Computing by Swarm Networks

Teijiro Isokawa!, Ferdinand Peper!?, Masahiko Mitsui',
Jian-Qin Liu®, Kenichi Morita*, Hiroshi Umeo?,
Naotake Kamiura!, and Nobuyuki Matsui!

! Division of Computer Engineering, University of Hyogo, Japan
isokawa@eng.u-hyogo.ac. jp
2 Nano ICT Group,
National Institute of Information and Communications Technology, Japan
3 Biological ICT Group,

National Institute of Information and Communications Technology, Japan

4 Dept. of Information Engineering, Hiroshima University, Japan

5 Dept. of Computer Science, Osaka Electro-Communication University, Japan

Abstract. Though the regular and fixed structure of cellular automata
greatly contributes to their simplicity, it imposes a strict limitation on the
applications that can be modeled by them. This paper proposes swarm
networks, a model in which cells, unlike in cellular automata, have ir-
regular neighborhoods. Timed asynchronously, a cell in this model acts
like an agent that can dynamically interact with a varying set of other
cells under the control of transition rules. The configurations in which
cells are organized according to their neighborhoods can move around in
space, following simple mechanical laws. We prove computational univer-
sality of this model by simulating a circuit consisting of asynchronously
timed circuit modules. The proposed model may find applications in
nanorobotic systems and artifical biological systems.

1 Introduction

Nanorobots, Artificial Cells, Smart Dust—all these models have in common a
large number of distributed units that interact with each other to conduct cer-
tain tasks. Like in Cellular Automata (CA), the underlying units are relatively
simple—usually being nothing more than Finite State Machines—but unlike in
CA the units are more dynamic in the way they interact. They form swarms
of agents that communicate with each other through dynamic networks of in-
terconnections. How can we characterize the functionality of such swarms? Will
their less-rigid communication structures cause a loss of functionality relative
to CA models with comparable complexity? Or will swarm networks be more
powerful through their more flexible way of interaction?

A useful measure of power—useful at least in the world of computer scientists—
is whether a model is computationally universal. This measure basically sepa-
rates “interesting” models from the “uninteresting” omnes, forming the major
motivation in the last century to characterize models in terms of computability.
Universal Turing Machines [I] are well-known in this context, but other models

H. Umeo et al. (Eds): ACRI 2008, LNCS 5191, pp. 50539 2008.
© Springer-Verlag Berlin Heidelberg 2008

Computing by Swarm Networks 51

have been proposed too [2]. In the context of CA, computational universality is
often proved by embedding logic circuits on cellular space. This requires a CA
to simulate a universal set of primitives, like the AND-gate and the NOT-gate,
as well as to simulate signals being propagated between these primitives. Some
well-known computationally universal CA are found in [BJ456] when the tim-
ing model is synchronous—implying the simultaneous update of all cells at each
step. In an asynchronous model, on the other hand, update of cells is randomly
timed. Universality of asynchronous CA is proven in a similar way as with syn-
chronous CA, i.e., by laying out circuits on cellular space, be it that different sets
of primitives are used to compensate for the lack of clock signals [7USIQITOITT].

Swarms have been researched in contexts varying from insects [12] to swarm
robotics [I3], and from distributed sensor networks [I4] to groupware systems
[15]. Stevens [16] has proposed a swarm-based system that is able to replicate
itself. Simulated on a computer, the agents in this model are divided in different
types, each with a different functionality. There are agents that conduct boolean
operations, but also agents that exert forces in certain directions, and so on, and
the agents move in 2-dimensional continuous space according to Newton-like
laws. Each agent has four terminals through which it can be connected to and
exchange integer values with other agents. Through these connections, agents
can be organized in certain configurations, that act like a kind of “organisms”,
which have more complicated functionalities than individual agents.

In this paper we present a swarm network model in which all agents are
identical, like the cells in CA but unlike in Stevens’ model. The functionalities
of the agents are determined by their states as well as by the patterns by which
they are mutually interconnected. Based on these agents, we construct two circuit
elements that form a universal set of primitives in the class of delay-insensitive
circuits [I7], i.e. circuits robust to delays in their wires and primitives. This result
implies that any arbitrary delay-insensitive circuit can be constructed from the
agents, proving the computational universality of the model.

