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Abstract. In a stream cipher the plaintext digits are encrypted one
at a time, and the transformation of successive digits varies during the
encryption. LFSRs produce sequences having large periods and good sta-
tistical properties, and are readily analyzed using algebraic techniques.
But the output sequences of LFSRs are also easily predictable, if we
know proper successive output sequences in output sequences. In this
paper, we give a new method which generates nonlinear sequences using
maximum-length cellular automata.

1 Introduction

Pseudorandom sequences have many applications in cryptography and commu-
nication engineering. The inherent simplicity of LFSRs, the ease and efficiency
of implementation, some good statistical properties of the LFSR sequences, and
the algebraic theory underlying these devices turn them into natural candidates
for use in the construction of pseudorandom generator, targeted to the imple-
mentation of efficient stream cipher cryptographic strength. On the other hand,
some of the attractive properties listed above are also the reason for the failure
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of many of these constructions. The shrinking generator which is one of clock-
controlled generators, is well-known pseudorandom sequence generator, proposed
by Coppersmith et al.[1]. It is a very simple generator with good cryptographic
properties.

Sabater et al.[2] proposed the algorithm to convert the shrinking generator
into a 90/150 group CA-based linear model which is simple and can be applied
to shrinking generators in a range of practical interest. But they didn’t consider
that individual cells of CA(Cellular Automata) can generate sequences having
the same characteristic polynomial[3] and CA can generate sequences having
short period according to seed vectors, even if the period of 90/150 group CA
and the period of sequence generated by shrinking generator are same.

In this paper, we propose a new method which generates nonlinear pseudo-
random sequences using two maximum-length 90/150 LHGCA obtained by Cho
et al.’s algorithm[4]. The generator which generates these sequences is possible
to overcome spatial weak points of the interleaved sequence generator proposed
by Gong[5]. Unlike the method proposed by Sabater et al.[2], the new sequence
generator can generate nonlinear sequences whose cycle lengths are always same
for a given initial state. The nonlinear pseudorandom sequence obtained by our
method has a larger period and a higher linear complexity than the shrunken
sequence generated by LFSRs.

2 Preliminaries

CA is an array of cells where each cell is in any one of the permissible states. At
each discrete time steps the next state of particular cell is usually assumed to
depend only on itself and on its two neighbors (three-neighborhood dependency)
for a local neighborhood CA. The state of the ith cell at time (t + 1) can thus
be denoted as:

qi(t + 1) = f(qi−1(t), qi(t), qi+1(t))

where f represents the combinatorial logic and it is called next state function.
In this paper we deal with 90/150 linear hybrid group cellular automata

(LHGCA).
Characterizations of linear CA based on matrix algebraic tool have been re-

ported in [6]. The matrix algebraic tool employing minimal polynomial and char-
acteristic polynomial of the state transition matrix of CA showed various inter-
esting features of CA behaviour. The most effective application of linear group
CA has been proposed in the field of pseudorandom pattern generation, since
many researchers[7] showed that maximum-length CA whose all nonzero states
lying in a single cycle produce high quality pseudorandom patterns. It has been
established that the maximum-length cycle in the state transition diagram of
90/150 CA can be produced only if the characteristic polynomial is primitive([3],
[4]). In this paper only one-dimensional maximum-length 90/150 LHGCA are
considered. 90/150 LHGCA is completely specified by which cells use rule 90
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and 150. A natural form for the specification is an n-tuple < d1, d2, · · · , dn > ,
called the rule vector, where

di =
{

0, if cell i uses rule 90
1, if cell i uses rule 150

The shrinking generator was introduced by Coppersmith et al.[1]. Neverthe-
less, due to its simplicity and provable properties, it is a promising candidate
for high-speed encryption application. The shrinking generator is a well-known
keystream generator composed of two LFSRs. A control LFSR R1 is used to se-
lect a portion of output sequence of a second LFSR R2. Therefore the keystream
produced is a shrunken version of the output sequence of R2.

According to [1], let R1 and R2 be maximum-length LFSRs whose charac-
teristic polynomials are primitive, of lengths L1 and L2, respectively, and let
{ki} be an output sequence of the shrinking generator formed by R1 and R2. If
gcd(L1, L2) = 1, the period of {ki} is (2L2 − 1) · 2L1−1 and its linear complexity
LC satisfies the following inequality L2 · 2L1−2 < LC ≤ L2 · 2L1−1.

