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Abstract. Cellular Automata(CA) based VLSI implementation of t-
byte errors correcting code has been established by previous research to
be superior to the other existing techniques employed for realizing Reed-
Solomon(RS) code. However, the scheme suffers from the limitation that
it can correct t−byte errors (t ≥ 2) provided errors are confined either
wholly to the information bytes or entirely to the check bytes. The work
reported in the present paper overcomes this limitation and corrects the
errors likely in both information and check bytes. Moreover one weakness
found in an earlier similar work has been identified and rectified using a
modified check symbol expressions.
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1 Introduction

RS code has found many applications in storage devices (CD, DVD), wireless
communications, high speed modems and satellite communications. The com-
plexity of RS encoder and decoder increases with the error correcting capability
of the code. Hence many researchers have put their effort to minimize the com-
plexity of RS encoder/decoder for communication applications. A number of
general encoding and decoding schemes of the RS code is available in the liter-
ature [7, 8].

But VLSI system designer always prefers to have simple, regular, modular
and cascadable structure with local interconnection for reliable high speed oper-
ations of the circuit. It has been found that these parameters are supported by
local neighborhood Cellular Automata (CA). In [1] CA based byte error correct-
ing code has been proposed. The proposed design in [1] requires less hardware
compared to the existing techniques used for RS code. A new scheme has been
proposed for pipeline implementation of CA based tbEC - tbED codes that are
analogous to the conventional RS code in [2]. Another design scheme has been re-
ported for parallel implementation of CA based SbEC/DbED and DbEC/DbED
code that is also analogous to the conventional RS code in [3]. A new high speed
VLSI architecture for decoding RS codes with Berlekamp-Massey (BM) algo-
rithm has been published in [4]. In this scheme, the speed bottleneck in BM
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algorithm is eliminated by using fully systolic architecture. A new degree com-
putationless modified Euclid (DCME) algorithm and its dedicated architecture
for RS decoder has been reported in [5]. The architecture has low hardware
complexity compared with conventional modified Euclid architecture.

However, the scheme in [1] can correct t-byte errors (t ≥ 2) provided errors
are totally confined to information or check byte only. The scheme[1] fails if one
error is in information byte and another in check byte. Another weakness of
the scheme in [1] is that single byte error in kth information byte and double
byte errors one in kth information byte and another in the last information byte
correspond to the same equation for error location identification.

In this paper, an improved double byte error correcting code using CA has
been proposed. The new scheme over comes the limitation of [1] and can correct
errors even if one error occurs in the information byte and another is in the
check byte. Also the scheme can unambiguously determine error locations. CA-
based VLSI design is attractive because of its simplicity, regularity and higher
throughput.

The rest of this paper is organized as follows. In the next section, a brief
overview of existing CA-based double byte error correcting code is described.
Then, we describe the weakness and limitation of the existing CA-based double
byte error correcting code in section 3. Section 4 discusses the proposed new
scheme and finally the paper is concluded in section 5.

2 CA-Based Double Byte Error Correcting Code

In this section, we discuss the preliminaries of CA and CA based double byte
error correcting code which has been proposed in [1].

2.1 Cellular Automata Preliminaries

A cellular automata (CA) consists of a number of cells arranged in a regular
manner, where the state transitions of each cell depends on the state of its
neighbors and each cell consists of a storage element (D flip-flop) and a combi-
national logic implementing the next-state function. The next-state function for
a three-neighborhood CA cell can be expressed as follows.

qi(t + 1) = f [qi−1(t), qi(t), qi+1(t)]

where qi(t) is the output state of the ith cell at time t and f is the next state
function also called the rule of the automata[6]. An n-cell CA can be character-
ized by an n × n characteristic matrix T . St+1 can be computed by multiplying
[St] with T , where St and St+1 represent the states of the CA at tth and (t+1)th

time instant respectively. This matrix has additional properties of being tridi-
agonal and having a primitive characteristic polynomial. This guarantees that
linear recurrence has maximum period 2n − 1. Detailed information on CA may
be found in [6]. Only linearity property of CA is used in byte error correcting
code.
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2.2 Overview of the CA-Based Double Byte Error Correcting Code