This research promises applications in which simplicity of agents is important,
while the cooperative actions of the agents are sufficiently powerful to result in
interesting behavior. Nanorobotics is one particular application that comes to
mind: the tiny robots in such an application face severe restrictions in their
complexity; yet, combined in swarms of nanorobots, they should have a certain
minimal functionality to be of use. Sensor networks may be another application,
in which sensor agents derive added functionality from the mutual cooperation
in their sensing behavior, for example to measure gradients in certain physical
observables.

2 Computational Elements

A few decades ago Priese [I7] proposed circuit elements from which arbitrary delay-
insensitive circuits can be constructed. Called the E-element and K-element [17],
these elements—schematically shown in Figs. [l and Pl—are universal, forming a
base for the construction of a sequential automaton. The circuits constructed from

52 T. Isokawa et al.

g s s s
3. | e —Tu —Tu
O—>> T

T—

/ —Td T —Td
(b) ‘down’ state

(a) ‘up’ state

Fig. 1. K-element Fig. 2. E-element in (a) ‘up’ state and (b) ‘down’ state

S' S— S' S— S'
->Tu —Tu —— —Tu
T-o> |- T— |
—Td TT|—Td “~-|-e>Td
(b)
S-e>|———¢' S—> >3’
| —TU — —Tu
T—|--" T—> ~~eo

—Td “~|—Td

()

Fig. 3. Operations of an E-element: (a) when in the ‘up’ state, (b) when in the ‘down’
state, and (c) changing state upon receiving an input signal on wire S. A token (blob)
on a wire denotes a signal.

E-elements and K-elements have in common that they employ only one signal at a
time. Though inefficient, this is sufficient to guarantee universality.

The K-element has two input wires and one output wire and it accepts a
signal coming from either input wire and outputs it to the output wire.

The E-element is an element with two input wires (S and T) and three output
wires (S, Ty, and Ty), as well as two internal states (‘up’ or ‘down’). Input from
wire T will be redirected to either of the output wires T, or T4, depending on
the internal state of the element: when this state is ‘up’ (resp. ‘down’), a signal
on the input wire T flows to the output wire T, (resp. T4) as in Fig.[B(a) (resp.
Fig. BI(b)). By accepting a signal from input wire S, an E-element changes its
internal state from ‘up’ to ‘down’ or from ‘down’ to ‘up’, after which it outputs
a signal to output wire S, as shown in Fig. Bl(c).

3 Model of the Agents

Contained in two-dimensional space, agents in the proposed swarm networks
model have a circular shape, the outside of which has six terminals attached
at identical distances from each other (Fig. M]). Agents are connected to each
other via these terminals, which are used to exchange input and output between
agents. The terminal colored black in Fig. dl indicates that it forms a connection

Computing by Swarm Networks 53

with another agent. Each agent is assumed to be a Mealy-type finite automaton,
with an internal state denoted by a symbol in it (Fig. Hl). The functionality of an
agent is determined—apart from the agent’s state—Dby the connection pattern of
the agent to other agents. So, an agent being connected to two agents at opposite
terminals, for example, has a different functionality than an agent connected to
three agents via adjacent terminals.

An agent’s functionality is mostly expressed in terms of logical transitions,
but it may also contain a physical component. For certain patterns at which an
agent is connected to other agents, the agent may experience a force exerted
from a certain terminal, pulling it in a certain direction. The space containing
the agents satisfies simple mechanical laws. Apart from the abovementioned
forces, there are forces between terminals interconnected to each other. Modeled
as springs, the connections between terminals exert a repulsive force between
terminals very near to each other, and an attractive force between terminals
more remote from each other. So, connections are elastic. Communication is
not only limited to terminals connected to each other, but may also take place
between two terminals that are unconnected but very near to each other, to the
extent that the two terminals are at a distance that is less than the distance
between two adjacent terminals within an agent. The states and output of the
agent are determined by a transition function. This function has as its domain
the agent’s internal state, the input values from the I/O terminals, and the
connection pattern of the I/O terminals. The output domain of the transition
function covers the agent’s internal state, the output values to the I/O terminals,
and whether a force is exerted to the agent. Formally, the transition function f
is defined as:

fla,i,¢) = (¢',0,m) (1)

where ¢ and ¢ are the internal states before and after the transition, respec-
tively, 4 = {ig,---,i5} is the set of the input values on the I/O terminals,
o = {og,---,05} is the set of values output to the I/O terminals. The con-
nection pattern is denoted by ¢ = {cq, - -, ¢5}. The value of m in the output of
the transition function determines whether a force is exerted upon the agent. We
assume that the transition rules are rotation symmetric, i.e., one transition rule
exists in six varieties, which are rotated analogues of each other. An illustrative
transition rule is depicted in Fig. Bl where the direction of the exerted force is
indicated by the dotted arrow.

4 Building Circuits by Swarm Networks

To establish the computational universality of the model, we show how the K-
and E-elements can be constructed by groups of agents. An agent in the model
has one of two states (g1 or g2) and each of its I/O terminals inputs and outputs a
number from the set {1,2}. There is also another type of agent, called wall agent,
that is passive. Wall agents are lined up into structures that form boundaries
between which configurations of the normal agents may move around. Repre-
sented as black circles in the figures, wall agents constitute the isolating walls

54 T. Isokawa et al.

~ Direction of movement

1/0O terminals

1/0 terpyipals

Fig. 4. Individual Agent. Fig. 5. Transition rule for an agent
The terminals are labeled

by the numbers between

brackets.

G- ©-f -0

Rule 1 Rule 2 Rule 3

Fig. 6. Transition rules for a signal: rule 1 facilitates the movement of a signal, rule
2 provides a constant source of 1-values driving the processes in the signal, and rule
3 provides l-outputs at the tail of the signal to be sensed by the switching bar in the
E-element.

of the wires in the circuits to be constructed. Signals travel in the circuit along
these wires.

The behavior of agents is governed by transition rules, which are applied to
the agents according to an asynchronous updating mode (random timing). Fig.
shows three transition rules that are used in the operation of a signal, the con-
figuration of which is shown in Fig.[ll The symbol x in rule (1) denotes an input
and output value being either 1 or 2. When, for example, the input value at
terminal 3 of an agent is 1, the same value 1 is output at terminals 0, 1, and
5. This rule also facilitates the exertion of a force such that the agent moves to
the north. There is one agent in a signal that is governed by rule (1): it is at
the inner part of the signal, and denoted by the symbol (b) in the configura-
tion constituting the signal (Fig.[7]). Transition rule (2) applies to another agent
in the inner part of the signal, which is labeled by the symbol (a) in Fig. [1
This agent provides a constant stream of 1-values output to other agents in
the signal, such as the above agent labeled by (b). These 1-values being output
are also received by agents that behave according to rule (3), and these agents
respond with a 1-value output to their opposite terminal. This 1-value being
output will in its turn be transmitted to the E-element when the signal passes
through it, as a result of which the E-element’s state will be flipped, as we will
see later.

The turn of a wire resp. crossing of two wires can be implemented in a straight-
forward way, i.e., by appropriate configurations of wall agents, which guide the

Computing by Swarm Networks 55

Fig.7. A configuration of a signal. The big arrow right of the configuration denotes
the direction of the signal.

(a) Turn element (c) K-element

(b) Crossing element

Fig. 8. Configurations of circuit element by wall agents

[}

i1 1 0
O ¢S B N e I £
- O ‘1\1 A d d \1 Jd - A1
Rule 4 Rule 5 Rule 6
1 o1 2 ‘T
) Q @) o9l =
s oo R oo
vl T
Rule 7 Rule 8 Rule 9

Fig. 9. Transition rules for operating an E-element

signals in accordance with the wall’s shape (Figs. B(a) resp. B(b)). The tempo-
rary absence of wall structures at the time of a signal’s crossing does not affect
the proper passing of the signal through the crossing, since the force exerted on
a signal pulls it across this momentary lapse of the walls. The K-element can be
constructed by wall agents in a similar way as the turn and crossing elements
(Fig.Bl(c)): a signal from either input wire will be guided to the output wire by
the wall agents.

