
From Data and Signals Cellular Automata to
Self-organizing Circuits

André Stauffer and Joël Rossier

Logic Systems Laboratory, Ecole polytechnique fédérale (EPFL),
IN-Ecublens, CH-1015 Lausanne, Switzerland

{name.surname}@epfl.ch
lslwww.epfl.ch

Abstract. Self-organizing circuits are able to grow, to self-replicate, and
to self-repair. These properties are implemented in hardware thanks to
configuration, cloning and cicatrization mechanisms. They are realized
by the configuration layer of the POEtic tissue, a data and signals cellular
automata based circuit. Specified as a data-flow processor, the applica-
tion and routing layers of the circuit compose a timer as an application
example.

1 Introduction

Borrowing three structural principles (multicellular architecture, cellular divi-
sion, and cellular differentiation) from living organisms, we have already shown
how embryonic hardware [1] is able to implement bio-inspired properties in sil-
icon. This hardware implementation leads to self-organizing circuits, based on
data and signals cellular automata (DSCA), capable to deal with faults in a fully
automatic way. In Section 2, the self-organizing mechanisms are implemented as
a configuration layer in the POEtic tissue, a reconfigurable circuit that draws
inspiration from the structure of complex biological organisms. The application
and routing layers of the circuit are then specified in order to define a data-flow
processor, the MOVE processor (Section 3). Using four such processors, a timer
is realized as an application example. A brief conclusion (Section 4) summarizes
our paper and opens new research avenues.

2 DSCA Based Reconfigurable Circuit

2.1 Circuit Characteristics

The POEtic tissue [2] is a reconfigurable circuit that draws inspiration from the
structure of complex biological organisms to implement the three main models
commonly used in bio-inspired systems: (1) Phylogeny, the history of evolution
of the species through time, (2) Ontogeny, the development of an individual as
directed by its genetic code, and (3) Epigenesis, the development of an indi-
vidual through learning processes. This tissue is the first hardware substrate

H. Umeo et al. (Eds): ACRI 2008, LNCS 5191, pp. 531–536, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

lslwww.epfl.ch

532 A. Stauffer and J. Rossier

dedicated to the implementation of systems able to combine the three axes of
bio-inspiration into one single circuit. Physically, the tissue is a 2-dimensional
array of molecules and each molecule is composed of the three layers described
in the following paragraphs.

2.2 Configuration Layer

The configuration layer implements the self-organizing mechanisms and their
constituting processes [3]. This layer is designed as data and signals cellular au-
tomaton (DSCA) cell [4], resulting from the interconnection of a processing unit
handling the data and a control unit computing the signals. In the detailed archi-
tecture of our layer (Fig. 1a), six resources implement the growth and branching
processes:

– An input multiplexer DIMUX, selecting one out of the four input data NDI,
EDI, SDI or WDI.

– A 2N-level stack organized as N genotypic registers G1 to GN (for mobile
data), and N phenotypic registers P1 to PN (for fixed data).

– An output buffer DOBUF producing the output data DO.
– An encoder ENC for the input signals NSI, ESI, SSI, and WSI.
– A transmission register I for the memorization of the input selection.
– A generator GEN producing the output signals NSO, ESO, SSO, and

WSO.

In order to implement the load, repair and reset processes, the architecture of
the configuration level (Fig. 1a) requires four supplementary resources:

– A decoder DEC defining the mode and the type of the molecule.
– A signal register S.
– A mode register M.
– A type register T.

To allow the bypassing of the spare, faulty or repair molecules, data and signals
transmission multiplexers and demultiplexers are added to the configuration
layer. Depending on its molecular type T, the layer finally controls its output
signals with buffers. These buffers limit the propagation of the load and reset
signals according to the boundaries of the cell.

2.3 Application Layer

The application layer implements the logic design of the system under develop-
ment as well as its short range connections between neighboring molecules. The
core of this layer (Fig. 1b) is made up of four resources:

– An input multiplexer AIMUX, selecting four inputs out of the four applica-
tion data NAI, EAI, SAI, WAI, and the routing data RO.

– A 16-bit look-up table LUT.

From Data and Signals Cellular Automata to Self-organizing Circuits 533

AOMUX AOWAI
SAI
EAI
NAI

RO

LUT

DFF

AIMUX ROMUX
ERI

AO
WRI
SRI

NRI NRO
ERO
SRO
WRO
RO

(b) (c)

DIMUX

NDI

WDI
SDI
EDI

G1:N P1:N

DOBUF DO
I

ENCWSI
SSI
ESI
NSI

GEN
PN

PN-1
GN-1

WSO
SSO
ESO
NSOS

M

DEC TPN-1

WSI

(a)

Fig. 1. Detailed architecture of a molecule. (a) DSCA cell corresponding to the con-
figuration layer. (b) Application layer. (c) Routing layer.

– A D-type flip-flop DFF for the realization of sequential systems.
– An output multiplexer AOMUX selecting the combinational or the sequential

data as application output AO.

To allow the bypassing of the spare, faulty or repair molecules, transmission
multiplexers are added to the application layer.

2.4 Routing Layer

The routing layer handling the short range connections between distant molecules
is made of a single resource (Fig. 1c):

– An output multiplexer ROMUX selecting the five outputs NRO, ERO,
SRO, WRO, and RO out of the four routing input data NRI, ERI, SRI,
WRI, and the application output data AO.

To allow the bypassing of the spare, faulty or repair molecules, transmission
multiplexers are added to the routing layer.

3 Multi-processor Application

3.1 MOVE Processor

The MOVE processor, originally developed as an application-specific dataflow
processor [5], relies on a set of functional units connected together by a bus.
Fig. 2 details the constituting resources of the processor:

534 A. Stauffer and J. Rossier

– A program memory PM.
– An instruction fetch unit IF.
– Four functional units with input registers RI and output registers RO.
– Two communication units with address registers ADR and data registers

DATA.