CA-based byte error correcting code [1] is similar to extended RS code. But
compared to RS code, the proposed code is much simpler and requires much less
hardware. In two byte error correcting code, encoder generates four check bytes
from a block of N-byte information. After that the check symbols are appended
to information bytes to form the code word. Now four check bytes should be
generated by running the CA for N cycles, while sequentially feeding the N
information bytes (Dk), where 0 ≤ k ≤ (N − 1). The four check bytes are as
follows:

C0 = DN−1 ⊕ DN−2 ⊕ ... ⊕ D0 (1)

C1 = DN−1 ⊕ T [DN−2] ⊕ ... ⊕ T N−1[D0] (2)

C2 = DN−1 ⊕ T 2[DN−2] ⊕ ... ⊕ T 2(N−1)[D0] (3)

C3 = DN−1 ⊕ T 3[DN−2] ⊕ ... ⊕ T 3(N−1)[D0] (4)

The primary objective of decoding is to retrieve the correct information byte.
Decoding is done by employing the properties of maximum length group CA.
The syndrome corresponding to the qth check byte, Sq is defined as

Sq = Cq ⊕ C
′

q ; 0 ≤ q ≤ 3. (5)

where Cq is the qth received check byte and C
′

q is the qth check byte recomputed
from the received information bytes (with possibility of error present).

Decoding Algorithm
step 1: If all the syndrome bytes S0, S1, S2, S3 are zeros, then there is no error
in the received information block.
step 2: If any one or two of the syndrome byte(s) is/are nonzero but the other
are zeros, then the check byte(s) is/are in error.
step 3: If more than two syndrome bytes are nonzero then any one of the
following three cases may occur.
1) One error is in the information byte
2) Double byte errors are in the information byte.
3) One error is in the information byte and other error is in the check byte.
step 4: In case none of the above conditions regarding the syndrome bytes hold,
then more than two errors have occurred.

Suppose two byte errors have occurred in two information bytes. If Ek and El

are the errors in kth and lth information bytes, then the corresponding syndrome
equations are

S0 = Ek ⊕ El (6)

S1 = T i[Ek] ⊕ T j[El] (7)

S2 = T 2i[Ek] ⊕ T 2j[El] (8)

S3 = T 3i[Ek] ⊕ T 3j[El] (9)
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Also i + k = N − 1 and j + l = N − 1, where 0 ≤ k, l ≤ N − 1. If at least three
syndromes are non-zero and there exist two integers i and j (0 ≤ i, j ≤ (N − 1))
such that

T i[S2] ⊕ S3 = T 2j(T i[S0] ⊕ S1) (10)

T 2i[S1] ⊕ S3 = T j(T 2i[S0] ⊕ S2) (11)

then the kth and the lthinformation bytes where k = N −1− i and l = N −1− j
are erroneous. Let T i ⊕ T j = T y. Again, if L = 2n − 1 is the cycle length of
a n-cell maximum length group CA, then (T y)−1 = T−y = T (L−y) = T p. The
error magnitudes are determined using the two equations given below.

El = T p(T i[S0] ⊕ S1) (12)

Ek = S0 ⊕ El (13)

If D
′

m , Em are the received mth information byte and the calculated mth error
byte respectively, then the correct information byte can be obtained as

Dm = D
′

m ⊕ Em; where 0 ≤ m ≤ (N − 1) (14)

The next section reports the weakness and limitation of scheme [1].

3 Weakness and Limitation of the CA-Based Double
Byte Error Correcting Code

CA based byte error correcting code proposed in [1] is very good from VLSI
implementation point of view. But the scheme has a weakness and one limitation.
This section explains the weakness and limitation of the scheme proposed in [1].