For the construction of an E-element six more transition rules are required,
which are shown in Fig.[@ The agents to which rules (4), (5), (6), and (7) apply
all have the same connection patterns, but each of these rules applies to different
patterns of input and output values from other agents. The symbol 0 at terminal

T. Isokawa et al.

Fig. 11. Flow of a signal in an E-element in the state ‘up’

Computing by Swarm Networks 57

Il
1
'
'
'
1
'

Fig. 12. Switching of an E-element from the state ‘up’ to the state ‘down’ as the result
of a signal being input from terminal S

3 in rule (6) denotes the condition that no values from another agent are input
to this terminal.

Fig. [[0 shows a realization of an E-element by agents. Signals in this element
flow according to the direction of the arrows. The rotation bar in this configu-
ration, which hinges around a fixed post of wall agents, indicates the state of
the E-element by its position. In Fig. [[0 the state is ‘up’. A signal from input
wire T exits from either output wire T, or T, depending on the direction of
the rotation bar, without changing the state of the E-element. A signal input to
wire S also passes through the E-element and leaves from either output wire S}
or S}, before eventually being merged into one output wire S’. In this case, the
state of the E-element changes as the l-outputs emanating from a signal’s tail
result in the rotation bar being flipped.

Fig. [Tl shows a signal passing through an E-element in state ‘up’ in more
detail, with the directions of the forces exerted on the agents inside of the rotation
bar indicated by gray arrows. Though the signal passing through the E-element
touches the rotation bar, and thus exerts yet another force on it, the integrity
of the rotation bar (and thus its shape) is maintained as a result of the pulling
forces inside the bar. Switching of the E-element takes only place if the signal’s
tail touches the tip of the rotation bar, but in this case this will not happen,
since there is a wall in between to prevent this.

When a signal enters the E-element from input terminal S, like in Fig. [2]
its tail will touch the tip of the rotation bar on the signal’s exit. This results

58 T. Isokawa et al.

in the transmission of a 1-value from the signal to agent (C) in the bar’s tip in
Fig. The chain of reactions caused by this between agents in the rotation bar
will then effectuate state changes in some of these agents. Accompanying the
state changes is an increase in the number of agents on which downward forces
are exerted. To be exact, three agents will experience a downward force, and
these agents are indicated by the symbol (F) in Fig. The rotation bar will
then rotate downward as a result of these forces. The opposite of this process—
switching the E-element’s state back to state ‘up’—is accomplished in a similar
way, by inputing a signal to S, which will then pass S} in Fig. [0 in the process
touching the rotation bar’s tip. The opposite will then happen: the downward
forces will be switched off and the bar will move upwards again.

5 Conclusions and Discussion

This paper presents a model of swarm networks and shows how to conduct uni-
versal computation by groups of agents in these networks. An agent is a two-state
Mealy-type finite automaton with six input/output terminals, some of which are
connected to other agents’ terminals. The state of an agent, the output values
of its terminals, and the connectivity of each agent determine the functionality
of the agent; these variables are thus directly reflected by the transition rules in
the model. Agents are similar to cells in cellular automaton models, except that
the interconnection structure between agents is irregular. Universal computation
is achieved in this model by nine transition rules, through the simulation of the
asynchronously timed K and E circuit elements, as well as through the simulation
of signal propagation between these elements. Simulations on a computer reveal
that the proposed model behaves in a way that somehow resembles biological
phenomena. The elastic nature of the connections between the agents appears
an important ingredient in this context, as it results in an efficient distribution
of the pulling forces among agents connected to each other.

