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Abstract. The Game of Life (GL), Larger Than Life (LtL), and the
Kaleidoscope of Life (KL) are cellular automaton (CA) models with a
rich palette of configurations, some of which facilitate universal compu-
tation. Common to all these models is that the transition rules by which
they are governed are outer-totalistic. The KL distinguishes itself by the
striking simplicity of its transition rule, which does not even take into
account a cell’s state itself for its update. This paper investigates an infi-
nite class of CA, all of which are similar to KL except for their differently
sized neighborhoods. Characterized by a discrete parameter d, a neigh-
borhood in such a CA consists of the cells at Moore distances 1, 2,..., or
d of a cell. We show that signal-carrying configurations (“gliders”) occur
in infinitely many of these CA models. We also show that the probability
of convergence of a random configuration toward a dead cellular space in-
creases with the increase in parameter d. These seemingly contradictory
results suggest that the presence of gliders are not necessarily a reliable
benchmark for the sustainability of Life in cellular space.

1 Introduction

Life in CA refers to a class of outer-totalistic models able to sustain compu-
tational universality through autonomously behaving configurations in cellular
space. Some of these configurations—usually called gliders—propagate in cellu-
lar space as part of a cyclical metamorphosis process and interact with other
gliders or with other more or less stable configurations in well-defined and well-
understood ways. The Game of Life (GL) [1,2] is at the root of a class of Life-like
models, which has extended into the Larger Than Life (LtL) class of CA [3,4]
and recently has also given birth to the Kaleidoscope of Life (KL) [5,3]. The KL
is based on a transition rule that uses a very simple decision criterion on whether
a cell will be alive in the next generation or not: if the number of living cells at
Moore-distance 1 or 2 from a cell equals the number 4, the cell will be alive in
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the next generation. Remarkably, the state of the cell itself is irrelevant in this
criterion. The independence of a cell’s state from its previous state is shown in
[5] to be closely connected to the properties of classical spin systems.

LtL covers a large class of models, part of which has been characterized in
[4] by configurations called bugs. The KL, on the other hand, sports configu-
rations more closely resembling those in the GL. While the dynamics of KL
and GL are similar, the KL appears to be more “long-lived”: it takes longer
to reach convergence to stable or periodic configurations, probably due to the
larger neighborhood used in comparison with the GL. This invites the question
of whether models can be constructed that have similar characteristics to the
KL and differ only in the size of their cells’ neighborhoods.

This paper explores an infinite class of such models, and shows that each
member of this class contains gliders. Yet, in most of these models, Life is hard
to sustain, since random initial configurations will rapidly converge to a dead
cell space, as will be shown. This puts KL at the boundary of a class of CA,
which are increasingly unlikely to contain configurations capable of computation
as the size of the cell neighborhood increases.

This research may result in novel CA models that are characterized by an
extremely simple transition rule, to the extent that physical implementations
in terms of magnetic spin systems are within the realm of possibilities. Such
implementations may be at the basis of nanocomputer architectures, which have
attracted increasingly attention in recent years due to their promise to extend
the life time of Moore’s law for another couple of decades beyond the decade or
so it is still expected to last.

This paper is organized as follows. In Section 2 we define the basic model,
followed by some prominent cell configurations in the KL in Section 3. Section 4
describes variations of the KL that have larger neighborhood diameters, and
shows the presence of gliders in such models. Simulation results on the conver-
gence of some of these models as well as a probabilistic analysis of the models
are shown in Section 5. The paper finishes with conclusions and a discussion.

2 An Infinite Class of Life-Like Cellular Automata

The model consists of a 2-dimensional square array of cells, each of which can
be in either of the states, 0 (dead) and 1 (alive). We assume that each cell
in the cell space is identified by a unique integer, and that σi(t) is the state
of cell i at time t and N(i) is the neighborhood of cell i. This neighborhood
consists of the cells at orthogonal or diagonal distances 1, 2, ..., d from cell i
(Moore neighborhood), giving a total of 4d2 +4d neighbors, with d denoting the
radius of the neighborhood. Fig. 1 shows such a neighborhood for d = 2, which
corresponds to the basic KL model in [5]. The transition rule of the model is
defined in terms of the states of the cells in the neighborhood of cell i:

σi(t + 1) =

⎧
⎨

⎩

1 if
∑

j∈N(i)

σj(t) = k

0 otherwise
(1)



34 S. Adachi et al.

Fig. 1. Neighborhood of a cell (center) in the Kaleidoscope of Life (gray cells). The
radius of the neighborhood is d = 2.

In other words, a cell becomes or stays alive if the number of living cells in its
neighborhood is k; otherwise the cell dies or remains dead. It is assumed that k =
2d. All cells in the cell space undergo transitions simultaneously. Transition rules
in which a cell’s next state depends on the sum of the states in its neighborhood.
are called outer-totalistic. If a cell’s next state does not depend on the state of
the cell itself, the rule is called inner-independent. The rule proposed in this
paper is thus inner-independent outer-totalistic. A member of the infinite class
of these CA is denoted by KL(d). The traditional Kaleidoscope of Life in [5] is
KL(2).