3.1 Weakness of the CA-Based Double Byte Error Correcting Code

Case 1 : Single byte error in the information byte
Assume that a single byte error has occurred in the kth information byte. If Ek

is the error in kth byte, then according to [1] corresponding syndrome equations
are

S0 = Ek; S1 = T i[Ek]; S2 = T 2i[Ek]; S3 = T 3i[Ek] (15)

where S0, S1, S2, S3 are the four syndrome bytes. From (15) we get

S1 ⊕ S3 = T i(S0 ⊕ S2) (16)

S2 ⊕ S3 = T 2i(S0 ⊕ S1) (17)

Equations (16) and (17) may be used to determine the single byte error location
in information byte. But we can’t use the two equations if the error is in the last
information byte. For an error in the last information byte the syndromes are
all equal i.e. S0 = S1 = S2 = S3 = EN−1, where EN−1 is the error in the last
information byte. Therefore, S2 ⊕S0 = 0; S1 ⊕S3 = 0; S1 ⊕S0 = 0; S3 ⊕S2 = 0



An Improved Double Byte Error Correcting Code Using CA 467

and equations (16) and (17) will be satisfied for all i and we can not determine
error location uniquely.

Case 2 : One error in the (N − 1)th i.e. the last information byte and
the other in the kthinformation byte
The syndrome equations according to [1] are

S0 = Ek ⊕ EN−1 (18)

S1 = T iEk ⊕ EN−1 (19)

S2 = T 2iEk ⊕ EN−1 (20)

S3 = T 3iEk ⊕ EN−1 (21)

Using above four equations we get

S1 ⊕ S3 = T i(S0 ⊕ S2) (22)

S2 ⊕ S3 = T 2i(S0 ⊕ S1) (23)

It is observed that the equations (16), (17) in case1 are same as equations (22),
(23) in case2. So it is impossible to compute error location uniquely. But we can
separate the case1 and case2 by checking any one of the additional conditions.

T iS0 �= S1; T iS1 �= S2; T iS2 �= S3 (24)

When any one of the above three conditions and equations (16), (17) are sat-
isfied then one error in the kth information byte and another in the (N − 1)th

information byte is identified. So it requires only one extra checking.

3.2 Limitation of the CA-Based Double Byte Error Correcting
Code

The scheme [1] suffers from the limitation that it can correct errors provided
errors are totally confined to information or check bytes only. If one error is in
the information byte and another is in the check byte, then the error is located
in maximum of three information byte position. In the next section, we modify
the scheme [1] to overcome the above weakness and limitation.

4 Our Improved Scheme

In our improved double byte error correcting code, check bytes are generated by
running the CA for N cycles while sequentially feeding the N information bytes.

Algorithm to compute Check byte Ci

begin
X := 0; (X denotes the CA state)
for k = 0 to N − 1 do
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begin
X := X ⊕ Dk;
Run the CA for one cycle;(CA with characteristic matrix T i)

end;
Ci := X ;

end;
For double byte error correcting code, the expression for check symbols C0, C1, C2
and C3 are given below.

C0 = DN−1 ⊕ DN−2 ⊕ ... ⊕ D0 (25)

C1 = TDN−1 ⊕ T 2[DN−2] ⊕ ... ⊕ T N [D0] (26)

C2 = T 2DN−1 ⊕ T 2(2)[DN−2] ⊕ ... ⊕ T 2(N)[D0] (27)

C3 = T 3DN−1 ⊕ T 3(2)[DN−2] ⊕ ... ⊕ T 3(N)[D0] (28)

Next we will derive the equations to identify the error locations from the received
information and check bytes. Suppose two byte errors have occurred in kth and
lth information bytes with k �= l. The corresponding syndrome equations are

S0 = Ek ⊕ El (29)

S1 = T i[Ek] ⊕ T j[El] (30)

S2 = T 2i[Ek] ⊕ T 2j[El] (31)

S3 = T 3i[Ek] ⊕ T 3j[El] (32)

where S0, S1, S2, S3 are the four syndrome bytes and Ek and El are the corre-
sponding errors in the kth and lth bytes. Also i + k = N and j + l = N , where
1 ≤ i, j ≤ N . From the above four syndrome equations we get

T i[S2] ⊕ S3 = T 2j(T i[S0] ⊕ S1) (33)

T 2i[S1] ⊕ S3 = T j(T 2i[S0] ⊕ S2) (34)

So using the above two equations we can determine the error locations if both
the errors occur in the information byte.