The instructions of the processor move operands into the input registers RI of
the functional units and move the result from their output registers RO. Using
their address registers ADR and their data registers DATA, the communication
units are handled in the same way as the functional units.

R
I

R
I

C
M

P
R

O

PM IF

R
I

R
O

IN
C

R
I

E
N

R
O

R
I

P
O

S
R

O ADR
DATA

PREC

ADR
DATA

NEXT

Fig. 2. Detailed architecture of the MOVE processor

3.2 Timer Application

A timer counting seconds (from 00 to 59) and minutes (from 00 to 59) is realized as
a chain of four counters SU (units of seconds), ST (tens of seconds), MU (units of
minutes), and MT (tens of minutes). This application involves four MOVE proces-
sors that are specified as modulo-10 counters for the units (seconds SU or minutes
MU) and modulo-6 counters for the tens (seconds ST or minutes MT). Each pro-
cessor contains consequently the following specialized functional units (Fig. 2):

– A comparator CMP.
– An incrementer INC.
– A count enable unit EN.
– A position unit POS for the location within the chain.

The chaining of the four processors is implemented at the programmable cir-
cuit level and realized by a distributed long range routing algorithm [6] that
dynamically connects the output communication units NEXT to the input com-
munication units PREC.

3.3 POEtic Implementation

Each MOVE processor, using one basic cell of the POEtic tissue for each of its
30 × 12 molecules, implements a counter cell of the timer organism. In order to
build this organism (Fig. 3a), the structural configuration mechanism, the func-
tional configuration mechanism, and the cloning mechanism are applied at the
cellular level. Starting with the structural and functional configuration data of

From Data and Signals Cellular Automata to Self-organizing Circuits 535

the MOVE processor, these mechanisms generate successively the four counters
of the timer.

The cicatrization mechanism results from the introduction in each cell of
one column of spare molecules to the right (Fig. 3a), defined by the structural
configuration of the MOVE processor, and the automatic detection of faulty
molecules. Thanks to this mechanism, the faulty molecule of the upper right cell
(Fig. 3b) is deactivated, isolated from the network, and replaced by the nearest
right molecule, which will itself be replaced by the nearest right molecule, and so
on until a spare molecule is reached. The functional reconfiguration mechanism
takes then place in order to regenerate the counter cell of the timer organism.
As shown in Fig. 3b, the display of the regenerated counter cell presents some
graphical distortion.

MU

MT SU

ST

MT

MU ST

SU

(a)

(b)

Fig. 3. POEtic implementation of the timer. (a) Original configuration of the two
rows by two columns of processors displaying clockwise MT,MU:ST,SU=01:08. (b)
Cicatrization of the upper right processor displaying a distorted ST=5.

4 Conclusion

The self-organizing mechanisms are made of simple processes like growth, load,
branching, repair, and reset. They allow the cellular systems to possess bio-
inspired properties such as:

– Cloning or self-replication at cellular and organismic levels.
– Cicatrization or self-repair at the cellular level.

536 A. Stauffer and J. Rossier

Starting with the POETIC tissue, a DSCA based reconfigurable circuit, we
described first the configuration layer of its basic cell implementing the self-
organizing mechanisms and their underlying processes. We detailed then the
corresponding application layer and routing layer as well as their specifications
in order to define a MOVE processor. We finally realized a timer made up of
four such processors as an application example.

In order to improve our systems, we intend to study additional hardware
features such as:

– Automatic detection of faulty molecules, erroneous configuration data, and
application dysfunction.

– Asynchronous implementation at the organismic level and synchronous im-
plementation at the cellular level.

References

1. Mange, D., Stauffer, A., Petraglio, E., Tempesti, G.: Embryonics Machines that Di-
vide and Differentiate. In: Ijspert, A.J., Murata, M., Wakamiya, N. (eds.) BioADIT
2004. LNCS, vol. 3141, pp. 328–343. Springer, Heidelberg (2004)

2. Tyrrell, A., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., Moreno, J.-M.,
Rosenberg, J., Villa, A.: Poetic Tissue: An Integrated Architecture for Bio-inspired
Hardware. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS,
vol. 2606, pp. 129–140. Springer, Heidelberg (2003)

3. Stauffer, A., Mange, D., Rossier, J., Vannel, F.: Bio-inspired Systems with Self-
developing Mechanisms. In: Kang, L., Liu, Y., Zeng, S. (eds.) ICES 2007. LNCS,
vol. 4684, pp. 151–162. Springer, Heidelberg (2007)

4. Stauffer, A., Sipper, M.: The Data-and-Signals Cellular Automaton and its Appli-
cation to Growing Structures. Artificial Life 10(4), 463–477 (2004)

5. Corporaal, H., Mulder, H.: MOVE: A Framework for High-performance Processor
Design. In: Proceedings of the Int. Conference on Supercomputing, pp. 692–701
(2003)

6. Moreno, J.-M., Sanchez, E., Cabestani, J.: An In-system Routing Strategy for Evolv-
able Hardware Programmable Platforms. In: Keymeulen, D., Stoica, A., Lohn, J.,
Zebulum, R.S. (eds.) Proceedings of the Third NASA/DOD Workshop on Evolvable
Hardware, pp. 157–166. IEEE Computer Society, Los Alamitos (2001)

	From Data and Signals Cellular Automata to Self-organizing Circuits
	Introduction
	DSCA Based Reconfigurable Circuit
	Circuit Characteristics
	Configuration Layer
	Application Layer
	Routing Layer

	Multi-processor Application
	MOVE Processor
	Timer Application
	POEtic Implementation

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

