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Abstract. Reversible computers usually work in a synchronous mode,
i.e., in the presence of clock signals, but in the light of the asynchronous
nature of microscopic physical phenomena this may be an anomaly. The
alternative, an asynchronous mode of operation, has therefore attracted
attention from researchers, witness the proposal of a reversible circuit
element in (Morita 2001) that works in such a mode. Simplicity of cir-
cuit elements like this is an important design objective since it correlates
positively with the efficiency by which they may be realized physically. In
this paper, we present two mutually inverse logic elements that compare
favorably to other circuit elements in terms of their number of states and
their number of input and output lines. We show that the proposed cir-
cuit elements can perform universal computation by embedding circuits
made of them in asynchronous cellular automata.

1 Introduction

Reversible logic has its origins in computing schemes that achieve near-zero
power consumption by preventing entropy loss in computations. It has been ex-
tensively studied [1,2,3,4,5,6], but always under the assumption that timing is
synchronous, i.e., that all logic elements switch simultaneously in accordance
with a central clock. For example, the Fredkin gate [4], a well-known reversible
gate, fails to work correctly if all its input signals would arrive at different times.
Asynchronous systems have virtually been unexplored for reversible computing,
probably since the randomness by which events in them are timed appears in-
compatible with the backward determinism of reversible computing. This lack of
interest may be hard to defend in the light of the existence of microscopic physi-
cal interactions that are both asynchronous and reversible. As with reversibility,
asynchrony tends to reduce power consumption, be it for different reasons: logic
elements in an asynchronous system need not be active in the absence of sig-
nals, unlike in synchronous systems, in which idle logic elements may engage in
dummy switching events triggered by the continuous arrival of clock signals [7].
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To achieve low-power computing in practice, it makes sense to investigate
the combination of asynchrony and reversibility and particularly to find asyn-
chronous reversible logic elements to be used as the basic building blocks to
construct universal circuits. Intuitively, the less complex a logic element is, the
easier it can be implemented physically—a reason to look for elements with as
few input lines, output lines, and internal states as possible. Unsuitable for use
in an asynchronous framework are the reversible logic elements typically em-
ployed in synchronous circuits, since they lack the timing functionality to make
up for the absence of a clock. A straightforward measure of a circuit element’s
complexity is the ease by which it can be implemented in cellular automata: for,
a complex functionality usually translates in an increased number of cell states
and transition rules.

Patra and Fussell [8] has studied asynchronous reversible systems in the con-
text of Delay-Insensitive (DI) circuits. A delay-insensitive circuit (e.g. see [7])
is an asynchronous circuit in which signals may be subject to arbitrary delays
without this being an obstacle to the circuit’s correct operation. The circuits
constructed in [8] are not reversible in the strict sense, since his constructions
require a Merge-element—an irreversible element that merges two input streams
of signals into a single output stream of indistinguishable signals.

Morita [9], has proposed a DI reversible logic element, called a Rotary Ele-
ment (RE), from which computationally universal models can be constructed,
including a reversible Turing machine. The RE has four input lines, four output
lines, and two internal states. An improved element with three input lines, three
output lines, and two internal states is proposed in [10], and more such elements
are investigated in [11]. In both references [10,11] it is proven that each of the
proposed elements can be used as a basis into which the RE can be decomposed,
which implies that the elements are universal. In [12] an asynchronous reversible
cellular automaton is proposed that implements the RE. The construction of the
reversible Turing machine from REs in [9] implies the universality of this cellular
automaton.

This paper proposes a pair of DI reversible logic elements each of which has
two input lines, two output lines, and two internal states. These elements are each
other’s functional reverses, i.e., running signals backwards through one element
produces the equivalent of the other element. We prove that the two elements
as a set are universal by constructing an RE from them. The asynchronicity of
these two elements combined with their mutually reversed functionalities enable
efficient implementation in a special type of asynchronous cellular automata,
called Self-Timed Cellular Automata (STCA) [13], such that merely five transi-
tion rules are required.

