a real valued function on Y T

ext .

Definition 2. A function SUST : Y0 → R defined as

SUST (Y1, . . . ,Yn) = sup{ζ (T (Z1, . . . ,Zn)) : Zi ∈ κ(Yi), i = 1, . . . ,n} (2)

− inf{ζ (T (Z1, . . . ,Zn)) : Zi ∈ κ(Yi), i = 1, . . . ,n}
is called a total ζ -susceptibility to data representation of statistic T with respect to the
κ-extension Yext of the core model Y0.

Using function SUST we can compare the robustness to data representation of different
statistical procedures. So we say that statistic T is more robust to data representation
than statistic S if it has smaller susceptibility, i.e.

SUST (Y1, . . . ,Yn) < SUSS(Y1, . . . ,Yn). (3)

We may also say that statistic T is uniformly most robust to data representation in
a given class T of statistics if and only if SUST (Y1, . . . ,Yn) ≤ SUSU(Y1, . . . ,Yn) for
U ∈ T . Similarly, we can say that statistic T is absolutely robust to data representation
if SUST (Y1, . . . ,Yn) = 0.

The suggested measure of robustness to data representation tells us what can happen
if we admit possible departures from the core model for all observations simultane-
ously. However, it might be also interesting to quantify how sensitive is given statistical
procedure under departures from the core model on a single observation only.

Definition 3. A function AST : Y0 → R defined as

AST (Y1, . . . ,Yn) =
1
n

n

∑
i=1

susT
i (Y1, . . . ,Yn), (4)

where

susT
i (Y1, . . . ,Yn) = sup{ζ (T (Z1, . . . ,Zn)) : Z1 ∈ Y1, . . . ,Zi−1 ∈ Yi−1,

Zi ∈ κ(Yi),Zi+1 ∈ Yi+1, , . . . ,Zn ∈ Yn} (5)

− inf{ζ (T (Z1, . . . ,Zn)) : Z1 ∈ Y1, . . . ,Zi−1 ∈Yi−1,

Zi ∈ κ(Yi),Zi+1 ∈ Yi+1, , . . . ,Zn ∈ Yn}
is called an average individual ζ -susceptibility to data representation of statistic T
with respect to the κ-extension Yext of the core model Y0.

Definition 4. A function MIST : Y0 → R defined as

MIST (Y1, . . . ,Yn) = max
i=1,...,n

susT
i (Y1, . . . ,Yn), (6)
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where susT
i (Y1, . . . ,Yn) is given by (5), is called a maximal individual ζ -susceptibility

to data representation of statistic T with respect to the κ-extension Yext of the core
model Y0.

The suggested measures of robustness to data representation are useful for comparing
different procedures but looking on their value it is hardly to say whether the robustness
of given procedure is high or weak. Thus we propose another measure which could is
defined provided the susceptibility to data representation with respect to the maximal
possible extension of the core model is finite. More precisely, let us assume that the
supremum of the ζ -susceptibility to data representation of statistic T with respect to
any κ-extension, is finite, i.e. if

MSUS = sup
κ∈K

SUST (Y1, . . . ,Yn) < ∞, (7)

where K is a family of all functions creating possible κ-extensions. Then we get a
following measure.

Definition 5. A function RT : Y0 → R defined as

RT (Y1, . . . ,Yn) = 1− SUST (Y1, . . . ,Yn)
MSUS

(8)

is called a total ζ -robustness to data representation of statistic T with respect to the κ
-extension Yext of the core model Y0.

As it is easily seen 0≤ RT ≤ 1 and the bigger value of RT the higher robustness of the
procedure under study. Given statistical procedure is absolutely robust if and only if
RT = 1. Obviously, assuming that MSUS is finite one can define an average individual
ζ -robustness to data representation of statistic T , i.e.

ART (Y1, . . . ,Yn) = 1− AST (Y1, . . . ,Yn)
MSUS

(9)

and a maximal individual ζ -robustness to data representation of statistic T with
respect to the κ-extension Yext of the core model Y0, i.e.

MIRT (Y1, . . . ,Yn) = 1−MIST (Y1, . . . ,Yn)
MSUS

. (10)

6 Example

Suppose Y1, . . . ,Y5 denote a fuzzy perception of random sample X1, . . . ,X5 from the
normal distribution N(θ ,σ) described as follows: Y1 =“about 1”, Y2 =“about 2”,
Y3 =“about 3”, Y4 =“about 4” and Y5 =“about 5”. Suppose these data are mod-
elled by triangular fuzzy numbers characterized by following α-cuts, respectively:
(Y1)α = [α,2−α], (Y2)α = [1+α,3−α], (Y3)α = [2+α,4−α], (Y4)α = [3+α,5−α],
(Y5)α = [4 +α,6−α], where α ∈ (0,1]. Moreover, let us assume that the standard de-
viation σ is equal to 1 while the mean θ remains unknown. Our aim is to verify a null
hypothesis H : θ = 4 against the alternative K : θ �= 4 on the significance level γ = 0.05.

According to [6] for testing hypothesis on the mean H : θ = θ0 against the alternative
K : θ �= θ0 there exist a fuzzy test ϕ : Y0 → F({0,1}) of a form
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ϕ(Y1, . . . ,Yn) = μΠ (θ0)|0 +(1− μΠ(θ0))|1, (11)

where Π = Π(Y1, . . . ,Yn) is an appropriate fuzzy confidence interval for θ . In our sta-
tistical modelΠ is a fuzzy number with following α-cuts

Πα(Y1, . . . ,Yn) = [(Y )L
α −u1−γ/2

σ√
n
,(Y )L

α + u1−γ/2
σ√

n
], (12)

where Y is a sample average and u1−γ/2 is a quantile of order 1− γ/2 from the standard
normal distribution.

After simple calculations we obtain a fuzzy sample average Y given by α-cuts
(Y )α = [2 +α,4−α] and substituting u1−γ/2 = u0.975 = 1.96, n = 5 and σ = 1 into
(12) we conclude that Πα(Y1, . . . ,Y5) = [1.1235 +α,4.8765−α]. Combining this α-
cut and θ0 = 4 with (11) we get ϕ(Y1, . . . ,Y5) = 0.8765|0 + 0.1235|1 which may be
interpreted as “rather accept H”. Now we will try to check how much is our conclusion
robust to the particular shapes of the membership functions describing data.

Let us assume that the core model Y0 is given by these triangular membership
functions while the extended model Yext would be given by a family of all possible
fuzzy numbers having the same core and support as the original observations Y1, . . . ,Y5,
i.e. the neighborhood κ(Yi) is a family of all fuzzy numbers {Z ∈ FN(R) : coreZ =
coreYi,suppZ = suppYi}.

Suppose ζ is the level of acceptance, i.e. ζ (ϕ(Y1, . . . ,Y5)) = μΠ (θ0), whereΠ is now
evaluated for the extended model. It can be shown that the supremum of μΠ(Z1,...,Zn)(θ0)
over all possible functions given by the extended model is obtained for the widest pos-
sible fuzzy confidence interval Π ′ = [1.1235,4.8765] while the infimum is reached for
the most narrow possible fuzzy confidence interval Π ′′ = [2.1235,3.8765]. Hence we
get SUSϕ(Y1, . . . ,Y5) = μΠ ′(4)−μΠ ′′(4) = 1−0 = 1. Since our extended model admits
all possible membership functions we can also say that MSUSϕ = 1. Hence Rϕ = 0,
which means that our test turns out to be very sensitive to data representation.

Now let us consider how sensitive is our test under departures from the core model on
a single observation only. The supremum of μΠ(Z1,...,Zn)(θ0) over single nontriangular
membership function and four triangular is obtained for the fuzzy confidence interval
Π ′ with α-cuts Π ′α = [1.1235+0.8α,4.8765−0.8α] while the infimum is reached for
the fuzzy confidence interval Π ′′ with α-cuts Π ′′α = [1.3234 + 0.8α,4.6765− 0.8α].
Hence we get ASϕ(Y1, . . . ,Y5) = μΠ ′(4)− μΠ ′′(4) = 1− 0.8457 = 0.1543 which pro-
duces ARϕ = 0.8457 and MIRϕ = 0.8457. Thus if we admit departures from the trian-
gular membership function on a single observations only the conclusion proposed by
our test is about 85% robust.

One may also ask whether robustness of the level of acceptance of our test depends
on θ0 in the null hypothesis H : θ = θ0. It can be shown that our test is absolutely
robust if θ0 ∈ (2.1235,3.8765) since then we always get μΠ (θ0) = 1 and if θ0 is lower
than 1.1235 or greater than 4.8765 for which we get μΠ (θ0) = 0. For other values of
θ0 we get Rϕ = 0 provided we allow all possible departures from the triangular fuzzy
numbers. If we consider departures from the core model on a single observation only
for all possible values of the parameter θ0 we obtain 0≤ ASϕ ≤ 0.25.

It is worth noting that these seemingly so poor robustness of our test was obtained
when all possible departures from the triangular membership functions were allowed.
This way our core model has been enlarged too much because we have included into
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Yext even such fuzzy sets which are quite far from the core model. Thus actually it is
not so surprising that under such huge extended model we have obtained so strange
results. Please note, that very similar situations also happen in classical statistics if we
extend the core model too much (e.g., it was shown in [3], [4] and [13] that the size
of any two-sample nonparametric test can come arbitrarily close to 1 when all kind of
dependencies are allowed). It seems that for Yext closer of the core model the estimated
robustness surely will not be so striking.

7 Conclusions

In the paper we have suggested some tools for describing and quantifying robustness to
data representation. We do not claim the these tools are the most efficient ones. Actually
the primary goal of that paper was rather to draw attention to the problem of robustness
to data representation which seems to be very important in statistics for vague data.
Presumably it would be difficult to construct such statistical procedures for fuzzy data
that disregard completely the actual shape of the membership functions applied for
modelling data. However, we may try to eliminate the impact of the particular form of
membership functions as much as possible or even reduce it to the acceptable degree.
Moreover, this aspect cannot substitute the traditional area of studies on robust statistics,
i.e. distributional robustness, but should be considered in parallel. Therefore, the aim of
the robust statistics for vague data is to derive statistical procedures which are both
distribution-free and robust to the choice of the particular form of membership function
describing data.
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Abstract. The linear relationship between interval-valued random sets can arise in different
ways. Recently, a linear model based on the natural arithmetic for intervals has been studied.
In order to test whether the explanatory random set contributes significantly to explain the re-
sponse random set through that linear model, an asymptotic testing procedure is here proposed.
The empirical size of the test is illustrated by means of some simulations. The approach is also
applied to a case-study.

1 Introduction

The linear regression problem between interval-valued random sets has been previously
considered in the literature from different viewpoints (see, for instance, [4, 5, 6, 9],
[8, 12]).

In [8] a linear regression model for compact and convex random sets based on a set-
arithmetic approach has been established, and the estimators for the parameters have
been obtained by applying the least-squares criterion based on a generalized L2-type
metric (see also [7]). In this communication we propose to complement those studies
by proposing a linear independence test in the same context.

The organization of the paper is as follows. In Section 2 some preliminary concepts
about interval-valued random sets and the considered linear regression model are pre-
sented. In Section 3 we suggest a test statistic for the linear independence. The asymp-
totic distribution of the statistic in some particular cases is used to state the asymptotic
testing procedure. In Section 4 we show the results of some simulations in connection
with the empirical significance level. The test is applied to a case-study in Section 5.
Finally, in Section 6 some concluding remarks are commented.

2 Preliminaries

Let Kc(R) denote the class of nonempty compact intervals endowed with the natural
interval-arithmetic induced by the Minkowski addition and the product by a scalar;
namely, A + B = {a + b : a ∈ A,b ∈ B} and λ A = {λ a : a ∈ A}, for all A,B ∈ Kc(R)
and λ ∈ R.

Due to the lack of symmetric element with respect to the addition, the space
(Kc(R),+, ·) is not linear, but semilinear, so it is useful to consider the Hukuhara
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difference between A and B, defined as the interval C so that A = B +C (if it exists)
and denoted in this case as C = A−H B (see [11]). It is possible to assure the exis-
tence of A−H B if, and only if, infA− infB ≤ supA− supB; moreover, in this case
A−H B = [infA− infB,supA− supB].

The space (Kc(R),+, ·) can be embedded onto a convex cone of the square inte-
grable functions L (R) via the mapping s : Kc(R) −→ L (R) defined by s(A) = sA

for all A ∈ Kc(R), where sA denotes the support function of the interval A, namely,
sA : R → R such that sA(u) = supa∈A〈a,u〉 for every u ∈ R, 〈·, ·〉 being the usual inner
product on R. The support function is semilinear, that is, sA+B = sA +sB and sλ A = λ sA,
for A,B ∈ Kc(R) and λ ≥ 0. Furthermore, if A−H B exists, then sA−H B = sA − sB. The
function s allows us to deal with the space L (R), which can be endowed with an inner
product which entails a Hilbertian structure.

The least square method considered in [8] for the estimation process is based on a
generalized metric on Kc(R) via support functions (see [14]), which is defined for any
A,B ∈ Kc(R) as

dK(A,B) =
(∫

S0
(sA(u)− sB(u))(sA(v)− sB(v))dK(u,v)

)1/2
.

where S0 is the unit sphere in R and K : R×R→R is a positive definite and symmetric
kernel such that K(u,v) = K(−u,−v) for any u,v ∈ S0. The support function s is an
isometry between Kc(R) and a cone of the Hilbert subspace L (S0) ⊂ L (R) endowed
with the generic L2-type distance w.r.t. K. Thus, if 〈·, ·〉K denotes the corresponding
inner product, it is possible to express the dK metric on Kc(R) as dK(A,B) = 〈sA −
sB,sA − sB〉K .

Given a probability space (Ω ,A ,P), a mapping X : Ω → Kc(R) is said to be
an interval-valued random set associated with (Ω ,A ,P) if the corresponding vari-
ables infX and supX are real random variables. It can be shown that this condition
is equivalent to the A -βdH measurability, where βdH denotes the σ -field generated
by the topology induced by Hausdorff metric dH on Kc(R). X can be also charac-
terized by means of the random vector (midX ,sprX) where midX = (supX + infX)/2
and sprX = (supX − infX)/2 denote the mid-point and the spread of X , respectively.

If E(|X |) < ∞, where |X |(ω) = sup{|x| : x ∈ X(ω)} for any ω ∈ Ω , the expected
value of X in Kudō-Aumann’s sense (see [2]), is given by the expression

E(X) =
{

E( f )| f : Ω → R, f ∈ L 1(Ω), f ∈ Xa.s.(P)
}
.

The expected value of an interval-valued random set is an element of Kc(R), that can
be expressed in terms of the classical expectations of the real random variables infX
and supX as

[
E(infX),E(supX)

]
. Furthermore, if E(|X |2) < ∞, the variance of X is

defined as σ2
X = E

((
dK(X ,E[X ])

)2
)

(see [10], [13]). It can be also expressed in terms

of the inner product in L (S0) as σ2
X = E

(
〈sX − E(sX ),sX − E(sX )〉K

)
. Finally, the

covariance between two random sets X and Y can be defined via support functions as

σX ,Y = E
(〈

sX −E(sX),sY −E(sY )
〉

K

)
whenever this expectation exists.

Let X ,Y : Ω −→ Kc(R) be two interval-valued random sets, and
{

Xi,Yi
}n

i=1 a
simple random sample obtained from (X ,Y ). The sample mean of X is defined by
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X = (X1 + X2 + . . . + Xn)/n. It should be remarked that the Aumann expected value
for a random set is coherent with the interval-arithmetic in the sense of the Strong Law
of Large Numbers, which means that the preceding concept of sample mean converge
a.s.-[P] to the Aumann expectation (see, for instance, [1]). The sample variance of X
is given by σ̂2

X = dK(X ,X)2 (analogously Y and σ̂2
Y ). Finally, σ̂X ,Y denotes the sample

covariance of X and Y , and it is defined as σ̂X ,Y =
〈
sX − sX ,sY − sY

〉
K .

2.1 Simple Linear Regression Model

The Simple Linear Regression Model between X and Y on the basis of the interval-
arithmetic approach is formalized as Y = aX + ε , where a ∈ R and ε : Ω −→ Kc(R) is
a random set such that E(ε|X) = B ∈Kc(R) and σε,X = 0 (see [9], [8]). The population
linear regression function associated with this model is given by E(Y |x) = ax + B for
any x ∈ Kc(R).

The theoretical constants of the linear regression function can be expressed in terms
of the moments of X and Y as B = E(Y )−H aE(X) and

a =

⎧⎪⎪⎨⎪⎪⎩
σX ,Y

σ2
X

if a ≥ 0

−σ−X ,Y

σ2
X

if a ≤ 0
(1)

The estimates for the regression parameters have been obtained in [8]. In this commu-
nication we restrict ourselves to the case a ≥ 0 as a first step. Note that in this way some
of the difficulties that entail the lack of linearity of the space Kc(R) are avoided.

Following the ideas in [8] for the estimation process, we can obtain the corresponding
estimates for the particular situation in which a ≥ 0.

Let (X ,Y ) be two interval-valued random sets satisfying the considered linear model
Y = aX + ε , with a ≥ 0, and let

{
Xi,Yi

}n
i=1 be a simple random sample obtained from

(X ,Y ). Since Yi = aXi + εi, we have that Yi −H aXi exists for all i = 1, . . . ,n, then the
estimator of a should be searched within the set

Ã =
{

c ≥ 0 : ∃Yi −H cXi, for all i = 1 . . .n
}
. (2)

The set of feasible solutions Ã can be represented by means of a non-empty compact
real interval as [0, â0], with â0 ≥ 0.

The least squares estimation problem is expressed as

Minimize 1
n ∑n

i=1 dK(Yi,aXi + B)2

subject to a ∈ Ã.

The solutions for this minimization problem, and then, the estimators for the regression
model parameters, can be expressed in terms of moments of X and Y as

â = min
{

â0,max
{

0,
σ̂X ,Y

σ̂2
X

}}
(3)

and B̂ = Y −H âX .
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3 Linear Independence Test

Let X ,Y : Ω → Kc(R) be two interval-valued random sets such that Y = aX + ε , with
a ≥ 0 and ε : Ω → Kc(R) fulfilling E(ε|X) = B ∈ Kc(R) and σX ,ε = 0.

The aim in this work is to develop a test to determine whether X contributes to
explain Y through the linear model or not. Since we have assumed that a ≥ 0, this is
equivalent to test

H0 : a = 0
H1 : a > 0

(4)

In this work we propose testing H0 by means of the statistic

Tn =
√

nmax
{

0,
σ̂X ,Y

σ̂2
X

}
(5)

Remark 1. From (3), the intuitive statistic for the test would be

T̃n =
√

nmin
{

â0,max
{

0,
σ̂X ,Y

σ̂2
X

}}
because it uses the information given by the linear model. Unfortunately, the asymptotic
behaviour of T̃n is not easy to find, because the term â0 is difficult to handle. Nonethe-
less, given a significance level α and k ≥ 0 such that P(Tn > k|H0) → α as n → ∞,
it is possible to check that P(T̃n > k|H0) is asymptotically lower or equal to α . Thus,
the critical region {T̃n > k} allows us to solve asymptotically the test (4) by using the
statistic T̃n with a significance level β ≤ α .

Remark 2. Both statistics T̃n and Tn depend on σ̂X ,Y , that converges almost-sure to zero
under H0. Indeed, since the random intervals X and Y are linear independent under H0,
then σX ,Y = 0, and the strong consistency of the covariance guarantees the convergence.

If 0 < σX ,σY ,σX ,Y < ∞, the asymptotic distribution of
√

nσ̂X ,Y under H0 can be shown
to be a normal distribution, with mean value 0 and variance ση , where η is the real-
valued random variable defined as

η = 〈sX − sE(X),sε − sE(ε)〉K .

Since the sample variance σ̂2
X is consistent w.r.t. σ2

X , by means of the Slutsky Theorem
we obtain that

√
nσ̂X ,Y /σ̂2

X converges in law to a distribution N(0,ση/σ2
X).

Finally, since the function max{0, } is continuous, by means of the Continuous
Function Theorem we can assure that Tn converges in law to the corresponding function
of the normal distribution above, that is,

Tn
L−→ max

{
0,N(0,ση/σ2

X)
}
.

Remark 3. The population variance σ2
X is often unknown, so it would be necessary to

estimate it by σ̂2
X and then, the obtained asymptotic distribution corresponds to

σ̂2
X Tn

L−→ max
{

0,N(0,ση )
}
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For this reason, we could solve the test equivalently with the statistic

T ′
n = σ̂2

X Tn =
√

nmax{0, σ̂X ,Y}
whose asymptotic distribution under H0 does not depend on σ2

X .

As a result, we can conclude that to test (4) at the nominal significance level α , H0

should be asymptotically rejected whenever

T ′
n > max

{
0,zα

}
, (6)

where zα is the 100(1−α) fractile of the normal distribution N(0,ση ).

Remark 4. In practice, the population variance σ2
η is usually unknown, so we should

approximate this parameter by its estimator, σ̂2
η .

4 Simulation Studies

To illustrate the empirical behaviour of the asymptotic procedure suggested in Section 3,
some simulations have been carried out. Let X and Y be two interval-valued random sets
such that midX ,midY ∼ N(0,1), sprX ,sprY ∼ χ2

1 are independent random variables.
Samples of intervals {(xi,yi)}n

i=1 for different sizes n have been generated in order to
apply the suggested test. We have developed two different tests. T ′

1 represents the the-
oretical test in which the variance of η is known, and T ′

2 denotes the test in which the
population variance of η is aproximated by σ̂η . In Table 1 we present the percentage
of rejections of H0 at a significance level α = 0.05 in 10,000 iterations for each differ-
ent sample size and each test. The results indicate that the test T ′

2 is conservative. As
expected, in both tests the empirical size is closer to the theoretical one as the sample
size increases, although large sample sizes are required in order to obtain suitable re-
sults. In addition, T ′

1 seems to be more accurate than T ′
2, because T ′

1 uses the population
information instead of the sample one.

Remark 5. In the case of dealing with small samples, asymptotic procedures do not
apply. In these situations, alternative techniques should be developed in order to solve
the linear independence test considered in this work. For instance, conditions to find the
exact distribution of the statistic may be investigated. However, in general they mean

Table 1. Simulation results: empirical size at α = 0.05

Sample size T ′
1 T ′

2

100 5.25 4.56

200 5.24 4.6

500 5.18 4.62

1000 5.11 4.72

5000 5.03 4.75
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the addition of important restrictions to the problem. Bootstrap procedures are another
possible way to solve the test more widely applicable.

5 Case-Study: The Blood Pressure Data-Set

In order to show the application of the asymptotic procedure to test the linear indepen-
dence, we have applied the suggested procedure to a real-life sample data set. Data have
been previously used in some works (see, for instance, [6]). They have been supplied
by the Hospital Valle del Nalón in Asturias (Spain), and correspond to the range of the
systolic X and diastolic Y blood pressure over a day for 59 patients. In Table 2 some of
the sample data are presented (full sample data set is available at [6]).

Table 2. Some data of the ranges of systolic (X) and diastolic (Y ) blood pressure

X 11.8-17.3 10.4-16.1 13.1-18.6 10.5-15.7 12-17.9 10.1-19.4 . . .

Y 6.3-10.2 7.1-11.8 5.8-11.3 6.2-11.8 5.9-9.4 4.8-11.6 . . .

If we test the linear independence between X and Y by using the asymptotic test
suggested in Section 3 at nominal significance level α = 0.05, we obtain that the value
of the typified statistic is T ∗ = 6.027, which is greater than max{0,z0.05}= 1.645. Thus,
the null hypothesis should be rejected, and we conclude that there is a linear relationship
between the fluctuation of the systolic and the diastolic blood pressure in terms of the
model considered in this communication.

6 Concluding Remarks

In this communication, an asymptotic procedure for testing the linear independence
between two interval-valued random sets by considering a particular case has been sug-
gested. Furthermore, its suitability for large samples has been demonstrated by means
of some simulations. It should be underlined that the results are not accurate for moder-
ate and small sample sizes. We are analyzing currently other techniques, like bootstrap
procedures, which are often better in these cases.

In the particular case we have analyzed, only positive coefficients for X have been
considered. In this way some difficulties due to the lack of linearity of Kc(R) are
avoided. We are also analyzing at present the general case.
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Abstract. In this paper we study the problem of independence of two continuous random vari-
ables using the fact that there exists a unique copula that characterizes independence, and that
such copula is of Archimedean type. We use properties of the empirical diagonal to build
nonparametric independence tests for small samples, under the assumption that the underlying
copula belongs to the Archimedean family, giving solution to an open problem proposed by
Alsina et al. [2].

1 Introduction

A bivariate copula is a function C : [0,1 ]2 → [0,1 ] with the following properties: For
every u,v in [0,1 ], C(u,0) = 0 = C(0,v), C(u,1) = u and C(1,v) = v, and for every
u1,u2,v1,v2 in [0,1 ] such that u1 ≤ u2 and v1 ≤ v2, C(u2,v2)−C(u2,v1)−C(u1,v2)+
C(u1,v1) ≥ 0. Also, W (u,v) ≤ C(u,v) ≤ M(u,v), where W (u,v) := max(u + v− 1,0)
and M(u,v) := min(u,v) , where W and M are themselves copulas, known as the
Fréchet-Hoeffding lower and upper bounds, respectively. The diagonal section of a bi-
variate copula, δC(u) := C(u,u) , is a nondecreasing and uniformly continuous function
on [0,1 ] where: i) δC(0) = 0 and δC(1) = 1; ii) 0≤ δC(u2)− δC(u1)≤ 2(u2−u1) for
all u1,u2 in [0,1 ] with u1≤ u2 ; iii) max(2u−1,0)≤ δC(u)≤ u. A copula C is said to be
Archimedean, see [17], if C(u,v) = ϕ [−1][ϕ(u)+ϕ(v) ], where ϕ , called the generator
of the copula, is a continuous, convex, strictly decreasing function from [0,1 ] to [0,∞ ]
such that ϕ(1) = 0 , and ϕ [−1] is the pseudo-inverse of ϕ given by: ϕ [−1](t) := ϕ−1(t)
if 0 ≤ t ≤ ϕ(0), and ϕ [−1](t) := 0 if ϕ(0) ≤ t ≤ ∞ . Its diagonal section is given by
δC(u) = ϕ [−1][2ϕ(u) ] . One may ask, as observed in [6], given δ , what can be said
about ϕ ? The following result is part of what was proved in [9] and [3]:

Theorem 1. If C is an Archimedean copula whose diagonal δ satisfies δ ′(1−) = 2 then
C is uniquely determined by its diagonal.

From now on we will refer to the condition δ ′(1−) = 2 as Frank’s condition. An im-
portant example of an Archimedean copula that satisfies Frank’s condition is the case of
the product copula Π(u,v) = uv , which characterizes a couple of independent contin-
uous random variables, via Sklar’s Theorem [20], and so it is uniquely determined by
its diagonal section δΠ (u) = u2. Frank’s condition is satisfied by 13 out of 22 copulas
in the catalog of Archimedean copulas provided by [17].

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 118–125, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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2 The Empirical Diagonal and Some Properties

In the case of Archimedean bivariate copulas, the diagonal section contains all the in-
formation we need to build the copula, provided that Frank’s condition δ ′(1−) = 2 is
satisfied, and in such case this leads us to concentrate in studying and estimating the
diagonal. The main benefit of this fact is a reduction in the dimension of the estimation,
from 2 to 1 in the case of bivariate copulas.

Let S := {(x1,y1), . . . ,(xn,yn)} denote a sample of size n from a continuous random
vector (X ,Y ) . The empirical copula is the function Cn given by (see [17])

Cn

(
i
n
,

j
n

)
=

1
n

n

∑
k=1

1{xk ≤ x(i) , yk ≤ y( j)} ,

where x(i) and y( j) denote the order statistics of the sample, for i and j in {1, . . . ,n} , and

Cn( i
n ,0) = 0 = Cn(0, j

n) . The domain of the empirical copula is the grid {0,1/n, . . .(n−
1)/n,1}2 and its range is the set {0,1/n, . . . ,(n−1)/n,1}.
Remark 1. The domain of the empirical copula is just a rescaling of the set {0,1, . . . , n}.
Hence the empirical copula can be thought as equivalent to a discrete copula as noticed
in [15] and [16]. Moreover, an empirical copula is an example of an irreducible discrete
copula as defined in [13]. An empirical copula is not a copula, but a (two-dimensional)
subcopula, for details of subcopulas see [17]. We should notice also the following
relationship between the empirical copula and the empirical joint distribution function
Hn : Cn( i

n , j
n ) = Hn(x(i),y( j)).

Definition 1. The empirical diagonal is the function δn( j/n) := Cn( j/n, j/n) for j =
0,1, . . . ,n , and δn(0) := 0.

It is clear from above that δn is a nondecreasing function of j . Moreover, by Fréchet-
Hoeffding bounds for subcopulas we have that max(2 j/n−1 ,0)≤ δn( j/n)≤ j/n , and
it is also straightforward to prove that the difference δn(( j+1)/n)−δn( j/n) equals one
of the values {0,1/n,2/n}. These properties also follow from properties of the diagonal
section in discrete copulas and quasi-copulas, see [1] or [14].

We will call an admissible diagonal path any path {δn( j/n) : j = 0,1, . . . ,n}
satisfying the Fréchet-Hoeffding bounds, that is any path between the paths
{max(2 j/n−1,0) : j = 0,1, . . . ,n} and { j/n : j = 0,1, . . . ,n}, with jumps of size 0,1/n,
or 2/n between consecutive steps. The proof of the following theorem is in [7]:

Theorem 2. Let S = {(X1,Y1), . . . ,(Xn,Yn)} be a random sample from the random
vector of continuous random variables (X ,Y ) . If X and Y are independent and if
T = (t0 = 0,t1, . . . ,tn−1,tn = 1) is an admissible diagonal path, then

Pr
[

T = (t0 = 0,t1, . . . ,tn−1, tn = 1)
]
=

1
n!

n

∏
j=1

f ( j) ,

where, for j = 1, . . . ,n : f ( j) = 1 if n(t j− t j−1) = 0; f ( j) = 2( j−nt j−1)−1 if n(t j−
t j−1) = 1; and f ( j) = ( j−1−nt j−1)2 if n(t j− t j−1) = 2.
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3 A Nonparametric Test for Independence under the
Archimedean Family of Bivariate Copulas

In this section we give solution to an open problem proposed in [2] and [3]:

Can one design a test of statistical independence based on the assumptions
that the copula in question is Archimedean and that its diagonal section
is δ (u) = u2 ?

As a corollary of Sklar’s Theorem, see [20, 19, 17], we know that if X and Y are contin-
uous random variables, then X and Y are independent if and only if their corresponding
copula is C(u,v) = uv . It is customary to use the notation Π(u,v) := uv, and to call
it the product or independence copula. Recall that the product copula is Archimedean
and it is characterized by the diagonal section δΠ (u) = u2 . If we are interested in ana-
lyzing independence of two continuous random variables, the previous results suggest
to measure some kind of closeness between the empirical diagonal and the diagonal
section of the product copula. Moreover, a nonparametric test of independence can be
carried out, as suggested by [2, 21], using the diagonal section. Let (X ,Y ) be a random
vector of continuous random variables with Archimedean copula C , then the following
hypothesis are equivalent:

H0 : X and Y are independent ⇔ H∗0 : C =Π ⇔ H∗∗0 : δC(u) = u2. (1)

Using the results of the previous sections, we wish to propose a statistical test based on
the empirical diagonal because under H0 we know the exact distribution of the empirical
diagonal (Theorem 2) and so we could theoretically obtain the exact distribution of any
test statistic based on it. A first idea would be to work with a Cramér-von Mises type
test statistic based on the empirical diagonal:

CvMn :=
1

n−1

n−1

∑
j=1

(
δn

( j
n

)
− j2

n2

)2

, (2)

rejecting H0 whenever CvMn ≥ kα for α a given test size. The performance of a
test based on (2) will be analyzed later in a short simulation study. Under some
Archimedean families, a test based on (2) can be improved under certain alternatives
by the following idea: It is straightforward to verify that under H0 the expectation
E [δn( j/n) ] = δΠ ( j/n) = j2/n2 so we define for j = 1, . . . ,n−1 the quotient ξ ( j/n) :=
|δn( j/n)− j2/n2|/( j/n−max(2 j/n− 1,0)) as a way of measuring pointwise close-
ness to independence, noticing that the denominator just standardizes dividing by the
distance between the Fréchet-Hoeffding bounds at point j/n , in the spirit of a correction
as in [4]. It is straightforward to verify that 0≤ ξ ( j/n)≤max( j/n , 1− j/n)≤ 1−1/n.
We propose as a test statistic

Sn :=
1

n−1

n−1

∑
j=1
ξ
( j

n

)
, (3)

rejecting H0 whenever Sn ≥ k1(α) , for α a given test size. Before we proceed, let
us denote by δM(u) = u and δW (u) = max(2u− 1,0) the upper and lower Fréchet-
Hoeffding diagonal bounds, respectively. For u in [0,1 ] the average distance between
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δΠ (u) and δM(u) is 1/6 while the average distance between δΠ (u) and δW (u) is
1/12 , this means that the diagonal that represents independence is, on average, twice
closer to the lower than to the upper Fréchet-Hoeffding diagonal bound, thus inde-
pendence is far from being in the middle of such bounds, and so we should con-
sider the possibility of taking this into account in defining a test statistic. We define
h( j/n) := ( j/n− j2/n2)/( j2/n2−max(2 j/n− 1,0)) as a factor to be multiplied by
ξ ( j/n) for those observations for which δn( j/n)< j2/n2, in order to compensate some-
how the non-equal closeness of the independence diagonal to the Fréchet-Hoeffding
bounds. In other words, let us define ν( j/n) := h( j/n)ξ ( j/n) if δn( j/n) < j2/n2, and
ν( j/n) := ξ ( j/n) if δn( j/n)≥ j2/n2.

We have that h( j/n) is symmetric with respect to 1/2 and that 1≤ h( j/n)≤ h(1/n)=
h(1−1/n) = n−1 . We now propose the following test statistic

An :=
1

n−1

n−1

∑
j=1
ν
( j

n

)
, (4)

rejecting H0 when An ≥ k2(α) , for α a given test size. The test statistics (3) and (4)
alone lead to biased tests of independence, but an appropriate combination of both leads
to an approximately unbiased independence test, by using the decision rule

reject H0 whenever Sn ≥ k1 or An ≥ k2 , (5)

where Prob
({Sn ≥ k1}∪{An ≥ k2}|H0

) ≤ α, for k1 and k2 chosen appropriately, ac-
cording to a given test size α. From their definitions it is immediate to verify that
0 < Sn ≤ An ≤ 3/4−1/4n. Even though the election of (k1,k2) is not unique, in order
to obtain an approximately unbiased test, a good choice for the alternative hypotheses
we will consider is (k1,k2) such that α1 = Pr(Sn ≥ k1 |H0) ≈ Pr(An ≥ k2 |H0) = α2 .
We cannot prove this in general for all possible alternatives since the power of the test
for θ �= θ0 depends on the distribution under the alternative hypothesis, but it seems to
work adequately in the following simulations for the given alternatives.

Since the main goal of the present work is to give solution to the open problem pro-
posed by [2], building the required independence test, we include a short simulation
study just to show that the proposed tests work, without pretending that they are ex-
tremely powerful, and we made some comparisons against a few well-known indepen-
dence tests, without pretending that they constitute an exhaustive list of independence
tests:

• Spearman’s test, see [11].
• The modified Hoeffding test as introduced in [5].
• A test in [12].

The simulated power comparisons presented here were obtained with sample sizes
n = 15,50 , α = 0.05. Every Monte Carlo experiment reported here has been sim-
ulated 10,000 times, using some one-parameter Archimedean and Non-Archimedean
copulas as alternatives. In both cases we will consider families of copulas {Cθ } with
one-dimensional parameter θ such that there exists a unique θ0 such that Cθ0 = Π or
limθ→θ0 Cθ = Π . The null hypothesis (1) becomes H0 : θ = θ0 versus the alternative
H1 : θ �= θ0.
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Fig. 1. Left: EGB vs CvM under Raftery. Right: EGB vs CvM under Frank

We will denote by CvM and EGB the tests proposed by the authors in (2) and (5),
respectively. Under some families of copulas, there is a clear outperformance of EGB
over CvM, for example, with the Raftery family as alternative; but under some other
families it is almost the opposite, for example, with the Frank family as alternative,
see Fig. 1. The proposed tests EGB and CvM will be compared against the already
mentioned tests: R (Spearman), B ([5]), and V ([12]).

Archimedean alternatives. We compared the test powers for H0 : θ = 0 against H1 :
θ �= 0 under the following alternative families of Archimedean copulas, for details see
[17]: Clayton, Frank, Nelsen’s catalog number 4.2.7, Ali-Mikhail-Haq, and Gumbel-
Barnett. In all cases these copulas satisfy Cθ =Π if and only if θ = 0 , or limθ→0 Cθ =
Π , and satisfy Frank’s condition δ ′(1−) = 2 . For example, for the Clayton family see
Fig. 2.

Non-Archimedean alternatives. An obvious question is what happens with the pro-
posed EGB and CvM tests outside the Archimedean world. As proved in [10] it is pos-
sible to build copulas different from the product (or independence) copulaΠ(u,v) = uv
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with the same diagonal as Π , but they are singular, and such copulas rarely appear in
real problems. What really might be an issue for the proposed EGB and CvM tests is
the fact that there are absolutely continuous non-Archimedean copulas which have the
same diagonal as Π , as proved in [8], or as a consequence of the results in [18], so
outside the Archimedean world the proposed EGB and CvM tests may face dependence
structures that they will not be able to detect. Anyway, we performed similar simulation
studies under some well-known non-Archimedean families of copulas, with surprising
results. We compared the test powers for H0 : θ = θ0 against H1 : θ �= θ0 under the
following alternative non-Archimedean families of copulas: Raftery, Cuadras-Augé,
Farlie-Gumbel-Morgenstern, and Plackett (for details of these families see [17]). In
all cases these copulas satisfy Cθ =Π if and only if θ = θ0 , or limθ→0 Cθ = Π , with
θ0 = 0 for the first three families, and θ0 = 1 for the last one.

Summary of results. We made a summary of the power comparisons in the format
suggested by [12]: For each test statistic, we have calculated the difference between
the power of the test and the maximal power of the tests under consideration at the
given alternative. For each graph this difference is maximized over the alternatives in
the graph. This number can be seen as a summary for the behavior of the test in that
graph, although of course some information of the graph is lost. In Table 1 we present
percentage differences in maximal power of the five tests under comparison at various
alternatives, so that the lower the difference number in the table, the better is the relative
performance of the test.

Table 1. Relative power performance

n = 15 Alternative Copula EGB CvM R B V
Clayton 31 43 35 78 50
Frank 40 37 34 75 54
Nelsen 4.2.7 36 49 5 77 9
Ali-Mikhail-Haq 43 37 33 76 55
Gumbel-Barnett 24 45 13 78 44
Raftery 19 29 29 5 31
Cuadras-Augé 25 25 37 0 41
Farlie-Gumbel-Morgenstern 48 37 32 77 57
Plackett 42 38 33 73 53

n = 50 Alternative Copula EGB CvM R B V
Clayton 27 32 24 56 44
Frank 42 27 24 50 52
Nelsen 4.2.7 28 49 22 70 15
Ali-Mikhail-Haq 40 28 24 50 53
Gumbel-Barnett 20 33 8 58 42
Raftery 4 31 32 20 34
Cuadras-Augé 12 16 32 8 37
Farlie-Gumbel-Morgenstern 44 26 25 51 53
Plackett 40 26 18 43 49
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In practice, when using a nonparametric test for independence we usually do not
know what alternative we are dealing with, so what is valuable about a test is its ability
to maintain an acceptable performance under different alternatives, rather than being
the best under specific ones. In this sense, it seems that in general terms, the R test
would be the best choice among the tests considered, followed by the EGB and CvM
proposed tests.

4 Final Remark

If the underlying copula of a random vector (X ,Y ) is of the Archimedean type, indepen-
dence tests can be carried out by defining appropriate test statistics based on the empir-
ical diagonal. Such statistics are discrete random variables and their exact distribution
may be obtained using Theorem 2, so no asymptotic approximations are required, which
may be specially helpful with small samples.
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Štěpán, J. (eds.) Distributions with Given Marginals and Moment Problems, pp. 129–136.
Kluwer Academic Publishers, Dordrecht (1997)

11. Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods. Wiley-Interscience, New
York (1999)

12. Kallenberg, W.C.M., Ledwina, T.: Data-driven Rank tests for independence. J. Amer. Stat.
Assoc. 94, 285–301 (1999)
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20. Sklar, A.: Fonctions de répartition à n dimensions et leurs marges. Publ. Inst.Statist. Univ.

Paris 8, 229–231 (1959)
21. Sungur, E.A., Yang, Y.: Diagonal copulas of Archimedean class. Comm. Statist. Theory

Methods 25, 1659–1676 (1996)



Defuzzification of Fuzzy p-Values
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Abstract. We provide a new description of the notion of fuzzy p-value, within the context of
the theory of imprecise probabilities. The fuzzy p-value is viewed as a representation of a certain
second-order possibility measure. According to Walley, any second-order possibility measure
can be converted into a pair of lower and upper probabilities. Thus, we can convert the fuzzy
p-value into an interval in the real line. We derive a construction of imprecise (but non fuzzy)
tests, which are formally similar to recent tests used to manage with set-valued data.

Keywords: Imprecise probabilities, Hypothesis testing, Fuzzy p-value, Second-order possibility
measure.

1 Introduction

Uncertainty about measurements arises naturally in a variety of circumstances (see [7]
for a detailed description). This is the reason why the development of procedures for
hypothesis testing with imprecise observations has recently gained increasing attention.
When the data set contains intervals rather than points, we are not always able to take
a clear decision about the null hypothesis. In the recent literature, imprecise tests are
proposed to deal with such situations (see [7], for instance). According to this approach,
an interval of upper and lower bounds of the critical value can be computed from the
data set. When both bounds are on one side of the significance level, the decision (reject
or accept) is clear. But when that interval and the significance threshold do overlap, we
are not allowed to take a decision. In such situations, multi-valued test functions are
defined. They can take the values {1} (reject), {0} (accept) and {0,1} (undecided). This
idea has been extended to the case of fuzzy-valued samples, under different approaches.
Specifically, Filtzmoser & Viertl [8] and Denœux et al. [6] independently introduce the
concept of fuzzy p-value. The concept of fuzzy test is then derived in a natural way
by Denœux et al. [6]. But what should we do when a crisp decision is needed? They
propose a particular defuzzification of the test output, in order to take a decision. Here
we will propose an alternative construction, based on an interval-valued assignation for
the critical level. We will justify why such defuzzification of the fuzzy p-value makes
sense. We will show that it is in accordance with the possibilistic interpretation of fuzzy
random variables developed in [3].

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 126–132, 2008.
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2 Fuzzy p-Values and Fuzzy Tests

2.1 Fuzzy p-Value Associated to a Fuzzy Random Sample

Let X∗ : Ω → R be a random variable with distribution function F∗ and let X∗ =
(X∗1 , . . . ,X∗n ) : Ω n → Rn be a simple random sample of size n from F∗ (a collection
of n iid random variables with common distribution F∗. They represent n independent
observations of X∗.) Let now the Borel-measurable mapping ϕ : Rn → {0,1} represent
a non-randomized test for

H0 : θ ∈Θ0 versus H1 : θ ∈Θ1.

Both hypotheses refer to a certain parameter of the df F∗. We will denote by R
the critical region of ϕ , i.e., R = {x ∈ Rn :ϕ(x) = 1}. Let supθ∈Θ0

Eθ (ϕ(X)) =
supθ∈Θ0

Pθ (Reject H0) denote the size of the test ϕ . Suppose that for every α ∈ (0,1)
we have a size α test ϕα with rejection region Rα and let x∗ = (x∗1, . . . ,x

∗
n) a realization

of the sample. The p-value of x∗ is defined as the quantity pval(x∗) = inf{α :x∗ ∈ Rα}.
Let us now assume that we have got imprecise information about x∗, and such impre-

cise information is given by means of a fuzzy subset of Rn, x̃ ∈F (Rn). According to
the possibilistic interpretation of fuzzy sets1, x̃(x) represents the possibility grade that
the “true” realization x∗ coincides with the vector x. Denœux et al. [6] and Filzmoser &
Viertl [8] independently extend the concept of p-value, introducing the notion of fuzzy
p-value. Each of those papers deals with a specific problem, but both definitions lead
to the same general notion. We will call the fuzzy p-value of the fuzzy sample x̃ to the
fuzzy set ẽxt(pval)(x̃) determined by the membership function:

ẽxt(pval)(x̃)(p) = sup{x̃(x) :∃x ∈ Rn, with pval(x) = p}, ∀ p ∈ [0,1]. (1)

According to the possibilistic interpretation of fuzzy sets, the membership
ẽxt(pval)(x̃)(p) represents the possibility grade of the equality pval(x∗) = p, accord-
ing to the imprecise information we have about x∗ described by x̃. The last fuzzy set is
closely related to the nested family of sets (pval(x̃δ ))δ∈[0,1] defined as follows:

pval(x̃δ ) = {pval(x) :x ∈ x̃δ}, ∀δ ∈ [0,1].

For some particular situations studied in [6] and [8], it is the family of δ−cuts of
ẽxt(pval)(x̃). In the general case, it is just a gradual representation of the fuzzy p-value.
In other words, the membership function of ẽxt(pval)(x̃) can be derived from such nested
family as follows:

ẽxt(pval)(x̃)(p) = sup{δ : p ∈ pval(x̃δ )}.
But we should assume some continuity properties to assure that (pval(x̃δ ))δ∈[0,1] is the
family of δ−cuts. In general, only the following relation holds:

[pval(x̃)]δ ⊆ pval(x̃δ )⊆ [pval(x̃)]δ , ∀δ ,
where [pval(x̃)]δ and [pval(x̃)]δ respectively denote the strong and the weak δ−cut.

1 We show in [2, 3] some specific situations where such a membership function is derived from
an imprecise perception of some x∗.
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2.2 Fuzzy Test Associated to the Fuzzy p-Value

First of all, let us specify the meaning of the expression “fuzzy test” in our context:
The null and the alternative hypotheses are referred to the distribution of the original
random variable, F∗, so they are customary hypotheses in usual statistical problems.
But the test is a fuzzy-valued function, i.e., it is a mapping that assigns, to each possible
fuzzy sample x̃ ∈F (Rn), a fuzzy subset of {0,1}. That fuzzy subset reflects the pos-
sibility grades of rejection and acceptance of the null hypothesis, in accordance with
the information provided by the fuzzy random sample. Some recent papers in the liter-
ature about statistics with imprecise data fit this formulation (see [6], for instance.) Let
the reader notice that this approach is not related to other different works in the fuzzy
statistics literature (see [9] for a detailed description), where the test functions are crisp,
but they are referred to a certain parameter of the probability distribution induced by
a fuzzy random variable on a certain σ -algebra of fuzzy events. This approach would
not be useful in our context, where the frv represents the imprecise description of an
otherwise standard random variable (see [1, 3, 4] for more detailed comments.)

In this paper, we will follow Denœux et al. [6] to construct a fuzzy test from a fuzzy
p-value function. They specify the calculations for the Kendall and the Mann-Whitey-
Wilcoxon tests. We will give here a more general description.

Let (ϕα )α∈(0,1) be a family of tests for H0 against H1, where ϕα : Rn → {0,1} is

a test of size α, for each α ∈ (0,1). Let pval : Rn → [0,1] and ẽxt(pval) : F (Rn)→
F ([0,1]) respectively denote the crisp and the fuzzy p-value functions, in accordance
with the formulae given in the last section. We can construct the fuzzy test ϕẽxt(pval)

from ẽxt(pval) as follows:

ϕẽxt(pval)
(x̃)(1) = sup{ẽxt(pval)(x̃)(p) : p≤ α}, and

ϕẽxt(pval)
(x̃)(0) = sup{ẽxt(pval)(x̃)(p) : p > α}.

According to the interpretation of ẽxt(pval)(x̃)(p), the membership value
ϕẽxt(pval)

(x̃)(1) represents the possibility grade that pval(x∗) is less than or equal
to α or, in other words, the possibility that x∗ belongs to the rejection region. Similarly,
ϕẽxt(pval)

(x̃)(0) represents the possibility of accepting (no rejecting) the null hypothesis.
Thus, ϕẽxt(pval)

(x̃) represents a fuzzy decision. In the cases where a crisp decision is
needed, this fuzzy subset may be defuzzified. Denœux et al. [6] suggest the following
rule: rejecting the null hypothesis whenever ϕẽxt(pval)

(x̃)(1) > ϕẽxt(pval)
(x̃)(x̃)(0) and

accepting (no rejecting) it otherwise. In Section 3, we will propose a different rule
based on the theory of imprecise probabilities. First, we need to give an alternative
description of the fuzzy p-value.

2.3 An Alternative Approach to the Concept of Fuzzy p-Value

Let us now give an alternative approach to the notion of fuzzy p-value. Let us first
consider, for each particular realization x ∈ Rn, the Borel measurable mapping D(x) :
Rn → {0,1} defined by:
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D(x)(y) =

{
1 if pval(y) < pval(x)
0 otherwise.

D(x)(y) takes the value 1 when the sample y is “less compatible” with the null hypoth-
esis than x is. Thus, for a fixed x ∈ Rn, we have:

sup
θ∈Θ0

Pθ (D(x) = 1) = sup
θ∈Θ0

Pθ ({y ∈ Rn :pval(y) < pval(x)}).

Let us now remind that ϕα is assumed to be a test of size α , i.e.,

sup
θ∈Θ0

Eθ (ϕα (X)) = sup
θ∈Θ0

Pθ (Rα) = α.

Hence, we can prove that D(x) satisfies the equality:

sup
θ∈Θ0

Pθ (D(x) = 1) = pval(x).

For the sake of simplicity, let us assume that the sizes of the α−tests are associated to
a certain value of the parameter θ0 ∈Θ0, i.e., let us assume that:

sup
θ∈Θ0

Pθ (Rα) = Pθ0(Rα) = α, ∀α ∈ (0,1).

(The above condition holds, for instance, when the null hypothesis is simple and also for
the most common unilateral and bilateral tests.) In that case, D(x) is a Bernoulli random
variable with parameter pval(x), under the distribution Fθ0 . In other words, pval(x) =
Pθ0({D(x) = 1}), ∀x ∈ Rn. (The p-value of x represents the probability, under the null
hypothesis, of getting a sample which is “less compatible” with H0 than x is.) Let X
represent the class of binary random variables that can be defined on Rn and let us now
use the extension principle to extend D : Rn → X to F (Rn). I.e., let us define the
mapping ẽxt(D) : F (Rn)→F (X ) as follows:

ẽxt(D)(x̃)(Z) = sup{x̃(x) :D(x) = Z}, ∀Z ∈X .

Let us note that ẽxt(D)(x̃) is a possibility distribution over X and represents our im-
precise information about D(x∗), according to our imprecise perception of the realiza-
tion x∗, represented by x̃. More specifically, for each binary random variable Z ∈X ,
ẽxt(D)(x̃)(Z) represents the possibility grade that D(x∗) coincides with Z. Each binary
random variable induces a Bernoulli distribution, B(p). Thus, according to [3], we can
derive a possibility distribution on the class of the Bernoulli measures. From now on,
we will denote the class of all Bernoulli distributions by P℘({0,1}), since it is the class
of probability measures that can be defined over℘({0,1}). This possibility measure,
ΠΠΠ x̃, is determined by the possibility distribution πππ x̃ : P℘({0,1})→ [0,1]:

πππ x̃(B(p)) = sup{D(x̃)(Z) :PZ ≡ B(p)}, ∀ p ∈ [0,1].

In words, πππ x̃(B(p)) represents the degree of possibility that the probability measure
B(pval(x∗)) induced by D(x∗) coincides with B(p). In other words, πππ x̃(B(p)) represents
the degree of possibility of the equality pval(x∗) = p. Mathematically,
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πππ x̃(B(p)) = sup{D(x̃)(Z) : PZ ≡ B(p)}= sup{D(x̃)(Z) : P(Z = 1) = p}
= sup{x̃(x) :P(D(x) = 1) = p}= ẽxt(pval)(x̃)(p), ∀ p ∈ [0,1].

Summarizing, the fuzzy p-value is closely related to a certain second-order possibility
measure [5]. Section 3 will be based on this alternative description of the fuzzy p-value.

3 Defuzzification of the Fuzzy p-Value

In Section 2.1 we have shown how the fuzzy p-value can be interpreted in terms of a
second order possibility measure. In fact, ẽxt(pval)(x̃) represents a possibility distribu-
tion over the class of possible values of the parameter of a Bernoulli random variable,
and we have identified it with a second-order possibility measure ΠΠΠ x̃ defined over the
class of all Bernoulli distributions. According to Section 2.1, ΠΠΠ x̃ and ẽxt(pval)(x̃) are
connected by the formula:

ẽxt(pval)(x̃)(p) = πππ x̃(B(p)) =ΠΠΠ x̃({B(p)}) (2)

According to Walley [10], any second-order possibility measure (which is an upper
probability over the class of standard probabilities) can be reduced into a pair of upper
and lower probabilities. Let us briefly describe Walley’s procedure in our particular
situation. We will consider the product space P℘({0,1})×℘({0,1}) and:

• The possibility measureΠΠΠ x̃ on P℘({0,1}). (In our particular problem, it represents
our imprecise knowledge about the probability distribution of the random variable
D(x∗).)

• The “transition probability” P1
2 : P℘({0,1}) ×℘({0,1}) → [0,1] given by the

formula:
P1

2(A,P) := P(A), ∀A ∈℘({0,1}),P∈P℘({0,1}).
(It represents the following conditional probability information: if P were the true
Bernoulli distribution associated to D(x∗), then the probability of occurrence of the
event D(x∗) ∈ A should be P(A). In particular, for A = {1}, and P = B(p), the
quantity P1

2({1},B(p)) = p represents the probability of occurrence of the event
D(x∗) = 1 according to the conditional information “D(x∗) induces the probability
measure B(p)”.)

In this setting, Walley constructs, by means of natural extension techniques, an upper-
lower joint model. Thus, the available information about the marginal distribution on
the second space℘({0,1}) is described, in a natural way, by a pair of lower and up-
per probabilities, PW and PW . In particular, PW ({1}) and PW ({1}) will represent the
tightest bounds for the probability of the event D(x∗) = 1 or, in other words, the tightest
bounds for the p-value, pval(x∗). To specify how this reduction is made, let us first recall
that the second-order possibility measureΠΠΠ x̃ can be identified with the class of second-
order probability measures {P :P≤ΠΠΠ x̃}. If P were the “true” second-order probability
that governs the “random”2 experiment associated to the choice of the “true” Bernoulli

2 Note that we are here interpreting the uncertainty associated to the perception of x∗ as “ran-
domness”, since this imprecise perception is described by a possibility measure, which is, in
turn, an upper probability.
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distribution, then the probability of occurrence of the event {1} (i.e., the “true” p-value)
should be computed as follows (if we combine degrees of belief about events and about
probabilities of events into the same model):∫

P1
2({1},P) dP(P) =

∫
P({1})dP(P).

Since all we know about P is that it is dominated by the possibility measure ΠΠΠ x̃, the
lowest upper bound for the probability of occurrence of the event D(x∗) = {1} is deter-
mined by

PW ({1}) = sup
P≤ΠΠΠ x̃

∫
P1

2({1},P) dP(P) = sup
P≤ΠΠΠ x̃

∫
P({1})dP(P).

Similar arguments lead us to represent the highest lower bound of the probability by:

PW ({1}) = inf
P≤ΠΠΠ x̃

∫
P1

2({1},P) dP(P) = inf
P≤ΠΠΠ x̃

∫
P({1})dP(P).

Thus, the Walley reduction allows us to convert the fuzzy p-value into the crisp interval
[pval(x̃),pval(x̃)] = [PW ({1}),PW ({1})]. Furthermore, according to Walley [10], these
upper and lower bounds can be alternatively computed as follows:

PW ({1}) =
∫ 1

0
Pδ ({1})dδ , PW ({1}) =

∫ 1

0
Pδ ({1})dδ ,

where, for each index, δ ∈ [0,1], Pδ and Pδ are defined as follows:

Pδ ({1}) = sup{Q({1}) :Q ∈P℘({0,1}),ΠΠΠ x̃({Q})≥ δ} and

Pδ ({1}) = inf{Q({1}) :Q ∈P℘({0,1}),ΠΠΠ x̃({Q})≥ δ}.
Theorem 1

Pδ ({1}) = sup[ẽxt(pval)(x̃)]δ and Pδ ({1}) = inf[ẽxt(pval)(x̃)]δ , ∀δ ∈ [0,1].

According to the last theorem, the combination of first and second-order probabilities
into the same model converts the fuzzy p-value, ẽxt(pval)(x̃) into the interval:

pval(x̃) = [pval(x̃),pval(x̃)] =
[∫ 1

0
inf[ẽxt(pval)(x̃)]δ dδ ,

∫ 1

0
sup[ẽxt(pval)(x̃)]δ dδ

]
. (3)

The extreme points of such interval represent the most accurate bounds for the true p-
value, pval(x∗), based on our imprecise knowledge of x∗. Let us denote by ϕpval(x̃) the

multi-valued α−test associated to such interval

ϕpval(x̃)(x̃) =

⎧⎪⎨⎪⎩
{0} if pval(x̃) =

∫ 1
0 inf[ẽxt(pval)(x̃)]δ dδ > α

{1} if pval(x̃) =
∫ 1

0 sup[ẽxt(pval)(x̃)]δ dδ ≤ α
{0,1} otherwise.

The following relation between ϕpval(x̃) and the Denœux et al. [6] defuzzification of

ϕẽxt(pval)
holds:

Theorem 2. defuzDMH(ϕẽxt(pval)
)⊆ ϕpval(x̃).
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According to this result, the multi-valued test proposed in this paper is more times in-
conclusive than the Denœux et al. defuzzification is. I.e., whenever ϕpval(x̃) leads us

to a clear decision (reject or accept the null hypothesis), defuz(ϕẽxt(pval)
) also leads to

the same decision. But, for some fuzzy samples defuzDMH(ϕẽxt(pval)
) is conclusive and

ϕpval(x̃) is not. This could be viewed as an argument against the use of ϕpval(x̃). Neverthe-

less, it is not clear whether a higher number of inconclusive tests is a disadvantage or an
improvement. The dependence between the degree of imprecision of the data-set and
how many times a given test is inconclusive is not clear, and should be further studied
in future works.

4 Concluding Remarks

We have proposed a new construction of crisp tests from fuzzy data, based on the
theory of imprecise probabilities. The new tests are obtained as functions of the
fuzzy p-values associated to the fuzzy samples, but they cannot be obtained as direct
defuzzifications of the initial fuzzy tests.
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Testing ‘Two-Sided’ Hypothesis about the Mean of
an Interval-Valued Random Set
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Abstract. Interval-valued observations arise in several real-life situations, and it is convenient
to develop statistical methods to deal with them. In the literature on Statistical Inference
with single-valued observations one can find different studies on drawing conclusions about
the population mean on the basis of the information supplied by the available observations.
In this paper we present a bootstrap method of testing a ‘two-sided’ hypothesis about the
(interval-valued) mean value of an interval-valued random set based on an extension of the t
statistic for single-valued data. The method is illustrated by means of a real-life example.

Keywords: Random interval, Interval mean, Hypothesis testing.

1 Introduction

In previous papers it has been pointed out that in many real-life situations observations
are essentially (or customary) interval-valued rather than single-valued. For instance,
some observations correspond to ranges or fluctuations (like price fluctuations, blood
pressure fluctuations, income ranges, and so on), or they are engineering/physical data
(as descriptions of amount, bounds, and limits, speed, mass, etc.), or interval-censoring
times, or simply incomplete data which are treated as grouped ones.

In the last decade the interest for the statistical analysis of interval-valued data has
increased, especially in which concerns descriptive aspects. In 2000 Billard and Diday
[3] and Gil et al. [7] (see also [8], [9], [16], for a more detailed study) have considered
different approaches for the regression (and also the correlation in the second one) anal-
ysis of interval-valued data: the symbolic data analysis and the random sets approach.
The last approach has been also considered to deal with other descriptive problems (see,
for instance, [13]).

An approach, which has been shown to be certainly valuable for the statistical man-
agement of interval-valued data, is the one based on the mid-spread (or centre-radium)
approach and the use of interval arithmetic (see, for instance, Gil et al. [8], [9], and
Marino and Palumbo [14]).

In some recent papers (cf. Montenegro et al. [17], Gil et al. [6], González-Rodrı́guez
et al. [10]) we have developed some inferential procedures on the problems of least-
squares regression and correlation between interval-valued random elements. The sta-
tistical analysis of these random elements has been developed by modelling them as
particular random sets, using the set-valued arithmetic and a suitable metric between

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 133–139, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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interval-valued observations. This view allows us to capture the whole information on
the considered problem and, hence, the approach means a sound and operational way
to handle these data.

On the other hand, tests of the hypothesis that a population mean equals a particu-
lar value have been often studied when they refer to single-valued data. The Student’s
t statistics is the best known one when we handle data coming from a normal (or a
nearly normal) population. In case of dealing with interval-valued data the assumption
of normality does not make sense; more precisely, the few models for normally dis-
tributed random intervals become quite restrictive in practice, so it would be more real-
istic to look for asymptotic distribution free results or, even better, to develop bootstrap
techniques.

In this paper, we introduce a bootstrap approach to testing about the interval-valued
mean of an interval-valued random set in a population on the basis of a sample of
interval-valued observations. The introduced test involves a statistic extending the well-
known t, and particularizing to the interval case the test we have developed in previous
papers for fuzzy-valued data (see [11], [15]). In fact, we have paid attention to express
the new statistic in terms of the mids and spreads of intervals, and we conclude that the
statistic can be viewed as a special convex linear combination of the squared Student
statistic of the mids and the squared Student statistic of the spreads.

The result will be finally illustrated with a real-life example.

2 Preliminaries

In this paper we will assume that interval-valued observations are considered to be
obtained from random mechanisms which are modelled by means of certain convex
compact random sets.

Let Kc(R) be the class of nonempty compact intervals. Kc(R) can be endowed with
a semilinear structure induced by the product by a scalar and the Minkowski addition
from the usual interval arithmetic, that is,

I + I′ =
[
inf I + inf I′,sup I + supI′

]
, λ · I =

{
[λ · inf I,λ · sup I] if λ ≥ 0
[λ · sup I,λ · inf I] if λ < 0

for I, I′ ∈Kc(R) and any λ ∈ R.
To quantify the deviation/dissimilarity between the hypothetical interval-valued

mean and the true one, we will make use of a metric on Kc(R) extending the Eu-
clidean one, and being easy-to-use and interpret. More precisely, we will consider the
W-distance on Kc(R) which is defined for two intervals I, I′ ∈Kc(R) as follows:

dW (I, I′) =

√∫
[0,1]

[fI(λ )− fI′(λ )]2 d W(λ )

with fI(λ ) = λ sup I +(1−λ ) inf I for all λ ∈ [0,1], and W being formalized by means
of a probability measure on the measurable space ([0,1],B[0,1]) associated with a non-
degenerate symmetric probability distribution on [0,1] (B[0,1] being the Borel σ -field
on [0,1]).
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The W -distance is a particularization of a metric recently introduced (although in
a more general space) by Körner and Näther (see [12], and also [9]). The generalized
distance dW is equivalent to the generalized metric d−→λ by Bertoluzza, Corral, and Salas

[2], with
−→
λ = (λ1,λ2,λ1), λ1 > 0,λ2 = 1−2λ1 ≥ 0,

d−→
λ

(I, I′) =

√∫
[0,1]

[
λ1
(

inf I− inf I′
)2 +λ2

(
mid I−mid I′

)2 +λ1
(

sup I− sup I′
)2
]

dW (λ ).

More precisely, the last generalized metric d−→λ is indeed a particular case of dW in which

W (0)=W (1)= λ1 andW (.5)= λ2. Conversely, by choosingλ1 = 2
∫
[0,1]λ 2 d W(λ )− .5

and λ2 = 2−4
∫
[0,1]λ 2 d W(λ ) we can conclude that d−→λ = dW , so that they correspond

in fact to the same family of distances. It should be remarked that frequently choos-

ing W on [0,1] is more intuitive in practice than choosing
−→
λ , whereas handling

−→
λ be-

comes easier and simpler than handling W , especially when we deal with simulation
studies.

The measure W has no stochastic meaning, although we can formally deal with
it in a probabilistic context and hence we can work with the probability space
([0,1],B[0,1],W ) and define σ2

W =
∫
[0,1](2λ−1)2dW (λ ) = 2λ1 ∈ (0,1]. Due to the sym-

metry assumed for W , we can easily prove for arbitrary I, I′ ∈Kc(R) that

[dW (I, I′)]2 = [mid I−mid I′]2 +σ2
W [spr I− spr I′]2

(with the mid and spread corresponding to the centre and radium of each interval, re-
spectively). It can be concluded that the greater σ2

W the greater the influence of the
Euclidean distance between the spreads of I and I′ on dW (I, I′), this influence attaining
the maximum value 1 at a discrete W with W (0) = W (1) = .5, = 0 otherwise.

Given a probability space (Ω ,A ,P), a mapping X : Ω → Kc(R) being dW -Borel
measurable is said to be an interval-valued random set (IVRS for short) associated
with (Ω ,A ,P). The concept of IVRS can be equivalently formalized in terms of the
Borel σ -field generated by the topology induced by the well-known Hausdorff metric
dH on Kc(R). Borel-measurability guarantees that one can properly refer to concepts
like statistical independence of IVRSs, distribution induced by an IVRS, and so on.

If X : Ω →Kc(R) is an interval-valued random set associated with (Ω ,A ,P), and
E (max{| infX |, |supX |}) <∞, the mean value of X (in Aumann’s sense [1]) is defined
as the compact interval

EA[X ] = [E(infX),E(supX)].

It should be emphasized that several arguments support considering dW in the setting of
this paper in contrast to the better known metric dH . Thus,

• dW is usually more operational and easy to compute and interpret than dH in devel-
oping simple statistics (see, for instance, Blanco et al. [5]);

• Since dW is an L2-type metric, when one considers the extension of the least squares
approach this metric is especially well-adapted; furthermore, EA[X ] is the Fréchet-
expectation when one considers the dW metric, that is,
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min
U∈Kc(R)

E
(
[dW (X ,U)]2

)
= E

([
dW (X ,EA[X ])

]2)
,

whereas
min

U∈Kc(R)
E
(
[dH(X ,U)]2

)
�= E

([
dH(X ,EA[X ])

]2)
;

• Although W has not been fixed, one usually considersW to be the Lebesgue measure
on [0,1]; however, the possibility of choosing different W will allow us to discuss
whether such a choice affects the power of the test in Section 3, that is, to perform
a sensitivity analysis with respect to the choice of W and look for the most suitable
choices.

3 Bootstrap One-Sample Test about the Mean Value of an
Interval-Valued Random Set

The aim of this section is introducing a statistic to test the null hypothesis that the
mean value of an IVRS equals a specified compact interval on the basis of a sample of
(interval-valued) observations from it. For this purpose we will particularize the boot-
strap approach in [11].

Let X : Ω → Kc(R) be an IVRS associated with the probability space (Ω ,A ,P)
and such that max{| infX |, |supX |} ∈ L2(Ω ,A ,P). Let X1, . . . ,Xn be IVRSs which are
independent and identically distributed as X (i.e., a simple random sample from X), and
let X∗1 , . . . ,X∗n be a bootstrap sample obtained from X1, . . . ,Xn. On the basis of the result
in [11], we can state that.

In testing the null hypothesis H0 : EA[X ] = I ∈Kc(R) (which is equivalent to test-
ing H0 : dW

(
EA[X ], I

)
= 0) at the nominal significance level α ∈ [0,1], H0 should be

rejected whenever

πW t2
mid +(1−πW)t2

spr > zα ,

where zα is the 100(1−α) fractile of the bootstrap distribution of

T ∗n = π∗W (t∗mid)
2 +(1−π∗W)(t∗spr)

2

and with

t2
mid =

(
(midX)n−midI

)2

Ŝ2
mid

, t2
spr =

(
(sprX)n− spr I

)2

Ŝ2
spr

, πW =
Ŝ2

mid

Ŝ2
mid +σ2

W Ŝ2
spr

,

where

(midX)n =
n

∑
i=1

midXi
/

n, Ŝ2
mid =

n

∑
i=1

[
midXi− (midX)n

]2/
(n−1),

(sprX)n =
n

∑
i=1

sprXi
/

n, Ŝ2
spr =

n

∑
i=1

[
sprXi− (sprX)n

]2/
(n−1),

and the associated bootstrap estimates
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(t∗mid)
2 =

(
(midX)n− (midX∗)n

)2

(̂S2
mid)

∗
, (t∗spr)

2 =

(
(sprX)n− (sprX∗)n

)2

(̂S2
spr)∗

,

π∗W =
(̂S2

mid)
∗

(̂S2
mid)

∗+σ2
W (̂S2

spr)∗
,

where

(midX∗)n =
n

∑
i=1

midX∗i
/

n, (̂S2
mid)∗ =

n

∑
i=1

[
midX∗i − (midX∗)n

]2/
(n−1),

(sprX∗)n =
n

∑
i=1

sprX∗i
/

n, (̂S2
spr)∗ =

n

∑
i=1

[
sprX∗i − (sprX∗)n

]2/
(n−1).

4 Illustrative Example

The following real-life example illustrates the application of the bootstrap test in Sec-
tion 3 to data supplied by the Department of Nephrology of the Hospital Valle del Nalón
in Langreo (Asturias, Spain). Data in Table 1 correspond to the “range of the pulse rate
over a day” observed in a sample of 59 patients (suffering different types of illness)
from a population of 3,000 who are hospitalized per year.

Values of X are obtained from several registers of the pulse rate of each patient
measured at different moments (usually 60 to 70) over a concrete day. Pulse rate data
are often collected by taking into account simply the lowest and highest registers during
a day (actually, some devices used for this purpose only record and memorize these
extreme values during a day); in these cases, the whole registers for a day and the
associated variation can distort the information on the characteristic which is considered
to be relevant: the range.

The interval [60,100] is often assumed to be the adequate pulse rate fluctuation in a
population of healthy adults. In testing the null hypothesis H0 : EA(X) = [60,100] on
the basis of the available sample information, we will apply the method in Section 3 (by
considering 10,000 bootstrap iterations), and we conclude that:

• If we consider W to be the Lebesgue measure on ([0,1],B[0,1]), the p-value of the
test for the sample information is given by .0003,

• If we consider W to be the discrete measure weighting only the distances between
the extreme points (i.e., W (0) = W (1) = .5) the p-value of the test for the sample
information is given by .0010,

• If we consider W to be the discrete measure weighting uniformly the distances be-
tween the extreme points and the mid’s (i.e., W (0) = W (.5) = W (1) = 1/3) the
p-value of the test for the sample information is given by .0004,

• If we consider W to be the continuous measure associated with a beta distribution
β (2,2) (or, equivalently for purposes of defining dW , W weighting 0 and 1 with
weights equal to .1, and .5 with weight equal to .8), the p-value of the test for the
sample information is given by .0004,
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Table 1. Data on the ranges of pulse rate (X)

X

58-90 54-78 56-133
47-68 53-103 37-75
32-114 47-86 61-94
61-110 70-132 44-110
62-89 63-115 46-83
63-119 47-83 52-98
51-95 56-103 56-84
49-78 71-121 54-92
43-67 68-91 53-120
55-102 62-100 49-88
64-107 52-78 75-124
54-84 55-84 58-99
47-95 61-101 59-78
56-90 65-92 55-89
44-108 38-66 55-80
63-109 48-73 70-105
62-95 59-98 40-80
48-107 59-87 56-97
26-109 49-82 37-86
61-108 48-77

so that H0 is scarcely sustainable (i.e., the range for the pulse rate of the people at the
Nephrology Unit cannot be seriously claimed to coincide with that for healthy people),
irrespectively of the considered measure W .

5 Concluding Remarks

In the above example we have developed a discussion on the p-value of the test for
different choices of the measure W in the considered metric. This discussion suggests a
more general one which could be developed in the future in connection with the effects
of the choice of W on the conclusions of the test (that is a sensitivity analysis concerning
the power of the test) as well as on the ‘imprecision’ (width) of the hypothetical interval
(in this respect, the one considered in the example in Section 4 is rather wide).

On the other hand, another problem to be considered is that concerning one-sided
hypothesis for the situation in this paper. The main problem should be that of formally
stating the hypothesis, since there is no universally accepted total ordering on the space
of intervals.
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Spanish Ministry of Education and Science Grant MTM2006–07501. This financial
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Abstract. In this communication we present a procedure to test whether the variance of a fuzzy
random variable (FRV) is a given value or not by using asymptotic techniques. The variance
considered here is defined in terms of a generalized metric in order to quantify the variability of
the fuzzy values of the FRV about its expected value. We present some simulations to show the
empirical behavior of the test in different situations and an illustrative example to demonstrate its
use in practice.

Keywords: Fuzzy random variable, Generalized metric between fuzzy numbers, Variance of a
fuzzy random variable, Hypothesis testing.

1 Introduction

The concept of FRV, in Puri and Ralescu’s sense [12], is an extension of the notion of
random set. FRVs in this sense are models for random mechanisms associating fuzzy
values with experimental outcomes. The fuzzy mean of a FRV has been introduced
as a fuzzy-valued measure to summarize the “central tendency” of the variable (see
[12]). In this communication, we consider a real-valued variance, defined by Körner and
Näther in [9] and which is based on a generic L2-distance, to measure the dispersion
or variability of the fuzzy values of a FRV about its mean.

Different statistical hypothesis testing problems based on fuzzy data have been stud-
ied previously in the literature. Regarding the one-sample test for the fuzzy mean,
Körner [8] and Montenegro et al. [11] have developed the first asymptotic procedures.
On the other hand, in [10] it has been analyzed the problem of testing hypotheses for
the variance of a FRV in some particular cases.

Studies in [10] include results about hypothesis testing for the variance of simple
FRVs (i.e., those taking on a finite number of different values). The techniques in [10]
have been based on large samples theory and an operational metric on the space of
fuzzy numbers with compact support introduced by Bertoluzza et al. [1]. In this com-
munication we generalize these studies by considering a wider class of non-necesarily
simple FRVs. The results are based on the DK-metric defined by Körner and Näther (see
[9]), and it should be noted that the generalization has required techniques completely
different from those applied in [10].

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 140–146, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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In Section 2 we will introduce the concept of FRV, metric and variance that we will
consider. In Section 3 the one-sample test for the variance will be stated and an asymp-
totic procedure will be proposed. The empirical size of the test will be illustrated by
means of some simulations in Section 4. In Section 5 the approach will be exempli-
fied through a case study and finally we will conclude with some remarks and future
research directions.

2 Preliminaries

Consider the p-dimensional Euclidean space Rp with the usual norm ‖ · ‖. Denote by
Kc(Rp) the class of the nonempty compact convex subsets of Rp and by Fc(Rp) the
class of the compact convex fuzzy sets on Rp, that is, Fc(Rp) = {U : Rp→ [0,1] |Uα ∈
Kc(Rp) ∀α ∈ [0,1]} (where Uα denotes the α-level of the fuzzy set U for all α ∈
(0,1], and U0 is the closure of the support of U).

The space Fc(Rp) can be endowed with a semilinear structure by means of the sum
and the product by a scalar defined by applying Zadeh’s extension principle [14]. This
arithmetic agrees levelwise with the Minkowski sum and the product by a scalar (i.e.,
(U ⊕V )α = Uα +Vα = {u + v |u ∈Uα ,v ∈ Vα} and (λU)α = λUα = {λ u |u ∈ Uα}
for all U,V ∈ Fc(Rp), λ ∈ R and α ∈ [0,1]). On the other hand, it will be useful to
consider the Hukuhara difference of U,V ∈ Fc(Rp), U −H V , which is defined (if it
exists) as the element W ∈Fc(Rp) such that U = V ⊕W .

A key element for the developments in [8] is the support function (see, for instance,
Klement et al. [7]). The support function mapping can be defined as

s : Fc(Rp)−→L (Sp−1× [0,1])

in such a way that s(U) is the support function of U , sU , that is,

sU(u,α) = sup
w∈Uα

〈u,w〉, u ∈ Sp−1, α ∈ [0,1],

where 〈·, ·〉 denotes the inner product in Rp and Sp−1 denotes the unit sphere in Rp, that
is, Sp−1 = {u ∈ Rp |‖u‖= 1}.

The support function preserves the semi-linear structure of Fc(Rp), that is, if U,V ∈
Fc(Rp), λ > 0, then sU+V = sU + sV , and sλU = λ sU . Moreover, if U,V ∈Fc(Rp) are
so that the Hukuhara difference U−H V exists, it can be shown that sU−HV = sU − sV .

Several authors (see, for instance, [7] and [3]) have stated that isometries from
Fc(Rp) onto a cone of the Lebesgue integrable functions L (Sp−1× [0,1]) can be built
on the basis of several metrics by using the support function. In this context, Körner and
Näther [9] consider a generalized family of metrics DK on Fc(Rp), which are given by

D2
K(U,V ) =

∫
(S(p−1)×[0,1])2

(sU(u,α)− sV (u,α))(sU (v,β )− sV (v,β ))dK(u,α,v,β ),

where K is a definite positive and symmetric kernel.
The family of metrics DK represents a generic L2 distance on the Banach space

L (Sp−1× [0,1]), whence each DK induces an isometry between Fc(Rp) and the con-
vex cone s(Fc(Rp))⊂L (Sp−1× [0,1]).
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If 〈·, ·〉K stands for the inner product in L (Sp−1× [0,1]) with respect to the kernel
K and ‖ · ‖K is the norm associated with that inner product, the metrics DK can be
alternatively expressed as

D2
K(U,V ) = 〈sU − sV ,sU − sV 〉K = ‖sU − sV‖2

K .

Given the probability space (Ω ,A ,P), a fuzzy random variable is a DK-Borel mea-
surable mapping X :Ω −→Fc(Rp). This definition is equivalent to the classical Puri
& Ralescu’s one [12] (see [2] and [9]).

Whenever ‖X0‖ = supx∈X0
‖x‖ ∈ L 1(Ω ,A ,P) we can define the fuzzy mean

of X , E(X ), or fuzzy expected value (see [12]), as the unique fuzzy set such that
(E(X ))α = Aumman’s integral of the random set(X )α for all α ∈ [0.1]. If p = 1 it
can be shown that (E(X ))α = [E(inf(Xα),E(sup(Xα )] for all α ∈ [0,1].

Moreover, if E(‖X0‖2) < ∞, we can define the DK-variance (or variance for short)
of X (see [9]) as

σ2
X = E

(
D2

K(X ,E(X ))
)
,

or, equivalently, in terms of the support function,

σ2
X = E

(〈sX − sE(X ),sX − sE(X )〉K
)
.

Finally, to illustrate the empirical behavior of the test, triangular fuzzy numbers in R
will be considered. This kind of fuzzy set is determined by 3 values: the center, the left
spread and the right spread, and its alpha-cuts can be expressed as:(

T (l,c,r)
)
α =

[
c + l (α−1),c + r (1−α)

]
where c ∈ R is the center, l ∈ R+ and r ∈ R+ are, respectively, the left and the right
spread.