3 Useful Configurations in the Kaleidoscope of Life

The basic model of KL(2) supports a wide variety of configurations, of which
only a few are used for computation. Signals are encoded in this model by con-
figurations (called gliders) that dynamically propagate along cellular space. Two
types of gliders used in computation in KL(2) are shown in Figs. 2 and 3, the
first being only of peripheral use and the second type being the main mechanism
to encode signals.

t = 0 t = 1 t = 2

Fig. 2. A glider with period of 2 in KL(2). This glider appears in some configurations
as an intermediate form, but it is not actively used for computation.

The Hanabi (meaning ‘fireworks’ in Japanese) is a periodical configuration
that finds wide use in KL(2) to turn gliders to the left, to convert between the
two types of gliders and to eliminate superfluous gliders (Fig. 4). It assumes a
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t = 0 t = 2 t = 5

t = 8 t = 11 t = 12

Fig. 3. A glider in KL(2) with a period of 12. This glider is used to encode signals on
the cellular space.

Fig. 4. The Hanabi pattern is used for a wide variety of tasks in KL(2), such as turning
gliders to the left or right, conversion between glider types, and the elimination of
gliders. It has a period of 8.

period of eight generations, and this period as well as the phase of the period is
left undisturbed in most cases when the Hanabi interacts with a glider.

A good impression can be obtained from the nature of a Life-like CA by
starting it with a random configuration, and let it run for a few hundred genera-
tions. This will usually result in some of the standard configurations to emerge,
such as gliders and the Hanabi in the case of KL(2). Snapshots of the first 100
generations of KL(2) initialized randomly are shown in Fig. 5.

4 Gliders in the Infinite Class of Cellular Automata

The abundance of patterns in the KL(2) model invites the question whether
the models in KL(d) for different d can sustain similar patterns. This section
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(a) t = 0 (b) t = 50 (c) t = 100

Fig. 5. Evolution from a random initial configuration in KL(2) at times (a) t = 0, (b)
t = 50, and (c) t = 100. The probability of a cell being alive in the initial configuration
is 0.2.

gives a preliminary (positive) answer by showing that gliders are a very common
phenomenon in KL(d). In fact, we prove that infinitely many models in KL(d)
contain gliders. We focus on the model KL(d) with the values d = 4r for r =
2, 3, 4, .... It turns out that all these models contain gliders. Examples of gliders
in the KL(8) and KL(16) models are given in Figs. 6 and 7. These gliders have
period 2 and they have very similar shapes, at time t = 0 as well as at time
t = 1.

It turns out that this shape can be generalized for the case d = 4r with
r = 2, 3, 4, ... (Fig. 8). The basic principle is that the glider at t = 0 generates
two vertical bars and six isolated living cells at t = 1. The bar at the front of
the signal (right side of the signal) is just sufficient in size to generate a new
head of the glider at the right of it at t = 2, but a similar structure will not be
created at the left of the front bar because of the six isolated cells. Instead a
tail is generated at t = 2 that slightly bifurcates toward the isolated cells. The
vertical bar at the tail at t = 1 (left side of the signal) is sufficiently short to
have no influence on successive generations, as it dies out. The result is a glider
at t = 2 that has advanced by d cells in comparison with the glider at t = 0.

5 Probabilistic Analysis

Since the presence of gliders in all models of the form KL(4r) suggests the
occurence of Life, it makes sense to investigate the characteristics of these models
in more detail. If we take a look at a simulation for the case KL(1), we see that an
initial random configuration results in configurations that appear just as random
as the initial one, and that appear to have an increase in the density of living
cells (Fig. 9). Indeed, this model fails to show convergence to a set of standard
patterns, as simulations have shown.

The situation is quite different for the KL(3) model. After less than 100 gen-
erations the cellular space is virtually dead in most cases (Fig. 10).

Simulations to measure the density of living cells in the cellular space show a
very different behavior of KL(d) in the cases d = 1, d = 2, and d = 3 (Fig. 11).
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(a)

(b)

(c)

Fig. 6. Glider in KL(8) with pe-
riod 2. (a) t = 0, (b) t = 1, and (c)
t = 2.

(a)

(b)

Fig. 7. Glider in KL(16) with period 2. (a)
t = 0 and (b) t = 1.

d/2-1

d+1

d/2

2
d

2
d
-6 d+1

dd/2

(a) t = 0 (b) t = 1

Fig. 8. Glider in KL(d) with period 2 at (a) t = 0 and (b) t = 1. The gray cells denote
the configuration at the indicated time t and the cells containing circles denote the
configuration as it would appear at t + 1.

KL(1) appears to have a density of living cells that stays at a high level over
time, confirming the behavior observed in Fig. 9. KL(2) appears to have a gradual
decrease in density to an asymptotic positive value, which indicates a gradual
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(a) t = 0 (b) t = 50 (c) t = 100

Fig. 9. Evolution from a random initial configuration in KL(1) at times (a) t = 0, (b)
t = 50, and (c) t = 100. The probability of a cell being alive in the initial configuration
is 0.2.