Section 2 defines the proposed reversible elements in detail. In section 3 an RE
is constructed from the proposed elements; this result implies the universality of
the elements, since a universal reversible Turing machine can be constructed from
RE elements [9]. Implementation of these two elements and circuits based on
them in terms of an asynchronous cellular automaton are described in section 4.
The paper finishes with conclusions and a short discussion.
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2 Reversible Logic Elements

A reversible sequential machine [9] is a system defined as N = (Q, Σ, Δ, δ),
where Q is a finite set of states (Q �= ∅), Σ and Δ are sets of input and output
symbols, respectively. The transition function δ : Q × Σ → Q × Δ is bijective.
A reversible sequential machine is a special type of Mealy machine [14].

A reversible serial module is a system defined as M = (I, O, N), where I and O
are two sets of input and output lines, respectively (I ∩O = ∅). N = (Q, Σ, Δ, δ)
is a reversible sequential machine with I in one-to-one correspondence with Σ,
and O in one-to-one correspondence with Δ.

Signals used for inputs and outputs of a reversible serial module are considered
particles. The binary signals 1 and 0 are encoded by the presence or absence,
respectively, of a particle on a line. Let μ : I → Σ be the bijective function
between I and Σ, and ν : O → Δ be the bijective function between O and
Δ. A reversible serial module M is said to be in state q(∈ Q) if the reversible
sequential machine N of M is in state q. Assume a ∈ I, b ∈ O and q, q′ ∈ Q
such that δ(q, μ(a)) = (q′, ν−1(b)). Then if a particle arriving on input line a is
received by M in state q, M operates on this particle such as to transfer it from
a to output line b, and to change M ’s state from q to q′. The operation of M
is undefined for simultaneous input signals on its input lines. In other words, a
reversible serial module can only process at most one input particle at any time.
The operation of M is reversible, in that from the current state and output,
the previous state and input can be uniquely determined due to the bijective
transition function δ.

We present two reversible serial modules, which have inverse functionali-
ties. One of the modules, called the Reading Toggle (RT) element, is defined
as ({S, T }, {TA, TB}, NRT ), where NRT = ({A, B}, ΣRT , ΔRT , δRT ) (see
Fig. 1). Let μ : {S, T } → ΣRT be the bijective function between {S, T } and
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Fig. 1. RT element in (a) state A, and (b) state B. IRT element in (a’) state A, and
(b’) state B.

ΣRT , and ν : {TA, TB} → ΔRT be the bijective function between {TA, TB} and
ΔRT . The RT element operates such that a particle arriving on input line T is
transferred to output line TA(TB) if the RT is in state A(B); in this case, the
state changes to B(A) (upper row of Fig. 2(a)). A particle arriving on input line
S is merely transferred to output line TA(TB) if the RT is in state A(B), without
the state being changed (lower row of Fig. 2(a)).
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(a) (b)

Fig. 2. (a) RT and (b) IRT operating on a particle arriving on one of its input lines.
The particle is denoted by a token on a line. The two transition rules of (a) in the
upper resp. lower row describe the RT’s operation in case of a particle arriving on line
T resp. S. In addition, the two transition rules of (b) in the upper resp. lower row
describe the IRT’s operation in case of a particle being output to line T resp. S.

The other reversible serial module, the Inverse Reading Toggle (IRT) ele-
ment, is defined as ({TA, TB}, {S, T }, NIRT ) where NIRT is defined as NIRT =
({A, B}, ΣIRT , ΔIRT , δIRT ). Let μ′ : {S, T } → ΣIRT be the bijective function
between {TA, TB} and ΣIRT , and ν′ : {TA, TB} → ΔRT be the bijective func-
tion between {S, T } and ΔIRT . The IRT element operates such that a particle
arriving on input line TA(TB) is transferred to output line T if the IRT is in state
B(A); in this case, the state changes to A(B) (upper row of Fig. 2(b)). A particle
arriving on input line TA(TB) is merely transferred to output line S if the IRT
is in state A(B), without the state being changed (lower row of Fig. 2(b)). Si-
multaneous particles on the input lines of RT or IRT are not allowed. Obviously,
both RT and IRT are reversible, and they are each other’s inverse.

3 Construction of RE by the Reversible Elements

Any reversible Turing machine (for more details on such machines see [1,15]) can
be constructed by using a network of REs, in which at most one particle moves
around at any time [9]. Since delays in any of the REs or lines do not affect
the correctness of the computing process in the circuit, this circuit is DI. Such
reversible computers consisting of REs need no central clock signal to drive the
operations of each RE [9], i.e., they are asynchronous.