3 Stating the One-Sample Testing Problem for the Variance of a
Fuzzy Random Variable

Given a simple random sample of n independent observations, X1, . . . ,Xn, from a FRV
X , the aim of this communication is to test the null hypothesis H0 :σ2

X =σ2
0 versus the

alternative one H1 : σ2
X �= σ2

0 or, equivalently, testing H0 : E
(
D2

K(X ,E(X ))
)

= σ2
0

versus H1 : E
(
D2

K(X ,E(X ))
) �= σ2

0 for a given σ0 ∈R+.
In the same way, we are interested in testing one-sided hypotheses for the variance

of a FRV, that is, testing the null hypotheses H0 : σ2
X ≥ σ2

0 or H0 : σ2
X ≤ σ2

0 .
In this setting the sample mean, X n = 1

n (X1⊕·· ·⊕Xn), will be a fuzzy estimator of

E(X ) and the sample variance, σ̂2
X =

1
n

n

∑
i=1

D2
K (Xi,X n), will be the analogue real-

valued estimator of σ2
X .

To test the considered null hypothesis the following statistic is proposed:

Tn =
√

n
(
σ̂2

X −σ2
0

)√
1
n

n

∑
i=1

(
D2

K (Xi,X n)− σ̂2
X

)2
.
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The properties of the support function and the metric DK guarantee (see [13]) that{√
n
(
σ̂2

X −σ2
0

)}
n

L−→N
(

0,E
(

[D2
K(X ,E(X ))−σ2

0 ]2 )).
In addition, it can be proved (see [13]) that

1
n

n

∑
i=1

(
D2

K (Xi,X n)− σ̂2
X

)2 a.s.−→ E
( [

D2
K(X ,E(X ))−σ2

0

] 2
)
.

Therefore, {Tn}n
L−→N (0,1).

In this way, if the null hypothesis H0 holds then the test statistic Tn is asymptotically
normal.

On this basis, the testing procedure with asymptotic significance level α can be writ-
ten as follows:

Asymptotic testing procedure:

a) Two-sided test
To test the null hypothesis H0 : σ2

X = σ2
0 against the alternative hypothesis H1 :

σ2
X �= σ2

0 , H0 should be rejected whenever |Tn| > z(1−α)/2, where z(1−α)/2 is the
[(1−α)/2]-quantile of the distribution N(0,1). The p-value of this test is approxi-
mately given by p = 2

[
1−Φ(|Tn|)

]
, where Φ is a c.d.f. of a r.v. N (0,1).

b) One-sided tests
(i) To test the null hypothesis H0 : σ2

X ≥ σ2
0 against the alternative H1 : σ2

X <
σ2

0 , H0 should be rejected whenever Tn < zα , where zα is the α-quantile of
the distribution N(0,1). The p-value of this test is approximately given by p =
Φ(Tn).

(ii) To test the null hypothesis H0 : σ2
X ≤ σ2

0 against the alternative H1 : σ2
X > σ2

0 ,
H0 should be rejected whenever Tn > z1−α , where z1−α is the (1−α)-quantile
of the distribution N(0,1). The p-value of this test is approximately given by
p = 1−Φ(Tn).

4 Simulation Studies

In this section we will show that in order to apply in practice the asymptotic one sample
test for the variance of a FRV using the DK metric we need at least moderate or large
sample sizes.

We have considered a triangular FRV X with the left spread behaving as the χ2
3

random variable, center varying as the N(1,2) random variable, and the right spread
behaving as the χ2

8 random variable. In this section, the generalized distance has been
chosen to be the Bertoluzza et al. one [1] with the Lebesgue measures on [0,1]. The
variance of X is, approximately, σ2

X = 6.4437, so the null hypotheses we are going
to consider are H0 : σ2

X = 6.4437, H0 : σ2
X ≥ 6.4437 and H0 : σ2

X ≤ 6.4437. We have
carried out 100000 simulations of the test (which implies a sample error of 0.002 at
most with a confidence of 95%) using the previous asymptotic testing procedures for
two-sided and one-sided tests at some significance levels (β ). The results for different
sample sizes n are gathered in Table 1.
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Table 1. Empirical percentage of rejections under H0

H0 : σ2
X = 6.4437 H0 : σ2

X ≥ 6.4437 H0 : σ2
X ≤ 6.4437

n\100 ·β 1 5 10 1 5 10 1 5 10

50 0.13 1.84 5.30 6.65 13.72 19.56 5.12 10.58 15.63

100 0.20 2.39 6.18 4.30 10.84 16.44 3.18 7.84 12.97

500 0.45 3.50 8.08 2.11 7.17 12.45 1.50 5.53 10.79

1000 0.56 3.78 8.37 1.53 6.29 11.70 1.44 5.59 10.20

5000 0.80 4.67 9.26 1.27 5.67 10.69 1.07 5.02 10.05

10000 0.84 4.77 9.45 1.13 5.57 9.95 0.98 4.94 9.89

Table 1 shows that when n ≥ 1000, the empirical percentage of rejections is quite
close to the nominal significance level. It means that in order to apply the asymptotic
procedure proposed in this communication, large sample sizes are required.

5 Illustrative Examples

The days of certain month are classified in accordance with their temperature (see [10]).
The classes considered in [10] correspond to linguistic “values” like COLD, COOL,
NORMAL, WARM and HOT. According to this classification, the type of day in a
given area during July could be viewed as a fuzzy random variable X whose values
are the preceding linguistic ones, which could be identified by means of some fuzzy
numbers like those with support contained in [8,40] (measured in oC ). We are going to
described them in terms of triangular fuzzy sets represented in Fig. 1.

Example 1. Firstly, we consider the populationΩ1 of the days of July (31 days) during
30 years. Assume that in this period there was 151 COLD, 175 COOL, 199 NORMAL,

Fig. 1. The variable temperature at triangular fuzzy regions
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224 WARM, and 181 HOT days and that a weatherman considers typical a standard
deviation in the “temperature” lower than or equal to 8.66 degrees. Then, to test whether
the standard deviation in Ω1 satisfies such a condition, we can consider the variance
and the test in Section 3. The estimate of the population variance of X in Ω1 is σ̂2

X =
73.8261 and the corresponding p-value is 0.9922, whence the hypothesis of typical
variability cannot be discarded at the usual significance levels.

Example 2. Assume now that the weatherman considers that the deviation in the “tem-
perature” should be equal to 8.66 degrees. We can use again the corresponding test
in Section 3 to obtain a p-value equal to 0.0156. Then the weatherman’s hypothesis
should be rejected at the significance levels 0.05 and 0.1, but it may be accepted at the
significance level 0.01.

6 Concluding Remarks

The main advantage of the asymptotic tests for the variance introduced in this commu-
nication compared with previous works in the literature is that these techniques can be
applied to non-necessary simple FRVs. Moreover, this test can be used for fuzzy data
in Fc(Rp), and not only for fuzzy numbers in Fc(R).

Although this procedure can be easily applied to large samples, the asymptotic results
show that the use of bootstrap techniques for smaller or moderate sample sizes could
be more efficient, as we have proposed in [13].

In addition, the statistic proposed in this communication can be compared with the
classical one (established in terms of a quotient instead of a difference as we proposed
here) in order to analyze similarities and differences.

The theoretical results developed previously are mainly focussed on the significance
level (type I error), so an interesting open problem in connection with this subject is the
study of the power function (type II error) associated with the test in order to establish
its capability. We are currently working on this point as well as on the problem of test-
ing the equality of the variances of two or more FRV’s.

Acknowledgement. The research in this paper has been partially supported by the
Spanish Ministry of Education and Science Grant MTM2006–07501. Its financial sup-
port is gratefully acknowledged.
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1 Departamento de Estadı́stica e I.O. y D.M., Universidad de Oviedo, Oviedo, Spain
2 European Centre for Soft Computing, Mieres, Spain

Abstract. A new measure of skewness for real-valued random variables based on fuzzy tools
has been recently introduced. The measure is derived from certain fuzzy representations of real-
valued random variables which can be used to characterize the distribution of the original vari-
ables through the expected value of the ‘fuzzified’ random variables. In this communication, the
empirical behaviour of an asymptotic testing procedure for the symmetry of real random variables
based on this approach will be examined by simulating different distributions. Some advantages
of the proposed test will be illustrated by means of these simulations.

1 Introduction

In [8] and [3] it was shown the possibility of testing about the goodness-of-fit and the
equality of distributions of real-valued random variables through some testing proce-
dures about fuzzy expected values of certain fuzzifications. Specifically, it was shown
that this approach presents some advantages; among them, a good average empirical be-
haviour in comparison with the usual traditional techniques (like the χ2, Kolmogorov-
Smirnov, and so on).

On the other hand, a new skewness measure based on the fuzzifications in [8] was
proposed in [7]. In this communication, the aim is focused on the empirical analysis of
an asymptotic testing procedure concerning this new measure.

The most commonly used tests for symmetry about a known value for continuous
univariate distributions are based on either linear rank statistics (see [12], [6]), or some
empirical distribution/density function estimators (see [2], [15]). On the other hand,
some tests based on the likelihood ratio are available for discrete distributions (see [5]).
It should be noted that most of these tests are not consistent against any nonsymmet-
ric alternative, although they are asymptotically suitable for detecting alternatives in
particular families of distributions.

The asymptotic test that will be empirically analyzed in this communication is valid
for continuous and discrete distributions, can be used under very mild conditions and is
consistent against any nonsymmetric alternative (see [11]). We will show that moder-
ate/large sample sizes are required to obtain suitable empirical sizes and that the asymp-
totic power is similar or better than the corresponding to that of other methods in many
cases.
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Since the approach is based on the expected value of a fuzzy random variable, in
Section 2 we include some preliminaries concerning these random elements and the
characterization of real distributions through a fuzzy set. In Section 3 we will present the
measure of the symmetry of a random variable about a known value. The performance
of the test will be illustrated with some simulation studies in Section 4. Finally, some
relevant conclusions and future directions related to the study developed in this paper
will be commented.

2 Preliminaries

We will consider the class Fc(R), which contains fuzzy sets U : R→ [0,1] whose α-
levels are nonempty compact intervals of R, that is, Uα ∈Kc(R) for all α ∈ [0,1], where
Uα = {x ∈ R |U(x) ≥ α}) for all α ∈ (0,1] , and U0 is the closure of the support of U .
Zadeh’s extension principle [17] allows us to endow the space Fc(R) with a sum and a
product by a scalar satisfying that

(U +V )α = Uα +Vα = {u + v | u ∈Uα , v ∈Vα}, (λU)α = λUα = {λu | u ∈Uα}

for all U,V ∈Fc(R), λ ∈ R and α ∈ [0,1]. The space (Fc(R),+, ·) is not linear.
Fc(R) can be embedded onto a convex cone of the squared integrable functions

L ({−1,1}× [0,1]) by means of the support function (see [13], [4]). The support func-
tion of U ∈Fc(R) is defined so that sU (u,α) = supw∈Uα 〈u,w〉 for any u ∈ {−1,1} and
α ∈ [0,1], where 〈·, ·〉 denotes the usual inner product in R.

For different statistical studies concerning imprecise random elements, the distance
DK introduced by [14] is especially valuable and easy to handle (see, for instance, [10]).
The DK-distance between two fuzzy numbers U,V ∈Fc(R) is defined by

[DK(U,V )]2 = 〈sU − sV , sU − sV 〉K

=
∫
{−1,1}2×[0,1]2

(
sU(u,α)− sV (u,α)

)(
sU (v,β )− sV (v,β )

)
dK(u,α,v,β )

where K is a positive definite and symmetric kernel. Thus DK is in fact a generic L2

distance on the Banach space L ({−1,1}× [0,1]).
Fuzzy random variables (see [16]) were introduced to model random mechanisms

leading to imprecise values which are modelled by means of fuzzy sets. In this setting,
the fuzzy expected value plays the usual role of a central summary measure.

Given a probability space (Ω ,A ,P), X :Ω →Fc(R) is a Fuzzy Random Variable
(FRV) (in Puri & Ralecu’s sense, 1986) if the α-level mappings Xα :Ω →Kc(R), are
random sets for all α ∈ [0,1], that is, Borel-measurable mappings when the Hausdorff
metric dH is considered on Kc(R). This is equivalent to define an FRV as a DK-Borel
measurable mapping on Fc(R).

If an FRV X is integrably bounded (that is, max{infX0,supX0} ∈ L1(Ω ,A , P)),
its expected value (or mean) is the unique E(X ) ∈ Fc(R) such that

(
E(X )

)
α =

Aumman’s integral of the random set Xα = [infXα ,supXα ] for all α ∈ [0,1]
(see [16]).
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In [3] it is shown that when a real-valued random variable is transformed into a fuzzy-
valued one by simply considering certain triangular numbers centered on the original
values, the expected value of the obtained fuzzy random variable captures all the in-
formation of the original distribution whenever the random variable takes at most 4
different values. This result is used to make inferences about these random variables
with good results. However, in order to establish the characterization for general distri-
butions, more complex fuzzy sets than the triangular ones should be considered. On the
basis of this idea, a family of interesting fuzzy representations is proposed in [8].

Consider the mapping γC : R→Fc(R) which transforms each value x ∈ R into the
fuzzy number whose α-level sets are

(
γC(x)

)
α =[

fL(x)− (1−α)1/hL(x), fR(x)+ (1−α)1/hR(x)
]

for all α ∈ [0,1], where fL : R → R, fR : R → R, fL(x) ≤ fR(x) for all x ∈ R, and
hL : R→ (0,+∞), hR : R→ (0,+∞) are continuous and bijective. The fuzzification γC
can be seen as a modification of a triangular one in which different degrees of curvature
for the infimum and supremum functions are allowed. The curvature will entail different
shapes for the characterizing fuzzy set depending on the distributions.

In [8] it is proved that if X : Ω → R is a random variable and fL(X), fR(X) ∈
L1(Ω ,A ,P), then the function GX : R→ [0,1] such that GX(t) = Ẽ

(
γC ◦X |P)(t) for

all t ∈ R can be interpreted as a [0,1]-valued characteristic function associated with
the distribution of the random variable X . In other words, Ẽ

(
γC ◦X |P)= Ẽ

(
γC ◦Y |P)

if and only if X and Y are identically distributed.

3 Statistical Inferences on a Skewness Measure of RVs

A random variable X : Ω → R is symmetric about a known center θ ∈ R if, and only
if, X −θ and θ −X are identically distributed, that is, F(θ − x) = 1−F(θ + x) where
F denote the cumulative distribution function.

The above characterization of the symmetry of a random variable X can be ex-
pressed in terms of the characterizing fuzzy representation introduced by [8] as fol-
lows: if fL(X − θ ), fL(θ −X), fR(X − θ ), fR(θ − X) ∈ L1(Ω ,A ,P), we have that X
is symmetric about θ if, and only if, Ẽ

(
γC ◦ (X − θ )) = Ẽ

(
γC ◦ (θ − X)

)
and hence

DK

[
Ẽ
(
γC ◦ (X−θ )), Ẽ(γC ◦ (θ −X)

)]
= 0.

Intuitively, the greater this distance the lower the symmetry of X . Thus, in order to
quantify the degree of skewness of X about θ we consider the γC-skewness measure
about θ defined in [7] as

kγC (X ,θ ) =
(

DK

[
Ẽ
(
γC ◦ (X−θ )) , Ẽ (γC ◦ (θ −X)

)])2
.

Under the above conditions, if we consider a simple random sample (X1, . . . ,Xn) ob-
tained from X , the analogue estimator of kγC(X ,θ ) given by

k̂n
γC(X ,θ ) =

[
DK

(
[γC ◦ (X−θ )]n, [γC ◦ (θ −X)]n

)]2
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where [γC ◦X ]n =
1
n

n

∑
i=1

γC ◦Xi, has been proved to be asymptotically unbiased and con-

sistent (see [11]).
On the other hand, testing the null hypothesis H0 : X is symmetric about θ is equiva-

lent to testing whether the FRVs γC ◦ (X−θ ) and γC ◦ (θ −X) have the same expected
value or not, that is,

H0 : Ẽ
(
γC ◦ (X −θ )

)
= Ẽ

(
γC ◦ (θ −X)

)
vs. H1 : Ẽ

(
γC ◦ (X −θ )

)
�= Ẽ

(
γC ◦ (θ −X)

)
, (1)

i.e.,
H0 : kγC(X ,θ ) = 0 vs. H1 : kγC(X ,θ ) �= 0

provided that kγ(X ,θ ) exists.
In [11] the following asymptotic approach to test the symmetry of X about θ has

been stated. Let (X∗1 , . . . ,X∗m) with m ∈ N large enough be a (re-)sample obtained from
(X1, . . . ,Xn):

In testing (1) at the nominal significance level φ ∈ [0, 1], H0 should be rejected
whenever

Tn =
√

n k̂n
γC(X ,θ ) =

√
nDK

(
[γC ◦ (X−θ )]n, [γC ◦ (θ −X)]n

)
> zφ ,

where zφ is the 100(1−φ) fractile of the distribution of the statistic

T ∗n,m =

√
m
[
k̂m
γC

]∗
=
√

mDK

(
[γC ◦ (X∗−θ )]m +[γC ◦ (θ −X)]n,

[γC ◦ (θ −X∗)]m +[γC ◦ (X−θ )]n
)

The distribution of the statistic T ∗n,m can be approximated by MonteCarlo method in
order to compute the p-value of the test.

Remark 1. Note that if n = m the asymptotic test for symmetry is equivalent to use a
bootstrap technique. The empirical conclusions obtained about the test of equality of
(fuzzy) means values of two FRV measured on the same population in [9] indicate that
the bootstrap approach may be more suitable than the asymptotic one for small and
moderated sample sizes.

In the next section, we will examine the empirical behaviour of the proposed test with
different discrete/continuous and symmetric/asymmetric distributions and we will com-
pare this test with other approaches in the literature.

4 Simulation Results

Each simulation is the result of 10,000 iterations of the test at a nominal significance
level .05. We have considered both the asymptotic and the bootstrap version of the
test. The number of bootstrap replications has been 1000, and we have considered m =
10,000 in the asymptotic case.
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The DK-distance considered in the simulations is the (W,ϕ)-distance introduced by
[1] where W and ϕ have been chosen to be the Lebesgue measure on [0,1].

A useful choice of characterizing fuzzy representation is the one determined by
fL(x) = fR(x) = 0,

hL(x) =

⎧⎨⎩
1

1 + x
if x≥ 0

1− x if x < 0

and

hR(x) =
1

hL(x)
for all x ∈ R

This choice provides us with fuzzy sets quite similar to triangular ones, the 1-level set is
the singleton {0}, and it presents a convex curvature in the negative part and a concave
one in the positive one.

Example 1. We have considered test for symmetry about the mean value of different
symmetric distributions: Normal, Cauchy, t Student and binomial.

Table 1 summarizes the obtained results for the percentage of rejections at the nominal
significance level .05 and sample sizes of n = 20,100. On the basis of these simulations,
we get that the behaviour is very similar for all distributions. The bootstrap technique
is much more accurate for the small size and it is conservative. The results are more
similar as the sample size increases.

Example 2. In Table 2 the evolution of the power of the test for different degrees of
asymmetry is shown. We have considered the normal distribution N(4,1) as a case of
symmetric distribution, a χ2

4 as a skewed distribution, and a mixture of the previous
distributions with mixing proportion q = .5 as an intermediate situation. The expected
value of the three variables is 4, thus we will focus on the symmetry about θ = 4.

Table 2 shows that the power of test (i.e. the percentage of rejections at the nominal
significance level .05) is higher for more asymmetric distributions and it increases as
the sample size does.

Example 3. In this example we compare our approach to test the symmetry of random
variables with the results for other methods given in [15]. The sign test (denoted by

Table 1. Empirical percentage of rejections under H0 at significance level α = .05

n = 20 n = 100

Distribution H0 Asymptotic Bootstrap Asymptotic Bootstrap

N(0,1) θ = 0 6.98 4.34 5.24 4.77

Cauchy θ = 0 7.04 4.67 5.33 4.91

t3 θ = 0 7.11 4.56 5.06 4.76

B(5,0.5) θ =2.5 7.46 4.28 5.15 4.89



152 M.A. Lubiano, A. Colubi, and G. González-Rodrı́guez

Table 2. Empirical percentage of rejections under H0 at significance level α = .05

n = 20 n = 100

Distribution Asymptotic Bootstrap Asymptotic Bootstrap

N(4,1) 7.33 4.69 5.24 4.87

.5-mixture 10.03 6.47 15.16 14.09

χ2
4 13.87 8.41 32.44 30.99

N), the signed rank test (T ), and the test (In) based on density estimates studied in [15]
which has good performance for some multimodal densities will be considered. We
have focused on the normal distribution, the t-distribution with 3 degrees of freedom
and some k-mixtures of normal distributions denoted by M(k,μ) whose densities are

fm(x) =
1
k

k−1

∑
i=0

φ(x− iμ+(k−1)μ/2−m)

where φ denotes the standard normal density.
All the distributions considered here are symmetric about θ = 0, however, in order

to establish the comparisons w.r.t. the power, we have also tested the symmetry about
θ = 0.1 and θ = 0.5.

Table 3 shows the obtained percentage of rejections at the nominal significance level
.05 and sample size n = 100. The test considered in this communication has better
power than the other ones in the case of normal distributions, and a similar power with
other unimodal densities as t-distributions. However, for multimodal distributions, it
seems that a better option can always be found, namely, the signed rank test for M(3,3)
and In for M(3,5). It should be noted that all this preliminary results have been made

Table 3. Empirical percentage of rejections under H0 at significance level α = .05

N(0,1) t3

θ N T In kγC N T In kγC

0 5.61 4.9 5.02 5.24 5.79 5.11 4.85 5.06

0.1 13.72 15.94 11.22 16.89 12.65 12.73 10.45 13.24

0.5 97.90 99.75 98.38 99.83 95.17 97.01 94.44 96.72

M(3,3) M(3,5)

θ N T In kγC N T In kγC

0 5.47 4.96 4.13 5.52 5.48 4.95 4.98 5.25

0.1 6.43 6.38 4.79 6.54 6.43 6.03 6.66 6.34

0.5 28.37 43.09 32.90 34.24 26.92 32.76 79.18 19.04
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for a very particular choice of fuzzification, and other fuzzifications should be analyzed
to verify its behaviour in these situations.

5 Concluding Remarks

In this communication some empirical results concerning a new test for symmetry based
on fuzzy tools have been shown. The test can be applied for both continuous and dis-
crete distributions under mild conditions and, on the contrary to what happens with
most of the usual procedures, it is consistent against any nonsymmetric alternative. The
statistic depends on the choice of a fuzzification within a family. A simple fuzzifica-
tion has been chosen in this preliminary study. The simulations indicate that the test is
suitable for the usual uni-modal distributions, however there are better options for some
multimodal ones. Further studies concerning other fuzzifications, families of distribu-
tions, and power against particular alternatives are currently being developed.

Acknowledgement. The research in this paper has been partially supported by the
Spanish Ministry of Education and Science Grant MTM2006–07501. Its financial sup-
port is gratefully acknowledged.
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Fuzzy Kendall τττ Statistic for Autocorrelated Data

Olgierd Hryniewicz and Anna Szediw

Systems Research Institute, Polish Academy of Science, Warsaw, Poland

Abstract. Kendall’s τ statistic has found many practical applications. Recently, it has been pro-
posed by Hryniewicz and Szediw as the basis for the Kendall control chart for monitoring autocor-
related production processes. They have shown that this chart has good statistical characteristics
only for large samples. Unfortunately, in such a case existing algorithms for the calculation of
the fuzzy Kendall’s τ statistic are not sufficiently effective. In the paper we investigate a simple
heuristic algorithm for the calculation of fuzzy Kendall’s τ that makes the implementation of the
proposed chart applicable in statistical quality control.

Keywords: Time series, Fuzzy data, Kendall τ .

1 Introduction

Statistical data presented in a form of time series are usually either autocorrelated or in-
terdependent in a more complicated way. The existence of such dependencies may make
the statistical analysis of such data much more difficult. In some applications, how-
ever, such time-related dependencies are not frequent, and much simpler statistical tools
are required. For example, in statistical quality control it is usually assumed that con-
secutive observations of monitored production processes are independent. When this
assumption is true, simple statistical methods - which may be used even by workers -
are sufficient for the control of a process. However, when data observed from a pro-
cess are dependent, statistical analysis becomes very complicated. As a matter of fact,
shop-floor practitioners are usually unable to work with autocorrelated data without an
assistance of specialists. Moreover, in many cases it is necessary to use specialized soft-
ware. Therefore, there is a practical need to detect autocorrelation in data as quickly as
possible. Statistical tools available for such analysis are available, but generally they
have been developed for dealing with normally distributed autoregression processes. In
practice, however, we usually do not know whether the investigated process can be de-
scribed by the normal autoregressive model. Thus, there is a need to develop a simple
(for practitioners) non-parametric (distribution-free) tool that would be useful for the
detection of autocorrelation in data. Such a tool - a Kendall control chart - has been
proposed by Hryniewicz and Szediw [4]. The generalization of the Kendall control
chart, when observed data are fuzzy, has been introduced recently by Hryniewicz and
Szediw [5]. This statistical procedure is based on the fuzzy Kendall statistic which has
been originally introduced by Hébert et al. [2] and Denœux et al. [1] who considered it
as a statistic based on fuzzy ranks.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 155–162, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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The main problem with practical implementation of the fuzzy Kendall control chart
is computational one. The algorithms proposed by Hébert et al. [2] (exact) and Denœux
et al. [1] (approximate) are, according to those authors, effective only for relatively
small samples (not larger than 20). However, investigations of the crisp version of the
Kendall control chart presented in [4] have revealed that the required sample sizes
should be much larger (at least 50 observations). Therefore, there is a need to find a
fast approximate algorithm which may be useful for the analysis of such large sam-
ples. In the second section of the paper we propose a simple heuristic algorithm that
might be useful for a fast approximate computation of the membership function of the
fuzzy Kendall τ statistic. Some properties of this algorithm are investigated in the third
section of the paper.

2 Kendall Test for Autocorrelated Fuzzy Data

Let Z1,Z2, . . . ,Zn denote a random sample of n consecutive process observations. These
observations can be transformed into two-dimensional vector (Xi,Yi), where Xi = Zi and
Yi = Zi+1 for i = 1,2, . . . ,n−1. Then, the Kendall’s τ sample statistic which measures
the association between random variables X and Y is given by the following formula

τn =
4

n−1

n−1

∑
i=1

Vi−1, (1)

where

Vi =
card{(Xj,Yj) : Xj < Xi,Yj < Yi}

n−2
, i = 1, . . . ,n−1. (2)

In this paper we assume that our observations are imprecise, and may be modeled by
fuzzy random variables, understood as fuzzy perceptions of ordinary random variables.
It means that there exist non-fuzzy (crisp) original values of measured quantities, but
due to the imprecise character of measurements they are perceived as imprecise fuzzy
values. In such a case we can use a fuzzy version of the Kendall’s τ statistic, originally
introduced in the papers by Hébert et al. [2] and Denœux et al. [1], who also proposed
useful methods for the calculation of its membership function.

In the case of statistical data given in a form of a time series we may use the fuzzy
Kendall τ for an autocorrelated time series originally proposed in Hryniewicz [3] for the
analysis of serial fuzzy binomial data. In [5] a more general case has been considered
where the series of consecutive observations is described by a vector of fuzzy data
(Z̃1, Z̃2, . . . , Z̃n). In order to compute the fuzzy version of the Kendall’s τ statistic for
the considered fuzzy time series let us assume that each fuzzy observation is described
by a membership function μi(z), i = 1, . . . ,n.

Let us notice now that each fuzzy data point Z̃i is completely defined by the set of its
α-cuts [Zαi,L,Zαi,U ], 0 < α ≤ 1. Hence, the fuzzy equivalent of Vi given by (2), denoted
by Ṽi, is defined as a convex hull of the set of its α-cuts [Vαi,L,V

α
i,U ], 0 < α ≤ 1, where

Vαi,L = min
zi∈[Zαi,L,Zαi,U ]

i=1,...,n

card j �=i{(z j,z j+1) : z j < zi,z j+1 < zi+1}
n−2

(3)



Fuzzy Kendall τττ Statistic for Autocorrelated Data 157

and

Vαi,U = max
zi∈[Zαi,L,Zαi,U ]

i=1,...,n

card j �=i{(z j,z j+1) : z j < zi,z j+1 < zi+1}
n−2

(4)

for i = 1, . . . ,n− 1. Having the α-cuts [Vαi,L,V
α
i,U ], 0 < α ≤ 1 for all i = 1, . . . ,n we

can straightforwardly calculate the α-cuts of the fuzzy Kendall’s τ statistic [ταL ,ταU ],
0 < α ≤ 1, and thus obtain its membership function.

The calculation of the membership function of the fuzzy Kendall’s τ statistic may
be, in a general case, a difficult and computationally intensive task. When the num-
ber of fuzzy observations in a whole set of observations is small we can use a general
methodology proposed by Hébert et al. [2] for the exact calculations of the member-
ship function of the fuzzy Kendall statistic. Another possibility is to use algorithms of
stochastic optimization based on the Monte-Carlo simulations, such as an algorithm
proposed in Denœux et al. [1]. However, for the particular cases, such as that of the
fuzzy Kendall control chart, when the number of analyzed fuzzy observations may be
quite large, these general methods suffer from the “curse of dimensionality”, and can-
not be efficiently used in practice. Therefore, there is a need to design a much faster
approximate algorithm that might be used in such cases (especially in cases when there
is a need to compute many α-cuts of the membership function of τ). First such algo-
rithm has been proposed in [5]. However, the results of extensive simulations show that
it has to be improved. In this paper we present the result of such improvement.

The construction of the optimization algorithm will be apparent if we consider the
influence of the pattern of consecutive observations on the value of Kendall’s τ . In
Figure 1 we present a possible crisp sample with individual points belonging to re-
spective α-cuts of fuzzy data points which leads to the maximum value of Kendall’s τ ,
namely 1. The maximal value of the Kendall’s τ , equal to 1, is attained when consecu-
tive points form a monotonically increasing or decreasing series.

-3

-2

-1

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

MIN

MAX

MAX- TA U

Fig. 1. Possible configuration of observations of a time series for the maximum value of the
Kendall’s τ
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In general, for the given value of α the largest value of τ should be attained for a
series of values zL

i ∈ [zαi,L,zαi,U ], i = 1, . . . ,n, 0 < α ≤ 1 that form a monotone (or nearly
monotone) increasing (decreasing) series. To find such a series we can start with the
series z∗i = zαi,L, i = 1, . . . ,n, 0 < α ≤ 1. In the next steps we can increase certain values
of this series (keeping in mind that they have to belong to their α-cuts) in order to arrive
at a monotone (or nearly monotone) increasing series. The same procedure should be
repeated in search of a monotone (or nearly monotone) decreasing series. In this case
we can start with the series z∗i = zαi,U , i = 1, . . . ,n, 0 < α ≤ 1, and in the next steps we
should decrease certain values of this series in order to arrive at a monotone (or nearly
monotone) decreasing series.

Let us describe this heuristic algorithm in a more formal way. For notational conve-
nience we omit the symbol α which refers to a chosen α-cut. The upper limit of the
α-cut for the fuzzy value of Kendall’s τ is computed according to Algorithm 1.

Algorithm 1
begin
set ε to a small value
k = 0
z∗k+1 = zk+1,L

loop1 : k = k +1
i f [(zk+1,L ≥ z∗k) or (zk+1,U < z∗k)] then

i f [(zk+1,L ≥ z∗k) ] then z∗k+1 = zk+1,L
i f [(zk+1,U < z∗k)] then z∗k+1 = zk+1,U

else z∗k+1 = z∗k + ε
i f k < n−1 goto loop1
use (z∗1, . . . ,z∗n) f or the calculation o f τU,1
k = 0
z∗k+1 = zk+1,U

loop2 : k = k +1
i f [(zk+1,L ≥ z∗k) or (zk+1,U < z∗k)] then

i f [(zk+1,L ≥ z∗k) ] then z∗k+1 = zk+1,U
i f [(zk+1,U < z∗k)] then z∗k+1 = zk+1,L

else z∗k+1 = z∗k − ε
i f k = n−1 stop

else goto loop2
use (z∗1, . . . ,z

∗
n) f or the calculation o f τU,2

τU = max(τU,1,τU,2)
end

Now let us consider the problem of finding the minimal value of τ . In Figure 2 we
present a possible crisp sample with individual points belonging to respective α-cuts
of fuzzy data points which leads to the minimum value of Kendall’s τ , namely -1. As
we can see, this minimal value of the Kendall’s τ is attained when consecutive points
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Fig. 2. Possible configuration of observations of a time series for the minimum value of the
Kendall’s τ

numbered by even numbers form a monotonically decreasing series and simultaneously
consecutive points numbered by odd numbers form a monotonically increasing series,
or vice versa. In both cases the increasing and decreasing series should not intersect.

In general, the lowest value of τ should be attained for a series of values zU
i ∈

[zαi,L,zαi,U ], i = 1, . . . ,n, 0 < α ≤ 1 that form an alternating series of values such that
the odd (even) observations form a decreasing (or nearly decreasing) series, and the
even (odd) observations form an increasing (or nearly increasing) series. To find such a
series we can start with the series zα1,L,zα2,U ,zα3,L, . . . or with the series zα1,U ,zα2,L,zα3,U , . . ..
In the next step we can increase certain values initially defined by the lower limits of
the α-cuts and decrease certain values initially defined by the upper limits of the α-cuts
in order to arrive at an alternating (or nearly alternating) series. The lower limit of the
α-cut for the fuzzy value of Kendall’s τ is computed using an algorithm which is simi-
lar to the algorithm presented above. The formal description of this heuristic algorithm,
which too long for the presentation in this paper, can be found in [5].

The application of both algorithms does not guarantee that the computed pair (τL,τU )
is the true α-cut for the fuzzy value of the Kendall’s τ . However, in case of large sam-
ple sizes it gives a quite good approximation. It may also serve for the generation
of the starting sequence of ranks in the algorithm proposed by Denœux et al. [1]. In
the next section we present some results of simulation experiments which support this
claim.

3 Analysis of the Accuracy of the Calculated Minimal and
Maximal Values of Kendall τ

The accuracy of the proposed heuristic algorithms can be precisely evaluated only
in case of small samples. However, in certain applications of the Kendall’s τ large
and very large samples are required. In such a case we are not able, as for now, to
calculate exact values for the limits of τ . Therefore, we have decided to compare
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the results obtained by the application of our approximate algorithm with the results
obtained in a simple simulation experiment. In our simulation experiment fuzzy data
were represented by their α-cuts. For all simulated observations their α-cuts were given
as intervals [X −w,X + w], where random values X were generated from a normal au-
toregressive process characterized by the mean value equal to 0, standard deviation
equal to 1, and the autocorrelation coefficient ρ . In the first of our experiments we have
found that the intervals calculated using the proposed heuristic algorithm are on average
better than the intervals calculated using the simulation algorithm proposed in [1] when
we used the starting point representing the mid-points of observed intervals. In the next
experiment we compared our algorithm with the algorithm based on random generation
of original (crisp) observations. In our experiment for each fuzzy sample in the inner
simulation loop we simulated 100 000 crisp samples in such a way, that each point of
the simulated crisp sample was chosen randomly from the α-cut of the respective fuzzy
observation. In every case the set of results simulated in the inner loop was extended
with the result obtained using our heuristic algorithm, i.e. the result of 100 000 simula-
tions entered the average computed in the outer loop of the simulation experiment only
in this case when it has been better than our approximate solution. In the simulation ex-
periment we varied the values of the autoregression coefficient ρ , sample size n, and the
width of the α-cut. For each considered combination of these parameters we simulated
1000 fuzzy random samples.

From the results of those simulation experiments we have found that in case of the
upper limits of α-cuts for sample sizes equal or larger than 50 items the random search
for better solutions with the help of 100 000 simulations does not provide better results
than the proposed heuristic algorithm. Even if we find a better solution, the difference
between this solution and our approximate solution is very small. For sample sizes
smaller than 50 this difference may be practically significant. Unfortunately, we have
not obtained such good approximations for the lower limits of α-cuts.

Very promising results have been observed when we used vectors of ranks corre-
sponding to the lower and upper limits of the calculated heuristic intervals as the initial
vectors for the simulation of linear extensions of partial orders generated by observed

Table 1. Comparison of intervals computed using heuristic and 2 simulation methods

ρ method low. limit up. limit piMin piMax

hint 0,2358 0,7501 - -
0,8 linext 0,1603 0,7518 95,2 18,8

irawd 0,2193 0,7501 38,0 0,0

hint -0,1607 0,2635 - -
0,0 linext -0,2174 0,2956 98,8 97,6

irawd -0,2084 0,2641 80,3 3,3

hint -0,6919 -0,2503 - -
-0,8 linext -0,7087 -0,2193 76,5 93,0

irawd -0,7109 -0,2379 48,1 24,9
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fuzzy ranks [1]. In Table 1 we present the comparison of intervals computed this way
(linext) with the heuristically computed intervals (hint), and intervals computed using
raw Monte Carlo data according to the algorithm described above (irawd). In the exper-
iment we simulated 1000 fuzzy (interval-valued) vectors (with rather imprecise data),
and in each case we performed 106 runs of the algorithm that simulates linear extension
of ranks, and 500 000 runs of the algorithm that generates original values of observa-
tions. In the fifth (piMin) and sixth (piMax) column of Table 1 we present percentages
of cases when we obtained better interval limits by combining our heuristic algorithm
with either the simulation of linear extensions of ranks or the simulation of original
values of observations for lower and upper limits, respectively.

From the results presented in Table 1 we see that neither of the compared algorithms
is consistently better than the other one. We have to keep in mind, however, that these
results are based on a relatively small number of simulations (1000).

4 Discussion

The fuzzy version of the Kendall’s τ statistics considered in this paper seems to be a
useful statistical tool for practitioners who have to look for dependencies in time se-
ries. However, due to the imprecise character of data necessary computations become
prohibitively time consuming. The proposed heuristic algorithm makes necessary com-
putations fast and sufficiently accurate in case of the upper limits of the α-cuts of the
Kendall’s τ statistic. These limits may be improved by combining our algorithm with
additional simulations, but the improvement does not seem to be very significant, es-
pecially for positively correlated observations. In case of lower limits significantly bet-
ter results have been obtained when we use the hybrid algorithm which combines the
heuristic algorithm proposed by Hryniewicz and Szediw [5] and the Monte Carlo algo-
rithm proposed by Denœux et al. [1]. The results presented in Table 1 show, however,
that further investigations have to be done in order to improve the accuracy of approx-
imations. In the applications of the fuzzy Kendall’s τ in quality control this accuracy
is needed for the investigation of an interesting and important problem which is still
waiting for its solution, namely the influence of fuzziness of data on important charac-
teristics of a control chart, such as e.g. the average run length ARL (the average time to
signal).
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1. Denœux, T., Masson, M.-H., Hébert, P.-A.: Nonparametric rank-based statistics and signifi-
cance tests for fuzzy data. Fuzzy Sets Syst. 153, 1–28 (2005)
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Mixture Model Estimation with Soft Labels
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Abstract. This paper addresses classification problems in which the class membership of
training data is only partially known. Each learning sample is assumed to consist in a feature
vector and an imprecise and/or uncertain “soft” label mi defined as a Dempster-Shafer basic
belief assignment over the set of classes. This framework thus generalizes many kinds of
learning problems including supervised, unsupervised and semi-supervised learning. Here, it
is assumed that the feature vectors are generated from a mixture model. Using the General
Bayesian Theorem, we derive a criterion generalizing the likelihood function. A variant of the
EM algorithm dedicated to the optimization of this criterion is proposed, allowing us to compute
estimates of model parameters. Experimental results demonstrate the ability of this approach to
exploit partial information about class labels.

Keywords: Dempster-Shafer theory, Transferable Belief Model, Mixture models, EM algorithm,
Classification, Clustering, Partially supervised learning, Semi-supervised learning.

1 Introduction

Machine learning classically deals with two different problems: supervised learning
(classification) and unsupervised learning (clustering). However, other paradigms exist
such as semi-supervised learning [10], and partially-supervised learning [1, 5, 9, 11].
In the former approach, one use a mix of unlabelled and labelled examples, whereas
in the latter, one can define constraints on the possible classes of the examples. The
importance for such problems comes from the fact that labelled data are often difficult
to obtain, while unlabelled or partially labelled data are easily available.

The investigations reported in this paper follow this path, in the context of belief
functions. In this way, both the uncertainty and the imprecision of class labels may be
handled. The considered training sets are of the form Xiu = {(x1,m1), . . . ,(xN , mN)},
where mi is a basic belief assignment, or Dempster-Shafer mass function [14] encoding
our knowledge about the class of example i. The mis (hereafter referred to as “soft
labels”) may represent different kinds of knowledge, from precise to imprecise and
from certain to uncertain. Thus, previous problems are special cases of this general
formulation. Other studies have already proposed solutions in which class labels are
expressed by possibility distributions or belief functions [6, 8]. In this article, we present
a new approach to solve learning problems of this type, which completes a preliminary
study by Vannoorenberghe and Smets [21]. This solution is based on mixture models,
and therefore assumes a generative model for the data.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 165–174, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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This article is organized as follows. Background material on belief functions and
estimation of parameters in mixture models using the EM algorithm will first be recalled
in Sections 2 and 3, respectively. The problem of learning from data with soft labels
will then be addressed in Section 4, through the definition of a learning criterion, and
of an EM type algorithm dedicated to its optimization. Finally we will presented some
simulations results in Section 5.

2 Background on Belief Functions

2.1 Belief Functions on a Finite Frame

The theory of belief functions was introduced by Dempster [3] and Shafer [14]. The in-
terpretation adopted throughout this paper will be that of the Transferable Belief Model
(TBM) introduced by Smets [20]. The first building block of belief function theory is
the basic belief assignment (bba), which models the beliefs held by an agent regard-
ing the actual value of a given variable taking values in a finite domain (or frame of
discernment) Ω , based on some body of evidence. A bba mΩ is a mapping from 2Ω

to [0,1] verifying ∑ω⊆Ω mΩ (ω) = 1. The subsets ω for which mΩ (ω) > 0 are called
the focal sets. Several kind of belief functions are defined according to the structure of
focal sets. In particular, a bba is Bayesian if its focal sets are singletons, it is consonant
if its focal sets are nested and a it is categorical if it has only one focal set. Bbas are
in one to one correspondence with other representations of the agent’s belief, including
the plausibility function defined as:

plΩ (ω) $= ∑
α∩ω �= /0

mΩ (α), ∀ω ⊆Ω . (1)

The quantity plΩ (ω) is thus equal to the sum of the basic belief masses assigned to
propositions that are not in contradiction with ω . The plausibility function associated
to a Bayesian bba is a probability measure. If mΩ is consonant, then plΩ is a possibility
measure: it verifies plΩ (α ∪β ) = max(plΩ (α), plΩ (β )), for all α,β ⊆Ω .

2.2 Conditioning and Combination

Given two bbas mΩ1 and mΩ2 supported by two distinct bodies of evidence, we may build
a new bba mΩ1 ∩©2 = mΩ1 ∩©mΩ2 that corresponds to the conjunction of these two bodies
of evidence:

mΩ1 ∩©2(ω) $= ∑
α1∩α2=ω

mΩ1 (α1)mΩ2 (α2), ∀ω ⊆Ω . (2)

This operation is usually referred to as the unnormalized Dempster’s rule or the TBM
conjunctive rule. If the frame of discernment is supposed to be exhaustive, the mass
of the empty set is usually reallocated to other subsets, leading to the definition of the
normalized Demspter’s rule ⊕ defined as:

mΩ1⊕2(ω) =

⎧⎨⎩
0 if ω = /0

mΩ1 ∩©2(ω)

1−mΩ1 ∩©2( /0)
if ω ⊆Ω ,ω �= /0,

(3)
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which is well defined provided mΩ1 ∩©2( /0) �= 1. Note that, if mΩ1 (or mΩ2 ) is Bayesian, then

mΩ1⊕2(ω) is also Bayesian. The combination of a bba mΩ with a categorical bba focused
on α ⊆ Ω using the TBM conjunctive rule is called (unnormalized) conditioning. The
resulting bba is denoted mΩ (ω |α). Probabilistic conditioning is recovered when mΩ

is Bayesian, and normalization is performed. Using this definition, we may rewrite the
conjunctive combination rule: mΩ1 ∩©2(ω) = ∑α⊆Ω mΩ1 (α)mΩ2 (ω |α),∀ω ⊆Ω , which is
a counterpart of the total probability theorem in probability theory [7, 17]. This ex-
pression provides a shortcut to perform marginal calculations on a product space when
conditional bbas are available [17]. Consider two frames Ω and Θ , and a set of con-
ditional belief functions mΘ |Ω (·|ω) for all ω ⊆ Ω . Each conditional bba mΘ |Ω (·|ω)
represents the agent’s belief onΘ in a context where ω holds. The combination of these
conditional bbas with a bba mΩ on Ω yields the following plausibility onΘ :

plΘ (θ ) = ∑
ω⊆Ω

mΩ (ω)plΘ |Ω (θ |ω), ∀θ ⊆Θ . (4)

This property bears some resemblance with the total probability theorem, except that
the sum is taken over the power set of Ω and not over Ω . We will name it the total
plausibility theorem.

2.3 Independence, Continuous Belief Functions and Bayes Theorem

The usual independence concept of probability theory does not easily find a coun-
terpart in belief function theory, where different notions must be used instead. The
simplest form of independence defined in the context of belief functions is cognitive
independence ([14], p. 149). Frames Ω and Θ are said to be cognitively independent
with respect to plΩ×Θ iff we have plΩ×Θ (ω×θ ) = plΩ (ω) plΘ (θ ),∀ω ⊆Ω ,∀θ ⊆Θ .
Cognitive independence boils down to probabilistic independence when plΩ×Θ is a
probability measure.

The TBM can be extended to continuous belief functions on the real line, assuming
focal sets to be real intervals [19]. In this context, the concept of bba is replaced by
that of basic belief density (bbd), defined as a mapping mR from the set of closed real
intervals to [0,+∞) such that

∫ +∞
−∞
∫ +∞

x mR([x,y])dydx ≤ 1. By convention, the one’s
complement of this integral is allocated to /0. As in the discrete case, plR([a,b]) is
defined as an integral over all intervals whose intersection with [a,b] is non-empty.
Further extension of these definitions to Rd ,d > 1 is possible and it is also possible
to define belief functions on mixed product spaces involving discrete and continuous
frames.

The Bayes’ theorem of probability theory is replaced in the framework of belief
functions by the Generalized Bayesian Theorem (GBT), [18]. This theorem provides a
way to reverse conditional belief functions without any prior knowledge. Let us suppose
two spaces, X the observation space and Θ the parameter space. Assume that our
knowledge is encoded by a set of conditional bbas mX |Θ (.|θi),θi ∈Θ , which express
our belief in future observations conditionally on each θi, and we observe a realization
x ⊆X . The question is: given this observation and the set of conditional bbas, what
is our belief on the value of Θ? The answer is given by the GBT and states that the
resulting plausibility function onΘ has the following form:
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plΘ |X (θ |x) = plX |Θ (x|θ ) = 1−∏
θi∈θ

(1− plX |Θ (x|θi)). (5)

When a prior bba mΘ0 on Θ is available, it should be combined conjunctively with the
bba defined by (5). The classical Bayes’ theorem is recovered when the conditional
bbas mX |Θ (.|θi) and the prior bba mΘ0 are Bayesian.

3 Mixture Models and the EM Algorithm

After this review of some tools from belief functions theory, the next part is dedicated
to the probabilistic formulation of the clustering problem in terms of mixture model.
We will therefore present the data generation scheme underlying mixture models and
the solution to parameter estimation in the unsupervised case.

3.1 Mixture Models

Mixture models suppose the following data generation scheme:

• The true class labels {y1, . . . ,yN} of data points are realizations of independent and
identically distributed (i.i.d) random variables Y1, . . . ,YN ∼ Y taking their values in
the set of all K classes Y = {c1, . . . ,cK} and distributed according to a multinomial
distribution M (1,π1, . . . ,πK). The πk are thus the class proportions and they verify
∑K

k=1πk = 1. The information on the true class labels of samples coming from such
variables can also be expressed by a binary variable zi ∈ {0,1}K, such that zik = 1
if yi = ck, and zik = 0 otherwise.

• The observed values {x1, . . . ,xN} are drawn using the class conditional density in
relation with the class label. More formally, X1, . . . ,XN ∼ X are continuous ran-
dom variables taking values in X , with conditional probability density functions
f (x|Y = ck) = f (x;θ k), ∀k ∈ {1, . . . ,K}.

The parameters that need to be estimated are therefore the proportions π = (π1, . . . ,πK)
and the parameters of the class conditional densities θ 1, . . . ,θK . To simplify the nota-
tions, the vector of all model parameters is denotedΨ = (π1, . . . ,πK , θ 1, . . . ,θK). In
unsupervised learning problems, the available data are only the i.i.d realizations of X ,
Xu = {x1, . . . ,xN}, provided by the generative model. To learn the parameters and the
associated clustering, the log-likelihood must be computed according to the marginal
density ∑K

k=1πk f (xi;θ k) of Xi. This leads to the unsupervised log-likelihood criterion:

L(Ψ ;Xu) =
N

∑
i=1

ln

(
K

∑
k=1

πk f (xi;θ k)

)
. (6)

3.2 EM Algorithm

The log-likelihood function defined by (6) is difficult to optimize and may lead to a set
of different local maxima. The EM algorithm [4] is nowadays the classical solution to
this problem. The missing data of the clustering problem are the true class labels yi of
learning examples. The basis of the EM algorithm can be found in the decomposition
of the likelihood function in two terms :
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L(Ψ ;Xu) =
N

∑
i=1

K

∑
k=1

t(q)
ik ln(πk f (xi;θ k))︸ ︷︷ ︸

Q(Ψ ,Ψ (q))

−
N

∑
i=1

K

∑
k=1

t(q)
ik ln

(
πk f (xi;θ k)

∑K
k′=1 πk′ f (xi;θ k′)

)
︸ ︷︷ ︸

H(Ψ,Ψ (q))

, (7)

with:

t(q)
ik = EΨ (q) [zik|xi] = P(zik = 1|Ψ (q),xi) =

π (q)
k f (xi;θ

(q)
k )

∑K
k′=1π

(q)
k′ f (xi;θ

(q)
k′ )

. (8)

Such a decomposition is useful to define an iterative ascent strategy thanks to the
form of H. As a consequence of Jensen’s inequality we may write H(Ψ (q),Ψ (q))−
H(Ψ ,Ψ (q)) ≥ 0,∀Ψ . Consequently, the maximization of the auxiliary function
Ψ (q+1) = argmaxΨ Q(Ψ ,Ψ (q)) is sufficient to improve the likelihood. Furthermore, be-
cause the sum over the classes is outside the logarithm in the Q function, the optimiza-
tion problems are decoupled and the maximization is simpler. The EM algorithm can be
described as follows. It starts with initial estimatesΨ (0) and alternates two steps : the E
step where the tik are computed according to the current parameters estimates, defining
a new Q function maximized during the M step. Thanks to (7), this defines a sequence
of parameter estimates with increasing likelihood values. Finally, the mixture model
setting and the EM algorithm can be adapted to handle specific learning problems such
as the semi-supervised [10] and the partially supervised cases [1].

4 Extension to Imprecise and Uncertain Labels

4.1 Derivation of a Generalized Likelihood Criterion

Our method extends the approach described above to handle imprecise and uncertain
class labels defined by belief functions. In this section, we shall assume the learning
set to be of the form Xiu = {(x1,mY

1 ), . . . ,(xN ,mY
N )}, where each mY

i is a bba on the
set Y of classes, encoding all available information about the class of example i. As
before, the xi will be assumed to have been generated according to the mixture model
defined in Section 3.1. Our goal is to extend the previous method to estimate the model
parameters from such dataset. For that purpose, an objective function generalizing the
likelihood function needs to be defined.

The concept of likelihood function has strong relations with that of possibility and,
more generally, plausibility, as already noted by several authors [13, 15, 16]. Further-
more, selecting the simple hypothesis with highest plausibility given the observations
Xiu is a natural decision strategy in the belief function framework [2]. We thus pro-
pose as an estimation principle to search for the value of parameter ψ with maximal
conditional plausibility given the data: ψ̂ = argmaxψ plΨ (ψ |Xiu). The correctness of
the intuition leading to this choice of criterion as an estimation principle seems to be
confirmed by the fact that the logarithm of plΨ (ψ |Xiu) is an immediate generalization
of criterion (6), and the other likelihood criteria used for semi-supervised learning and
partially supervised learning of mixture model, as shown by the following proposition.

Proposition 1. If the samples {x1, . . . ,xN} are drawn independently according to the
generative mixture model setting and if the soft labels {m1, . . . ,mN} are independent
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from the parameters values, then the logarithm of the conditional plausibility of Ψ
given Xiu is given by

ln
(

plΨ (ψ |Xiu)
)

=
N

∑
i=1

ln

(
K

∑
k=1

plik.πk f (xi;θ k)

)
+ν, (9)

where the plik are the plausibilities of each class k for each sample i according to soft
labels mi and ν is a constant independent of ψ.

Proof. Using the GBT (5), the plausibility of parameters can be expressed from the
plausibility of the observed values. By making the conditional independence assump-
tion, this plausibility can be decomposed as a product over samples. Using the Total
Plausibility Theorem (4), we may express the plausibility of an observed value as:

plXi(xi|ψ) = ∑
C⊆Y

mYi(C|ψ)plXi|Yi(xi|C,ψ), (10)

where mYi(.|ψ) is a bba representing our beliefs regarding the class of example i. This
bba comes from the combination of two information sources: the “soft” label mY

i and
the proportions π , which induce a Bayesian bba mY (·|π). As these two sources are sup-
posed to be distinct, they can be combined using the conjunctive rule (2). As mY (·|π)
is Bayesian, the same property holds for the result of the combination mYi(.|ψ) and we
have mYi({ck}|ψ) = plik πk. Therefore, in the right-hand side of (10), the only terms in
the sum that need to be considered are those corresponding to the singletons. Conse-
quently, we only need to express plXi|Yi(xi|ck,ψ) for all k. There is a difficulty at this
stage, since plXi|Yi(·|ck,ψ) is the continuous probability measure with density function
f (x;θ k): consequently, the plausibility of any single value would be null if observa-
tions xi had an infinite precision. However, observations always have a finite precision,
so that what we denote by plXi|Yi(xi|ck,ψ) is in fact the plausibility of a infinitesimal
region around xi with volume dxi1 . . .dxip (where p is the feature space dimension).
We thus have plXi|Yi(xi|ck,ψ) = f (xi;θ k)dxi1 . . .dxip. Using all this results we obtain
plΨ (ψ |Xiu) =∏N

i=1

[(
∑K

k=1 plikπk f (xi;θ k)
)

dxi1 . . .dxip
]
. The terms dxi j can be consid-

ered as multiplicative constants that do not affect the optimization problem. By taking
the logarithm we get (9), which completes the proof. ��
Remark 1. Our approach can be shown to extend unsupervised, partially supervised
and semi-supervised learning when the labels are, respectively, vacuous, categorical,
and either vacuous or certain. This justifies denoting criterion, (9) as L(Ψ ,Xiu), as it
generalizes the classical log-likelihood function.

4.2 EM Algorithm for Imprecise and Uncertain Labels

Once the criterion is defined, the remaining work concerns its optimization. This
section presents a variant of the EM algorithm dedicated to this task. To build an EM
algorithm able to optimize L(Ψ ;Xiu), we follow a path that parallels the one recalled in
Section 3.2. At iteration q, our knowledge of the class of example i given the cur-
rent parameter estimates comes from three sources: the class label mY

i of example i; the
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current estimates π(q) of the proportions; the vector xi and the current parameter esti-
mate θ (q), which, using the GBT (5), gives a plausibility over Y . By combining these
three items of evidence using Dempster’s rule (3), we get a Bayesian bba. Let us denote

by t(q)
ik the mass assigned to {ck} after combination. We have

t(q)
ik =

plikπ
(q)
k f (xi;θ

(q)
k )

∑K
k′=1 plik′π

(q)
k′ f (xi;θ

(q)
k′ )

, (11)

Using this expression, we may decompose the log-likelihood in two parts, as in (7).

L(Ψ ;Xiu) =
N

∑
i=1

K

∑
k=1

t(q)
ik ln(πk plik f (xi;θ k))−

N

∑
i=1

K

∑
k=1

t(q)
ik ln

(
πk plik f (xi;θ k)

∑K
k′=1 πk′ plik′ f (xi;θ k′)

)
(12)

This decomposition can be established thanks to basic properties of logarithmic func-

tions and the fact that ∑K
i=1 t(q)

ik = 1. Therefore, using the same argument as for the clas-
sical EM algorithm (Section 3.2), an algorithm which alternates between computing tik
using (11) and maximization of the first term in the right hand side of (12) will increase
our criterion. This algorithm is therefore the classical EM algorithm, except for the E
step, where the posterior distributions tik are weighted by the plausibility of each class.

During the M step the proportions are updated classically using π (q+1)
k = 1

N ∑
N
i=1 t(q)

ik . If
multivariate normal densities functions are considered, f (x;θ k) = N (x;μk,Σ k), their
parameters are updated using the following equations:

μ(q+1)
k =

1

∑N
i=1 t(q)

ik

N

∑
i=1

t(q)
ik xi, Σ (q+1)

k =
1

∑N
i=1 t(q)

ik

N

∑
i=1

t(q)
ik (xi−μ (q+1)

k )(xi−μ (q+1)
k )′. (13)

4.3 Comparison with Previous Work

The idea of adapting the EM algorithm to handle soft labels can be traced back to the
work of Vannoorenberghe and Smets [21], which was recently extended to categorical
data by Jraidi et al. [12]. These authors proposed a variant of the EM algorithm called
CrEM (Credal EM), based on a modification of the auxiliary function Q(Ψ ,Ψ (q)). How-
ever, our method differs from this previous approach in several respects. First, the CrEM
algorithm was not derived as optimizing a generalized likelihood criterion such as (9);
consequently, its interpretation was unclear, the relationship with related work (see Re-
mark 1) could not be highlighted and, most importantly, the convergence of the algo-
rithm was not proven. Furthermore, in our approach, the soft labels mY

i appear in the
criterion and in the update formulas for posterior probabilities (11) only in the form of
the plausibilities plik of the singletons. In constrast, the CrEM algorithm uses the 2|Y |
values in each bba mY

i . This fact has an important consequence, as the computations
involved in the E step of the CrEM algorithm have a complexity in O(2|Y |) whereas
our solution only involves calculations which scale with the cardinality of the set of
classes.



172 E. Côme et al.

5 Simulations

The experiment presented in this section aimed at using information on class labels sim-
ulating expert opinions. As a reasonable setting, we assumed that the expert supplies,
for each sample i, his/her more likely label ck and a measure of doubt pi. This doubt is
represented by a number in [0,1], which can be seen as the probability that the expert
knows nothing about the true label. To handle this additional information in the belief
function framework, it is natural to discount the categorical bba associated to the guessed
label with a discount rate pi ([14], p. 251). Thus, the imperfect labels built from expert
opinions are simple bbas such that mY

i ({ck∗}) = 1− pi for some k∗, and mY
i (Y ) = pi.

The corresponding plausibilities are plik∗ = 1 and plik = pi for all k �= k∗.
Simulated data sets were build as follows. Two data sets of size N ∈ {2000,4000}

were generated in a ten-dimensional feature space from a two component normal mix-
ture with common identity covariance matrix and balanced proportions. The distance
between the two centers was kept fixed at δ = 2. For each training sample i, a number
pi was drawn from a specific probability distribution to define the doubt expressed by a
hypothetical expert on the class of that sample. With probability (1− pi), the true label
of sample i was kept and with probability pi the expert’s label was drawn uniformly in
the set of all class. The probability distribution used to draw the pi specifies the expert’s
labelling error rate. For our experiments we used Beta distributions with expected value
equal to {0.1, . . . ,0.8} and variance kept equal to 0.2.

The results of our approach were compared to supervised learning using the po-
tentially wrong expert’s labels; unsupervised learning, which does not use any infor-
mation on class label coming from experts, and a strategy based on semi-supervised
learning which takes into account the reliability of labels supplied by the pi. This strat-
egy considers each sample as labelled if the expert’s doubt is moderate (pi ≤ 0.5) and
as unlabelled otherwise (pi > 0.5). Figure 1 shows the averaged performances of the
different classifiers trained with one hundred independent training sets. As expected,
when the expert’s doubt increases, the error rate of supervised learning also increases.
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Fig. 1. Empirical classification error (%, estimated on a test set of 5000 observations) averaged
over one hundred independent training sets, as a function of expert’s mean doubt and for different
sample size. For all methods, the EM algorithm was initialized with the true parameter values.
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Our solution based on soft labels does not suffer as much as supervised learning and
adaptive semi-supervised learning from label noise. Whatever the dataset size, our so-
lution takes advantage of additional information on the reliability of labels to keep good
performances. Finally, our approach clearly outperforms unsupervised learning, when
the number of samples is low (N = 2000).

6 Conclusions

The approach presented in this paper, based on concepts coming from maximum likeli-
hood estimation and belief function theory, offers an interesting way to deal with imper-
fect and imprecise labels. The proposed criterion has a natural expression that is closely
related to previous solutions found in the context of probabilistic models, and has also
a clear and justified origin in the context of belief functions. Moreover, the practical
interest of imprecise and imperfect labels, as a solution to deal with label noise, has
been highlighted by an experimental study using simulated data.
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11. Hüllermeier, E., Beringer, J.: Learning from ambiguously labeled examples. In: Famili, A.F.,
Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646. Springer,
Heidelberg (2005)

12. Jraidi, I., Elouedi, Z.: Belief classification approach based on generalized credal EM. In:
Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 524–535. Springer, Hei-
delberg (2007)

13. Monney, P.-A.: A Mathematical Theory of Arguments for Statistical Evidence. Contributions
to Statistics. Physica-Verlag, Heidelberg (2003)



174 E. Côme et al.
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Imprecise Functional Estimation: The Cumulative
Distribution Case
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Montpellier, France

Abstract. In this paper, we propose an adaptation of the Parzen Rosenblatt cumulative distri-
bution function estimator that uses maxitive kernels. The result of this estimator, on every point
of the domain of F , the cumulative distribution to be estimated, is interval valued instead of
punctual valued. We prove the consistency of our approach with the classical Parzen Rosenblatt
estimator, since, according to consistency conditions between the maxitive kernel involved in the
imprecise estimator and the summative kernel involved in the precise estimator, our imprecise
estimate contains the precise Parzen Rosenblatt estimate.

Keywords: Parzen Rosenblatt, Cumulative distribution, Imprecise functional estimation, Possi-
bility distribution, Choquet integral.

1 Introduction

The probability density function (pdf) f and the cumulative distribution function
(cdf) F of a random variable X on Ω ⊆ R are fundamental concepts for describing
and representing real data in statistics. These representations are linked by ∀ω ∈ Ω ,
F(ω) =

∫ ω
−∞ f (u)du. When they cannot be specified, estimates of these functions

may be performed by using a sample of n observations independent and identically
distributed (X1, ...,Xn) of X . These observations are summarized by the empirical dis-
tribution defined by en = 1

n ∑
n
i=1 δXi , where δXi is the Dirac distribution on Xi or by

the empirical cumulative distribution function defined on Ω by En(x) = 1
n ∑

n
i=11[Xi≤x],

where 1A is the characteristic function on A.
Different methods have been proposed in the literature for estimating or manipu-

lating the pdf or the cdf underlying a sample of observations. The Parzen Rosenblatt
method is one of the most efficient non-parametric techniques [10, 11]. It belongs to
the class of functional estimation methods.

Generally speaking, functional estimation [1] consists of estimating, for all x ∈ Ω ,
a function h : Ω −→ R from another function g : Ω −→ R related to h. The nature of
this relation between h and g can take different form: g can be replaced by a sequence
(gn)n>0, such that gn −→ h, when n −→ +∞, h can be a modification of g (or h is a
filtered signal obtained from the signal g), or g can be a discretization of h that has to be
recovered by interpolation. So, the estimate of h, at x ∈Ω , is function of g and x, which
can be expressed as ĥ(x) = ϕ(g,x).

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 175–182, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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For the Parzen Rosenblatt pdf estimator, the function g is the empirical distribution
en, h is the pdf to be estimated f . The estimator ĥ is defined for all x ∈Ω , by:

ĥ(x) = fnκΔ (x) =
1
n

n

∑
i=1

κΔ (x−Xi), (1)

with κ the kernel used to perform this estimate and Δ the bandwidth. Note that κΔ (x) =
1
Δ κ(

x
Δ ). When g is the empirical cumulative distribution En, the cdf F is the function h

to be estimated and the estimator ĥ is defined for all x ∈Ω , by:

ĥ(x) = FnκΔ (x) =
∫ x

−∞
fnκΔ (u)du. (2)

In the Parzen Rosenblatt like methods, and more generally in all the functional esti-
mation methods, the particular role of the kernel is to define a neighborhood that can
be shifted to any location of Ω . The classical (precise) approach makes use of summa-
tive kernels. A summative kernel can be seen as a probability distribution, defining a
probabilistic neighborhood around each location x of Ω .

This paper considers a new approach (imprecise) that makes use of maxitive ker-
nels. A maxitive kernel can be seen as a possibility distribution, defining a possibilistic
neighborhood around each location x of Ω . The main consequence of replacing a sum-
mative kernel by a maxitive kernel is that the estimated value is an interval [h(x),h(x)],
instead of a single value ĥ(x). We are interested in the relation between the point esti-
mate obtained with the classical approach and the interval estimate obtained with our
approach.

The paper is organized as follows. In Section 2 we present the classical functional
estimation using a summative kernel. In Section 3, functional estimation with maxitive
kernels is exposed. In Section 4, the imprecise functional estimation is presented and
mathematically justified. In Section 5, we apply our method to the Parzen Rosenblatt
cdf estimator. Before concluding, we discuss in Section 6 of the choice of the involved
maxitive kernel. The method is illustrated by an experiment.

2 Functional Estimation with Summative Neighborhoods

In functional estimation, a summative kernel can be considered as a weighted neighbor-
hood of a given location, called its mode, formally similar to a probability distribution.

Definition 1. Summative kernels are R+-valued functions κ defined on a domain Ω ,
verifying the summativity property:

∫
Ω κ(x)dx = 1.

Note that any given monomodal summative kernel κ , can be the basis for a family of
summative kernels tuned by a location-scale parameter θ = (u,Δ), with u a translation
factor and Δ > 0 its bandwidth. Any element of this family is obtained, for u ∈ Ω and
Δ > 0, by

κu
Δ (ω) =

1
Δ
κ(
ω−u
Δ

), ∀ω ∈Ω . (3)

When seen as a probability distribution, a summative kernel κ has a relevant mean-
ing in the scope of uncertainty theories. It induces a probability measure given by
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Pκ(A) =
∫

Aκ(ω)dω , ∀A ⊆ Ω . The value Pκ(A) can be interpreted as the degree of
probability for a realization of the underlying uncertain phenomenon to fall in A.

Estimation of a given function of h : Ω → R in a summative neighborhood κx
Δ of a

given location x with bandwidth Δ is given by the expectation of its related function g
according to the probability measure Pκx

Δ
:

ĥ(x) = Eκx
Δ
(g). (4)

This approach can be found in [1] for functional estimation in statistics. [7] presents
digital signal processing methods that can be reformulated as functional estimators (4).

3 Functional Estimation with Maxitive Neighborhoods

A maxitive kernel is also a weighted neighborhood of a given location, called its mode,
formally similar to a possibility distribution or membership function of a normalized
fuzzy subset [3].

Definition 2. A maxitive kernel is a [0,1]-valued function π , defined on a domain Ω ,
verifying the maxitivity property: supω∈Ω π(ω) = 1.

Note that any given monomodal maxitive kernel π , defined on Ω , can be the basis for
a family of maxitive kernels tuned by a location-scale parameter θ = (u,Δ), with u a
translation factor and Δ its bandwidth. Any element of this family is obtained, for u∈Ω
and Δ > 0, by

πu
Δ (ω) = π(

ω−u
Δ

), ∀ω ∈Ω . (5)

A possibility distribution π has a relevant meaning in the scope of uncertainty theories.
π induces a possibility measure given by Ππ(A) = supω∈Aπ(ω), ∀A ⊆ Ω . The value
Ππ(A) can be interpreted as the degree of possibility for a realization of the underlying
uncertain phenomenon to fall in A.

Now, when the summative neighborhood κx
Δ is replaced by a maxitive neighborhood

πx
Δ of a given location x with bandwidth Δ , the Lebesgue integral in estimator (4) has

to be replaced by the Choquet integral [2, 9] of g.

4 Imprecise Functional Estimation

A possibility measure is a special case of concave Choquet capacity ν [15]. The conju-
gate νc of such a capacity, defined by νc(A) = 1− ν(Ac),∀A ⊆ Ω , is a convex capac-
ity. A concave capacity ν can encode a special family of probability measures, noted
core(ν) and defined by

core(ν) = {Pκ , | ∀A⊆Ω ,νc(A)≤ Pκ(A)≤ ν(A)}. (6)

David Schmeidler and Dieter Denneberg proved the following theorem ([12, Proposi-
tion 3] and [2, Proposition 10.3]) for capacities.

Theorem 1. The capacity ν is concave if and only if for all g such that Cν(|g|) < +∞,
then ∀κ |Pκ ∈ core(ν), Cνc(g)≤ Eκ(g)≤ Cν(g).
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From Theorem 1, since a maxitive kernel defines a possibility measure, a maxitive kernel-
based estimation of h, generalizing expression (4) is interval valued. The upper and lower
bounds are the Choquet integrals of g computed with respectively Ππx

Δ
and Nπx

Δ
, which

are capacities (or non additive measures) associated to πx
Δ a maxitive neighborhood of x,

with bandwidthΔ . Nπx
Δ

is the conjugate of the possibility measureΠπx
Δ

, called a necessity
measure. These remarks leads to the following corollary of Theorem 1.

Corollary 1. Imprecise functional estimation
Let π be a maxitive kernel, then ∀x ∈Ω and ∀Δ > 0,

∀κ |Pκ ∈ core(Ππx
Δ
), CNπx

Δ
(g)≤ Eκ(g)≤ CΠπx

Δ
(g). (7)

Imprecise estimation of a given function of h : Ω → R in a maxitive neighborhood πx
Δ

of a given location x with bandwidth Δ is given by the Choquet integrals of its related
function g according to the possibility and necessity measuresΠπx

Δ
and Nπx

Δ
:

[h(x),h(x)] = [CNπx
Δ
(g),CΠπx

Δ
(g)]. (8)

According to Corollary 1, an estimate ĥ(x) of h obtained with a summative kernel κ ,
such that Pκ belongs to core(Ππx

Δ
), belongs to the estimated interval (8). Besides, the

estimation bounds are attained, i.e. there exist two summative kernels η and μ , whose
associated probability measures Pη and Pμ are in core(Ππx

Δ
), such that Eη (g)= CNπx

Δ
(g)

and Eμ(g) = CΠπx
Δ
(g).

Replacing a summative kernel by a maxitive kernel for estimating a function h aims at
taking into account the imperfect knowledge of the modeler to choose a particular κ .
The specificity [16, 8] of the maxitive kernel chosen by the modeler for performing this
imprecise estimation reflects his knowledge. The most specific is the maxitive neigh-
borhood, the smallest is the encoded set. Indeed, if π is more specific than π ′, some
summative kernels encoded by π ′ will not be encoded by π . The smaller is the encoded
set of summative neighborhoods, the closer are the estimation bounds with this method.

5 Imprecise Cumulative Distribution Function Estimation

The Parzen Rosenblatt density estimator (1) can be expressed as the estimation of the
pdf f , with the empirical distribution g = en (summarizing the observations) according
to a summative neighborhood κx

Δ (see expression (3)):

fnκΔ (x) = Eκx
Δ
(en). (9)

Corollary 1, associated with expression (9) suggests that an imprecise estimation of the
Parzen Rosenblatt pdf estimator should be performed by computing the Choquet inte-
gral of the empirical distribution en according to a maxitive kernel (encoding a family of
summative kernels). This direct approach is however not applicable here, since the Cho-
quet integral of the empirical distribution does not exist. Indeed, the computation of this
integral only exists for bounded functions. The empirical distribution is not bounded.
Actually, the Dirac delta functions, forming en, are not functions but mathematical con-
structions, called distributions.
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Nevertheless, the Parzen Rosenblatt cdf estimator (2) involves the empirical cumu-
lative distribution En, which is a bounded function. Theorem 2 expresses the Parzen
Rosenblatt cdf estimate at a point x, as the estimation of the cdf F with the cumulative
empirical distribution g = En according to a summative neighborhood of x, κx

Δ .

Theorem 2. Let κ be a summative kernel and Δ > 0 and n > 0, then ∀x ∈Ω ,

FnκΔ (x) = Eκx
Δ
(En). (10)

Proof. First, note that fnκΔ (x) =
∫
Ω κΔ (ω)en(x − ω)dω . Indeed,

∫
Ω κΔ (ω)en(x −

ω)dω = 1
n ∑

n
i=1
∫
Ω κΔ (ω)δXi(x−ω)dω = 1

n ∑
n
i=1κΔ (x−Xi). Thus,

FnκΔ (x) =
∫ x

−∞

(∫
Ω
κΔ (ω)en(u−ω)dω

)
du

=
∫
Ω

(∫ x

−∞
en(u−ω)du

)
κΔ (ω)dω ,

En is the cumulative distribution associated to the empirical distribution, i.e. En(ω) =∫ ω
−∞ en(u)du. Then by successive changes of variable v := u−ω and t := x−ω , we

obtain:

FnκΔ (x) =
∫
Ω

En(x−ω)κΔ(ω)dω

=
∫
Ω

En(t)κΔ (x− t)dt

= Eκx
Δ
(En).

��
Since En is bounded, an imprecise estimation of F at x can be obtained with a maxitive
kernel πx

Δ .

Theorem 3. Let π be a maxitive kernel, then ∀x ∈Ω , ∀n > 0 and ∀Δ > 0,

∀κΔ ′ |PκΔ ′ ∈ core(Ππx
Δ
), CNπx

Δ
(En)≤ FnκΔ ′ (x)≤ CΠπx

Δ
(En). (11)

We now present the computation of the imprecise Parzen Rosenblatt cdf estimate.
First, observe that En is a simple function that can be expressed on Ω by En(ω) =
∑n

i=1
i
n1[X(i),X(i+1)], where (.) indicates a permutation of the observations such that

X(i) ≤ X(i+1). Thus, the Choquet integral of En can be rewritten as CΠπx
Δ
(En) =

1
n ∑

n
i=1Ππx

Δ
({ω ∈ Ω : En(ω) ≥ i

n}). It can easily be observed that {ω ∈ Ω : En(ω) ≥
i
n} = {ω ∈ Ω : ω ≥ X(i)}. Since the summation does not depend on the order of the
summed elements, CΠπx

Δ
(En) = 1

n ∑
n
i=1Ππx

Δ
({ω ∈Ω : ω ≥ Xi}). With similar develop-

ments on CNπx
Δ
(En), we obtain:

CΠπx
Δ
(En) =

1
n

n

∑
i=1

(
1−Nπx

Δ
({ω ∈Ω : ω < Xi})

)
,

CNπx
Δ
(En) =

1
n

n

∑
i=1

(
1−Ππx

Δ
({ω ∈Ω : ω < Xi})

)
.
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As exposed in [3, 5], Fπx
Δ
(u) = Nπx

Δ
({ω ∈Ω : ω < u}) is the lower cdf of the set of cdf

associated to the summative kernels of core(Ππx
Δ
). It is the lower cdf of a p-box [6],

whose upper cdf is given by Fπx
Δ
(u) = Ππx

Δ
({ω ∈ Ω : ω < u}). As shown in [5], we

have:

Fπx
Δ
(u) =

{
0 if u < x,

1−πx
Δ(u) otherwise,

and Fπx
Δ
(u) =

{
πx
Δ (u) if u < x,

1 otherwise.

We thus obtain the imprecise cdf estimate:

CΠπx
Δ
(En) =

1
n

n

∑
i=1

(
πx
Δ (Xi)1[x≤Xi ] +1[x>Xi]

)
, (12)

CNπx
Δ
(En) =

1
n

n

∑
i=1

(
(1−πx

Δ(Xi))1[x≥Xi]

)
. (13)

6 Experiment and Choice of a Maxitive Kernel

As in the case of the summative kernel methods, the problem of the choice of a partic-
ular maxitive kernel for performing imprecise functional estimation can be discussed.
The choice of the summative kernel shape κ is often considered as insignificant in the
non-parametric statistics community. The main argument is that the asymptotic behav-
ior (when n→+∞) of FnκΔ and fnκΔ depend more on Δ than on the choice of κ [14, 1].
However, the asymptotic conditions are barely fulfilled. In non-asymptotic conditions,
the shape of the estimate strongly depend on the shape of κ . Moreover, the knowledge
of the modeler is generally insufficient for choosing the appropriate kernel. Instead of
choosing one particular summative kernel, we propose to the modeler to choose a fam-
ily of summative kernels matching his knowledge via the choice of a maxitive kernel.

In such kernel methods, where a summative kernel is considered as a neighborhood,
it seems sensible to assume that the chosen basic kernel to be shifted and dilated with
expression (3) is centered, even and with a support included in [−1,1]. Therefore, it
naturally leads to choose a basic maxitive kernel π encoding these particular summative
kernels. As shown in [4], the triangular maxitive kernel T is the most specific of such
maxitive kernels. The triangular possibility distribution is defined onΩ by T (ω) = (1−
|ω |)1[|ω|≤1]. We now illustrate Theorem 3 by performing the summative and maxitive
estimates of the cdf underlying a set of 107 observations of the duration in minutes of
the eruptions of the Old Faithful geyser in Yellowstone National Park.1 Each precise
estimate has been performed by using four different summative kernels κΔ : uniform,
Epanechnikov, triweight and cosine kernels, with Δ = 0.3. The definitions of the used
kernels can be found in [8]. The imprecise estimate is obtained by using a triangular
maxitive kernel T with the same Δ . As illustrated on Figure 1, every precise estimates
of the cumulative distribution are included in the imprecise estimation interval.

1 This example, taken from [13], is a popular benchmark in nonparametric estimation.
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Fig. 1. Imprecise cumulative distribution estimate

7 Conclusion

In this paper, we proposed an extension of the Parzen Rosenblatt cdf estimate, which
takes into account a possible lack of knowledge of the appropriate summative kernel
to be involved. Compared to the classical method, our method results in an interval
estimate instead of a point estimate. The imprecision of the obtained estimate consis-
tently reflects the lack of knowledge of the modeler, quantified by the specificity of the
involved maxitive kernel. We put this sensible imprecise cdf estimation into a wider
framework of imprecise functional estimation. Now, the next significant step, in soft
statistics, is likely to be the imprecise estimation of the pdf.
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Abstract. We propose a non-parametric density estimator based on label semantics, a framework
for computing with words which allows to describe a numerical instance or set of instances in
linguistic terms and to condition on a linguistic description. This will be the basis of the proposed
density estimator, which is MSE consistent under certain regularity conditions. Experimental re-
sults illustrate the potential of the proposal.

Keywords: Density estimation, Computing with Words, Label semantics.

1 Introduction

Probability density estimation constitutes a classical approach to pattern classifier de-
sign as well as being useful in a broad range of applications. The approaches to density
estimation are usually classified as parametric and non-parametric (cf. [10], [11]). In
parametric estimation, it is assumed that the density f underlying the data belongs to
a family of functions f (·;θ ) with parameters θ = (θ1, . . . ,θk). A density estimate f̂ is
then obtained by computing from the data an estimate θ̂ of the parameters θ and having
f̂ = f (·, θ̂ ).

Non-parametric approaches do not assume a particular distribution shape. They are
necessary when the distribution does not fit a known distribution model and are widely
used in the field of pattern recognition and classification, neurocomputing, image pro-
cessing and communications among others. Non-parametric methods comprise fixed
and varying width histograms, naive estimator, kernel or Parzen estimator (perhaps, the
most popular one), nearest neighbour methods, variable kernel method, orthogonal se-
ries estimators, maximum penalised likelihood estimators and general weight function
estimators. The latter can be thought of as a unifying concept (histogram, kernel esti-
mates or orthogonal series estimate can be seen as particular cases) and as a method to
obtain estimators which do not fall into any of the other classes.