3 Interleaved Sequences

The interleaved sequences were introduced by Gong[5]. Interleaved sequences are
constructed by taking sequences and combining them under control of a shift
sequence e. Let a = {ai} be a binary sequence. If a is a periodic sequence with
period l, then we write a by [a0, a1, · · · , al−1]. The left shift operator L on a
is defined as L(a) = {a1, a2, · · ·}, i.e. the left shift operator L when applied
to a sequence will shift the sequence to the left by one position. For Li(a) =
{ai, ai+1, ai+2, · · ·}, i is said to be phase shift of a. Two periodic sequences a
and b are shift equivalent if there exists an integer k such that ai = bi+k for all
i = 0, 1, 2, · · ·. Let u = [u0, u1, u2, · · · , ust−1] be a binary sequence with period
st, where s and t are integers greater than 1. We can arrange the elements of
the sequence u into an s × t array as follows:

A =

⎛
⎜⎜⎝

u0 u1 · · · ut−1
ut ut+1 · · · u2t−1
...

...
. . .

...
u(s−1)t u(s−1)t+1 · · · ust−1

⎞
⎟⎟⎠

If each column vector of A is either phase shift of a binary sequence a of period s,
or zero sequence, then u is called an (s, t) interleaved sequence. Let Aj be the jth
column vector of A which is the matrix form of u, then A = (A0, A1, · · · , At−1).
Aj is the transpose of either Lej (a) , or (0, · · · , 0), where ej is the phase shift of
a. If Aj = (0, · · · , 0)t, then we denote ej = ∞. u is called an (s, t) interleaved
sequence associated with (a, e), and e = (e0, e1, · · · , et−1) is called a shift sequence
of u.

This generator has some troubles that it must be paralleled t LFSRs with
period s to generate a (s, t) interleaved sequence. In this paper we propose the
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method which is possible to overcome spatial weak points of the interleaved
sequence generator. This method employs a maximum-length 90/150 LHGCA
whose characteristic polynomial is primitive. High quality pseudorandom se-
quences can be generated from the CA. This is due to the apparent random
phase shift of the output bit sequences from its various stages that are cell posi-
tions. Each cell position generates pseudorandom sequences. Unlike LFSRs, the
phase shift is generally different between stages of a CA. Schemes finding phase
shifts of maximum-length 90/150 LHGCA were proposed in [3].

4 SI Sequence Based on 90/150 LHGCA

Sabater et al.[2] considered the linear model of shrinking generator described
in [8] in terms of 90/150 LHGCA. They proposed a synthesis algorithm for the
90/150 LHGCA which is equivalent to any shrinking generator. This LHGCA is
formed by concatenations of basic maximum-length 90/150 LHGCA and their
mirror images, with one or two modification in each LHGCA component. The
characteristic polynomial of the 90/150 LHGCA obtained by the algorithm is
the same as the one of the original shrinking generator. Since the number of
concatenations is 2L1−1(L1 is the length of R1) and the length of the basic
primitive 90/150 LHGCA is L2, the required length of the 90/150 LHGCA is
given by L = L22L1−1. For example, consider a shrinking generator with the
following component LFSRs: a selector register R1 with length L1 = 3 and the
second register R2 with length L2 = 4. Then the period of the shrunken sequence
is (24 − 1)2(3−1) = 60. In order to generate the same sequence as shrunken
sequence obtained by the shrinking generator, it needs the 90/150 LHGCA whose
characteristic polynomial is p(x)N , where p(x) is a primitive polynomial with
degree 4 and 23−2 < N ≤ 23−1. But all cycles of 90/150 LHGCA synthesized
are not equal to the period of the 90/150 LHGCA though the period of the
90/150 LHGCA is equal to the period of the shrunken sequence generated by
the shrinking generator. Table 1 shows the configuration and cycle structure of
90/150 LHGCA whose characteristic polynomials are (x4 +x3 +1),(x4 +x3 +1)2

and (x4 +x3 +1)4. In Table 1, a(b) means that the number of cycles with length
b is a.