We construct an RE from RT and IRT elements to show the universality of
the RT and IRT elements in an asynchronous mode of operation. An RE is a
reversible serial module that is defined as ({n, e, s, w}, {n′, e′, s′, w′}, NRE) with
NRE = ({H, V }, ΣRE , ΔRE , δRE) (see Fig. 3). Let μ̂ : {n, e, s, w} → ΣRE be
the bijective function between {n, e, s, w} and ΣRE , and ν̂ : {n′, e′, s′, w′} →
ΔRE be the bijective function between {n′, e′, s′, w′} and ΔRE . The RE operates
such that if a particle comes from a direction parallel to the rotating bar of an
RE, it passes straight through to the opposite output line, without changing the
direction of the bar (the state of the RE), as in Fig. 4(a); if the particle comes
from a direction orthogonal to the rotating bar, it is deflected to the right, and
the bar rotates by 90 degrees (Fig. 4(b)). An RE remains in its state if no particle
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Fig. 3. An RE in (a) the H-state, and (b) the V -state, displayed as respectively hori-
zontal and vertical bars in the RE
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Fig. 4. REs operating on an input particle in (a) the parallel case, and (b) the orthog-
onal case
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Fig. 5. (a) A C-D module. (b) The realization of a C-D module in state 0 from RT and
IRT elements. (c) Construction of C-D module in the STCA (see Section 4 for details).

arrives on any of its input lines. Simultaneous particles on any pair of input lines
of an RE are not allowed.

In [9] is was shown that the RE element is universal by composing a circuit
of RE modules that can simulate a universal Turing machine. To show that any
reversible Turing machine can be realized from RT and IRT elements, it suffices
to construct an RE out of these elements. We first construct an intermediate
module from the RT and IRT elements to simplify the construction of the RE.
This module, called a Coding-Decoding (C-D) module [10] (see Fig. 5), has four
input lines {C0, C1, C2, D}, four output lines {D0, D1, D2, C}, and three states
{0, 1, 2}. If the C-D module is in state 0, an input particle arriving on input
line Ci (i ∈ {0, 1, 2}) changes the state of the C-D module from 0 to i, and
the particle is transferred to output line C. Then, a subsequent particle coming
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Fig. 6. (a) A signal. A subcell in state 1 is denoted by a filled triangle, while a subcell
in state 0 is denoted by a blank. (b) A left or right turn element. (c) The configuration
representing an RT or IRT element in state A. The direction of the input and output
signals can be both ways: one way, indicated by the solid arrows, makes the config-
uration work as an RT element, whereas the other way, indicated by dashed arrows,
corresponds to an IRT element. (c’) Configuration representing an RT or IRT element
in state B. The arrows indicate the directions of signal propagation for the RT and the
IRT elements.
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Fig. 7. (a) Transitions rules of STCA. The rotational and reflective equivalents of the
rules are omitted. (b) RT and IRT elements operating on input signals: An RT element
receiving a signal from input path T when it is in state i) A or ii) B. iii) The RT
receiving an input signal from path S when it is in state A. iv) An IRT receiving a
signal from input path TA when it is in state B. Each arrow indicates one transition
step of cells, whereby its label refers to the corresponding transition rule. It can be
verified that the RT (or IRT) element here will fail to work on a signal arriving on its
input path S (resp. TB) when it is in state B. Implementation of the full functionalities
of RT and IRT elements is possible, but this tends to increase the number of rules and
result in more complicated cellular configurations as compared to those in Fig. 6.