Despite the existing variety of methods, the problem of density estimation is far from
being solved and is still subject to new research. For instance, a non-parametric density
estimator is proposed in [1] that relies on topological self-organisation as a development
of a nearest-neighbour density estimator; in [3] we find a new method of kernel den-
sity estimation with a varying adaptive window size; in [2] a semiparametric density
estimator is obtained as the product of nonparametric and (conditionally) parametric
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factors and this estimator is used to design a classifier, and in [7], the authors propose a
histogram density estimator where the bins are fuzzy sets.

Label semantics [4] provides a framework where, for a given set of labels LA, it is
possible to give a linguistic description of a single numerical value x or a whole set of
data instances x1, . . . ,xn and it is also possible to compute the probability of any value
x given a linguistic description. In this paper we propose to use as a non-parametric
density estimate the density that results from conditioning on the linguistic description
of the whole sample. We see that the proposed estimate is MSE consistent and provide
experimental results to illustrate the estimate’s behaviour.

2 Label Semantics

Label semantics provide an alternative approach to the paradigm of computing with
words and have been successfully applied to solving classification and prediction prob-
lems [4], [5]. In this section we briefly introduce the ideas most relevant to our work.

The fundamental notion underlying label semantics is that when individuals make
assertions of the kind ‘X is tall’ they are essentially providing information about what
labels are appropriate for the value of some underlying variable. For simplicity, we
assume that for a given context only a finite set of words is available.

Let x be a variable into a domain of discourseΩ . Then, a finite set of words or labels
LA = {L1, . . . ,Ln} are identified as possible descriptions of the elements of the universe
Ω . For a specific value x ∈ Ω , an individual I identifies a subset of LA, as the set of
words with which it is appropriate to label x. This set is denoted D I

x , to stand for the
description of x given by I.

Consider the expression ‘Bill is tall’, where Bill’s height is represented by variable
h, and suppose that there is a fixed finite set of possible labels for h, LA, both known and
completely identical for any individual who will make or interpret a statement regarding
Bill’s height. Given these assumptions, the above statement as asserted by a particular
individual I might be interpreted as meaning that according to I, tall is an appropriate
label for the value of variable h. That is, suppose I knows that h = H and that given
this information he/she is able to identify a subset of LA consisting of those words
appropriate as labels for the value H. This set is D I

h, the description of h given by I, and
we have that tall ∈D I

h.
If we allow I to vary across a population of individuals V , we naturally obtain a

random set Dx from V into the power set of LA, where Dx(I) = D I
x . A probability

distribution or mass assignment can be defined, dependent on the prior distribution over
the population V . We can view the random set Dx as a description of the variable x in
terms of the labels LA.

Definition 1. For LA a set of labels describing values inΩ , a mass assignment on labels
is a function m : 2LA → [0,1] such that

∑
T⊆LA

m(T ) = 1 (1)

Notice that in Definition 1 there is no requirement for the mass associated with the
empty set to be zero. In the context of label semantics, mx( /0) quantifies the belief that
no labels are appropriate to describe x.
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Definition 2. For x ∈Ω the label description of x is a random set from V into the power
set of LA, denoted Dx, with associated distribution mx given by

∀S ⊆ LA, mx(S) = Pr({I ∈V : DI
x = S}) (2)

Consider again the statement ‘Bill is tall’. If we allow I to vary across the population
of individuals V we can determine a probability distribution for the random set Dh by
defining ∀S⊆ LA, mh(S) = Pr({I ∈V : D I

h = S}).
Definition 3. Given labels LA together with an associated mass assignment mx ∀x∈Ω ,
the set of focal elements for LA is given by:

F = {S ∈ LA : ∃x ∈Ω ,mx(S) > 0} (3)

Another high level measure associated with mx is the quantification of the degree of
appropriateness of a particular word L ∈ LA as a label of x.

Definition 4. The appropriateness degree of a particular word L ∈ LA as a label of x is
defined as follows:

∀x ∈Ω ∀L ∈ LA, μL(x) = ∑
S⊆LA:L∈S

mx(S) (4)

Clearly, μL is a function from Ω into [0,1] and therefore can technically be viewed as
a fuzzy set. However, the term ‘appropriateness degree’ is used partly because it more
accurately reflects the underlying semantics and partly to highlight the quite distinct
calculus for these functions introduced in the label semantics framework [5].

We now make the additional consonance assumption that value descriptions are con-
sonant random sets. In the current context consonance requires the restriction that in-
dividuals in V differ regarding what labels are appropriate for a value only in terms
of generality or specificity. Certainly, given that the meaning of labels in LA must be
sufficiently invariant across V to allow for effective communication then some strong
restriction on Dx should be expected. The consonance restriction could be justified by
the idea that all individuals share a common ordering on the appropriateness of labels
for a value and that the composition of D I

x is consistent with this ordering for each I.
For further considerations on the consonance assumption, see [5], [6].

Proposition 1. Given the consonance assumption, mx can be completely determined
from the values of μL(x) for L ∈ LA. Let {μL(x) : L ∈ LA} = {y1, . . . ,yn} ordered such
that yi > yi+1 for i = 1, . . . ,n−1. Then, for Si = {L ∈ LA : μL(x) ≥ yi}, i = 1, . . . ,n the
value description is given by:

mx( /0) = 1− y1, mx(Si) = yi− yi+1, i = 1, . . . ,n−1, mx(Sn) = yn (5)

The above has considerable practical advantages, since we no longer need to have any
knowledge of the underlying population of individuals V in order to determine mx.
Rather, for reasoning with label semantics in practice we need only define appropriate-
ness degrees μL for L ∈ LA corresponding to the imprecise definition of each label.
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For many types of data analysis it is useful to be able to estimate the distribution
underlying variables given the information contained in a data set D = {X1, . . . ,Xn}.
In the current context, our knowledge of D is represented by a mass assignment mD

defined as follows:

Definition 5. A mass assignment conditional on the information provided by D is
given by:

∀S ∈ LA,mD(S) =
n

∑
i=1

PD(Xi)mXi(S) (6)

where PD(Xi) corresponds to the probability of Xi being chose at random from D and
mXi is the mass assignment on DXi , i = 1, . . . ,n.

The following definition provides a means of evaluating a distribution on the base vari-
able x conditional on mD.

Definition 6. Let x be a variable into Ω with prior distribution p(x), LA be a set of
labels for x and m be a posterior mass assignment for the set of appropriate labels of x
(i.e., Dx). Then, the posterior distribution of x conditional on m is given by:

∀x ∈Ω , p(x|m) = p(x) ∑
S⊆LA

m(S)
pm(S)

mx(S) (7)

where pm is the prior mass assignment generated by the prior distribution p according
to

pm(S) =
∫
Ω

mx(S) p(x)dx (8)

This definition is motivated by the following argument. By the Theorem of Total
Probability:

p(x|m) = ∑
S⊆LA

p(x|Dx = S)Pr(Dx = S) = ∑
S⊆LA

p(x|Dx = S)m(S) (9)

Also,

p(x|Dx = S) =
Pr(Dx = S|x)p(x)

Pr(Dx = S)
=

mx(S)p(x)
pm(S)

(10)

Making the relevant substitutions and then simplifying gives the expression in
Definition 6.

Notice that in the case where ∀S ⊆ LA,m(S) = pm(S) it follows that

∀x ∈Ω , p(x|mx) = p(x) (11)

This is intuitive, since if the mass assignment m provides no new information, the con-
ditional density p(x|m) is not expected to differ from the prior p(x).

3 Density Estimation from Data

Let D = {X1, . . . ,Xn} be a sample of data and let us assume that the underlying vari-
able x takes values in a closed intervalΩ = [l,u]⊆R according to an unknown density
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function f . Let us also assume that the appropriateness degrees μL have a trapezoidal
shape for all L ∈ LA. These definitions may be obtained by uniformly partitioning the
universe Ω , so the subinterval where μL(x) = 1 has a constant width for all L ∈ LA.
Alternatively, it is possible to use a Percentile Method, whereby each label covers ap-
proximately the same number of data elements. This method is quite intuitive and has
been successfully used in several applications of label semantics to data mining and
machine learning (for instance, in [8] and [9]). In both cases, appropriateness degrees
form a pairwise overlapping full linguistic covering as follows:

Definition 7. The labels in LA form a full linguistic covering of the universeΩ if for ev-
ery value x ∈Ω there exists a label such that its appropriateness degree as a descriptor
of x is 1:

∀x ∈Ω ∃L ∈ LA : μLi = 1 (12)

Additionally, if only two labels can overlap at a time, the covering is said to be pairwise
overlapping, that is, for every value x in the universe there exist at most two labels with
nonzero appropriateness degrees:

∀x ∈Ω ∃i, j ∈ {1, . . . ,m} : {L ∈ LA : μL(x) �= 0}= {Li,Lj} (13)

Given a full linguistic covering of universe Ω built from a sample D, the consonance
assumption allows to completely determine mx for any x ∈ Ω based on the appropri-
ateness values μL(x) for L ∈ LA. It is then possible to determine the mass assignment
conditional on D, mD and use label semantics to provide the following density estimator.

Definition 8. Let D = {X1, . . . ,Xn} be a sample of data where the underlying variable
x takes values in a closed interval Ω = [l,u] ⊆ R according to an unknown density
function f . Let LA be a set of labels forming a full linguistic covering of the universe
Ω . The density estimate f̂ is obtained by conditioning on the mass obtained from D,
mD, assuming a uniform prior distribution on Ω , that is:

∀x ∈Ω , f̂ (x) = p(x|mD) = CΩ ∑
S⊆LA

mD(S)
pm(S)

mx(S) (14)

where CΩ is the constant function of the uniform density in Ω , mD is the mass assign-
ment conditional on the information provided by D, pm is the prior mass assignment
generated by the uniform distribution and mx is the mass assignment for x ∈ Ω deter-
mined from {μL(x) : L ∈ LA}.
Notice that there is certain formal similarity between (14) and the fuzzy histogram
estimator [7]. However, the motivation here is clearly very different, as the estimator
is obtained using label semantics calculus as a posterior distribution conditional on the
information provided by the data. Indeed, it would be possible to drop the assumption
of a uniform prior distribution in Ω to account for some prior knowledge of the data.

Definition 9. A measure of the discrepancy of the density estimator f̂ from the true
density f at a single point is the mean square error [11]:

MSEx( f̂ ) = E{ f̂ (x)− f (x)}2 (15)
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The proposed estimate is consistent with MSE under certain regularity conditions:

Theorem 1. Let f be a C2 function with bounded derivatives and let LA be a uniform
full linguistic covering of Ω . Then ∀x ∈ Ω , f̂ is consistent in the MSE, that is, if m
denotes the number of labels in LA and n the sample size:

m→ ∞,
n
m
→ ∞⇒MSEx( f̂ )→ 0. (16)

Proof. (Sketch of proof) The proof is very similar to that of binned kernel estimators
(cf. [10]), using the decomposition of MSE as a combination of bias and variance at x,
MSEx( f̂ ) = {E f̂ (x)− f (x)}2−var f̂ (x). Given the smoothness of f , both the bias and
the variance can be rewritten using a Taylor series expansion. The resulting expressions
can be seen to be bounded by functions that converge to 0 as the number of labels tends
to infinity. ��

4 Experimental Results

We now present experimental results for a toy problem where the density to be estimated
is a normal mixture density given by:

f (x) =
1
2

(N(2,3)+ N(8,0.5)) (17)

We have generated a random sample of 100 data instances. From this sample, we have
obtained trapezoidal definitions of five linguistic labels {vs,s,m, l,vl} which could be
seen as corresponding to “very small”, “small”, “medium”, “large” and “very large”

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-2  0  2  4  6  8  10

Fig. 1. Estimated density: f (dotted line) and f̂ (solid line), with estimated density values for the
sample D
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using a percentile method. For these labels, the mass assignment conditional on the
sample D is given by:

mD = {vs} : 0.151, {s} : 0.12, {s,vs} : 0.107, {m} : 0.063, {m,s} : 0.043,

{l} : 0.095, {l,m} : 0.165, {vl} : 0.105, {vl, l} : 0.151. (18)

Figure 1 shows the estimated density function f̂ against the original one f as well as
the estimated values of the sample data f̂ (Xi), i = 1, . . . ,n. The average squared error
1
n ∑

n
i=1( f (Xi)− f̂ (Xi))2 is 9.13 ·10−7. If a uniform partition is used instead to obtain the

label definitions, the average squared error is 9.704 ·10−6.

5 Conclusions and Future Work

We have proposed a non-parametric density estimator in the framework of label seman-
tics. It can be proved that this estimator is MSE consistent and we have illustrated its
good behaviour with experimental results on a toy problem. In the future, the theoretical
properties of the estimator should be further studied, contemplating the use of different
definitions for appropriateness degrees or the possibility of introducing some priorknowl-
edge about the underlying density function. Also, the approach should be further tested
using data sets from the literature and comparing the results to those of other methods.
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Abstract. Fuzzy representations of a real-valued random variable have been introduced with the
aim of capturing relevant information on the distribution of the variable, through the correspond-
ing fuzzy-valued mean value. In particular, characterizing fuzzy representations of a random
variable allow us to capture the whole information on its distribution. One of the implications
from this fact is that tests about fuzzy means of fuzzy random variables can be applied to de-
velop goodness-of-fit tests. In this paper we present empirical comparisons of goodness-of-fit
tests based on some convenient fuzzy representations with well-known procedures in case the
null hypothesis relates to some specified Binomial distributions.

Keywords: Fuzzy representation of a random variable, Fuzzy random variable, Fuzzy mean,
Goodness-of-fit test.

1 Introduction

First of all we should clarify that this paper does not deal with statistics with fuzzy
data but with statistics referred to real-valued ones. In this way, fuzzy random variables
are not considered here to model mechanisms generating fuzzy data, but as an auxil-
iary tool: by considering an appropriate fuzzy transformation of a real-valued random
variable one can obtain a fuzzy random variable whose mean value characterizes the
distribution of the original one. A crucial point in this functional characterization is due
to the fact that it corresponds to a functionally-valued “mean value”, so we can make
use of well-known results for the means of functional random elements.

In previous papers (see González-Rodrı́guez et al. [5], and Colubi et al. [3], [4]) a
special family of fuzzy-valued functions defined on R has been introduced. The com-
position of each function in this family with any real-valued random variable leads to
a fuzzy random variable in Puri and Ralescu’s sense [10]: the so-called fuzzy represen-
tation of the original random variable. Moreover, functions in the family have been
chosen to ensure that the functional mean value of the fuzzy representation of a random
variable captures relevant information on the distribution of this variable. In some cases
such a relevant information concerns the whole distribution. In these cases we will refer
to characterizing fuzzy representations.

Goodness-of-fit tests are used to test whether a sample of data can be considered to
come from a population with a specific distribution. Many goodness-of-fit methods can
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



Empirical Comparisons of Goodness-of-Fit Tests 191

be applied to any (or, at least, to a very wide class of) univariate distribution(s). The
best known goodness-of-fit statistics can be viewed as certain random dissimilarities
or distances between a characterizing functional (distribution function, probability or
density function, etc.) of the distribution of the variable under the null hypothesis and
an estimator of this functional.

On the other hand, the sample mean of a fuzzy random variable is a consistent es-
timator of the population one. As a consequence, the sample mean of a characterizing
fuzzy representation of a sample from a random variable X will become a consistent
estimate of the exact distribution of X (more precisely, a consistent estimate of the pop-
ulation mean value of the fuzzy representation of X).

If we consider a distance between fuzzy values, then we can immediately suggest the
goodness-of-fit statistic given by the distance between the sample mean of a character-
izing fuzzy representation of the random sample from X and the population mean value
of the fuzzy representation of X . In the literature, one can find several studies devoted
to the one-sample testing about the mean value of a fuzzy random variable (see Körner
[7], Montenegro et al. [9], González-Rodrı́guez et al. [6]), which can be directly applied
to carry out the proposed goodness-of-fit test.

In this paper, some preliminaries about fuzzy values, fuzzy random variables and the
associated mean values, as well as a metric between fuzzy values are first recalled. Once
two convenient characterizing fuzzy representations of a random variable are presented,
we will develop some empirical statistical studies to compare the associated goodness-
of-fit tests with classical omnibus tests for goodness-of-fit.

2 Preliminaries

In this section we recall some notions on fuzzy values and fuzzy means which are
required to formalize the suggested characterization of random variables.

Let Fc(R) denote the space of fuzzy numbers, where a fuzzy number is a function
U : R→ [0,1] such that the α-level of U (where Uα = {x ∈ R |U(x) ≥ α} if α > 0,
= cl{x ∈ R |U(x) > 0} otherwise) is a nonempty compact interval [infUα ,supUα ] for
each α ∈ [0,1].

Some basic operations between data will be later used, namely, the sum and the
product by a ‘scalar’. The application of Zadeh’s extension principle [11] on Fc(R) is
equivalent to consider the interval-valued arithmetic for the corresponding α-levels, so
that for each α ∈ [0,1], if U,V ∈Fc(R) and λ ∈ R

(U +V)α = [infUα + infVα ,supUα + supVα ] ,

(λ ·U)α =
{

[λ · infUα ,λ · supUα ] if λ ≥ 0
[λ · supUα ,λ · infUα ] if λ < 0

(Fc(R),+, ·) is not a linear but a semilinear space (since there is no inverse element for
the sum).

To compare fuzzy values it will be useful to consider a distance between fuzzy num-
bers. Bertoluzza et al. [1] has introduced the DϕW metric which has been shown to be
valuable and operational in this setting. Given U,V ∈Fc(R),
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DϕW (U,V ) =

√∫ 1

0

[∫ 1

0

[
λ
(

supUα − supVα
)
+(1−λ )

(
infUα − infVα

)]2 dW (λ )
]
dϕ(α),

where W and ϕ are normalized weighted measures on [0,1] (formalized as probability
measures on ([0,1],B[0,1])), W being associated with a non-degenerate distribution, and
ϕ being associated with a strictly increasing distribution function on [0,1]. It should be
pointed out that W and ϕ have no stochastic meaning. To consider W is equivalent to
consider a measure weighting points 0, 1 and a certain t0(W ) ∈ (0,1). Metric DϕW is an
L2-distance on the cone of the image of Fc(R) through the support function (see, for
instance, [8]).

Fuzzy random variables (FRVs for short) in Puri and Ralescu’s sense [10] represent a
well-formalized model in the probabilistic setting. Given a probability space (Ω ,A ,P),
a mapping X : Ω →Fc(R) is said to be a fuzzy random variable associated with the
space, if it is Borel-measurable w.r.t. BDϕW

(σ -field generated by the topology induced

by DϕW on Fc(R)). Borel-measurability guarantees that one can properly refer to con-
cepts like statistical independence of FRVs, distribution induced by an FRV, etc.

As a measure for the ‘central tendency’, Puri and Ralescu [10] have introduced the
concept of (fuzzy) mean value of an FRV. If X :Ω →Fc(R) is an FRV associated with
the probability space (Ω ,A ,P) and such that max

{| infX0|, |supX0|
}

is integrable,
the fuzzy expected value (or fuzzy mean) of X is the fuzzy number μ̃ = Ẽ(X )∈Fc(R)
such that for all α ∈ [0,1]

μ̃α = Aumann integral of Xα = [E(infXα |P),E(supXα |P)] .

Given n random observations from X (say X1, . . . , Xn), the fuzzy sample mean
given by

X n =
1
n
· [X1 + . . . +X n]

can be considered, on one hand, as an ‘unbiased fuzzy-valued estimator’ of μ̃ . On the
other hand, X n can be used to state the statistics for one-sample two-sided tests about the
mean of an FRV. Thus, to test the null hypothesis H0 : μ̃ =U ∈Fc(R) (or, equivalently, to
test H0 : DϕW

(
μ̃ ,U

)
= 0, the use of central limit theorems or their bootstrapped approaches

for generalized spaces-valued random elements allows us to consider techniques in this
context (see Körner [7], Montenegro et al. [9], González-Rodrı́guez et al. [6]).

3 Fuzzy Representations of Random Variables: Characterizing
Representations

Let X : Ω → R be a real-valued random variable (RV for short) associated with the
probability space (Ω ,A ,P). A γ-fuzzy representation of X (see [5]) is the output of
the composition of a ‘fuzzifying’ measurable mapping γ : R→Fc(R) with X , so that
γ ◦X :Ω →Fc(R) is an FRV.

The interest of fuzzy representations in statistics lies in the fact that γ can be defined
so that the (fuzzy) mean value of the γ-fuzzy representation of RV X , γ ◦X , can capture
information on either some relevant parameters or features of the distribution of X , or
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the type of distribution (discrete or continuous), or even on the whole distribution of X ,
leading to the so-called characterizing fuzzy representations.

In [2] it has been stated that for RVs taking on a small number of different values
(up to 4) a triangular representation of variable values (that is, a mapping transforming
each variable value into a triangular fuzzy number) characterizes the distribution of the
variable. However, this conclusion fails when there are more than 4 different variable
values. The last assertion has motivated the introduction of alternate transformations
in which either by incorporating curvatures or angles into fuzzy values it is possible
to capture the whole information on the distribution of the variable. In previous papers
(see [3], [4], [5]) characterizing fuzzy representations have been considered.

In this paper we are going to make use of two generalized fuzzy representations
which will be studied in connection with the binomial distribution. Let γ : R→Fc(R)
be the mapping transforming each value x ∈ R

• either into the fuzzy number γsh(x) such that(
γsh(x)

)
α =

[
fL(x)− (1−α)1/hL(x), fR(x)+ (1−α)1/hR(x)

]
for all α ∈ [0,1] where fL : R → R, fR : R → R, fL, fR ∈ L1(Ω ,A ,P), fL(x) ≤
fR(x) for all x ∈ R, and hL : R → (0,+∞),hR : R → (0,+∞) are continuous and
bijective,

• or into the fuzzy number

γ pol(x) = 1{x}+ sig(x− x0)γ f

(∣∣∣∣x− x0

a

∣∣∣∣)
where the functional γ f : R→Fc(R) is given for α ∈ [0,1] by

[γ f (t)]α =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
0,t2 + t2

(
1− f (t)

f (t)

)(
f (t)−α

f (t)

)]
if 0≤ α ≤ f (t)

[
0,t2

(
1−α

1− f (t)

)]
if f (t) < α ≤ 1

and f : [0,+∞)→ [0,1] is an injective function.

Examples of fuzzy representations of the above-described type for an RV taking on
values 0,1,2,3,4 can be found in Figure 1.

These two fuzzy representations characterize the whole distribution of the original
variable in case it is binomial, since if X : Ω → R and Y : Ω → R are two binomial
RVs associated with (Ω ,A ,P), Ẽ

(
γ ◦X

∣∣P)= Ẽ
(
γ ◦Y

∣∣P) if, and only if, X and Y are
identically distributed.

The above characterization result could be applied to both, discrete and continuous
variables, although we constrain in this paper to binomial ones. Furthermore, a very
relevant implication from the characterizing property is that probabilistic and statis-
tical results for the ‘mean values’ of generalized space-valued random elements can
be applied to develop statistical inferences or probabilistic results on the distribution
of an RV.
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Fig. 1. Fuzzy representations γsh (on the left) and γ pol (on the right) of an RV taking on values 0,
1, 2, 3 and 4

On the other hand, it should be remarked that there are more examples of fuzzy rep-
resentations characterizing the distributions of random variables. The above recalled
ones are just some examples we have considered in previous papers and showing suit-
able properties. Both representations, and especially the second one, are focussed on
relevant parameters and features of the distribution of the variable. More precisely, the
mean values of these fuzzy representations allow to easily identify and are very much
influenced by the variable mean, variance, asymmetry, etc.

4 Goodness-of-Fit Tests for Binomial Distributions Based on
Characterizing Fuzzy Representations: Method and Some
Empirical Comparisons

In case we particularize the one-sample test about the mean value of an FRV (in
Section 2) to a characterizing fuzzy representation of an RV, like those in Section 3,
we clearly obtain a goodness-of-fit test. In case the hypothetical distribution is a speci-
fied binomial this test can be stated as follows:

Let (Ω ,A ,P) be a probability space, and X be an RV associated with it. Con-
sider the null hypothesis H0 : X � B(n0, p0), which is equivalent to the null hypothesis

DϕW

(
Ẽ(γ ◦X), Ẽ(γ ◦B(n0, p0))

)
= 0 for a characterizing mapping γ : R→Fc(R) be

like those in Section 3.
At the nominal significance level α ∈ [0,1], H0 should be rejected whenever

Tn =

[
DϕW
(
(γ ◦X)n, Ẽ(γ ◦B(n0, p0))

)]2

([
DϕW

(
γ ◦X ,(γ ◦X)n

)]2)
n

> zα ,

where zα = 100(1−α) fractile of the distribution of Tn under H0 and this critical value
can be obtained by means of Monte Carlo method.

The application of the above testing method can be made in an easy way, and it could
be extended to any specified hypothetical distribution (not just binomial ones). Then, a
key discussion to be made at this stage is that of how it performs in comparison with
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Table 1. Testing H0 : X � B(4, p = .5) at the significance level α = .05, ϕ = U (0,1)

true value % reject. % reject. % reject. % reject. % reject. % reject.
of p χ2 KS LR CVM γsh γ pol

0.5 4.918 3.049 4.64 4.987 4.729 4.64
0.6 16.007 14.997 13.83 23.949 23.333 23.011
0.7 54.303 56.301 51.15 71.554 72.547 72.244
0.4 15.931 15.173 13.913 19.401 23.346 22.868
0.3 54.134 56.181 51.128 64.367 72.64 72.241

well-known ‘general’ goodness-of-fit tests like chi-square (χ2), Kolmogorov-Smirnov
(KS), likelihood ratio (LR), Cramér-Von Mises (CVM), the test above when γ = γsh,
and when γ = γ pol.

Indeed, as for the traditional techniques, there is a need for developing simulation
studies, since theoretical conclusions are generally unfeasible. A deep discussion on
this point will be a very complex task that will be tackled in the future. In this paper, we
present an introductory discussion for a very particular case: the hypothetical distribu-
tion being a B(4, p0) and considering the transformations in Figure 1. For this purpose,
we have examined several situations, that is, different values of p0. For each of these sit-
uations we have first simulated by means of the Monte Carlo method 100,000 samples
of size 10 from the B(4, p0) to approximate the critical value zα . Later, to analyze the
empirical achievement of the nominal significance level (.05) and the power of different
tests, we have simulated by means of the Monte Carlo method 100,000 samples of size
10 from the B(4, p) and compute the percentage of rejections of H0. Each case has been
studied for W = Lebesgue measure, ϕ = U (0,1) and ϕ = β (1,4) in DϕW .

Tables 1-4 show some of the results obtained in this empirical analysis. In all these
tables the first row of numbers correspond to the accomplishment of the nominal sig-
nificance level (5%), whereas the other rows are related to the power of the tests for
different ‘deviations’ from the hypothetical distribution.

Conclusions we state below are drawn on the basis of a few simulation studies gath-
ered in Tables 1-4. Nevertheless, we have developed some more simulations for other
hypothetical values of n0 and p0, and other deviations from these values, although a
deep discussion would require a much more exhaustive analysis. Anyway, we can state
that introductory studies show a quite good behavior of the goodness-of-fit tests based

Table 2. Testing H0 : X � B(4, p = .5) at the significance level α = .05, ϕ = β (1,4)

true value % reject. % reject. % reject. % reject. % reject. % reject.
of p χ2 KS LR CVM γsh γ pol

.5 4.925 3.093 4.946 4.95 4.701 4.627

.6 15.913 15.078 14.271 23.729 23.093 22.788

.7 54.234 56.201 51.433 71.437 72.372 71.948

.4 16.019 14.995 14.234 19.395 23.382 23.07

.3 53.901 56.021 51.165 63.946 72.097 71.791
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Table 3. Testing H0 : X � B(4, p = .75) at the significance level α = .05, ϕ = U (0,1)

true value % reject. % reject. % reject. % reject. % reject. % reject.
of p χ2 KS LR CVM γsh γ pol

0.75 4.984 3.859 4.944 4.809 4.989 4.969
0.85 2.603 20.963 14.754 28.872 26.312 28.306
0.95 42.371 90.267 86.619 95.537 95.112 95.514
0.65 24.461 24.25 25.119 24.574 34.246 32.732
0.55 63.926 67.469 68.717 67.229 81.077 80.073

Table 4. Testing H0 : X � B(4, p = .25) at the significance level α = .05, ϕ = β (1,4)

true value % reject. % reject. % reject. % reject. % reject. % reject.
of p χ2 KS LR CVM γsh γ pol

0.25 4.991 4.067 4.946 4.853 4.687 4.97
0.35 23.911 24.166 24.124 28.493 32.571 32.466
0.45 62.037 67.501 67.559 74.025 79.913 79.801
0.15 2.027 21.018 14.788 26.986 26.26 28.256
0.05 42.04 90.304 86.555 95.302 95.165 95.555

on characterizing fuzzy representations in comparison with the best known ones. Al-
though there is not a uniformly most powerful test, in most of the examined situations
and for most of the deviations from the hypothesis, either the test based on the γsh or
the one based on the γ pol is the most powerful one.

In addition to the need for a deep comparative analysis of the goodness-of-fit tech-
niques, a challenging open problem is the one related to the choice of the weighting
measure ϕ as well as the γsh or γ pol functions. That is, a sensitivity analysis should be
also carried out.
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A Generalization of Hukuhara Difference

Luciano Stefanini
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Abstract. We propose a generalization of the Hukuhara difference. First, the case of compact
convex sets is examined; then, the results are applied to generalize the Hukuhara difference
of fuzzy numbers, using their compact and convex level-cuts. Finally, a similar approach is
seggested to attempt a generalization of division for real intervals and fuzzy numbers.

Keywords: Hukuhara difference, Interval and fuzzy arithmetic, Fuzzy numbers, Invertible fuzzy
operations, Interval and fuzzy calculus.

1 General Setting

We consider a metric vector space X with the induced topology and in particular the
space X = Rn, n ≥ 1, of real vectors equipped with standard addition and scalar multi-
plication operations. Following Diamond and Kloeden (see [3]), denote by K (X) and
KC(X) the spaces of nonempty compact and compact convex sets of X. Given two sub-
sets A,B ⊆ X and k ∈ R, Minkowski addition and scalar multiplication are defined by
A+B = {a+b|a∈ A,b ∈ B} and kA = {ka|a ∈ A} and it is well known that addition is
associative and commutative and with neutral element {0}. If k = −1, scalar multipli-
cation gives the opposite−A = (−1)A = {−a|a ∈ A} but, in general, A +(−A) �= {0},
i.e. the opposite of A is not the inverse of A in Minkowski addition (unless A = {a} is a
singleton). Minkowski difference is A−B = A +(−1)B = {a−b|a∈ A,b ∈ B}. A first
implication of this fact is that, in general, even if it true that (A+C = B+C) ⇐⇒ A = B,
addition/subtraction simplification is not valid, i.e. (A + B)−B �= A.

To partially overcome this situation, Hukuhara [4] introduced the following H-
difference A � B = C ⇐⇒ A = B +C and an important property of � is that A � A =
{0}, ∀A ∈ Rn and (A + B)� B = A, ∀A,B ∈ Rn; H-difference is unique, but a neces-
sary condition for A � B to exist is that A contains a translate {c}+ B of B. In general,
A−B �= A � B. From an algebraic point of view, the difference of two sets A and B
may be interpreted both in terms of addition as in � or in terms of negative addition,
i.e. A � B = C ⇐⇒ B = A +(−1)C where (−1)C is the opposite set of C. Operations
� and � are compatible each other and this suggests a generalization of Hukuhara
difference:

Definition 1. Let A,B ∈K (X); we define the generalized difference of A and B as the
set C ∈K (X) such that

A �g B = C ⇐⇒
{

(i) A = B +C
or (ii) B = A +(−1)C . (1)

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 203–210, 2008.
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Proposition 1. (Unicity of A �g B)
If C = A �g B exists, it is unique and if also A � B exists then A �g B = A � B.

Proof. See [7]. ��
The generalized Hukuhara difference A �g B will be called the gH-difference of
A and B.

Proposition 2. If A �g B exists, it has the following properties:

1. A �g A = {0};
2. (A + B)�g B = A;
3. If A �g B exists then also (−B)�g (−A) does and −(A �g B) = (−B)�g (−A);
4. (A−B)+ B = C ⇐⇒ A−B = C �g B;
5. In general, B−A = A−B does not imply A = B; but (A �g B) = (B �g A) = C if

and only if C = {0} and A = B;
6. If B�g A exists then either A+(B�g A) = B or B−(B�g A) = A and both equalities

hold if and only if B �g A is a singleton set.

Proof. See [7]. ��
If X = Rn, n ≥ 1 is the real n−dimensional vector space with internal product 〈x,y〉
and corresponding norm ||x|| = √〈x,x〉, we denote by K n and K n

C the spaces of
(nonempty) compact and compact convex sets of Rn, respectively. If A ⊆ Rn and
S n−1 = {u|u ∈ Rn, ||u||= 1} is the unit sphere, the support function associated to A is

sA : Rn −→R defined by sA(u) = sup{〈u,a〉 |a ∈ A}, u ∈ Rn.

If A �= /0 is compact, then sA(u)∈R, ∀u∈S n−1. For properties of the support functions
see e.g. [3] or [5].

We can express the generalized Hukuhara difference (gH-difference) of compact
convex sets A,B ∈ K n

C by the use of the support functions. Consider A,B,C ∈ K n
C

with C = A �g B as defined in (1); let sA, sB, sC and s(−1)C be the support functions of
A, B, C, and (−1)C respectively. In case (i) we have sA = sB + sC and in case (ii) we
have sB = sA + s(−1)C. So, ∀u ∈S n−1

sC(u) =
〈

sA(u)− sB(u)
sB(−u)− sA(−u) =

〈
sA(u)− sB(u) in case (i)
s(−1)B(u)− s(−1)A(u) in case (ii) . (2)

Now, sC in (2) is a correct support function if it is continuous, positively homogeneous
and subadditive and this requires that, in the corresponding cases (i) and (ii), sA− sB

and/or s−B− s−A be support functions, assuming that sA and sB are.
Consider s1 = sA−sB and s2 = sB−sA. Continuity of s1 and s2 is obvious. To see their

positive homogeneity let t ≥ 0; we have s1(tu) = sA(tu)− sB(tu) = tsA(u)− tsB(u) =
ts1(u) and similarly for s2. But s1 and/or s2 may fail to be subadditive and the following
four cases, related to the definition of gH-difference, are possible (for a proof see [7]).

Proposition 3. Let sA and sB be the support functions of A,B ∈K n
C and consider s1 =

sA− sB, s2 = sB− sA; the following four cases apply:
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1. If s1 and s2 are both subadditive, then A�g B exists; (i) and (ii) are satisfied simul-
taneously and A �g B = {c};

2. If s1 is subadditive and s2 is not, then C = A �g B exists, (i) is satisfied and sC =
sA− sB;

3. If s1 is not subadditive and s2 is, then C = A �g B exists, (ii) is satisfied and sC =
s−B− s−A;

4. If s1 and s2 are both not subadditive, then A�g B does not exist.

Proposition 4. If C = A �g B exists, then ||C||= ρ2(A,B) and the Steiner points satisfy
σC = σA−σB.

2 The Case of Compact Intervals in Rn

In this section we consider the gH-difference of compact intervals in Rn. If n = 1,
i.e. for unidimensional compact intervals, the gH-difference always exists. In fact, let
A = [a−,a+] and B = [b−,b+] be two intervals; the gH-difference is

[a−,a+]�g [b−,b+] = [c−,c+] ⇐⇒
{

(i) {a− = b−+ c−, a+ = b+ + c+

or (ii) {b− = a−− c+, b+ = a+− c−

so that [a−,a+] �g [b−,b+] = [c−,c+] is always defined by c− = min{a− − b−,a+−
b+}, c+ = max{a−−b−,a+−b+}. Conditions (i) and (ii) are satisfied simultaneously
if and only if the two intervals have the same length and c− = c+. Also, the result is
{0} if and only if a− = b− and a+ = b+.

Two simple examples on real compact intervals illustrate the generalization (from
[3], p. 8); [−1,1]� [−1,0] = [0,1] as in fact (i) is [−1,0]+ [0,1] = [−1,1] but [0,0]�g

[0,1] = [−1,0] and [0,1]�g [− 1
2 ,1] = [0, 1

2 ] satisfy (ii).
Let now A = ×n

i=1Ai and B = ×n
i=1Bi where Ai = [a−i ,a+

i ], Bi = [b−i ,b+
i ] are real

compact intervals (×n
i=1 denotes the cartesian product).

In general, considering D = ×n
i=1(Ai �g Bi), we may have A �g B �= D e.g. A �g B

may not exist as for the example A1 = [3,6], A2 = [2,6], B1 = [5,10], B2 = [7,9] for
which (A1 �g B1) = [−4,−2], (A2 �g B2) = [−5,−3], D = [−4,−2]× [−5,−3] and
B + D = [1,8]× [2,6] �= A, A +(−1)D = [5,10]× [5,11] �= B.

But if A �g B exists, then equality will hold. In fact, consider the support function
of A (and similarly for B), defined by sA(u) = max

x
{〈u,x〉 |a−i ≤ xi ≤ a+

i }, u ∈ S n−1;

it can be obtained simply by sA(u) = ∑
ui>0

uia+
i + ∑

ui<0
uia−i as the box-constrained

maxima of the linear objective functions 〈u,x〉 above are attained at vertices x̂(u) =
(x̂1(u), ..., x̂i(u), ..., x̂n(u)) of A, i.e. x̂i(u)∈{a−i ,a+

i }, i = 1,2, ...,n. Then, being s−A(u)=
sA(−u) = − ∑

ui<0
uia

+
i − ∑

ui>0
uia

−
i , one obtains s−B(u)− s−A(u) = ∑

ui>0
ui(a−i − b−i ) +

∑
ui<0

ui(a+
i −b+

i ).

From the relations above, we deduce that the gH-difference A�g B exists if and only
if one of the two conditions are satisfied:
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A �g B = C ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
(i)
{

C =×n
i=1[a

−
i −b−i ,a+

i −b+
i ]

provided that a−i −b−i ≤ a+
i −b+

i , ∀i

or (ii)
{

C =×n
i=1[a

+
i −b+

i ,a−i −b−i ]
provided that a−i −b−i ≥ a+

i −b+
i , ∀i

.

Examples are given in [7]. We end this section with a comment on the simple interval
equation

A + X = B (3)

where A = [a−,a+], B = [b−,b+] are given intervals and X = [x−,x+] is an interval to
be determined satisfying (3). We have seen that, for unidimensional intervals, the gH-
difference always exists. Denote by l(A) = a+− a− the length of interval A. It is well
known from classical interval arithmetic that an interval X satisfying (3) exists only if
l(B)≥ l(A) (in Minkowski arithmetic we have l(A+X)≥max{l(A), l(X)}); in fact, no
X exists with x− ≤ x+ if l(B) < l(A) and we cannot solve (3) unless we interpret it as
B−X = A. If we do so, we get

case l(B)≤ l(A) :

{
a−+ x− = b−
a+ + x+ = b+ i.e.

x− = b−−a−
x− = b−−a−

case l(B)≥ l(A) :

{
b−− x+ = a−
b+− x− = a+ i.e.

x− = b+−a+

x+ = b−−a− .

We then obtain that X = B �g A is the unique solution to (3) and it always exists, i.e.

Proposition 5. Let A,B ∈KC(R); the gH-difference X = B �g A always exists and ei-
ther A +(B �g A) = B or B− (B �g A) = A.

From Property 6 of Proposition 2, a similar result is true for equation A + X = B with
A,B ∈KC(Rn) but for n > 1 the gH-difference may non exist.

3 gH-Difference of Fuzzy Numbers

A general fuzzy set over a given set (or space) X of elements (the universe) is usually
defined by its membership function μ : X−→ T⊆ [0,1] and a fuzzy (sub)set u of X is
uniquely characterized by the pairs (x,μu(x)) for each x ∈ X; the value μu(x) ∈ [0,1]
is the membership grade of x to the fuzzy set u. We will consider particular fuzzy sets,
called fuzzy numbers, defined over X = R having a particular form of the membership
function. Let μu be the membership function of a fuzzy set u over X. The support of
u is the (crisp) subset of points of X at which the membership grade μu(x) is positive:
supp(u) = {x|x ∈ X, μu(x) > 0}. For α ∈]0,1], the α−level cut of u (or simply the
α− cut) is defined by [u]α = {x|x ∈ X, μu(x) ≥ α} and for α = 0 (or α →+0) by the
closure of the support [u]0 = cl{x|x ∈ X, μu(x) > 0}.

A well-known property of the level− cuts is [u]α ⊆ [u]β for α > β (i.e. they are
nested).

A particular class of fuzzy sets u is when the support is a convex set and the member-
ship function is quasi-concave i.e. μu((1− t)x′+ tx′′) ≥ min{μu(x′),μu(x′′)} for every
x′,x′′ ∈ supp(u) and t ∈ [0,1]. Equivalently, μu is quasi-concave if the level sets [u]α are
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convex sets for all α ∈ [0,1]. A third property of the fuzzy numbers is that the level-cuts
[u]α are closed sets for all α ∈ [0,1].

By using these properties, the space F of (real unidimensional) fuzzy numbers is
structured by an addition and a scalar multiplication, defined either by the level sets or,
equivalently, by the Zadeh extension principle. Let u,v∈F have membership functions
μu, μv and α− cuts [u]α , [v]α , α ∈ [0,1] respectively. The addition u + v ∈F and the
scalar multiplication ku ∈F have level cuts

[u + v]α = [u]α +[v]α and [ku]α = k[u]α . (4)

In the fuzzy or in the interval arithmetic contexts, equation u = v + w is not equivalent
to w = u− v = u + (−1)v or to v = u−w = u + (−1)w and this has motivated the
introduction of the following Hukuhara difference ([3, 5]). The generalized Hukuhara
difference is (implicitly) used by Bede and Gal (see [1]) in their definition of generalized
differentiability of a fuzzy-valued function.

Definition 2. Given u,v ∈F , the H-difference is defined by u � v = w⇐⇒ u = v + w;
if u � v exists, it is unique and its α − cuts are [u � v]α = [u−α − v−α ,u+

α − v+
α ]. Clearly,

u � u = {0}.
The Hukuhara difference is also motivated by the problem of inverting the addition:
if x,y are crisp numbers then (x + y)− y = x but this is not true if x,y are fuzzy. It is
possible to see that (see [2]), if u and v are fuzzy numbers (and not in general fuzzy
sets), then (u + v)� v = u i.e. the H-difference inverts the addition of fuzzy numbers.

Definition 3. Given u,v ∈F , the gH-difference is the fuzzy number w, if it exists, such
that

u �g v = w⇐⇒
{

(i) u = v + w
or (ii) v = u +(−1)w . (5)

If u �g v exists, its α− cuts are given by [u �g v]α = [min{u−α − v−α ,u+
α − v+

α},max{u−α
−v−α ,u+

α − v+
α}] and u � v = u �g v if u � v exists. If (i) and (ii) are satisfied simultane-

ously, then w is a crisp number. Also, u �g u = u � u = {0}.
A definition of w = u�g v for multidimensional fuzzy numbers can be obtained in terms
of support functions in a way similar to (2)

sw(p;α) =
〈

su(p;α)− sv(p;α) in case (i)
s(−1)v(p;α)− s(−1)u(p;α) in case (ii) , α ∈ [0,1] (6)

where, for a fuzzy number u, the support functions are considered for each α− cut and
defined to characterize the (compact) α− cuts [u]α :

su : Rn× [0,1]−→ R defined by

su(p;α) = sup{〈p,x〉 |x ∈ [u]α} for each p ∈Rn, α ∈ [0,1].

In the unidimensional fuzzy numbers, the conditions for the definition of w = u�g v are

[w]α = [w−α ,w+
α ] = [u]α �g [v]α :

{
w−α = min{u−α − v−α ,u+

α − v+
α}

w+
α = max{u−α − v−α ,u+

α − v+
α} . (7)

provided that w−α is nondecreasing, w+
α is nonincreasing and w−α ≤ w+

α . If u �g v is a
proper fuzzy number, it has the same properties illustrated in Section 1 for intervals.
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Proposition 6. If u �g v exists, it is unique and has the following properties:

1. u �g u = 0;
2. (u + v)�g v = u;
3. If u �g v exists then also (−v)�g (−u) does and {0}�g (u �g v) = (−v)�g (−u);
4. (u− v)+ v = w ⇐⇒ u− v = w�g v;
5. (u �g v) = (v �g u) = w if and only if (w = {0} and u = v);
6. If v�g u exists then either u+(v�g u) = u or v− (v�g u) = u and if both equalities

hold then v�g u is a crisp set.

If the gH-differences [u]α �g [v]α do not define a proper fuzzy number, we can use the
nested property and obtain a proper fuzzy number by

[u�̃gv]α :=
⋃
β≥α

([u]β �g [v]β ); (8)

As each gH-difference [u]β �g [v]β exists for β ∈ [0,1] and (8) defines a proper fuzzy
number, it follows that u�̃gv can be considered as a generalization of Hukuhara differ-
ence for fuzzy numbers, existing for any u,v. A second possibility for a gH-difference of
fuzzy numbers may be obtained following a suggestion by Diamond and Kloeden ([3])
and defining z = u�̃gv to be the fuzzy number whose α−cuts are as near as possible to
the gH-differences [u]α �g [v]α , for example by minimizing the functional (ωα ≥ 0 and
γα ≥ 0 are weighting functions)

G(z|u,v) =
1∫

0

(ωα
[
z−α − (u �g v)−α

]2 + γα
[
z+
α − (u �g v)+α

]2)dα
such that z−α ↑, z+

α ↓, z−α ≤ z+
α ∀α ∈ [0,1].

A discretized version of G(z|u,v) can be obtained by choosing a partition 0 = α0 <
α1 < ... < αN = 1 of [0,1] and defining the discretized G(z|u,v) as

GN(z|u,v) =
N

∑
i=0

ωi
[
z−i − (u �g v)−i

]2 + γi
[
z+

i − (u �g v)+i
]2

;

we minimize GN(z|u,v) with the given data (u �g v)−i = min{u−αi
− v−αi

,u+
αi
− v+
αi
}

and (u �g v)+i = max{u−αi
− v−αi

,u+
αi
− v+
αi
}, subject to the constraints z−0 ≤ z−1 ≤ ... ≤

z−N ≤ z+
N ≤ z+

N−1 ≤ . . . ≤ z+
0 . We obtain a linearly constrained least squares problem

min
z∈R2N+2

(z−w)T D2(z−w) s.t. Ez≥ 0 where D = diag{√ω0, . . . ,
√
ωN ,
√γN , . . . ,

√γ0},
z = (z−0 ,z−1 , . . . ,z−N , z+

N ,z+
N−1, . . . ,z

+
0 ), w−i = (u �g v)−i , w+

i = (u �g v)+i , w = (w−0 ,w−1 ,

. . . ,w−N , w+
N , w+

N−1, . . . ,w
+
0 ), and E is the (N,N + 1) matrix

E =

⎡⎣−1 1 0 . . . . . . 0
. . . . . . . . . . . . . . . . . .
0 0 . . . . . . −1 1

⎤⎦
which can be solved by standard efficient procedures (see the classical book [6,
Chap. 23]). If, at solution z∗, we have z∗ = w, then we obtain the gH-difference as
defined in (5).
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4 Generalized Division

An idea silmilar to the gH-difference can be used to introduce a division of real in-
tervals and fuzzy numbers. We consider here only the case of real compact intervals
A = [a−,a+] and B = [b−,b+] with b− > 0 or b+ < 0 (i.e. 0 /∈ B).

The interval C = [c−,c+] defining the multiplication C = AB is given by

c− = min{a−b−,a−b+,a+b−,a+b+} , c+ = max{a−b−,a−b+,a+b−,a+b+}
and the multiplicative “inverse” (it is not the inverse in the algebraic sense) of an interval
B is defined by B−1 = [ 1

b+ , 1
b− ]; we define the generalized division (g-division) ÷g as

follows:
A÷g B = C ⇐⇒ (i) A = BC or (ii) B = AC−1 .

If both cases (i) and (ii) are valid, we have CC−1 =C−1C = {1}, i.e. C = {ĉ}, C−1 = { 1
ĉ}

with ĉ �= 0. It is easy to see that A÷g B always exists and is unique for given A = [a−,a+]
and B = [b−,b+] with 0 /∈ B. It is easy to see that it can be obtained by the following
rules:

Case 1. If (a− ≤ a+ < 0 and b− ≤ b+ < 0) or (0 < a− ≤ a+ and 0 < b− ≤ b+) then
c− = min{ a−

b− , a+

b+ } ≥ 0, c+ = max{ a−
b− , a+

b+ } ≥ 0;
Case 2. If (a− ≤ a+ < 0 and 0 < b− ≤ b+) or (0 < a− ≤ a+ and b− ≤ b+ < 0) then

c− = min{ a−
b+ , a+

b− } ≤ 0, c+ = max{ a−
b+ , a+

b− } ≤ 0;

Case 3. If (a− ≤ 0, a+ ≥ 0 and b− ≤ b+ < 0) then c− = a−
b− ≤ 0, c+ = a+

b− ≥ 0;

Case 4. If (a− ≤ 0, a+ ≥ 0 and 0 < b− ≤ b+) then c− = a−
b+ ≤ 0, c+ = a+

b+ ≥ 0.

Remark 1. If 0 ∈]b−,b+[ the g-division is undefined; for intervals B = [0,b+] or B =
[b−,0] the division is possible but obtaining unbounded results C of the form C =]−
∞,c+] or C = [c−,+∞[: we work with B = [ε,b+] or B = [b−,ε] and we obtain the
result by the limit for ε −→ 0+. Example: for [−2,−1]÷g [0,3] we consider [−2,−1]÷g

[ε,3] = [c−ε ,c+
ε ] with (Case 2.) c−ε = min{−2

3 , −1
ε } and c+

ε = max{−2
ε , −1

3 } and obtain
the result C = [−∞,− 1

3 ] at the limit ε −→ 0+.

Proposition 7. For any A = [a−,a+] and B = [b−,b+] with 0 /∈ B, we have (here 1 is
the same as {1}):

1. B÷g B = 1, B÷g B−1 = {b−b+} (= {b̂2} if b− = b+ = b̂);
2. (AB)÷g B = A;
3. 1÷g B = B−1 and 1÷g B−1 = B.

In the case of fuzzy numbers u,v∈F having membership functions μu, μv and α−cuts
[u]α = [u−α ,u+

α ], [v]α = [v−α ,v+
α ], 0 /∈ [v]α ∀α ∈ [0,1], the g-division ÷g can be defined

as the operation that calculates the fuzzy number w = u÷g v ∈ F having level cuts
[w]α = [w−α ,w+

α ] (here [w]−1
α = [ 1

w+
α
, 1

w−α
]):

[u]α ÷g [v]α = [w]α ⇐⇒
{

(i) [u]α = [v]α [w]α
or (ii) [v]α = [u]α [w]−1

α
,

provided that w is a proper fuzzy number.
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A Note about Bobylev’s Differential

Luis J. Rodrı́guez-Muñiz

Dept. of Statistics and O.R., University of Oviedo, E.U.I.T. Industrial, Gijón, Spain

Abstract. In this work Bobylev’s definition of differential of a fuzzy set-valued mapping is
studied. Its connections with other common definitions of derivative and differential are analyzed.

Keywords: Bobylev differential, Fuzzy-valued mapping, Hukuhara derivative, s-Differential,
Strong generalized differential.

1 Introduction

We study the relationships among Bobylev’s differential ([4]) and other definitions si-
multaneously and posteriorly introduced. By developing this task, we will find that
Bobylev’s definition can generalize some of those definitions, as well as it is general-
ized by some others.

This topic on differentials can be used not only in a pure Mathematical Analysis
framework, but also in connection with other disciplines like Probability or Statistics
(see, for instance, [15, 16, 17]).

In Section 2 we introduce some notation and preliminaries. In Section 3 we recall
Bobylev’s definitions. In Section 4 we study the relationships among Bobylev’s defini-
tions and previous ones. Finally, some open problems are addressed.

2 Notation and Preliminaries

K (Rn) will denote the class of compact subsets of Rn (Kc(Rn) will stand for the
convex case). F (Rn) will denote the class of fuzzy subsets A : Rn → [0,1] with α-cuts
Aα in K (Rn), for α ∈ [0,1] (being A0 = cl{x ∈ Rn : A(x) > 0}). Fc(Rn) will stand
when Aα ∈Kc(Rn), for α ∈ [0,1].

The class Fc(Rn) is endowed (see [20] or [8]) with a semilinear structure, by defin-
ing (A + B)α = Aα + Bα (Minkowski’s addition) and (λA)α = λAα , being A,B ∈
Fc(Rn), λ ∈ R. We will also use the generalized Hausdorff distance ([10]), given by
d∞(A,B) = supα∈[0,1] dH(Aα ,Bα), for A,B ∈F (Rn), dH being the Hausdorff distance.

For A∈Fc(Rn), if the mapping α→ Aα is continuous with respect to the Euclidean
and the dH metrics, we will say that A∈Fcc(Rn). In [11] it is proved that (Fcc(Rn),d∞)
is complete and closed and it can be isometrically embedded into the Hilbert space of
continuous real-valued functions from [0,1]× Sn−1 with the usual ‖ · ‖∞ norm, by the
embedding:

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 211–217, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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j : Fcc(Rn)→ C ([0,1]×Sn−1)

given by j(A) = sA. Moreover, Fcc(Rn) is the greatest subclass of Fc(Rn) that can be
isometrically embedded into C ([0,1]×Sn−1).

Puri and Ralescu’s definition of support function (see [10], [11]) for A ∈Fcc(Rn)
and Sn−1 the unit sphere in Rn is given by sA : [0,1]× Sn−1 → R, with sA(α, p) =
supx∈Aα < p,x >, being < ·, · > the inner product in Rn. In the compact convex case,
the supremum is attained. In [10] is also proved how the support function characterizes
the fuzzy set. Other properties, mainly inheritated from the set-valued case can be found
in [10], [6] and [11].

In [6] and [13] an overview of several definitions of differential can be found, in-
cluding De Blasi’s definition, the π-differential and the conical differential (introduced
in [9] based on the set-valued case in [1]), and the s-differential (introduced in [14]),
which is only defined for mappings going into Fcc(Rn). Other definitions can also be
found in, for instance, [2] or [12]. We can also consider the Fréchet differential of the
support function, which is a special case of the s-differential. Of course, in those defini-
tions of differential using Puri and Ralescu’s support function, we should yield into the
class Fcc(Rn) to guarantee the well-definition, since in Fc(Rn)\Fcc(Rn) the isometry
by j does not hold in general.

3 Bobylev’s Definitions

Bobylev introduced ([3]) a concept of support function of a fuzzy set in Fc(Rn),
we will use ϕ for distinguishing it from the support function by Puri and Ralescu
s. For A ∈ Fc(Rn), the support function is given by ϕA : Bn → R, with ϕA(k) =
sup{x∈Rn:A(x)≥‖k‖}{< k,x >}, Bn being the ball in Rn centered at 0 ∈ Rn with radius 1.

In [3] it is demonstrated that ϕA is unique and its main properties are stated: (1)
uppersemicontinuity, (2) positive homogeneity, (3) quasiadditiveness, (4) normality,
(5) ϕ is a bounded operator, (6) ϕ(0) = 0.

If we denote by Φn the family of all functions ϕ : Bn → R satisfying above condi-
tions (1) to (6), we have ([3]) that Φn is the set of all support functions of fuzzy sets in
Fc(Rn). If we denote byΨn the set of all functions ϕ : Bn → R satisfying above con-
ditions (5) and (6),Ψn can be endowed with a linear structure by means of pointwise
algebraic operations.

Then, a norm can be defined onΨ n by ‖ϕ‖Ψn = supx∈Bn\{0}
{ |ϕ(x)|
‖x‖
}

. Φn is a closed

subset ofΨ n and it is nonseparable in the sense of norm ‖ · ‖Ψn . Bobylev defines the
distance between two fuzzy subsets A,B∈Fc(Rn) as dϕ(A,B)= ‖ϕA−ϕB‖Ψn . Bobylev
proves that the space (Fc(Rn),dϕ) is complete and nonseparable.

In [18] it is demonstrated a relationship between sA and ϕA, and the equivalence
between d∞ and dϕ . Based on those results we are obtaining the results in the following
section.

In [4] Bobylev introduced a concept of differential for fuzzy-valued mappings. The
definition of the differential is based on the support function, since it yields on a Hilbert
space.
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Definition 1. Given O an open subset of Rl , and a fuzzy-valued mapping F : O →
Fc(Rn), F is said to be Bobylev-differentiable at t0 ∈ O if the mapping ϕF(·) : O →
Φn ⊆Ψn, given by ϕF(t), is Fréchet differentiable at t0 (with respect to the Euclidean
norm and the norm ‖ · ‖Ψn ) (being ϕ ′Ft0

: Rl →Ψ n its differential) and, uniformly in

t ∈ Rl , there exist a fuzzy set FB
t0 (t) ∈Fc(Rn) such that ϕ ′Ft0

(t) = ϕFB
t0

(t).

4 Differentials

In this section we examine the relationships between Bobylev differential and others
introduced in the literature, these are De Blasi differential ([5, 6]), Hukuhara derivative
([7, 9]), s-differential ([13, 14]) and strong generalized differential ([2]). In [6], [13]
and [2] some of the properties of these definitions and relationships among them are
studied.

Within the class Fcc(Rn), the s-differential is the most general definition, thus, we
are starting by proving what happens with the Bobylev differential of a mapping taking
on values on Fcc(Rn). Unfortunately we cannot guarantee, in general, that the Bobylev
differential yields in the same class than the mapping. We can see it in the following
example.

Example 1. Let us consider the mapping F : (0.5,2)→Fcc(R) where F(t) : R→ [0,1]
is given by:

F(t)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x, if x ∈ (0,0.25);
0.5, if x ∈ [(0.25, t−0.25)

or x ∈ [2t + 0.25,3t−0.25);
2(x− t)+ 1, if x ∈ [t−0.25, t);
1, if x ∈ [t,2t);
1−2(x−2t), if x ∈ [2t,2t + 0.25);
2(3t− x), if x ∈ [3t−0.25,3t);
0, else.

Next result states that within the class Fcc(Rn) the s-differential generalizes the
Bobylev differential.

Proposition 1. Let O be an open subset of Rl and let F : O→Fcc(Rn) be a mapping.
Let F be Bobylev differentiable at t0 ∈O with FB

t0 (t) ∈Fcc(Rn), for every t ∈Rl (being
FB

t0 (t) the set in the Bobylev differential, in Definition 1). Then F is also s-differentiable
at t0, and its s-differential is given by:

F ′t0(t) = sFB
t0

(t) ,

for every t ∈ Rl .

Remark 1. It is obvious that, under hypothesis in Proposition 1, the Bobylev differentia-
bility implies not only the s-differentiability but also the Fréchet differentiability of the
associated support function, that is, sF(·) : O→ C ([0,1]×Sn−1) associating t �→ sF(t).
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The converse of Proposition 1 is not true in general. It is easy to find counterexamples,
going from nonlinearity (required for the Bobylev differential but for the s-differential)
to the existence of that set (we have denoted FB

t0 (·)) having as support function the
Fréchet differential of the mapping ϕF(·). The following are two of them.

Example 2. Consider the mapping F : (.5,2) → Fcc(R) where F(t) : R → [0,1] is
given by:

F(t)(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2(xt + 1), if x ∈ [−1

t , −1
2t );

1, if x ∈ [−1
2t , 1

2t );

−2(xt−1), if x ∈ [ 1
2t ,

1
t );

0, else.

F is not Bobylev differentiable at 1, because there does not exist a fuzzy set FB
1 (t) ∈

Fc(R) such that whose Bobylev support function is the Fréchet differential of ϕF(·) at
1 inΨ n (see Definition 1). Otherwise, let us suppose that F is Bobylev differentiable at
1, and, whence, there exist such a fuzzy set FB

1 (t) ∈Fc(R) such that ϕ ′F1
(t) = ϕFB

1 (t),

for every t ∈ R. Due to Proposition 1, it must hold F ′1(t) = sFB
1 (t). But it is impossible

for F ′1(t) to be the Puri and Ralescu support function of any fuzzy set in Fc(R) since
F ′1(t)(·, p) is increasing in its first parameter (α), for fixed t and p, and support functions
must be nonincreasing in α (see, for instance, [6] or [10]).

But even when assuming the existence of such a set FB
t0 (t) as in Counterexample 2,

Bobylev differentiability can fail because of the Fréchet differentiability, as we show in
the following counterexample.

Example 3. Consider the mapping F : R→Fcc(R2) given by F(t) = 1tB2 . This map-
ping is s-differentiable at 0 (see, for instance, [13]). But it is not Bobylev differentiable
at 0, since the support function associated with every t ∈ R is ϕF(t) : B2 →R, given by:

ϕF(t)(k) = sup
{x:1tB2 (x)≥‖k‖}

< k,x > .

From the definition of < ·, · > it follows that ϕF(t)(k) = |t|‖k‖. Thus, ϕF(t), obviously
cannot be Fréchet differentiable at 0.

When the mapping takes values not only on Fcc(Rn) but on the general class Fc(Rn),
we can state the forthcoming results, starting with the Hukuhara derivative.

Proposition 2. Let O be an open interval of R and let F : O→Fc(Rn) be a mapping.
If F is Hukuhara derivable at t0 ∈O, then F is also Bobylev differentiable at t0 ∈O and
its differential is given by:

ϕ ′t0(t) = tϕFh(t0) ,

for t ∈R, and Fh(t0) being the Hukuhara derivative of F at t0.

The converse of Proposition 2 is not true in general. Counterexamples can be con-
structed from the set-valued analysis (see, for instance, [1]).
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Example 4. Consider the mapping F : (0,2π)→Fc(R), given by:

F(t)(x) =

⎧⎪⎨⎪⎩
1 + x

2+sint , if x ∈ [−(2 + sint),0];

1− x
2+sint , if x ∈ (0,2 + sint];

0, else;

which corresponds to the triangular fuzzy number with maximum at 0 and based on
the interval [−(2 + sint),2 + sint]. It is easy to see that this mapping is not Hukuhara
derivable at any point t0 ∈ (0,2π) (see [6]).

When we consider the more general case of the strongly generalized differential ([2]),
based on the Hukuhara derivative, we can check that it is also a particular case of the
Bobylev differential.

Proposition 3. Let O be an open interval of R and let F : O→Fc(Rn) be a mapping. If
F is strongly generalized differentiable at t0 ∈ O, then F is also Bobylev differentiable
at t0 ∈O and its differential is given by:

ϕ ′t0(t) = tϕFs(t0) ,

for t ∈R, and Fs(t0) being strong generalized differential of F at t0.

The converse result of Proposition 3 is not true, in general. We can consider the func-
tion in Example 4, and it holds also as a counterexample for the strongly generalized
differentiable case.

On the other hand, Bobylev differentiability is a particular case of De Blasi differ-
entiability when working in the general class Fc(Rn), as we can see in the following
result:

Proposition 4. Let O be an open subset of Rl and let F : O→Fc(Rn) be a mapping.
If F is Bobylev differentiable at t0 ∈ O, then F is also De Blasi differentiable at t0 ∈ O
and its De Blasi differential is given by:

DFt0(t) = FB
t0 (t) ,

for every t ∈ Rl , being FB
t0 (t) the set appearing in the Bobylev differential of F at t0.

Converse result of Proposition 4 is not true, in general, since the lack of linearity and
continuity of the De Blasi differential.

Example 5. Consider a fuzzy set A ∈Fc(Rn) and the mapping F : R→Fc(Rn) given
by F(t) = |t|A. Obviously, F is De Blasi differentiable at 0, since it is continuous and
positively homogeneous, therefore F is its own De Blasi differential at 0. But F can-
not be Bobylev differentiable at 0 since it would imply that t �→ |t| would be Fréchet
differentiable at 0.
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5 Future Lines

Some open problems can be addressed.

• To define a relaxed-conditions differential based on Bobylev’s one, as the s-
differential is to the Puri and Ralescu’s support function, and to study the properties
of this new concept. This would keep good properties of Fréchet-type differentials
but relaxing conditions within a more general space.

• To study other types of embeddings (like that in [19]), so that the continuity con-
dition on the α-cuts can be omitted. Thus, s-differential and Bobylev differential
could make easy to be compared.

• To study the problem of the Steiner point with Bobylev definition.
• To analyze the integral defined by Bobylev in [4] and its relationships with other

concepts of integral for fuzzy-valued mappings, and, more precisely, with the con-
cept of fuzzy expected value of a fuzzy random variable. Main problems to be stud-
ied here come from the non-separability of the space (Fc(Rn),d∞), thus some other
distances could be considered.

• To study the differential equations related to this concept of differential.

Acknowledgement. The research in this paper has been supported by the Spanish Min-
istry of Education and Science Grant MTM2005-02254. Its financial support is grate-
fully acknowledged.
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On Boundary Value Problems for Fuzzy
Differential Equations

Rosana Rodrı́guez-López

Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de
Compostela, Santiago de Compostela, Spain

Abstract. In many real phenomena, it is interesting to study the periodic behavior of the
magnitudes involved. If a certain natural process is subject to imprecise factors, its modelization
can be made by using fuzzy differential equations or fuzzy dynamical systems. The special
properties of the functions which are differentiable in the sense of Hukuhara (in particular,
the solutions to fuzzy differential equations) make it difficult to handle periodic phenomena
by means of fuzzy differential models. We include some considerations on the analysis of
boundary value problems associated with fuzzy differential equations from the point of view of
Hukuhara-differentiability.

Keywords: Fuzzy differential equations, Boundary value problems, Periodic solutions.

1 Introduction

We consider the space E1 of one-dimensional fuzzy numbers, that is, elements x : R−→
[0,1] satisfying the following properties:

• x is normal: there exists t̂ ∈ R with x(t̂) = 1,
• x is upper semicontinuous,
• x is fuzzy-convex: x(λ t1 +(1−λ )t2) ≥ min{x(t1),x(t2)}, for all t1, t2 ∈ R, λ ∈

[0,1],
• The support of x, supp(x) = cl ({t ∈R : x(t) > 0}) is a bounded subset of R,

equipped with the metric d∞(x,y) = supa∈[0,1] dH([x]a, [y]a), x, y ∈ E1, where dH rep-

resents the Hausdorff distance in K 1
C (the set of nonempty compact convex subsets of

R). See [1, 5], for details.
We analyze the existence of solutions for a periodic boundary value problem asso-

ciated to the fuzzy differential equation u′(t) = f (t,u(t)), t ∈ I = [t0,T ], where t0 ∈ R,
t0 < T , and f : I×E1 −→ E1. We consider t0 = 0, although an analogous reasoning can
be followed for any fixed t0 ∈R.

For each x ∈ E1, we denote the level sets of x by [x]a = [xal,xar], ∀a ∈ [0,1].
We study the boundary value problem

u′(t) = f (t,u(t)), t ∈ I = [0,T ], λu(0) = u(T ), (1)

where T > 0, f : I×E1 −→ E1, and λ > 0. For the compact interval I, we consider the
complete metric spaces C(I,E1) = {x : I −→ E1 |x is continuous}, and C1(I,E1) = {x :

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 218–225, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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I −→ E1 |x, x′ are continuous}, where x′, the derivative of x, is considered in the sense
of Hukuhara.

A solution to (1) is a function u ∈C1(I,E1) satisfying conditions in (1).

2 Case λλλ > 1

Theorem 1. Suppose that f is continuous and k-lipschitzian with respect to the second

variable, that is, d∞( f (t,x), f (t,y)) ≤ k d∞(x,y), ∀x, y ∈ E1, where
λkT
λ −1

< 1. Then

problem (1) has a unique solution.

Proof. Problem (1) can be written as the equivalent problem

u(t) = u(0)+
∫ t

0
f (s,u(s))ds, t ∈ [0,T ], λu(0) = u(T ). (2)

The boundary condition produces λu(0) = u(T ) = u(0)+
∫ T

0 f (s,u(s))ds, which, in the
ordinary case, is reduced to u(0)= 1

λ−1

∫ T
0 f (s,u(s))ds. In the fuzzy case, passing to the

level sets, we get λ [u(0)al,u(0)ar] = [λu(0)al,λu(0)ar] = [u(T )]a = [u(0)al,u(0)ar] +[∫ T
0 f (s,u(s))ds

]a
. In consequence,

u(0)al =
1
λ −1

(∫ T

0
f (s,u(s))ds

)
al

, u(0)ar =
1
λ −1

(∫ T

0
f (s,u(s))ds

)
ar

,

which makes sense since λ > 1, producing the fuzzy number u(0) =
1
λ−1

∫ T
0 f (s,u(s))ds. Hence, to find a solution to the periodic boundary value

problem (2), we have to solve the integral equation

u(t) =
1
λ −1

∫ T

0
f (s,u(s))ds+

∫ t

0
f (s,u(s))ds

=
∫ t

0

(
1
λ −1

+ 1

)
f (s,u(s))ds+

∫ T

t

1
λ −1

f (s,u(s))ds

=
∫ t

0

λ
λ −1

f (s,u(s))ds+
∫ T

t

1
λ −1

f (s,u(s))ds =
∫ T

0
G(t,s) f (s,u(s))ds,

where

G(t,s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ
λ −1

, if 0≤ s≤ t ≤ T,

1
λ −1

, if 0≤ t < s≤ T.

We define the operator A by [A u](t) =
∫ T

0 G(t,s) f (s,u(s))ds. By hypotheses, A :
C(I,E1)−→C(I,E1). Now, we check that A has a unique fixed point. Indeed,
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D(A u,A v) = sup
t∈I

d∞(A u(t),A v(t))

= sup
t∈I

d∞

(∫ T

0
G(t,s) f (s,u(s))ds,

∫ T

0
G(t,s) f (s,v(s))ds

)
≤ sup

t∈I

(∫ t

0

λ
λ −1

d∞ ( f (s,u(s)), f (s,v(s))) ds

+
∫ T

t

1
λ −1

d∞ ( f (s,u(s)), f (s,v(s))) ds

)
≤ sup

t∈I

(
λ
λ −1

kt +
1
λ −1

k(T − t)
)

D(u,v)

≤ 1
λ −1

sup
t∈I

((λ −1)kt + kT )D(u,v)

=
1
λ −1

((λ −1)kT + kT )D(u,v) =
λkT
λ −1

D(u,v).

The estimate on the constants and the Contractive Mapping Principle provide the ex-
istence of a unique fixed point u for A . Note that, for such a function u, we get
λu(0) =

∫ T
0
λ
λ−1 f (s,u(s))ds = u(T ), and the proof is finished. ��

Next, we improve Theorem 1 by replacing the estimate λ kT
λ−1 < 1 by the sharper one

kT
lnλ < 1.

Theorem 2. Suppose that f is continuous and k-lipschitzian with respect to the second

variable and
kT
lnλ

< 1. Then problem (1) has a unique solution.

Proof. We define again the operator [A u](t) =
∫ T

0 G(t,s) f (s,u(s))ds, where G(t,s) is
defined in the proof of Theorem 1, and consider the complete distance in C(I,E1) given
by Dρ(u,v) = supt∈I d∞(u(t),v(t))e−ρt , for u, v ∈C(I,E1), where ρ > 0. Then

Dρ(A u,A v) = sup
t∈I

d∞(A u(t),A v(t))e−ρt

≤ sup
t∈I

(∫ t

0

λ
λ −1

kd∞ (u(s),v(s)) ds+
∫ T

t

1
λ −1

kd∞ (u(s),v(s)) ds

)
e−ρt

≤ sup
t∈I

(
λk
λ −1

∫ t

0
eρs ds+

k
λ −1

∫ T

t
eρs ds

)
e−ρtDρ (u,v)

= sup
t∈I

(
λk
λ −1

1− e−ρt

ρ
+

k
λ −1

eρ(T−t)−1
ρ

)
Dρ (u,v)

=
k

(λ −1)ρ
sup
t∈I

(
λ (1− e−ρt)+ eρ(T−t)−1

)
Dρ (u,v)

=
k

(λ −1)ρ
sup
t∈I

(
λ −1 +(eρT −λ )e−ρt)Dρ (u,v) .

Now, taking ρ = 1
T lnλ > 0, we get eρT = λ and, in consequence,
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Dρ(A u,A v)≤ k
(λ −1)ρ

sup
t∈I

(
λ −1 +(eρT −λ )e−ρt)Dρ (u,v)

=
(λ −1)k

(λ −1) 1
T lnλ

Dρ (u,v) =
kT
lnλ

Dρ (u,v) .

It is easy to check that the value ρ = 1
T lnλ > 0 produces the best estimate on the

constants. The Contractive Mapping Principle provides the existence of a unique fixed
point for A , and the proof is concluded. ��

3 Case 0≤ λλλ ≤ 1

Solutions u of problem (1) satisfy that diam([u(t)]a) is nondecreasing in the vari-
able t, for each a ∈ [0,1] fixed, therefore the boundary condition λu(0)al = u(T )al ,
λu(0)ar = u(T )ar and λ ∈ [0,1] imply that diam([u(T )]a) = u(T )ar − u(T )al =
λ (u(0)ar−u(0)al) = λdiam([u(0)]a)≤ u(0)ar−u(0)al = diam([u(0)]a).

If 0 < λ < 1 and u(0) is not crisp, then for some a, diam([u(T )]a) < diam([u(0)]a),
hence we can not find a solution to (1). For the existence of solution, it is necessary that
λu(0) = u(T ) = u(0)+

∫ T
0 f (s,u(s))ds, hence

(λ −1)(u(0))al =
∫ T

0
( f (s,u(s)))al ds, (λ −1)(u(0))ar =

∫ T

0
( f (s,u(s)))ar ds,

in consequence, (λ − 1)diam([u(0)]a) =
∫ T

0 diam([ f (s,u(s))]a)ds ≥ 0, and
diam([u(0)]a) > 0 leads to a contradiction. Therefore, the unique possibility is
diam([u(0)]0) = 0.

If λ = 1, and diam([u(0)]a) > 0, then the diameter has to be a constant function in the
variable t, and diam([u(T )]a) = diam([u(0)]a), for each a ∈ [0,1]. On the other hand, if
diam([u(0)]a) = 0, for every a, then the initial condition is crisp and the solution is also
crisp.

If λ ∈ (0,1), and u0 is crisp, then the solution is crisp.
For a different approach to periodic boundary value problems for fuzzy differential

equations, see [8], where the development of the monotone iterative technique is illus-
trated by considering an impulsive problem.

For λ = 1, the problem under consideration is

u′(t) = f (t,u(t)), t ∈ I = [0,T ], u(0) = u(T ). (3)

We analyze some necessary conditions to obtain (periodic) solutions to problem (3).
The equivalent integral expression and the boundary condition imply that u(0) =
u(T ) = u(0) +

∫ T
0 f (s,u(s))ds, that is, χ{0} = u(0)−H u(0) =

∫ T
0 f (s,u(s))ds. This

expression is equivalent to

0 =
∫ T

0
( f (s,u(s)))al ds≤

∫ T

0
( f (s,u(s)))ar ds = 0, for every a ∈ [0,1].

Hence
∫ T

0 (( f (s,u(s)))ar− ( f (s,u(s)))al) ds = 0, for every a ∈ [0,1] and, by con-
tinuity, ( f (s,u(s)))al = ( f (s,u(s)))ar , for every a ∈ [0,1], s ∈ I, and 0 =∫ T

0 ( f (s,u(s)))al ds.
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Next, we study some necessary conditions to obtain solutions with the property that
the diameter of the a-level set is a constant function in the variable t, for every a∈ [0,1]
fixed. Indeed, for each a ∈ [0,1],

diam([u(t)]a)

= diam

([
(u(0))al +

∫ t

0
( f (s,u(s)))al ds,(u(0))ar +

∫ t

0
( f (s,u(s)))ar ds

])
= diam([u(0)]a)+

∫ t

0
diam([ f (s,u(s))]a)ds.

For this function to be constant in the variable t, for each a fixed, it is necessary
that diam([ f (s,u(s))]a) = 0, for every a, s. Assuming that f is continuous, the so-
lution u has level sets with constant diameter if, for every a ∈ [0,1], and every s,
diam([ f (s,u(s))]a) = 0, that is, if f (t,u(t)) is crisp, for every t ∈ I.

In particular, if f (t,x) is crisp, for every t ∈ I and every x ∈ E1, then the diameter
of each level set for the solutions to the initial value problem associated to equation
u′(t) = f (t,u(t)), t ∈ I, is constant. Note that this does not mean that the solutions
are crisp, but diam([u(t)]a) = diam([u(0)]a), for every t ∈ I and a ∈ [0,1], that is, the
diameter of each level set of the solution is the diameter of the corresponding level set
of the initial condition. Under this assumption, there could be fuzzy periodic solutions.

Example 1. Consider the fuzzy initial value problem

u′(t) = χ{3}, t ∈ I = [0,T ], u(0) = χ[0,1]. (4)

Passing to the level sets, we get the equations x′ = y′ = 3, x(0) = 0, y(0) = 1, hence
x(t) = 3t, y(t) = 1 + 3t, for every t, and the solution u to (4) is given by [u(t)]a =
[3t,1 + 3t], for every t and a, that is, u(t) = χ[3t,1+3t] = χ{3t}+ χ[0,1], t ∈ I. Note that
diam([u(t)]a) = 1 = diam([u(0)]a), for every t ∈ I and a ∈ [0,1].

Example 2. Now, consider the fuzzy initial value problem

u′(t) = χ{3}, t ∈ I = [0,T ], u(0) = u0, (5)

where u0 = (0;1,1) is the triangular fuzzy number given by

u0(t) =
{

t + 1, t ∈ [−1,0],
1− t, t ∈ [0,1],

whose levelsets are [u0]a = [−(1− a),1− a], for every a ∈ [0,1]. Passing to the level
sets, we get the equations x′ = y′ = 3, x(0) = −(1− a), y(0) = 1− a, hence x(t) =
−(1−a)+ 3t, y(t) = (1−a)+ 3t, t ∈ I, and the solution to (5) is the function u given
by [u(t)]a = [−(1− a)+ 3t,(1− a)+ 3t], for every t ∈ I and a ∈ [0,1], that is, u(t) =
χ{3t}+ u0, t ∈ I. Note that diam([u(t)]a) = 2(1− a) = diam([u(0)]a), for every t ∈ I
and a ∈ [0,1]. We remark that u(t) is also a triangular fuzzy number, for each t, that is,
u(t) = (3t;1,1).

Then, assuming that the right-hand side in the equation is a crisp function, we obtain
solutions with constant diameter, and we obtain T -periodic solutions u to the fuzzy
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differential equation in the sense of Hukuhara if
∫ T

0 f (s,u(s))ds = χ{0}. This is the
situation if, for instance, there exists c : I −→ R such that f (s,x) = χ{c(s)}, for every

s ∈ I and x ∈ E1, and
∫ T

0 f (s,x)ds = χ{0}, ∀x ∈ E1 (
∫ T

0 c(s)ds = 0).