Table 1. Configuration and cycle structure of the 90/150 LHGCA synthesized

characteristic polynomial configuration cycle structure
x4 + x3 + 1 1101 1(1), 1(15)

(x4 + x3 + 1)2 11000011 1(1), 1(15), 8(30)
(x4 + x3 + 1)4 1100001001000011 1(1),1(15),8(30),1088(60)

The period of the sequence generated by 90/150 LHGCA C with some initial
state whose characteristic polynomial is of the form p(x)N is not always equal
to the period of C. It means that the 90/150 LHGCA which is equivalent to any



Nonlinear Pseudorandom Sequences Based on 90/150 LHGCA 475

shrinking generator is not secure. To overcome this problem, we present a method
which generates a new nonlinear pseudorandom sequence. Each cell position
of 90/150 maximum-length LHGCA generates a pseudorandom sequence. In
addition the phase shift is generally different between stages of a CA. The new
sequence generator compose of two 90/150 maximum-length LHGCAs: a selector
90/150 maximum-length LHGCA C1 that produces a sequence used to decimate
the sequences generated by the other 90/150 maximum-length LHGCA C2.

Let T1 (resp. T2) be the state transition matrix for a given m-cell (resp. n-cell)
maximum-length 90/150 LHGCA and let u0 (resp. v0) be the initial state of T1
(resp. T2). Then we obtain a (2m −1)×m (resp. (2n −1)×n) matrix A (resp. B)
consisting of m (resp. n) independent pseudorandom sequences generated by T1
(resp. T2) as its columns. Here gcd(2m − 1, 2n − 1) = 1. Define a (2n − 1)(2m −
1) × (n + 1) matrix S = (sij) as follows:

S =

⎛
⎜⎝

B Aj

...
...

B Aj

⎞
⎟⎠ ,

where Aj is the jth column of A.
Let S∗

I be the 2m−1(2n − 1) × (n + 1) matrix obtained from S by discarding
the ith row of S if si,m+1 = 0. Let SI be the 2m−1(2n − 1) × n matrix obtained
by deleting the (n + 1)th column of S∗

I . Then SI is the following matrix:

SI =

⎛
⎜⎜⎝

k0 k1 · · · kn−1
kn kn+1 · · · k2n−1
...

...
. . .

...
k(2m−1(2n−1)−1)n k(2m−1(2n−1)−1)n+1 · · · k2m−1(2n−1)n−1

⎞
⎟⎟⎠

Definition 4.1. Let K = [k0, k1, · · · , k2m−1(2n−1)n−1] be a sequence obtained by
SI with period 2m−1(2n−1)n. We call K a (2m−1(2n−1), n) shrunken interleaved
sequence (SI sequence).

Example 4.2. Consider a SI sequence generator with the following two compo-
nent maximum-length 90/150 LHGCA C1,C2 :
1. Let C1 be the maximum-length 90/150 LHGCA with length m = 2, rule
vector < 01 > and initial state (0, 1). Then

T1 =
(

0 1
1 1

)
and A =

⎛
⎝0 1

1 1
1 0

⎞
⎠

2. Let C2 be the maximum-length 90/150 LHGCA with length n = 3, rule vector
< 011 > and initial state (0, 0, 1). Then

T2 =

⎛
⎝0 1 0

1 1 1
0 1 1

⎞
⎠ and Bt =

⎛
⎝0 0 1 0 1 1 1

0 1 0 1 1 1 0
1 1 0 0 1 0 1

⎞
⎠
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where Bt is the transpose of B. Since At
2 =

(
1 1 0

)
, we obtain the following

matrix S:

St =

⎛
⎜⎜⎝

0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1
0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0
1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0

⎞
⎟⎟⎠

Hence we obtain the (14, 3) SI sequence as the following:

K = [001011010111101001100010110101011100111110]

Theorem 4.3. Let C1 be a maximum-length 90/150 LHGCA with length m
and let C2 be a maximum-length 90/150 LHGCA with the n degree minimal
polynomial f(x), where gcd(2m − 1, 2n − 1) = 1. Then
(1) The minimal polynomial m(x) of the SI sequence is of the following form:

m(x) = [f∗(xn)]N ,

where 2m−2 < N ≤ 2m−1 and f∗(x) is the reciprocal of f(x).

(2) The linear complexity LC of the SI sequence satisfies the following

2m−2n2 < LC ≤ 2m−1n2

5 Conclusion

In this paper, we proposed a new method which generates nonlinear pseudoran-
dom sequences using two maximum-length 90/150 LHGCA. The generator which
generates these sequences is possible to overcome spatial weak points of the in-
terleaved sequence generator proposed by Gong. Unlike the method proposed
by Sabater et al., the SI sequence generator can generate nonlinear sequences
whose cycle lengths are always same for a given initial state. The SI sequence
obtained by our method has a larger period and a higher linear complexity than
the shrunken sequence generated by LFSRs.
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