Theorem 1. The scheme identifies the error locations uniquely if single/double
byte(s) error occurred and it is independent of error position.

Proof We establish the result for the following cases where indistinguishability
of error location identification equations can happen.

Case 1 : One error in the (N − 1)th i.e. the last information byte and
the other in the kthinformation byte
According to proposed scheme the equations for error location identification are

T [S2] ⊕ S3 = T 2i(T [S0] ⊕ S1) (35)

T 2[S1] ⊕ S3 = T i(T 2[S0] ⊕ S2) (36)
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Case 2 : Single byte error in the kth information byte
The equations for error location identification are

T i(S2 ⊕ S0) = S1 ⊕ S3 (37)

T 2i(S1 ⊕ S0) = S3 ⊕ S2 (38)

If single byte error occurs in the last information byte then also we can identify
the error location using equations (37) and (38). According to our scheme S0 �=
S1 �= S2 �= S3, so above two equations will be satisfied for a particular i.

It is observed that equations (35), (36) in case1 are different from equations
(37), (38) in case 2. Thus, it overcomes the weakness of scheme [1] given in
section 3.1. Note that we can also derive the equations in case1 and case2 from
equations (33) and (34). Next we describe the situation where one error is in the
information byte and other is in the check byte.
Two Byte Error location identification when one information byte and
one check byte are erroneous
Theorem 2. The scheme decodes correctly if one error is in the information
byte and another is in check byte.
Proof. Assume e0, e1, e2 and e3 are the errors in the 1st, 2nd, 3rd and 4th check
byte respectively. If one error is in kth information byte and another is in any
one of the four check bytes, then any one of the four different cases may occur.
1. If 1st check byte and kth information byte are erroneous, then the syndrome
equations are

S0 = Ek ⊕ e0; S1 = T iEk; S2 = T 2iEk; S3 = T 3iEk (39)

S3 = T iS2; S3 = T 2iS1; S1 �= T iS0 (40)

Ek = T L−iS1 (41)

Equation (40) is used to determine the error location k, where k + i = N and
equation (41) is used to determine error magnitude.
2. If 2nd check byte and kth information byte are erroneous, then the syndrome
equations are

S0 = Ek; S1 = T iEk ⊕ e1; S2 = T 2iEk; S3 = T 3iEk (42)

S3 = T iS2; S2 = T 2iS0; S1 �= T iS0 (43)

Ek = S0 (44)

Equation (43) is used to determine the error location k and equation (44) is used
to determine error magnitude.
3. If 3rd check byte and kth information byte are erroneous, then the syndrome
equations are

S0 = Ek; S1 = T iEk; S2 = T 2iEk ⊕ e2; S3 = T 3iEk (45)

S1 = T iS0; S3 = T 2iS1; S3 �= T iS2 (46)
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Ek = S0 (47)
Equations (46) are used to determine the error location k and equation (47) is
used to determine error magnitude.
4. If 4th check byte and kth information byte are erroneous, then the syndrome
equations are

S0 = Ek; S1 = T iEk; S2 = T 2iEk; S3 = T 3iEk ⊕ e3 (48)

S1 = T iS0; S2 = T 2iS0; S3 �= T iS2 (49)
Ek = S0 (50)

Equation (49) is used to determine the error location k and equation (50) is used
to determine error magnitude.

So, the proposed scheme can identify error locations unambiguously if one
error is in information byte and the other is in check byte. Thus it overcomes
the limitation of scheme [1] given in section 3.2.

5 Conclusion

The paper presents an improved scheme for the double byte error correcting code
using CA which overcomes the weakness and limitation of the existing scheme.
The proposed scheme can determine error locations which is independent of
erroneous byte position and number of errors provided number of errors are
less than or equal to error correcting capability of the code. The proposed code
is much simpler and requires much less hardware for decoding compared with
conventional RS code having two-byte error correcting capability.
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