Example 3. Take f (t,x) = −1 + 2
T t, for t ∈ I = [0,T ] and x ∈ R, which is a continuous

crisp function satisfying that
∫ T

0 f (s,x)ds =
∫ T

0

(−1 + 2
T s
)

ds =
[
−s+ s2

T

]T

0
= 0, for

every x ∈ R.
Consider the fuzzy initial value problem

u′(t) = χ{−1+ 2
T t}, t ∈ I = [0,T ], u(0) = χ[0,1], (6)

which can be easily solved, obtaining that [u(t)]a =
[
−t + t2

T ,1− t + t2

T

]
, for every t ∈

I and a ∈ [0,1], that is, u(t) = χ{−t+ t2
T }

+ χ[0,1], t ∈ I. Besides, u(T ) = χ[0,1]. Hence

u(t) = χ[−t+ t2
T ,1−t+ t2

T

], t ∈ I, is a T -periodic solution for (6), and diam([u(t)]a) = 1, for

every t ∈ I and every a ∈ [0,1].
If we take the triangular fuzzy number u0 = (0;1,1), then [u(t)]a =[
−(1−a)− t + t2

T ,(1−a)− t + t2

T

]
, ∀t, ∀a, which defines a triangular fuzzy num-

ber u(t) = χ{−t+ t2
T }

+ (0;1,1), for every t ∈ I. Besides, diam([u(t)]a) = 2(1− a) =

diam([u0]a), ∀t ∈ I, a ∈ [0,1]. Note that [u(T )]a = [u(0)]a, ∀a ∈ [0,1], then u(0) =
(0;1,1) = u(T ).

Example 4. For the problem

u′(t)+ χ{1} = χ{ 2
T }u(t), t ∈ I = [0,T ], u(0) = u(T ), (7)

we have, at least, the periodic solution u(t)= χ{ T
2 }. If we start at a crisp initial condition,

the periodic solutions are crisp, since diam([u(t)]a) = 0, for every t ∈ I and every a ∈
[0,1]. If the initial condition is not crisp, it is necessary for the diameter of the solution
to be constant.

Remark 1. If 0 < λ < 1, the boundary condition λu(0) = u(T ) and the integral
representation of the solution imply that u(0)al = 1

λ−1

∫ T
0 ( f (s,u(s)))al ds, u(0)ar =

1
λ−1

∫ T
0 ( f (s,u(s)))ar ds. However, if ( f (s,u(s)))al < ( f (s,u(s)))ar for s in a set of posi-

tive measure, taking into account that λ < 1, then u(0)al > u(0)ar, and we do not obtain
a fuzzy number. Hence, the unique possibility to obtain a solution to the boundary value
problem is that ( f (s,u(s)))al = ( f (s,u(s)))ar, for almost every s (by continuity, for all
s), and u0 crisp. In this case, u(0) = 1

λ−1

∫ T
0 f (s,u(s))ds, and the solution is crisp.

Remark 2. If f : I×E1 −→ E1 is such that f (t,χ{x}) = χ{g(t,x)}, for every t ∈ I and
x ∈ R, where g : I×R−→ R, and the crisp equation y′(t) = g(t,y(t)), t ∈ I, has a real
solution y satisfying that λy(0) = y(T ), then u(t) = χ{y(t)}, t ∈ I, is a solution to the
boundary value problem (1).



224 R. Rodrı́guez-López

Remark 3. Suppose that f : I × E1 −→ E1 is such that f (t,x) ∈ R, for every t ∈
I and x ∈ R, and, besides, assume that for all symmetric triangular fuzzy num-
ber x, [ f (t,x)]a = [ f (t,mp([x]a)), f (t,mp([x]a))], for every t ∈ I, a ∈ [0,1], where
mp([x]a) represents the midpoint of the interval [x]a. Suppose also that the crisp
equation u′(t) = f (t,u(t)) has a real solution u. Then the function given by
the corresponding triangular fuzzy numbers [ũ(t)]a = [−(1 − a) + u(t),1 − a +
u(t)], ∀a ∈ [0,1], and t ∈ I, is such that [ũ′(t)]a = [u′(t),u′(t)] = [ f (t,u(t)), f (t,u(t))]
= [ f (t, ũ(t))]a, ∀a ∈ [0,1], t ∈ I, hence ũ is a solution to the fuzzy equation. Note that,
for x a symmetric triangular fuzzy number, {mp([x]a)} = [x]1, for every a ∈ [0,1]. We
remark that, if the solution u to the crisp equation satisfies that λu(0) = u(T ), then
λ ũ(0) = λ (u(0);1,1) = (λu(0);λ ,λ ) = (u(T );λ ,λ ), which is equal to ũ(T ) if λ = 1.
Thus, this method is useful to finding periodic solutions.

Remark 4. Suppose that f̃ (t,x) is a fuzzy function and that there exist h1(t,a), h2(t,a),
such that h1(t,a) ≤ 0 ≤ h2(t,a), h1(t,a) is nondecreasing in a, h2(t,a) is nonincreas-
ing in a, for each t fixed, h1, h2 are left-continuous in a, ∂h1

∂ t (t,a) ≤ 0, ∂h2
∂ t (t,a) ≥ 0,

h1(T,a)−λh1(0,a) = h2(T,a)−λh2(0,a), for every a ∈ [0,1], and diam([ f̃ (t, x̃)]a) =
h′2(t,a)−h′1(t,a), for every t ∈ I, x̃ ∈ E1, and a ∈ [0,1]. For t ∈ I and x ∈ R, we define

f (t,x) = f̃ (t,χ{x}+ r̃(t))ar−h′2(t,a) = f̃ (t,χ{x}+ r̃(t))al−h′1(t,a),

where [r̃(t)]a = [h1(t,a),h2(t,a)], for t ∈ I and a∈ [0,1]. Suppose that the real boundary
value problem

u′(t) = f (t,u(t)), t ∈ I = [0,T ], λu(0) = u(T )+ [h1(T,a)−λh1(0,a)], (8)

has a solution u(t), which also satisfies that λu(0) = u(T ) + [h2(T,a)− λh2(0,a)].
Then ũ given by [ũ(t)]a = [u(t)+ h1(t,a),u(t)+ h2(t,a)], ∀t ∈ I, a ∈ [0,1], is such that
[ũ′(t)]a = [u′(t)+h′1(t,a),u′(t)+h′2(t,a)] = [ f (t,u(t))+h′1(t,a), f (t,u(t))+h′2(t,a)] =
[ f̃ (t, ũ(t))]a, ∀a, t, where we have used that ũ(t) = χ{u(t)}+ r̃(t), and ũ is a solution to
the fuzzy equation. Besides, λ ũ(0) = ũ(T ). It is clear that, if we assume the more re-
strictive hypothesis h1(T,a)−λh1(0,a) = h2(T,a)−λh2(0,a) = 0, for every a∈ [0,1],
and the solution u to the crisp equation satisfies that λu(0) = u(T ), then λ ũ(0) = ũ(T ).
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On Fuzzy Sets Convolution, Fuzzy Lipschitz Sets
and Triangular Fuzzy Sets of Rank p
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Abstract. In this paper we present some counterexamples to a result related to fuzzy Lipschitz
sets and fuzzy sets convolution. Using the concept of fuzzy triangular set of rank p is presented
an alternative proof of a interesting density result over fuzzy sets which was previosly proved by
using the result belied.

Keywords: Fuzzy sets convolution, Lipschitz fuzzy sets, Triangular fuzzy sets, Density, Haus-
dorff metric.

1 Introduction

There exist many situations where it is necessary to approximate an arbitrary normal
upper semincontinuos fuzzy set with compact support by fuzzy sets with more con-
venient properties, for example, by continuous fuzzy sets or lipschitzians fuzzy sets
(see [2]).

In this direction, Colling and Kloeden [1] shows that the normal compact- convex
fuzzy sets with compact support on Rn can be approximate by continuous fuzzy sets in
D-metric. Also, in [3] the authors prove that the space of level-lipschitzian fuzzy sets on
Rn is a dense subspace of the normal compact- convex and level-continuous fuzzy sets
with compact support in relation to D-metric. They generalized their work to Banach
spaces with interesting a-pplication to the characterization of relative compactness in
spaces of fuzzy sets and the existence of fuzzy differential equations (see [4]).

In [5] is established another density result over fuzzy sets where a fundamental step
in the proof is given by result below (see notation in the next section).

Proposition 1. Let u,v ∈F (Rn). If v ∈L (Rn) then u∇v ∈L (Rn).

This article presents some counter-examples to proposition above, and later we present
some concepts and results that allow us to prove properly the density result obtained
in [5].

2 Peliminaries

Let (F (Rn),D) be the metric space of compacts, upper semicontinuous and normal
fuzzy sets of Rn with D the supremum metric, L (Rn) is the set of elementes in F (Rn)

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 226–231, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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having membership funtion being Lipschitz on their support and u∇v is the convolution
between fuzzy sets u, v given by:

(u∇v)(x) = sup
y∈Rn

{u(y)∧ v(x− y)},

with ∧ denoting minimum on [0,1].

Using Proposition 1 with v = χB 1
p
(0), membership function of the open ball with

center at 0 and radio 1
p , it can be proved that

Proposition 2. (L (Rn),D) is dense in (F (Rn),D).

Proof. For details see [5]. ��
We are going to show some counter-example to Proposition 1 and in Section 3, an
alternative proof of Proposition 2 is presented.

2.1 Counter-Example 1

Let u,v be (see Fig. 1 and 2) defined as:

[u]α =
{

[0,1], if 0≤ α ≤ 1/4

{1/2}, if 1/4 < α ≤ 1

and
v = χB1(0) = χ[−1,1]

Since u,v ∈ F (R), are both normals and have compact α−cuts. Clearly v is fuzzy
Lipschitz. Lets see what happens with u∇v. Because for u,v∈F (R) we have [u∇v]α =
[u]α +[v]α this implies that

[u∇v]α = [0,1]+ [−1,1] = [−1,2], if 0≤ α ≤ 1/4

and
[u∇v]α = {1/2}+[−1,1] = [−1/2,3/2], if 1/4 < α ≤ 1.

This contradicts Proposition 1because the set u∇v is not fuzzy Lipschitz as we can easily
see from Figure 3. If exist a number K ≥ 0 such that |(u∇v)(x)− (u∇v)(z)| ≤ K|x− z|

u(x)

1/2

1

x
10

1/4

Fig. 1. [u]α = [0,1], if 0≤ α ≤ 1/4, [u]α = {1/2}, if 1/4 < α ≤ 1
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v(x)

1

x
1-1

Fig. 2. v = χB1(0) = χ[−1,1]

u�v(x)

1

x
3/2−1/2−1 2

1/4

Fig. 3. Fuzzy number u∇v is not fuzzy Lipschitz

for all x,z ∈ [u∇v]0 = [−1,2] then we would have particularly for x = 3/2 and any z ∈
(3/2,2]

|(u∇v)(3/2)− (u∇v)(z)|
|3/2− z| ≤ K

|1−1/4|
|3/2− z| ≤ K

|3/4|
|3/2− z| ≤ K

which is clearly absurd because z can be as close to 3/2 as we want it.
The authors in [5] did not consider that x− y and z− y can not be simultaneosly in

supp(v) = [−1,1] for x,z ∈ supp(u∇v) and y ∈ supp(v).
Our counterexample also invalidates the argument in the proof of Proposition 2

founded in [5], since the proof uses Proposition 1 with v = χB 1
p
(0).

Note that u∇v is not fuzzy Lipschitz, because differential ratios (u∇v)(x)−(u∇v)(z)
x−z are

not bounded around 3/2 or−1/2. Note also that u has a similar property around 1/2 and
in fact many other counterexamples can be constructed using fuzzy numbers u having
this property.

2.2 Counter-Example 2

Previous counterexample have the characteristic that level set function of u, [u](···) :
[0,1]→ K(Rn) are discontinuous. So, if we restrict our attention to fuzzy sets u with
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continuous level set function, can we get a valid result in the way of Proposition 1? The
answer is again negative.

Let u ∈F (R) defined by

u(x) =

⎧⎪⎨⎪⎩
3
√

x−1+ 1 if 0≤ x≤ 1

− 3
√

x−1+ 1 if 1≤ x≤ 2

0 otherwise

which have level sets given by [u]α = [1− (1−α)3,1 +(1−α)3] for α ∈ [0,1].

u(x)

1

1

x
20

Fig. 4. [u]α = [1− (1−α)3 ,1+(1−α)3]

So we have that u has continuous level set application but u is not Lipschitz on Rn

not even fuzzy Lipschitz on their support, so obviously a trivial counterexample can be
made taking v = χ{0}, but if we are looking for a less trivial counterexample it is enough
consider v = χB1(0) = χ[−1,1] as before.

In this situation, for any α ∈ [0,1]

[u∇v]α = [1− (1−α)3,1 +(1−α)3]+ [−1,1] = [−(1−α)3,2 +(1−α)3]

which give us by using Representation Theorem the next membership function

u∇v(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + 3
√

x if −1≤ x < 0

1 if 0≤ x≤ 2

1− 3
√

x−2 if 2 < x≤ 3

0 otherwise

u∇v(x)

1

1

x
20−1

Fig. 5. u∇v(x) is not Lipschitz
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This fuzzy number is not Lipschitz and nor fuzzy Lipschitz, because again there is
no bounded differential ratios, around 0 and 2 (See Figure 5).

3 Triangular Fuzzy Sets and Density

It is evident from arguments presented in [5], that if we assume that function v is Lips-
chitz over whole Rn, then:

Proposition 3. Let be u,v ∈F (Rn). If v is Lipschitz on Rn then u∇v ∈L (Rn).

We are going to keep this result on mind and try to prove Proposition 2. The idea is to
use triangular fuzzy sets instead characteristic function.

Definition 1. For any p ∈ R p > 0 we define Tp ∈F (Rn) (triangular fuzzy set of rank
p) as: [Tp]α = B(1−α)/p(0), for all α ∈ [0,1].

Note that from definition of Tp, we have that Tp(x) = 0 if and only if ‖x‖ > 1/p and if
‖x‖ ≤ 1/p then for Representation Theorem que have

Tp(x) = supz{α : x ∈ [Tp]α}
= sup{α : x ∈ B[0,(1−α)/p]}
= sup{α : ‖x‖ ≤ (1−α)/p}
= sup{α : α ≤ 1− p‖x‖}

Tp(x) = 1− p‖x‖

(1)

As is suggested by taking n = 1 (see Figure 6), Tp should be Lipschitz on whole Rn,
this actually can be proved.

Lemma 1. For every p > 0, Tp is Lipschitz on Rn of rank p.

Proof. Let x,y ∈ Rn. If Tp(x) = Tp(y) it is obvious that |Tp(x)−Tp(y)|< K‖x− y‖ for
every K > 0. Lets suppose that Tp(x) < Tp(y).

If Tp(x) = 0 then ‖x‖> 1/p and 0 < Tp(y) so ‖y‖ ≤ 1/p, then Tp(y) = 1− p‖y‖. In
this case we have

|Tp(x)−Tp(y)|= Tp(y) = 1− p‖y‖= p(1/p−‖y‖)< p(‖x‖−‖y‖)≤ p‖x− y‖

[Tp]
α

Tp(x)

1

x
1/p−1/p

][

α

Fig. 6. Tp for n = 1
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If Tp(x) > 0 then

|Tp(x)−Tp(y)|= Tp(y)−Tp(x) = 1− p‖y‖−1 + p‖x‖= p(‖x‖−‖y‖)≤ p‖x− y‖

��
Corollary 1. Let u ∈F (Rn). If v is a triangular fuzzy set on Rn then u∇v ∈L (Rn).

Proof. It follows immediately of Proposition 3 and Lemma 1 ��
Using triangular fuzzy sets and last corollary it is possible to prove the density of fuzzy
Lipschitz sets on (F (Rn),D) with just a minor modification of arguments used in [5].

Proposition 4. (L (Rn),D) is dense in (F (Rn),D).

Proof. Let u ∈F (Rn) arbitrary and let Tp be as before, p ∈ Z+.
Setting up = u∇Tp, we have from Corollary 1 that up ∈L (Rn) for all p ∈ Z+.
Using properties of Hausdorff metric and α-cuts, we have for each α ∈ [0,1]

H([up]α , [u]α) = H([u∇vp]α , [u]α)
H([u]α + B[0,(1−α)/p], [u]α+{0})
≤H(B[0,(1−α)/p],{0})
= (1−α)/p.

(2)

Taking sup over α we get D(up,u) ≤ 1/p, for each p ∈ Z+ and taking p→ ∞ we get
the desired result. ��
Remark 1. The section on convolution and Choquet integral established in [5] is correct
when uses the results given in this work.
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Abstract. Probability boxes are among the most simple and popular models used in imprecise
probability theory, and many practical results concerning them exist in the literature. Never-
theless, little attention has been paid to their formal characterisation in the setting of Walley’s
behavioural theory of imprecise probabilities. This paper tries to remedy this situation by formal-
ising, generalising and extending existing results as well as by giving new ones, within Walley’s
framework.
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1 Introduction

Imprecise probability [7] is a generic term referring to uncertainty models where the
available information does not allow singling out a unique probability measure. Unlike
classical probability models, which are uniquely determined by their values on events,
general imprecise probability models are determined by bounds on expectations of ran-
dom variables [7, p. 82, §2.7.3]. This more advanced mathematical description allows
more flexibility in the representation, but also implies more complexity when treating
uncertainty.

For this reason, it is of interest to consider particular imprecise probability models
that yield simpler mathematical descriptions, at the expense of generality, but gaining
ease of use, elicitation, and graphical representation. One of such models is considered
in this paper: pairs of lower and upper cumulative distribution functions, also called
probability boxes, or briefly, p-boxes [3]. Practical aspects of this model have been
extensively studied in the literature, but little attention has been given to their formal
characterisation in terms of lower and upper expectations, or, equivalently, of coherent
lower previsions (they are briefly studied in [6, 7], and in [4] cumulative distribution
functions associated with a sequence of moments are considered).

This paper aims at such study, and considers a generalised version of p-boxes, de-
fined on any (not necessarily finite) totally ordered space. In [2], a similar extension on
total pre-ordered finite spaces is considered. This paper formulation covers generalised
p-boxes defined on totally ordered finite spaces as well as on closed real intervals. More
generally, such treatment also admits p-boxes on product spaces (by considering an ap-
propriate order), and thus admits imprecise multivariate distributions through p-boxes
as well.
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The paper is organised as follows: Section 2 provides a brief introduction to the the-
ory of coherent lower previsions. Section 3 then introduces and studies the p-box model
from the point of view of lower previsions. Section 4 provides a first expression for the
natural extension of a p-box, and studies its main properties. In Section 5 we prove that
any p-box can be approximated as a limit of discrete p-boxes, and that this limit holds
into the natural extensions. Finally, we end in Section 6 with main conclusions and open
problems. Due to limitations of space, proofs have been omitted.

2 Preliminaries

Let us briefly introduce coherent lower previsions; see [7] for more details. Let Ω be
the possibility space. A subset of Ω is called an event. A gamble on Ω is a bounded
real-valued function on Ω . The set of all gambles onΩ is denoted by L (Ω), or simply
by L if the possibility space is clear from the context. A particular type of gamble is
the indicator of an event A, which is the gamble that takes the value 1 on elements of
A and the value 0 elsewhere, and is denoted by IA, or simply by A if no confusion is
possible.

A lower prevision P is a real-valued functional defined on an arbitrary subset K of
L . If f is a gamble, P( f ) is interpreted as the maximum buying price for the (uncertain)
reward f . It can be argued that lower previsions model a subject’s belief about the true
state x in Ω . A lower prevision defined on a set of indicators of events is usually called
a lower probability.

A lower prevision on K is called coherent when for all p in N, all f0, f1, . . . , fp in
K and all λ0, λ1, . . . , λp in R+,

supx∈Ω
[
∑p

i=1λi( fi−P( fi))−λ0( f0−P( f0))(x)
]≥ 0.

A lower prevision on the set L of all gambles is coherent if and only if

(C1) P( f ) ≥ inf f ,
(C2) P(λ f ) = λP( f ), and
(C3) P( f + g)≥ P( f )+ P(g)

for all gambles f , g and all non-negative real numbers λ . A lower prevision on L
satisfying (C3) with equality for all gambles f and g is called a linear prevision on L ,
and the set of all linear previsions on L is denoted by P . A lower prevision P on K
can also be characterised by the set

M (P) = {Q ∈P : (∀ f ∈K )(Q( f ) ≥ P( f ))}.

Then P is coherent if and only if P( f ) = minQ∈M (P) Q( f ) for all f ∈K .
Given a coherent lower prevision P on K , its natural extension to a larger set K1 ⊇

K is the pointwise smallest coherent (i.e., least-committal) lower prevision on K1 that
agrees with P on K . The procedure of natural extension is transitive [6, p. 98]: if E1
is the natural extension of P to K1 and E2 is the natural extension of E1 to K2 ⊇K1,
then E2 is also the natural extension of P to K2. The natural extension to all gambles is
usually denoted by E . It holds that E( f ) = minQ∈M (P) Q( f ) for any f ∈L .
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A particular class of coherent lower previsions of interest in this paper are completely
monotone lower previsions [1]. A lower prevision P defined on a lattice of gambles K
is called n-monotone when for all p ∈ N, p ≤ n, and all f , f1, . . . , fp in K :

∑I⊆{1,...,p}(−1)|I|P( f ∧∧i∈I fi)≥ 0,

and is called completely monotone when it is n-monotone for all n ∈ N.

3 Characterising p-Boxes

Let (Ω ,≤) be an order complete chain. Let x < y be a brief notation for x≤ y and x �≥ y.
So ≤ is transitive, reflexive, and anti-symmetric, and for any two elements x, y ∈ Ω
we have either x < y, x = y, or x > y. For simplicity, we assume that Ω has a smallest
element 0Ω and a largest element 1Ω .

We call cumulative distribution function any non-decreasing function F :Ω → [0,1]
that satisfies F(1Ω ) = 1. F(x) provides information about the cumulative probability
on the interval [0Ω ,x]. Note that we do not need to impose F(0Ω ) = 0. Also note that
cumulative distribution functions are not assumed to be right-continuous. Given a cu-
mulative distribution F on Ω and a value x ∈ Ω , F(x+) is the right-limit and F(x−) is
the left-limit,

F(x+) = inf
y>x

F(y) = lim
y→x, y>x

F(y) F(x−) = sup
y<x

F(y) = lim
y→x, y<x

F(y)

and F(1+
Ω ) = 1 and F(0−Ω ) = 0.

Definition 1. A generalised probability box, or generalised p-box, is a pair (F ,F) of
cumulative distribution functions from Ω to [0,1], satisfying F ≤ F. If Ω is a closed
interval on R, then we call the pair (F,F) a p-box.

A generalised p-box is interpreted as a lower and an upper cumulative distribution func-
tion. In Walley’s framework, this means that a generalised p-box is interpreted as a
lower prevision (actually a lower probability) PF ,F on the set of events

K = {[0Ω ,x] : x ∈Ω}∪{(y,1Ω ] : y ∈Ω}
by

PF,F([0Ω ,x]) := F(x) and PF,F((y,1Ω ]) = 1−F(y).

In the particular case of p-boxes it was mentioned by [7, Section 4.6.6] and proven by
[6, p. 93] that PF,F is coherent. It is straightforward to show that generalised p-boxes
are coherent as well.

Given a generalised p-box, we can consider the set of cumulative distribution func-
tions that lie between F and F ,

Φ(F ,F) =
{

F : F ≤ F ≤ F
}

.

We can easily express the natural extension EF ,F in terms ofΦ(F ,F): EF,F is the lower
envelope of the natural extensions of the F between F and F :
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EF,F( f ) = inf
F∈Φ(F ,F)

EF( f ) (1)

for all gambles f on Ω . A similar result for p-boxes in the unit interval can be found in
[7, Section 4.6.6].

Next, we study the natural extension of a generalised p-box, that is, what information
a generalised p-box provides about the buying prices for the gambles which are not in
K . For this, we shall regularly invoke the field of events H generated by the domain
K , i.e., events of the type

[0Ω ,x1]∪ (x2,x3]∪·· ·∪ (x2n,x2n+1]

for x1 < x2 < x3 < · · ·< x2n+1 in Ω (if n is 0 then this is [0Ω ,x1]) and

(x2,x3]∪·· ·∪ (x2n,x2n+1]

for x2 < x3 < · · ·< x2n+1 in Ω .
Since the procedure of natural extension is transitive, in order to calculate the nat-

ural extension of PF ,F to all gambles we shall first consider the extension from K to
H , then the natural extension from H to the set of all events, and finally the natural
extension from the set of all events to the set of all gambles. The first of these steps is
achieved by the following proposition:

Proposition 1. Given A = [0Ω ,x1]∪ (x2,x3]∪·· ·∪ (x2n,x2n+1],

EF ,F(A) = F(x1)+
n

∑
k=1

max{0,F(x2k+1)−F(x2k)}

and given A = (x2,x3]∪·· ·∪ (x2n,x2n+1],

EF ,F(A) =
n

∑
k=1

max{0,F(x2k+1)−F(x2k)}.

We now describe the natural extension of a generalised p-box by a Choquet integral.

4 The Natural Extension as a Choquet Integral

As shown in [4, Section 3.1], the natural extension EF of a cumulative distribution
function F on [0,1] is completely monotone. It is fairly easy to generalise this result
to cumulative distribution functions on a totally ordered space Ω . In this section we
establish this for generalised p-boxes.

Theorem 1. The natural extension EF,F of PF ,F to L (Ω) is given by the Choquet in-

tegral (C)
∫ ·dPH

F ,F ∗, where PH
F,F ∗ is the inner measure of PH

F ,F
,

PH
F ,F ∗(A) = sup

C∈H ,C⊆A
PH

F ,F(C). (2)

Moreover, EF ,F is a completely monotone lower prevision.
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The remainder of this section is devoted to the study of this natural extension, in order
to provide more manageable expressions for it. We shall characterise E by the values
it takes on intervals of the form [0Ω ,x],(x,y], [0Ω ,x) and (x,y), for x≤ y in Ω , through
the lower oscillation of gambles and full components of events, as explained further on.
For ease of notation, we shall denote EF ,F by E when no confusion is possible.

Let us consider the upper limit topology on Ω which is the topology generated by
the base τ := {(x,y] : x,y ∈ Ω ,x < y}∪{[0Ω ,x] : x ∈ Ω}. For any gamble f on Ω , let
us define its lower oscillation as the gamble

osc( f )(d) := sup
C∈τ : d∈C

inf
x∈C

f (x);

given A⊆Ω , the lower oscillation of IA is the indicator function of

B := {d ∈ A : ∃C ∈ τ s.t. d ∈C ⊆ A}=
⋃

C∈τ : C⊆A

C = int(A); (3)

note that B is the union of the elements of the base τ that are included in A, and is
therefore the topological interior of A in the upper limit topology. It is not too difficult
to show that the lower oscillation of f is the supremum of all continuous gambles (with
respect to the upper limit topology) that are dominated by f .

Lemma 1. For any subset A of Ω , E(A) = E(B), where B is given by Eq. (3).

This lemma allows us to deduce the following characterisation of E:

Proposition 2. For any gamble f on Ω , E( f ) = E(osc( f )).

This result allows us to rewrite the Choquet integral of Theorem 1 as

E( f ) = infosc( f )+
∫ suposc( f )

infosc( f )
E({osc( f ) ≥ x})dx = E(osc( f )), (4)

which is indeed more manageable. Note that for any t ∈ R, {osc( f ) > t} is equal to
osc({ f > t}), and as consequence osc is a lower semi-continuous function if we con-
sider the upper limit topology in the initial space. Hence, the natural extension of a
generalised p-box is characterised by its restriction to lower semi-continuous gambles
(and, because of Eq. (4), to open sets). Taking this into account, we are going to deter-
mine the expression of the natural extension E on the subsets of Ω which are open in
the upper limit topology.

Let B be an open subset of Ω , and let us show that B is a union of pairwise dis-
joint open intervals of Ω . Recall that by open we are referring here to the upper limit
topology, so the subinterval (a,b] is also open for any a,b in Ω .

Definition 2. [5] A set S is called full if [a,b]⊆ S for any a≤ b in S. Given a set A and
an element x of A, the full component C(x,A) of x in A is the largest full set S which
satisfies x ∈ S⊆ A.

The full components {C(x,A) : x ∈ A} of a set A⊆Ω form a partition of A [5, §4.4(a)].
In the following lemma, we prove that the natural extension E is additive on full
components.
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Lemma 2. Let A be an arbitrary subset of Ω , and let (Aλ )λ∈Λ be the full components
of A. Then E(∪λ∈ΛAλ ) = ∑λ∈Λ E(Aλ ). If moreover A is open, then Aλ is open for all
λ ∈Λ .

So the natural extension E is characterised by the value it takes on the full components
of open sets. By Lemma 2, these full components are open intervals of Ω , and are
therefore of the form [0Ω ,x],(x,y], [0Ω ,x) or (x,y), for x≤ y in Ω . By Proposition 1 we
have that E([0Ω ,x]) = F(x) and E((x,y]) = max{0,F(y)−F(x)} for any y ≤ x in Ω ,
and by Eq. (2),

E([0Ω ,x)) = F(x−) and E(x,y) = max{0,F(y−)−F(x)}.

5 Limit Approximations of the Natural Extension

Next, we give an alternative expression of the natural extension of a generalised p-box
as a limit of the natural extensions of discrete p-boxes. Consider a p-box (F ,F) on Ω .
Let (Fn)n,(Fn)n be increasing and decreasing sequences of cdfs converging point-wise
to F and F , respectively.

For ease of notation, denote by Pn the lower probability associated with (Fn,Fn),
that is, Pn = PH

Fn,Fn
and let En be natural extension of Pn. Since Fn ≤ F and Fn ≥ F ,

it follows that Φ(F ,F) ⊆ Φ(Fn,Fn), and Eq. (1) implies that En ≤ E . Moreover, the
same argument implies that En ≤ En+1 for any n ∈ N, so limn En = supn En ≤ E . The
converse holds too:

Proposition 3. E( f ) = limn En( f ) for any gamble f .

Next, we use this Proposition to establish an expression for the natural extension of a
generalised p-box in terms of discrete p-boxes. For any natural number n ≥ 1, and i ∈
{2, . . . ,n}, define the sets An

1 := F
−1 ([0, 1

n ]
)
,An

i := F
−1 (( i−1

n , i
n ]
)
,Bn

1 := F−1
(
[0, 1

n ]
)

and Bn
i := F−1

(
( i−1

n , i
n ]
)
. Clearly, both {An

1, . . . ,A
n
n} and {Bn

1, . . . ,B
n
n} are partitions of

Ω . Define Fn and Fn by

Fn(x) = i
n if x ∈ An

i , Fn(x) =

{
i−1

n if x ∈ Bn
i and x �= 1Ω ,

1 if x = 1Ω .
(5)

Lemma 3. The following statements hold for all x ∈Ω :

(i) For any n ∈ N, Fn and Fn are cdfs, Fn(x)≤ F(x), and F(x)≤ Fn(x).
(ii) limn Fn(x) = F(x) and limn Fn(x) = F(x).

(iii) (F2n)n, (F2n)n are increasing and decreasing sequences of cdfs such that F(x) =
limn F2n(x) and F(x) = limn F2n(x).

If we can find a simple expression for the natural extension of Pn for our particular
choice of Fn and Fn, then we also have a simple expression for EF ,F via Proposition 3.

Consider G1, . . . , Gn and G1, . . . , Gn defined by

Gi(x) =

{
1 if Fn(x)≥ i

n

0 otherwise
Gi(x) =

{
1 if Fn(x)≥ i

n

0 otherwise
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Proposition 4. For each n ∈N, En = 1
n ∑

n
i=1 EGi,Gi

.

Hence, all we need to characterise the natural extension of (Fn,Fn) is to determine
the natural extension of a degenerate p-box, i.e. one where the lower and upper cdfs
only assume the values 0 and 1. Note that a degenerate p-box (G,G) is uniquely
determined by

I(G,G) =
{

x ∈Ω : G(x) < G(x)
}

=
{

x ∈Ω : G(x) = 0 and G(x) = 1
}

.

Proposition 5. Let (G,G) be degenerate and f ∈L (Ω). If 0Ω �∈ I(G,G),

(i) If I(G,G) = (a,b) then EG,G( f ) = infz∈(a,b] f (z).
(ii) If I(G,G) = (a,b] then EG,G( f ) = lim

y
>→b

infz∈(a,y] f (z).
(iii) If I(G,G) = [a,b) then EG,G( f ) = lim

x
<→a

infz∈(x,b] f (z).
(iv) If I(G,G) = [a,b] then EG,G( f ) = lim

x
<→a

lim
y

>→b
infz∈(x,y] f (z).

On the other hand, if 0Ω ∈ I(G,G), then

(a) If I(G,G) = [0Ω ,b) then EG,G( f ) = infz∈[0Ω ,b] f (z).
(b) If I(G,G) = [0Ω ,b] then EG,G( f ) = lim

y
>→b

infz∈[0Ω ,y] f (z).

Concluding, if we consider now the natural extension E ′n of (F2n ,F2n) as defined in
Eq. (5), it follows from Proposition 3 and Lemma 3 that (E ′n)n is an increasing sequence
of functionals that converges point-wise to E . By Proposition 4, E ′n can be calculated as
a convex combination of natural extensions of degenerate p-boxes, whose expressions
follow from Proposition 5.

6 Conclusions

We have extended results concerning p-boxes from finite to infinite sets. In particular,
we have proven that the natural extension of a p-box characerizing the coherent exten-
sions to all gambles is a completely monotone lower prevision. Such lower previsions
have interesting mathematical properties—i.e., they can be written as a Rieman inte-
gral, and are determined by their values on events—and relate to comonotone additive
functionals, which are of interest in economics.

A convergence result for generalised p-boxes is given in Section 5: any generalised
p-box can be expressed as a limit of a sequence of discrete p-boxes. This is interesting
because discrete p-boxes are more manageable in practice, and are also related to earlier
works [2, 3]. In particular, they can be related to belief functions and to finitely-valued
random sets. Also of interest is that natural extension is preserved when taking point-
wise limits of monotone sequences of p-boxes.
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The F. Riesz Representation Theorem and Finite
Additivity
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Abstract. A positive and normalised real linear functional on the set of bounded continuous
functions can be characterised as the integral of a σ -additive probability measure, by the F. Riesz
Representation Theorem. In this paper, we look at the finitely additive extensions of such a func-
tional to the set of all bounded random variables, and prove that they are determined by Riesz’
extension to lower semi-continuous functions. In doing so, we establish links with Daniell’s ap-
proach to integration, Walley’s theory of coherent lower previsions, and de Finetti’s Representa-
tion Theorem for exchangeable random variables.

Keywords: F. Riesz representation theorem, Lower semi-continuity, Coherent lower prevision,
Natural extension, I-integral, Exchangeability.

1 Introduction

Let K be any compact metric space, and consider the linear space L (K) of all bounded
real-valued maps on K. We provide this set with the topology of uniform convergence,
which turns L (K) into a Banach space.

We call gamble any bounded real function on K, and linear prevision any positive,
normalised (i.e., with operator norm 1) real linear functional on a linear subspace of
L (K) that contains the constant gambles. We explain our reasons for this and other
terminology in Sect. 3, which is intended to give background information and further
discussion of the importance of the problem addressed here.

To set the stage, consider a positive, normalised real linear functional π on the set
C (K) of all continuous bounded real functions on K. The F. Riesz Representation The-
orem [14, Theorem 2.22] tells us that there is a unique (σ -additive) probability measure
μπ on the Borel sets of K such that for all continuous gambles f

π( f ) = (L)
∫

f dμπ ,

where the integral is a Lebesgue integral associated with the probability measure μπ . In
other words, the linear prevision π on C (K) extends uniquely to a linear prevision Lπ to
the linear space B(K) of all Borel-measurable gambles on K that furthermore satisfies
the monotone convergence requirement: if the increasing sequence of gambles fn, n≥ 0
converges point-wise to a gamble f , then Lπ( fn)→ Lπ( f ). The original linear prevision
π on C (K) satisfies this extra monotone convergence condition automatically: any in-
creasing sequence of continuous gambles that converges point-wise to some continuous

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 243–252, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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gamble, also converges uniformly to that gamble, by Dini’s Convergence Theorem [18,
Sect. 17.7], and any linear prevision is continuous with respect to uniform convergence
[20, Sect. 2.6].

If we drop the monotone convergence requirement, then by the Hahn–Banach The-
orem [18, Sect. 12.31], π can be extended to a linear prevision P on the linear space
L (K) of all gambles, not just the Borel-measurable ones. But uniqueness is no longer
guaranteed, and what is more, it seems that no manner for actually constructing such
extensions can be given; see [18, Sect. 6.6] for a discussion of constructibility. Let us
denote by M (π) the set of all linear previsions on L (K) that extend π , i.e., coincide
with π on C (K).

Now consider the lower envelope Eπ of this set M (π), also called the natural exten-
sion of π , which is defined on all gambles f by

Eπ( f ) = inf{P( f ) : P ∈M (π)} .
This is a real functional on the linear space L (K) that is (C1) super-additive, mean-
ing that Eπ( f + g) ≥ Eπ( f ) + Eπ(g); (C2) positively homogeneous, meaning that
Eπ(λ f ) = λEπ( f ) for all real λ ≥ 0; and (C3) positive, meaning that Eπ( f ) ≥ inf f .
In fact, it is the point-wise smallest such functional that extends π , and any linear pre-
vision P extends π if and only if it point-wise dominates Eπ ; this follows immediately
from Theorems 2.5.5, 3.1.2, 3.3.3 and 3.4.1 in [20]. Moreover, for any gamble f and
any real number a, there is a linear prevision P on L (K) that extends π such that
P( f ) = a if and only if a ∈ [Eπ( f ),Eπ( f )], where Eπ is the conjugate functional of
Eπ , defined by Eπ(g) = −Eπ(−g) for all gambles g. This is the essence of Bruno de
Finetti’s Fundamental Theorem of Probability [9, Vol. 1, Sect. 3.10], and a special case
of [20, Corollary 3.4.3]. In this sense, the natural extension Eπ characterises all the
linear previsions that extend π .

But what makes this natural extension Eπ especially interesting, is that it can be
constructed explicitly. Indeed, it can be shown, invoking a general result by Walley [20,
Theorem 3.1.4], that Eπ coincides with the inner extension of π :

Eπ( f ) = sup{π(g) : g ∈ C (K) and g≤ f} . (1)

In this paper, and in particular in Sect. 2, we intend to show that Eπ is completely
determined by the probability measure μπ in a very specific way. Indeed, let us define
the lower oscillation osc( f ) of f as the gamble on K that assumes the value

oscx( f ) = sup
N∈Nx

inf
z∈N

f (z) (2)

in any element x of K, where Nx is the set (filter) of all neighbourhoods of x. Then we
prove in Theorem 1 that for all gambles f on K,

Eπ( f ) = (L)
∫

osc( f )dμπ . (3)

Although we haven’t come across Eq. (3) in the literature, to us the contribution of
this paper does not lie in its mathematical derivation: it is proved easily enough using
basic functional-analytic results. Rather, we want to draw attention, in Sect. 3, to the
beauty that lies hidden in its interpretation, and in the connections it provides between
fundamental results in probability theory and functional analysis.
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2 Derivation

The functional Eπ is completely determined by its values on the set C (K) of lower
semi-continuous gambles on K, and osc has a nice topological interpretation.

Proposition 1. For any gamble f on K, osc( f ) is the point-wise greatest lower semi-
continuous gamble that is point-wise dominated by f , and Eπ( f ) = Eπ(osc( f )).

Proof. It is clear from Eq. (2) that osc( f ) ∈ C (K) and osc( f ) ≤ f for any gamble
f . Given any g ∈ C (K), then for any real t, {g > t} is open, meaning that for any
x∈ {g > t}, there is some N ∈Nx such that N ⊆{g > t}. Consequently, g(x)> t implies
that oscx(g) = supN∈Nx

infz∈N g(z)≥ t, whence osc(g)≥ g, and therefore osc(g) = g for
any g∈C (K). Now let g∈C (K) be such that g≤ f . Then it follows from the definition
of the lower oscillation that osc(g)≤ osc( f ), whence g≤ osc( f ).

For the second part, note that for any g ∈ C (K) such that g ≤ f it follows that g =
osc(g) ≤ osc( f ) ≤ f , and since Eπ is monotone as a lower envelope of (monotone)
linear previsions, π(g)= Eπ(g)≤Eπ(osc( f ))≤Eπ( f ). By (1), Eπ( f )≤Eπ(osc( f ))≤
Eπ( f ). ��
Eπ has continuity properties that are stronger than the mere continuity with respect to
the topology of uniform convergence on L (K) that is implied by its definition as a
lower envelope of (uniformly) continuous linear previsions.1

Proposition 2. Let ( fn)n≥0 be a non-decreasing sequence of non-negative elements of
C (K), such that for all x in K, f (x) := limn→∞ fn(x) is a real number, and such that the
function f thus defined is bounded. Then Eπ( f ) = limn→∞Eπ( fn). Similarly, for any se-
quence (Bn)n≥0 of open subsets of K, Eπ(

⋃
n≥0 Bn)

= limn→∞Eπ(
⋃n

i=1 Bi).

Proof. It suffices to prove the first part. Fix ε > 0. Then it follows from (1) that there is
fε ∈C (K) such that fε ≤ f and Eπ( f )−π( fε ) < ε

2 . Consider, for any n≥ 0, the gamble
fε,n := min{ fε , fn} on K. The sequence fε,n, n≥ 0 satisfies the following properties: (i)
it converges point-wise to fε : indeed, for any x ∈ K,

lim
n→∞min{ fε (x), fn(x)}= min{ fε(x), lim

n→∞ fn(x)} = min{ fε(x), f (x)} = fε (x);

(ii) fε,n ∈ C (K) for any n, since it is the point-wise minimum of two elements of C (K);
and (iii) fε,n is non-decreasing: fε,n+1(x)≥ fε,n(x) for all x∈ K and all n≥ 0. By Dini’s
Convergence Theorem [18, Sect. 17.7], ( fε,n)n≥0 converges uniformly to fε . Since Eπ is
continuous with respect to the uniform convergence and monotone, limn→∞Eπ( fε,n) =
supn≥0 Eπ( fε,n) = Eπ( fε ) = π( fε), whence there is nε ≥ 0 such that π( fε)−Eπ( fε,n) <
ε
2 for all n ≥ nε . Since also fε,n ≤ fn for all n ≥ 0, we deduce that Eπ( fε,n) ≤ Eπ( fn)
for all n≥ 0, and so for all n≥ nε ,

Eπ( f )−Eπ( fn) = Eπ( f )−π( fε)+π( fε)−Eπ( fε,n)+ Eπ( fε,n)−Eπ( fn) < ε.

Hence Eπ( f ) = supn≥0 Eπ( fn) = limn→∞Eπ( fn). ��
1 Here and in other places in this paper we use the identification between sets and their indicator

functions, so Eπ (A) refers to the value that Eπ takes in the indicator IA of the set A.
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Theorem 1. For any gamble f on K, Eπ( f ) = (L)
∫

osc( f )dμπ .

Proof. By Proposition 1, it suffices to prove that for any f ∈C (K), Eπ( f )= (L)
∫

f dμπ .

[Observe that since f is lower semi-continuous, its cut sets { f > t} are open for any
real t, so f is Borel-measurable]. Since K is a metric space, any such f is the point-wise
limit of a non-decreasing sequence of continuous gambles (gn)n≥0 [18, Theorem 16.16].
Assume first that f ≥ 0. Then we may also assume that gn ≥ 0 for all n. Applying
Proposition 2,

Eπ( f ) = lim
n→∞Eπ(gn) = lim

n→∞(L)
∫

gn dμπ = (L)
∫

lim
n→∞gn dμπ = (L)

∫
f dμπ ,

also using the monotone convergence of the Lebesgue integral Lπ associated with μπ .
Finally consider any g ∈ C (K), and define f := g− infg. Then f ≥ 0 also belongs to

C (K), so Eπ( f ) = (L)
∫

f dμπ . But the properties of lower envelopes of linear previ-

sions and of the Lebesgue integral guarantee that

Eπ(g)= Eπ( f + infg)= Eπ( f )+ infg = (L)
∫

f dμπ+ infg = (L)
∫

gdμπ . ��

Corollary 1. Eπ is additive and satisfies monotone convergence on the convex cone
C (K), where it coincides with the linear functional Lπ .

This can also be derived using Eq. (1). Of further interest is the uniformly closed lin-
ear lattice Iπ(K) =

{
f ∈L (K) : Eπ( f ) = Eπ( f )

}
of all gambles to which the linear

prevision π can be extended uniquely as a linear prevision. We call its elements π-
integrable. We can characterise the π-integrability of a gamble by looking at its os-
cillation osc( f ), defined by osc( f ) := osc( f )− osc( f ) = −osc(− f )− osc( f ), i.e., by
oscx( f ) = infN∈Nx supz1,z2∈N | f (z2)− f (z1)| for all x in K. Observe that a gamble f is
continuous at x if and only if oscx( f ) = 0.

Corollary 2. A gamble f on K belongs to Iπ(K) if and only if its oscillation osc( f ) is
zero almost everywhere [μπ], i.e., if f is continuous almost everywhere [μπ].

Proof. It is clear that f belongs to Iπ(K) if and only if

0 = Eπ( f )−Eπ( f )= (L)
∫

[osc( f )−osc( f )]dμπ = (L)
∫

f dμπ . ��

In accordance with Choquet’s [3] general definition for maps from an Abelian semi-
group to an Abelian group, we can call a real functional Γ defined on a lattice of gam-
bles K n-monotone if ∑I⊆{1,...,p}(−1)|I|Γ ( f ∧∧i∈I fi)≥ 0, for all p≤ n, and all f , f1,
. . . , fp in K . In this expression |I| denotes the cardinality of a finite set I, and ∧ de-
notes point-wise minimum. A real functional that is n-monotone for all natural numbers
n is called completely monotone. We have shown elsewhere [6] that a linear prevision
is always completely monotone, and that natural extension preserves complete mono-
tonicity. This implies [6] that both π and Eπ are completely monotone, and that for any
f ∈L (K),
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Eπ( f ) = (C)
∫

f dEπ := inf f +
∫ sup f

inf f
Eπ({ f ≥ t})dt, (4)

where the first integral is a Choquet integral [10], and the integral in its defining expres-
sion is a Riemann integral. As a consequence, a gamble f is π-integrable if and only if
its cut sets { f ≥ t} are, for all but a countable number of t.

The restriction of Eπ to Iπ(K) is a linear prevision, which we denote by Eπ . We
easily derive from Eq. (1) that Eπ is the inner extension of Eπ , meaning that

Eπ( f ) = sup{Eπ(g) : g≤ f and g ∈Iπ(K)}
for all f ∈ L (K). This means that Eπ is completely determined by its values on π-
integrable gambles. We mention an even stronger result: Eπ is actually completely de-
termined by the values that it assumes on finite unions of π-integrable open balls. A
proof uses the following ingredients: (i) Eq. (4) together with Proposition 1 implies that
Eπ is uniquely determined by its restriction to the open subsets of K; (ii) because K
is compact, any open set is a countable union of open balls; (iii) Proposition 2 tells
us that Eπ on open sets is therefore determined by its values on finite unions of open
balls; and (iv) all but a countable number of open balls centred on any point x of K are
π-integrable.

Corollary 3. Let B = {Bi : i ∈ I} be a finite or countably infinite partition of K, con-
sisting of Borel measurable π-integrable events. Then Eπ( f ) = ∑i∈I Eπ( f IBi) for any
f ∈L (K).

Proof. First assume that f ≥ 0. Then it follows from Theorem 1 that

Eπ( f ) = (L)
∫

osc( f )dμπ = (L)
∫
∑
i∈I

osc( f )IBi dμπ =∑
i∈I

(L)
∫

osc( f )IBi dμπ ,

since each osc( f )IBi is Borel measurable. Consider the topological interior int(Bi)
and closure cl(Bi) of a set Bi. Since osc(IBi) = Iint(Bi), Proposition 1 implies that
Eπ(int(Bi)) = Eπ(Bi) = μπ(Bi) and similarly Eπ(cl(Bi)) = Eπ(Bi) = μπ(Bi). But then
we find for any Borel measurable set A such that int(Bi)⊆ A⊆ cl(Bi) that

μπ(Bi) = Eπ(int(Bi))≤ Eπ(A)≤ μπ(A)≤ Eπ(A)≤ Eπ(cl(Bi)) = μπ(Bi),

so μπ(Bi) = μπ(A). In particular μπ(Bi) = μπ(int(Bi)), and therefore

(L)
∫

osc( f )IBi dμπ = (L)
∫

osc( f )Iint(Bi) dμπ = (L)
∫

osc( f IBi)dμπ = Eπ( f IBi),

since osc( f IBi) = osc( f )Iint(Bi) because f ≥ 0. This means that the desired equality
holds for non-negative gambles. Now for a general gamble g, let f := g− infg, then
f ≥ 0 and g = f + infg. Then since Eπ is a lower envelope of linear previsions and infg
is a constant, Eπ(g) = Eπ( f + infg) = Eπ( f )+ infg, and also Eπ( f IBi)+μπ(Bi) infg≤
Eπ([ f + infg]IBi) = Eπ( f IBi)+μπ(Bi) infg, whence Eπ(gIBi)= Eπ( f IBi)+μπ(Bi) infg.
Now using the result already proved for f ≥ 0:

∑
i∈I

Eπ(gIBi)=∑
i∈I

Eπ( f IBi)+ infg∑
i∈I
μπ(Bi)= Eπ( f )+ infg. ��
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3 Comments on Interpretation and Historical Background

De Finetti’s previsions. Most of the terminology that we have been using, is borrowed
from Walley’s behavioural approach to decision making and probability [20], which has
its roots in the work of Ramsey [17] and de Finetti [7, 9]. When a subject is uncertain
about the actual value that a variable X assumes in a set of possible values X , we can
try and model his beliefs about this value by asking him whether he accepts to engage
in certain risky transactions, called gambles, whose outcome depends on the actual
value of X . Mathematically, a gamble is a bounded real-valued function on X , and if
a subject accepts a gamble f , this means that he accepts the transaction in which the
value x of X is determined, and where he then receives the (possibly negative) amount of
utility f (x).

De Finetti [7, 9] defined the fair price, or the prevision of a gamble f as the unique
fixed number P( f ) that to the subject is equivalent to the uncertain number f , i.e., such
that the subject accepts the gambles f − s (buying f for price s) and t− f (selling f
for price t) for all real numbers s < P( f ) < t. If a subject gives fair prices P( f ) for a
number of gambles f in some set K , then this amounts to specifying a real functional
P on K . A subject is rational if he avoids a sure loss in specifying P, or in other
words, if no Dutch book can be made against him. De Finetti showed [7, 9] that this
requirement is equivalent to P being extendable to some positive and normalised real
linear functional—a linear prevision—Q on all gambles.

Such linear previsions Q are mathematically equivalent to finitely additive probabil-
ity measures: the restriction of Q to (indicators of) events is a finitely additive proba-
bility measure, and conversely, if we start with a finitely additive probability measure
defined on all events, then it extends uniquely to a linear prevision on all gambles [2,
Sect. 4.7]. De Finetti used his previsions to give a subjectivistic foundation to the theory
of probability.

Walley’s lower previsions. In de Finetti’s definition of a fair price for a gamble f , it is
implicitly assumed that a subject is always able to specify such a fair price, or in other
words, is able to choose, for nearly every real price p, between buying f for price p
(accepting f − p) and selling f for that price (accepting p− f ). Arguably [20, 22] this
may be asking too much of a subject’s dispositions. For this reason Walley [20] (and
Smith [19] and Williams [21, 22] before him) distinguish between the lower prevision
P( f ) of f , which is the supremum s such that the subject accepts f −s (buying f for the
price s), and the upper prevision P( f ) of f , which is the infimum t such that the subject
accepts t− f (selling f for the price t). The lower and upper previsions of a subject are
conjugate functionals, in the sense that P( f ) =−P(− f ), and so if we establish the lower
prevision for all gambles in some domain K , we can derive immediately the upper
prevision for all the gambles in−K . When the gambles in the domain are indicators of
events, our supremum buying prices for the indicator of an event are actually supremum
betting rates on the event, and the infimum selling prices are one minus supremum
betting rates for betting against the event. We then talk of lower and upper probabilities,
respectively.

If a subject establishes a lower prevision P on some set of gambles K , we say that
he is rational when he cannot be made subject to a sure loss, and when furthermore
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the supremum buying prices for any gamble in K cannot be raised by considering
the implications of the supremum buying prices for finite collections of other gam-
bles in K . We say then that the lower prevision P is coherent. Walley [20] has shown
that this is equivalent to P being extendable to a real functional on all gambles that is
super-additive, positively homogeneous and positive; see the conditions (C1)–(C3) in
the Introduction. For a coherent lower prevision P and its conjugate upper prevision P it
holds that P( f )≤ P( f ) for all f ∈K ∩−K . In the particular case that our subject es-
tablishes fair prices for all gambles f in K , meaning that K =−K and P( f ) = P( f )
for all f ∈K , the coherence requirement is equivalent to de Finetti’s notion of avoiding
sure loss from the previous section. Moreover, a coherent lower prevision is always a
lower envelope of linear previsions, and any such lower envelope is a coherent lower
prevision.

Given a coherent lower prevision on some set of gambles K , we can consider the
smallest coherent lower prevision EP on the set of all gambles that coincides with P on
its domain. It is called the natural extension of P, and provides, for any gamble f , the
supremum acceptable buying price EP( f ) for f that can be derived from the supremum
buying prices established for the gambles in K , using coherence.

We immediately see that if a subject has in some way specified a (linear) previ-
sion π on the set C (K) of all continuous gambles, then Eπ represents the behavioural
consequences of this assessment for all gambles f on K: Eπ( f ) is the supremum buy-
ing price for f that can be deduced from finite combinations of the assessments π(g),
g ∈ C (K). Indeed, consider the assessments π(g) for any g≤ f . They mean in particu-
lar that our subject is willing to buy g for any price p < π(g), i.e., willing to accept the
uncertain transaction g− p. But then he should also be willing to accept the transaction
f − p≥ g− p, because the resulting reward can never be lower. So we see that our sub-
ject should be willing to buy f for any price p such that there is a continuous gamble g
for which p < π( f ). By Eq. (1), Eπ( f ) is the supremum of all such inferred acceptable
buying prices p.

Lower oscillation as a probability model. Consider a lower probability that assumes
only the values zero and one, so there is a set F of events on which the lower probability
is one, meaning that the subject is practically certain (because prepared to bet at all odds
on the fact) that these events occur. Then2 this lower probability is coherent if and only
if F is a proper set filter (i.e., a proper subset of the power set℘(X ) that is closed
under finite intersections, and increasing), and that it then has a unique extension to a
coherent lower prevision on all gambles, given by

PF ( f ) = sup
F∈F

inf
z∈F

f (z).

Compare this to our definition (2) of the lower oscillation oscx( f ) of a gamble f in
an element x: we see that oscx is the unique coherent lower prevision associated with
assigning (lower and therefore upper) probability one to any element of the neighbour-
hood filter Nx, i.e., to any neighbourhood of x. In other words, oscx is the probability
model that corresponds to the statement: all probability mass is concentrated in any
neighbourhood of x, i.e., lies arbitrarily close to x. And Theorem 1 tells us that the

2 See Sects. 2.9.8 and 3.2.6, as well as Endnote 4 on p. 502, in [20].
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natural extension Eπ is a σ -additive convex mixture of these elementary ‘concentrated
mass models’ oscx, with weights characterised by μπ .

Complete monotonicity and Choquet’s Representation Theorem. There is yet an-
other intriguing interpretation for Theorem 1, which is related to the notion of complete
monotonicity, introduced in Sect. 2. It is a consequence of Choquet’s Representation
Theorem [3, Sect. 45] that any coherent and completely monotone lower prevision on
L (K) can be written as a ‘σ -additive convex mixture’ of the extreme points of the set of
all coherent and completely monotone lower previsions. But, as Choquet [3, Sect. 43.7]
has essentially shown, the extreme coherent and completely monotone lower previsions
are precisely the lower previsions PF associated with proper set filters F . If we rewrite
Theorem 1 as Eπ( f ) = (L)

∫
PN·( f )dμπ , we see that for the completely monotone and

coherent natural extension Eπ we can actually identify the ‘σ -additive convex mixture’
and the extreme points that participate in it: the mixture is precisely the one associated
with the unique σ -probability measure μπ induced by the linear prevision π , and the
extreme points are the lower previsions oscx associated with the neighbourhood filters
Nx, x ∈ K.

Daniell’s approach to integration. There is an interesting connection between our
results and Daniell’s [4] treatment of the extension problem of I-integrals. Daniell’s
notion of I-integral refers to a real linear functional defined on a linear lattice of gambles
K , which is moreover continuous for monotone sequences of non-negative gambles
decreasing to 0. Given such a functional, Daniell shows that it can be extended as an
I-integral to the set of those functions which are limits of an increasing sequence of
gambles in K by using a property of monotone convergence. From there, he considers
inner and outer extensions to the set of all gambles.

In this paper, we started out with a linear prevision π on the set C (K) of continuous
gambles on K. By the F. Riesz Representation Theorem, this linear prevision is the
Lebesgue integral with respect to some σ -additive probability measure μπ , and as such
it satisfies monotone convergence. Hence, the linear prevision π is a particular instance
of an I-integral. Using Daniell’s results, we can extend it to an I-integral to the set of
gambles which are limits of an increasing sequence of continuous gambles, i.e., to the
set C (K) of lower semi-continuous gambles on K.

What we have proved above in Corollary 1 is that Daniell’s extension procedure
coincides with Walley’s notion of natural extension, at least as far as extension to the
lower semi-continuous gambles is concerned. Moreover, the natural extension to all
gambles coincides with the lower I-integral we would obtain on Daniell’s approach.

We want to stress here that the linear prevision π does not have a unique exten-
sion to a linear prevision on the set of all lower semi-continuous gambles. In fact, we
have already remarked that for any a ∈ [Eπ( f ),Eπ( f )], there is a linear prevision Q
extending π to the set of all gambles and satisfying Q( f ) = a. This is because we do
not require monotone convergence for our finitely additive extensions. The surprising
result is then that the lower envelope of all these finitely additive extensions to the
set of lower semi-continuous gambles coincides with the only extension satisfying the
monotone convergence, which is the Lebesgue integral with respect to the σ -additive
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probability measure determined by Riesz’ Representation Theorem, and which is also
Daniell’s extension as an I-integral.

De Finetti’s Representation Theorem. A sequence of random variables X1, . . . , Xn,
. . . , all assuming values in the same finite set X is called exchangeable if for all
natural numbers n, the mass function pn(x1, . . . ,xn) for the first n variables is invari-
ant under permutation of its arguments, i.e., pn(x1, . . . ,xn) = pn(xπ(1), . . . ,xπ(n)) for
all (x1, . . . ,xn) ∈X n and all permutations π of {1, . . . ,n}. For such exchangeable se-
quences, de Finetti [7] has proved a representation theorem that is considered to be of
fundamental importance to Bayesian statistics. 3 Although it is usually formulated dif-
ferently (see for instance [15, Theorem 1.1] for a fairly abstract, and [13] for a simple
formulation), the essence of de Finetti’s result can be stated as follows [5]:

The sequence Xn, n ≥ 1 of random variables in X is exchangeable if and only if
there is some linear prevision π on the set C (ΣX ) of all continuous gambles of the
X -simplex ΣX =

{
θθθ ∈ RX : (∀x ∈X )(θx ≥ 0) and ∑x∈X θx = 1

}
such that pn(x)=

π(Bx) for all n≥ 1 and x = (x1, . . . ,xn) ∈X n, where

Bx(θθθ ) =
n!

∏z∈X Tz(x)! ∏z∈X

θTz(x)
z and Tz(x) = |{k ∈ {1, . . . ,n} : xk = z}|.

The joint mass functions of any exchangeable sequence only determine a linear previ-
sion π on the linear space of all polynomials on the compact metric space ΣX , or, what
is equivalent, on the linear space C (ΣX ). It is only if σ -additivity (or equivalently
monotone convergence) is required that the π leads to a unique probability measure μπ ,
which can be defined on the Borel sets of ΣX . But it is well-known that de Finetti him-
self was strongly opposed to imposing σ -additivity as a general normative axiom for
probability models; see [9, Vol. 1, Sect. 6.3]. If we therefore only require finite additiv-
ity, there are an infinity of linear previsions (or equivalently, finitely additive probability
measures) that extend π to L (ΣX ). These are completely characterised by their lower
envelope Eπ .
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Set-Valued Stochastic Integrals with Respect to a
Real Valued Martingale

Jinping Zhang�

Department of Mathematics, Saga University, Saga, Japan

Abstract. In a real separable martingale type 2 Banach space, first we give the definition of
single valued stochastic integrals by the differential of a real valued continuous L2-martingale,
and then, consider the set-valued case. Submartingale property and Castaing representation of
set-valued stochastic integrals are obtained.

Keywords: Martingale type 2 Banach space, Set-valued stochastic integral.

1 Introduction

Integration of set-valued functions is an important topic in set-valued analysis. There
are several types of integration of set-valued functions. Aumann integral [1] is a popular
one, which is the collection of all integrable selections’s integrals with respect to a
measure. Hukuhara in 1967 considered formal Riemann integration into the space of all
convex and compact subsets. Debreu in 1967 used an embedding method to consider
the Bochner integral in the embedded Banach space. Based on Aumann’s sense, Hiai
[3] studied the properties of the integrals of the set-valued functions, the conditional
expectations w.r.t a σ -finite measure and then martingales of multivalued functions.

It is well known that the stochastic integral is the foundation of stochastic analysis.
For set-valued stochastic analysis, it is necessary to set up theory of set-valued stochas-
tic integrals. So far, only a few papers have been published concerning the set-valued
stochastic integrals (e.g. [4, 5, 6, 8]), since this topic has been studied within last ten
years and the theory is not complete until now. In [6] the set-valued integral may be not
a set-valued stochastic process, which is not an analogue to the single case. In [4], the
authors modified the definition of [6] in 1-dimensional Euclidean space R such that the
set-valued integral is a set-valued process. Li and Ren [8] modified Jung and Kim’s [4]
definition by considering the predictable set-valued stochastic process as a set-valued
random variable in the product space (Rn

+×Ω ). In a martingale type 2 Banach space,
Zhang et al. [12] studied set-valued stochastic integrals with respect to a real valued
Brownian motion.

In this paper, we construct a theory of stochastic integration of set-valued processes
with respect to a real valued L2-continuous martingale. The range space of the inte-
grands is allowed to be a real separable martingale type 2 Banach space.

� This work is partially supported by the NSFC(10771010).
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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2 Preliminaries

Let (Ω ,F ,P) be a complete nonatomic probability space with filtration {Ft}t≥0 which
satisfies the usual condition, (X,‖ · ‖) a real separable Banach space, M (Ω ; X) the
family of all X-valued F -measurable functions, K(c)(X) the family of all nonempty
closed (convex) subsets of X, Lp(Ω ,F ,P;X)(p ≥ 1) the set of all X- valued p-
integrable random variables, briefly by Lp(Ω ,X). A function F :Ω →K(X) is measur-
able if for any open set O ∈ X, the inverse F−1(O) := {ω ∈ Ω : F(ω)∩O �= /0} ∈F .
Let M (Ω ,F ,P;K(c)(X)) be the family of all measurable K(c)(X)- valued functions,
briefly by M (Ω ;K(c)(X)).

For F ∈ M (Ω ,K(X)), the family of all Lp- integrable selections is denoted by
Sp

F(F ) := { f ∈ Lp(Ω ,F ,P;X) : f (ω) ∈ F(ω) a.s.}, p ≥ 1. Sp
F(F ) may be denoted

briefly by Sp
F . A set-valued random variable F is said to be integrable if S1

F is nonempty.
F is called Lp(p ≥ 1)-integrably bounded if there exits h ∈ Lp(Ω ,F ,P;R) s.t. for all
x ∈ F(ω), ‖x‖ ≤ h(ω) almost surely. The family of all K(c)(X)-valued Lp-integrable
random variables is denoted by Lp(Ω ,F ,P;K(c)(X)). It may be written for brevity by
Lp(Ω ;K(c)(X)).

Proposition 1. ([3]) Let Γ be a nonempty closed subset of Lp(Ω ,F ,P;X) and 1≤ p <
∞. Then there is an F ∈M (Ω ;K(X)) such thatΓ = Sp

F if and only ifΓ is decomposable
with respect to F .

Lemma 1. ([3]) Let F ∈M (Ω ,F ,P;K(X)) and 1 ≤ p ≤ ∞. If Sp
F is nonempty, then

there is a sequence { f i : i∈N}⊂ Sp
F such that F(ω) = cl{ f i(ω) : i∈N} for all ω ∈Ω ,

where the closure is taken in X.

Lemma 2. ([3]) Let F1,F2 ∈M (Ω ,F ,P;K(X)), 1≤ p≤∞, Sp
F1
�= /0 and Sp

F2
�= /0 then

Sp
F1

= Sp
F2

if and only if F1(ω) = F2(ω) a.s.; Sp
F1
⊂ Sp

F2
if and only if F1(ω)⊂ F2(ω) a.s..

The integral (or expectation) of a set-valued random variable F was defined by Aumann
in 1965: E[F ] := {E[ f ] : f ∈ S1

F}. Since set-valued stochastic integrals (It will be studied
in Section 3) are integrable but maybe unbounded almost surely (see [11]), in order to
study martingale property of set-valued stochastic integrals later, here we need to use
the extended definition of conditional expectation compared with that in [3].

Assume B is a sub-sigma algebra of F , F is an L1-integrable set-valued random
variable, the conditional expectation of F with respect to B is defined as follows:

Lemma 3. ([10]) Let F be an L1-integrable set-valued random variable. For each sub-
sigma algebra B ⊂F , there exists a unique integrable B-measurable set-value ran-
dom variable Y (denoted by Y = E [F|B] and called the conditional expectation of F)
such that

S1
Y (B) = cl{E[ f |B] : f ∈ S1

F},
where the closure is taken in L1.

F = {Ft : t ≥ 0} (or denoted by F = {F(t) : t ≥ 0})is called a set-valued stochastic
process if for every fixed t ≥ 0, Ft(·) is a set-valued random variable. F = {Ft : t ≥ 0} is
called Lp-integrable if every Ft is Lp-integrable. It is called measurable if it is B+×F -
measurable, Ft -adapted if for any fixed t, Ft(·) is Ft -measurable.
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By the Lemma 2, it is reasonable to give the following definitions on set-valued
martingale, set-valued submartingale and supermartingale.

Definition 1. An integrable convex set-valued Ft -adapted stochastic process {Ft ,Ft :
t ≥ 0} is called a set-valued Ft -martingale if for any 0≤ s≤ t it holds that E [Ft |Fs] =
Fs in the sense of S1

E [Ft |Fs]
(Fs) = S1

Fs
(Fs).

It is called a set-valued submartingale (supermartingale) if for any 0 ≤ s ≤ t,
E [Ft |Fs] ⊃ Fs (resp. E [Ft |Fs] ⊂ Fs) in the sense of S1

E [Ft |Fs]
(Fs) ⊃ S1

Fs
(Fs) (resp.

S1
E [Ft |Fs]

(Fs)⊂ S1
Fs

(Fs)).

3 Set-Valued Stochastic Integrals with Respect to a Real Valued
Continuous L2-Martingale

In this section, we assume X is a separable martingale type 2 Banach space. Let
T ∈ R+ and {Mt ,Ft : t ∈ [0,T ]} (or denoted by {M(t),Ft : t ∈ [0,T ]} be a real val-
ued continuous L2-martingale with M0(ω) = 0 a.e., where we call {Mt ,Ft : t ∈ [0,T ]}
a continuous L2-martingale if it is an Ft -adapted continuous martingale and for any
t ∈ R+ E[M2

t ] < +∞ . Then by the Doob-Meyer decomposition theorem, there ex-
ists a unique predictable continuous increasing process 〈M〉t such that M2

t −〈M〉t be-
comes a continuous martingale. Let L p(X) be the family of all predictable X−valued
stochastic processes f = { f (t),Ft : t ∈ [0,T ]} (or f = { ft ,Ft : t ∈ [0,T ]} ) such that
E[
∫ T

0 ‖ f (s)‖pd < M >s] < ∞, L p(K(c)(X)) the family of all predictable K(c)(X)-
valued processes F = {Ft ,Ft : t ∈ [0,T ]} (or F = {F(t),Ft : t ∈ [0,T ]}) such that
{‖F(t)‖k}t∈[0,T ] ∈L p(R), where ‖A‖k = sup

a∈A
‖a‖.

For a set-valued stochastic process {Ft,Ft : t ∈ [0,T ]}, a predictable selection f =
{ f (t),Ft : t ∈ [0,T ]} is called L p-selection if f = { f (t),Ft : t ∈ [0,T ]} ∈L p(X).
The family of all L p-selections is denoted by Sp(F(·)).
Definition 2. ([2]) A Banach space (X, || · ||) is called martingale type 2 if and only if
there exists a constant C > 0 such that for any X-valued martingale {Mk} (Note: it may
be different from Mt given in the beginning of this section), it holds that supk E||Mk||2≤
C∑k E||Mk−Mk−1||2.
Let L p

step(X) be the subspace of those f ∈ L p(X) for which there exists a partition
0 = t0 < t1 < ... < tn = T such that f (t) = f (tk) for t ∈ [tk, tk+1),0 ≤ k ≤ n−1,n∈ N.

For f ∈L 2
step(X), define a X-valued F -measurable random variable

IT ( f ) :=
n−1

∑
k=1

f (tk)(M(tk+1)−M(tk)).

We have the following lemmas, which are crucial for defining the Itô integration suc-
cessfully.

Lemma 4. For f ∈L 2
step(X), IT ( f ) ∈ L2(Ω ,F ,P;X), E[IT ( f )] = 0 and

E[||IT ( f )||2]≤CE[
∫ T

0
|| f (t)||2d < M >t ], (1)

where the constant C is the same one appearing in Definition 2.
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Proof. The proof is similar to the Lemma 4.1 in [12] replacing Brownain motion by
continuous L2- martingale. ��
Lemma 5. ([7]) L 2

step(X) is dense in L 2(X).

Then by Lemmas 4 and 5, we can extend the integrands into a larger class L 2(X). So
for f ∈L 2(X), we can choose a sequence { f n : n ∈N} ⊂L 2

step(X) such that

E
∫ T

0
|| f n− f ||2d < M >t→ 0(n→ ∞),

then define

IT ( f )(ω) :=
∫ T

0
ft (ω)dMt(ω) := lim

n→∞

∫ T

0
f n
t (ω)dMt(ω),

where the limit is taken in L2-sense. Then from Lemma 4 and property of limit, taking
f ∈ L 2(X), we have E[||IT ( f )||2] ≤ CE

∫ T
0 || ft ||2d < M >t . For any interval [s, t] ⊂

[0,T ], the integral
∫ t

s fudMu can be defined similarly. For any f ∈ L 2(X), it is not
difficult to prove the process {It( f ) : t ∈ [0,T ]} is an X-valued Ft martingale.

Now we study the set-valued stochastic integration.
For a set-valued stochastic process {Ft ,Ft : t ∈ [0,T ]} ∈L 2(K(X)), define a set of

functions

Γt :=
{∫ t

0
fsdMs : ( f (t))t∈[0,T ] ∈ S2(F(·))

}
(2)

Theorem 1. For any t ∈ [0,T ], Γt is a bounded subset of L2(Ω ,Ft ,P;X). Furthermore,
if {Ft,Ft : t ∈ [0,T ]} ∈L 2(Kc(X)), then Γt is also convex. If X is reflexive and Ft is
convex valued, then Γt is weakly compact.

Proof. Here we omit the proof since the limitation of pages. ��
Let deΓt denote the decomposable set of Γt with respect to Ft , deΓt the decomposable
closed hull of Γt with respect to Ft , where the closure is taken in L1.

Theorem 2. Assume {Ft ,Ft : t ∈ [0,T ]} ∈ L 2(K(X)), then for any t ∈ [0,T ],
deΓt ⊂ L1(Ω ,Ft ,P;X). Moreover, there exists a set-valued random variable It(F) ∈
M (Ω ,Ft ,P;K(X)) such that S1

It (F)(Ft ) = deΓt .

Definition 3. The set-valued stochastic process (It(F))t∈[0,T ] defined as above is called
the stochastic integral of {Ft ,Ft : t ∈ [0,T ]} ∈L 2(K(X)) with respect to a real valued

continuous L2-martingale {Mt ,Ft ;t ∈ [0,T ]}. For each t, we denote It(F) =
∫ t

0
FsdMs.

Similarly, for 0≤ s < t,we also can define the set- valued random variable
∫ t

s
FudMu.

Remark 1. Although Γt is bounded in L2(Ω ;X), unfortunately, the set deΓt may be not
bounded in L2(Ω ;X) even in L1(Ω ;X). That implies the set-valued integral may be
unbounded in X almost surely.
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Theorem 3. Assume a sequence set-valued processes {Fn : n ∈ N} (Fn = {Fn(t) : t ∈
[0,T ]} ∈ L 2(Kc(X)) for n ∈ N) is decreasing, that is F1(t,ω) ⊃ F2(t,ω) ⊃ ... ⊃
F(t,ω), where F(t,ω) =

⋂∞
n=1 Fn(t,ω), a.e. (t,ω) ∈ [0,T ]×Ω , then∫ t

0
F1(s,ω)dMs(ω)⊃

∫ t

0
F2(s,ω)dMs(ω)⊃ ...⊃

∫ t

0
F(s,ω)dMs(ω) a.s.

but in general, the following may not be true∫ t

0
F(s,ω)dMs(ω) =

∞⋂
n=1

∫ t

0
Fn(s,ω)dMs a.s.. (3)

Proof. The first result is obviously by the Lemma 2. For the equality (3), Theorem
3.16 in [5] proved it is true when X is a Hilbert space and the integrator is a Brownian
motion. But now we will give a converse example to show it may not be true.

Let the space X = R, the integrator be a real valued Ft Brownian motion {Bt ,Ft :
t ∈ [0,T ]} with zero initial value, obvious {Bt ,Ft : t ∈ [0,T ]} is a continuous L2-
martingale.

Now consider the sequence of set-valued processes:{
Fn(t,ω) = [−1

n
,

1
n
]
}

f or all (t,ω) ∈ [0,T ]×Ω ,

clearly
F1(t,ω)⊃ F2(t,ω)⊃ ...⊃ F(t,ω),

where F(t,ω) =
⋂∞

n=1 Fn(t,ω) = {0}. According to Theorem 1 in [11], it is easy to

obtain that
∫ t

0
Fn(s,ω)dBs(ω) = R a.s. for every n, then

∞⋂
n=1

∫ t

0
Fn(s,ω)dBs(ω) = R a.s.

but ∫ t

0
F(s,ω)dBs(ω) = {0},

that implies the equality (3) does not hold, further it is not available to define fuzzy set-
valued stochastic integrals by considering the set-valued integral of every α-cut, which
appears in [5]. ��
Theorem 4. Let {Ft ,Ft : t ∈ [0,T ]} ∈ L 2(Kc(X)), then the stochastic integral
{It(F),Ft : t ∈ [0,T ]} is a set-valued submartingale.

Proof. The proof is similar to that of Theorem 4.2 in [12], here we omit it since the
limitation of pages. ��
Lemma 6. [12] Let (E,B,μ) be a σ -finite measure space, if B is separable with re-
spect to μ (i.e. there exists a countably generated sub-sigma algebra B0 ⊂B such that
for every A ∈B, there is B∈B0 satisfying μ(A � B) = 0), then space Lp(E;X)(p≥ 1)
is separable in norm.
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Lemma 7. If F is separable with respect to P, for {Ft ,Ft : t ∈ [0,T ]} ∈
L 2(K(X)), there exists a sequence { f n : n ∈ N} ⊂ S2(F(·)), such that for every
t ∈ [0,T ],

S2
It(F) = de

{∫ t

0
f n
s dMs : n ∈N

}
, (4)

where the closure is taken in L1, decomposability is with respect to Ft .

Proof. By the Lemma 6, we can get the desired result. Here we omit the proof since the
limitation of pages. ��
Theorem 5. (Castaing representation of set-valued stochastic integral)
Assume F is separable with respect to P. Then for a set-valued stochastic process
{Ft ,Ft : t ∈ [0,T ]} ∈L 2(K(X)), there exists a sequence {( f i

t )t∈[0,T ] : i = 1,2, ...} ⊂
S2(F(·)) such that for each t ∈ [0,T ], F(t,ω) = cl{( f i

t (ω)) : i = 1,2, ...} a.s., and

It(F)(ω) = cl

{∫ t

0
f i
s(ω)dMs(ω) : i = 1,2, ...

}
a.s. (5)

Proof. By using the Lemma 7, similar to the proof of Theorem 4.3 in [12], we can get
the desired result. ��
Theorem 6. Assume F is separable with respect to P, a set-valued stochastic process
{Ft ,Ft : t ∈ [0,T ]} ∈L 2(K(X)), and {Mt ,Ft : t ∈ [0,T ]} is a real valued continuous
L2-martingale, where 0≤ t1 < t ≤ T. Then the following holds

It(F)(ω) = cl

{
It1(F)(ω)+

∫ t

t1
Fs(ω)dMs(ω)

}
, a.s. (6)

where the closure is taken in X.

Proof. From Theorem 5, it is not difficult to get it. ��
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2. Brzeźniak, Z., Carroll, A.: Approximations of the Wong-Zakai differential equations in

M-type 2 Banach spaces with applications to loop spaces. In: Séminaire de Probabilités
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On Stochastic Differential Equations with Fuzzy
Set Coefficients

Yukio Ogura�
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Abstract. We define stochastic differential equations with fuzzy set coefficients and prove that
their solutions are random fuzzy set processes. This is achieved by obtaining almost sure bound-
edness of solutions to stochastic differential equations with set coefficients. An example for
Black-Scholes market model with expected return ratio being a fuzzy set is also given.

Keywords: Stochastic differential equation, Set coefficients, Fuzzy set coefficients, Random sets,
Random fuzzy sets.

1 Introduction

Theory of stochastic differential equations (SDE for brief) which were introduced by
K. Itô [4] founded the base of stochastic analysis and has been playing a most important
role in it and its applications.

In this article, we define SDE’s with fuzzy set coefficients of drift terms and prove
that their solutions are random fuzzy set processes. For this purpose, we shall first
study SDE’s with set coefficients. Historically, those SDE’s are sometimes regarded
as stochastic inclusions and systematically developed (see e.g. [1], [5], [7], [8]). How-
ever, in most of the works, the solutions to those are given as L2-valued (or Lp-valued)
processes and this makes it hard to extend those to SDE’s with fuzzy set coefficients,
because monotone property of the solutions in L2 space does not imply almost surely
monotone property in the underlying space. In a previous work [11], we studied SDE’s
with set coefficients from the point of view of almost sure property, and showed that
we can not expect almost surely bounded solutions if the coefficients of stochastic dif-
ferential terms are set functions in typical cases, but can obtain almost surely bounded
solutions if the coefficients of stochastic differential terms are usual functions. This
study enables us to extend the results to those for SDE’s with fuzzy set coefficients in
the case where the coefficients of stochastic differential terms are usual functions.

The organization of this article is as follows. In the next Section 2, we review and
refine the results for SDE’s with set coefficients given in [11]. In Section 3, we make
use of the results in Section 2 for the study SDE’s with fuzzy set coefficients and prove
that, if the coefficients of stochastic differential terms are usual functions, the solutions
of SDE’s with fuzzy set coefficients are random fuzzy set processes in most cases. As

� Partially supported by Grant-in-Aid for Scientific Research 19540140.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 263–270, 2008.
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an example, the Black-Scholes market model in mathematical finance is extended, so
that the investors could presume the expected return ratio as a fuzzy set.

2 Stochastic Differential Equations with Set Coefficients

Before the study SDE’s with fuzzy set coefficients, we will provide in this section some
properties of SDE’s with set coefficients.

Let WT be the space of all continuous functions w : [0, T ]→R with the uniform norm
‖w‖[0,T ] = maxt∈[0,T ] |w(t)|. The Wiener measure on {w ∈WT : w(0) = 0} is denoted by
P. Thus (w(t), P) is a Brownian motion with respect to the increasing complete right
continuous filtration derived from the natural filtration. We denote Bt(w) = w(t) for
t ∈ [0, T ] and w ∈WT as usual.