The proposed model may be useful for the realization of computational devices
based on biological mechanisms or other physical nanometer-scale interactions.
The agents could for example be implemented in terms of proteins. This includes
motor proteins, i.e., proteins that facilitate the transport of certain chemical
substances inside organisms. It is well-known that proteins can be bound to other
proteins, like with our agents, and that such bindings result in new properties
and behavior of the formed components [I8/I9]. A protein can be thought of as
being in a certain state through the addition of a phosphorus molecule: when
such a molecule is present, we speak of a phosphorylated protein, otherwise of a
dephosphorylated protein. The state of a protein can be influenced by the state
of other proteins in its vicinity, according to so-called domain-specific reactions,
a domain in a protein corresponding to a terminal in an agent. These reactions
tend to be strongly dependent on the bindings of the protein to other proteins,
in a similar way as the interconnection pattern of an agent with other agents
influences the agent’s functionality. Though space does not allow us to give
specific biological implementations of the agents, the richness of interactions
between proteins provide ample inspiration toward the realization of this.

Computing by Swarm Networks 59

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Turing, A.: On computable numbers, with an application to the entscheidungsprob-

lem. Proc. London Math. Soc. 2(42), 230-265 (1936)

. Church, A.: An unsolvable problem of elementary number theory. American Jour-

nal of Mathematics 58(2), 345-363 (1936)
Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press,
Champaign (1966)

. Banks, E.: Universality in cellular automata. In: IEEE 11th Ann. Symp. on Switch-

ing and Automata Theory, pp. 194-215 (1970)

Codd, E.F.: Cellular Automata. Academic Press, Inc., Orlando (1968)

Serizawa, T.: Three-state Neumann neighbor cellular automata capable of con-
structing self-reproducing machines. Syst. and Comput. in Japan 18(4), 33-40
(1987)

Adachi, S., Peper, F., Lee, J.: Computation by asynchronously updating cellular
automata. Journal of Statistical Physics 114(1/2), 261-289 (2004)

Lee, J., Adachi, S., Peper, F., Morita, K.: Embedding universal delay-insensitive
circuits in asynchronous cellular spaces. Fundamenta Informaticae 58(3/4), 295
320 (2003)

Lee, J., Adachi, S., Peper, F., Mashiko, S.: Delay-insensitive computation in asyn-
chronous cellular automata. Journal of Computer and System Sciences 70(2), 201—
220 (2005)

Peper, F., Lee, J., Adachi, S., Mashiko, S.: Laying out circuits on asynchronous
cellular arrays: a step towards feasible nanocomputers? Nanotechnology 14(4), 469—
485 (2003)

Peper, F., Lee, J., Abo, F., Isokawa, T., Adachi, S., Matsui, N., Mashiko, S.: Fault-
tolerance in nanocomputers: A cellular array approach. IEEE Trans. Nanotechnol-
ogy 3(1), 187-201 (2004)

Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Santa Fe Institute Studies on the Sciences of Complexity. Oxford
University Press, USA (1999)

Bayindir, L., Sahin, E.: A review of studies in swarm robotics. Turk J. Elec. En-
gin. 15(2), 115-147 (2007)

Akyildiz, 1., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor
networks. IEEE Communications Magazine 40(8), 102-114 (2002)

ter Beek, M., Ellis, C., Kleijn, J., Rozenberg, G.: Synchronizations in team au-
tomata for groupware systems. Comput. Supported Coop. Work 12(1), 21-69
(2003)

Stevens, W.: Simulating self-replicating machines. Journal of Intelligent and
Robotic Systems 49(2), 135-150 (2007)

Priese, L.: Automata and Concurrency. Theoretical Computer Science 25(3), 221
265 (1983)

Krauss, G.: Biochemistry of signal transduction and regulation. Wiley-VCH, Wein-
heim (2008)

Liu, J.Q., Shimohara, K.: Biomolecular computation for bionanotechnology. Artech
House, Boston (2007)

	Computing by Swarm Networks
	Introduction
	Computational Elements
	Model of the Agents
	Building Circuits by Swarm Networks
	Conclusions and Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