from input line D is transferred to output line Di if the C-D module is in state
i, and the state is reset to 0. The C-D module is unable to receive input from
lines C0, C1, or C2 if it is in states 1 or 2. We apply the C-D module in the
construction of the RE such that an input particle arriving on an input line
of the C-D module is always followed by an output particle on an output line,
before a new particle is input to an input line.
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Fig. 8. (a) Realization of an RE in state V from RT and IRT elements, in which all
C-D modules are in state 0 initially. (b) Construction of this RE in the STCA. Dashed
boxes are put around the areas in (b) in which C-D modules adjacent to the elements
Hs and Is are placed according to the construction in (a).
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Figure 8(a) shows in detail the realization of an RE from RT and IRT el-
ements, whereby the four subcircuits of RT and IRT elements, indicated by
(Hs, Is), (He, Ie), (Hn, In), and (Hw, Iw), are in states (A, A), (B, B), (A, A),
and (B, B), respectively; this represents the RE being in the V -state. The same
subcircuits being in states (B, B), (A, A), (B, B), and (A, A), respectively, rep-
resent the RE being in the H-state. This result implies that we can construct a
circuit from RT and IRT elements that simulates a reversible Turing machine,
in which at most one particle moves around the entire circuit [9]. Thus, the RT
and IRT elements are logically universal, and can work in asynchronous mode,
i.e. without their operations having to be driven by a central clock.

Finally, from the constructions in Figs. 5(b) and 8(a), it can be observed that
each RT (or IRT) element never receives a signal from input line S (resp. TB)
when it is in state B. This implies that the functionalities of the RT and IRT
can be further simplified, which tends to benefit their implementations, of these
two elements on asynchronous cellular automata, as the next section shows.

4 Embedding Reversible Elements in STCA

A Self-Timed Cellular Automaton is a two-dimensional array of identical cells.
Each cell is partitioned into four subcells in one-to-one correspondence with its
four nearest neighboring cells, and each subcell takes only one of two states: 0 or
1. Each cell undergoes state transitions via transition rules that operate on the
cell itself along with the nearest subcells of each of its four neighbors. Moreover,
the update of cells are timed randomly and independently of each other, and
hence, are asynchronous.

Figure 6 shows some fundamental patterns used in the STCA. In particular,
the pattern in Fig. 6(a) represents a signal that will be transferred to the right;
whereas the pattern in Fig. 6(b) is used to change the direction of a signal to
the left or right. Moreover, both the local configurations in Fig. 6(c) and (c’)
represent an RT or an IRT element. Their difference corresponds to the two
internal states: A and B, of an RT or IRT element, respectively. The update
of all the patterns in Fig. 6 are controlled by the five transition rules given in
Fig. 7(a), for example, as demonstrated in Fig. 7(b).

Following the construction in Fig. 5(b), we are able to lay out an C-D mod-
ule in our asynchronous cellular automaton by the configuration illustrated in
Fig. 5(c). Furthermore, in accordance with the circuit scheme in Fig. 8(a), we
lay out the configuration of an RE on the STCA in Fig. 8(b). This implies that
a Turing machine can be constructed on the cellular automaton, provided the
cellular space is sufficiently large.

5 Conclusions and Discussion

This paper proposes two asynchronous reversible logic elements that are each
others’ mutually reverse. Called RT and IRT, the elements have two input lines,
two output lines, and two states. The elements are universal, because they can
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be used to construct Morita’s RE element [9], which is universal. Moreover, the
elements are less complex than the RE. Following the line of thought in [9],
we can construct a universal reversible computer from RTs and IRTs, in which
at most one particle moves around at any time. This allows the RT and IRT
elements to conduct their computational tasks asynchronously without needing
a central clock signal to drive their operations.

The implementation of the proposed circuit elements on the cellular automa-
ton requires five transition rules, which is one rule more than the implementation
of the RE [12]. This indicates that the circuit elements may be slightly more
complex in functionality than the RE, even though they require less input and
output lines. A reason for the greater complexity could be the symmetry of the
RE, as opposed of the lack thereof of the proposed elements, as well as the fact
that all functionality of the RE is concentrated in one module, as opposed to the
two modules required in this paper. Still, the number of five rules required here
lies closely to the four rules for the RE model, implying that both models are on
par with each other. Other implementations—possibly physical—may lead to a
different outcome, favoring the proposed elements over the RE.

We have seen that the circuits constructed from the proposed elements allow
merely one particle to be present at a time. To realize circuits with multiple
particles, we need to combine the elements with a so-called Join element [8]—an
element with two input lines and one output line, which requires input particles
to be present on both input lines in order to produce output, whereas a single
input to the Join is just kept pending until a second input arrives. Further re-
search is needed, however, to rigorously define such multiple-signal asynchronous
reversible circuits, as pointed out in [10]. The implementation of the Join on an
STCA is likely to require at least one more transition rule.
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