Denote by AT the set of all continuous functions α(t, x) : [0, T ]×R → R which
satisfy

|α(t, x)−α(t, y)| ≤ L|x− y|, x, y ∈ R, t ∈ [0, T ],
|α(t, x)| ≤ L(1 + |x|), x ∈ R, t ∈ [0, T ],

for a positive constant L which may depend on α . It then follows that, for each a, b∈AT

and x0 ∈ R, the SDE

dx(t) = a(t, x(t))dBt + b(t, x(t))dt, x(0) = x0 (1)

has a unique strong solution x(·) = x(·, x0; a, b), which is determined almost surely with
respect to P (see e.g. [3]). However, in order to deal with SDE’s with set coefficients,
we must take the exceptional null set commonly for a class of SDE’s.

For this purpose, we use approximation method. For each δ > 0, let Δkw = w((k +
1)δ ∧T )−w(kδ ∧T ), k ∈ N, and

Bδ
t = Bδ

t (w) = ((t − [t/δ ]δ )/δ )Δ[t/δ ]w+ w([t/δ ]δ ),

t ∈ [0, T ], w ∈WT ,

where a∧b stands for min{a, b} and [ ] the Gauss symbol (that is, [t/δ ] is the smallest
integer which is equal to or greater than t/δ ). The approximating equation for (1) is
given by

ẋδ (t) = a(t, xδ (t))Ḃδ
t + b(t, xδ (t)), xδ (0) = x0, (2)

where ẋδ (t) and Ḃδ
t stand for the right derivatives of xδ (t) and Ḃδ

t at t respectively.
Then equation (2) has a unique solution xδ (t, x0; a, b), t ∈ [0, T ]. Let CT be a subset of
AT ×AT such that there exist δn > 0, n ∈ N with limn→∞ δn = 0 and a Borel set W̃T in
WT which satisfy the following conditions.

(i) P(W̃T ) = 1,
(ii) For each (a, b)∈CT , x0 ∈R and w ∈ W̃T , there exists an x(·, x0; a, b)(w)∈WT such

that

lim
n→∞

‖xδn(·, x0; a, b)(w)− x(·, x0; a, b)(w)‖[0,T ] = 0, w ∈ W̃T . (3)
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We define x(t, x0; a, b)(w) = 0 for t ∈ [0, T ] and w /∈ W̃T for completeness. Note that
each element (a, b)∈AT ×AT satisfies (3) a.s. for some x(·, x0; a, b)(w) (see e.g. [13]),
so that any countable subset CT of AT ×AT satisfies the conditions above.

Let Kk = Kk(R) be the family of all non-empty compact subsets of R. Define the
Hausdorff metric dH by

dH(A, B) = max
{

max
a∈A

dR(a, B),max
a∈B

dR(a, A)
}
,

for A,B ∈ Kk, where dR(a, A) = minb∈A |a− b| for a ∈ R and A ∈ Kk. Then Kk is a
complete separable metric space with respect to the Hausdorff metric dH (see e.g. [9,
Theorem 1.1.3]).

Now, for two mappings A(t, x), B(t, x) : [0, T ]×R → Kk, we define the solution of
SDE’s with set coefficients

dX(t) = A(t, X(t))dBt + B(t, X(t))dt, X(0) = X0, (4)

where A(t, X(t)) and B(t, X(t)) are understood as

A(t, X(t)) =
⋃

x∈X(t)

A(t, x), B(t, X(t)) =
⋃

x∈X(t)

B(t, x).

Definition 1. Let CT ⊂ AT ×AT satisfy conditions (i) and (ii). Then a solution X(t) =
X(t;CT ) of the SDE with set coefficients (4) is defined by

X(t) = cl{x(t, x0; a, b) : (a, b) ∈ CT , (a(s, x), b(s, x)) ∈ A(s, x)×B(s, x),
for all (s, x) ∈ [0, T ]×R, x0 ∈ X0}.

Note 1. In the proceeding works, they assume some measurability on A(t, x) and B(t, x).
However, in our definition above, we need not to mention on it, because we only choose
’selections’ a(s, x) and b(s, x). Of course, this is only for the definition, and measura-
bility or even continuity are satisfied in most examples.

In the following, we restrict ourselves to the case when A(t,x) and B(t, x) are interval
functions to make the situation clear. Take ai, bi ∈ AT , xi

0 ∈ R (i = 1, 2) which satisfy

a1(t, x) ≤ a2(t, x), b1(t, x) ≤ b2(t, x), x1
0 ≤ x2

0,

and denote

Aa1,a2(t, x) = [a1(t, x), a2(t, x)], Bb1,b2 = [b1(t, x), b2(t, x)],

for (t, x) ∈ [0, T ]×R. Then equation (4) is reduced to

dX(t) = Aa1,a2(t, X(t))dBt + Bb1,b2(t, X(t))dt, X(0) = X0. (5)

We then have the following Theorem.

Theorem 1. (1) Suppose that there exists a te ∈ (0, T ] such that a1(t, x) < a2(t, x) for
all (t, x) ∈ [0, te]×R. Then there is a CT satisfying conditions (i) and (ii) such that
X(te, X0) /∈ Kk, a.s.
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(2) Suppose that a1(t, x) = a2(t, x) for all (t, x) ∈ [0, T ]×R. Then, for each CT sat-
isfying conditions (i) and (ii), it holds that X(t, X0) ∈ Kk, a.s. for all t ∈ [0, T ].
Further, if b1(t, x) < b2(t, x) for all (t, x) ∈ [0, T ]×R and x1

0 < x2
0, then X(t, X0) is

non-degenerate for all t ∈ [0, T ].

Proof (Outline of proof).

(1) Suppose that the assumption in (1) is satisfied. Then, for each L > 0, there are
partitions 0 = t0 < t1 < · · · < tl = te, 0 = x0 < x1 < · · · < xl = L and an η > 0 such
that, for each k = 1, . . . , l,

ak := max{a1(t, x) : (t, x) ∈ [tk−1, tk]× [xk−1, xk]}
< min{a2(t, x) : (t,x) ∈ [tk−1, tk]× [xk−1, xk]}−η .

We fix a k = 1, . . . , l for a while, and choose a non-trivial nonnegative continuous
function ϕ on R with the support in (0, 1) and maxt∈R ϕ(t) ≤ η . For each n ∈ N,
let hn = (tk − tk−1)/n and tn

i = tk−1 + ihn, i = 0, 1, 2, . . . , n. Also, for each εn =
(εn

1 , εn
2 , . . . , εn

n ) ∈ {−1, 1}n, define gn
εn = gn

εn(t) by

gn
εn(t) =

n

∑
i=1

εn
i ϕ(h−1

n (t − tn
i−1)), t ∈ [tk−1, tk].

We then have

ak + gn
εn(t) ∈ [a1(t, x), a2(t, x)], for all (t, x) ∈ [tk−1, tk]× [xk−1, xk].

Hence we can define an an
εn ∈ AT such that an

εn(t, x) ∈ Aa1,a2(t, x) for all (t, x) ∈
[0, T ]×R and an

εn(t, x) = ak + gn
εn(t), for all (t, x) ∈ [tk−1, tk]× [xk−1, xk] and k =

1, 2, . . . , l. We then take a b ∈ AT such that b(t, x) ∈ Bb1,b2(t, x) for all (t, x) ∈
[0, T ]×R. It then follows (an

εn , b)∈AT ×AT and (an
εn(t, x), b(t, x))∈Aa1,a2(t, x)×

Bb1,b2(t, x), for all (t, x) ∈ [0, T ]×R. Now let

CT =
⋃

n∈N

{(an
εn , bn

εn) : εn ∈ {−1,1}n}.

Then through the same line as in the proof of [11, Theorem 1], we obtain the con-
clusion. In fact, for each k = 1, 2, . . . , l and n ∈ N, the sequence

Y n
i :=

∫ tn
i

tn
i−1

ϕ(h−1
n (t − tn

i−1))dBt , i = 1, 2, . . . , n

is an independent random variables. Further, due to the stationary property and scal-
ing law of Brownian motion, the law of Y n

i is same as that of∫ hn

0
ϕ(h−1

n t)dBt =
∫ 1

0
ϕ(t)dBhnt = h1/2

n

∫ 1

0
ϕ(t)dB̃t ,

where B̃t is another Brownian motion h−1/2
n Bhnt . This implies

lim
n→∞

n

∑
i=1

|Y n
i | = ∞, a.s.,

which provides the key point of the proof.
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(2) Denote a(t, x) = a1(t, x) = a2(t, x) and take a CT satisfying conditions (i) and (ii).
Then, for each (a, b) ∈ CT with b(t, x) ∈ [b1(t, x), b2(t, x)], we have

xδn(t, x1
0; a, b1)(w) ≤ xδn(t, x0; a, b)(w) ≤ xδn(t, x2

0; a, b2)(w)

for all n ∈ N and w ∈ W̃T by a comparison theorem for ordinary differential equa-
tions. Hence, from (3), we have

x(t, x1
0; a, b1)(w) ≤ x(t, x0; a, b)(w) ≤ x(t, x2

0; a, b2)(w),

which proves the boundedness of the solution X(t). Since X(t) is closed, it follows
X(t) ∈ Kk.
The latter assertion is shown by a strong comparison theorem for SDE’s (see [14]).

�	

3 Stochastic Differential Equations with Fuzzy Set Coefficients

Due to Theorem 1, in case (1), we can not expect to extend the results to SDE’s with
fuzzy set coefficients. However, in case (2), it is possible and would be interesting to
extend those to SDE’s with fuzzy set coefficients, which is the subject of this section.

Let I = [0,1]. A function u : Du → I is a fuzzy set if Du is a closed subset of R and,
for every α ∈ I, its α-level set [u]α = {x ∈ Du : u(x) ≥ α} is closed. Let Fk = Fk(R)
be the space of fuzzy sets such that Du is compact and its 1-level set [u]1 is non-empty.
An element u in Fk is considered as an element of the space D(I;Kk) = D(I;Kk(R))
of functions u : I → Kk which is left continuous in (0, 1] and has right limit in [0,1).
We denote by u(α) the α-level set [u]α of u for α ∈ I. Then Fk is identified with the
subspace Dd(I;Kk) of D(I;Kk) which consists of all decreasing u ∈ D(I;Kk), that is
u(α) ⊃ u(β ) whenever 0 ≤ α < β ≤ 1.

Take a ∈ AT , G(t, x) : [0, T ]×R → Fk and Y0 ∈ Fk. We then consider the SDE’s
with fuzzy set coefficients

dY (t) = a(t, Y (t))dBt + G(t, Y (t))dt, Y (0) = Y0. (6)

Definition 2. Let CT ⊂ AT ×AT satisfy conditions (i) and (ii). Then a solution Y (t) =
Y (t;CT ) of the SDE with set coefficients (6) is defined by the fuzzy sets whose level sets
[Y (t)]α satisfy

[Y (t)]α =

{
limγ→α ,γ<α Ỹ (t)γ , α ∈ (0, 1],
Ỹ (t)0, α = 0,

(7)

where

Ỹ (t)γ = cl{x(t, x0; a, b) : (a, b) ∈ CT ,

b(s, x) ∈ [G(s, x)]γ , for all (s, x) ∈ [0, T ]×R, x0 ∈ [Y0]γ}.
We note that a family of left continuous decreasing closed sets uα , α ∈ I uniquely
determines a fuzzy set on Du (see e.g. [9, Theorem 5.1.4] with awareness of the small
change of definitions).
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The main problem is if the solution to equation (6) is bounded almost surely. Fur-
ther, each G(t, x) is included in fuzzy intervals. Thus, to make the statement sim-
pler, we restrict ourselves to the case where G(t, x) and Y0 are fuzzy set intervals.
Thus, we assume that the level sets [G(t, x)]α of G(t, x) are bounded closed in-
tervals [β1(t, x)α , β2(t, x)α ] where βi(t, x)α , i = 1, 2 belong to AT as functions in
(t, x) ∈ [0, T ]×R, and β1(t, x)α and β2(t, x)α are non-decreasing and non-increasing
left continuous functions in α ∈ I respectively with β1(t, x)1 ≤ β2(t, x)1. We sometimes
denote G(t, x) = Gβ1,β2

(t, x) = Gβ1,β2
to designate βi explicitly. Assume also [Y0]α are

bounded closed intevals [y1
0,α , y2

0,α ].
Then equation (6) is reduced to

dY (t) = a(t, Y (t))dBt + Gβ1,β2
(t, Y (t))dt, Y (0) = Y0. (8)

Theorem 2. For each CT satisfying conditions (i) and (ii), there exists a solution Y to
(8) such that Y (t, Y0) ∈ Fk, for all t ∈ [0, T ] a.s. Further, if β1(t, x)0 < β2(t, x)0 for
(t, x) ∈ [0, T ]×R, and y1

0,0 < y2
0,0, then Y (t, Y0) is non-degenerate for all t ∈ [0, T ].

Proof. Take a w ∈ W̃T and denote as Ỹ (t)γ(w) to designate w explicitly. By the proof of
Theorem 1 (2), we have Ỹ (t)γ(w) ∈ Kk, for all γ ∈ I. Further, since

{(a, b) ∈ CT , b(t, x) ∈ [G(t, x)]γ1 , x0 ∈ [X0]γ1}
⊃ {(a, b) ∈ CT , b(t, x) ∈ [G(t, x)]γ2 , x0 ∈ [X0]γ2},

whenever 0 ≤ γ1 < γ2 ≤ 1, we have Ỹ (t)γ1(w) ⊃ Ỹ (t)γ2(w) whenever 0 ≤ γ1 < γ2 ≤ 1.
Hence there exists a Y (t)(w) ∈ Fk such that (7) holds (see e.g. [9, Theorem 5.1.4]).
Since P(W̃T ) = 1, we have the first asserion of Theorem. The latter assertion is a direct
consequence of Theorem 1 (2). �	
Example 1 (Black-Scholes market model). The Black-Sholes market model is intro-
duced by [2] and [10], and studied from the point of view of martingale theory by
[6], and [12]. We extend it to SDE’s with fuzzy coefficients to allow investors only to
presume the expected return ratio as a fuzzy set. For our extended Black-Scholes market
model, we assume a(t, x) = α(t)x and b(t, x) = β (t)x, where α(t) and β (t) are contin-
uous functions in t ∈ I. Thus the level sets [G(t, x)β1,β2

]γ of the fuzzy interval G(t, x)
are given by

[G(t, x)β1,β2
]γ = {β (t)x : β (t) ∈ [β1(t)γ , β2(t)γ ]},

where βi(t)γ , i = 1, 2 are continuous functions in t ∈ [0, T ] such that β1(t)1 ≤ β2(t)1 and
β1(t)γ (resp. β2,γ(t)) are non-decreasing (resp. non-increasing) in γ ∈ I. From Theorem
2, we can then find a solution Y to (8) such that Y (t, Y0) ∈ Fk, for all t ∈ [0, T ] a.s.
Further, if β1(t, x)0 < β2(t, x)0, (t, x) ∈ [0, T ]×R and y1

0,0 < y2
0,0, then Y (t, Y0) is non-

degenerate for all t ∈ [0, T ].
In this case, we can also obtain the conclusions directly. Indeed, (1) is reduced to

dx(t) = α(t)x(t)dBt + β (t)x(t)dt, x(0) = x0,

whose solution is given by
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x(t) = x0 exp

[∫ t

0
α(s)dBs +

∫ t

0
(β (s)− 1

2
α(s)2)ds

]
.

We thus have

Ỹ (t)γ = cl
{

x0 exp
[∫ t

0
α(s)dBs +

∫ t

0
(β (s)− 1

2
α(s)2)ds

]
: (a, b) ∈ CT ,

β (s) ∈ [β1(s)γ , β2(s)γ ]for all s ∈ [0, T ]
}

.

This gives the bounds of Ỹ (t)γ ; Ỹ (t)γ ⊂ [ỹ1
γ (t), ỹ2

γ (t)], where

ỹ(t)i
γ = yi

0,γ exp

[∫ t

0
α(s)dBs +

∫ t

0
(βi(s)γ − 1

2
α(s)2)ds

]
, i = 1, 2.

4 Conclusion

For the solutions to SDE’s with set coefficients, we conclude the following. (i) If the
coefficients of stochastic differential term is a set, then the solutions can be unbounded
almost surely in most cases. (ii) If the coefficients of stochastic differential term is a
usual function, then the solutions are bounded almost surely.

This yields that, for SDE’s with fuzzy set coefficients, only the coefficients drift
terms could be fuzzy sets to obtain almost surely bounded fuzzy set solutions. Further,
we actually obtained almost surely bounded fuzzy set solutions in the case where the
coefficients of stochastic differential term are usual functions and the coefficients drift
terms are bounded fuzzy set intervals. The Black-Scholes market model in mathemati-
cal finance is extended, so that the investors could presume the expected return ratio as
a fuzzy set.
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Strong Solution of Set-Valued Stochastic
Differential Equation

Jungang Li and Shoumei Li�

Department of Applied Mathematics, Beijing University of Technology, Beijing, P.R. China

Abstract. In this paper, we shall firstly illustrate why we should introduce the Itô type set-
valued stochastic differential equation. Then we shall recall the Lebesgue integral of a set-valued
stochastic process with respect to the time t and discuss its some properties. We shall also obtain
the theorem of existence and uniqueness of solution of Itô type set-valued stochastic differential
equation.

1 Introduction

It is well-known that the classical Itô type stochastic differential equation (cf. [12]) is{
dxt = b(t,xt)dt + σ(t,xt)dBt

x0 = η

or the stochastic integral form

xt = η +
∫ t

0
b(s,xs)ds+

∫ t

0
σ(s,xs)dBs,

where (Bt)0≤t≤T is m-dimensional Brownian motion, b : [0,T ]×Rd → Rd , σ : [0,T ]×
Rd → Rd×m are Borel measurable functions with some conditions. It describes the
movement law of an object with random disturbing given the initial condition. It has
been widely used in the stochastic control (e.g. [29]) and financial mathematics (e.g.
[5], [7], [14]). In complex systems, however, we can not decide the exactly xt at time
t but we can know it takes values, for instance, in some interval [x1,x2], x1 < x2. This
becomes a set-valued stochastic differential equation as follows:

dXt = b(t,Xt)dt + σ(t,Xt)dBt , (1)

where b(t,Xt) and σ(t,Xt) take the closed subsets of Rd and Rd×m respectively.
Equation (1) can be written as the following set-valued stochastic integral form

Xt = X0 +
∫ t

0
b(t,Xt)dt +

∫ t

0
σ(t,Xt)dBt .
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Committee, PHR(IHLB) and 111 Talent Project Fund of BJUT, P.R. China.
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To solve the above set-valued differential equation, we have to consider two kinds of
integrals of a set-valued stochastic process: one is the integral of a set-valued stochastic
process with respect to time t, and the other is the Itô integral of a set-valued stochas-
tic process with respect to a Brownian motion Bt . In [15], Kim used the definition of
stochastic integral of set-valued stochastic process with respect to the Brownian motion
introduced by Kisielewicz in [16] and discussed its properties. We called it Aumann
type integral since the idea came from Aumann integral for a set-valued random vari-
able [2]. In [13], Jung and Kim gave a new definition with basic space being R by
taking fixed time t. It may be more suitable to treat a set-valued stochastic process as a
whole. In [23], Li and Ren introduced a new way to define the Itô integral of set-valued
stochastic processes and discussed their properties. Concerning the integral with respect
to the time t, Kisielewicz also introduced Aumann type integral in [17]. There are many
good related former works such as [6], [8], [17]–[20], [22], [27], [28], [30] and so on.

We also can extend above set-valued case to fuzzy set-valued stochastic differential
equation without difficulty by using level set method. There is another way to discuss
fuzzy set-valued stochastic differential equation. In [10], Hu et al. used Hukuhara dif-
ference to define the differentiability and to discuss the Itô type fuzzy stochastic dif-
ferential equations in the special case σ(t,Xt) ∈ Rd×m. But since it is well-known that
the space of all closed subsets of some metric space is not linear with resect to the ad-
dition and scalar multiplication, it leds to a big problem: under what conditions does
the Hukuhara difference exist? It is a difficult problem so that they simply assumed that
the Hukuhara difference of a stochastic process at any two times always exists. In this
paper, we use selection method to consider the same type problem as in [10] without
using the Hukuhara difference. We shall consider the Itô type set-valued stochastic in-
tegral equation, discuss the existence and uniqueness of its solution. We would like to
mention that.

We organize our paper as follows: in Section 2, we shall introduce some necessary
notations, definitions and results about set-valued stochastic processes and set-valued
stochastic Lebesgue integral. In Section 3, we shall give Itô type set-valued stochastic
differential equation, and then prove the theorem of existence and uniqueness of the
solution to the equation.

2 Lebesgue Integral of a Set-Valued Stochastic Process and Its
Properties

Throughout this paper, assume that (Ω ,A ,μ) is a complete atomless probability space,
the σ -field filtration {At : t ∈ I} satisfies the usual conditions (i.e. containing all null
sets, non-decreasing and right continuous), I = [0,T ] with T > 0, R is the set of all real
numbers, N is the set of all natural numbers, Rd is the d-dimensional Euclidean space
with usual norm ‖ · ‖, B(E) is the Borel field of the space E . Let f = { f (t),At : t ∈ I}
be a Rd-valued adapted stochastic process.

It is said that f is progressively measurable if for any t ∈ I, the mapping (s,ω) �→
f (s,ω) from [0,t]×Ω to Rd is B([0,t])×At -measurable. Each right continuous (left
continuous) adapted process is progressively measurable.
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Assume that L p(Rd) denotes the set of Rd-valued stochastic processes f =
{ f (t),At : t ∈ I} such that f satisfying (a) f is progressive, and (b)

||| f |||p =
[
E

(∫ T

0
‖ f (t,ω)‖pds

)]1/p
< ∞.

Let f , f ′ ∈ L p(Rd), f = f ′ if and only if ||| f − f ′|||p = 0. Then (L p(Rd), ||| · |||p) is
complete.

Now we review notation and concepts of set-valued stochastic processes. Assume
that K(Rd) is the family of all nonempty, closed subsets of Rd , and Kc(Rd) (resp.
Kk(Rd), Kkc(Rd)) is the family of all nonempty closed convex (resp. compact, com-
pact convex) subsets of Rd . The Hausdorff metric between two closed sets A,B may
take infinite when they are unbounded. But it is known (cf. [25, Theorem 1.1.2]) that
Kk(Rd) is a complete space with respect to dH , and Kkc(Rd) is its closed subset. For
B ∈ K(Rd), define ‖B‖K = dH({0},B) = supa∈B ‖a‖. For more topological results and
analysis results on closed subset spaces, readers may refer to Beer’s book [3], Aubin
and Frankowsk’s book [1] respectively.

For a set-valued random variable F (cf. [4], [9], [25]), define the set

Sp
F = { f ∈ Lp[Ω ,Rd ] : f (ω) ∈ F(ω) a.e.(μ)},

where Lp[Ω ;Rd ] is the set of all Rd-valued random variables f such that ‖ f‖p =
[E(‖ f‖p)]1/p < ∞, and constant p ≥ 1. The Aumann integral of F is defined as
E[F] = {E[ f ] : f ∈ S1

F}. It was introduced by Aumann in 1965 (cf. [2]). A set-valued
random variable F : Ω → K(Rd) is called integrable if S1

F is non-empty. F is called
integrable bounded if

∫
Ω ‖F(ω)‖Kdμ < ∞. Let Lp[Ω ;K(Rd)] (resp. Lp[Ω ;Kc(Rd)],

Lp[Ω ;Kkc(Rd)]) denote the family of K(Rd)-valued (resp. Kc(Rd), Kkc(Rd)-valued)
Lp-bounded random variables F such that ‖F(ω)‖K ∈ Lp[Ω ;R]. Concerning more no-
tation, definitions and results of set-valued random variables, readers could refer to the
excellent paper [9] or the book [25].

F = {F(t) : t ∈ I} is called a set-valued process if F : I ×Ω → K(Rd) is a set-
valued function such that for any fixed t ∈ I, F(t, ·) is a set-valued random variable.
A set-valued process F = {F(t) : t ∈ I} is called adapted with respect to the filtration
{At : t ∈ I}, if F(t) is measurable with respect to At for each t ∈ I, and denoted by
{F(t),At : t ∈ I}.

Definition 1. A set-valued stochastic process F = {F(t),At : t ∈ I} is called to be pro-
gressively measurable, if for any t ∈ I, the mapping (s,ω) �→ F(s,ω) from [0,t]×Ω
to K(Rd) is B([0,t])×At -measurable, i.e. for any A ∈ B(Rd), {(s,ω) ∈ [0,t]×Ω :
F(s,ω)∩A 
= /0} ∈ B([0,t])×At .

If F is progressively measurable then F is adapted.

Definition 2. A progressively measurable set-valued stochastic process F = {F(t), At :
t ∈ I} is called L p-bounded, if the real stochastic process {‖F(t)‖K,At : t ∈ I} ∈
L p(R).

Let L p(K(Rd)) denote the set of all L p-bounded progressively measur-
able K(Rd)-valued stochastic process. Similarly, we have notations L p(Kc(Rd)),
L p(Kk(Rd)) and L p(Kkc(Rd)).
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Definition 3. A Rd-valued process { f (t),At : t ∈ I} ∈ L p(Rd) is called an L p-
selection of F = {F(t),At : t ∈ I} if f (t,ω) ∈ F(t,ω) a.e.(t,ω) ∈ I×Ω .

Let Sp({F(·)}) or Sp(F) denote the family of all L p(Rd)-selections of F =
{F(t),At : t ∈ I} , i.e.

Sp(F) =
{
{ f (t)} ∈ L p(Rd) : f (t,ω) ∈ F(t,ω),a.e. (t,ω) ∈ I ×Ω

}
.

Concerning more properties of stochastic processes F and Sp(F), readers may refer
to [30].

Now we consider the integral of set-valued stochastic process with respect to the time
t. Kisielewicz gave the following definition in [17].

Definition 4. Suppose F = {F(t) : t ∈ I} ∈ L p(Kk(Rd)) (1 ≤ p < +∞) is a set-valued
stochastic process. For any ω ∈ Ω , t ≥ 0, define∫ t

0
F(s,ω)ds :=

{∫ t

0
f (s,ω)ds : f ∈ Sp(F)

}
,

where
∫ t

0 f (s,ω)ds is the Lebesgue integral,
∫ t

0 F(s,ω)ds is called the Aumann type
Lebesgue integral of set-valued stochastic process F with respect to time t. For any
0 ≤ u < t < T, ∫ t

u
F(s,ω)ds :=

∫ t

0
I[u,t](s)F(s,ω)ds. (2)

Remark 1

(1) We would like to thank professor Yukio Ogura who mentioned us that there is a
delicate problem in above definition to deal with the almost everywhere problem in
general case. As a matter of fact, take an f ∈ L p(Rd), then, by Fubini Theorem,
for all ω ∈ Ω , the mapping f (·, ω) is B([0, t])-measurable and for almost every
ω ∈ Ω (NOT every!), we have that

It( f )(ω) =
∫ t

0
f (s, ω)ds < ∞.

Since the set Sp(F) is uncountable in general so that (2) can not be well-defined for
almost every ω ∈ Ω ! How to deal with this problem in general, readers may refer
to our recent paper [24].

If A is μ-separable, then Lp[I×Ω ,B([0,1])×A ,λ ×μ ;Rd ] is separable. Since
Sp(F) is a closed subset of Lp[I×Ω ,B([0,1])×A ,λ ×μ ;Rd], Sp(F) is separable
so that (2) can be well-defined for almost every ω ∈ Ω . For simplification, we
ignore this null set and assume that (2) is well-defined for each ω ∈ Ω in the rest
of paper.

(2) Here we choose that the set of selections is Sp(F). As a matter of fact, if we only
consider the Lebesgue integral, we can use S1(F). But we often consider the sum
of integral of a set-valued stochastic process with respect to time t and integral of
a set-valued stochastic process with respect to Brownian motion, where we have to
use S2(F). Thus we here use Sp(F) for more general case.



Strong Solution of Set-Valued Stochastic Differential Equation 275

Theorem 1. Let set-valued stochastic process F ∈ L p(Kk(Rd)). Then for any t ∈ I, a
set-valued mapping Lt defined by

Lt (ω) =
∫ t

0
F(s,ω)ds (ω ∈ Ω)

is a compact convex set-valued random variable and

Lt(ω) =
∫ t

0
coF(s,ω)ds

Theorem 2. Let F = {Ft : t ∈ I} ∈ L p(Kk(Rd)), then there exists a sequence of Rd-
valued stochastic processes { f i = { f i(t) : t ∈ I} : i ≥ 1} ⊂ Sp(F) such that

F(t,ω) = cl{ f i(t,ω) : i ≥ 1}, a.e. (t,ω) ∈ I×Ω ,

and

Lt(ω) = cl
{∫ t

0
f i(s,ω)ds : i ≥ 1

}
a.e. (t,ω) ∈ I×Ω .

Theorem 3. If a set-valued stochastic process {Ft ,At : t ∈ I} ∈ L 2(Kk(Rd)), then for
0 ≤ t1 < t ≤ T , we have

Lt(ω) = cl{Lt1(ω)+
∫ t

t1
F(s,ω)ds},a.s.

where the closure is taken in Rd.

3 The Itô Type Set-Valued Stochastic Differential Equation

The Itô type set-valued stochastic differential equation

dF(t) = f (t,F(t))dt + g(t,F(t))dBt (3)

where F(t) is a set-valued stochastic process and F ∈ L 2(K(Rd)), f : I ×Kk(Rd) →
Kk(Rd) is measurable, g : I ×Kk(Rd) → Rd×m is measurable. If f is integrable and g
is square integrable, then equation (3) is equivalent to the integrable form:

F(t) = F(0)+
∫ t

0
f (s,F(s))ds+

∫ t

0
g(s,F(s))dBs. (4)

Theorem 4. (existence and uniqueness) Assume that f (t,F),g(t,F)(t ∈ I,F ∈
Kk(Rd)) satisfy the following conditions:

(i) Linear condition: there exists a positive constant K1 such that for any t ∈ I,F ∈
Kk(Rd),

‖ f (t,F)‖2
K + |g(t,F)|2 ≤ K2

1 (1 +‖F‖2
K);
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(ii) Lipschitz continuous condition: there exists a positive constant K2 such that for any
t ∈ I,F1,F2 ∈ K(Rd)

dH( f (t,F1), f (t,F2))+ |g(t,F1)−g(t,F2)| ≤ K2dH(F1,F2),

Then there is a strong solution to the equation (3), and the solution is unique.

To prove above theorem, we need the following important inequality formula.

Theorem 5. Suppose set-valued stochastic process F = {F(t) : t ∈ I}, G = {G(t) : t ∈ I}
∈ L 2(Kk(Rd)), then a.e. for any t ∈ I

Ed2
H

(∫ t

0
F(s)ds,

∫ t

0
G(s)ds

)
≤ tE

∫ t

0
d2

H(Fs,Gs)ds,

especially, we have

E
[∥∥∥∫ t

0
F(s)ds

∥∥∥2

K

]
≤ tE

[∫ t

0
‖F(s)‖2

Kds
]
.

Since page limitation, we omit all the proofs of the theorems in this paper.

4 Conclusions

In this paper, we firstly stated the definition of the Lebesgue integral of a set-valued
stochastic process with respect to time t based on the former works such as Kisielewicz
[16], Kisielewicz, Michta and Motyl [19]–[20]. And then we discussed some properties
of set-valued Lebesgue integral, especially we proved the presentation theorem of set-
valued stochastic integral. We obtained the inequality about the the Lebesgue integrals
of set-valued stochastic processes. By using this inequality with other properties of
integrals, we proved the theorem of existence and uniqueness of solution of Itô type
set-valued stochastic differential equation.
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Abstract. Given a non-empty set Ω and a partition B of Ω let L be the class of all subsets of Ω .
Upper conditional probabilities P(A|B) are defined on L × B by a class of Hausdorff outer mea-
sures when the conditioning event B has positive and finite Hausdorff measure in its dimension;
otherwise they are defined by a 0-1 valued finitely additive (but not countably additive) proba-
bility. The unconditional upper probability is obtained as a particular case when the conditioning
event is Ω . Relations among different types of convergence of sequences of random variables are
investigated with respect to this upper probability. If Ω has finite and positive Hausdorff outer
measure in its dimension the given upper probability is continuous from above on the Borel σ -
field. In this case we obtain that the pointwise convergence implies the μ-stochastic convergence.
Moreover, since the outer measure is subadditive then stochastic convergence with respect to the
given upper probability implies convergence in μ-distribution.

1 Introduction

One of the main topics in probability theory and stochastic processes theory is the con-
vergence of sequences of random variables, which plays a key role in asymptotic in-
ference. Different kinds of convergence and their relations are considered in literature
([1]) when all the random variables are defined on the same probability space: conver-
gence with probability 1 or strong convergence and convergence in probability or weak
convergence. It is well known that convergence with probability 1 implies convergence
in probability but the converse in not true (see for example Billingsley [1] p. 274 and
p. 340). These convergences are used respectively for the strong law and the weak
law of large numbers. In statistics, if a sequence of statistics converges in probability
to the population value as the sample size goes to infinity according to the weak law
of large numbers, the statistic is called consistent. Convergence in probability implies
convergence in distribution, another type of convergence used in the central limit the-
orem. Moreover the convergence theorems are important because they yield sufficient
conditions for the integral to be interchanged with pointwise convergence of random
variables.

In Denneberg [3] these different types of convergence of sequences of random vari-
ables are considered with respect to a monotone set function instead of a probability
measure. To obtain the same relations among different types of convergence some other
properties are required for the monotone set function. In particular it has been proven
that pointwise convergence (that is a particular case of convergence with probability 1)
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of a sequence of random variables to a random variable X implies the μ-stochastic
convergence (convergence in probability if μ is a probability measure) if either μ is
continuous from above or the convergence is uniform. If μ is a subadditive monotone
set function then μ-stochastic convergence implies convergence in μ-distribution. In [2]
μ-stochastic convergence plus the uniform integrability have been proven to imply the
convergence in mean for monotone, subadditive, normalized continuous from above set
fnctions; moreover the convergence in mean of a sequence of Borel measurable random
variables has been proven to imply the μ-stochastic convergence. In this paper rela-
tions among different types of convergences with respect to upper probability defined
by Hausdorff outer measures are investigated. The necessity to introduce Hausdorff
(outer) measures as new tool to assess (upper) conditional probability is due to some
problems related to the axiomatic definition of regular conditional probability ([6]). In
fact every time that the σ -field of the conditioning events is not countably generated,
conditional probability, defined by the Radon-Nikodym derivative is not separately co-
herent as required in Walley’s approach ([7]).

2 Convergences of Random Variables with Respect to a Monotone
Set Function

In [3] different kinds of convergence of a sequence of random variables with respect to
a monotone set function are introduced and their relations have been proven.

Given a non-empty set Ω and denoted by S a set system, containing the empty set
and properly contained in P(Ω ), the family of all subsets of Ω , a monotone set function
μ : S → R+ is such that μ(�) = 0 and if A,B ∈ S with A ⊂ B then μ(A) ≤ μ(B).
A monotone set function on S is continuous from below if for each non decreasing
sequence of sets An of S such that A =

⋃∞
n=1 An belongs to S we have limn→∞ μ(An) =

μ(A). A monotone set function on S is continuous from above if for each non increasing
sequence of sets An of S such that A =

⋂∞
n=1 An belongs to S which is closed under set

difference then the following properties are equivalent

i) μ is continuous from below;
ii) μ is continuous from above;
iii) μ is continuous from above at the empty set.

If S is a σ -field then μ is σ -additive if and only if it is additive and continuous from
below.

Given a monotone set function μ on S the outer set function of μ is the set function
defined on the whole power set P(Ω ) by

μ∗(A) = inf{μ(B) |A ⊂ B ∈ S} , A ∈ P(Ω).

The inner set function of μ is the set function defined on the whole power set P(Ω ) by

μ∗(A) = sup{μ(B) |B ⊂ A; B ∈ S} , A ∈ P(Ω).

Examples of outer set functions or outer measures are the Hausdorff outer measures.
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Let (Ω ,d) be the Euclidean metric space with Ω= [0,1]. The diameter of a non-empty
set U of Ω is defined as |U |= sup{|x− y| : x,y ∈U} and if a subset A of Ω is such that
A ⊂ ⋃

i Ui and 0 < |Ui| < δ for each i, the class {Ui} is called a δ -cover of A. Let s be a
non-negative number. For δ > 0 we define hs,δ (A) = inf∑∞

i=1 |Ui|s, where the infimum
is over all δ -covers {Ui}.

The Hausdorff s-dimensional outer measure of A, denoted by hs(A), is defined as
hs(A) = limδ→0 hs,δ (A). This limit exists, but may be infinite, since hs,δ (A) increases
as δ decreases. The Hausdorff dimension of a set A, dimH(A), is defined as the unique
value, such that

hs(A) = ∞ if 0 ≤ s < dimH(A), hs(A) = 0 if dimH(A) < s < ∞.

We can observe that if 0 < hs(A) < ∞ then dimH(A) = s, but the converse is not true.
We assume that the Hausdorff dimension of the empty set is equal to -1 so no event has
Hausdorff dimension equal to the empty set. If an event A is such that dimH(A) = s <1
than the Hausdorff dimension of the complementary set is equal to 1 since the following
relation holds: dimH(A∪B) = max{dimH(A), dimH(B)}.

A subset A of Ω is called measurable with respect to the outer measure hs if it
decomposes every subset of Ω additively, that is if hs(E) = hs(AE)+ hs(E −A) for all
sets E ⊆ Ω .

An important property of Hausdorff outer measures is that they are regular ([5, The-
orem 1.6]), that is for every set A there is an hs-measurable set E containing A with
hs(E) = hs(A) and so they are continuous from below ([5, Lemma 1.3]). The restric-
tion of hs to the σ -field of hs-measurable sets, containing the σ -field of the Borel sets
([5, Theorem 1.5]), is called Hausdorff s-dimensional measure. In particular the Haus-
dorff 0-dimensional measure is the counting measure and the Hausdorff 1-dimensional
measure is the Lebesgue measure.

We recall the definitions of different types of convergence with respect to a monotone
set function and their implications given in [3]. Let μ be a monotone set function defined
on S properly contained in P(Ω ) and X : Ω →R = R∪{−∞,∞} an arbitrary function on
Ω then the set function Gμ,X(x) = μ {ω ∈ Ω : X(ω) > x} is decreasing and it is called
decreasing distribution function of X with respect to μ . If μ is continuous from below
then Gμ,X (x) is right continuous. In particular the decreasing distribution function of
X with respect to the Hausdorff outer measures is right continuous since these outer
measures are continuous from below.

A function X : Ω → R is called upper μ-measurable if Gμ∗,X(x) = Gμ∗,X(x).
Given a monotone set function μ defined on a field S and a sequence Xn : Ω → R of

upper μ-measurable functions we say that Xn converges in μ-distribution to an upper μ
measurable function X : Ω → R if limn→∞ Gμ,Xn = Gμ,X except at on at most countable
set. Since a monotone set function is continuous except on an at most countable set the
previous condition is equivalent to limn→∞ Gμ,Xn(x) = Gμ,X (x) for all continuity points
x of Gμ,X . A sequence of random variables Xn converges μ-stochastically (or converges
in probability if μ is a probability) to a random variable X if |Xn −X | converges in μ∗-
distribution to the null function Gμ,0(x), where Gμ,0(x) =μ(Ω) if x ≤ 0 and Gμ,0(x) = 0
if x > 0. If μ is monotone and subadditive and Xn converges μ-stochastically to X
then Xn converges in μ-distribution to X (Proposition 8.5 of [3]). If μ is monotone
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and continuous from above and Xn converges pointwise to X then Xn converges μ-
stochastically to X (Proposition 8.8 of [3]).

Given an upper μ-measurable function X : Ω →R with decreasing distribution func-
tion Gμ,X (x), the Choquet integral of X with respect to μ is defined if μ(Ω) < ∞ through∫

Xdμ =
∫ 0

−∞
(Gμ,X(x)− μ(Ω))dx +

∫ ∞

0
Gμ,X (x)dx

The integral is in R or can assume the values −∞, ∞ and ‘non-existing’. If X ≥ 0 or
X ≤ 0 the integral always exists.

Let μ be a monotone set function and let Xn be a sequence of random variables such
that Y ≤ Xn ≤ Z for every n ∈ N and Y and Z have finite Choquet integral with respect
to μ ; if Xn converges in μ-distribution to X then limn→∞

∫
Xndμ =

∫
Xdμ (General

Dominated Convergence Theorem, Proposition 8.9 of [3]).

3 Upper Conditional Previsions Defined with Respect to
Hausdorff Outer Measures

Given a non-empty set Ω , a gamble X is a bounded function from Ω to R (the set
of real numbers) and let L be the set of all gambles on Ω . When K is a linear space
of gambles a coherent upper prevision is a real function P defined on K, such that the
following conditions hold for every X and Y in K:

1) P(X) ≤ sup(X);
2) P(λ X) = λ P for each positive constant λ ;
3) P(X +Y ) ≤ P(X)+ P(Y ).

Suppose that P is an upper prevision defined on a linear space K, its conjugate lower
prevision P is defined on the same domain K by P(−X) = −P(X).

When K is an arbitrary class of events, that can be regarded as a class of 0-1 valued
gambles then P(X) is called an upper coherent probability and P(X) is a lower coherent
probability. If for every X belonging to K we have P(X) = P(X) = P(X), then P is
called a linear prevision.

We recall the notion of coherent conditional upper prevision.
Let B denote a partition of Ω , which is a non-empty, pair wise-disjoint subsets whose

union is Ω . For B in B let H(B) be the set of all random variables defined on B. An up-
per conditional prevision P(X |B) is a real function defined on H(B). Upper conditional
previsions P(X |B), defined for B in B and X in H(B) are required ([7]) to be separately
coherent, that is for every conditioning event B P(·|B) is a coherent upper prevision on
the domain H(B) and P(B|B) = 1. Moreover the upper conditional previsions P(X |B)
for B in B are required to be coherent with the unconditional previsions P. Upper and
lower conditional probabilities are particular kinds of upper and lower conditional pre-
visions obtained when H(B) is a class of events.

In [4] upper conditional previsions for bounded random variables are defined by the
Choquet integral with respect to the Hausdorff outer measure if the conditioning event
has positive and finite Hausdorff outer measure in its dimension; otherwise, they are
defined by a 0-1 valued finitely, but not countably, additive probability.
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Definition 1. Let Ω be a non-empty set and let B be a partition of Ω . Denote by s the
Hausdorff dimension of the conditioning event B and by hs the Hausdorff s-dimensional
outer measure. Let L be the class of all bounded random variables on Ω and let m
be a 0-1 valued finitely additive, but not countably additive, probability. Then upper
conditional previsions are defined on L × B by the functions

P(X |B) =
1

hs(B)

∫
B

Xdhs if 0 < hs(B) < ∞

and by
P(X |B) = m(XB) if hs(B) = 0,∞

Upper conditional probabilities can be obtained from the previous definition in the case
where L is the class of all subsets of Ω .

Theorem 1. Let Ω be an non-empty set with finite and positive Hausdorff measure in
its dimension, let B be a partition of Ω . Denote by s the Hausdorff dimension of the
conditioning event B and by hs the Hausdorff s-dimensional measure. Let F be the class
of all subsets of Ω . Moreover, let m be a 0-1 valued finitely additive, but not countably
additive, probability. Then the function defined on F × B by

P(A|B) =
hs(AB)
hs(B)

if 0 < hs(B) < ∞

and by
P(A|B) = m(AB) if hs(B) = 0,∞

is an upper conditional probability.

In the next theorem we prove that when Ω has finite and positive Hausdorff outer mea-
sure in its dimension and upper probability is defined as in Theorem 1, then μ-stochastic
convergence implies convergence in μ-distribution.

Theorem 2. Let Ω be an non-empty set with finite and positive Hausdorff measure in
its dimension and let μ = P(A|Ω) the upper probability defined as in Theorem 1. Let
Xn be a sequence of random variables on Ω ; if Xn converges to a random variable X
μ-stochastically then Xn converges in μ-distribution to X.

Proof. Since Ω has finite and positive Hausdorff measure in its dimension we have
μ = P(A|Ω) = hs(A)

hs(Ω) . Moreover every outer Hausdorff measure is subadditive so we
obtain that μ-stochastic convergence implies convergence in μ-distribution. ��
In probability theory convergence in distribution has been proven to be equivalent to
the pointwise convergence of the expectations functionals on all bounded continuous
functions (see for example Theorem 29.1 of [1]). We have that this equivalence remains
valid when upper probabilities are defined with respect to Hausdorff outer measures.

Definition 2. Let Ω be an non-empty set with finite and positive Hausdorff outer mea-
sure in its dimension and let μ = P(A|Ω) the upper probability defined as in Theorem 1.
Given a random variable X on Ω then the upper probability μX induced by μ on (R,F),

where F is the Borel σ -field, is defined by μX (B)= P(ω ∈Ω : ω ∈X−1(B))= hs(X−1(B))
hs(Ω)

for B belonging to F.
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If X is a continuous random variable and B is a Borelian set then the set X−1(B) is also a
Borelian set; moreover since every Hausdorff s-dimensional outer measure is countably
additive on the Borel σ -field then the probability induced by the upper probability μ on
(R,F) is a probability measure. A probability measure on (R,F) corresponds to every
decreasing distribution function Gμ,X(x). If μn and μ are the probability measures on
(R,F) corresponding to Gμ,Xn(x) and Gμ,X(x) then Xn converges in μ-distribution to X
if and only if limn→∞ μn(A) = μ(A) for every A = (x,∞).

This last condition is equivalent to the pointwise convergence of expectation func-
tionals on all bounded and continuous function f (Theorem 29.1 of [1]), that is
limn→∞

∫
f dμn =

∫
f dμ .

An important consequence of Theorem 2 is that upper probabilities defined as in
Theorem 1, satisfy the General Dominated Convergence Theorem.

We prove that when Ω is a non-empty set with positive and finite Hausdorff outer mea-
sure in its dimension, the upper prevision defined by Definition 1 satisfies the following
Monotone Convergence Theorem for monotone set functions ([3, Theorem 8.1]).

Theorem 3. Let μ be a monotone set function on a σ -algebra F properly contained
in P(Ω ), which is continuous from below. For an increasing sequence of non negative,
F-measurable random variables Xn the limit function X = limn→∞ Xn is F-measurable
and limn→∞

∫
Xndμ =

∫
Xdμ .

Theorem 4. Let Ω be a non-empty set with positive and finite Hausdorff outer measure
hs in its dimension. Let L be the class of all bounded random variables on Ω . Then
the coherent upper prevision defined by Definition 1 is continuous, that is given an
increasing sequence of non negative random variables Xn converging to the random
variable X we have that limn→∞ P(Xn|Ω) = P(X |Ω).

Proof. Each s-dimensional Hausdorff outer measure is regular and continuous from
below. Then by the Monotone Convergence Theorem it follows that the given upper
prevision is continuous. ��
When Ω is a non-empty set with positive and finite Hausdorff outer measure in its di-
mension, the upper probabilities μ defined as in Theorem 1, are monotone, subadditive
and continuous from below so they satisfy Proposition 3.7 of [2], that is a sequence of
random variables μ-uniformly integrable and μ-stochastically converging to a random
variable X , converges in μ-mean to X . Moreover from Proposition 3.8 of [2] we ob-
tain that if μ is equal to the upper probability defined by Definition 1 then a sequence
of Borel measurable random variables converging in μ-mean to X is μ-stochastically
converging. In the next theorem we prove that when Ω has finite and positive Haus-
dorff outer measure in its dimension and we consider the restriction to the Borel σ -field
of the upper probability defined as in Theorem 1, then pointwise convergence implies
μ-stochastic convergence.

Theorem 5. Let Ω be an non-empty set with finite and positive Hausdorff measure in
its dimension, let B be a partition of Ω . Denote by s the Hausdorff dimension of the
conditioning event B and by hs the Hausdorff s-dimensional measure. Let F be the σ -
field of all Borel subsets of Ω . Moreover, let m be a 0-1 valued finitely additive, but



Convergences of Random Variables 287

not countably additive, probability. Let μ be the upper probability defined on F × B as
in Theorem 1, that is μ = P(A|Ω). Let Xn be a sequence of Borel measurable random
variables on Ω converging pointwise to a random variable X. Then Xn converges to X
μ-stochastically.

Proof. Since Ω has finite and positive Hausdorff measure in its dimension we have
μ = P(A|Ω) = hs(A)

hs(Ω) . Moreover every outer Hausdorff measure is continuous from
below and countably additive on the Borel σ -field. So every (outer) Hausdorff mea-
sure is continuous from above on the Borel σ -field. Then the pointwise convergence
of a sequence of random variables Xn to X implies the μ-stochastic convergence of
Xn to X . ��
Remark 1. In general a coherent upper probability is not continuous from below and
continuous from above; for example if we consider a coherent upper probability de-
fined as natural extension of a merely finitely additive probability on a σ -field, then
it is not continuous from above and continuous from below since an additive measure
on a σ -field is continuous from above and continuous from below if and only if it is
σ -additive. As a consequence we have that the pointwise convergence does not imply
stochastic convergence with respect to this upper probability and the Monotone Conver-
gence Theorem cannot always be applied. Hausdorff outer measures satisfy Theorem 4
and Theorem 5 because they are Borel regular outer measures.

4 Conclusions

In this paper it is proven that the relations among different types of convergences of
random variables defined with respect to upper probability defined by Hausdorff outer
measures are the same that hold if convergences are defined with respect to a probabil-
ity measure. When Ω has finite Hausdorff outer measure in its dimension these results
are obtained because Hausdorff outer measures are Borel regular outer measures and
so continuous from below and continuous from above on the Borel σ -field. In general
if upper probability is defined as natural extension of a coherent merely finitely addi-
tive probability defined on a σ -field we have that μ-stochastically convergence does
not imply convergence in μ-distribution since in this case the upper probability is not
continuous from above.
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Abstract. We aim at clarifying the relationship between laws of large numbers for fuzzy sets or
possibility distributions and laws of large numbers for fuzzy or possibilistic variables. We contend
that these two frameworks are different and present the relationships between them that explain
why this fact was unrecognized so far.

1 The Problem

A classical result in Probability Theory is the law of large numbers. If ξ is a variable
defined on a probability space (Ω ,A ,P), with mean μ , and {ξn}n is a sequence of
independent, identically distributed variables, then

1
n

n

∑
i=1

ξi → μ .

If convergence is almost sure, i.e. ξn → ξ if ξn(ω) → ξ (ω) except for at most those ω
in a set of probability 0, it is called the Strong LLN. If convergence is in probability,
i.e. P(|ξn − ξ | > ε) → 0 for every ε > 0, then it is called the Weak LLN. Almost sure
convergence is stronger than convergence in probability, hence the names.

If we replace the probability measure P by a possibility measure Π , the variable is
usually called a fuzzy or possibilistic variable. One can then ask whether similar theo-
rems hold. The notion of almost sure convergence applies verbatim and convergence in
probability has an immediate analog: ξn → ξ in necessity if Π(|ξn − ξ | > ε) → 0 for
every ε > 0. The name comes from the dual expression Nec(|ξn − ξ | ≤ ε) → 1, with
Nec being the dual measure to Π (a necessity measure).

The notion of independence is, however, more involved, as discussed elsewhere [7].
Here we will replace the notion of independence by �-relatedness, without inquiring
whether �-related variables are ‘independent’ in the intuitive sense or not. For any
triangular norm �, two variables ξ and η are called �-related if

Π(ξ ∈ A,η ∈ B) = Π(ξ ∈ A)�Π(ξ ∈ B)

for any sets A,B.
It must be observed that a possibility measure Π is characterized by the function

π : ω �→ Π({ω}), since Π(A) = supω∈A π(ω). This function is called the possibility
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distribution of Π (this terminology is standard though in conflict with ‘probability dis-
tribution’=‘probability measure induced by a variable’) and can be identified with a
fuzzy set. The possibility distribution of the possibility measure induced by the bivari-
ate (ξ ,η) can be retrieved from those of ξ and η as follows:

π(ξ ,η)(x,y) = πξ (x)�πη(y).

Notice that this implies some restrictions, related to left continuity, on the t-norm �.
As a consequence of that,

πξ+η(x) = sup
x1+x2=x

π(ξ ,η)(x1,x2) = (πξ ⊕πη)(x);

namely, the possibility distribution of a sum of �-related possibilistic variables is the
t-normed sum of the possibility distributions of the summands. It is sometimes thought,
incorrectly, that the formula above is a definition.

That shows that, at least to some extent, possibility measures of sums of variables
can be studied via t-normed sums of fuzzy sets. Curiously, early papers like [1, 6, 11]
dealt explicitly with fuzzy variables, but Robert Fullér’s paper [3] seems to have caused
a shift in the perception of this problem and further papers have spoken of the ‘law
of large numbers for fuzzy sets’ and framed it within fuzzy arithmetics, omitting any
underlying variables.

Our contention is that, rather than being a mere naming issue, those two problems
are not the same. They are not perceived like that because, in the formulation of the
LLNs for fuzzy sets there remain two vestiges of the LLN for possibilistic variables:

(a) Convergence in the LLN for fuzzy sets ‘is’ still convergence in necessity.
(b) The limit is assumed to be a point.

When the limit is a point, convergence in necessity can be written without reference to
the sequence of variables but only to their possibility distributions identified with fuzzy
sets, as follows:

ξn → x in necessity ⇔ sup
y	∈[x−ε,x+ε]

πn(y) → 0 for each ε > 0.

(Here and in the sequel, πn,π always denote the possibility distributions of the variables
ξn,ξ .) This notion of convergence of a sequence of fuzzy sets to a point cannot be
extended analogously to the case of a fuzzy limit, because then convergence in necessity
cannot be recast as a convergence of possibility distributions. But, in order to ensure that
the limit is a point, one must require that fuzzy sets in the sequence have a single modal
value (i.e. with possibility 1).

Arguably, those vestiges have not been left behind because a solution to these two
problems was not found:

(a) It is not obvious how convergence in necessity to a point should be extended to the
general case.

(b) Unnatural assumptions must be made in order to ensure that the limit is a point.

As regards vestige (b) and problem (b), it must be observed that, contrary to the situation
in Probability Theory, the limit in the LLN need not be a point.

The aim of this contribution is to proceed to a clarification of these issues.
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2 Convergence in Necessity and Levelwise Convergence

Let U be the family of all fuzzy subsets of Rd having non-empty compact α-cuts
for α ∈ (0,1]. In that space we consider the topology τ generated by the mappings
Lα : U �→Uα , namely

Un →τ U ⇔ (Un)α →Uα for all α ∈ (0,1].

Convergence of the α-cuts is in the Hausdorff metric. The topology τ is called the
topology of levelwise convergence or the cylindrical topology.

Our starting point is the following result, which is a corollary to [9, Theorem 13].

Proposition 1. Let � be a continuous t-norm, and ⊕ its associated t-normed sum. For
any U ∈ U , n⊕

i=1

U →τ KcoU,

where KcoU(x) = sup{a ∈ [0,coU(x)] | a�a = a}.

For further discussion of this and related results, the reader is referred to [9, Proposition
4], [10, Example 4] and [8].

For clarity of presentation, we consider only the Archimedean case.

Corollary 1. Let � be a continuous Archimedean t-norm, and ⊕ its associated t-
normed sum. For any U ∈ U , n⊕

i=1

U →τ IcoU1 .

These results tell us that, for a sequence {ξn}n of �-related identically distributed pos-
sibility measures, the possibility distribution of n−1 ∑n

i=1 ξi converges, in some sense,
to another possibility distribution. That distribution represents a crisp convex set if the
t-norm is Archimedean, but it can be a genuinely fuzzy set in general.

We begin with an interesting example.

Example 1. Identically distributed variables whose partial sums are identically dis-
tributed but do not converge almost surely. Let Ω = [0,2] with the ignorance possibility
distribution such that Π(∅) = 0 and Π(A) = 1 for any other A ⊂ Ω . Define the func-
tions fm : Ω → R such that fm(x) = (1− x)−1 for x ∈ [0,1), fm(x) = 0 for x ∈ [1,2)
and fm(2) = m. Define ξn = f2n−1 and notice that all ξn are identically distributed, with
possibility distribution I[0,∞). Besides,

n−1
n

∑
i=1

ξi = fn−1 ∑n
i=1(2i−1) = fn,

so the variables n−1 ∑n
i=1 ξi are identically distributed as well. All fm are identical except

at point 2, but since Π({2}) = 1, the sequence cannot converge almost surely.

Observe that a sequence which does not converge almost surely, cannot converge in
necessity either. This is exactly the opposite of what happens in Probability Theory.

Proposition 2. Let {ξn}n be a sequence of possibilistic variables. If ξn → ξ in necessity,
then ξn → ξ almost surely.
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We turn now to the relationship between the levelwise convergence in Proposition 1 and
Corollary 1 and the convergence in necessity to a point in the literature.

Proposition 3. Let {ξn}n be a sequence of possibilistic variables. If πn → I{x} in τ , then
ξn → x in necessity.

In view of this result, τ-convergence provides a way to make rigorous the notion of
convergence in necessity in laws of large numbers for fuzzy sets. It also shows that
assumptions on the form of the limit are not needed.

One also has to notice that the converse holds in full generality.

Proposition 4. Let {ξn}n be a sequence of possibilistic variables. If ξn → ξ in necessity,
then πn → π in τ .

We denote by B the closed unit ball, and by B(x,ε) the closed ball of center x and
radius ε .

Proof. By hypothesis, for each ε > 0 and α ∈ (0,1], there exists n0 ∈ N such that

Π(|ξn − ξ |> ε) < α

for all n ≥ n0. Denote the event {|ξn − ξ |> ε} by A.
Let x ∈ πα (equivalently, Π(ξ = x) ≥ α). We have

α ≤ Π(ξ = x) = max{Π({ξ = x}∩A),Π({ξ = x}∩Ac)},

but
Π({ξ = x}∩A)≤ Π(A) < α,

so we deduce
π(x) = Π(ξ = x) = Π({ξ = x}∩Ac).

Now, if the event in the right-hand side occurs, ξ = x and |ξn−ξ |≤ ε imply ξn ∈B(x,ε).
Therefore,

π(x) ≤ Π(ξn ∈ B(x,ε)) = sup
y∈B(x,ε)

Π(ξn = y) = sup
y∈B(x,ε)

πn(y).

In summary,
α ≤ π(x) ≤ sup

y∈B(x,ε)
πn(y),

whence

πα ⊂ {x | ∀β ∈ (0,α), sup
y∈B(x,ε)

πn(y) > β}

=
⋂

β∈(0,α)

{x | ∃y ∈ B(x,ε) | πn(y) > β} =
⋂

β∈(0,α)

((πn)β + + εB)

=
⋂

β∈(0,α)

(πn + εIB)β + = (πn + εIB)α = (πn)α + εB.

Analogously, we prove
(πn)α ⊂ πα + εB.
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Accordingly,
dH((πn)α ,πα) ≤ ε.

Thus, for each fixed α ∈ (0,1] we have

dH((πn)α ,πα) → 0,

and the proof is complete. ��
It is essential to realize that it is not possible to provide a mode of convergence for fuzzy
sets such that ξn → ξ in necessity if and only if πn → π . The reason is that convergence
of variables and convergence of distributions or fuzzy sets are conceptually different.
Indeed, let {ξn}n be an arbitrary sequence of identically distributed variables. Their
distributions are identical (in particular, converge) but it cannot be expected that ξn

converges in necessity or almost surely.

3 Levelwise Convergence and Weak Convergence

As we have shown, one has to distinguish carefully between convergences of variables
and convergences of (merely) their distributions. In Probability Theory, we have almost
sure convergence and convergence in probability on one side, and convergence in distri-
bution on the other side. A sequence of variables is said to converge in distribution when
their distributions converge weakly. Weak converge is metrized by e.g. the Prokhorov
metric

ρ(P1,P2) = inf{ε > 0 | P1(F) ≤ P2(F + εB)+ ε for each closed set F}.
A notion of weak convergence of capacities has been developed [5, 2] which includes,
in particular, possibility measures. A sequence {νn}n of capacities converges weakly to
ν if

(i) For each closed set F ⊂ Rd , limsupn νn(F) ≤ ν(F).
(ii) For each open set G ⊂ Rd , liminfn νn(G) ≥ ν(G).

One can also consider the Prokhorov metric

ρ(ν1,ν2) = inf{ε > 0 |ν1(F) ≤ ν2(F + εB),
ν2(F) ≤ ν1(F + εB) for each closed set F}.

In the case of possibility measures, this convergence reduces to epiconvergence of their
distributions.

Our first observation is as follows.

Proposition 5. Let {ξn}n be a sequence of possibilistic variables. If ξn → ξ almost
surely, then the induced possibility measures Πξn → Πξ converge weakly.

We observe now that τ-convergence is stronger than weak convergence.

Proposition 6. Let {ξn}n be a sequence of possibilistic variables. If πn → π in τ , then
the induced possibility measures Πξn → Πξ converge weakly.
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But the converse holds if the limit is non-fuzzy.

Proposition 7. Let {ξn}n be a sequence of possibilistic variables, and let ξ have in-
duced distribution π = IA for some set A. If Πξn → Πξ weakly, then πn → π in τ .

Corollary 2. Let {ξn}n be a sequence of possibilistic variables and x ∈ Rd. Then, the
following are equivalent:

(i) ξn → x in necessity,
(ii) ξn → x almost surely,
(iii) πn → I{x} in τ ,
(iv) Πξn → δx weakly,

where δx is the Dirac distribution at x.

4 Tightness and the Law of Large Numbers for Possibility
Distributions

A common technique to prove LLNs in the literature, e.g. [4], is as follows: (1) fix an
Archimedean t-norm, (2) consider its decreasing generator f , (3) consider the compo-
sitions f ◦πn, (4) make assumptions on their shapes, (5) calculations provide the LLN.
The use of this technique implies that the set of sequences for which the LLN is proven
differs for each t-norm. We want to show that other techniques are possible which do
not depend on the chosen t-norm.

We start by recalling the notion of tight families of capacities, which generalizes tight
families of probabilities. The definition was given in [5], but in a wrong way which we
correct here. A set N of capacities is called tight if, for every ε > 0, there is a compact
set K such that

sup
ν∈N

ν(Kc) < ε.

This notion extends to families of variables in the obvious way.
We can characterize tight families of possibility measures in terms of their possibility

distributions.

Proposition 8. A family N of possibility measures on Rd is tight if and only if there
exists a fuzzy set U ∈ U dominating the possibility distribution of each element of N .

Then, we obtain the following law of large numbers.

Theorem 1. Let � be any continuous Archimedean t-norm. Let {ξn}n be a tight se-
quence of �-related possibilistic variables in R. Then,

dH((n−1
n⊕

i=1

πi)α ,n−1
n

∑
i=1

(πi)1) → 0

for each α ∈ (0,1]. In particular, if the ξn have a unique modal value mn and
n−1 ∑n

i=1 mi → m then n−1 ∑n
i=1 ξi → m in necessity.
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Proof (Scheme)

Step 1. Since any interval can be subtracted from a larger interval, we can write

πn = I(πn)1
+ π̃n,

where π̃n are fuzzy sets with unique modal value 0.
Step 2. By [8, Lemma 3], we also have

πn = I(πn)1
⊕ π̃n,

whence

dH((n−1
n⊕

i=1

πi)α ,n−1
n

∑
i=1

(πi)1) = dH(n−1
n

∑
i=1

((πi)1 +(π̃i)α ),n−1
n

∑
i=1

(πi)1))

≤ dH(n−1
n

∑
i=1

(π̃i)α ,{0}).

Therefore it suffices to prove n−1 ∑n
i=1(π̃i) → I{0} in τ .

Step 3. Since {πn}n is tight, {π̃n}n is so as well.
Step 4. Define U ∈ U to be the upper semicontinuous envelope of supn π̃n. Then U1 =

{0}.
Step 5. We have

I{0} ⊂ π̃i ⊂U.

We apply Corollary 1 to U , and a sandwich argument yields n−1 ∑n
i=1(π̃i)→ I{0} in

τ , as wished. ��
Note. The author maintains a weblog on Statistics, Probability and Fuzzy Sets at the
following URL: http://spfs.blogspot.com
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Abstract. In this paper, the transitivity properties of reciprocal relations, also called probabilistic
relations, are investigated within the framework of cycle-transitivity. Interesting types of transi-
tivity are highlighted and shown to be realizable in applications. For example, given a collection
of random variables (Xk)k∈I , pairwisely coupled by means of a same copula C ∈ {TM,TP,TL}, the
transitivity of the reciprocal relation Q defined by Q(Xi,Xj) = Prob{XiXj}+1/2 Prob{Xi = Xj}
can be characterized within the cycle- transitivity framework. Similarly, given a poset (P,≤) with
P = {x1, . . . ,xn}, the transitivity of the mutual rank probability relation QP, where QP(Xi,Xj)
denotes the probability that xi precedes x j in a random linear extension of P, is characterized as a
type of cycle-transitivity for which no realization had been found so far.

Keywords: Copula, Cycle-transitivity, Poset, Random variables comparison, Reciprocal relation,
Transitivity, t-Norm, T -transitivity.

1 Introduction

Reciprocal ([0,1]-valued binary relations Q satisfying Q(a,b)+ Q(b,a) = 1) provide a
convenient tool for expressing the result of the pairwise comparison of a set of alter-
natives [2]. They are particularly popular in fuzzy set theory where they are used for
representing intensities of preference [1, 14]. They are often called probabilistic rela-
tions as they are used for expressing the result of the pairwise comparison of random
variables in various fields such as game theory [11], voting theory [16], mathematical
psychology [12] and order theory [8, 13, 15].

Recently, we have presented a general framework for studying the transitivity of
reciprocal relations, encompassing various types of T -transitivity and stochastic transi-
tivity [3, 7]. It turns out that many types of transitivity encountered in practical appli-
cations, especially when the comparison of random variables is at stake, when casted
into the form compatible with cycle-transitivity, become very simple. The outline of the
paper is as follows. First, the standard types of transitivity are briefly reviewed. Then
the cycle-transitivity framework is introduced and it is indicated how in this framework
transitivity is characterized by a single function, called upper bound function, acting
on three (ordered) arguments. A scheme is established that encompasses the standard
and some other important types of cycle- transitivity. The second part of the paper deals

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 299–305, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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with two applications: in each a reciprocal relation is established through a particular
way of comparing random variables. the scheme admit a transitivity.

2 Cycle-Transitivity

A fuzzy relation R on A is an A2 → [0,1] mapping that expresses the degree of relation-
ship between elements of A: R(a,b) = 0 means a and b are not related at all, R(a,b) = 1
expresses full relationship, while R(a,b) ∈ ]0,1[ indicates a partial degree of relation-
ship only. For such relations, the concept of T -transitivity is very natural.

Definition 1. Let T be a t-norm. A fuzzy relation R on A is called T - transitive if for any
(a,b,c) ∈ A3 it holds that T (R(a,b),R(b,c))≤ R(a,c).

The three basic t-norms are TM, the minimum operator, TP, the ordinary product, and
TL, the Łukasiewicz t-norm.

Another class of A2 → [0,1] mappings are the reciprocal relations Q satisfying
Q(a,b)+ Q(b,a) = 1, for any a,b ∈ A. They arise in the context of pairwise compari-
son. Though the semantics of reciprocal relations and fuzzy relations are different, the
concept of T -transitivity is sometimes formally applied to reciprocal relations as well.
However, more often the transitivity properties of reciprocal relations can be charac-
terized as of one of the various kinds of stochastic transitivity. The following general
formulation of stochastic transitivity has been proposed [3].

Definition 2. Let g be a commutative increasing [1/2,1]2→ [1/2,1] mapping. A recip-
rocal relation Q on A is called stochastic transitive w.r.t. g if for any (a,b,c) ∈ A3 it
holds that (Q(a,b)≥ 1/2 ∧ Q(b,c)≥ 1/2) ⇒ Q(a,c)≥ g(Q(a,b),Q(b,c)).

This definition includes strong stochastic transitivity when g = max, moderate stochas-
tic transitivity when g = min, weak stochastic transitivity when g = 1/2, and λ -
transitivity, with λ ∈ [0,1], when g = λ max+(1− λ )min. Clearly, strong stochastic
transitivity implies λ - transitivity, which implies moderate stochastic transitivity, which,
in turn, implies weak stochastic transitivity.

In the cycle-transitivity framework [7], for a reciprocal relation Q on A, the quantities

αabc = min(Q(a,b),Q(b,c),Q(c,a)) , βabc = med(Q(a,b),Q(b,c),Q(c,a)) ,

γabc = max(Q(a,b),Q(b,c),Q(c,a)) ,

are defined for all (a,b,c) ∈ A3. Obviously, αabc ≤ βabc ≤ γabc. Also, the notation Δ =
{(x,y,z) ∈ [0,1]3 |x≤ y≤ z} will be used.

Definition 3. A function U : Δ → R is called an upper bound function if it satisfies:

(i) U(0,0,1)≥ 0 and U(0,1,1)≥ 1;
(ii) for any (α,β ,γ) ∈ Δ :

U(α,β ,γ)+U(1− γ,1−β ,1−α)≥ 1 . (1)
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The function L : Δ →R defined by

L(α,β ,γ) = 1−U(1− γ,1−β ,1−α) (2)

is called the dual lower bound function of a given upper bound function U . Inequal-
ity (1) simply expresses that L≤U .

Definition 4. A reciprocal relation Q on A is called cycle-transitive w.r.t. an upper
bound function U if for any (a,b,c) ∈ A3 it holds that

L(αabc,βabc,γabc)≤ αabc +βabc + γabc−1≤U(αabc,βabc,γabc) , (3)

where L is the dual lower bound function of U.

Due to the built-in duality, it holds that if (3) is true for some (a,b,c), then this is also the
case for any permutation of (a,b,c). In practice, it is therefore sufficient to check (3)
for a single permutation of any (a,b,c) ∈ A3. Alternatively, due to the same duality,
it is also sufficient to verify the right-hand inequality (or equivalently, the left-hand
inequality) for two permutations of any (a,b,c) ∈ A3 (not being cyclic permutations of
one another), e.g. (a,b,c) and (c,b,a). Hence, (3) can be replaced by

αabc +βabc + γabc−1≤U(αabc,βabc,γabc) . (4)

Note that a value of U(α,β ,γ) equal to 2 will often be used to express that for the given
values there is no restriction at all (indeed, α+β + γ−1 is always bounded by 2).

For two upper bound functions such that U1 ≤ U2, it clearly holds that cycle-
transitivity w.r.t. U1 implies cycle-transitivity w.r.t. U2. It is clear that U1 ≤U2 is not
a necessary condition for the latter implication to hold. Two upper bound functions U1

and U2 will be called equivalent if for any (α,β ,γ) ∈ Δ it holds that α +β + γ− 1 ≤
U1(α,β ,γ) is equivalent to α+β + γ−1≤U2(α,β ,γ).

For instance, suppose that the inequalityα+β+γ−1≤U1(α,β ,γ) can be rewritten
as α ≤ h(β ,γ), then an equivalent upper bound function U2 is given by U2(α,β ,γ) =
β + γ− 1 + h(β ,γ). In this way, it is often possible to find an equivalent upper bound
function in only two of the variables α , β and γ .

The different types of fuzzy and stochastic transitivity can be reformulated in
the cycle-transitivity framework and are then characterized by an upper bound func-
tion U(α,β ,γ). In Figure 1, upper bound functions are shown for TM-, TP- and TL-
transitivity as well as for strong, moderate and stochastic transitivity. Three more types
of transitivity are depicted: two consecutive weakenings of TP-transitivity, respectively
called dice-transitivity and mutual-rank-transitivity, and a type of transitivity which is
situated between moderate stochastic transitivity and mutual-rank-transitivity and is
known as partial stochastic transitivity.

In fact, many examples of reciprocal relations we have encountered in our research
on the comparison of random variables distributions are neither fuzzy nor stochastic
transitive but have a type of transitivity that can be nicely expressed as an instance of
cycle-transitivity.
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β

TM -transitivity

α +β −αβ

TP -transitivity

α + γ−αγ

mutual-rank- transitivity

β + γ−βγ

dice-transitivity

1

TL -transitivity

γ
partial stochastic

transitivity

β α < 1/2≤ β
1/2 α ≥ 1/2
2 otherwise

strong stochastic
transitivity

γ α < 1/2≤ β
1/2 α ≥ 1/2
2 otherwise

moderate stochastic
transitivity

β + γ− 1
2 α < 1/2≤ β

1/2 α ≥ 1/2
2 otherwise

weak stochastic
transitivity

�������������

�������

�����

Fig. 1. Hasse-diagram with different types of cycle-transitivity characterized by their upper bound
function U(α,β ,γ). Bottom up (partial) ordering of transitivity types is in agreement with the
‘stronger than’ relation.

3 The Pairwise Comparison of Artificially Coupled Random
Variables

An immediate way of comparing two random variables is to consider the probability
that the first one takes a greater value than the second one. Proceeding along this line of
thought, a random vector (X1,X2, . . . ,Xm) generates a reciprocal relation.

Definition 5. Given a random vector (X1,X2, . . . ,Xm), consider the reciprocal relation
Q defined by

Q(Xi,Xj) = Prob{Xi > Xj}+
1
2

Prob{Xi = Xj} . (5)

The above comparison method takes into account the bivariate marginal c.d.f. and
hence the pairwise dependence of the components of the random vector. The infor-
mation contained in the reciprocal relation is therefore much richer than if, for instance,
we would have based the comparison of Xi and Xj solely on their expected values. De-
spite the fact that the dependence structure is entirely captured by the multivariate c.d.f.,
the pairwise comparison is only apt to take into account pairwise dependence, as only
bivariate c.d.f.’s are involved. The random variables may even be pairwise independent
while not mutually independent.
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Since the copulas Ci j that couple the univariate marginal c.d.f. into the bivariate
marginal c.d.f. can be different from another, the analysis of the reciprocal relation and
in particular the identification of its transitivity properties appear rather cumbersome.
It is nonetheless possible to state in general, without making any assumptions on the
bivariate c.d.f., that the reciprocal relation Q generated by an arbitrary random vector
always shows some minimal form of transitivity.

Proposition 1. The reciprocal relation generated by a random vector is TL- transitive.

In [4], we have considered the situation where abstraction is made that the random
variables are components of a random vector, and all bivariate c.d.f. are enforced to
depend in the same way upon the univariate c.d.f., in other words, we consider the
situation of all copulas being the same, well knowing that this might not be possible at
all. In fact, this simplification is equivalent to considering instead of a random vector, a
collection of random variables and to artificially compare them, all in the same manner
and based upon a same copula.

First, we have unravelled the case of the product copula TP, and the cases of the
two extreme copulas, the minimum operator TM and the Łukasiewicz t- norm TL, re-
spectively related to a presumed but not-necessarily existing comonotonic and counter-
monotonic pairwise dependence of the random variables [17]. The following results
have been reported.

Proposition 2 ([9, 10]). The reciprocal relation Q generated by a collection of random
variables pairwisely coupled by TP is dice-transitive, i.e. it is cycle- transitive w.r.t.
to the upper bound function U given by U(α,β ,γ) = β + γ − βγ . In particular, the
reciprocal relation generated by a collection of independent random variables is dice-
transitive.

Proposition 3 ([5, 6])

(i) The reciprocal Q generated by a collection of random variables pairwisely coupled
by TM is TL-transitive, i.e. it is cycle- transitive w.r.t. to the upper bound function U
given by U(α,β ,γ) = 1.

(ii) The reciprocal relation Q generated by a collection of random variables pairwisely
coupled by TL is partially stochastic transitive, i.e. it is cycle-transitive w.r.t. to the
upper bound function U given by U(α,β ,γ) = γ .

Note that partial stochastic transitivity is a slightly weakened version of moderate
stochastic transitivity (note the strict inequalities instead of weak inequalities) as it can
be expressed equivalently as

(Q(a,b)1/2 ∧ Q(b,c)1/2) ⇒ Q(a,c)≥min(Q(a,b),Q(b,c)) ,

for any (a,b,c) ∈ A3.

4 Mutual Rank Probabilities in Posets

Consider a finite poset (P,≤) with P = {x1, . . . ,xn}. A linear extension of P is an
order-preserving permutation of its elements (hence, also a ranking of the elements
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compatible with the partial order). We denote by p(xi < x j) the fraction of linear ex-
tensions of P in which xi precedes x j. If the space of all linear extensions of P is
equipped with the uniform measure, the position of x in a linear extension can be re-
garded as a discrete random variable X with values in {1, . . . ,n}. Since p(xi < x j) =
Prob{Xi < Xj}, it is called a mutual rank probability. Note that P uniquely deter-
mines a random vector X = (X1, . . . ,Xn) with multivariate distribution function FX1,...,Xn ,
whereas the rank probabilities p(xi < x j) are then computed from the bivariate marginal
distributions FXi,Xj .

Definition 6. Given a poset P = {x1, . . . ,xn}, consider the reciprocal relation QP de-
fined by

QP(Xi,Xj) = Prob{Xi < Xj}= p(xi < x j) . (6)

The problem of probabilistic transitivity in a finite poset P was raised by Fishburn [13].
For any u,v ∈ [0,1], define δ (u,v) as

δ (u,v) = inf{p(xi < xk) | p(xi < x j)≥ u, p(x j < xk)≥ v} ,
where the infimum is taken over all choices of P and distinct xi,x j,xk. Fishburn proved:

δ (u,v) = 0 if u + v < 1 ,

u + v−1≤ δ (u,v)≤min(u,v) ,
δ (u,1−u)≤ 1/e ,

δ (u,v)≤ 1− (1−u)(1− v)(1− ln[(1−u)(1− v)]) . (7)

A non-trivial lower bound on δ was proved in [15] via geometric arguments. Define

γ(u,v) = inf{Prob{Yi < Yk} | Prob{Yi < Yj} ≥ u,Prob{Yj < Yk} ≥ v} ,
where the infimum is taken over Y = (Y1, . . . ,Yn) chosen uniformly from some n-
dimensional compact convex subset of Rn. Since δ (u,v) ≥ γ(u,v), the function γ pro-
vides a lower bound for δ . Kahn and Yu [15] proved that

γ(u,v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 , if u + v < 1 ,
min(u,v) , if u + v−1≥min(u2,v2) ,

(1−u)(1− v)
u + v−2

√
u + v−1

, otherwise .

(8)

If we translate the bounds (7) and (8) into the cycle-transitivity framework, we obtain
that (8) provides an upper bound U(α,β ,γ) on α +β + γ− 1, whereas (7) provides a
lower bound, which is, however, less stringent than the lower bound function L(α,β ,γ)
associated to U(α,β ,γ) by (2). Surprisingly, the upper bound functionU(α,β ,γ) which
is the equivalent of (8), is very simple.

Proposition 4. The reciprocal relation QP generated by the mutual rank probabilities
in a poset P, is mutual-rank-transitive, i.e. it is cycle- transitive w.r.t. to the upper bound
function U given by U(α,β ,γ) = α+ γ−αγ .
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Mutual-rank-transitivity is stronger than dice-transitivity but weaker than TP-transitivity
(see Figure 1). Note that for general P, despite the fact that the multivariate distribution
function FX1,...,Xn , or equivalently, the n-dimensional copula, can be very complex, cer-
tain pairwise couplings are trivial. Indeed, if in P it holds that xi < y j, then xi precedes
y j in all linear extensions and Xi and Xj are comonotone, which means that Xi and Xj are
coupled by (a discretization of) TM. For pairs of elements in P that are incomparable,
the bivariate couplings can vary from pair to pair. The copulas are not all equal to TL,
as can be seen already from the example where P is an antichain with 3 elements.
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Abstract. We study and review geometrical properties of the set of the probabilities dominated
by a submodular coherent upper probability (a possibility measure, in particular) on a finite set.
We mention that there exists a polynomial algorithm for vertex enumeration. A new upper bound
for the number of vertices in case of possibility measures is derived.
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1 Introduction

In this contribution we study and review geometrical properties of the set of the proba-
bilities dominated by a submodular coherent upper probability on a finite set. The aim is
to identify those geometrical and algebraical properties that lead to the existence of ef-
ficient algorithms for processing the imprecise probability. One of the tasks of eminent
importance is that of recovering the extreme points of the dominated set of probabili-
ties or, at least, estimating their number. The class of imprecise probabilities for which
both of these tasks are solvable are submodular coherent upper probabilities. We make
an effort to single out some of its subclasses (such as possibility measures) to show that
they exhibit additional properties from the geometrical viewpoint.

Basic concepts of imprecise probabilities [14] and possibility theory [4] are recalled
in Sect. 2. The structure of cores is investigated in Sect. 3 and conclusions are in Sect. 4.
In the paper we use definitions and results concerning polytopes (see [18], for example).

2 Basic Notions

Let N = {1, . . . ,n} be a finite set with n≥ 2 and let 2N denotes the set of all subsets of
N. A set function on 2N is a mapping μ : 2N → R with μ( /0) = 0.

We say that a set function is monotone when μ(A) ≤ μ(B) for every A,B ∈ 2N

such that A ⊆ B; it is called submodular (or 2-alternating capacity) if the inequality
μ(A∪B)+μ(A∩B)≤ μ(A)+μ(B) holds for every A,B ∈ 2N . When P is a probability
measure on 2N , then p denotes the corresponding probability distribution on N, that is,
the n-dimensional vector whose i-th component pi is P({i}), for every i ∈ N. For any
set function μ with μ(N) = 1, the set M (μ) of probability distributions p on N with

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 306–312, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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P(A) ≤ μ(A), for every A ⊆ N, is called the core (or credal set) of μ . Hence the core
M (μ) is the set of n-dimensional vectors p ∈ Rn satisfying the conditions

∑
i∈A

pi ≤ μ(A), for every A ∈ 2N , (1a)

pi ≥ 0, i = 1, . . . ,n, (1b)
n

∑
i=1

pi = 1. (1c)

Hence M (μ) is a (possibly empty) convex polytope in Rn of dimension at most n−1.
By extM (μ) we denote the set of all extreme points (vertices) of M (μ), which is
always finite because of the finite number of the affine constraints (1).

A coherent upper probability is a set function μ : 2N → [0,1] such that μ(A) =
sup{∑i∈A pi | p ∈M (μ)}, for every A ∈ 2N , and M (μ) �= /0. It can be deduced from
a result of Walley [15, p. 14] that every submodular monotone set function μ with
μ(N) = 1 is a coherent upper probability. On the contrary not every coherent upper
probability is submodular—see [7, Remark 5.3].

A possibility measure is a set function Π : 2N → [0,1] such that Π(N) = 1, and
where for every A,B ∈ 2N , it holds that Π(A∪B) = max(Π(A),Π(B)). A possibility
distribution on N is the n-dimensional vector π whose i-th coordinate πi is Π({i}), for
every i ∈ N. Every possibility measure is submodular monotone and thus a coherent
upper probability.

3 Geometry of Cores

The polytope M (μ) is completely determined as the convex hull of the set of its ver-
tices extM (μ). Vertex enumeration is the problem of generating all the vertices of a
polytope given as an intersection of finitely many halfspaces. This is a fundamental
problem in computational geometry, which is in general algorithmically highly nontriv-
ial. Nevertheless there exist efficient techniques for certain classes of polytopes, which
we mention in this section. It is therefore desirable to study the geometrical structure of
the cores for particular classes of coherent upper probabilities in order to exploit their
special properties. Since the time and the space complexity of the enumeration algo-
rithms can also be judged a priori by estimating the number of vertices of the core, a
goal in itself is to find some upper bounds for the number of vertices.

3.1 Cores of Submodular Coherent Upper Probabilities

The next theorem, which is considered to be well-known, gives a characterization of
the core of submodular coherent upper probabilities. As far as the knowledge of the
author goes, it can be traced back to Edmond’s result [5] concerning the so-called base
polyhedra in polymatroid1 theory [6]. Similar results appeared in coalition game theory

1 A polymatroid is a pair (μ,2N), where μ is a submodular monotone set function on 2N . When
μ(N) = 1, then a so-called base polyhedron of the polymatroid (μ,2N) is precisely the core
of μ in the sense of (1).
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and imprecise probabilities too, cf. [12] and [2]. The formulation below is based on the
polymatroid version of the theorem from [6, Section 3.3].

Theorem 1. Let μ be a submodular coherent upper probability on 2N. Then M (μ)
coincides with the set of vectors p ∈ Rn satisfying the conditions (1a) and (1c).

A vector p ∈Rn is an element of extM (μ) if and only if there exists an (n+1)-tuple
of sets A0, . . . ,An belonging to 2N such that

/0 = A0 ⊂ A1 ⊂ ·· · ⊂ An = N,

where Ai \Ai−1 = {ai}, for each i = 1, . . . ,n, and

pai = μ(Ai)− μ(Ai−1), for each i ∈ N. (2)

The complete description of the facial structure of M (μ) can be found in [6, Theo-
rem 3.30] (see also [13]). Note that the above theorem enables to dispense completely
with the nonnegativity conditions (1b) defining the core M (μ). This result justifies
the game-theoretic terminology employed when calling the set M (μ) “core”: for ev-
ery submodular coherent upper probability μ , the set M (μ) coincides precisely with
the core of the game μ as studied in coalition game theory. This fact however depends
on the economic interpretation of the game μ since the game-theoretic core is usually
defined with the reversed inequality in (1a) provided that the values of μ are profits
resulting from the cooperation.

The present inequality in (1a) thus implies that the value μ(A) should be thought of
as a loss inflicted to a coalition A rather than the profit generated by the coalition A.
While the latter interpretation of coalition games is more common (cf. [12]), the first
one also appears in the literature (for example, in the foundational Aubin’s paper [1]
about games with fuzzy coalitions).

Formula (2) also leads to a very inefficient algorithm for enumerating the vertices of
M (μ) that is based on generating all permutations of the elements of the set N. There
exists, however, a vertex enumeration technique by Zhan [17], which is well-tailored
to cores of submodular coherent upper probabilities. Zhan’s algorithm is polynomial
and enumerates all the vertices of M (μ) in O(n3|extM (μ)|) time and in O(n2) space.
We refrain from describing even the basic ideas of this sophisticated algorithm, which
generalizes several enumeration methods. An interested reader is referred to [17] for
the comprehensive details.

Submodularity is one of the properties enhancing the performance of the enumera-
tion algorithms. Another property of a coherent upper probability leading to tractable
computations is rather an intrinsic geometric property of its core: a d-dimensional poly-
tope is called simple when each vertex is contained in precisely d facets.

The d-dimensional cube or simplex are examples of simple polytopes; the pyramid
with a non-triangular base is not a simple polytope. Simplicity of the core enables us
to recover the vertices efficiently since there exist enumerating algorithms running in
polynomial time per vertex for the class of all simple polytopes (see [8] for details and
references therein). The author of this paper proved recently in [8] that the core of every
possibility measure is a simple polytope (see also Theorem 2 in this paper).

A very special core geometry arises from the example of Wallner in [16, p.347,
Fig.2]: put μ(A) = 1− f

( n−|A|
n

)
, where f : [0,1]→ [0,1] is a strictly convex function
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with f (0) = 0, f (1) = 1. Namely, it is not difficult to prove that the core M (μ) inves-
tigated in that example is combinatorially equivalent2 to the so-called permutahedron.
Let Sn be the set of all permutations of N. An (n−1)-dimensional permutahedron is
the convex hull of the set {(σ(1), . . . ,σ(n)) | σ ∈ Sn}. The permutahedra are very rare
among all polytopes: every (n−1)-dimensional permutahedron is a simple polytope that
is an affine projection of the

(n
2

)
-dimensional cube [18, p.17].

It follows directly from Theorem 1 there are at most n! vertices in the core of every
submodular coherent upper probability. More generally, the result of Wallner [16, The-
orem 5.13] even shows that the submodularity condition can be relaxed so the upper
bound is n! for every coherent upper probability.

The next section is devoted to possibility measures for which some upper bounds for
the number of vertices of their cores will be derived.

3.2 Cores of Possibility Measures

When π is a possibility distribution such that πi = 0 for every i ∈ I with I ⊂ N, then, by
the simple projection argument, the core of the possibility measure Π can be identified
with the core of the possibility measure Π ′ such that π ′ is defined as the restriction of
π to N \ I. Without loss of generality, we start with the following convention.

Convention. From now on we assume that 0 < π1 ≤ ·· · ≤ πn = 1.

Moral proved in [10] that p ∈M (Π) if and only if p is a probability distribution such
that ∑k

j=1 p j ≤ πk, for each k = 1, . . . ,n. The cores of possibility measures were charac-
terized in [8], where the proof of Theorem 2 can be found. Put

S = {i ∈ {1, . . . ,n−2} | πi+1 > πi}∪{n−1}.

Theorem 2. The core M (Π) of a possibility measureΠ is a simple (n−1)-dimensional
polytope such that p ∈M (Π) if and only if

k

∑
j=1

p j ≤ πk, k ∈ S, (3a)

pi ≥ 0, i = 1, . . . ,n−1, (3b)

pn = 1−
n−1

∑
i=1

pi. (3c)

Moreover, the polytope M (Π) has n− 1 + |S| facets given by K ∩M (Π), where K
is either {p ∈Rn | pi = 0} or {p ∈Rn |∑k

j=1 p j = πk}, for each i = 1, . . . ,n−1 and for
each k ∈ S, respectively.

The representation of M (Π) by the system (3) is irreducible, that is, removing
any inequality or equation from (3) changes the set M (Π). While the irreducible

2 We say that two polytopes are combinatorially equivalent if there exists an order-preserving
bijection between their face lattices.
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representation (3) is easily constructed3 for every possibility measure, it can be shown
that this is not the only irreducible representation of M (Π). The representation by sys-
tem (3) is however useful for obtaining some upper bounds for the number of vertices.
Miranda et al. [9] derived the exponential upper bound 2n−1 for the number |extM (Π)|
of vertices of any possibility measure Π . Using only the simplicity of M (Π), the fol-
lowing lower bound and the upper bound for |extM (Π)| were obtained in [8]4:

|S|(n−2)+ 2≤ |extM (Π)| ≤
(

n−2 + |S|− r1

r2

)
+
(

n−2 + |S|− r2

r1

)
, (4)

where r1 is the greatest integer such that r1≤ n−2
2 , and r2 is the greatest integer such that

r2 ≤ n−1
2 . It was shown in [8] that the upper bound from (4) is not uniformly better than

the exponential bound. In the sequel we will show that there exists an easily computable
upper bound that is always lower than the exponential bound. To this end, put i0 = 0
and let i1, . . . , i|S| denote the elements of S such that i j < i j+1, for each j = 1, . . . , |S|−1.

Theorem 3. If M (Π) is the core of a possibility measure Π , then

|extM (Π)| ≤ 2|S|
|S|
∏
j=1

(i j− i j−1). (5)

The expression on the right-hand side of (5) is always smaller or equal to 2n−1 with the
equality holding when Π is such that πi < πi+1, for each i = 1, . . . ,n−2.

Proof. It follows from Theorem 2 and the definition of a vertex that there is a one-to-
one correspondence between the vertices of M (Π) and uniquely solvable systems of
n−1 linear equations selected from

k

∑
j=1

p j = πk, k ∈ S, (6a)

pi = 0, i = 1, . . . ,n−1. (6b)

Hence it suffices to bound from above the total number of such uniquely solvable sys-
tems. Note that (6a) can be equivalently written as

p1 + . . .+ pi1 = πi1

pi1+1 + . . .+ pi2 = πi2−πi1

. . . (7)

pi|S|−1+1 + . . .+ pi|S| = πi|S| −πi|S|−1

A uniquely solvable linear system arising from (7) by appending arbitrarily chosen
equations from (6b) is called an initial linear system. First, we will count the total

3 Detecting whether an inequality is redundant in a description of a polytope is a nontrivial
problem, cf. [18, p. 48].

4 Unfortunately, the formula for the upper bound is misprinted in [8, Theorem 2].
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number of initial linear systems. Since the right-hand sides of (7) are positive due to
our Convention, it follows that precisely one variable in each linear equation of (7)
must be nonzero. This means that there are

i1(i2− i1) . . . (i|S| − i|S|−1) =
|S|
∏
j=1

(i j− i j−1) (8)

initial linear systems.
To finish the proof of (5), observe that every uniquely solvable system of n−1 linear

equations chosen from (6a)-(6b) corresponds to precisely one initial linear system in
which some of the |S| equations from (7) are possibly interchanged with those from
(6b). Since there are precisely 2|S| of all interchanges, there can be at most 2|S| of the
uniquely solvable systems resulting in this way from an initial linear system. Combining
this with (8), the inequality (5) follows.

In order to prove the second assertion of the theorem, observe that ∑|S|j=1(i j− i j−1) =
i|S| = n−1. We obtain

2|S|
|S|
∏
j=1

(i j− i j−1) =
|S|
∏
j=1

2(i j− i j−1)≤
|S|
∏
j=1

2i j−i j−1 = 2∑
|S|
j=1(i j−i j−1) = 2n−1,

since 2p≤ 2p for every positive integer p. ��
In general, the upper bound from Theorem 3 is not better than the upper bound from (4)
and vice versa. Note that the first part of the proof of Theorem 3 is based on a particular
vertex enumeration algorithm, which can be used to recover the vertices when n and
|S| are rather small. However, this technique is of a very limited use as it recovers the
vertices in time exponential in |S|.

4 Conclusions

In the paper we presented the algebraical and the geometrical properties of imprecise
probabilities that facilitate computations with their cores. Namely, there exist polyno-
mial algorithms for vertex enumeration of both submodular coherent upper probabili-
ties and coherent upper probabilities whose core is a simple polytope. The upper bounds
from Sect. 3.2 provide the preliminary judgment on the performance of such algorithms.
There are many theoretical and practical facets of imprecise probabilities in which the
computational properties of the core play a crucial role. For example, a concept of
(conditional) independence can be defined with the help of extreme points of the core
[3, 11].

An interesting open question is to describe the class of coherent upper probabilities
whose cores are simple polytopes.
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On Transformations between Belief Spaces

Ralph L. Wojtowicz
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Abstract. Commutative monoids of belief states have been defined by imposing one or more
of the usual axioms and assigning a combination rule. Familiar operations such as normalization
and the Voorbraak map are surjective homomorphisms. The latter map takes values in a monoid
of Bayesian states. The pignistic map is not a monoid homomorphism. This can impact robust
decision making for frames of cardinality at least 3. We adapt the concept of measure zero re-
flecting functions between probability spaces to define a category P0R having belief states as
objects and plausibility zero reflecting functions as morphisms. This definition encapsulates a
generalization of the notion of absolute continuity to the context of belief spaces. We show that
the Voorbraak map induces a functor valued in P0R that is right adjoint to the embedding of
Bayesian states.

Keywords: Belief state, category, adjoint, Voorbraak map, pignistic transformation, absolute
continuity.

1 Preliminaries

This article describes results from an effort to improve the performance of a large infor-
mation system having components implemented by different companies and employing
distinct uncertainty models. We seek concepts and theorems that help precisely charac-
terize properties of and relationships between these models.

For a set U , P(U) is its powerset and |U | is its cardinality. If V ⊂U , then U\V is
the complement of V in U . R is the set of real numbers and φ is the empty set. For a
function f : A→ B with source A and target B, f ∗ : P(B)→P(A) is its inverse image
function and f∗ : P(A)→P(B) is its direct image function. If U ⊂ A, for example,
then f∗(U) = {b ∈ B | ∃a ∈ U. f (a) = b}. If f is a bijection then f−1 : B→ A is its
inverse. As in [5], we make frequent, implicit use of the following corollary of the
Binomial Theorem.

Lemma 1. If X is a finite set and U ⊂W ⊂ X, then

∑
U⊂V⊂W

(−1)|V | =
{

(−1)|W | if U = W
0 if U �= W.

Throughout this article, X will denote a finite, non-empty set to be called a frame.
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2 Belief Representations

A function m : P(X)→R is a belief state. The set of all such is X . For U ⊂X , νU ∈X
is defined by νU (U) = 1 and νU (V ) = 0 if V �= U . νX is vacuous and νφ is conflicted.
The zero belief state assigns 0∈R to each U ⊂ X and is denoted 0∈X . u∈X defined
by u(U) = 1/|X | if |U |= 1 and 0 otherwise is uniform.

m ∈X is non-negative if 0 ≤ m(U) for all U ⊂ X . m is unitary if 1 = ∑U⊂X m(U).
Let X+ and XΣ respectively be the sets of non-negative and unitary belief states. Let
X0 = {m ∈X |m(φ) = 0}. Define XD = XΣ ∩X+, Xμ = XD ∩X0, X ′

0 = X0 ∪
{νφ}, and X ′

μ = Xμ ∪{νφ}. m is Bayesian if m ∈Xμ and m(U) �= 0 implies |U |= 1.
The uniform belief state u, for example, is Bayesian. Let XB be the set of Bayesian
belief states and X ′

B = XB ∪{0}.
Alternative belief state representations are useful for proving theorems, gaining in-

sight, and supporting interpretations. Define β : X →X and β−1 : X →X by

β (m)(U) = ∑
V⊂U

m(V ) (1)

β−1(b)(U) = ∑
V⊂U

(−1)|U\V | b(V ) . (2)

β (m) is the implicability of m. If m ∈Xμ , then β (m) is a belief function. Proof that β
and β−1 are inverses employs Lemma 1. Other inverse function pairs described below
are similarly established. Define κ : X →X and κ−1 : X →X by

κ(m)(U) = ∑
U⊂V

m(V ) (3)

κ−1(q)(U) = ∑
U⊂V

(−1)|V\U| q(V ) . (4)

κ(m) is the commonality of m. Define λ : X →X and λ−1 : X →X by

λ (m)(U) =

⎧⎪⎨⎪⎩
∑

V∩U �=φ
m(V ) if U �= φ

1− ∑
V⊂X

m(V ) if U = φ
(5)

λ−1(�)(U) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

V⊂U
(−1)|U\V |

(
1− �(X\V)

)
if U �= φ and U �= X

�(φ)+ ∑
V⊂X

(−1)|X\V |
(
1− �(X\V)

)
if U = X

1− �(X)− �(φ) if U = φ .

(6)

λ (m) is the plausibility of m. For example, λ (νφ ) = 0 and λ−1(0) = νφ . For each x∈X ,
λ (m)({x}) = κ(m)({x}). Define Λ(m) = ∑x∈X λ (m)({x}). The Bayesian constant of
m is

B(m) =
{

1/Λ(m) if Λ(m) �= 0
0 otherwise.

(7)
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If m ∈XD , then 0 =Λ(m) iff m = νφ . If m ∈Xμ , then 1 ≤ Λ(m) with equality hold-
ing iff m ∈XB . Composites of the formulas above yield translations between belief
representations. Maps between implicability b and commonality q are

(κ ◦β−1)(b)(U) = ∑
V⊂U

(−1)|V | b(X\V) (8)

(β ◦κ−1)(q)(U) = ∑
V⊂X\U

(−1)|V | q(V ). (9)

Transformations between implicability b and plausibility � are

(β ◦λ−1)(�)(U) =
{

1− �(X\U)− �(φ) if U �= φ
1− �(φ) otherwise

(10)

(λ ◦β−1)(b)(U) =
{

b(X)−b(X\U) if U �= X
1−b(X) otherwise.

(11)

Between commonality q and plausibility � the following hold

(λ ◦κ−1)(q)(U) =

⎧⎨⎩ ∑φ �=V⊂U

(−1)|V |+1 q(V ) if U �= φ
1−q(φ) otherwise

(12)

(κ ◦λ−1)(�)(U) =

⎧⎨⎩ ∑φ �=V⊂U

(−1)|V |+1 �(V ) if U �= φ
1− �(φ) otherwise.

(13)

The following conditions on m ∈ X are equivalent: m is unitary; 1 = ∑U⊂X m(U);
β (m)(X)= 1; κ(m)(φ) = 1; λ (m)(φ) = 0. The following are also equivalent: m(φ) = 0;
β (m)(φ) = 0; λ (m)(X) = β (m)(X); 0 = ∑V⊂X(−1)|V |κ(m)(V ).

3 Combination Operators

The unnormalized combination operator* : X ×X →X defined by

(m*n)(U) = ∑
A∩B=U

m(A)n(B) (14)

satisfies the following for all m, n, and p ∈X .

1. m*n = n*m
2. m*νX = m
3. (m*νφ )(U) = νφ (U)∑A⊂X m(A)
4. κ(m*n)(U) = κ(m)(U) ·κ(n)(U) for all U ⊂ X
5. m* (n* p) = (m*n)* p
6. λ (m*n)({x}) = λ (m)({x}) ·λ (n)({x}) for all x ∈ X

Proofs of 1–3 are direct calculations. 4 follows from equality of ∑
U⊂V

(m*n)(V) to
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∑
U⊂V
∑

A∩B=V

m(A)n(B) = ∑
U⊂A
∑

U⊂B
m(A)n(B) =

(
∑

U⊂A

m(A)

)(
∑

U⊂B
n(B)

)
.

Property 5 follows from 4 and the fact that κ and κ−1 are inverse functions:

(m*n)* p = κ−1(κ((m*n)* p
)
= κ−1(κ(m)κ(n)κ(p)) = κ−1(κ(m* (n* p))

)
.

Property 6 follows from 4 and the fact that κ(m) and λ (m) agree on singletons.

The combination operator⊕ : X ×X →X is defined by

(m⊕n)(U) =

⎧⎪⎪⎨⎪⎪⎩
(m*n)(U)

1−(m*n)(φ) if (m*n)(φ) �= 1 and U �= φ
0 if (m*n)(φ) �= 1 and U = φ
νφ (U) otherwise

(15)

and satisfies the following for all m, n, and p ∈X .

1. m⊕n∈X ′
0

2. m⊕n = n⊕m
3. m⊕νX = m iff m ∈X ′

0
4. m⊕νφ = νφ iff m ∈XΣ
5. if m, n ∈XD , then

κ(m⊕n)(U) =
{
κ(m)(U)κ(n)(U)/

(
1− (m*n)(φ)

)
if m*n �= νφ , U �= φ

νφ (U) otherwise

6. if m, n ∈XD , then m⊕n∈XD

7. if m, n, p ∈X ′
μ , then m⊕ (n⊕ p) = (m⊕n)⊕ p

8. if m, n ∈X ′
B, then m⊕n∈X ′

B
9. if m ∈X ′

B, then m⊕u = m

Proofs are left to the reader [2, 5, 6]. For m ∈X , define *0 m = m and, for n ≥ 1,
*n m = m* (*n−1 m). Similar definitions apply to iteration of ⊕.

4 Belief State Monoids and Homomorphisms

We review the commutative monoids (X+,*,νX ), (XD ,*,νX), and (X ′
μ ,⊕,νX) and

the monoid homomorphismsΦΣ andΦ0 introduced in [2] and the commutative monoid
(X ′

B ,⊕,u) and the homomorphism V of [6].
Restriction of* gives an operator X+×X+→X+. Properties 1, 2, and 5 of* from

Section 3 establish that (X+,*, νX ) is a commutative monoid. Another restriction of*
produces XΣ ×XΣ →XΣ . Since XD = X+∩XΣ , (XD ,*, νX ) is also a commutative
monoid. m*νφ = νφ for m ∈XD by property 3 of *.

The normalization operator ΦΣ : X+→XD defined by

ΦΣ (m)(U) =

⎧⎨⎩m(U)
/
∑

V⊂X
m(V ) if m �= 0

νφ (U) otherwise
(16)
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is a homomorphism (X+,*,νX) → (XD ,*,νX ) (see [2]). That is, ΦΣ (m* n) =
ΦΣ (m)*ΦΣ(n) and ΦΣ (νX ) = νX . Moreover, if m ∈XD , then ΦΣ (m) = m.

Restriction of⊕ gives an operator X ′
μ ×X ′

μ →X ′
μ by properties 1 and 6 of⊕ from

Section 3. Properties 2, 3, and 7 establish that (X ′
μ ,⊕,νX ) is a commutative monoid.

m⊕ νφ = νφ for m ∈ X ′
μ by property 4. Another restriction of ⊕ gives an operator

X ′
B×X ′

B →X ′
B by property 8. These results together with property 9 establish that

(X ′
B ,⊕,u) is a commutative monoid. Moreover, m⊕0 = 0 in X ′

B .
The operator Φ0 : XD →X ′

μ defined below is a homomorphism (XD ,*, νX)→
(X ′
μ ,⊕, νX ) satisfying Φ0(m) = m for m ∈X ′

μ (see [2]).

Φ0(m)(U) =

⎧⎨⎩m(U)
/
(1−m(φ)) if m(φ) �= 1 and U �= φ

0 if m(φ) �= 1 and U = φ
νφ (U) otherwise

(17)

The Voorbraak map V : X ′
μ →X ′

B defined by

V(m)(U) =
{
λ (m)({x})/Λ(m) if Λ(m) �= 0 and U = {x}
0 otherwise

(18)

gives a monoid homomorphism (Xμ ,⊕, νX )→ (XB ,⊕, u) such that V(m) = m for
m ∈X ′

B (see [6]). Note that m ∈XD ⊂X ′
μ implies Λ(m) = 0 iff m = νφ .

Conversion of m ∈Xμ to a Bayesian state is an approach to decision making with
belief models. The pignistic map P : Xμ→XB is not a monoid homomorphism. In [1],
Cobb and Shenoy observed that P may display a decision change when applied to
iterates ⊕km of a fixed m. The reader may compute V(⊕n m) and P(⊕n m) with m
defined by the following for sufficiently small ε and δ to observe this phenomenon.

U φ {x} {y} {z} {x, y} {x, z} {y, z} X
m(U) 0 0 δ δ + ε δ + 2ε δ + ε 0 1−4(δ + ε)

The diagrams below summarize the results of this section. The first illustrates the
commutative monoids and homomorphisms.

(X+,*,νX )
ΦΣ �� (XD ,*,νX )

Φ0 �� (X ′
μ ,⊕,νX ) V �� (X ′

B ,⊕,u)

The underlying functions of these homomorphisms are the horizontal arrows of the
commutative diagram below. Vertical arrows are identity functions and diagonals are
inclusions.

X+
ΦΣ �� XD

Φ0 �� X ′
μ

V �� X ′
B

XD

��������

��

X ′
μ

�������
��

X ′
B

�������
��

Surjectivity ofΦΣ ,Φ0, and V are consequences of commutativity (in any category, g◦ f
an epimorphism implies g an epimorphism).
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5 Categories of Belief States

If C is a (locally-small) category, then |C | is its class of objects and C (A, B) is the set
of morphisms with source A and target B. Categorical definitions are from [4].

In [7], Wendt defined and investigated two categories having probability spaces
as objects. The first has measure zero reflecting functions as morphisms while the
latter has categorical disintegrations. These constructions led Jackson to implicitly es-
tablish a semantics of intuitionistic higher-order predicate calculus in terms of probabil-
ity spaces [3]. Such connections between rules-based systems and uncertainty models
are of interest for their potential applications to information fusion systems and hu-
man/machine interfaces. Below we take first steps in adapting Wendt’s constructions to
belief models.

A probability density on a finite, non-empty set X is a function p : X →R satisfying
0 ≤ p(x) and 1 = ∑x∈X p(x). A probability space is a pair (X , p) with p probabil-
ity density on X . Assume such spaces are equipped with powerset σ -algebras. Let p̂
be the induced measure defined by p̂(U) = ∑x∈U p(x). If (X , p) and (Y, q) are proba-
bility spaces, f : X → Y is measure zero reflecting if, given V ⊂ Y , q̂(V ) = 0 implies
p̂( f ∗(V ))= 0 (i.e., p̂◦ f ∗ on Y is absolutely continuous with respect to q̂ ). Let M0RP be
the category having probability spaces as objects and measure zero reflecting functions
as morphisms. In M0RP, identity functions are identity morphisms and composition is
function composition. M0RP a proper subcategory of M0R defined in [7].

A belief space is a pair (X , m) with X finite, non-empty set and m ∈Xμ . If (X , m)
and (Y, n) are belief spaces, a function f : X → Y is plausibility zero reflecting if
λ (n)(V ) = 0 implies λ (m)( f ∗(V )) = 0. for any V ⊂Y . Let P0R be the category having
belief spaces as objects and plausibility zero reflecting functions as morphisms. Identity
morphisms and composition in P0R are defined as in M0RP. Composition is well de-
fined: if f ∈P0R

(
(X ,m), (Y,n)

)
, g∈P0R

(
(Y,n), (Z,r)

)
, and W ⊂Z, then λ (r)(W ) = 0

implies λ (n)
(
g∗(W )

)
= 0 implies λ (m)

(
f ∗(g∗(W ))

)
= λ (m)

(
(g ◦ f )∗(W )

)
= 0.

Theorem 1. There is a faithful functor D : M0RP→ P0R defined on objects by

D(X , p) = (X , d(p)) (19)

where d(p)({x}) = p(x) and d(p)(U) = 0 for |U | �= 1. On morphisms, D( f ) = f .

Proof. D(X , p) ∈ |P0R| since d(p) ∈XB ⊂Xμ . Observe that

λ (d(p))(A) = ∑
U∩A �=φ

d(p)(U) = ∑
x∈A

d(p)({x}) = ∑
x∈A

p(x) = p̂(A)

for φ �= A ⊂ X . If f ∈M0RP
(
(X , p), (Y,q)

)
, then D( f ) is plausibility zero reflecting

since, 0 = λ (d(q))(B) = q̂(B) implies 0 = p̂
(

f ∗(B)
)

= λ (d(p))
(

f ∗(B)
)
. ��

Theorem 2. The Voorbraak map induces a faithful functor V : P0R→M0RP defined
on objects by

V (X , m) = (X , v(m)) (20)

where v(m)(x) = V(m)({x}). On morphisms V ( f ) = f . Moreover, the diagram below
of categories and functors is commutative



On Transformations between Belief Spaces 319

P0R
V �� M0RP

M0RP
D

�����������

��

where the vertical arrow is the identity functor.

Proof. V (X , m) ∈ |M0RP| since m ∈ Xμ implies 0 < Λ(m) which implies V(m) ∈
XB . To verify that V ( f ) is measure zero reflecting if f ∈ P0R

(
(X ,m), (Y,n)

)
, note

that 0 = v̂(n)(B) = ∑y∈B v(n)(y) = ∑y∈U λ (n)({y})/Λ(n) implies 0 = λ (n)({y}) for

each y ∈ B. This implies 0 = λ (m)( f ∗({y})) for each y∈ B, hence, 0 = v̂(m)( f ∗({y})).
Disjointness of the sets f ∗({y}) and additivity of v̂(m) yields 0 = v̂(m)( f ∗(U)). Com-
mutativity of the diagram implies that D is injective on objects, hence, M0RP can be
identified with a subcategory of P0R using D as embedding. ��
Theorem 3. : The Voorbraak functor V : P0R→M0RP is right adjoint to the functor
D : M0RP→ P0R.

Proof. For a belief space (X ,m) we must show that the function ε : X → X defined by
ε(x) = x is a plausibility zero reflecting map ε : D(V (X ,m))→ (X ,m) and that, given
any probability space (Y,q) and plausibility zero reflecting map f : D(Y,q)→ (X ,m),
there is a unique f # ∈ M0RP

(
(Y,q), V (X ,m)

)
for which the diagram below right is

commutative.

(Y,q)
f #

�� V (X ,m)

(X ,m)

D(V (X ,m))

ε

��

D(Y,q)
f #

��

f
�����������������

M0RP P0R

To establish the condition on ε , assume λ (m)(U) = 0. Note that

λ
(
d(v(m))

)
(U) = v̂(m)(U) = ∑

x∈U
λ (m)({x})/Λ(m).

If x ∈U and 0 < λ (m)({x}), then there exists A ⊂ X with x ∈ A and 0 < m(A). x ∈ A
implies A∩U �= φ , hence 0 < m(A) ≤ λ (m)(U) contradicting the assumption on U .
This implies λ

(
d(v(m))

)
(U) = 0. is plausibility zero reflecting. The definition ε and

the requirement of commutativity impose f # = f . f # is measure zero reflecting and
plausibility zero reflecting between the appropriate spaces. ��
Dempster’s Combination Rule induces a symmetric monoidal structure on P0R just as
product measures induce such a structure on M0RP. The tensor product on P0R is de-

fined as follows. Let X X×Y
π�� π ′ �� Y be the cartesian product and associated

projection functions given belief spaces, (X , m) and (Y, n). Define (X , m)⊗ (Y, n) =
(X×Y, m⊗n) where
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m⊗n =Φ0
(
ΦΣ (m◦π∗)

)⊕Φ0
(
ΦΣ (n ◦π ′∗)

)
.

This monoidal structure and related functors will be topics of a later article.
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Lower and Upper Covariance

Erik Quaeghebeur
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Abstract. We give a definition for lower and upper covariance in Walley’s theory of imprecise
probabilities (or coherent lower previsions) that is direct, i.e., does not refer to credal sets. It
generalizes Walley’s definition for lower and upper variance. Just like Walley’s definition of
lower and upper variance, our definition for lower and upper covariance is compatible with the
credal set approach; i.e., we also provide a covariance envelope theorem. Our approach mirrors
the one taken by Walley: we first reformulate the calculation of a covariance as an optimization
problem and then generalize this optimization problem to lower and upper previsions. We also
briefly discuss the still unclear meaning of lower and upper (co)variances and mention some
ideas about generalizations to other central moments.

Keywords: Variance, Covariance, Central moment, Theory of imprecise probabilities, Envelope
theorem.

1 Introduction

In the statistical and probabilistic literature, the variance and covariance of a random
variable are important quantities. The generalization of these and other concepts to
Walley’s [5] theory of imprecise probabilities – which encompasses, in some sense,
classical probability theory, Dempster–Shafer theory, and possibility theory – is usually
done by taking lower and upper envelopes (see, e.g., [3, 4]). Walley ([5], §G) gives a
more direct, equivalent definition of lower and upper variance. In this paper, we simi-
larly give a direct definition of the lower and upper covariance concepts.

In the rest of this introduction, we go over some necessary concepts from the theory
of classical and imprecise probabilities, respectively. Then follows Section 2, treat-
ing Walley’s definition of lower and upper variance. This forms a basis for Section 3,
which culminates in our definition for lower and upper covariance. The concluding
Section 4 briefly touches on further generalizations to other central moments and the
meaning of the concepts we have been discussing.

Throughout the paper, we give a running example, recognizable by its small print.

Concepts from classical probability theory. In the classical setting, a subject is un-
certain about the value of some random variable, that, e.g., represents the outcome
of an experiment. We here only consider real-valued, bounded random variables,
which – because they can be seen as uncertain gains or losses – we call gambles.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 323–330, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Even though he may be uncertain, the subject can express what incomplete knowl-
edge he has by giving an estimate for a number of gambles. In classical probability
theory, these estimates are expected values, or fair prices for the gambles ([2]). These
expected values are collected in the subject’s expectation functional or prevision P,
which maps gambles to fair prices (real numbers). We assume that the subject has spec-
ified prices for all gambles defined on some possibility space.

If the subject wants his prices to be reasonable and consistent, such a prevision must
satisfy some rationality criteria called coherence conditions ([5], §2.8). Let f and g be
any two gambles and let λ be a real number, then these criteria are:1

Boundedness: inf f ≤ P f ≤ sup f , (1)

Linearity: P(λ · f + g) = λ ·P f + Pg. (2)

Assume that P satisfies them. Call P the set of previsions satisfying these criteria.2

Let us introduce our running example: Take the unit interval [0,1] as the possibility space and
let U be the prevision corresponding to the uniform distribution on this possibility space. We shall
be using two gambles, the identity gamble id and 1− id. We then find U id = U(1− id) = 1

2 .

Variance and covariance. When focusing on the uncertainty governing the outcome
of some gambles, there are – apart from their expected value – also other so-called
statistics that summarize what we know about the gambles. One class of these are the
central moments corresponding to a given prevision P: let H be a finite multiset of
gambles,3 then the corresponding central moment MPH is defined by

MPH := P
(
∏h∈H (h−Ph)

)
. (3)

In this paper, we are mainly interested in the case where H contains two gambles, so
to the so-called second order central moments. The first of these is the variance of f ,
defined by taking H = { f , f} above: (even in f )

VP f := P( f −P f )2 = P f 2− (P f )2. (4)

The second, the covariance of f and g, is defined by taking H = { f ,g}: (odd in f
and g, even in ( f ,g))

CP{ f ,g} := P
(
( f −P f ) · (g−Pg)

)
= P( f ·g)−P f ·Pg. (5)

For both Equation (4) and (5) the last expression follows from the boundedness (1) and
linearity (2) of P. They show that both VP f and CP{ f ,g} are continuous functions of P,
a fact that will be of use later on.

1 Unless noted otherwise, all introduced symbols retain their meaning in the rest of the paper.
For clarity, we do not use parentheses for function application, but only for grouping.

2 We choose the weak* topology (i.e., the topology of pointwise convergence) on the set P
([5], §D3). This allows us to later talk about the compactness of its subsets (e.g., credal sets)
and about the continuity of functions defined on it (i.e., that have previsions as an argument).

3 A multiset can contain the same object multiple times, but – like a set – is unordered.
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For our running example, we find that VU id = VU (1− id) = 1
12 and CU{id,1− id}=− 1

12 .

Concepts from the theory of imprecise probabilities. The theory of imprecise prob-
abilities and other generalizations of classical probability theory were all conceived to
model aspects of uncertainty that cannot be captured classically. The major difference
is that now the subject’s prevision – which specifies unique fair (buying and selling)
prices for gambles – is replaced by a lower prevision P and an upper prevision P, which
respectively specify acceptable supremum buying prices and acceptable infimum sell-
ing prices (both real numbers) that need not coincide.

In the context of this paper, where lower and upper previsions are defined for all gam-
bles, it is sufficient to give either one of them, because they are related by conjugacy:
P f =−P(− f ). We shall here take a lower prevision to be the fundamental concept and
an upper prevision the derived one.

The conditions (1) and (2) now get replaced by a weaker set of coherence conditions
([5], §2.3), which we assume P and P to satisfy: (take λ positive)

Boundedness: inf f ≤ P f ≤ P f ≤ sup f , (6)

(Mixed) super and sublinearity:

λ ·P f + Pg≤ P(λ · f + g)≤ λ ·P f + Pg≤ P(λ · f + g)≤ λ ·P f + Pg. (7)

For our example, the subject’s lower (upper) prevision is a so-called linear-vacuous mixture:
U = δ ·U +(1−δ ) · inf, U = δ ·U +(1−δ ) · sup, with δ ∈ [0,1]. Then U id =U(1− id) = δ

2 and

U id = U(1− id) = 1− δ2 . Further on, we also encounter the two gambles 1
2 ·
(
id+(1− id)

)
= 1

2
and 1

2 ·
(
id− (1− id)

)
= id− 1

2 ; for these, we find U 1
2 = U 1

2 = 1
2 , U(id− 1

2 ) = − 1−δ
2 , and

U(id− 1
2 ) = 1−δ

2 . Taking δ to be 0 or 1 gives us the vacuous4 or uniform case, respectively.

The information encoded in the lower prevision P can also be represented by the
compact convex set M P of previsions that dominate it ([5], §3.3). This so-called credal
set is defined by M P := {P ∈P |P≥ P}, where the inequality is a universally quanti-
fied pointwise one. The lower or upper prevision for any gamble can be calculated as a
lower or upper envelope of the previsions for this gamble present in M P:

P f = minP∈M P P f and P f = maxP∈M P P f . (8)

The minimum and maximum are always attained in an extreme point of M P.

2 Lower and Upper Variance

In this section, we state the results found in Appendix G of Walley’s book [5].

Variance as an optimization problem. What we need to do first, is take another look at
the definition (4) of the variance of a gamble. We rewrite and reformulate it as follows: For
all real numbersμ , it holds thatVP f = P

(
( f −μ)+(μ−P f )

)2 = P( f −μ)2−(P f −μ)2,
so VP f +(P f −μ)2 = P( f −μ)2. The second left-hand side term is the expression for a
parabola with a minimum 0 forμ in P f ; the right-hand side is therefore also an expression

4 With a vacuous lower (or upper) prevision, the subject expresses a total lack of knowledge.
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for a parabola, with the variance as a minimum, also attained in P f . So an alternative
definition for the variance is

VP f = minμ∈R P( f − μ)2. (9)

Lower and upper variance. Walley ([5], §G1) takes this last definition (9) as inspira-
tion to define the lower and upper variance of a gamble: (even in f )

V P f := minμ∈R P( f − μ)2 and V P f := minμ∈R P( f − μ)2. (10)

In this definition, minima and not infima are used, even though R, the set of reals, is
open. Let us justify this. First, let P stand for both P and P, so we can do a parallel
derivation for both cases. Furthermore, take ε = μ−Pf , then

P( f − μ)2 = P( f −P f − ε)2 ≥ P( f −P f )2 + ε2 + P
(−2 · ε · ( f −P f )

)
≥ P( f −P f )2 + ε2 if ε ≤ 0

> P( f −P f )2 if ε < 0, i.e., if μ < P f . (11)

The first inequality follows from (mixed) superadditivity (7). An entirely similar deriva-
tion, now with ε = P f − μ , gives us

P( f − μ)2 > P( f −P f )2 if ε < 0, i.e., if μ > P f . (12)

Together with the fact that the interval [P f ,P f ] is compact and that P( f − μ)2 is a
continuous5 function of μ , inequalities (11) and (12) show that, for both the case of the
lower and upper variance, a minimum is attained in a μ that belongs to [P f ,P f ].

For our running example, we can use this optimization domain restriction to write VU id =
min
{

U(id−μ)2
∣∣ μ ∈ [ δ2 ,1− δ2 ]

}
and VU id = min

{
U(id−μ)2

∣∣ μ ∈ [ δ2 ,1− δ2 ]
}

. Working this

out, we find that for both the minimum is attained for μ = 1
2 ; this gives VU id = δ

12 and VU id =
1
4 − δ6 . Similarly, VU

1
2 = VU

1
2 = 0, VU (id− 1

2 ) = δ
12 , and VU (id− 1

2 ) = 1
4 − δ6 .

The variance envelope theorem. Walley ([5], §G2) also proves the variance envelope
theorem; it allows calculation of lower and upper variances via the credal set:

V P f = minP∈M P VP f and V P f = maxP∈M PVP f . (13)

In Walley’s proof of this theorem, the minimax theorem is used, whose application
requires the continuity of VP f as a function of P, which we mentioned below (5). Note
that the maximum above is not necessarily attained in an extreme point of M P ([5],
§G3), in contrast to the situation for upper previsions (8).

3 Lower and Upper Covariance

We are now ready to attack this paper’s central topic: to find a direct definition for the
lower and upper covariance of a pair of gambles, i.e., one that does not involve credal

5 A proof consists of the ε–δ -technique together with (7).
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sets. The approach we are going to take is analogous to the one Walley [5] has taken for
the lower and upper variance of a gamble: (i) We first define the covariance of a gamble
as an optimization problem and (ii) Then use this to find expressions for the lower and
upper covariance of a pair of gambles. However, for reasons that will become clear at
that point, we are going to posit a covariance envelope theorem that mirrors the variance
envelope theorem (13) right in between these two steps.

Covariance as an optimization problem. As we did in to obtain (9), we first
reformulate the definition (5) of covariance as an optimization problem: For all
real μ and ν , it holds that CP{ f ,g} = P

(
( f − μ+ μ−P f ) · (g−ν+ν−Pg)

)
=

P
(
( f − μ) · (g−ν))− (P f − μ) · (Pg−ν), so then CP{ f ,g}+ (P f − μ) · (Pg− ν) =

P
(
( f − μ) · (g− ν)). The second left-hand side term is the expression in (μ ,ν) for a

hyperbolic paraboloid (or saddle surface); the same therefore again holds for the right-
hand side. Its saddle point (P f ,Pg) can be reached using a minimax (or maximin)
operator. This is clearer after a substitution and some rewriting: let α and β be real
numbers such that μ = α + β and ν = α −β , then it holds for all real α and β that
P
(
( f+g

2 −α)2− ( f−g
2 − β )2

)
= CP{ f ,g}+ (P f+g

2 −α)2− (P f−g
2 − β )2, which gives

rise to the following defining expression:

CP{ f ,g}= VP
f+g

2 −VP
f−g

2 = optα ,β∈RP
(
( f+g

2 −α)2− ( f−g
2 −β )2

)
, (14)

where optα ,β∈R can be either minα∈R maxβ∈R or maxβ∈R minα∈R. Because P is linear
and its argument is the sum of terms in either α or β , it is the same whether we use a
maximin or minimax operator.

Proposing a definition for lower and upper covariance would ideally have consisted
of just replacing the linear prevision P with the lower prevision P and its conjugate
upper prevision P. However, the fact that we have two operators to choose from leaves
us with a dilemma: as neither P or P is linear, does it matter which operator to use for
the definition of lower and upper covariance? Perhaps working with credal sets can shed
some light on this issue and clarify which of the two choices should be taken (if they do
not turn out to be equivalent). This is the next topic.

However, there is one thing we can already say: Independently of the operator, us-
ing the same reasoning that led to (11) and (12), it follows that the minimizing α be-
longs to [P f+g

2 ,P f+g
2 ] and – invoking conjugacy – that the maximizing β belongs to

[P f−g
2 ,P f−g

2 ].

For our running example, where we let f = id and g = 1− id, these intervals respectively
become the singleton { 1

2} and [− 1−δ
2 , 1−δ

2 ].

The covariance envelope theorem. Due to the confusing double options we have –
with expression (14) – for generalizing the definition of covariance to imprecise prob-
abilities, we need something that can help us choose between them (or show they are
both good enough). This something is the covariance envelope theorem, which now
rather functions as a definition, and not a theorem to be proven:

CP{ f ,g} := minP∈M PCP{ f ,g} and CP{ f ,g} := maxP∈M PCP{ f ,g}. (15)
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It states that the lower and upper covariance corresponding to P can be seen as lower
and upper envelopes over the credal set M P of classical covariances. Due to the com-
pactness of M P and the continuity of the covariance as a function of P, the minimum
and maximum are attained, so this theorem is sensible as an indirect definition. Note
that the minimum and maximum above are not necessarily attained in an extreme point
of M P, in contrast to the situation for lower and upper previsions (8). This theorem is
an immediate analog of the variance envelope theorem (13) and it expresses a desirable
if not conceptually necessary property.

Looking back at the two equivalent definitions of covariance given by (14), it be-
comes clear we must investigate whether the maximin and minimax operator encoun-
tered there can be interchanged with the maximum or minimum over P encountered
in (15). Let us write this out more explicitly. First define the convex functions u and v
by uα = ( f+g

2 −α)2 and vβ = ( f−g
2 −β )2 then the question is: Which, if any, of the

following statements can we ascertain to be true:

minP∈M PCP{ f ,g} ?= optα ,β∈R minP∈M P P(uα− vβ ),

maxP∈M PCP{ f ,g} ?= optα ,β∈R maxP∈M P P(uα− vβ ),
(16)

where, as before, optα ,β∈R can be either minα∈R maxβ∈R or maxβ∈R minα∈R.
First of all, note that consecutive minimum operators or consecutive maximum op-

erators can always be interchanged.
Whether the interchange of a minimum and a maximum operator is allowed, can

only be checked after a more thorough study of the functions involved: As function
application is a linear operation, P(uα − vβ ) is linear in P (and thus both convex and
concave); as P is linear, P(uα − vβ ) is convex in α and concave in β . Furthermore,
P(uα− vβ ) is continuous in α , β , and P. Together with the fact that the maximum or
minimum is always attained in some convex compact set, this is enough to do a first
operator interchange, i.e., we can apply the minimax theorem ([5], §E6) if needed. We
find the following modified statements:

minP∈M P CP{ f ,g}
{

?= minα∈R minP∈M P maxβ∈R P(uα− vβ ),
?= maxβ∈R minP∈M P minα∈R P(uα− vβ ),

maxP∈M P CP{ f ,g}
{

?= minα∈R maxP∈M P maxβ∈R P(uα− vβ ),
?= maxβ∈R maxP∈M P minα∈R P(uα− vβ ).

As maximizing is a convex operation and minimizing is a concave operation,
maxβ∈R P(uα − vβ ) is convex as a function of P and α and minα∈R P(uα − vβ ) is
concave as a function of P and β . This means that a second application of the maximin
theorem is not possible, and a second interchange is not generally possible for all cases.
We can therefore only be sure about two of the four initial statements (16):

minP∈M PCP{ f ,g}= minα∈R maxβ∈R P(uα− vβ ),

maxP∈M PCP{ f ,g}= maxβ∈R minα∈R P(uα− vβ ).
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Thus, the covariance envelope theorem implies a direct definition of lower and upper
covariance, the starting point of what follows just below.

Lower and upper covariance. By combining the covariance envelope theorem (15)
with the last expressions we encountered, we find definitions for the lower and upper
covariance of a pair of gambles that use a lower or upper prevision, but not the corre-
sponding credal set: (odd in f and g, even in ( f ,g))

CP{ f ,g}= minα∈R maxβ∈R P
(
( f+g

2 −α)2− ( f−g
2 −β )2

)
,

CP{ f ,g}= maxβ∈R minα∈R P
(
( f+g

2 −α)2− ( f−g
2 −β )2

)
.

(17)

For our running example, we know we must take α = 1
2 , so then

CU{id,1− id}= maxβ∈RU
(−(id− 1

2 −β )2
)

=−minμ∈R U(id−μ)2 =−VU id =− 1
4 + δ

6 ,

CU{id,1− id}= maxβ∈RU
(−(id− 1

2 −β )2
)

=−minμ∈R U(id−μ)2 =−VU id =− δ12 .

An interesting property of classical covariance is that it can be written as a difference of
two variances (see equation (14)). For our generalized definition, this identity becomes
a string of inequalities:

V P( f+g
2 )−VP( f−g

2 )≤CP{ f ,g}
≤min

{
V P( f+g

2 )−V P( f−g
2 ),V P( f+g

2 )−V P( f−g
2 )
}

≤max
{

V P( f+g
2 )−V P( f−g

2 ),V P( f+g
2 )−V P( f−g

2 )
}

≤CP{ f ,g} ≤V P( f+g
2 )−V P( f−g

2 ). (18)

These inequalities are obtained starting from the definitions of lower and upper covari-
ance (17). They are related to lower and upper variance (10) by using (mixed) super and
sublinearity (7).

For our running example, all but the third of the inequalities in (18) become equalities.

4 Conclusions

Musing on other lower and upper central moments. We started with the definition (3)
of a central moment and then restricted ourselves to the second order ones. An obvious
(still open) question would now be: Can we generalize the ideas of this paper to higher
order central moments?

Independently of whether it is possible or not to give definitions for arbitrary lower
and upper central moments using a lower or upper prevision only, it seems desirable
that these definitions satisfy a central moment envelope theorem:

MPH := minP∈M P MPH and MPH := maxP∈M P MPH . (19)

As before, we could try to write the definition (3) of a central moment as an optimiza-
tion problem by replacing each h−Ph by (h− μh)+ (μh−Ph) (where h ∈H and the
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μh are real numbers) and separating the term P
(
∏h∈H (h−μh)

)
, as we did to obtain (9)

and (14). This could lead to central moments defined as optimization problems; the dif-
ficulty with this is that we are going to be dealing with much more complex multilinear
expressions (in the μh) than parabola or saddle surfaces.

But what does it mean? Another thing that is still an open question – to me personally –
is: What is the meaning of a lower and upper variance and covariance?

An intuitive interpretation is the one typically given to their precise counterparts:

(i) variance is a statistic describing how much a gamble is believed to vary,
(ii) covariance is a statistic describing how and how much a pair of gambles is be-

lieved to vary together.

I have found no satisfactory behavioral interpretation; they could be seen as prices – as
we do for previsions –, but trying to say for what leads to all too convoluted expla-
nations, I think. Perhaps variance and covariance should just be seen as useful for the
description of probability density or mass functions, and any ‘generalization’ as math-
ematically interesting at most.

On the other hand, the fact that no appealing, or intuitively simple behavioral
interpretation is known to me, does not mean that it could not be found, e.g., in the
economic literature or in other non-classical theories for uncertainty and indeterminacy.
Couso et al. [1], for example, give a nice overview of definitions for the variance of a
fuzzy random variable and their interpretation.
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of the Fifth International Symposium on Imprecise Probability: Theories and Applications
(ISIPTA 2007, Prague, Czech Republic), pp. 135–144. Action M Agency, SIPTA, Prague
(2007)

2. De Finetti, B.: Theory of Probability. Wiley, Chichester (1974–1975)
3. Hall, J.W.: Uncertainty-based sensitivity indices for imprecise probability distributions. Re-

liab. Eng. Syst. Saf. 91(10-11), 1443–1451 (2006)
4. Kreinovich, V., Xiang, G., Ferson, S.: Computing mean and variance under Dempster-Shafer

uncertainty: Towards faster algorithms. Internat. J. Approx. Reason 42(3), 212–227 (2006)
5. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London

(1991)



Some Properties of the dK-Variance for
Interval-Valued Random Sets
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Abstract. The suitability of the family of dK -distances for intervals to quantify and estimate
the variability of a random interval with respect to its Aumann expectation is discussed. To be
precise, we will review some properties of the metrics and the associated variance. Then, we
will show that the sample variance is a consistent estimator of the population one, which make
it adequate for inferential problems. The use of the dK-variance will be illustrated by means of a
real-life example.

Keywords: Random interval, dK -Metric, Variance, Estimation.

1 Introduction

The random intervals are useful to model many random experiments in which the char-
acteristic observed on each outcome cannot be described by means of a single real
number, but rather by a range or interval. For instance, whenever fluctuations of eco-
nomical or medical magnitudes over different days are observed, or whenever physical
measures recorded by a machine with a known maximum error are obtained.

The measurement of the variability about a central point is one of the most important
issues in Statistics. If the expected value is considered and the aim is to quantify the
dispersion (or, in other words, the error of predicting the values of a variable X by
the expected value E(X)), it is common to consider the expected value of the square-
distances to the mean (i.e., Vard(X) = E(d2(X ,E(X)))). The utility of this concept
regarding, for instance, the least-squares criterion is strongly connected with the Fréchet
property, which holds whenever

E(X) = argmin
U

E(d2(X ,U))

and, in this case, Vard(X) = minU E(d2(X ,U)). However, the fulfilment of this property
depends on the tandem metric/expected value being considered.

When the usual interval arithmetic (based on the Minkowski addition and the product
by a scalar in R) is considered, the coherent expected value in terms of the SLLN is
the Aumann’s one (see [1]). Specifically, let Kc(R) be the space of nonempty closed
and bounded intervals of R, (Ω ,A ,P) be a probability space, and X : Ω →Kc(R)
be an interval-valued random set (i.e., a Borel-measurable mapping w.r.t. the topology

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 331–337, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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generated by dH ). The particularization of the Aumann expectation can be expressed as
the compact interval EA(X) = [E(infX),E(supX)], provided that this interval exists.

On the other hand, one of the best known distances in Kc(R) is the particularization
of the Hausdorff metric, that is,

dH(A,B) = max{| infA− infB|, |supA− supB|}.

One drawback of this metric from a statistical point of view is that it is not easy-to-use
in applying the least squares criterion when the usual definition of mean square error
and the Aumann expected value are considered, since it is well-known that the Fréchet
property is not satisfied (see [8]).

Example 1. ([8]). Let X be an interval-valued random set so that

midX =

{
2 , with probability p1 = 2/3

3 , with probability p2 = 1/3

and

sprX =

{
1 , with probability q1 = 2/3

2 , with probability q2 = 1/3

where ‘mid’ stands for the centre of the interval and ‘spread’ stands for the radius.
Thus, it is possible to check that EA(X) = [1,11/3], whereas the real interval which

minimizes E
(
d2

H(X ,U)
)

corresponds to U = [1,3.4].

To avoid this inconvenience, the particularization of the ρ2 distance, which is defined
in terms of the support functions, can be considered (see [3]). Let sA : R→ R be the
support function of the interval A, which is defined so that sA(u) = supa∈A〈a,u〉 for
every u ∈ R, 〈·, ·〉 being the usual inner product on R. The support function restricted
to the unit sphere S0 = {−1,1} characterizes the intervals; specifically, sA(1) = supA
and sA(−1) = − infA. If μ denotes the Lebesgue measure on the unit sphere, the ρ2

distance is expressed as:

ρ2(A,B) =
∫

S0
(sA(u)− sB(u))2dμ(u) =

1
2
(supA− supB)2 +

1
2
(infA− infB)2

This metric has interesting properties in connection with the statistical analyses. How-
ever, from an intuitive point of view, it presents some inconveniences, as also happens
with the Hausdorff metric.

Example 2. ([2]) It is straightforward to check that the Hausdorff metric assigns the
same distance to the two pairs of intervals A1 = [0,5], B1 = [6,7] and A2 = [0,5], B2 =
[6,10]. However, it seems more intuitive for a distance measure to assign a greater value
to the second pair.

In an analogous way, it is possible to show that the ρ2 distance between the intervals
C1 = [−2,2] and D1 = [−1,1] is the same that the one between C2 = [−2,1] and D2 =
[−1,2], whereas it seems more natural for the second one to be greater.
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Bertoluzza et al.’s metric ([2]) is an L2-type metric that has a better intuitive behaviour
in situations like that in Example 2. It is defined in terms of a non-degenerate probability
measure W on the measurable space ([0,1],β[0,1]) as follows:

dW (A,B) =
(∫

[0,1]
( fA(λ )− fB(λ ))2dW (λ )

)1/2

,

where fA(λ ) = λ supA +(1−λ ) infA, for all λ ∈ R. The distance dW can be alterna-
tively expressed in terms of a discrete measure −→ϕ W = (ϕW

1 ,ϕW
2 ,ϕW

3 ) as

dW (A,B) =
(
ϕW

1 (supA− supB)2 +ϕW
2 (infA− infB)2 +ϕW

3 (mid A−mid B)2)1/2
.
(1)

In addition, if
∫
[0,1] tdW = 1/2, dW can be expressed in an intuitive way in terms of the

centre and the spread of the intervals as

dW (A,B) =
(
(mid A−mid B)2 +σ2

W (spr A− spr B)2)1/2
, (2)

where σ2
W =

∫
[0,1](2λ − 1)2dW (λ ). Thus, dW takes into account the ‘location’ of the

intervals, through the distance between the mid-points, and the ‘degree of imprecision’,
through the weighted distance between the spreads. Note that since σ2

W ≤ 1, then the
relative importance of the spreads is always lower than or equal to that of the centres
(see [9]).

Bertoluzza et al.’s metric and ρ2 can be generalized by considering a wide family of
L2-distances w.r.t. certain kernels (see [5]). To be precise, the dK-distance is defined as

dK(A,B) =
∫

S0
(sA(u)− sB(u))(sA(v)− sB(v))dK(u,v)

where K : S0×S0 →R is a symmetric and definite positive kernel. The dK distance can
be also expressed in a way similar to (1) as follows:

dK(A,B) =
(
[K(1,1)+ K(1,−1)](supA− supB)2

+[K(−1,−1)+ K(1,−1)](infA− infB)2−4K(1,−1)(mid A−mid B)2)1/2
(3)

It is easy to show that dW can be written as a distance of the family dK by considering
the kernel

K(u,v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ 1

0 λ 2dW (λ ) if u = v = 1∫ 1
0 (1−λ )2dW (λ ) if u = v =−1

−∫ 1
0 λ (1−λ )dW(λ ) if u =−v

(4)

However, there are metrics in the dK family that cannot be expressed as a dW metric.
Thus,

Example 3. Consider

K(u,v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/4 if u = v = 1

1/4 if u = v =−1

1/8 if u =−v
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By comparing (1) and (3) it is easy to show that there is no discrete measure φW that
would allow us write this dK distance as a dW distance.

One of the advantages of the metrics in the dK-family is that they can be expressed
in terms of an inner product in the space of continuous functions defined on R by
considering the restriction of the support function to the unit sphere (see [5]), that is,

dK(A,B) = (〈sA− sB,sA− sB〉K)1/2,

where 〈·, ·〉K is the inner product associated with the L2-distance in the space of the
continuous functions w.r.t. the kernel K.

2 The dK-Variance for Random Intervals

The dK-variance is a particularization to the interval case of the one considered in [5]
(see also, [4], [6] and [7]). Its expression corresponds to that of the above-introduced
variance w.r.t. a general metric d, that is, the dK-variance of an interval-valued random
set X is given by

VardK (X) = E(d2
K(X ,EA(X)),

whenever this exists.
This variance fulfils most of the suitable properties of a classical variance. However,

in order to obtain that VardK (X) = VardK (−X) (where the usual product of an interval
by a scalar is considered) it is necessary to assume that the kernel satisfies that K(1,1)=
K(−1,−1); otherwise this suitable property fails.

Example 4. Consider a probabilistic space (Ω ,A ,P) with Ω = {ω1,ω2}, A = P(Ω)
and P(ωi) = 1/2 for i = 1,2, and define the interval-valued random set X associated
with (Ω ,A ,P) as X(ω1) = [0,2] and X(ω2) = [0,4]. Then, it is easy to show that
VardK (X) = K(1,1) and VardK (−X) = K(−1,−1).

For this reason, from now we will choose a kernel K : {−1,1}×{−1,1}→ R so that
the associated matrix is doubly symmetric and positive definite.

3 Estimation of the dK-Variance

Let X : Ω → Kc(R) be an interval-valued random set with finite variance σ2
X =

VardK (X) and {Xi}n
i=1 a random sample obtained from X (i.e., a set of independent

random elements distributed as X). The variance σ2
X can be estimated, as usual, by its

analogue sample version, that is,

σ̂2
n (X) =

1
n

[
d2

K(X1,Xn)+ . . .+ d2
K(Xn,Xn)

]
where the sample mean Xn = (1/n)(X1 + . . .+Xn) is defined in terms of the Minkowski
sum and the product of an interval by a scalar.
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The linearity of the inner product and the properties of the support function allow us

to express σ̂2
n (X) as

σ̂2
n (X) =

1
n

n

∑
i=1

〈sXi ,sXi〉K−〈sXn
,sXn
〉K .

From this expression, and by applying the SLLN for real- and Hilbert-valued random

elements, it is possible to verify that σ̂2
n (X) converges almost surely to

E
(〈sX ,sX 〉K

)−〈sEA(X),sEA(X)〉K = E
(
〈sX − sEA(X),sX − sEA(X)〉K

)
= E

(
d2

K(X ,EA(X))
)

= σ2
X ,

i.e., the sample dK-variance is a strongly consistent estimator of the population dK-
variance, which supports its suitability.

4 Simulation Studies

In order to illustrate empirically the consistency result for the sample dK-variance, some
simulations have been carried out.

In this section we have chosen as dK-distance that of Bertoluzza et al.’s correspond-
ing to the Lebesgue measure, that is, K is that in (4) with W = Lebesgue measure on
[0,1]. Let X be an interval-valued random set with finite variance σ2

X and let {Xi}n
i=1 be

the simple random sample obtained to analyze the estimator σ̂2
n (X). Different distribu-

tions for midX and sprX , as well as different sample sizes n have been considered.

Table 1. Empirical estimate of dK-variance

Theoretical situation n E( ̂σ 2
n (X)) MSE

sprX ∼ χ2
1 10 1.4988 0.6980

midX ∼ N(0,1) 30 1.6072 0.2606

independent 50 1.6313 0.1582

100 1.6487 0.0800

σ 2
X = 5/3 500 1.6635 0.0167

sprX ∼ χ2
1 Y ∼ N(0,1) 10 3.2565 9.2879

independent 30 3.5713 3.6265

midX = sprX +Y 50 3.5936 2.0418

100 3.6209 1.0829

σ 2
X = 11/3 500 3.6612 0.2137
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The distribution of the sample dK-variance σ̂2
n (X) has been approximated by Monte

Carlo method on the basis of 10,000 iterations, and the corresponding mean value and
mean square error(MSE) have been computed.

In Table 1 the obtained results are gathered. We can appreciate that in both theoretical
situations (one in which mids and spreads are dependent and another one in which they

are independent) the considered estimator σ̂2
n (X) for the variance of X seems to be

asymptotically unbiased, and the mean square error is closer to 0 as n increases.

5 Example

The consistency of the sample dK-variance and the suitable theoretical properties that
it fulfils for the kernels considered here make it suited for inferences concerning the
variability about the Aumann expected value. In this section a point estimation will be
illustrated, although further statistical analyses, as confidence intervals or hypothesis
testing can be developed.

In Table 2 a sample data set corresponding to the systolic blood pressure ranges over
a day of 59 patients of Hospital Valle del Nalón of Asturias (Spain) is shown. Since only
the minimum and maximum value over a day were recorded, it is suitable to represent
the sample values as realizations of an interval-valued random set X . The aim is to
estimate the degree of variability of the systolic blood pressure range of the patients.

Table 2. Systolic blood pressure ranges during a day

11.8-17.3 11.9-21.2 9.8-16.0 10.4-16.1 12.2-17.8 9.7-15.4 13.1-18.6 12.7-18.9

8.7-15.0 10.5-15.7 11.3-21.3 14.1-25.6 12.0-17.9 14.1-20.5 10.8-14.7 10.1-19.4

9.9-16.9 11.5-19.6 10.9-17.4 12.6-19.7 9.9-17.2 12.8-21.0 9.9-20.1 11.3-17.6

9.4-14.5 8.8-22.1 11.4-18.6 14.8-20.1 11.3-18.3 14.5-21.0 11.1-19.2 9.4-17.6

12.0-18.0 11.6-20.1 10.2-15.6 10.0-16.1 10.2-16.7 10.3-15.9 15.9-21.4 10.4-16.1

10.2-18.5 13.8-22.1 10.6-16.7 11.1-19.9 8.7-15.2 11.2-16.2 13.0-18.0 12.0-18.8

13.6-20.1 10.3-16.1 9.5-16.6 9.0-17.7 12.5-19.2 9.2-17.3 11.6-16.8 9.7-18.2

8.3-14.0 9.8-15.7 12.7-22.6

The sample mean of X is [11.1881,18.1678], and the sample variance is σ̂2
n (X) =

3.582, so σ̂n(X) = 1.8929. Thus, we can conclude that the estimated expected value for
the systolic blood pressure range is [11.1881,18.1678], with an approximated disper-
sion of 1.8929 about this value.
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Non-decreasing Lists of Non-negative Real
Numbers
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Abstract. Motivated by the study of $+
n -valued distances, where $+

n is the set of distance dis-
tribution functions with range in {0, 1

n , . . . , n−1
n ,1}, we deal with triangular conorms defined on

the bounded lattice Σn of non-decreasing lists (a1, . . . ,an) ∈ [0,+∞]n equipped with the natural
(product) order. Using triangular conorms on [0,+∞] and triangular norms on {0,1, . . . ,n} we
describe different classes of appropriate triangular conorms on [0,+∞]n.

Keywords: Lattice, Generalized distance, Probabilistic metric space, t-Norm, t-Conorm, Discrete
t-norm, Triangle inequality.

1 Introduction

The history of triangular norms started with the paper “Statistical Metrics” (K. Menger,
1942). The main idea of Karl Menger was to introduce the notion of a space in which
distances between points are determined by probability distribution functions rather
than by real numbers. To extend the triangle inequality to this setting, he employed a
function T from [0,1]2 to [0,1], which he called a triangular norm (t-norm). The origi-
nal set of axioms for t-norms was considerably weaker, including among others also the
functions which are known today as triangular conorms. In 1961, in the paper “Asso-
ciative functions and statistical triangle inequality”, Abe Sklar and Berthold Schweizer
provided the axioms of t-norms as they are used today and, in 1962, Sherstnev gave
a redefinition of statistical metric space by defining the concept of triangle function.
Many results concerning t-norms and triangle functions were obtained in the course of
this development, most of which are summarized in [6]. An excellent book on t-norms
and applications is [3]. Recently, relevant publications on t-norms are [5] and [1]. Moti-
vated by the fact that in most practical situations it is sufficient to reduce the range [0,1]
of probabilities to some finite subset of this interval, we deal with distance distribution
functions with range in {0, 1

n , . . . , n−1
n ,1} and we pay attention to the problem of finding

appropriate triangular functions to be used in the triangle inequality condition.
In this paper we call triangular norm any binary operation defined on a bounded

partially ordered set satisfying the Sklar and Schweizer axioms.

2 Preliminaries

Let (L;≤) be a bounded lattice. We denote by 0 and 1 the minimum and maximum
elements respectively (0 < 1), and x∧ y = inf{x,y}, x∨ y = sup{x,y} for all x,y in L.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 341–348, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Definition 1. A triangular norm (briefly t-norm) on L is a binary operation T : L×L→
L such that for all x,y,z ∈ L the following axioms are satisfied:

(1) T (x,y) = T (y,x) (commutativity)
(2) T (T (x,y),z) = T (x,T (y,z)) (associativity)
(3) T (x,y)≤ T (x′,y′) whenever x≤ x′, y≤ y′ (monotonicity)
(4) T (x,1) = x (boundary condition)

A triangular conorm (t-conorm for short) is a binary operation S : L×L→ L which, for
all x,y,z ∈ L, satisfies (1)-(3) and S(x,0) = x.

Example 1. Basic examples of t-norms and t-conorms on a lattice L are the well-known
drastic TD and SD and the infimum T∧ and the supremum S∨ given by: T∧(x,y) = x∧ y
and S∨(x,y) = x∨ y.

A simple but important particular case is L = {0,1,2, . . . ,n} equipped with the usual
ordering. In addition to TD and TM (now TM(x,y) = min(x,y) = T∧(x,y)), another
basic t-norm on L can be considered: TŁ(x,y) = max(0,x + y− n), that we call the
Łukasiewicz t-norm. Also we can consider the bounded sum or Łukasiewicz t-conorm
SŁ(x,y) = min(x + y,n). Note that (TD,SD), (TM,SM) and (TŁ,SŁ) are dual pairs with
respect to the unique strong negation on L: N(x) = n− x.

Let L1 and L2 be bounded lattices. We denote by Ti, Si, i = 1,2, the family of t-
norms and t-conorms on Li respectively. Let ϕ : L1 → L2 be an isomorphism (ϕ is a
bijection such that ϕ and ϕ−1 are order-preserving) then we can associate to each t-
norm (t-conorm) T1 (S1) on L1 a t-norm (t-conorm) T2 (S2) on L2 defined by T2(x,y) =
ϕ(T1(ϕ−1(x),ϕ−1(y))) (S2(x,y) = ϕ(S1(ϕ−1(x),ϕ−1(y)))) for all x,y ∈ L2. Thus we
have a correspondence one-to-one from T1 to T2 (from S1 to S2). In this sense we can
say that the sets T1 and T2 (S1 and S2) are equal (up to the isomorphism ϕ).

Proofs and more details on t-norms defined on bounded posets can be found in [2],
[4] and [5].

In 1967, E.Trillas ([7, 8]) introduced the notion of generalized metric space, when
considering abstract metrics valued in ordered semigroups, unifying with this approach
the real metric structures of M. Fréchet and the probabilistics metric spaces of K.
Menger. We adopt here as ordered semigroup a bounded lattice (L;≤) with a t-conorm
S defined on it.

3 $$$+
n -Valued S-Distances

Definition 2 (Generalized Metric Space). Given a bounded lattice (L;≤) and a t-
conorm S on L and a non-empty set X, we say that a function d : X ×X → L is an
L-valued S-distance on X if the following conditions hold for all p,q,r ∈ X:

(i) d(p,q) = 0⇔ p = q, where 0 is the minimum of L.
(ii) d(p,q) = d(q, p)
(iii) S-triangle inequality:

d(p,r)≤ S(d(p,q),d(q,r)) (1)
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In this case we say that X is an (L,S,d)-metric space.

Example 2 (Ordinary Metric Spaces). The ordinary metric spaces are the
([0,+∞],S,d)-metric spaces where [0,+∞] is equipped with the usual order and
S(a,b) = a + b.

Example 3 (Probabilistic Metric Spaces)
Let $+ be the set of functions F : [0,+∞]→ [0,1] which are non-decreasing and left-
continuous on (0,+∞) with F(0) = 0 and F(+∞) = 1.

A function F ∈$+ is usually called a distance distribution function. Basic elements
of$+ are the so called Dirac distributions:

εa(x) =
{

0 if x≤ a
1 if x > a

where a < +∞ ; ε+∞(x) =
{

0 if x < +∞
1 if x = +∞

The set$+ is a complete lattice with respect to the usual pointwise ordering: F ≤ G if
and only if F(x) ≤ G(x) ∀x ∈ [0,+∞]. The functions ε+∞ and ε0 are the minimum and
maximum of$+, respectively.

Consider ($+;≤op) the set $+ equipped with the opposite order of the usual one
(F ≤op G ⇔ G ≤ F) and S a t-conorm on ($+;≤op). Then, a non-empty set X is a
($+,S,d)-metric space if and only if d : X×X →$+ satisfies

• d(p,q) = ε0 ⇔ p = q
• d(p,q) = d(q, p)
• d(p,r)≤op S(d(p,q),d(q,r))

It is worth to observe that the triangle inequality can be rewritten in the form d(p,r)≥
T (d(p,q),d(q,r)), where T is a t-norm on ($+;≤op). Thus we recover the probabilistic
metric spaces ([6]) as examples of ($+,S,d)-metric spaces.

Example 4 (Discrete Probabilistic Metric Spaces)
Given a positive integer n, we denote by $+

n the set {F ∈ $+;RanF ⊂ {0, 1
n , . . . ,

n−1
n ,1}}. It is clear that $+

n is a sublattice of $+ containing εa for all a ∈ [0,+∞].
In this paper we mainly deal with$+

n -valued S-distances.
Note that a natural way to construct t-conorms on $+

n is from a t-conorm
on {0,1,2, . . . ,n}: given a t-conorm S on {0,1,2, . . . ,n} we define σ(F,G)(x) =
1
n S(nF(x),nG(x)) for all F , G in $+

n and all x in [0,+∞]. Then it is easily verified
that σ is a t-conorm on ($+;≤op) for any t-conorm S on {0,1,2, . . . ,n}.

On the other hand, if S is a t-conorm on ($+;≤op) and F,G ∈ $+
n then in general

S(F,G) is not an element of $+
n , thus the restriction of S to $+

n is not a t-conorm
on$+

n .

Next proposition proves that the lattice ($+
n ;≤op) is isomorphic to (Σn;≤) where Σn is

the set of n-ordered lists (a1, . . . ,an) ∈ [0,+∞]n satisfying a1 ≤ . . .≤ an equipped with
the usual product ordering.

Proposition 1. The function ϕ :$+
n → Σn defined by ϕ(F) = (a1, . . . ,an) where ai =

max{x;F(x) < i
n} is an isomorphism. The inverse of ϕ is given by ϕ−1(a1, . . . , an) = F

where F(x) = 1
n |{i;ai < x}| for all x in [0,+∞].
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Remark 1. Observe that this application ϕ inverts the usual order, in the sense that,
given F,G ∈ Δ+

n , F ≤ G⇐⇒ ϕ(F)≥ ϕ(G).

Corollary 1

(i) The family of t-conorms on ($+
n ;≤op) “is” the family of t-conorms on (Σn;≤).

(ii) A$+
n -metric space “is” a Σn-metric space, and reciprocally.

(iii)The ordinary metric spaces are just the ($+
1 = Σ1 = [0,+∞],S,d)-metric spaces

where S(a,b) = a + b.

Example 5. Consider the set Z×Z of ordered pairs of integers equipped with the dis-
tance between (a,b), (c,d) measured along axes at right angles: |a− c|+ |b−d| (Man-
hattan distance). Let us suppose that each pair (a,b) moves at random (with the same
probability) to any one of the four surrounding points (a± 1,b± 1), and consider the
set X = {{(a±1,b±1)};(a,b)∈ Z×Z}. Now we define d : X×X →$+

16 as follows:
d(p,q) = F , where F(x) = the probability of “the distance between p and q is less
than x”.

If we denote p = {(a± 1,b± 1)}, q = {(c± 1,d ± 1)}, h = |a− c|, v = |b− d|
and δ = h + v then using the above representation of distance distribution functions by
means of 16-ordered lists, we have that d(p,q) is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(d−2,d−2,d−2,d−2,d,d,d,d,d,d,d,d,d + 2,d + 2,d + 2,d + 2)
if v,h≥ 2

(d−2,d−2,d−2,d,d,d,d,d,d,d,d,d,d + 2,d + 2,d + 2,d + 2)
if v = 1 and h≥ 2 or vice versa

(d−2,d,d,d,d,d,d,d,d,d + 2,d + 2,d + 2,d + 2,d + 2,d + 2,d + 2)
if v = 0 and h≥ 2 or vice versa

(0,0,2,2,2,2,2,2,2,2,2,2,4,4,4,4) if v = h = 1
(1,1,1,1,1,1,1,1,1,3,3,3,3,3,3,3) if v = 0 and h = 1 or vice versa

In order to get an$+
16-valued distance on X , we have to introduce appropriate t-conorms

S on Σ16 such that the triangle inequality holds: d(p,r) ≤ S(d(p,q),d(q,r)). We deal
with this matter in the next section.

4 Triangular Conorms on Σn

According to (i) in Corollary 1, to study t-conorms on ($+
n ;≤op) is equivalent to study

t-conorms on the very simple structure (Σn;≤). We analyze in this section different
methods to construct t-conorms on this ordered set of ordered lists.

Proposition 2. The t-conorms on (Σn;≤) are the restrictions to Σn of the t-conorms on
([0,+∞]n;≤) such that Σn is closed under them.

Proof. Let S be a t-conorm on [0,+∞]n such that S(a,b) ∈ Σn whenever a,b ∈ Σn. It is
obvious that the restriction of S to Σn is a t-conorm on Σn. Reciprocally, let us consider
a t-conorm S′ on Σn and define for all a,b ∈ [0,+∞]n:
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S(a,b) =

⎧⎨⎩
a if b = 0
b if a = 0
S′(σ(a),σ(b)) otherwise

where σ(a) is the non-decreasing reordering of the n-list a. We can easily prove that S
is a t-conorm on [0,+∞]n and Σn is closed under S. ��
Example 6. These are some t-conorms on [0,+∞]n such that Σn is closed under them:

(i) SD and S∨
(ii) S((a1, . . . ,an),(b1, . . . ,bn)) = (a1 + b1, . . . ,an + bn)
(iii) S((a1, . . . ,an),(b1, . . . ,bn)) = (a1 + b1,a2 + b2 + a1b1 . . . ,an + bn + a1b1)

Note that S((a1,a2),(b1,b2)) = (a1 +b1,max(a2,b2)) is a t-conorm on [0,+∞]2 but Σ2

is not closed under it: S((2,3),(3,4)) = (5,4) /∈ Σ2.

4.1 Direct Products from t-Conorms on [0,+∞]

Proposition 3. Let S be a t-conorm on [0,+∞]n which is the direct product of S1, . . . ,Sn,
where S1, . . . ,Sn are t-conorms on [0,+∞]. Then, Σn is closed under S if and only if
S1 ≤ . . .≤ Sn.

In particular, S((a1, . . . ,an),(b1, . . . ,bn)) = (S1(a1,b1), . . . ,S1(an,bn)) where S1 is a t-
conorm on [0,+∞] is a t-conorm on [0,+∞]n such that Σn is closed under it. In (i) and
(ii) of Example 6 we show t-conorms of this type, whereas the t-conorm given in (iii) is
not a direct product. Finally, S((a1,a2),(b1,b2)) = (a1 + b1,max(a2,b2)) is the direct
product of S1(a1,b1) = a1 + b1 and S2(a2,b2) = max(a2,b2) with S2 ≤ S1.

Remark 2. Note that direct products are not appropriate t-conorms to be used in
Example 5. Thus, consider the points p,q,r in X defined by (a,b), (a + 2,b),
(a + 4,b), and suppose that S = (S1, . . . ,S16) is the direct product of the t-conorms
S1, . . . ,S16. Let us show that the S-triangle inequality d(p,r) ≤ S(d(p,q),d(q,r))
fails: d(p,r) = (2,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6), d(p,q) = d(q,r) = (0,2,2,2,2,
2,2,2,2,4,4, 4,4,4,4,4) , thus d(p,r) is not less than or equal to (S1(0,0),S2(2,2,),
. . . ,S16(4,4)) due to S1(0,0) = 0 for any t-conorm S1.

Let us introduce now a family of t-conorms on [0,+∞]n that could be appropriate in
particular in Example 5.

Proposition 4. Given 1≤ k,r≤ n, consider S(k,r)(a,b) = (a1 +b1,ar−1 +br−1 . . . , ar +
br + akbk, . . . , an + bn + akbk) where a = (a1, . . . ,an), b = (b1, . . . ,bn)). Then, S(k,r) is
a t-conorm on [0,+∞]n such that Σn is closed under it.

Remark 3

• Note that the t-conorm given in (iii) of Example 6 is just S(1,n).
• The t-conorms S(k,r) with k �= r are not direct products of t-conorms on [0,+∞].
• The t-conorms S(k,1) with k ≥ 5 can be used in Example 5.
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4.2 Sherstnev’s Construction

By observing that the left side of the Menger’s inequality Fpr(x+y)≥ T (Fpq(x), Fqr(y))
only depends on the sum x + y, then the inequality holds for all x,y ≥ 0 if and only if
Fpr(z)≥ supx+y=z T (Fpq(x),Fqr(y)). From this fact Sherstnev showed that, for any left-
continuous t-norm T , the function τT defined via τT (F,G)(z) = supx+y=z T (F(x),G(y))
for all z ≥ 0 is a t-norm on ($+;≥). In this subsection we adapt this construction to
our discrete setting and we define σT (F,G)(z) = supx+y=z

1
n T (nF(x),nG(y)), where T

is a t-norm on Ln = {0,1, . . . ,n}, for all z ≥ 0 and F,G ∈ $+
n . In the next proposition

we show that σT is a t-conorm on ($+
n ;≤op) by translating first the expression of σT

in terms of lists in Σn. It is worth to observe that, in contrast to the continuous case, we
obtain a t-conorm from any t-norm T, with no restrictions on it.

Proposition 5. Given a t-norm T on Ln, let us define a function σT : Δ+
n × Δ+

n −→
Δ+

n by
σT (F,G)(x) = sup

y+z=x

1
n T (nF(y),nG(z)) ∀ x ∈ [0,+∞].

Then σT is a t-conorm on Δ+
n .

Proof. According to the Corollary of Proposition 1,we will prove that the correspond-
ing function σ̂T (a,b) = ϕ(σT (ϕ−1(a),ϕ−1(b))) is a t-conorm on Σn. For this reason,
let us obtain the expression of σ̂T as a function of the lists. Let us consider a,b,c ∈ Σn

and suppose that σ̂T (a,b) = c and let F = ϕ−1(a) and G = ϕ−1(b). Thus, for all
i ∈ {1, . . . ,n}, ci = max{x : σT (F,G)(x) < i

n} = max{x : supy+z=x T (F(y),G(z)) <
i
n}, and this means that for all y,z such that y + z = x, T (F(y),G(z)) < i

n , that is,

T
( |{ j:a j<y}|

n ,
|{ j:b j<z}|

n

)
< i

n . Finally, we obtain ci = min
{

a j + bk : T
(

j
n , k

n

)
≥ i

n

}
.

From this expression, it is a straightforward calculation to prove that σ̂T is a t-conorm
on Σn. ��
Example 7. The related t-conorms on $+

n to the basic t-norms minimum, drastic and
Łukasiewicz are the following:

• If T = min, then σ̂min((a1, . . . ,an),(b1, . . . ,bn)) = (a1 + b1, . . . ,an + bn).
• If T = TŁ, then σ̂Ł((a1, . . . ,an),(b1, . . . ,bn)) = (c1, . . . ,cn), where ci = min{a j

+bn+i− j; j = i, i+ 1, . . . ,n}.
• For the drastic t-norm TD, σ̂D((a1, . . . ,an),(b1, . . . ,bn)) = (c1, . . . ,cn), with ci =

min{ai + bn,an + bi}.
Example 8. There are six t-norms on {0,1,2,3}. They are listed in Table 1 and the
corresponding t-conorms on Σ3 are listed in Table 2.

Example 9. Let us consider n = 4 and two lists a = (2,3,5,5) and b = (1,4,6,7). Let T
be the t-norm given in Table 3.

Then c1 = min
{

a j + bk : T
(

j
n , k

n

)
≥ 1

n

}
and, from the table of T we observe that

T ( j
n , k

n) ≥ 1
n for j ≥ 3,k ≥ 1, for j,k ≥ 2 and for j ≥ 1,k ≥ 3. The minimum sum

a j +bk for all of these pairs ( j,k) is taken by j = 3,k = 1 and it is equal to a3 +b1 = 6.
Thus c1 = 6. Similar calculations allow to obtain the other components of the list c and
c = σ̂(a,b) = (6,9,11,12).
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Table 1. The six t-norms on {0,1,2,3}

T1 T2 T3 T4 T5 T6

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 0 1 2 0 0 2 2 0 0 0 2 0 1 1 2 0 1 2 2 0 1 2 2
0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2. The six induced t-conorms on Σ3

σ1 (min{a1 +b3,a2 +b2,a3 +b1},min{a2 +b3,a3 +b2},a3 +b3)
σ2 (min{a1 +b3,a2 +b2,a3 +b1},a2 +b2,a3 +b3)
σ3 (min{a1 +b3,a3 +b1},min{a2 +b3,a3 +b2},a3 +b3)
σ4 (a1 +b1,min{a2 +b3,a3 +b2},a3 +b3)
σ5 (min{a1 +b2,a2 +b1},a2 +b2,a3 +b3)
σ6 (a1 +b1,a2 +b2,a3 +b3)

Table 3. The t-norm T

4 0 1 2 3 4

3 0 1 2 3 3

2 0 0 1 2 2

1 0 0 0 1 1

0 0 0 0 0 0

0 1 2 3 4
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On Patchwork Techniques for 2-Increasing
Aggregation Functions and Copulas

Fabrizio Durante, Susanne Saminger-Platz, and Peter Sarkoci

Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz,
Linz, Austria

Abstract. In recent years, there has been a raise of interest in the determination of copulas with
given values at some fixed points, or with given horizontal, vertical, affine, diagonal, or sub-
diagonal sections and combinations thereof. Closely related to these investigations are the deter-
mination and characterization of increasing and 2-increasing functions with given margins whose
domain is a subset of the unit square as well as necessary and sufficient conditions providing that
the combination (patchwork) of such functions on sub-domains yields a (new) 2-increasing ag-
gregation function on [0,1]2, in particular a copula. In the present contribution we provide a
full characterization of increasing, 2-increasing functions with prescribed margins acting on a
sub-rectangle of the unit square. The characterization allows to determine easily the greatest and
smallest such functions and to look at the results on copulas with given horizontal and/or ver-
tical sections and its boundaries from a more general and unified viewpoint. We further discuss
necessary and sufficient conditions for a patchwork based on triangular sub-domains.

1 Introduction

In this contribution we focus on 2-increasing binary aggregation functions [9, 12], the
most prominent and most studied examples thereof being copulas [22]. Various meth-
ods for constructing copulas are already known (see [22] for a comprehensive overview
and further references). However, particularly in recent years, there has been a raise of
interest in the determination of copulas with given values at some fixed points, or with
given horizontal, vertical, affine, diagonal, or sub-diagonal sections and combinations
thereof [4, 6, 7, 8, 11, 14, 15, 16, 17, 24, 25]. In some cases also (partial) results for
the boundaries of these classes have been established [7, 9, 16, 24, 25]. It is interesting
to see that, for the different cases, the results have been obtained more or less indepen-
dently from each other, although many of these constructions refer to the determination
of a 2-increasing and increasing function on some sub-domain of the unit square with
predescribed margins (not necessarily coinciding with the margins of the unit square).
Two different problems are directly related to this viewpoint and can be distinguished:
first, the determination and characterization of increasing and 2-increasing functions
on sub-domains of the unit square with given margins. Second, necessary and suffi-
cient conditions providing that the combination (patchwork) of such functions on sub-
domains yields a (new) 2-increasing aggregation function, in particular a copula.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 349–356, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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In Section 3 we discuss the second question for a patchwork on triangular sub-
domains. We provide a full characterization of increasing and 2-increasing functions
acting on a sub-rectangle of the unit square with prescribed margins in Section 4. The
characterization allows to determine immediately the greatest and smallest such func-
tions and allows, e.g., to look at the results on copulas with given horizontal and/or
vertical sections and its boundaries from a more general and unified viewpoint. We
illustrate this by some selected examples in Section 5.

2 Preliminaries

Definition 1. A binary function A : [0,1]2 → [0,1] which is increasing in each place and
fulfills A(0,0) = 0, A(1,1) = 1 is called a (binary) aggregation function. If, in addition,
A fulfills, for all x1,x2 ∈ [0,1] and for all y1,y2 ∈ [0,1] with x1 ≤ x2 and y1 ≤ y2,

VA([x1,x2]× [y1,y2]) := A(x1,y1)+ A(x2,y2)−A(x1,y2)−A(x2,y1) ≥ 0 (1)

then A is 2-increasing. The class of all (2-increasing) aggregation functions will be
denoted by A (A2).

Note that the value VA([x1,x2]× [y1,y2]) is often referred to as the A-volume of the
rectangle [x1,x2]× [y1,y2].

Definition 2. A 2-increasing aggregation function C : [0,1]2 → [0,1] is called a copula
if it has neutral element 1, i.e. C(x,1) = C(1,x) = x for every x ∈ [0,1]. We will denote
the set of all copulas by C .

Among the most prominent copulas let us mention the monotone dependence copula
M and its counterpart, the countermonotone dependence copula W given by M(x,y) =
min(x,y) and W (x,y) = max(x+y−1,0). For every copula C it holds that W ≤C ≤ M.

Definition 3. Given A ∈ A , the diagonal of A is the mapping δA : [0,1] → [0,1] given
by δA(t) = A(t,t). The opposite diagonal of A is, instead, the mapping η : [0,1]→ [0,1]
defined by η(t) = A(t,1− t).

3 The Diagonal Patchwork

Let Δ+, Δ−, Γ+, and Γ− be the following subsets of the unit square:

Δ+ := {(x,y) ∈ [0,1]2 : x ≥ y}; Γ+ := {(x,y) ∈ [0,1]2 : x + y ≤ 1};

Δ− := {(x,y) ∈ [0,1]2 : x < y}; Γ− := {(x,y) ∈ [0,1]2 : x + y > 1}.

For every subset S of [0,1]2, 1S denotes the indicator function of S, i.e., 1S(x,y) is equal
to 1, if (x,y) ∈ S, and 0, otherwise.

Given the aggregation functions A and B, we introduce the functions FA,B,FA,B :
[0,1]2 → [0,1] given, for all x,y in [0,1], by
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FA,B(x,y) := A(x,y)1Δ+(x,y)+ B(x,y)1Δ−(x,y);

FA,B(x,y) := A(x,y)1Γ+(x,y)+ B(x,y)1Γ−(x,y).

Note that the diagonal patchwork restricted to copulas has also been discussed in [10,
11] and, under the name diagonal splice, in [24]. It is easy to show (see also [10]) that if
A and B are aggregation functions with the same (opposite) diagonal section, then FA,B

(FA,B) is an aggregation function. Moreover, if A and B have neutral element 1, so has
FA,B. If B has neutral element 1, then so has FA,B. Further the following sufficient resp.
necessary conditions hold:

Proposition 1. Let A,B be in A2 such that δA = δB = δ .

(i) FA,B ∈ A2 if, and only if, for all x1,x2 ∈ [0,1] with x1 ≤ x2,

δA(x1)+ δA(x2) ≥ A(x2,x1)+ B(x1,x2).

(ii) If A and B are symmetric, then FA,B ∈ A2.
(iii) If A ≥ B or B ≥ A, then FA,B ∈ A2.

Moreover, δFA,B = δ .

Proposition 2. Let A,B be in A2 such that ηA = ηB = η .

(i) Then FA,B ∈ A2 if, and only if, for all x1,x2 ∈ [0,1] with x1 ≤ x2

A(x1,1− x2)+ B(x2,1− x1) ≥ η(x1)+ η(x2).

Moreover, FA,B is a copula if, and only if, B is a copula.
(ii) If B ≥ A, then FA,B ∈ A2.

Moreover, ηFA,B = η .

4 The Rectangular Patchwork

Now, let us consider

• A rectangle R = [a1,a2]× [b1,b2] ⊆ [0,1]2 with a1 < a2, b1 < b2;
• A 2-increasing aggregation function A : [0,1]2 → [0,1];
• A binary function B : R → [0,1], increasing in each place, such that B = A on the

boundaries of R, i.e., B �∂R= A �∂R with � indicating the restriction of the function
to ∂R.

Then the function
(
B �R A

)
: [0,1]2 → [0,1] defined by(

B �R A
)
(x,y) = 1R(x,y)B(x,y)+

(
1−1R(x,y)

)
A(x,y)

is an aggregation function, called the rectangular patchwork of B in A on R. Notice
that in [6] a similar approach, called orthogonal grid construction, for conjunctors,
quasi-copulas, and copulas based on two operations both acting on the unit square has
been discussed. However, for the rectangular patchwork B �R A as discussed here, it
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is sufficient to have some 2-increasing function B : R → [A(a1,b1),A(a2,b2)] at hand
which is increasing in each argument and coincides with A on ∂R. We call such func-
tions as being admissible for the rectangular patchwork. Clearly, the restriction of any
2-increasing aggregation function A′ to R with A′ �∂R= A �∂R is admissible for a rect-
angular patchwork. The relationship between B and B �R A and its properties is easily
shown (compare also [6]):

Proposition 3. Under the above assumptions, if B is 2-increasing, then so is B �R A.
Moreover, if A is a copula, then B �R A is also a copula.

Moreover, we can provide the following characterization of functions B being admis-
sible for a rectangular patchwork (compare also [13]) showing that, in fact, only the
values of B at ∂R are of relevance.

Theorem 1. Let A be in A2 and consider some rectangle R = [a1,a2]× [b1,b2]⊆ [0,1]2

with a1 < a2, b1 < b2. Define λA,R := VA(R).

(i) If λA,R = 0, then the only function BR admissible for a rectangular patchwork is
BR : R → [A(a1,b1),A(a2,b2)] given by

BR(x,y) = A(x,b1)+ A(a1,y)−A(a1,b1) = A(x,b2)+ A(a2,y)−A(a2,b2)

(ii) If λA,R > 0, then for every copula C, the function BC
R : R → [A(a1,b1),A(a2,b2)]

defined by

BC
R(x,y) := λA,RC

(
VA([a1,x]×[b1,b2])

λA,R
, VA([a1,a2]×[b1,y])

λA,R

)
+A(x,b1)+ A(a1,y)−A(a1,b1)

(2)

is admissible for the rectangular patchwork.
(iii) If λA,R > 0, then for every function B being admissible for the rectangular patch-

work, there exists a copula C such that B = BC
R.

Remark 1. Notice that for some copula C, λC,R denotes the value VC(R). Moreover, for
every copula C and every rectangle R, C �R is clearly a 2-increasing increasing function
on R. Because of Theorem 1 it follows that there exists a copula C′ such that C �R=
BC′

R . However, in general, C′ might be different from C. Consider, e.g., the copula C
given as a non-trivial convex combination of M and the product copula Π . Then C
is a copula with a singular component just along the main diagonal. For a rectangle
R = [1−a,1]× [0,a], a ∈ ]

0, 1
2

[
, the rectangular patchwork (BC

R �R C) has an additional
singular component along the line segment joining the points (1−a,0) and (1,a) such
that (BC

R �R C) differs from C.

The following upper and lower boundaries for functions being admissible for the rect-
angular patchwork can be given:

Proposition 4. Let A be in A2 and consider some rectangle R = [a1,a2]× [b1,b2] ⊆
[0,1]2 with a1 < a2, b1 < b2. Then B∗,B∗ : R → [A(a1,b1),A(a2,b2)] defined by
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B∗(x,y) = max
(
A(x,b1)+A(a1,y)−A(a1,b1),A(x,b2)+A(a2,y)−A(a2,b2)

)
B∗(x,y) = min

(
A(x,b2)+A(a1,y)−A(a1,b2),A(x,b1)+A(a2,y)−A(a2,b1)

)
are admissible for the rectangular patchwork. Moreover, it holds that all functions B
admissible for the rectangular patchwork fulfill

B∗(x,y) ≤ B(x,y) ≤ B∗(x,y)

for all (x,y) ∈ R.

So far, we have introduced the rectangular patchwork for a single rectangle only. How-
ever, by consecutive repetition of the patchwork technique we can extend the construc-
tion to being applicable for several rectangles: consider an aggregation function A and
some index set I which is at most countable. Let (Ri)i∈I be a family of rectangular
subsets of the unit square with Ri ∩R j ⊆ ∂Ri ∩ ∂R j for any i, j ∈ I with i 
= j, ex-
pressing that any two members of this family overlap at most in their boundaries. In
addition consider a family (Ci)i∈I of copulas, indexed by the same index set, for which
it holds that, if Ri ∩R j 
= /0, then Ci �Ri∩R j= Cj �Ri∩R j . Define the rectangular patchwork
(〈Ri,Ci〉)A

i∈I : [0,1]2 → [0,1] by

(〈Ri,Ci〉)A
i∈I (x,y) :=

{
BCi

Ri
(x,y), if (x,y) ∈ Ri,

A(x,y), otherwise.
(3)

Based on the results presented in this chapter we briefly discuss selected and already
established constructions of copulas and its boundaries from the perspective of rectan-
gular patchwork.

5 Examples

5.1 W -Ordinal Sum

Let us first consider the so called W -ordinal sum [4, 5, 21] of two copulas C′,C′′ defined
in the following way

C(u,v) =

⎧⎪⎨⎪⎩
x0 C′( u

x0
, x0+v−1

x0
), if (u,v) ∈ [0,x0]× [1− x0,1] ,

(1− x0)C′′( u−x0
1−x0

, v
1−x0

), if (u,v) ∈ [x0,1]× [0,1− x0] ,
W (u,v), otherwise.

(4)

It is known that C is again a copula, moreover, that any copula C with C(x0,1− x0) = 0
for some x0 ∈]0,1[ can be represented as an W -ordinal sum [4, 5, 6, 21]. Indeed, C co-
incides with the rectangular patchwork (〈0,x0,C′〉,〈x0,1,C′′〉)W (see Fig. 1 (a)). Upper
resp. lower bounds are obtained by choosing C′ = C′′ = W resp. C′ = C′′ = M. On the
other hand, for some copula C and some x0 ∈]0,1[ such that C(x0,1− x0) = 0, it holds
that λC,R1 = 0, with R1 = [0,x0]× [0,1− x0], and therefore uniquely BR1(x,y) = 0 =
W (x,y). Further, clearly for R3 = [x0,1]× [1− x0,1], λC,R3 = 1− x0 − (1− x0)+ 0 = 0
such that and BR3(x,y) = C(x,1)+C(1,y)−1 = W (x,y) (see also Fig. 1 (b)).
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Fig. 1. Examples of rectangular patchwork operations

5.2 Cross Copulas

Now consider a copula C and a,b ∈ [0,1] with C(a,b) = c > 0 and define hb(x) :=
C(x,b) and va(y) := C(a,y). The function hb is the horizontal b-section and va is the
vertical a-section of C. Copulas with given horizontal and vertical section are known
as cross copulas [7]. As shown in Figure 1 (c), the horizontal and vertical section
divide the unit square into four rectangles Ri, i = 1, . . .4. Moreover, if we assume that
C(a,b) = c with 0 < c < min(a,b) it follows that for each rectangle Ri, it holds that
λC,Ri > 0, i = 1, ...,4. As a consequence, for all copulas C1, C2, C3, C4, the function
C′ : [0,1]2 → [0,1], defined by

C′(x,y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
BC1

R1
(x,y), if (x,y) ∈ R1,

BC2
R2

(x,y), if (x,y) ∈ R2,

BC3
R3

(x,y), if (x,y) ∈ R3,

BC4
R4

(x,y), if (x,y) ∈ R4,

is a cross-copula with the prescribed horizontal and vertical section [7]. It is immedi-
ate from Theorem 1 that choosing Ci = W (resp. M), i = 1, . . .4, leads to the smallest
(resp. greatest) such crosscopula. On the other hand, for any cross-copula C as described
above there exist copulas Ci, i = 1, . . .4 such that

C′ = (〈R1,C1〉,〈R2,C2〉,〈R3,C3〉,〈R4,C4〉)C.

which again demonstrates how the general notion of rectangular patchwork reduces to
more particular crosscopula construction.

6 Conclusion

We have presented necessary and sufficient conditions for 2-increasing aggregation
functions obtained via diagonal or rectangular patchwork techniques. We have illus-
trated by two examples how the characterization obtained in Theorem 1 allows to revisit
known constructions for copulas and its boundaries.
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A Hierarchical Fusion of Expert Opinion in the TBM

Minh Ha-Duong

CIRED, CNRS, Nogent-sur-Marne, France

Abstract. We define a hierarchical method for expert opinion aggregation that combines
consonant beliefs in the Transferable Belief Model. Experts are grouped into schools of thought,
then opinions are aggregated using the cautious conjunction operator within groups and the
non-interactive disjunction across. This is illustrated with a real-world dataset including 16
experts.

Keywords: Evidence theory, Information fusion, Expert opinion.

1 Introduction

Aggregating the opinion of experts is challenging for several reasons. Scientists interact
and share evidence, so assuming independence leads to over-precise results. Conjunc-
tive aggregation methods do not work well when there is contradiction among experts.
In a dissent minority situation, aggregation methods like averaging that weight views
proportionally to the number of proponents are arguably unbalanced scientifically. Fi-
nally, it is difficult to assume that some experts are less reliable than others.

To address these challenges, this paper proposes a hierarchical method: experts are
grouped into schools of thought. Within groups, beliefs are combined using a cautious
conjunction rule, and across with the non-interactive disjunction.

Section 2 recalls elements of the Transferable Belief Model, based on [3]. Section 3
presents the data, the implementation and discusses the proposed hierarchical ap-
proach. Section 4 compares it theoretically and numerically to other fusion procedures.
Section 5 concludes.

2 The Transferable Belief Model

The Transferable Belief Model represents and combines uncertain beliefs elaborating
upon Dempster-Shafer evidence theory [3]. Uncertainty is represented by allocating the
unit mass of belief among subsets of a frame of reference Ω . Let 2Ω denote the power
set of Ω . Its elements will be denoted with upper case letters such as A ⊆ Ω or X ⊆ Ω .
The empty subset will be denoted /0. A basic belief assignment (BBA) is a function
m : 2Ω → [0,1] such that

∑
A⊆Ω

m(A) = 1. (1)

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 361–368, 2008.
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Belief that the state of the world is in A ⊆ Ω , with certainty, is represented by the BBA
1A : 2Ω → [0,1] defined as 1A(A) = 1, and 1A(X) = 0 if X �= A. Discounting the BBA
m means replacing it by dis(m,r) = rm+(1− r)1Ω .

Belief that the state of the world is in A � Ω , with a weight of belief s, is represented
by the function As = dis(1A,1− e−s).

The Transferable Belief Model allows non-zero belief mass to the empty set. The
number m( /0), called weight of conflict, represents the internal contradiction arising
when beliefs result from information sources pointing in different directions. The
extreme case 1 /0 represents being completely confused by contradictory information
sources. Renormalizing a BBA m means replacing it by the BBA m∗ defined as:{

m∗( /0) = 0

m∗(A) = m(A)
1−m( /0) if A �= /0

Several functions can be defined from a BBA m. These functions are defined by
bel( /0) = pl( /0) = 0, q( /0) = 1, and for any X �= /0 as:

bel(X) = ∑ /0 �=A⊆X m(A) pl(X) = ∑
A∩X �= /0

m(A)

q(X) = ∑A⊇X m(A) s(X) = ∑
A⊇X

(−1)|X |−|A| ln
(
q(A)

)
These are called the belief function bel, the plausibility function pl, the commonality
function q and the weights of belief function s, only defined here when m(Ω) > 0. An
intuitive interpretation of the theory of evidence sees m(X) as a mass of belief that can
flow to any subset of X . In this view, bel(X) represents the minimal amount of mass
that is constrained to stay within X (the belief that X must happen), while pl(X) the
maximal amount of belief that could flow into X (the plausibility that X could happen).
Commonality q(X) represents the amount of belief that can flow to every point of X . An
interpretation of the weights of belief s will be discussed with the factorization Eq. (2)
below.

The two basic combination rules of the Transferable Belief Model are denoted
and . The non-interactive conjunction rule should be used when assuming that both
information sources are reliable, and the non-interactive disjunction rule when assum-
ing that at least one is reliable. These rules reduce to classical set intersection and set
union when BBAs are reduced to a single set receiving all the mass, i.e. 1A 1B = 1A∪B.
These operators are commutative, associative and give a BBA if μ1 and μ2 are BBAs.

(μ1 μ2)(X) = ∑
A∩B=X

μ1(A)× μ2(B), (μ1 μ2)(X) = ∑
A∪B=X

μ1(A)× μ2(B)

Dempster’s combination rule ⊕ is normalized non-interactive conjunction:

m1 ⊕m2 = (m1 m2)
∗.

Weights of belief allow to express any BBA m such that m(Ω) > 0 as the conjunction
of elementary pieces of evidence [8]:

m =
A⊂Ω

As(A) (2)
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Weights s can be negative. If s < 0, then As is not a BBA but a generalized BBA: a
real-valued subset function which verifies Eq. (1), but may take values outside of [0,1].
We suggest to interpret As as the change in one’s beliefs realized by giving confidence s
to a new piece of evidence stating that the state of the world is in A. Positive infinity for
s represents the limit case of a perfectly convincing proof. Negative weight s < 0 have
an algebraic justification comparable to negative numbers: considering A with weight s
exactly counterbalances considering A with weight −s.

For any two BBA m1 and m2 having weight functions s1 and s2:

m1 m2 =
A⊂Ω
A �=Ω

As1(A)+s2(A).

The non-interactive conjunction of two pieces of evidence pointing in the same direc-
tion adds up to stronger beliefs, i.e. As As = A2s. Using this rule is adequate when
information sources can be assumed to be independent. But scientific experts share
data, models and theories, so we have to consider also an alternative to . The cautious
conjunction operator, denoted , was recently proposed [3]. It combines any two BBA
such that m1(Ω) > 0 and m2(Ω) > 0 by:

m1 m2 =
A⊂Ω

Amax(s1(A),s2(A)).

If m1 and m2 are BBAs, then m1 m2 is also a BBA. The rule is commutative
and associative, idempotent (m m = m), and distributes over the noninteractive rule
(m1 m2) (m1 m3) = m1 (m2 m3). Distributivity has an interesting interpretation
related to the fusion of beliefs. Consider two experts in the following scenario. Ex-
pert 1’s belief results from the noninteractive conjunction of two pieces of evidence,
m1 = As Bt . Expert 2 shares one piece of evidence with expert 1, and has an indepen-
dent piece, so that m2 = As Cu. Then distributivity implies that in the fusion, the shared
evidence As is not counted twice m1 m2 = As (Bt Cu).

3 An Expert Aggregation Situation

Climate sensitivity is a proxy for the severity of the climate change problem. It is de-
noted ΔT2×, and defined as the equilibrium global mean surface temperature change
following a doubling of atmospheric CO2 concentration, compared to pre-industrial
levels. The value of this parameter, critical for climate policy, is not known precisely:
for a long time, the [1.5◦C, 4.5◦C] interval has been regarded as the canonical uncer-
tainty range of ΔT2×.

Ref. [5] conducted structured interviews using expert elicitation methods drawn
from decision analysis with 16 leading U.S. climate scientists. The authors obtained
judgments about a number of key climate variables, including subjective PDFs for the
climate sensitivity parameter. In the dataset, no probability is allocated to climate sensi-
tivity lower than −6◦C, or larger than 12◦C. For the sake of numerical tractability, this
range was subdivided in seven ranges at the subdivision points {-6, 0, 1.5, 2.5, 3.5, 4.5,
6, 12}, and PDFs were discretized to obtain, for each expert, a probability distribution
pi on Ω = {ω1, . . . ,ω7}.
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Fig. 1. Beliefs of the 16 experts. Vertical axis goes from 0 to 1. The horizontal axis discretizes the
[-6◦C, 12◦C] climate sensitivity range into seven intervals using a non-uniform subdivision at -6,
0, 1.5, 2.5, 3.5, 4.5, 6 and 12◦C. On each graph, the grey histogram represents the actual elicited
probability distribution, and the dotted lines represents the possibility distribution corresponding
to the implicit consonant belief function.

Then we transformed each pi into an implicit consonant belief function mi. Given a
probability distribution p, a consonant belief function m is defined as follows [9]. Order
the states of the world from most to least probable, that is p(ωn1) > · · · > p(ωn|Ω |).
Consider the sets Ak = {ωn1 , . . . ,ωnk} and assign to Ak the belief mass m(Ak) =
|A|× (

p(ωnk)− p(ωnk+1)
)

with the convention that pn|Ω |+1
= 0. Figure 1 represents the

results, the beliefs of the 16 experts.
Most experts BBA mi verify mi(Ω) = 0, and cannot be factorized as described above.

But no information source is 100% reliable; scientific knowledge is necessarily based
on a possibly large but finite number of human observation; many philosophers consider
that scientific knowledge should always be open to revision in front of new experimental
evidence; and the elicitation of opinions was necessarily coarse so experts who allocated
no significant probability weight to extreme outcomes might have agreed that there was
a very small possibility. These reasons justify discounting the opinion of experts using
a high reliability factor such as r = 0.999.

Simple ways to combine expert opinions pool all beliefs together symmetrically us-
ing a fusion operator like , , , or ⊕. These simple methods have problems when
aggregating conflicting beliefs, which have led researchers to suggest adaptative fu-
sion rules instead [6, 1, 4]. The general idea is to merge conjunctively subgroups of
coherent sources, before disjunctively merging the different results. We propose a hi-
erarchical fusion procedure based on this idea. It aims to be relevant when science
is not yet stabilized, and the notion of ‘competing theories’ can be used. Sociology
of science suggests that at some moments in the progress of science, in front of a big
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unexplained problem, scientists tend to group into schools of thought, which correspond
to alternative candidate theories.

Within each group, contradiction should be low because experts share an explana-
tion of the way the world works. Experts can all be considered reliable information
sources, but the independence assumption does not hold. Beliefs will be combined with
a cautious conjunction operator.

To combine across groups, we assume that only one theory will be adopted in the
end and use the non-interactive disjunction operator. This deals with the challenge of
representing equally minority views because all theories are treated equally, regardless
of the number of experts in the group. Using the operator also assumes that schools
of though are non-interactive. The bold disjunctive combination rule could be used to
relax this assumption [3].

This hierarchical approach is a mathematical aggregation method based on a qual-
itative behavioral analysis: a partition of experts into a small numbers of schools of
thought. Representing the diversity of viewpoints by a small numbers of schools of
though is admittedly a strong simplification of complex social reality, but treating all
experts symmetrically is even simpler. If it were clear from the start what the different
schools of though are, one could select a single expert to represent each position, and
then pool the opinions symmetrically. Otherwise, it is only after a formal sociological
study of the experts community that the population of experts can be organized around
a small number of archetypes.

Adaptative fusion methods determine the groups using the beliefs themselves, but
for experts the tools of sociology could be used. For example, the network of experts
can be analyzed with catalogues of publications since experts who have published to-
gether have seen the same data, they are more likely to share evidence. Another classical
method to determine how a group of people is organized is to analyze the content of the
semi-structured face-to-face interviews conducted in the expert elicitation. Finally, the
experts themselves know their community, they can help to discover how it is organized,
and they can validate the results of the sociological analysis.

4 Comparing Fusion Methods

This section critically assesses the different ways to combine opinions defined above,
theoretically and numerically. It discusses the results presented on Figure 2, which al-
lows to compare 8 alternative ways to perform the fusion of expert opinion. On each
plot, the vertical axis goes from 0 to 1, and horizontally the numbers (from 1 to 7)
denote the states of the world ω1 to ω7. There are three series of points on each plot.
The top one is labelled pl, while the middle one is labelled p and the bottom bel. They
display respectively the plausibility of singletons pl({ωi}), the pignistic probability

pm(ωi) = 1
1−m( /0) ∑ω∈X

m(X)
|X | , and the belief bel({ωi}).

The top left plot presents the result obtained with Dempster’s rule,
⊕

i=1...n
dis(mi,0.8). This rule has many drawbacks for pooling expert opinion. It requires dis-
counting otherwise it is known to give counter-intuitive results when there is contra-
diction [10]. Having no evidence to determine the reliability factor, we used r = 0.8.
Dempster’s rule also assumes independence, reducing the plausibility of states of the
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Fig. 2. Comparing 8 alternative procedures to fusion expert opinion

world that are outside the central range: on the figure, beliefs are very focused around
ω3. Much of this precision is unwarranted as experts are not independent.

Consider now the second and third cases in the left column. They show respec-

tively the results obtained with cautious conjunction i=1...ndis(mi,0.8) and with non-

interactive conjunction i=1...ndis(mi,0.8). Since these rules produce the trivial result
1 /0 when the information sources conflict completely, discounting is needed to recover
informative results. This is hard to justify, when the whole point of the Transferable
Belief Model is to accept 1 /0 as a theoretically correct result. The precision of the non-
interactive conjunction is also highly questionable given that experts interact.

The left bottom plot shows the result of the non interactive disjunction i=1...n

dis(mi,0.999). This operator produces uninformative beliefs close to 1Ω . Discounting
could only make the result even less informative. This operator has potential to combine
Bayesian, but not consonant, beliefs.

Turn now to the right column and averaging, also called the linear opinion pool:
1
n ∑i=1...n dis(mi,0.999). The theoretical criticism of averaging is that the weight of an
opinion increases with the number of experts holding it. Yet scientific arguments should
be evaluated on their own merits, not by argumentum ad populum (Latin: “appeal to the
people”). It is only at the social decision-making stage that the quality and number of
people behind each view should matter. Groupthink and bandwagon effects are known
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dangers when pooling opinions. Thus, a fusion method that gives equal attention to the
minority and the majority views would be preferable.

Figure 2, the second plot on the right shows our central result: the hierarchical fusion:

k=1...N i∈Gk dis(mi,0.999). The different schools of thought are as follows (see Fig-
ure 1): Experts in group G1 = {2,3,6} allow cooling. Those in group G2 = {4,7,8,9}
allow high outcomes but no cooling, G3 = {1,10 . . .16} disallow extreme cases, and
the opinion of the single expert outlying in G4 = {5} is concentrated on [0◦C,1◦C].

According to the hierarchical aggregation of opinions, the uncertainty range
{ω2,ω3,ω4}, i.e. 0◦C to 3.5◦C is completely plausible, and higher values are very plau-
sible. Experts were interviewed in 1995 and these results should be compared to the
more recent scientific literature from a policy perspective. Our understanding is that the
plausibility of the ΔT2× < 1.5◦C case has decreased a lot, while the plausibility that
ΔT2× > 3.5◦C has remained high.

We conducted two sensitivity analysis. We merged G1 and G2 together for a 3-way
hierarchical fusion (third plot). Results appear significantly sensitive to the clustering of
experts: the plausibility of the ‘above 4.5◦C’ case, drops from 0.61 to 0.15. Lastly, we
examined a hierarchical fusion where the first step is averaging, rather than the cautious
conjunction. The plausibility levels increase: the result is more ambiguous.

5 Summary and Conclusion

Symmetrical fusion procedures have problems to aggregate expert opinion when there
is a range of competing scientific theories. Conjunctions only say ‘Experts contradict
each other’, while disjunctions say ‘Everything is possible’. Dempster’s rule lead to
overconfidence. Averaging assumes that finding scientific truth is like majority voting.

The proposed hierarchical fusion procedure is built around a simple model of ex-
perts’ social relations: they are divided into schools of thought. Beliefs are aggregated
using the cautious conjunction operator within, and combined using the non-interactive
disjunction rule across groups. This solves several theoretical problems with opinion
aggregation. It does not use discounting, thus avoiding the issue of expert calibration.
Within groups, cautious conjunction does pool together distinct streams of evidence to
make beliefs firmer. But it is not assumed that opinions are independent: this would
overestimate the precision of actual information. Disjunction allows to deal with com-
plete contradiction among opinions without falling into degenerate results or paradoxes.
When several scientific theories compete to explain the same observations, it should not
be assumed that both are true at the same time (conjunction), but that at least one will
remain (disjunction). Pooling opinions across schools of thoughts, rather than across
individual experts, is arguably a more balanced procedure. Unlike averaging, minority
views are equally taken into account.

Even with purely mathematical expert aggregation methods, one has to make sure
that no major point of view is omitted when selecting the experts. Therefore sociological
considerations on the population of experts cannot really be avoided. The hierarchical
approach brings forward transparently that qualitative analysis. Finding out the detailed



368 M. Ha-Duong

structure of epistemic communities to explain the differences between theories may be
as policy-relevant as computing aggregate beliefs.
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Application of Non-convex Fuzzy Variables to
Fuzzy Structural Analysis
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Abstract. Data situation in engineering is usually characterized by uncertainty. Fuzzy set theory
provides adequate modeling of specific uncertainty phenomena. In this paper a new approach for
modeling and processing of imprecise data by means of non-convex fuzzy variables is presented.
For numerical processing an enhanced discretization of non-convex fuzzy variables is introduced.
Furthermore fuzzy structural analysis is enhanced in order to be applicable to non-convex fuzzy
variables. Fuzzy structural analysis under consideration of non-convex fuzzy variables is demon-
strated by way of a two bay steel structure.

Keywords: Imprecise data, Non-convex fuzzy variables, Discretization, Fuzzy structural
analysis.

1 Introduction

Data situation in engineering is usually characterized by uncertainty. The term uncer-
tainty summarizes phenomena like imprecise, vague, fluctuating, fragmentary, linguis-
tic, or subjective data. Realistic numerical modeling of engineering structures requires
an adequate modeling of those uncertainty phenomena with respect to their sources.
In general uncertainty may thus be subdivided into aleatoric and epistemic uncertainty
[1]. Aleatoric uncertainty takes variability into account and is described by means of
stochastic models. Epistemic uncertainty takes data into account, which overextend
pure stochastic models. Non-stochastic models are amongst others provided by the
fuzzy set theory (e. g. [6, 7]). Imprecise data are modeled as fuzzy variables (e. g.
[4]) and are taken into account within the fuzzy structural analysis (e. g. [2, 3, 5]).

In this paper a new approach for modeling and processing of imprecise data by
means of non-convex fuzzy variables is presented. For numerical processing an en-
hanced discretization of non-convex fuzzy variables is introduced. Furthermore fuzzy
structural analysis is enhanced in order to be applicable to non-convex fuzzy variables.
Non-convex fuzzy variables occur amongst others within the modeling of smooth tran-
sitions between two complementary states 1 and 2, e. g., measurement results of inter-
faces are only available as grey-tones. Such measurement results may be characterized
by continuous, monotonic increasing functions B(x). The function B(x) maps the mea-
sured values onto the interval [0;1]. All measured values assignable to state 1 are rated
with B(x) = 0 and all measured values assignable to state 2 are rated with B(x) = 1.
The shape of the function inbetween has to be defined by the observer. By derivating
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Modeling of a smooth transition between two complementary states 1 and 2 as non-convex
fuzzy variable x̃

function B(x) and standardization the membership function μx̃(x) is received. In depen-
dency of the function B(x) non-convex fuzzy variables may be the result (see Fig. 1).

2 Discretization of Non-convex Fuzzy Variables

A fuzzy variable x̃ is defined as an uncertain subset of the fundamental set X.

x̃ = {x, μx̃(x) |x ∈ X} (1)

The uncertainty is assessed by the membership function μx̃(x).
A normalized membership function μx̃(x) is defined as follows:

0 ≤ μx̃(x) ≤ 1 ∀ x ∈ R (2)

∃ xl, xr with μx̃(x) = 1 ∀ x ∈ [xl;xr] . (3)

A fuzzy variable x̃ is referred to as convex if its membership function μx̃(x) monotoni-
cally decreases on each side of the maximum value, i. e. if

μx̃(x2) ≥ min [μx̃(x1); μx̃(x3)] ∀x1,x2,x3 ∈ R with x1 ≤ x2 ≤ x3 (4)

applies.
For all α ∈ (0,1] a set of eα closed finite intervals [x j∗

α l;x j∗
αr], j∗ = 1, 2 , ..., eα , may

be extracted from a non-convex fuzzy variable x̃. It holds:

x1
α l ≤ x1

αr < x2
α l ≤ x2

αr < ... < xeα
α l ≤ xeα

αr (5)

Thus a non-convex fuzzy variable x̃ may be characterized by a family of α-level sets
Xα according to Eq. (6).

x̃ =
(
Xα =

{
[x1

α l;x1
αr], [x

2
α l;x2

αr], ..., [xeα
α l ;xeα

αr]
} |α ∈ [0,1]

)
(6)
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Fig. 2. Non-convex fuzzy variable x̃ discretized by n = 4 α-level sets Xα

If the number of α-level sets is denoted by n, then for i = 1,2, ...,n− 1 the following
holds provided that n ≥ 2:

0 ≤ αi ≤ αi+1 ≤ 1 (7)

α1 = 0 and αn = 1 (8)

Xαi+1 ⊆ Xαi (9)

In Fig. 2 a non-convex fuzzy variable x̃ disretized by n = 4 α-level sets Xα is shown.

3 Fuzzy Structural Analysis under Consideration of Non-convex
Fuzzy Variables

By means of fuzzy structural analysis it is possible to map the fuzzy input variables
x̃1, x̃2, ..., x̃l onto the fuzzy result variables z̃1, z̃2, ..., z̃m.

z̃ = (z̃1, z̃2, ..., z̃m) = f̃ (x̃1, x̃2, ..., x̃l) (10)

The solution of Eq. (10) may be found by applying the extension principle. Under the
condition that the fuzzy variables x̃k, k = 1, 2, ..., l, are convex, however, α-level opti-
mization is numerically more efficient [3]. In case of non-convex fuzzy variables x̃k the
α-level optimization has to be generalized. The generalized α-level optimization ap-
proach is based on multiple discretization. All fuzzy variables x̃k and z̃ j, j = 1, 2, ..., m,
are discretized using the same number of α-levels αi, i = 1, 2, ..., n. The α-level
sets Xk,αi of the fuzzy input variables x̃k, k = 1, 2, ..., l, are sets of ex̃k ,αi intervals

[x jk

k,αil
;x jk

k,αir
], jk = 1, 2 , ..., ex̃k,αi and form thus a non-continuous l-dimensional crisp

subspace Xαi
.

If no interaction exists between the fuzzy input variables, the subspace Xαi
forms

∏l
k=1 ex̃k ,αi l-dimensional hypercuboids. The crisp subspace Zαi

is assigned to the crisp
subspace Xαi

on the same α-level. These are constructed from the α-level sets Zj,αi ,
j = 1, 2, ..., m, of the fuzzy result variables z̃ j. The α-level sets Zj,αi of the fuzzy result

variables z̃ j are sets of ez̃ j ,αi intervals [zs j

j,αil
;zs j

j,αir
], s j = 1, 2 , ..., ez̃ j ,αi . Each subspace

Zαi
forms ∏m

j=1 ez̃ j ,αi m-dimensional hypercuboids.
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Each point of the subspace Xαi
is uniquely described by the coordinates x1,x2, . . . ,

xl . Each point in the subspace Zαi
may be computed by means of

z = (z1, z2, ..., zm) = f (x1, x2, ..., xl) . (11)

The mapping f (·) is referred to as the deterministic fundamental solution. This repre-
sents an arbitrary computational model, e. g. a finite element model.

Under the condition that the fuzzy variables are convex, it is sufficient to compute
the largest element z j,αir and the smallest element z j,αil of Zj,αi . If these two elements
are known for a sufficient number of α-levels, the membership function μz̃ j (z j) may be
stated in discretized form.

In the case of non-convex fuzzy input variables x̃1, x̃2, ..., x̃l no convex fuzzy result
variables z̃1, z̃2, ..., z̃m can be assumed. The largest element z j,αir and the smallest ele-
ment z j,αil of Zj,αi only yields the envelope of the membership function μz̃ j (z j). The
complete description of the membership function μz̃ j(z j) requires the computation of

the interval boundaries zs j

j,αil
and zs j

j,αir
, s j = 1, 2 , ..., ez̃ j ,αi , of the α-level sets Zj,αi .

The computation of the interval boundaries zs j

j,αil
and zs j

j,αir
, s j = 1, 2 , ..., ez̃ j ,αi , suc-

ceeds in two steps. In the first step the optimization problems, each with the objective
functions

z j = f (x1, x2, ..., xl) ⇒ max (12)

z j = f (x1, x2, ..., xl) ⇒ min (13)

and the constraints

x1 ∈ [x j1

1,αil
;x j1

1,αir
] (14)

x2 ∈ [x j2

2,αil
;x j2

2,αir
] (15)

...

xl ∈ [x jl

l,αil
;x jl

l,αir
] (16)

has to be solved for all possible combinations j1, j2, ..., jl with jk = 1, 2 , ..., ex̃k,αi and
k = 1, 2, ..., l. That is, maximum and minimum for each of the ∏l

k=1 ex̃k,αi l-dimensional
hypercuboids has to be located.

For each of the ∏l
k=1 ex̃k,αi objective functions according Eq. (12) a local maximum

z j = h j, p (p = 1, 2, ..., ∏l
k=1 ex̃k,αi) and for each of the ∏l

k=1 ex̃k ,αi objective functions
according Eq. (13) a local minimum z j = t j, p is given by the constraints according Eqs.
(14) till (16) in the subspace Xαi

. The major local maximum correspond to the global
maximum within the subspace Xαi

and the minor local minimum correspond to the
global minimum.

By means of the local maxima h j, p and the local minima t j, p the computation of

the interval boundaries zs j

j,αil
and zs j

j,αir
, s j = 1, 2 , ..., ez̃ j ,αi , succeeds in the second step.

The local maxima h j, p and minima t j, p are sorted and indexed from the smallest to the
largest value according to the following inequalities.
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h j,1 ≤ h j,2 ≤ ... ≤ h j,num with num =
l

∏
k=1

ex̃k,αi (17)

t j,1 ≤ t j,2 ≤ ... ≤ t j,num with num =
l

∏
k=1

ex̃k ,αi (18)

For each α-level set Zj,αi of the fuzzy result variable z̃ j the number ez̃ j ,αi of intervals

[zs j

j,αil
; zs j

j,αir
] is then given by Eq. (19).

ez̃ j ,αi = #
{

s |h j,s < t j,s+1, s = 1, 2, ..., num
}

+ 1 (19)

At this #{·} is the number of values s, for which the condition h j,s < t j,s+1, s =
1, 2, ..., num, is fulfilled.

The local maxima and local minima located according Eqs. (12) and (13) do not
yield directly discrete points of the membership function μz̃ j (z j). Each of the located

∏l
k=1 ex̃k ,αi maxima and each corresponding minimum define an interval, in which the

fuzzy result variable z̃ j may take a value on the α-level αi. For this reason it is to check,
if the located ∏l

k=1 ex̃k ,αi intervals overlap each other. In the case that an interval does
not overlap any other interval, the corresponding local maximum and minimum are
discrete points of the membership function μz̃ j (z j). That is, they are directly interval
boundaries of the α-level set Zj,αi . In the case of overlapping intervals, the intervals
are combined to one enveloping interval and only the minor minimum and the major
maximum of the overlapping intervals are discrete points of the membership function
μz̃ j (z j). The computation rule for the interval boundaries zs j

j,αil
and zs j

j,αir
of the fuzzy

result variables z̃ j is thus given recursively by Eqs. (20) till (24).

z1
j,αil = t j,1 (20)

z1
j,αir = min

[
h j,s |h j,s < t j,s+1, s = 1, 2, ..., num

]
(21)

z2
j,αil = min

[
t j,s |t j,s > z1

j,αir, s = 1, 2, ..., num
]

(22)

z2
j,αir = min

[
h j,s |z2

j,αil < h j,s < t j,s+1, s = 1, 2, ..., num
]

(23)

...

z
ez̃ j ,αi
j,αir

= h j,num (24)

By means of the interval boundaries zs j

j,αil
and zs j

j,αir
, s j = 1, 2 , ..., ez̃ j ,αi , the member-

ship functions μz̃ j(z j) of the fuzzy result variables z̃ j are given discretly.

4 Example

Fuzzy structural analysis under consideration of non-convex fuzzy variables is demon-
strated by the example of a two bay steel structure with a crane runway. The crane
runway is used by two independent cranes with a lifting force of 320 kN. The steel
structure without crane runway is shown in Fig. 3.
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Fig. 3. Two bay steel structure

In the context of the example the sideways horizontal impact forces of the crane
runway on the girder are regarded. The horizontal forces complying with the standard
base on a series of simplifications and are thus not a comprehensive reflection of reality.
On this account the horizontal forces HS,1 and HS,2 of the two cranes are modeled as
fuzzy variables. The forces complying with the standard are chosen as the ’best possible
crisped’ impact values (μ = 1). Zero impact forces are valuated by membership value
zero. Further possible forces are taken into account by membership values less than
one. Fig. 4 shows the membership function of the resulting non-convex fuzzy variables
H̃S,1 and H̃S,2.

The deterministic fundamental solution within the fuzzy structural analysis is the
program system SSt-micro. The modeling is carried out using 1494 bars and 638 nodes.
In the following the normal force at the upper edge of bar 738 is analyzed. As worst
loading case a position of the cranes in the middle of the girder with a distance in-
between of 6 m is chosen.

The non-convex fuzzy input variables H̃S,1 and H̃S,2 are discretized by means of n = 4
α-levels α1 = 0, α2 = 1

3 , α3 = 2
3 and α4 = 1 according to Sect. 2. As a result of the

fuzzy structural analysis the normal force is obtained as a non-convex fuzzy variable

�HS,j
( )H~

1

H [kN]

HS,j

2
3

1
3

~

-29.37 -26.7 0 82.4 90.64

Fig. 4. Non-convex fuzzy impact forces H̃S, j ( j = 1, 2)
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Fig. 5. Non-convex fuzzy normal force Ñ738

Ñ738 (see Fig. 5). The three peak points of the membership function represent the nor-
mal force corresponding to the combinations of the impact forces complying with the
standard. Because of the symmetry of the system there are only three and not four peak
points as expected. Analysis of the α-level α1 = 0 yields approximately four percent
difference in comparison to the results complying with the standard. Furthermore the ef-
fect of overlapping intervals occurs on α-level α2 = 1

3 . In other words, non-continuous
hypercuboids in the input space yield overlapping intervals in the result space.

5 Conclusion

In this paper a new approach for fuzzy structural analysis under consideration of non-
convex fuzzy variables is presented. Therefor an enhanced discretization of non-convex
fuzzy variables is introduced. Non-convex fuzzy variables are characterized by a family
of α-level sets which are sets of closed finite intervals. Within the framework of fuzzy
structural analysis the α-level optimization is generalized. Fuzzy structural analysis
under consideration of non-convex fuzzy variables is demonstrated by way of a two
bay steel structure.
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Handling Uncertainty in Higher Dimensions with
Potential Clouds towards Robust Design Optimization

Martin Fuchs and Arnold Neumaier

Faculty of Mathematics, University of Vienna, Wien, Austria

Abstract. Robust design optimization methods applied to real life problems face some major
difficulties: how to deal with the estimation of probability densities when data are sparse, how
to cope with high dimensional problems and how to use valuable information provided in the
form of unformalized expert knowledge. We introduce the clouds formalism as means to process
available uncertainty information reliably, even if limited in amount and possibly lacking a for-
mal description. We provide a worst-case analysis with confidence regions of relevant scenarios
which can be involved in an optimization problem formulation for robust design.

Keywords: Clouds, Potential clouds, Robust design, Design optimization, Confidence regions,
Uncertainty modeling.

1 Background

Robust design is the art of safeguarding reliably against uncertain perturbations while
seeking an optimal design point. In every design process an engineer faces the task to
qualify the object he has designed to be robust. That means the design should not only
satisfy given requirements on functionalities, but should also work under uncertain,
adverse conditions that may show up during employment of the designed object.

Hence the process of robust design demands both the search of an optimal design
with respect to a given design objective, and an appropriate method of handling un-
certainties. In particular for early design phases, it is frequent engineering practice to
assign and refine intervals or safety margins to the uncertain variables. These intervals
or safety margins are propagated within the whole optimization process. Thus the de-
sign arising from this process is supposed to include robustness intrinsically. Note that
the assessment of robustness is exclusively based on expert knowledge of the engineers
who assign and refine the intervals. There is no quantification of reliability, no rigorous
worst-case analysis involved.

Several methods exist to approach reliability quantification from a rigorous math-
ematical background, originating from classical probability theory, statistics, or fuzzy
theory. However, real life applications of many methods disclose various problems. One
of the most prominent is probably the fact that the dimension of many uncertain real life
scenarios is very high. This can cause severe computational effort, even given the com-
plete knowledge about the multivariate probability distributions of the uncertainties,
also famous as the curse of dimensionality [8]. Often standard simulation techniques
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are used to tackle the dimensionality issue, as the computational effort they require
seems to be independent of the dimension. Advancements have been made based on
sensitivity analysis [15], or on α-level optimization, cf. [11]. Moreover, if the amount
of available uncertainty information is very limited, well-known current methods like
Monte Carlo either do not apply at all, or are endangered to critically underestimate er-
ror probabilities, [2]. A simplification of the uncertainty model, e.g., a reduction of the
problem to an interval analysis after assigning intervals to the uncertainties as described
before (e.g., so called 3 σ boxes), entails a loss of valuable information which would ac-
tually be available, maybe only unformalized, but not at all considered in the uncertainty
model. Incomplete information supplemented by expert statements can be handled with
different methods, e.g.: p-boxes [3], fuzzy sets [1], random sets [10]. A combination of
uncertainty methods and design optimization is addressed in approaches to reliability
based design optimization: based on reliability methods [7]; based on possibility theory
in [12]; based on evidence theory in [13].

This paper is organized as follows. We will start introducing our approach based on
the clouds formalism and lead to the the special case of interest in this study, cf. Sec-
tion 2.1: the concept of potential clouds. Several remarks on suitable potential function
choices are given in Section 2.2. A short introduction how clouds can be involved in
an optimization problem formulation for robust design can be studied in Section 2.3.
Section 3 concludes our studies.

2 Introducing the New Approach

Our work deals with a new approach based on the clouds formalism, cf. [14]. Clouds
can process limited amounts of stochastic information in an understandable and com-
putationally attractive way, even in higher dimensions, in order to perform a reliable
worst-case analysis, reasonably safeguarded against perturbations that result from un-
modeled or unavailable information. Since the strength of our new methodology lies
especially in the application to real life problems with a very limited amount of un-
certainty information available, we focus in particular on problem statements arising
in early design phases where today’s methods handling limited information are very
immature. On the one hand, the information is usually available as bounds or marginal
probability distributions on the uncertain variables, without any formal correlation in-
formation. On the other hand, unformalized expert knowledge will be captured to im-
prove the uncertainty model adaptively by adding dependency constraints to exclude
scenarios deemed irrelevant. The information can also be provided as real sample data,
if available.

If we have a look at Figure 1, we see confidence levels on some two dimensional
random variable ε . The curves displayed can be considered to be level sets of a func-
tion V (ε) : R2 → R, called the potential. The potential characterizes confidence regions
Cα := {ε ∈ R2 |V (ε) ≤Vα}, where Vα is determined by the condition Pr(ε ∈Cα) = α .
If the probability information is not precisely known nested regions are generated

Cα := {ε ∈ R2 |V (ε) ≤V α},
where V α is largest such that Pr(ε ∈Cα) ≤ α , and
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Fig. 1. Nested confidence regions in two dimensions for confidence levels α = 0.2,0.4,0.6,0.8,1.
The lower confidence regions Cα plotted with dashed lines, the upper confidence regions Cα with
solid lines.

Cα := {ε ∈ R2 |V (ε) ≤V α},

where V α is smallest such that Pr(ε ∈Cα)≥ α . The information in Cα and Cα is called
a potential cloud. The values Vα , V α , V α can be found from the cumulative distribution
function (CDF) of V (ε) and lower and upper bounds of it. These bounds in turn can be
determined empirically using the Kolmogoroff-Smirnov (KS) distribution [9].

2.1 Potential Cloud Generation

We assume that the uncertainty information consists of given samples, boxes, non-
formalized dependency constraints or continuous marginal CDFs Fi, i∈ I ⊆{1,2, . . . ,n},
on the n-dimensional vector of uncertainties ε , without any formal knowledge about
correlations or joint distributions. In case there is no sample provided or the given
sample is very small, a sample S has to be generated. For these cases we first use a
Latin Hypercube Sampling (LHS) inspired method to generate S, i.e., the sample points
x1,x2, . . . ,xNS are chosen from a grid satisfying x j

i �= x j
k ∀i,k ∈ {1,2, . . . ,NS},k �= i,∀ j ∈

{1,2, . . . ,n}, where x j
i is the projection of xi to the jth coordinate. If only boxes for

ε are given, then the grid is equidistant, if marginal distributions are given the grid is
transformed with respect to them to ensure that each grid interval has the same marginal
probability. LHS introduces some preference for a simple structure. The effect of this
preference will be diminished by weighting of the sample points.

The generated sample represents the marginal distributions. However after a mod-
ification of S, e.g., by cutting off sample points as we will do later, an assignment of
weights to the sample points is necessary to preserve the marginal CDFs. In
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order to do so the weights ω1,ω2, . . . ,ωNS ∈ [0,1], corresponding to the sample points
x1,x2, . . . ,xNS , are required to satisfy the following conditions (1)

k

∑
j=1

ωπi( j) ∈ [Fi(xi
πi(k))−d,Fi(xi

πi(k))+ d],
NS

∑
k=1

ωk = 1. (1)

for all i ∈ I, k = 1, . . . ,NS, where π j is a sorting permutation of {1, . . . ,NS}, such that
x j

πk(1) ≤ x j
πk(2) ≤ ·· · ≤ x j

πk(NS), and I the index set of those entries of the uncertainty
vector ε where a marginal CDF Fi, i ∈ I is given. The constraints (1) require the weights
to represent the marginal CDFs with some reasonable margin d. In practice, one chooses
d with KS statistics.

We determine bounds on the CDF of V (ε) by F := min(F̃ +D,1) and F := max(F̃ −
D,0), where F̃(ξ ) := ∑{ j|V (x j)≤ξ} ω j the weighted empirical distribution for V (ε), and

D is again chosen with KS statistics. Finally we fit the two step functions F , F to
smooth, monotone lower bounds α and upper bounds α . From these bounds the regions
Cα , Cα can be computed straightforward.

Lower and upper bounds of empirical CDFs remind of p-boxes. In fact a potential
cloud can be considered as a p-box on the potential of a random vector. Clouds extend
the p-box concept to the multivariate case without the exponential growth of work in
the conventional p-box approach. Furthermore, clouds can be considered as fuzzy sets
with interval valued membership function or as a special case of random sets.

2.2 Choice of the Potential

We see that given a potential the corresponding potential cloud is easy to estimate,
even for high dimensional data. The choice of the potential is dictated by the shape
of the points set defined by the sample of available ε . We are looking for a way to
find a good choice of V that gives the possibility to improve the potential iteratively
and allows for a simple computational realization of the confidence regions, e.g., by
linear constraints. This leads us to the investigation of polyhedron-shaped potentials. A
polyhedron potential centered at m ∈ Rn can be defined as:

Vp(ε) := max
k

(A(ε −m))k

bk , (2)

where ε,b ∈ Rn, A ∈ Rn×n, (A(ε −m))k,bk the kth component of the vectors A(ε −m)
and b, respectively.

But how to achieve a polyhedron that reflects the given uncertainty information in the
best way? As mentioned we assume the uncertainty information to consist of given sam-
ples, boxes or marginal distributions, and unformalized dependency constraints. After
providing a sample S as described in Section 2.1 we define a box b0 containing 100% of
the sample points, and we define our potential V0(ε) box-shaped taking the value 1 on
the margin of b0. Based on expert knowledge, a user-defined variation of V0 can be per-
formed afterwards by cutting off sample points deemed irrelevant for the worst-case, cf.
Figure 2: The optimization phase (cf. Section 2.3) provides a worst-case scenario which
is highlighted in the graphical user interface. The expert can decide to exclude, e.g., the
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Fig. 2. Graphical user interface for an interactive scenario exclusion. The exclusion is performed
in 1 and 2 dimensional projections.

worst-case or different scenarios, based on his technical knowledge. Thus an expert can
specify the uncertainty information in the form of dependency constraints adaptively,
even if the expert knowledge is only little formalized, resulting in a polyhedron shaped
potential.

Assume the linear constraints A(ε −μ)≤ b represent the exclusion of sample points
and the box constraint from b0, we define our polyhedron shaped potential as in (2) with
m = μ .

Further details on the construction of potential clouds and the choice of the potential
function can be studied in [5].

2.3 Robust Design Optimization Problem

In this section we give a short introduction how potential clouds can be involved in
an optimization problem formulation for robust design. Provided an underlying model
of a given structure to be designed, with an objective function g(z) and input vector z.
Let θ be a design point, i.e., it fully defines the design. Let T be the set of all allowed
designs. The input variables z consist of design variables which depend on the design
θ , e.g., the thrust of a thruster, and external inputs with a nominal value that cannot be
controlled for the underlying model, e.g., a specific temperature. Let Z(θ ) be the input
vector given θ and given the external inputs at their nominal values.
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The input variables are affected by uncertainties. Let ε denote the related vector of
uncertain errors. One can formulate the optimization problem as a mixed-integer, bi-
level problem of the following form:

min
θ

max
ε

g(z) (objective function)

s.t. z = Z(θ )+ ε (input constraints) (3)

θ ∈ T (selection constraints)

Vp(ε) ≤V α (cloud constraint)

The cloud constraint involves confidence regions as level sets of the potential function
V = Vp(ε) as described previously. The confidence level α should be chosen to re-
flect the seriousness of consequences of the worst case event. In our applications from
spacecraft system design we used α = 0.95, cf. [6]. The cloud constraint models the
embedding of the uncertainty methods into the optimization phase.

A detailed view on the optimization techniques used to solve (3) is given in [4].

3 Summary

We present a new methodology based on clouds to provide confidence regions for safety
constraints in robust design optimization. We can process the uncertainty information
from expert knowledge towards a reliable worst-case analysis, even if the information
is limited in amount and high dimensional.

We can summarize the basic concept of our methodology in three essential steps
within an iterative framework. First, the expert provides the underlying system model,
given as a black-box model, and all a priori available information on the input variables
of the model. Second, the information is processed to generate a potential cloud thus
producing safety constraints for the optimization. Third, optimization methods mini-
mize a certain objective function subject to the functional constraints which are rep-
resented by the system model, and subject to the safety constraints from the cloud.
The results of the optimization are returned to the expert, who is given an interactive
possibility to provide additional information a posteriori and to rerun the procedure,
adaptively improving the uncertainty model.

The adaptive nature of our uncertainty model, i.e., the possibility of manually adding
dependency constraints, is one of the key features. The iteration steps significantly im-
prove the uncertainty information and we are able to process the new information to an
improved uncertainty model.

All in all, the presented approach offers an attractive novel point of view on high
dimensional uncertainty handling and its involvement to robust design.
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Reliability of Structures under Consideration of
Uncertain Time-Dependent Material Behaviour

Steffen Freitag, Wolfgang Graf, Stephan Pannier, and Jan-Uwe Sickert
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Abstract. In this paper a concept for time-dependent reliability assessment of civil engineering
structures is presented. This concept bases on the uncertainty model fuzzy randomness. The time-
dependent behaviour of materials with fading memory is modelled with the aid of rheological
elements using uncertain fractional time derivatives of strain. The presented method is applied to
the reliability assessment of a pavement construction.

1 Introduction

Generally, material behaviour, geometry, and stresses of civil engineering structures are
time-dependent, which results in a time-dependent reliability. Here we focus on the ef-
fect of uncertain time-dependent material behaviour. Realistic computation of structural
reliability requires mapping models specifying the nonlinear time-dependent structural
behaviour appropriately. The structural response during a load period may consist of
instant elastic, instant plastic, viscoelastic and viscoplastic deformations. These phe-
nomena have to be incorporated in a time-dependent structural analysis. Rheological
models [3, 10], which are based mathematically on time derivatives, enable the descrip-
tion of the time-dependent deformation behaviour of particular engineering materials,
e.g. asphalt, elastomer or textile reinforced concrete. They are characterized by their
susceptibility of loading rate and loading history, which is modelled with the aid of
fractional time derivatives in the paper.

Because of material tests yields uncertain results, a conventional rheological formu-
lation is enhanced by uncertain time derivatives of real order and uncertain parame-
ters, see Sect. 2. A respective assessment of structural reliability requires appropriate
uncertainty models. Currently, stochastic models are applied in engineering practice
for uncertainty specification and reliability assessment, see e.g. [11]. Here, we intro-
duce a method for reliability assessment considering structural long-term behaviour
in conjunction with uncertain parameters. The uncertain parameters are assessed with
the aid of imprecise probabilities [8, 16]. This model is appropriate to consider the
uncertainty, vagueness, and ambiguity of the stochastic model specification [7, 9]. The
time-dependent input parameters are modelled as fuzzy random processes, random pro-
cesses or fuzzy processes. The establishment of fuzzy random processes within the
fuzzy safety concept is enabled with the aid of the uncertainty measure fuzzy failure
probability, outlined in Sect. 4. The fuzzy failure probability is computed by means of
the numerical algorithm Fuzzy Monte-Carlo Simulation (FMCS) [9, 13].

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 383–390, 2008.
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In Sect. 5 the algorithms are applied for the assessment of the time-dependent relia-
bility of a pavement construction. The long-term material behaviour of the asphalt layer
is modelled by an uncertain fractional rheological element.

2 Fractional Rheological Models and Uncertainty

Conventional rheological formulations contain time derivatives of integer order [3],
whereas fractional rheological formulations base on time derivatives of real order [18].
The extension of conventional rheological models to fractional rheological models fa-
cilitates an improved fitting of material parameters to experimental data. Moreover,
the theory of fractional derivatives is well-founded in the physics of material be-
haviour [18]. Conventional rheological formulations can be interpreted as a subclass
of fractional formulations.

As an example, the fuzzy stochastic fractional NEWTON body is introduced to
model the long-term behaviour of materials with fading memory, see e.g. [10]. The
differential equation of the fractional NEWTON body is

σv(ε, τ, α, p) = p(σv)
dα

dτα ε(τ) . (1)

In terms of rheology σv(ε, τ, α, p) could be interpreted as a stress, which is a function
of the stress dependent parameter p(σv) and the fractional derivative of the strain ε(τ)
with respect to the time τ . The operator α represents the order of the strain derivative,
which can adopt real values between 0 and 1. For α = 1 an ideal dashpot is described
with the viscosity p(σv). Against this, the fractional NEWTON body represents an elas-
tic spring for α = 0 with the elasticity p(σv). The operator α is assumed to be constant
in time for further remarks.

The differential equation (1) may be solved by a LAPLACE transform [1]. Regard-
ing to the creep and relaxation behaviour of the material the LAPLACE transform of
Eq. (1) requires the definition of stress or strain boundary conditions. Here, the stress
boundary condition σv(ε, τ, α, p) = σ∗

v is selected. Under consideration of this bound-
ary condition the creep strain ε(τ) is obtained for a time-constant stress σ∗

v .

ε(τ) =
σ∗

v τα

p(σ∗
v )Γ (α + 1)

(2)

Thereby, the Gamma function Γ (α + 1) is an extension of the factorial function to real
numbers.

However, in many engineering applications the stress is time-variant. This results
from time-dependent structural loads as well as load rearrangements in layered or com-
posite constructions caused by different time-dependent material behaviour. In order to
account for arbitrary loading regimes a convolution of the creep function (2) can be
conducted, see [10].

The determination of the strain at time τ requires knowledge of the entire history of
loading (i.e. stresses). Thereby, changes of stress, occurred in the past, are less influen-
tial on the actual strain state than stress changes occurred quite recently. This material
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property is usually denoted as fading memory. In [10] this property is considered by
means of the convolution of approximated creep functions. Therewith, an efficient so-
lution with internal variables is provided.

In general, the long-term material behaviour of structural members is affected by
uncertainty because of the fact that quasi identical experiments yield different results.
This uncertainty may be reflected in the parameters of the fractional rheological model.
Thereby, the uncertainty results from both aleatory and epistemic sources. Thus, the
parameter p(σ∗

v ) of Eq. (2) is modelled as fuzzy random function p̃(σ∗
v ). That means,

for a given stress σ∗
v the functional value p̃(σ∗

v ) is a fuzzy random variable according
to the definition given in Sect. 3. Furthermore, the operator α of Eq. (2) is described by
means of a fuzzy quantity α̃ .

3 Numerical Analysis Considering Fuzzy Random Functions

The uncertainty of the long-term material behaviour may be described appropriately by
means of the generalized uncertainty model fuzzy randomness [7], which bases on the
uncertain measure fuzzy probability as a special form of the imprecise probability [8].
Therewith, fractional rheological models may be extended modelling the parameters by
means of fuzzy random variables. Different definitions of fuzzy random variables, e.g.
given in [6] and [12], are summarized in [5]. The theory of fuzzy stochastic processes
and fuzzy random functions respectively is contained in [17].

Based on these definitions fuzzy probability density functions f̃ (x), introduced in [7],
represents a fuzzy set of probability density function f (x). Therefore, it is referred to
as assessed bunch of functions f (x). The bunch is described by means of fuzzy bunch
parameters s̃. If the bunch depends on more then one s̃, all n bunch parameters are joined
in the vector s̃, which represents a vector of fuzzy quantities. The fuzzy probability
density function f̃ (x) results therewith in a function f (s̃, x).

Typical fuzzy bunch parameters in engineering applications are the functional param-
eters of f̃ (x). For instance, a GUMBEL distributed fuzzy random variable, that means
each f (x) ∈ f̃ (x) is GUMBEL distributed, may depend on the fuzzy bunch parameters
s̃1 = ã and s̃2 = b̃. Then the fuzzy probability density function is

f (s̃, x) = s̃1 exp(−s̃1(x− s̃2)− exp(−s̃1(x− s̃2))) . (3)

This approach is different to the approaches introduced e.g. in [2, 4] where only the
expected value can be fuzzified. However, regarding the engineering application the
bunch parameter representation introduced in [7] is appropriate. Further, the approach
conforms to the definitions given in [5] as shown in [7]. On the basis of the fuzzy bunch
parameter representation the numerical solution of a fuzzy stochastic analysis may be
formulated.

A fuzzy stochastic analysis aims at the mapping of fuzzy random variables X̃ on
fuzzy random variables Z̃ according to

MFSA : X̃ → Z̃ . (4)

With the aid of the bunch parameter representation, Eq. (4) is transformed into the
mapping
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deterministic computational analysis

stochastic analysis

Fuzzy analysis

d

M (d)SA

M (M (d))FA SA

Fig. 1. Fuzzy stochastic analysis MFSA

σ̃ = (σ̃1, . . . , σ̃ j, . . . , σ̃m1) = m(s̃1, . . . , s̃k, . . . , s̃n1) (5)

Applying α-discretization to the fuzzy bunch parameter, an optimization problem
is solved in order to determine the α-level sets of the fuzzy bunch parameters
(σ̃1, σ̃2, ..., σ̃m1). This algorithm is referred to as fuzzy analysis and described, e.g.,
in [7]. It replaces the solution of the extension principle. Each element of the input
α-level sets yields a stochastic analysis. Within the stochastic analysis, e.g., applying
the Monte Carlo simulation, a deterministic fundamental solution d (.) is processed re-
peatedly. Therewith a three-loop computational algorithm is constituted, see Fig. 1, also
referred to as Fuzzy Monte-Carlo Simulation (FMCS).

4 Time-Dependent Reliability under Consideration of Fuzzy
Randomness

The reliability of structures alters during the lifetime. Time-dependent statical and dy-
namic loads, environmental conditions, and long-term material behaviour (e.g. accord-
ing to Sect. 2) result in time-dependent structural responses. The consideration of these
time-dependencies within the framework of reliability analysis requires a computational
model with time-dependent uncertain parameters. Here, these parameters are described
as fuzzy random processes, utilizing the generalized uncertainty model fuzzy random-
ness. A fuzzy random process X̃(τ) is a family of fuzzy random variables according
to [17].

If input parameters are modelled as fuzzy random processes X̃(τ), the reliability
assessment yields uncertain and time-dependent results. In [9, 13] the time-dependent
uncertainty measure fuzzy failure probability P̃f (τ) is introduced to process the influ-
ence of subjective evaluation in the safety assessment. Thereby, the fuzzy failure prob-
ability P̃f (τ) represents a fuzzy set of failure probabilities Pf (τ) which are real-valued
functions.

Generally, the structural reliability is influenced by nonlinear structural behaviour.
Thus, the structural resistance depends on the stress process. Then, the fuzzy failure
probability Pf (τ) at time points τ has to be computed in the space X of the fuzzy
random input parameters, such as material, geometry, and load parameters. In view
of the numerical solution, the space is constituted by means of the one-dimensional
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fuzzy random variables X̃ obtained by the discretization of all fuzzy random processes
X̃(τ). Additionally, real random variables X, e.g., as result of discretized real random
processes X(τ), may be accounted for as special case of fuzzy random variables.

The space of fuzzy random variables is subdivided into a fuzzy survival domain
X̃S and a fuzzy failure domain X̃F by the fuzzy set of limit state equations g(x) = 0.
Thereby, g(x) represents the performance function of a structure, e.g., g(x) = R(x)−
S(x) with R(x) structural resistance and S(x) stresses. The fuzzy set is modelled by
means of fuzzy bunch parameters s̃g joined in s̃g. For each sg ∈ s̃g, the inequality
gs(sg, x) ≤ 0 represents the failure domain XF(sg), where the limit state is exceeded.

For each fuzzy random variable X̃ , which results from discretization in time, the
assigned fuzzy probability density function f (s̃, x) has to be known. The joint behaviour
may be described with the aid of the multivariate probability density function f (s̃, x) in
X considering fuzzy correlation. For each certain vector s ∈ s̃ the failure probability is
computed by

Pf =
∫

x|g(sg,x)≤0

f (s, x) dx. (6)

The fuzzy failure probability is computed with the fuzzy stochastic analysis, see Fig. 1.
Thereby, Eq. (6) represents the stochastic analysis and Pf = σ an element of the fuzzy
result σ̃ = P̃f .

5 Reliability Assessment of a Pavement Construction

The FMCS, see Sect. 3, is applied for reliability assessment of a layered pavement con-
struction with a width of 6.6m. The pavement construction consists of a 0.30m asphalt
layer, a 0.15m unbonded sub-base layer, and a 0.45m frost protection layer. Figure 2
displays the discretized structure of the pavement for the Finite Element Method with
20-node displacement elements taking into account the system symmetry.

The aim is to investigate the long-term deformation behaviour of the pavement con-
struction. Specially, the permanent deformations of the pavement surface are of interest
to assess the serviceability. For that purpose, the load of the pavement construction is
modelled by a periodic loading process. The footprints of the load model are marked in
Fig. 2. In contrast to a pure application of linear elastic 3D material models for the sub-
layers, the viscoplastic material behaviour of the asphalt layer is modelled additionally

q = 0.833 MN m
-2

0.3 0.6 1.5 m 0.6 0.3 0.5

0.
2

0
.3

0
.1

5
0
.4

5

Fig. 2. Discretized pavement construction
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Fig. 3. Realisation of the vertical pavement displacement after 106 load cycles

with the aid of the fuzzy stochastic fractional NEWTON body. Due to a short duration
of a load cycle viscoelastic strain components are neglected. The long-term deformation
behaviour of the pavement construction is investigated in the load cycle domain. The
time τ in the fractional differential equation (1) is substituted by the number of the load
cycle lc. The parameters of the fuzzy stochastic fractional NEWTON body are identi-
fied on experimental data of cyclic loading tests. The uncertain operator α̃ is modelled
by a fuzzy number α̃ =< 0.055;0.0775;0.1 >. The stress dependent parameter p̃(σv)
is identified as

p̃(σv) = −227.778σ2
v + p̃lin |σv|+ 3.066 (7)

The uncertainty of the factor p̃lin is modelled by means of a normal distributed fuzzy
random variable X̃ with mean value μx = 265.95 and fuzzy standard deviation σ̃x =
s̃1 =< 6.0;8.62;10.0 >.

The deterministic fundamental solution d(.) is represented by a 3D computational
finite element model based on the numerical solution strategy introduced in [10]. In
Fig. 3 a realisation of the vertical displacement after 106 load cycles is shown. The
load cycle dependent fuzzy failure probability P̃f (lc) is computed with the aid of

Fig. 4. Load cycle dependent fuzzy safety level P̃f (lc)
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the FMCS [9, 13] utilizing response surface approximation based on artificial neu-
ral networks, see [14]. The serviceability limit state is achieved, if the deformation
is 5.0mm. As a result of the investigation the fuzzy function P̃f (lc) of the pavement
construction is shown in Fig. 4. Comparing the fuzzy failure probability P̃f (lc) with
the permissible failure probability, e.g., for the serviceability limit state predefined in
codes like β = 1.5 (Pf ,lim = 6.680710−2), the number of sustainable load cycles is
determined.

6 Conclusions

In the paper a method to account for uncertain long-term material behaviour utilizing a
fuzzy stochastic fractional rheological model is introduced. Furthermore, a concept of
fuzzy stochastic reliability assessment is outlined. The reliability is quantified by means
of the fuzzy failure probability. This enables the safety assessment under consider-
ation of subjective evaluations, which are frequently present in the engineering practice.

Acknowledgement. The authors gratefully acknowledge the support of the German
Research Foundation (DFG).
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A New Insight into the Linguistic Summarization
of Time Series Via a Degree of Support:
Elimination of Infrequent Patterns

Janusz Kacprzyk and Anna Wilbik�

Systems Research Institute, Polish Academy of Sciences, Warszawa, Poland

Abstract. We extend our previous works on using a fuzzy logic based calculus of linguistically
quantified propositions for linguistic summarization of time series (cf. Kacprzyk, Wilbik and
Zadrożny [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. That approach, using the classic degree of truth (validity)
to be maximized, is here extended by adding a degree of support. On the one hand, this can reflect
in natural language the essence of traditional statistical approaches, and on the other hand, can
help discard linguistic summaries with a high degree of truth but a low degree of support so that
they concern infrequently occurring patterns and may be uninteresting. We show an application
to the absolute performance analysis of an investment (mutual) fund.

1 Introduction

A linguistic summary of a data (base) is meant as a concise, human-consistent descrip-
tion of a (numerical) data set expressed in a (quasi)natural language. It was introduced
by Yager [21] and then further developed and implemented by Kacprzyk and Yager [14],
and Kacprzyk, Yager and Zadrożny [15]. The contents of a numeric set of data (rela-
tional database) is summarized via linguistically quantified propositions using Zadeh’s
calculus of linguistically quantified propositions [22].

We are concerned with time series. Traditionally, for their analyses, statistical meth-
ods are applied. Though they reflect world (commonsense) knowledge because they try
to grasp what usually happens, they do not try to take into account an imprecise mean-
ing of this usuality. As precise and powerful as they are, thay may be viewed not fully
human consistent.

In this paper we adopt this perspective. Our intention is to provide an additional tool
based on an explicit use of natural language. It is an extension of our previous works
(cf. Kacprzyk, Wilbik and Zadrożny [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]), mainly towards a
more complex evaluation of the results (linguistic summaries) obtained.

The analysis of time series is a complex task involving many aspects (cf. Batyrshin
and Sheremetov [2, 3]). First, we need to identify the consecutive parts of time series,
(partial)trends, within which the data exhibit some uniformity as to their variability.
The (linguistic) summaries of time series refer to the (linguistic) summaries of (partial)
trends. We have to aggregate the (characteristic features of) consecutive trends over an
entire time span (horizon) assumed. We follow the idea initiated by Yager [21] and then

� Supported by the Ministry of Science and Higher Education under Grant No. NN516 4309 33.
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shown made to be in Kacprzyk and Yager [14], and Kacprzyk, Yager and Zadrożny
[15], that the most comprehensive and meaningful will be a linguistic quantifier driven
aggregation resulting in linguistic summaries exemplified by “Most trends are short”
or “Most long trends are increasing” which are easily derived and interpreted using
Zadeh’s fuzzy logic based calculus of linguistically quantified propositions. A new
quality, and an increased generality was obtained by using Zadeh’s [23] protoforms
as proposed by Kacprzyk and Zadrożny [16].

Here we employ the classic Zadeh’s fuzzy logic based calculus of linguistically quan-
tified propositions as in our source papers but in addition to the degree of truth (validity),
we use a degree of support as the second criterion to ease the ranking of the summaries,
indicating if an observed behavior concerns a frequent or infrequent pattern. Notice that
since the concept of support has a clear probabilistic flavor because it basically speci-
fies the chance (probability, in the frequentistic sense) that the object exhibits a specified
property (or some properties). The use of a fuzzy quantifier base aggregation can again
be viewed as an attempt to expand the traditional line of reasoning to a widespread use
of human perception related to the use of natural language.

As an example, we will show a linguistic summarization of daily quotations over an
eight year period of an investment (mutual) fund. We will present in detail the charac-
teristic features of trends derived under some reasonable granulations, variability, trend
duration, etc.

The approach is in line with some other modern approaches to linguistic sum-
marization of time series, for instance with SumTime (cf. www.csd.abdn. ac.uk/
research/sumtime/).

Notice that our purpose is not to forecast the future behavior of time series but to
summarize its past behavior. This may be very useful for various purposes, for instance
for the comparison of the past performance of various investment funds.

2 Data Preprocessing

There are many algorithms for the piecewise linear segmentation of time series data,
including e.g. on-line (sliding window) algorithms, bottom-up or top-down strategies
(cf. Keogh [18, 19]). In our works [4, 5, 7, 8, 9, 10, 11, 12, 13] we used a simple on-line
algorithm, a modification of the Sklansky and Gonzalez one [20].

We consider the following three features of (global) trends in time series: (1) dynam-
ics of change, (2) duration, and (3) variability.

By dynamics of change we understand the speed of change of the consecutive values
of time series. It may be described by the slope of a line representing the trend. Duration
is the length of a single trend, and is also represented by a linguistic variable. Variability
describes how “spread out” a group of data is. We compute it as a weighted average of
values taken by some measures used in statistics: (1) the range, (2) the interquartile
range (IQR), (3) the variance, (4) the standard deviation, and (5) the mean absolute
deviation (MAD). This is also treated as a linguistic variable. For practical reasons for
all we use a fuzzy granulation (cf. Bathyrshin at al. [1, 2]) to represent the values by a
small set of linguistic labels as, e.g.: quickly increasing, increasing, slowly increasing,
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constant, slowly decreasing, decreasing, quickly decreasing. These values are equated
with fuzzy sets.

3 Linguistic Data Summaries and Their Protoforms

A linguistic summary is a (usually short) natural language like sentence(s) that sub-
sume the very essence of numeric and large data set which is hard to be comprehended
by the human – cf. Kacprzyk and Zadrożny [16, 17]. A linguistic summary of a data
set comprises: (1) a summarizer P (e.g. “low” for attribute “salary”), (2) a quantity
in agreement Q (a linguistic quantifier, e.g. most), (3) truth (validity) T ∈ [0,1], and
possibly (4) a qualifier R (e.g. “young” for attribute “age”). It may be exemplified by
T (most of employees earn low salary) = 0.7 or, in an extended form including a qual-
ifier (e.g. young): T (most of young employees earn low salary) = 0.9.

Then, T ∈ [0,1], i.e. the truth (validity) of a linguistic summary, directly corre-
sponds to the truth value of the above linguistically quantified statements. The formulas
employed will be given later.

We employ Zadeh’s [23] protoforms for dealing with linguistic summaries [16].
Here we use different protoforms of time series summaries (cf. Kacprzyk, Wilbik and
Zadrożny [4] – [13]):

• For a short form: Among all segments, Q are P
• For an extended form: Among all R segments, Q are P

3.1 Quality Measures of Linguistic Summaries

In our previous works (cf. Kacprzyk, Wilbik, Zadrożny [4, 5, 6, 7, 8, 9, 10, 11,
12, 13]) we employed the degree of truth (validity) as advocated by Yager in his
source paper [21]. Now, following Kacprzyk and Yager [14] and Kacprzyk, Yager and
Zadrożny [15] – where other quality measures were given: degrees of imprecision, cov-
ering, appropriateness, and the length of a summary – we use the degrees of truth and
support, a modification of the degree of covering.

The truth values for the simple and extended summaries are (∧ is the minimum or a
t-norm, and Q is a nondecreasing fuzzy linguistic quantifier quantifier):

T (Among all Y, Q are P) = μQ

(
1
n

∑n
i=1μP(yi)

)
(1)

T (Among all RY, Q are P) = μQ

(
∑n

i=1 μR(yi)∧μP(yi)
∑n

i=1 μR(yi)

)
(2)

In Kacprzyk and Yager [14] and Kacprzyk, Yager and Zadrożny [15] the degree of
covering of “QRy’s are P” is

dc(QRy′s are P) =
card{y : μP(y) > 0∧μR(y) > 0}

card{y : μR(y) > 0} (3)

The dc(.) says how many objects corresponding to the query are “covered” by the sum-
mary. It yields the proportion of elements exhibiting both P and R to those exhibiting
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R only. This is similar to the confidence measure in association rules where it is ac-
companied usually by the support measure. Basically, if the degree of support is low,
such a summary describes a (local) pattern seldomly occurring. This is the main mo-
tivation for using this measure in our context since we wish to avoid summaries that
seldom happen. Hence, the degrees of support for the simple and extended protoforms,
is calculated, respectively, as:

ds(Among all Y, Q are P) =
1
n
|{y : μP(y) > 0}| (4)

ds(Among all RY, Q are P) =
1
n
|{y : μP(y) > 0∧μR(y) > 0}| (5)

and, using a t-norm (e.g. ‘min”) and the Σ -count, we obtain the fuzzified degrees of
support:

ds f (Among all Y, Q are P) =
1
n

n

∑
i=1

μP(yi) (6)

ds f (Among all RY, Q are P) =
1
n

n

∑
i=1

μR(yi)∧μP(yi) (7)

4 Numerical Experiments

We tested our approach on daily quotations of an investment (mutual) fund that invests
at most 50% of assets in shares listed at the Warsaw Stock Exchange. Quotations from
April, 1998 – July, 2007, beginning with PLN 10.00 per share, and ending with PLN
55.27, were considered. The minimal share value was PLN 6.88, the maximal was PLN
57.85, the highest daily increase was e PLN 1.27, while the highest daily decrease was
PLN 2.41.

Using the modified Sklansky and Gonzalez algorithm and ε = 0.25 we obtained 326
extracted (partial) trends, from 2 days to 71 days.

For lack of space, we will only give some examples of the summaries obtained under
various granulations (number of linguistic values), with the T , and ds and ds f :

• For 3 labels for the dynamics of change (decreasing, constant, increasing), the dura-
tion (short, medium length, long) and the variability (low, medium, high) in Table 1.

Notice that the last 4 summaries have a high degree of truth but a low degree of support
so that they do not refer to frequently occurring situations and may be not relevant
enough for the user.

• For 5 labels for the dynamics of change (quickly decreasing, decreasing, constant,
increasing, quickly increasing), the duration (very short, short, medium length, long,
very long) and the variability (very low, low, medium, high, very high) are in Table 2.

Notice that, again, the last 4 summaries have a high degree of truth but a low degree
of support so that they do not refer to frequently occurring situations and may be not
relevant enough.
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Table 1.

linguistic summary T ds ds f

Among all trends, most are short 0.7129 0.6871 0.6564

Among all trends, most are constant 0.6318 0.6748 0.6159

Among all trends, most are of a low variability 0.7028 0.7730 0.6514

Among all short trends, most are of a low variability 0.8784 0.5399 0.4852

Among all trends of a low variability, most are short 0.8898 0.5399 0.4852

Among all increasing trends, most are of a low variability 0.8867 0.1871 0.1615

Among all medium trends, at least around a half is of medium variability 1.0000 0.2270 0.1257

Among all trends of a high variability, at least around a half is increasing 0.9161 0.0184 0.0137

Among all decreasing trends, almost all are short 1.0000 0.1933 0.1668

Table 2.

linguistic summary T ds ds f

Among all trends, most are constant 0.6318 0.6748 0.6159

Among all trends, at least around a half is very short 1.0000 0.5460 0.5077

Among all trends, at least around a half is of a very small variability 1.0000 0.5225 0.4626

Among all very short trends, most are of a very small variability 0.9350 0.4202 0.3896

Among all trends of a very small variability, most are very short 1.0000 0.4202 0.3896

Among all constant trends, at least around a half are short 0.7476 0.3006 0.2538

Among all trends of a very high variability, at least around a half are
quickly increasing

0.8299 0.0031 0.0020

Among all trends of medium length, almost all are constant 1.0000 0.1472 0.1383

Among all quickly decreasing trends, almost all are very short 1.0000 0.0675 0.0635

Among all long trends, much more than a half is of a low variability 0.5519 0.0521 0.0375

• For 7 labels for the dynamics of change (quickly decreasing, decreasing, slowly de-
creasing, constant, slowly increasing, increasing, quickly increasing), the duration
(very short, short, rather short, medium length, rather long, long, very long) and the
variability (very low, low, rather low, medium, rather high, high, very high) are in
Table 3.

Here, we show first the simple summaries and then the extended ones. Notice that
the first summary is totally true but its degree of support is very low which is clearly
caused by a very restrictive linguistic quantifiers (almost none), and such a summary
may not refer to a commonly appearing situation, hence is of a limited use. The same
is with the last 3 summaries.
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Table 3.

linguistic summary T ds ds f

Among all trends, almost none are of rather high variability 1.0000 0.0460 0.0245

Among all trends, at least around a half are very short 1.0000 0.5460 0.5077

Among all trends, at least around a half are constant 1.0000 0.5614 0.4633

Among all trends, at least around a half are of very low variability 0.9138 0.4570 0.4370

Among all trends, at most around one third is slowly increasing 1.0000 0.2147 0.1348

Among all very short trends, most are of a very low variability 0.9045 0.3957 0.3819

Among all trends of a very low variability, most are very short 1.0000 0.3957 0.3819

Among all slowly decreasing trends, most are very short 0.9709 0.1411 0.0914

Among all constant trends, at least around a half is short 0.6827 0.2577 0.1864

Among all trends of medium length, almost all are constant 1.0000 0.0798 0.0631

Among all quickly decreasing trends, almost all are very short 1.0000 0.0675 0.0635

Among all long trends, much more than a half is of rather low variability 0.7344 0.0123 0.0069

It can be noticed that the use of the degree of support in addition to the degree of
truth provides much help because it helps eliminate summaries which are very true but
concern situations whose chance of appearance is low. A further extension would be a
full fledged bi-crietria analysis with the degree of validity and support.

5 Concluding Remarks

We extended our works (cf. Kacprzyk, Wilbik, Zadrożny [4, 5, 6, 7, 8, 9, 10, 11, 12, 13])
by adding to the basic degree of truth (validity), a degree of support. This can reflect
in natural language the very essence of statistical approaches. Moreover, the use of the
degree of support can help discard linguistic summaries which concern infrequently oc-
curring patterns. We show an application to the absolute performance type analysis of
daily quotations of an investment fund. The results are promising. Since a final assess-
ment of the results should involve a human evaluation, a questionnaire type technique
will be shown later.
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Abstract. An autoregressive model is defined for fuzzy random variables under the concept of
Fréchet variance and covariance as well as Gaussian fuzzy random variable. In some special case,
by using the Hukuhara difference between fuzzy sets, the conditions for stationary solution of a
p-order autoregressive process ( AR(p)) are extended to the case of fuzzy data in the manner of
conventional stochastic setting.

1 Introduction

In time series analysis (cf. [1]) the p-order autoregressive (AR(p)) process is a funda-
mental aspect for time series modelling. It has been a basic model for deriving out other
important time series model such as ARCH model and ARIMA model,etc.. Recently,
some hybrid modelling methods (e.g. neural network [8], fuzzy coefficients [13, 14],
etc.) have been applied for time series modelling. Among them the time series with
linguistic values proposed by [12] is a typical example of fuzzy data valued time series
and it had been used for forecasting the enrollments. In this model the fuzzy data are
only taken on values of fuzzy sets defined on some finite discrete domain. Such fuzzy
data valued time series approach had been developed by [2], [7] extensively. However,
their approaches are mainly based on the fuzzy relational equations and approximate
reasonings. There have been signs of some advantages in these models over the tra-
ditional one such as the conveniance on computation. It should be pointed out that in
which the stochastic characteristics of the time series are completely ignored. Such an
ignorance would led to some biased results of forecasting and lack of a reasonable test-
ing procedure. In fact, concerning the both randomness and fuzziness implied in such
time series, it seems optimal to integrate the conventional statistical tools, concepts,
proposals into such time series analysis, so as to carry out more flexible and reliable
models for the fuzzy data valued time series. Motivated by the works on the stochastic
regression models for fuzzy data (cf. [6, 10, 16]), and the consideration on complicated
mutual relationship among the fuzzy data appeared in time series, we may consider the
fuzzy data valued time series under stochastic point of view, and allow the fuzzy data
may taking on values of fuzzy sets defined on some continuous domain like real line R
or n-dimensional vector space Rn. Since the non-linear structure of the set of all fuzzy
random variables (cf. [11, 5]) as well as the complicated formulas for the expectation
and variance and covariance (cf. [4, 10]), it is usually hard to define an AR(p) model
for fuzzy data time series and apply it in the real life forecasting process. In this paper,
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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from theoretical point of view, we try to give a simple AR(p) model for fuzzy data val-
ued time series by using support function of set and Gaussian fuzzy error as well as the
Fréchet variance and covariance.

2 Preliminaries

A fuzzy set ũ of Rn equivalents to its membership function ũ : Rn → [0,1], where the
number ũ(x) represents the degree of membership that x belongs to ũ. By F(Rn) we
denote the collection of all normal, convex and compact fuzzy sets on Rn, i.e. for ũ ∈
F(Rn), (1) There exists x0 ∈Rn such that ũ(x) = 1; (2) The α−cut of ũ, ũα := {x ∈ Rn :
ũ(x)≥α}, α ∈ (0,1], is a convex and compact set of Rn; (3) ũ0 := cl{x∈Rn : ũ(x) > 0},
the support of ũ, is compact.

Zadeh’s extension principle (cf. [3, 17]) allows us to proceed addition and scale
multiplication on F(Rn):

(ũ⊕ ṽ)(x) = sup
s+t=x

min(ũ(s), ṽ(t)), x ∈ Rn.

(a� ũ)(x) =

{
ũ( x

a ),a �= 0

0,a = 0
a ∈ R.

and (cf. [6]) for any a,b ∈ R, it holds

(ab)� ũ = a� (b� ũ), a� (ũ⊕ ṽ) = (a� ũ)⊕ (a� ṽ).

But it holds only for ab ≥ 0, a,b ∈ R,

(a + b)� ũ = (a� ũ)⊕ (b� ũ).

It indicates that (F(Rn),⊕,�) is not a linear space. With Minkowvski’s sets operation
it holds

(ũ⊕ ṽ)α = ũα ⊕ ṽα , α ∈ (0,1].

(a� ũ)α = a� ũα, α ∈ (0,1].
A support function of ũ ∈ F(Rn) is defined as

Sũα (x) =

{
supt∈ũα {x · t}, α ∈ (0,1],
0, α = 0.

x ∈ Sn−1 = {x :‖ x ‖= 1}.

where · denotes the inner product in the Euclidean space Rn. It holds that for ũ, ṽ ∈
F(Rn) and a ∈ R,

Sũ⊕ṽ = Sũ + Sṽ.

Sa�ũ(x) = aSũ(x), a > 0; Sa�ũ(x) = −aSũ(−x), a < 0.

thus, it holds that

S((a�ũ)⊕(b�ṽ))α (x) =

{
(aSũα + bSṽα )(x), a,b > 0

−(aSũα + bSṽα )(−x), a,b < 0.

where α ∈ [0,1]. We define the distance between ũ, ṽ by
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δ2(ũ, ṽ) :=
(

n
∫ 1

0

∫
Sn−1

|Sũα (x)−Sṽα (x)|2μ(dx)dα
)1/2

,

and let
〈ũ, ṽ〉 := n

∫ 1

0

∫
Sn−1

Sũα (x)Sṽα (x)μ(dx)dα.

where μ is a normalized Lebesgue measure.
Let (Ω ,B,P) be a complete probability space. The mapping X̃ : Ω → F(Rn) is said

to be a fuzzy random variable (f.r.v.) if X̃ is B −A measurable, where A is a σ -
algebra induced by X̃ associated with δ2. Let X̃ be a f.r.v., then SX̃α is a random element
and E(SX̃α ) = SE(X̃α ) (cf. [10, 16]) if the expectation E(X̃α) exists, where E(X̃α) is an
Aumann expectation of (X̃α),α ∈ [0,1] (cf. [11, 5]).

In the sequel, we assume that f.r.v. X̃ is with second order, i.e.

E(‖X̃‖) := E(δ 2
2 (X̃ ,{0})) < +∞,

The Fréchet variance of X̃ is defined by

Var(X̃) := E(δ 2
2 (X̃ ,E(X̃))) = n

∫ 1

0

∫
Sn−1

Var(SX̃α (x))μ(dx)dα.

and the covariance of f.r.v.’s X̃ ,Ỹ is defined by

Cov(X̃ ,Ỹ ) := n
∫ 1

0

∫
Sn−1

Cov(SX̃α (x),SỸα (x))μ(dx)dα.

and the usual classical form

Cov(X̃ ,Ỹ ) = E〈X̃ ,Ỹ 〉− 〈EX̃ ,EỸ 〉
holds. Note that,

Cov((a� X̃)⊕ (b� Ỹ),c� Z̃) = acCov(X̃ , Z̃)+ bcCov(Ỹ , Z̃)

holds only for ac ≥ 0, bc ≥ 0, a,b,c ∈ R. In the case of n = 1,

Var(X̃) =
∫ 1

0
(Var(inf X̃α)+Var(supX̃α))dα.

Cov(X̃ ,Ỹ ) =
∫ 1

0
(Cov(inf X̃α , infỸα)+Cov(supX̃α ,supỸα))dα.

The independence of f.r.v.’s can be followed by the independence of the random ele-
ments which is already defined (cf. [9]). Thus, obviously, if f.r.v. X̃ and Ỹ are inde-
pendent , then Cov(X̃ ,Ỹ ) = 0. However, if Cov(X̃ ,Ỹ ) �= 0, then they will be depen-
dent, there is some degree of dependence between them. We assume that the degree
of dependence is represented by the value of the so called “correlation” R(X̃ ,Ỹ ) =
Cov(X̃ ,Ỹ )/

√
Var(X̃)Var(Ỹ ), and it holds P(δ2(Ỹ ⊕ (λ �EX̃),EỸ ⊕ (λ � X̃)) = 0) = 1

when R(X̃ ,Ỹ ) = 1; P(δ2(Ỹ ⊕ (λ � X̃),EỸ ⊕ (λ �EX̃)) = 0) = 1 when R(X̃ ,Ỹ ) = −1
(cf. [15]). We say that X̃ and Ỹ are uncorrelated if R(X̃ ,Ỹ ) = 0.

Denoting ũ⊕ ((−1)� ṽ)) by ũ� ṽ for ũ, ṽ ∈ F(Rn), then by the linearity of expecta-
tion for f.r.v. with respect to the non-linear structure (F(Rn),⊕,�) (cf. [5]), it holds that
E[X̃ �E(X̃)]=0̃, where 0̃ (we call fuzzy zero ) denotes a normal compact convex fuzzy
set on Rn with 0̃(0) = 1 and it is not always true that 0̃ = {0}. This formula allows us
to proceed a kind of centralization for a given f.r.v..
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3 A Sort of Autoregressive Series of Fuzzy Random Variables

Definition 1. Let {X̃t}(t ∈ Z) be a series of f.r.v.s valued in F(Rn) with second or-
der, {X̃t},(t ∈ Z) is said to be a weak stationary process if it holds that (i) E(X̃t) = c̃
and Var(X̃t) = σ2 for all t; (ii) Cov(X̃t+h, X̃t) = Cov(X̃h, X̃0). Where Z is the set of all
integers.

Definition 2. Let ε̃ be a fuzzy random variable valued in F(Rn). ε̃ is said to be a Gaus-
sian error f.r.v. if ε̃=E(ε̃)⊕ ε and E(ε̃) = 0̃, random vector ε ∼ Nn(0,Σ).

Definition 3. A time series of fuzzy random variables {X̃t} is said to be a p-order au-
toregressive (AR(p)) process if {X̃t} is a weak stationary process and for any t ∈ Z it
holds that

X̃t = (θ1 � X̃t−1)⊕ (θ2 � X̃t−2)⊕ . . .⊕ (θp � X̃t−p)⊕ ε̃t ,

where θi is a real-valued parameter, {ε̃t} is a series of Gaussian error f.r.v.’s satis-
fying that ε̃t = E(ε̃t)⊕ εt and {εt} is a series of i.i.d. normal random vectors with
εt ∼ Nn(0,Σ)

Obviously, E(ε̃t) = 0̃, Var(ε̃t) = n
∫

Sn−1 x′Σxμ(dx). (cf. [16])
A series of f.r.v.’s {X̃t} is said to be a causal AR(p) process if it has a station-

ary solution almost everywhere, i.e., there exists a number series {b j} such that
X̃t=⊕∞

j=0(b j � ε̃t− j),a.e..

Proposition 1. Let {ξ̃t} be a series of Gaussian fuzzy random variables: ξ̃t = E(ξ̃t)⊕
ξt , and ξt ∼ Nn(0,Σ). If {ξt} is an i.i.d. series of random vectors, then {ξ̃t} is uncorre-
lated, i.e. Cov(ξ̃t , ξ̃ j) = 0,t, j ∈ Z.

Proof. By the definition of Gaussian f.r.v., it holds for t, j ∈ Z

S(ξ̃t)α
(x) = SE(ξ̃t)α

(x)+ S{ξt}(x);S(ξ̃ j)α
(x) = SE(ξ̃ j)α

(x)+ S{ξ j}(x),

by the i.i.d. of {ξt}, we get that S{ξt}(x) and S{ξ j}(x) are independent, thus,

E
(

S(ξ̃t)α
(x)S(ξ̃ j)α

(x)
)

= E
(

S(ξ̃t)α
(x)

)
E

(
S(ξ̃ j)α

(x)
)

+ E
(

S(ξ̃ j)α
(x)

)
S{Eξt}(x)

+E
(

S(ξ̃t)α
(x)

)
S{Eξ j}(x)+ S{Eξt}(x)S{Eξ j}(x)

= E
(

S(ξ̃t)α
(x)

)
E

(
S(ξ̃ j)α

(x)
)

,

which means that

Cov(ξ̃t , ξ̃ j) = n
∫ 1

0

∫
Sn−1

[
E

(
S(ξ̃t)α

(x)S(ξ̃ j)α
(x)

)
−E

(
S(ξ̃t)α

(x)
)

E
(

S(ξ̃ j)α
(x)

)]
μ(dx)dα = 0. ��

For a weak stationary process we define r(h) := Cov(X̃t+h, X̃t) as an auto-covariance
function. The Hukuhara deference �H between two fuzzy sets refers to [16].
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Proposition 2. Let {X̃t}(t ∈ Z) be an AR(1) process: X̃t=(θ � X̃t−1)⊕ ε̃t , then {X̃t}
possesses a stationary solution almost everywhere if and only if 0 < |θ | < 1.

Proof. By the non-linear structure of (F(Rn),⊕,�), for arbitrary θ ∈ R and each ω ∈
Ω , it holds for t ∈ Z

X̃t = θ � ((θ � X̃t−1)⊕ ε̃t−1)⊕ ε̃t

= (θ 2 � X̃t−2)⊕ (θ � ε̃t−1)⊕ ε̃t

= . . . . . .

= (θ k+1 � X̃t−k−1)⊕ (θ k � ε̃t−k)⊕ . . .⊕ (θ � ε̃t−1)⊕ ε̃t ,

formally we have

θ k+1 � X̃t−k−1 = X̃t �H (⊕k
j=0(θ

j � ε̃t− j)),

then, if 0 < |θ | < 1, it holds

E‖X̃t �H (⊕k
j=0(θ

j � ε̃t− j))‖
= E‖θ k+1 � X̃t−k−1‖
= n

∫ 1

0

∫
sn−1

E
∣∣∣(S(θ k+1�X̃t−k−1)α (x))

∣∣∣2
μ(dx)dα

= θ 2(k+1)
(

Var(X̃t−k−1)+ n
∫ 1

0

∫
sn−1

∣∣∣SE(X̃t−k−1)α (x))
∣∣∣2

μ(dx)dα
)

→ 0(k → ∞).

which means E‖X̃t �H (⊕∞
j=0(θ j � ε̃t− j))‖ = 0, i.e.,

E
[
n

∫ 1

0

∫
sn−1

(S(X̃t)α (x)−S(⊕∞
j=0θ j�ε̃t− j)α (x))2μ(dx)dα

]
= 0,

by the property of integral w.r.t. the measure mentioned above, it holds

n
∫ 1

0

∫
sn−1

(S(X̃t)α (x)−S(⊕∞
j=0θ j�ε̃t− j)α (x))2μ(dx)dα = 0,a.e.

then (S(X̃t)α (x)− S(⊕∞
j=0θ j�ε̃t− j)α (x))2 = 0,a.e. ⇔ S(X̃t)α (x) = S(⊕∞

j=0(θ j�ε̃t− j))α (x), a.e.

which leads to X̃t = ⊕∞
j=0(θ

j � ε̃t− j),a.e.. This is a stationary solution for above AR(1)
process. Obviously, the converse conclusion holds. ��
In the classical time series theory, the concept of lag operator is already defined. Here
we formally define a lag operator B for series of f.r.v.’s {X̃t} by B j � X̃t = X̃t− j .

Let {Ỹt} be a weak stationary series of f.r.v.’s with second order, set X̃t = Ỹt �E(Ỹt),
then {X̃t} is a weak stationary series of f.r.v.’s with fuzzy zero expectation.

Proposition 3. Let {X̃t}(t ∈ Z) be weak stationary p-order autoregressive process,
then it possesses a stationary solution almost everywhere if and only if the poly-
nomial a(z)=θ1 + θ2z + . . . + θpzp−1 satisfies 0 < |a(z)| < 1 and all coefficients θi

(i = 1,2, . . . , p.) are positive (or negative)and θizi−1(i = 2,3, . . . , p) are positive.
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Proof. Since

X̃t = (θ1 � X̃t−1)⊕ (θ2 � X̃t−2)⊕ . . .⊕ (θp � X̃t−p)⊕ ε̃t

= (a(B)� X̃t−1)⊕ ε̃t

= (a(B)� (a(B)� X̃t−2⊕ ε̃t−1))⊕ ε̃t

= . . . . . .

= (a(B)k+1 � X̃t−k−1)⊕ (a(B)k � ε̃t−k)⊕ . . .⊕ (a(B)� ε̃t−1)⊕ ε̃t

= . . . . . .

by Proposition 2 we obtain the conclusion immediately. ��
Proposition 4. Let {X̃t} be an AR(p) process defined in Definition 3. If {X̃t} is positive
(negative) causal autoregressive , i.e. there exists a positive (or negative) number series
{b j} such that X̃t=⊕∞

j=0(b j� ε̃t− j),a.e., and all coefficients θi(i = 1, . . . , p) are positive
(or negative), then the Yule-Walker equation can be carried out almost everywhere for
the process {X̃t}.

Proof. For j = 0,1,2, . . . , p, it holds that

r( j) = Cov(X̃t , X̃t− j)
= Cov((θ1 � X̃t−1)⊕ (θ2 � X̃t−2)⊕ . . .⊕ (θp � X̃t−p)⊕ ε̃t , X̃t− j)
= θ1Cov(X̃t−1, X̃t− j)+ θ2Cov(X̃t−2, X̃t− j)+ . . .+Cov(ε̃t , X̃t− j)
= θ1r( j−1)+ θ2r( j−2)+ . . .+ θpr( j− p)+ b0Cov(ε̃t , ε̃t− j),a.e.,

i.e.
r(0) = θ1r(1)+ θ2r(2)+ . . .+ θpr(p)+ b0Var(ε̃t),a.e.,

and ⎛⎜⎜⎜⎝
r(1)
r(2)

...
r(p)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
r(0) r(−1) . . . r(1− p)
r(1) r(0) . . . r(2− p)

...
... . . .

...
r(p) r(p−1) . . . r(0)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

θ1

θ2
...

θp

⎞⎟⎟⎟⎠ ,a.e..

��
Now we consider the problem of estimation with respect to the AR(p) model based on
sampling observations x̃1, . . . , x̃m. Same like the classical case, we can instead of auto-
covariance function r( j) by the sample auto- covariance function r̂(h) in the above
Yule-Walker equation to estimate the unknown coefficients parameters θi. Here

r̂(h) :=
1
m

m−h

∑
t=1

n
∫ 1

0

∫
Sn−1

(S(x̃t+h)α (x)−Sx̃α (x))(S(x̃t )α (x)−Sx̃α (x))μ(dx)dα,

and r̂(h) = r̂(−h), 0 ≤ h < m,−m < −h ≤ 0. where x̃= 1
n ⊕m

i=1 x̃i. If the matrix of self
covariance functions is inversive , then we could obtain the estimated AR(p) process as

X̃t = (θ̂1 � X̃t−1)⊕ (θ̂2 � X̃t−2)⊕ . . .⊕ (θ̂p � X̃t−p)⊕ ε̃t .
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where ⎛⎜⎜⎜⎝
θ̂1

θ̂2
...

θ̂p

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
r̂(0) r̂(−1) . . . r̂(1− p)
r̂(1) r̂(0) . . . r̂(2− p)

...
... . . .

...
r̂(p) r̂(p−1) . . . r̂(0)

⎞⎟⎟⎟⎠
−1 ⎛⎜⎜⎜⎝

r̂(1)
r̂(2)

...
r̂(p)

⎞⎟⎟⎟⎠ ,a.e..

The estimated AR(p) model gives a way to express the series of residual as ε̃t =
X̃t �H

ˆ̃Xt , where ˆ̃Xt = (θ̂1 � X̃t−1)⊕ (θ̂2 � X̃t−2)⊕ . . .⊕ (θ̂p � X̃t−p). By this consid-
eration, an autoregressive (or autocorrelated) series of f.r.v.’s {X̃t} could be modelled

through an uncorrelated series of Gaussian f.r.v.’s {X̃t �H
ˆ̃Xt}, for which, following

classical approaches for modelling uncorrelated time series, various statistical quality
control charts as well as other useful stochastic models depending on uncorrelated time
series could be easily established, therefore, we may partially solved the modelling
problems for autoregressive (or autocorrelated) series of f.r.v.’s.

Conclusions. Based on the introduced hybrid notion Gaussian fuzzy error and the al-
ready established notions like Fréchet variance and covariance as well as the Aumann
expectation for f.r.v.’s, we have proposed a novel special AR(p) model for time series of
f.r.v.’s, which is different from all of previous obtained models of fuzzy time series. We
are aware of that such a model is hard to be applied in real life because of the operation
caused by the complicated Hukuhara difference, and also the correlation between f.r.v.’s
is much more complicated than the ordinary random variables case, even if R(X̃ ,Ỹ ) = 1,
it is still uncertain on the linear dependence between the two f.r.v.’s X̃ and Ỹ . It is desir-
able to reconsider the notion of correlation for f.r.v.’s, and propose more suitable error
term instead of the simple Gaussian fuzzy error for the time series of f.r.v.’s modelling.
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Tackling Multiple-Instance Problems in Safety-Related
Domains by Quasilinear SVM
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Abstract. In this paper we introduce a preprocessing method for safety-related applications.
Since we concentrate on scenarios with highly unbalanced misclassification costs, we briefly dis-
cuss a variation of multiple-instance learning (MIL) and recall soft margin hyperplane classifiers;
in particular the principle of a support vector machine (SVM). According to this classifier, we
present a training set selection method for learning quasilinear SVMs which guarantee both high
accuracy and model complexity to a lower degree. We conclude with annotating on a real-world
application and potential extensions for future research in this domain.

1 Introduction

Safety-related systems can be found in manifold fields where a failure may lead to fa-
talities or severe injuries to human beings, loss or very bad damage of equipment, or
environmental harm [9]. The usage of machine learning methods is not that straightfor-
ward compared to other applications where learning machines have been applied very
successfully.

Main differences to other classification domains are highly unbalanced classification
costs and the infrequency of positive events, e.g., trigger events, and alarms. We try to
compare this domain with multiple-instance (MI) learning [5] of which problems partly
resemble safety-related applications. In contrast to single-instance supervised learning
where one given example is represented by one feature vector (so-called instance), here
an example is a set of feature vectors. Therefore, this setting of the learning problem is
called multiple-instance learning problem. A set of multiple instances is named bag.

In binary pattern recognition with class labels {+1,−1}, a bag will be classified as
positive if at least one of its instances is positive. It is negative if all of its instances
are negative. This is also called the MI assumption [13]. This assumption is too gen-
eral for safety-related applications where the final model must be highly interpretable.
Thence we will tighten the MI assumption to have a MIL framework for the present
domain. Before we will introduce our assumption and a possible approach to tackle
safety-related problems, let us briefly recall MIL and safety-related applications.

1.1 Multiple-Instance Learning

In multiple-instance problems, one single training example (a positive or negative bag)
is constituted by many different feature vectors, so-called instances. At least one is

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 409–416, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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responsible for the observed class of the given example. Hence the class label is attached
to the bag instead of the instances themselves.

Let us denote positive bags as B+
i and the jth observation of this bag as x+

i j ∈ Rn

where n is the dimensionality of the input space X . The bag B+
i consists of l+i in-

stances x+
i j for j = 1, . . . , l+i . Consequently, the ith negative bag is denoted by B−i , its

jth observation by x−i j . Likewise, l−i symbolizes the number of instances in this negative
bag. We denote the number of positive and negative bags as N+ and N−. The overall
number of instances is referred to l = l+ + l− = ∑N+

i=0 l+i +∑N−
i=0 l−i . Thus the sample of

all instances in negative and positive bags is listed by x1, . . . ,xl .
Nowadays many learning problems have been treated as MI problems, i.e., drug ac-

tivity prediction [5, 6], stock market prediction [7], image retrieval [14, 15], natural
scene classification [7], text categorization [1], and image categorization [4]. With the
application to safety-related domains, another type of problem is identified as MI for-
mulation under certain requirements.

1.2 Safety-Related Applications

Safety-related applications can be found in many real-world problems, e.g., condition
monitoring of plants, automobiles, airplanes, and trains. These systems are supervised
by many sensors collecting a (nearly) continuous multidimensional signal in time, e.g.,
speed, temperature, pressure, global position. Every time series itself describes one cer-
tain event of multiple instances. Regarding the MIL setting, we can state that every event
corresponds to one bag which is either positive (e.g., a machine breakdown, alarm) or
negative (e.g., proper machine operation, no-alarm). Thus it is necessary to binary clas-
sify these multivariate time series.

No instance in time of a negative bag must be classified as positive. A false positive
in such an application usually involves severe injuries or harm to humans or machines.
On the other hand, all positive events or bags have to be correctly classified before a
certain limiting time has passed (e.g., time to exchange a machine before breakdown).
If a positive event is recognized early enough, then certain countermeasures can be
performed to prevent or moderate heavy accidents. These requirements meet the MIL
setting. The following ones tighten the general MI assumption.

Since tests of such complex systems are very expensive and thus quite rare, there
does not exist a vast of data (especially positive events). Hence a main disadvantage in
those domains is the fact that formal proofs of the correctness of the learned classifier
are not feasible [9]. Therefore, the model has to be enriched by experts’ knowledge to
ensure security requirements. Furthermore, we find unbalanced misclassification costs
in safety-related domains very often s.t. constraints have to be added to the model
as well.

It is not trivial to find the best trade-off between accuracy and model complexity.
There exist some classifier for instance, support vector machine (SVM), that implicitly
tries to satisfy both criteria. Taking advantages of the SVM’s flexibility, we can even
incorporate knowledge to meet unbalanced misclassification costs. This soft computing
method will be introduced as extension of a linear separating hyperplane classifier in
Sect. 2.
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In safety-related applications, the model complexity in terms of simple functional
dependencies is frequently the most important point. Quasilinear functions1 with a
good generalization performance must be found to establish a physical interpretation
of human experts. Section 3 describes requirements for simple models regarding SV
machines. After that, a combination of two methods is proposed to obtain a somehow
simple and still accurate classifier. We conclude and discuss potential future work in
Sect. 4.

2 Support Vector Machines

Let us formally introduce the basic concepts that we are going to talk about. Suppose we
are given the input space X (not necessarily a vector space) and the output space Y .
Since we deal with a binary classification problem, Y = {±1}. We observe l training
patterns (xi,yi) ∈ S ⊆ X ×Y where i = 1, . . . , l. They have been drawn i.i.d. from an
unknown distribution. If X ⊂ Rn, then xi �→ xi. Our goal is to separate the data with a
linear hyperplane {x : 〈w,x〉+ b = 0} where w ∈ Rn and b ∈ R are the norm vector and
the bias of the hyperplane, respectively. The decision function of a hyperplane classifier
which shall predict y′ for any x corresponds to

f (x) = sgn(〈w,x〉+ b). (1)

We are looking for the hyperplane that maximizes the margin between every training
pattern and the hyperplane. Such a hyperplane is called optimal since it is unique and
has the best generalization performance on unseen data. If all points (xi,yi) ∈S can be
separated linearly by a hyperplane, we can obtain the optimal hyperplane by solving a
quadratic optimization problem with linear inequality constraints. Usually not all train-
ing patterns can be separated perfectly. Therefore we introduce slack variables ξi with
i = 1, . . . , l in order to relax the optimization problem to

minimize
w,b,ξ

τ(w,ξ ) = 1
2 ‖w‖+C ∑l

i=1 ξi (2)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi (3)

and ξi ≥ 0, ∀i = 1, . . . , l. (4)

Here, ξ = (ξ1, . . . ,ξl) corresponds to the slack variables ξi and C is a global parameter
that has to be determined by the user. The bigger C, the easier training patterns may
violate the constraint (3). By introducing the Lagrangian of the primal problem (2), we
end up solving the dual

maximize
α1,...,αl

∑l
i=1 αi − 1

2 ∑l
i,i′=1 yiyi′αiαi′ 〈xi,xi′ 〉 (5)

subject to ∑l
i=1 yiαi = 0 (6)

and 0 ≤ αi ≤C, ∀i = 1, . . . , l. (7)

In practice, only few problems can be solved by a linear classifier. Hence the problem
has to be reformulated in a nonlinear way. This is done by mapping the input space X to

1 Quasilinear functions should be monotonic. They can be approximated with very few linear
functions.
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some high-dimensional feature space H by Φ : X �→H where Φ satisfies Mercer’s
condition [11]. We can thus solve our nonlinear optimization problem linearly in H
by computing the scalar product K(x,x′) = 〈Φ(x),Φ(x′)〉 which is called kernel. We
simply replace the occurrence of the scalar product in (5) with a chosen kernel function.
Finally, the discrimination function (1) becomes f (x) = sgn

(
∑l

i=1 yiαiK(x,xi)+ b
)
.

For our purpose, let us have a look at the following two kernel functions2. First of
all, we can apply the linear kernel

K(x,x′) =
〈
x,x′
〉

=
n

∑
d=1

[x]d [x′]d . (8)

which performs the identical mappingΦ : X �→X . Second, kernel functions K(x,x′)=
K(‖x−x′‖) generate radial basis functions e.g., the Gaussian kernel

K(x,x′) = exp
(
−γ ∥∥x−x′

∥∥2
)

. (9)

3 Quasilinear Support Vector Machines

With respect to the SVM, the “linearity” of a SVM is expressed by the capacity of the
function (so-called hypothesis) chosen by the principle of structural risk minimization
(SRM) [12]. This principle of minimizing the expected risk controls the capacity s.t. the
chosen hyperplane will guarantee the lowest error on unseen instances. Thus it heavily
influences the complexity of the SVM.

The classification problem we deal with does not demand to correctly classify all
positive instances. A positive bag will be correctly discriminated by at least one of its
instances. On the contrary, all instances of negative bags have to be correctly recog-
nized. Thence a pruning of positive examples that are hard to classify before the actual
training is a way to simplify the process of model selection. The actual decision func-
tion will be selected by any suitable binary classifier e.g., SVM. This classifier might
select a quasilinear hypothesis since conflicting positive instances have been removed.

Using a SVM to classify the pruned instance, we must choose an appropriate kernel
function. Without having knowledge about the underlying distribution that generates
the data, the Gaussian kernel (9) has shown good results in practice [11]. It is based on
the Euclidean distance metric and thus intuitive. Due to the interpretability constraint in
safety-related domains, H should geometrically correspond to X . In [11] the authors
argue that the linearity of the Gaussian kernel only depends on γ . For small γ , the
SVM will determine a quasilinear discriminant function. A rather large γ causes narrow
kernels which lead to complex nonlinear functions in X .

The linearity of a SV machine is a necessity to accept and approve our model. By
decreasing the number of possible hypothesis, the potential solution becomes probably
more linear and thus less complex. However, a too simple model might not generalize
well on unseen bags. Thus the hyperplane must have the local ability to become more
complex in order to ensure a higher accuracy for crucial bags.

2 See [11] for a collection of kernel functions and further details on SVMs.
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3.1 Support Vector Pruning

A learning machine that discriminates events of security-related systems must be rather
simple to be approved of security standards. Easier machines are favored instead of
more complex ones. The SVM principle is theoretically well motivated, however, the
feature space H is never expressed explicitly. If we construct H geometrically sim-
ilar to X without using the linear kernel (8), it is possible to understand the resulting
machine to a higher degree.

Quasilinear classifiers are preferred to complex models by pruning instances that are
very hard to classify by a linear SVM. Since we deal with security-related domains, it is
strictly forbidden to prune negative instances. Pruning is, however, feasible for positive
bags (cf. Sect. 3). It removes candidates for critical instances from the dataset. It does
not prune complete bags since every bag corresponds to a real-world event that has to
be recognized. Thence at least m instances of every positive bag are kept even if they
would have been linearly misclassified.

The pruning process is motivated by the search for a quasilinear classifier since linear
dependencies are geometrically easy to interpret. Furthermore, misclassified points will
automatically become support vectors. The farthest positive SVs on the negative side of
the hyperplane have a big influence on the model selection step. It is particularly very
probable that those points will become support vectors even with a more sophisticated
kernel.

The pruning can be explained briefly by the following 4 procedures:

1. Train a linear SV machine with all positive and negative patterns.
2. Identify misclassified positive support vectors.
3. Create a training set without these positive samples.
4. Repeat training until a stable model is obtained.

The third procedure has to assure that none of the bags will get empty. This is done
by only pruning the farthest wrong positive support vectors of every bag s.t. the number
of remaining instances is at least m. After all bags have been inspected, a new linear
classifier is trained. The procedure begins again until no SV has been pruned. This
algorithm converges relatively fast after approximately 6 iterations.

Fig. 1 shows an artificial application of SV pruning. The training of the linear SV
machines has been performed with C = 10. At least m = 10 instances of every bag had
to remain after pruning. In the first step, more than 400 instances of some positive bags
have been pruned. Then 9 instances have been removed and thus not less than one linear
SVM would have been trained for further pruning.

3.2 Bag Weighting

Quasilinear SV machines are very nice to have. On the contrary, the model shall still
deploy all positive bags and prevent deployment of every negative bag. Thus a trade-
off between simplicity and complexity has to be found. This section will introduce a
modification of the standard SVM i.e., we locally allow the discriminant function to
become more complex.
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(a) (b)

Fig. 1. Example of SV pruning’s first two steps on an artificial MI problem. Positive (negative)
instances are shown as red crosses (green dots). The black line represents the decision boundary.
The red (blue) line symbolizes the class margin of 1. Positive (negative) SVs are distinguished
by red (green) squares around their instances. The color legends on the right side of the plots
clarify the distance to the hyperplane. (a) Initial step found 428 positive instances for pruning. (b)
Second step with pruned dataset determined 9 further positive instances which will be removed.

Reviewing (2) we find the global parameter C that expresses misclassification costs
of all patterns. In particular, there is no a priori preference or priority of any pattern.
Thence solving

minimize
w,b,ξ

τ(w,ξ ) = 1
2 ‖w‖+C∑l

i=1 Ciξi

subject to (3) and (4), we introduce weights Ci for 1 ≤ i ≤ l. It is straightforward to
assign weights to complete bags as well. The user can influence the learning step by
incorporating experts’ knowledge in form of bag weights. The choice of the Ci is per-
formed heuristically since these weights differ from problem to problem.

In combination with SV pruning, bag weighting can be a powerful tool to ensure both
a quite simple model and the fulfillment of customer requirements i.e., high accuracy.
It might be a good procedure to first apply the pruning method and then assign weights
to misclassified bags. Remaining conflicts due to global model simplicity might thus be
either removed or resolved.

4 Conclusions

In this paper we presented an hybrid approach for preprocessing MI problems in safety-
related domains. Whereas classifiers for standard MI datasets aim to be as accurate as
possible, we focused on learning machines of which model simplicity is essential. We
introduced SV pruning to favor quasilinear classifiers. Bag weighting has been sug-
gested to enable both the input of expert’s knowledge and the trade-off between model
simplicity and accuracy. The presented idea has been successfully applied to a safety-
related system in automobile industry [8]. Due to the nondisclosure of this project,
however, its empirical evaluation cannot be presented.
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There are many possible extensions and improvements to the proposed methods. We
will focus our research on generating fuzzy rules based on SV learning since fuzzy
classifiers have been successfully implemented in safety-related applications (see [9]).
Some approaches recently came up to construct fuzzy graphs from support vectors
[2, 3, 10].

Preprocessing bags by SV pruning and bag weighting can be the basis for the follow-
ing approach. The SVM could directly output fuzzy rules. Therefore, one would either
have to formulate a differentiated optimization problem or define a special kernel that
already includes domain knowledge. Both ways might result in understandable fuzzy
rules that still guarantee a good generalization. In addition, SV machines allow domain
experts to comprise their knowledge to model learning. The whole concept might es-
tablish a powerful framework to find less complex classifiers not only in safety-related
domains.
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An Efficient Normal Form Solution to Decision
Trees with Lower Previsions

Nathan Huntley and Matthias C.M. Troffaes
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Abstract. Decision trees are useful graphical representations of sequential decision problems.
We consider decision trees where events are assigned imprecise probabilities, and examine their
normal form decisions; that is, scenarios in which the subject initially decides all his future
choices. We present a backward induction method for efficiently finding the set of optimal normal
form decisions under maximality. Our algorithm is similar to traditional backward induction for
solving extensive forms in that we solve smaller subtrees first, however it is different in that solu-
tions of subtrees are only used as intermediate steps to reach the full solution more efficiently—in
particular, under maximality, a decision that is optimal in a subtree can be potentially absent in
any optimal policy in the full tree.

1 Introduction

This paper studies sequential decision problems: a subject must choose from a finite set
of options, where each option has a finite number of mutually exclusive consequences,
possibly random, that lead to either rewards or new decisions. Based on his preferences
between rewards and beliefs about the consequences, the subject tries to determine his
optimal policy. Such problems are often represented by decision trees, which are graph-
ical representations of relationships between the choices, consequences, and rewards
[2, 5, 6].

Usually, decision trees are modelled by assigning a precise probability to each event,
and a precise utility to each reward, and the policy yielding maximal expected utility
is elected. Finding this optimal policy can be done in two ways (equivalent for precise
probabilities): the extensive form and the normal form. We present our interpretation of
these forms.

Extensive form decision making is concerned with solving a decision problem by
eliminating decision branches that are by some method judged non-optimal. Upon
reaching a decision node, the subject is then free to choose from the remaining decision
branches. Normal form decision making involves specifying all possible decision paths
for every possible combination of events, and then aims to reduce that set. Such a deci-
sion path for each possible combination of events will be called a normal form decision
or a policy.

In many cases of interest, a subject’s knowledge is too limited to specify a probability
for all events. Following [9], in such cases we can still represent a subject’s knowledge
by specifying a so-called coherent lower prevision, or equivalently, a set of probability
distributions.

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 419–426, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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In such situations, it is known that normal and extensive forms are not equivalent
[3, 7]. In particular, natural ways of using backward induction to solve extensive forms
potentially leaves one open to taking bad decisions. We shall therefore, for this paper,
focus on solving the normal form.

Traditionally, one aims to arrive at the single optimal normal form decision which
maximises expected utility. Arguably, however, if for instance only a set of probability
distributions can be identified, not all policies may be comparable, and, therefore, deci-
sion criteria that apply in such cases typically determine a set of optimal policies rather
than electing a single one. How can a subject determine optimal policies given limited
knowledge? Some solutions have been proposed in the literature [3, 4, 7], however, a
systematic study of solving decision trees under partially ordered preferences is still
lacking.

In principle, one can find the optimal policies by first listing all normal form deci-
sions, and then for instance applying Walley’s maximality [9, §3.9.2]. However, it is well
known that the number of normal form decisions typically grows too large too quickly
with the size of the tree. Therefore, we propose a recursive algorithm, which is similar
to traditional backward induction for solving extensive forms in that we solve smaller
subtrees first, however our recursive algorithm is different from traditional backward
induction in that solutions of the subtrees are only used as intermediate steps to reach
the full solution more efficiently—in particular, under maximality, a decision that is op-
timal in a subtree can be potentially absent in any optimal policy in the full tree. This
contrasts with backward induction algorithms such as in [4], in which the solutions of
the subtrees are indeed part of the final solution.

The key result which leads to our algorithm is that, for maximality, a non-optimal
normal form decision in a subtree cannot be part of an optimal normal form decision in
the full tree. This allows us to eliminate many decisions in the full tree early on without
further computation.

Section 2 introduces coherent lower previsions and an optimality criterion, maximal-
ity. Section 3 explains decision trees. Section 4 explains how to reduce a tree to normal
form. Section 5 provides the main result of the paper and a simple example. Section 6
concludes the paper.

2 Coherent Lower Previsions

Let Ω be a finite set of possible states of the world. Elements of Ω are called outcomes
and are denoted by ω . Subsets of Ω are called events, and are denoted by A, B, etc.
Bounded real-valued functions on Ω are called gambles when interpreted as an uncer-
tain payoff expressed in utiles. So, a gamble X pays a reward of X(ω) if ω turns out to
be the true outcome. The set of all possible gambles on Ω is denoted by L (Ω).

It can be argued that even when a subject has only little information, his/her informa-
tion about ω can be represented by means of a coherent lower prevision P on L (Ω),
through a process called natural extension [1, 9]. For the purpose of this paper, it is suf-
ficient to assume a subject can model his information through a compact convex set M
of (finitely additive) probability measures, and [9, p. 135] P(X) = minμ∈M

∫
X dμ . In

other words, coherent lower previsions correspond to lower envelopes of expectations.
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For simplicity, assume the lower probability of all conditioning events is strictly
positive, so the conditional lower prevision is [9, p. 298, §6.4.2]

P(X |B) = minμ∈M

∫
BX dμ
μ(B)

.

When probabilities are precisely known, it is rational to choose gambles that maximise
expectation [8]. With lower previsions, there is no expectation, so we need a different
notion of optimality. Several have been proposed, and in this paper we consider one
called maximality [9].

For an event A and gambles X and Y , say X >P|A Y if P(X −Y |A) > 0. For a set of
gambles X , a gamble X ∈X is said to be maximal given A if there is no Y ∈X such
that Y >P|A X :

opt(X |A) = {X ∈X : (∀Y ∈X )(Y �>P|A X)}.
Because >P|A is a partial order, maximality leads to a set of optimal gambles rather
than electing a single one as is usually the case when maximising expectation. There-
fore maximality yields a more realistic approach to normative decision making when
information is limited.

3 Decision Trees

A decision tree [2, 5] is a graphical causal representation of decisions, outcomes, pay-
offs (in utiles), and probabilities in a decision problem. They consist of decision nodes
and chance nodes, growing from left to right, with time flowing from left to right, and
with payoffs at the end of each branch.

Consider the following problem, which is both simple enough to admit easy study,
and complex enough to demonstrate all concepts involved. Tomorrow, a subject is going
for a walk in the lake district. Tomorrow, it may rain (ω1), or not (ω2). The subject can
either take an umbrella (d1), or not (d2). But the subject may also choose to buy today’s
newspaper to learn about tomorrow’s weather forecast (dB), or not (dB), before leaving
for the lake district. For the sake of simplicity, we assume that the forecast can have one
of two outcomes: predicting rain (B1), or not (B2). The utility of each combination, if
the subject does not buy the newspaper, is summarised in Table 1. If the subject buys
the newspaper, then a cost c is subtracted from the utilities.

The decision tree corresponding to this example is depicted in Fig. 1. Decision nodes
are depicted by squares, and chance nodes by circles. From each node, branches emerge.
For decision nodes, each branch corresponds to a decision; for chance nodes, each
branch corresponds to an event. In the lake district problem, the subject is first con-
fronted with the decision to buy the newspaper or not, hence the tree starts off with

Table 1. Payoff table for the rain and umbrella problem

rain (ω1) no rain (ω2)
umbrella (d1) −5 0

no umbrella (d2) −10 5
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Fig. 1. The lake district decision tree (left), and its standard form (right)

a decision node. If the subject buys the newspaper (dB), then it can inform him about
tomorrow’s weather forecast. Thus, the chance node following the subject’s decision dB

has two branches, forecasting rain (B1), or no rain (B2). Next, when the subject leaves
for the lake district, he can either take his umbrella with him (d1) or not (d2), hence the
decision node following B1. Finally, during the walk, it either rains (ω1) or not (ω2),
as depicted by a chance node for each possible combination of events and decisions
preceding the actual walk.

So, each path in a decision tree corresponds to a particular sequence of decisions and
events, with resulting payoff at the end.

Before elaborating on solving decision trees, we introduce some notation. First, let
us assume that the tree is of the following standard form:

• The root node of a decision tree must be a decision node. If not, add a dummy
decision node before it.

• A decision node may not directly succeed another decision node. Separate succes-
sive decision nodes by a dummy chance node.

• A chance node may not directly succeed another chance node. Merge successive
chance nodes.

• All paths from the root node to a reward node must pass through the same number
of nodes. Add dummy decision and chance nodes to the shorter branches in a way
that does not violate the above rules.

As an example, applying these transformations is shown in Fig. 1.
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This transformation allows a natural way of labelling events and decisions. Decisions
correspond to arcs from decision nodes to chance nodes, and events correspond to arcs
from chance nodes to decision nodes.

• Label decisions at the root node by d1, d2, . . . .
• Label events at the chance node reached by decision di by Ei

1, Ei
2, . . . .

• Continue this method of labelling until all arcs are labelled.

We also label nodes similarly. Label a decision node with S , and a chance node
with S, using the same sub- and superscript notation as for the arcs. So, the root is S ,
its children Si, grandchildren Si

j, and so on.

4 Reducing Decision Trees to the Normal Form

A normal form decision specifies beforehand how the subject will act in any event. The
events then obtain, and at each decision node the subject takes the prescribed decision.
The reward received at the end depends on the events obtained, and therefore a normal
form decision simply amounts to a gamble.

Formally, we define the normal form N of a decision tree to be the set of gambles
induced by all normal form decisions. It is useful to consider normal forms of subtrees
too, using the same sub- and superscripts as used for nodes. For instance, N1

1 is the
normal form of the subtree at S1

1 in Fig. 1.
For example, at S1, the subject has already chosen decision d1. His normal form N1

at this node must specify his future policy before observing which event obtains. So he
must choose between the following four options:

d1
1
1 and d1

2
1, d1

1
1 and d1

2
2, d1

1
2 and d1

2
1, d1

1
2 and d1

2
2.

To solve decision trees in the normal form, we must first find the gamble to which each
normal form decision corresponds. First of all, a final chance node simply amounts to
a decision yielding a gamble mapping its branches—the events—to the corresponding
rewards. For instance, on Fig. 1, the chance node S1

2
1 yields (identifying events E∗∗ with

their indicator functions)

N1
2
1 = {X1

2
1}= {E1

2
1

1r1
2
1

1 + E1
2
1

2r1
2
1

2}.
Next, imagine we are at node S1

2 and choose d1
2
1: then we receive the gamble X1

2
1. On

the other hand, we could also have chosen d1
2
2, in which case we receive the gamble

X1
2
2. So, at decision node S1

2, we may choose between

N1
2 = {X1

2
1,X1

2
2}= N1

2
1∪N1

2
2.

In other words, the normal form set at a decision node is the union of the normal form
sets of its children.

At the intermediate chance node S1, either E1
1 or E1

2 may obtain, and depending on
which obtains, either N1

1 or N1
2 becomes available. Hence,

N1 = {E1
1X1

1 + E1
2X1

2 : X1
1 ∈N1

1, X1
2 ∈N1

2}.
Finally, N again corresponds to the union N1∪N2. Summarising,
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• N∗∗i = {X∗∗i } with X∗∗i = ∑ j E∗∗i jr∗∗i j for final chance nodes,
• N∗∗ =

⋃
i N∗∗i for decision nodes,

• N∗∗i =
{
∑ j E∗∗i jX∗∗i j : X∗∗i j ∈N∗∗i j

}
for intermediate chance nodes,

where N∗∗ refers to the normal form of a subtree at a decision node, and N∗∗i refers to
the normal form of a subtree at a chance node. The stars in N∗∗ emphasise that these
equations hold for normal forms at any subtree, and represent previous decisions and
events required to reach N∗∗.

5 Backward Induction to Solve the Normal Form

Let A∗∗ be the union of all events preceding a decision node. For instance, in Fig. 1,
A1

2 = E1
2 and A = Ω . So A∗∗ summarises the events we have observed at S∗∗ and

S∗∗i . The optimal set of policies is therefore opt(N∗∗|A∗∗) at decision nodes S∗∗, and
opt(N∗∗i |A∗∗) at chance nodes S∗∗i .

The traditional backward induction algorithm connects the optimal solution of a tree
with the optimal solutions of subtrees further down the tree. The elements of N∗∗ are
gambles of the form ∑ j E∗∗i jX∗∗i j for X∗∗i j ∈ N∗∗i j. Under expected utility, elements
of opt(N∗∗|A∗∗) are gambles of the form ∑ j E∗∗i jX∗∗i j for X∗∗i j ∈ opt(N∗∗i j|A∗∗i j). So
knowing the optimal solutions of subtrees to the right allows us to immediately elimi-
nate many non-optimal elements of N∗∗, and more quickly find the optimal solutions
of a large tree.

It turns out that we can do something similar if our information is described by a
coherent lower prevision, and using (conditional) maximality:

Theorem 1. The following equations hold.

opt(N∗
∗|A∗∗)⊆

⋃
i

opt(N∗
∗
i |A∗∗) (1)

opt(N∗
∗
i |A∗∗)⊆

{
∑

j

E∗
∗
i

jX∗
∗
i

j : X∗
∗
i

j ∈ opt(N∗
∗
i

j|A∗∗i j)

}
(2)

To show how the theorem leads to an efficient backward induction algorithm, we solve
the decision tree in Fig. 1 for a linear-vacuous mixture

P(X) = (1− ε)P0(X)+ ε infX

where P0(X) is an expectation and ε ∈ (0,1). The conditional is [9, p. 309]

P(X |E) =
(1− ε)P0(EX)+ ε infω∈E X(ω)

(1− ε)P0(E)+ ε
.

Let P0(ω1) = 1/2, P0(ω1|B1) = 7/10, and P0(ω1|B2) = 2/10, so P0(B1) = 3/5. Let
ε = 1/10, and do not specify c.

First, the tree is transformed (Fig. 1). Obviously, at the final chance nodes
opt(Ni

j
k|Ai

j) = Ni
j
k = {Xi

j
k}. Now find opt(Ni

j|Ai
j). At N2

1, A2
1 =Ω and
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P(X2
1
1−X2

1
2) = P(X2

1
2−X2

1
1) =−5ε =−1

2
,

so both decisions are in opt(N2
1|A2

1). Next, opt(N2|A)⊆ {X2
1
1,X2

1
2} by (2), but there

is no preference between these, so opt(N2|A) = {X2
1
1,X2

1
2}.

Considering N1
1 and N1

2, we have A1
1 = E1

1, A1
2 = E1

2, and

P(X1
1
1−X1

1
2|A1

1) = 6−31ε
3+2ε > 0, P(X1

2
2−X1

2
1|A1

2) = 6−31ε
2+3ε > 0

for ε = 1/10, and thus opt(N1
1|A1

1) = {X1
1
1} and opt(N1

2|A1
2) = {X1

2
2}. By (2) we

have that opt(N1|A)⊆ {E1
1X1

1
1 +E1

2X1
2
2}, and since the right hand side is a singleton,

equality holds.
Finally, by (1), opt(N |A)⊆ {E1

1X1
1
1 + E1

2X1
2
2,X2

1
1,X2

1
2}:

P
(
X2

1
1− (E1

1X1
1
1 + E1

2X1
2
2)
)

= c− (6 + 19ε)/5 = c−79/50

P
(
E1

1X1
1
1 + E1

2X1
2
2−X2

1
1

)
=−c +(6−31ε)/5 =−c + 29/50

P
(
X2

1
2− (E1

1X1
1
1 + E1

2X1
2
2)
)

= c− (6 + 19ε)/5 = c−79/50

P
(
E1

1X1
1
1 + E1

2X1
2
2−X2

1
2

)
=−c +(6−31ε)/5 =−c + 29/50.

Concluding, if the newspaper costs less than 29/50, then we buy and follow its advice.
If it costs more than 79/50, then we do not buy, but still we have insufficient information
to decide whether to take the umbrella or not. If it costs between 29/50 and 79/50, then
we have insufficient information to choose between the three remaining options.

6 Conclusion

We presented a recursive method for finding the normal form solution of a decision tree
when information is insufficient to specify a unique probability measure. In such a case,
the optimal solution is usually a set of normal form decisions rather than a single one.
Similar to classical backward induction, our method can often be much more efficient
than comparing all normal form decisions. Besides maximality, our method also works
with E-admissibility, but not with Γ -maximinity nor with interval dominance.

However, we do not argue that the normal form always yields the best solution to a
sequential decision problem. Indeed, the normal form solution might have undesirable
properties. For instance, a decision in a subtree can be affected by options refused some
time in the past. Due to lack of space we leave a discussion of these intriguing matters
to another paper.
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Abstract. We present a variant of the Analytic Hierarchy Process intended to facilitate consensus
search in group decision making. This soft methodology combines fuzzy sets and probabilistic
information to provide judgements oriented by the actors’ attitude towards negotiation. A Monte
Carlo approach is taken to derive a preference structure distribution which should finally be stud-
ied to extract knowledge about the resolution process.

1 Introduction

The Analytic Hierarchy Process [15], AHP, is a multicriteria decision making technique
that provides in an absolute scale the priorities corresponding to the alternatives being
compared in a context with multiple scenarios, multiple actors and multiple criteria.

Its methodology consists on three stages: (i) modelling, (ii) valuation and (iii) pri-
orization and synthesis. In the first stage, a hierarchy of the relevant aspects of the
problem is constructed. In the second stage, the preferences of the actors involved in
the resolution process are elicited by means of reciprocal pairwise comparison matrices
using judgements based on the fundamental scale {1/9,1/8, . . . ,1, . . . ,8,9} proposed
by Saaty [15]. Finally, in the third stage, local, global and total priorities are obtained.

In its initial formulation (Conventional AHP), the valuation process is a determinis-
tic one. However, most real applications require considering actors’ uncertainty when
comparing tangible and intangible aspects. There are a number of procedures to deal
with the uncertainty inherent in the judgement elicitation process. Interval judgements
[12], reciprocal random distributions [6] and fuzzy numbers [10, 4, 5] are some of the
most extended procedures.

Using fuzzy judgements to elicit the actors’ preferences, we present a new approach
to include the actors’ attitude in the negotiation process in AHP-group decision making.
This complements, in the fuzzy setting, the recent Bayesian approach to Stochastic AHP
in [2]. To incorporate their attitude, we associate a probability distribution to the α-level
parameter. Jointly considered, the fuzzy judgements and the α-level distributions are
built into a soft AHP allowing us to deal with the AHP-group decision making problem
in a more realistic and effective way than traditional approaches [16, 14, 9].

The two traditional approaches followed in AHP-group decision making are aggre-
gation of individual judgements (AIJ) and aggregation of individual priorities (AIP).
Other approaches can be found in [7, 13]. In the AIJ procedure, a judgement matrix for

D. Dubois et al. (Eds.): Soft Methods for Hand. Var. and Imprecision, ASC 48, pp. 427–434, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008
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the group is constructed from the individual judgements and group priorities are calcu-
lated from it. The three most commonly used methods to determine the entries in the
group judgement matrix are consensus, voting and aggregation of judgements. In AIP,
group priorities are computed from individual priorities using an aggregation method.
In both procedures, the most widely used aggregation technique is the weighted geo-
metric mean.

The paper is structured as follows. After this brief Introduction, Section 2 describes
in an intuitive way the new approach based on the well-known relationships between
fuzzy sets and random sets. Section 3 explains how individual judgements for the nego-
tiation are elicited. Section 4 shows how to obtain the preference structure distribution
on the possible rankings of the alternatives. Finally, Section 5 suggests how to exploit
this distribution from a learning perspective.

2 A Soft AHP Approach

The proposed approach extends AHP methods which allow imprecise judgements in the
form of real intervals. That extension to group decision problems aims at incorporating
the actors’ attitude towards negotiation with emphasis on consensus search. The basic
notion is that actors may accept enlarging their interval judgements, moving farther
from their personal judgement, in an attempt to find overlap areas of larger compatibility
with the others’ views. The role of the analyst is to facilitate the process and extract
knowledge from the problem resolution.

Briefly, the steps are as follows.
First, actors elicit pairwise comparison matrices whose elements are fuzzy intervals.

These basic judgements fix the framework for the process, establishing the less impre-
cise position matching to the actor’s ideas, a more imprecise interval with the maxi-
mal admissible concessions and a continuum of intermediate positions. The underlying
fuzzy sets semantics is that of preference: the membership function denotes how well
a number qualifies as an acceptable quantification of the actor’s judgement of relative
importance.

Second, for a specific negotiation process, the actors decide, on the basis of sub-
jective factors and interests, the kind of position to be adopted: tougher or more open.
That attitude towards the negotiation is represented by a probability distribution on the
interval [0,1] of membership values. The negotiation weight distribution assesses more
weight to the positions more comfortable or convenient to the actor.

Within a fixed context, e.g. in decisions repeated over time, basic judgements may
remain the same while the negotiation weight distribution varies with the circumstances
of each negotiation.

Third, both kinds of information are fused, using the notions from random set theory
and its connection to fuzzy sets, so that basic judgements are revised yielding adequate
negotiation judgements. Now, the correct semantic interpretation of these ‘posterior’
fuzzy judgements is the possibility semantics.

Interval methods cannot capture the graduality which appears naturally in this set-
ting. The proposed method is soft since it conjugates several approaches to impreci-
sion and uncertainty, even with different semantic interpretations. Since it does not rely
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exclusively on Fuzzy Set Theory and does not lead to fuzzy priorities, we would call it
a ‘Soft AHP’ method, rather than a ‘Fuzzy AHP’ method.

The next stage concern the aggregation of the actors’ views and the analysis of the
possible preference structures are more supported by the imprecise judgements emitted.
The preference structure distribution should be analyzed to gain understanding of the
decision and negotiation process and detect patterns, something harder or not possible
in methods which ultimately provide a single ranking.

3 Individual Negotiation Judgements

We start with m actors who approach the decision process willing to make a consensus
decision. Each actor has a weight βk > 0 in the decision, with ∑k βk = 1. For simplicity
of presentation, we assume a local context, i.e. a single criterion. The input for the anal-
ysis is a matrix of fuzzy pairwise comparisons between alternatives and a probability
distribution encoding each actor’s potential framework and attitude towards negotiation,
respectively.

Each actor provides a matrix A[k] = [a[k]
i j ]ni, j=1, whose entries are fuzzy intervals.

The core and support of the fuzzy interval represent the most and less restrictive
positions actor k might be willing to adopt. Thus we also call it a basic judgement. The
remaining α-cuts

(a[k]
i j )α = {x | a[k]

i j (x)≥ α}
represent intermediate positions between those two extremes. As α approaches 0, con-
sensus becomes easier since the overlap between the actors’ positions increases.

In practice, the a[k]
i j can often be chosen to be trapezoidal fuzzy sets for half the entries

of A[k], but not for all of them since that would lead to a violation of the reciprocity

property of AHP. The other entries are determined by reciprocity between a[k]
i j and a[k]

ji ,
so that, for each fixed α ∈ [0,1],

min(a[k]
i j )α = (max(a[k]

ji )α)−1, max(a[k]
i j )α = (min(a[k]

ji )α )
−1.

Each actor provides a probability distribution P[k] on the real interval [0,1].
After basic judgements are elicited, for one particular negotiation each actor chooses

a distribution on [0,1] according to his specific attitude towards that negotiation. This
negotiation weight distribution can be given in the form of a density function with sup-
port [0,1] and determines the sort of position which will be given more preponderance
in the negotiation. Distributions concentrated close to 1 represent tougher positions with
little room for concessions, while distributions concentrated close to 0 represent very
open positions primarily willing to ease consensus, even if reached farther from the
actor’s ideal position.

Intuitively, the density function should be unimodal in the sense of being a quasicon-
vex function. It represents weighting, rather than random behaviour.

For clarity of presentation, assume that the mode m[k] is unique. Then, (a[k]
i j )m[k] rep-

resents the central position of actor k. Level sets (a[k]
i j )α for α < m[k], being longer
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intervals, represent less demanding positions given a lesser weight by the negotiation
weight distribution P[k]. Actors may or may not choose m[k] = 1. In general, they need
not, since it is unclear that an actor’s dominating attitude in judgement modelling will
bring the decision process to a more satisfactory conclusion for him. Inversely, α-cuts
for α > m[k] represent more stringent positions which are given smaller weight too.

Once both A[k] and P[k] are fixed, we must merge those two pieces of information.
We will do that by using consonant random sets.

Indeed, each fuzzy basic judgement a[k]
i j , together with the negotiation weight distri-

bution P[k], easily provides a random set (a random interval) which is consonant, i.e.

monotonic. We just have to take the level mapping L[k]
i j defined on the interval [0,1],

endowed with the probability measure P[k], and with interval values given by

L[k]
i j (α) = (a[k]

i j )α , α ∈ [0,1].

It must be stressed that different choices of basic judgements and negotiation weight
distribution may encode the same information. For any increasing bijective transforma-

tion φ : [0,1]→ [0,1], the pair ([φ ◦ a[k]
i j ]i, j;P[k] ◦φ−1) represents the same information

as (A[k];P[k]). Therefore, the procedure is invariant under increasing bijective transfor-
mations of the scale interval [0,1], a nice property from the measurement-theoretical
point of view.

In turn, all the information of that random set is contained in its one-point coverage

function π [k]
i j given by

π [k]
i j (x) = P[k](x ∈ a[k]

i j ).

We call π [k]
i j a negotiation judgement or final judgement. Observe that π [k]

i j can be reinter-
preted as a fuzzy set, by invoking again the connection between random sets and fuzzy
sets.

Let us show how negotiation judgements combine the information in a[k]
i j and P[k].

Denote by F [k] the distribution function of P[k]. Then, one can prove that

π [k]
i j (x) = F [k](max{α ∈ [0,1] | x ∈ (a[k]

i j )α}) = F [k](a[k]
i j (x)).

If P[k] is given by a density function with full support, as seems reasonable, then F [k] is
invertible and a classical theorem of Probability Theory tells us that P[k] ◦ (F [k])−1 is a
uniform distribution in [0,1]. Therefore, we have

π [k]
i j = F [k] ◦ a[k]

i j ,

P[k] ◦ (F [k])−1 ∼U [0,1].

Taking φ = F [k] above, we deduce that the pair ([π [k]
i j ]i, j;U [0,1]) contains the same in-

formation as the original pair (A[k];P[k]). But since the uniform distribution gives equal

weight to each α , all the information is now in the π [k]
i j .

It is possible to compare the actors’ positions via π [k]
i j , since it recasts the information

in a common scale, with uniform weighting for all actors. In this representation, a fuzzy
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set very steep in the area surrounding the F [k](m[k])-cut means that actor k strongly
wishes to remain close to his central position, while a more flexible position would be
characterized by a fast ‘opening’ towards larger intervals for α < F [k](m[k]).

In order to simplify the elicitation process, the analyst may predetermine the shape
of the fuzzy intervals and the density function so that only a few parameters, easily
interpretable, are left for actors to specify. One possible way is as follows.

The frame judgements a[k]
i j are taken to be trapezoidal, so that only the end-points of

their core and support must be elicited. Note that both intervals need not have the same
center. In some situations, it may be easier to elicit the support end-points indirectly by
indicating the percentage of the corresponding core end-point the actor might eventually
be willing to concede.

For the negotiation weight distribution P[k], the simplest choice is a triangular dis-
tribution, which is determined once the mode m[k] is specified. The value m[k] reflects
intuitively the attitude toward negotiation, with m[k] = 1 representing a tough attitude
and m[k] = 0 a fully open one. Trapezoidal distributions are possible as well.

Another possibility for the P[k] is the beta β (p,q) family of distributions. Appropriate
choices of p,q control not only the position of the center of the distribution but also its
dispersion around the actor’s central position.

4 The Preference Structure Distribution

Our final aim is to quantify how much support receives each possible ranking (prefer-
ence structure) of the alternatives in view of the information collected so far. A way
to overcome the difficulty to solve the problem analitically is to simulate by Monte
Carlo methods many crisp judgement matrices which are compatible with the positions
expressed by the actors.

We begin by choosing a random value η in [0,1] according to a uniform distribution.
For each k, we select the η quantile of the negotiation weight distribution P[k],

q[k] = (F [k])−1(η).

Then we perform simulations to select crisp values

ξ [k]
i j ∈ (a[k]

i j )q[k] = (π [k]
i j )η .

It is enough to simulate only for those entries of the matrix which were directly chosen
by actor k. For the rest of the matrix, reciprocity is enforced by the relationship

ξ [k]
ji = (ξ [k]

i j )−1.

A uniform distribution or another distribution, if deemed appropriate, can be used. That
overcomes some problems with reciprocity appearing in many variants of Fuzzy AHP.

The latter part is analogous to known stochastic methods to solve AHP with impre-
cise judgements [12]. The computational complexity is the same as for those interval
methods, since obtaining a crisp judgement matrix involves (n−1)n/2 simulations per
actor and only one additional simulation is needed to fix q[k].
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Note that simulation is applied at a different height level q[k] for each actor. In the
long run, the Glivenko-Cantelli Theorem ensures that, for each actor, the empirical
distribution approximates the weights provided by actor k, as the number of simulations
increases.

Once Monte Carlo judgement matrices are obtained, well-established methods for
Group Decision Making with AHP can be used to obtain the preference structure distri-
bution. For the sake of completeness, we describe a possible continuation of the analysis
until its conclusion.

Each actor k and each simulated crisp judgement matrix [ξ [k]
i j ]i, j provide a vector

of priority values for the alternatives. There are several methods for obtaining the pri-
orities, and several ways to aggregate individual preferences. We suggest the methods
based on the geometric mean, for their good properties in the group decision setting.
Barzilai and Golany [3] proved that AIJ using the weighted geometric mean method
(WGGM) followed by derivation of priorities by the rowwise geometric mean method
(RGGM) yields the same result than derivation of priorities by RGGM followed by
AIP by WGGM. Moreover, Escobar et al. [8] showed that AIJ has good properties with
respect to consistency, in that the aggregate judgement matrix tends to decrease the
inconsistency levels of the less consistent actors.

For instance, in the AIJ method we calculate the matrixΞG of aggregate group judge-
ments

ξG
i j =

m

∏
k=1

(ξ [k]
i j )βk , i, j = 1, . . . ,n.

Then, priorities for the alternatives are derived as

ωG
i =

m

∏
k=1

(ξG
i j )

1/k, i = 1, . . . ,n.

Alternatives are ranked according to the values ωG
i . There are n! possible rankings or

preference structures, which can be identified with permutations of n elements.
After sufficiently many simulations, we end up with an empirical distribution on

preference structures. For each possible preference structure R, it gives us the propor-
tion λR of samples leading to that ranking.

5 Exploiting the Model

From the standpoint that we should seek to extract knowledge from the resolution of the
decision problem, the preference structure distribution contains rich information which
should be explored in search for patterns, see [7].

Visual methods for representing the group information, e.g. [17], provide a starting
point for exploring the preference structures. Individual preferences can be compared to
group preferences to detect similarities and patterns. Graphical and statistical tools such
as clustering, fuzzy clustering and multidimensional scaling are appropriate for this
stage of the analysis, see e.g. [11]. Our research group (GDMZ) is currently working in
this area with application to large e-democracy and e-cognocracy decision problems.
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A reasonable approach to synthesizing the information in the preference structure
distribution goes by applying voting methods well-studied in Social Choice Theory.
In order to take into account the information contained in individual rankings, methods
using the whole ranking seem more appropriate. An example is the Borda count method,
other methods are available.

With the Borda method, the best alternative in a preference structure is given n points,
the second best n−1 points, and so on. Each preference structure has its weight given
in the preference structure distribution, resulting

νi =∑
R

λR [(n + 1)−R(i)], i = 1, . . . ,n.

Alternatives can be ranked or chosen according to the values νi, which result from
aggregation over all n! preference structures.

An alternative to AIJ and AIP allowing interval judgements is the AIPS (aggregation
of individual preference structures) method in [7]. In that paper, preference structures
are calculated for each actor, then aggregated, allowing to compare each actor’s prefer-
ence structure to the group’s.
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1. Aguarón, J., Moreno-Jiménez, J.M.: The geometric consistency index: approximated thresh-
olds. European J. Oper. Res. 147, 137–145 (2003)
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17. Turón, A., Moreno-Jiménez, J.M.: Graphical visualization tools in AHP-Group Decision
Making. In: Proceedings of Group Dec. and Negotiation 2006 Intl. Conf. IISM, Karlsruhe,
Germany, pp. 150–152 (2007)



Author Index
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Destercke, Sébastien 66, 235
Doria, Serena 281
Durante, Fabrizio 349

Erdely, Arturo 118

Freitag, Steffen 383
Fuchs, Martin 376
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