(a) t = 0 (b) t = 20 (c) t = 40

Fig. 10. Evolution from a random initial configuration in KL(3) at times (a) t = 0, (b)
t = 20, and (c) t = 40. The probability of a cell being alive in the initial configuration
is 0.2.

convergence to a certain set of patterns. KL(3) sees the density of living cells
decrease rapidly to 0, which indicates infertile grounds to sustain Life.

How will the behavior of KL(d) be for higher values of d? To obtain a rough
estimate of this, we adopt the mean-field approach in [6] and calculate the proba-
bility that a cell is alive at time t = x+1 given a certain probability of living cells
at time t = x, which will be denoted by p(x). We emphasize that this estimate
has its limitations, since it assumes a random initial state of the cellular space
as well as negligible correlations between neighboring cells. Especially the latter
assumption fails to hold for CA in general, but the mean-field approximation
still gives a useful first impression when comparing the CA models KL(d) for
different values of d. The probability p(x) can be expressed as:

p(x + 1) = f(p(x)),

with

f(p) =
(

n
m

)

pm(1 − p)n−m,
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Fig. 11. Density of living cells in KL(d) for d = 1, d = 2, and d = 3 over time. In the
KL(1) model the density of living cells remains at a quite high level, which suggests either
Life-like behavior or a lack of convergence. For the KL(2) model the density converges to
a positive value, confirming the Life-like behavior of the model. In the KL(3) model the
density converges rapidly to zero, suggesting that few configurations survive over time.
As reference, the density curve of the Game of Life (GL) is also given.
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Fig. 12. Mean-field approximations of (a) KL(1), (b) KL(2), and (c) KL(3). The hori-
zontal axis denotes p(x) and the vertical axis p(x + 1). The area indicated by the text
Life corresponds to the probability interval between which living cells are unlikely to die.

and n = 4d2 + 4d and m = 2d. Fig. 12 gives the graphs of p(x + 1) (vertical)
against p(x) (horizontal) for the values d = 1, d = 2, and d = 3. The probability
interval in which cells are unlikely to die—indicated by the phrase “Life”—is
quite large for d = 1, smaller for d = 2, and much smaller for d = 3. This
indicates that cells have a smaller probability of being alive for the higher values
of d than for the smaller values. To show that this trend holds in general, we
investigate function f in more detail. Its derivative is:

f ′(p) =
(

n
m

)

pm−1(1 − p)n−m−1(m − np)



40 S. Adachi et al.

This function has an (m− 1)-fold root in p = 0, an (n−m− 1)-fold root in p = 1,
and a single root in p = m/n = 1/(2d + 2). This implies that the local maximum
of the function lies always between 0 and 1, and that this maximum moves to the
left as d increases, and will eventually converge to 0 as d goes to infinity.

What is the length of the interval in which cells are likely to be alive? It is hard
to derive an analytical solution of this length, so we give an approximation. The
two points between 0 and 1 at which f ′′(p) = 0 serve as a reasonable estimate
for the start- and end-points of this interval, so to give an approximation of the
interval’s length we calculate the difference of their x-coordinates. It is easy to
derive that

f ′′(p) =
(

n
m

)

pm−2(1 − p)n−m−2 (
(n2 − n)p2 − 2m(n − 1)p + m2 − m

)

so the roots of this function are, apart from the ones at p = 0 and p = 1:

p12 =
m(n − 1) ±

√
m(n − 1)(n − m)

n(n − 1)

It is easily verified that these roots lie between 0 and 1. The difference of these
two roots, expressed in terms of d, is:

p2 − p1 =

√
2d + 1

(d + 1)2(4d2 + 4d − 1)

Obviously, this value decreases monotonously with increasing d, converging to 0
as d goes to infinity. Though the mean-field approximation differs from the actual
behavior of a CA, we can still draw meaningful conclusions from its asymptotic
behavior. The convergence to 0 of the probability interval that sustains life,
makes it extremely unlikely that the cellular space as a whole will be a fertile
ground for patterns to emerge from initial random configurations. This is of
course a probabilistic analysis. In reality, there can be patterns that survive, even
in the models with higher values of d. Indeed, the previous section shows that
gliders are among such patterns. These gliders grow in size, however, as a linear
function of d, making their emergence from random configurations increasingly
unlikely for high values of d.

6 Conclusions and Discussion

This paper presents an infinite class of inner-dependent outer-totalistic CA that
all have gliders among their possible configurations. The discrete-valued param-
eter d = 4r for r = 2, 3, 4..., which corresponds to the cell neighborhood’s radius,
serves as an index for the members KL(d) of this class. Gliders in KL(d) have
a length of O(d), which makes their occurrence extremely unlikely in randomly
initialized configurations or configurations emerging from them. The proven pres-
ence of gliders in KL(d), however, shows that this probability will never be 0.
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In the light of the convergence of the probability of living cells in KL(d) to
0 as d approaches infinity, we conclude that interesting phenomena may occur
in a cellular space that is at first sight—when doing trial-and-error computer
simulations—virtually dead. A next logical step in this research would be to
identify other living configurations in the infinite class of CA, and to find ways
to make these configurations interact in possibly useful ways (such as to support
computation).

Our results seem to confirm an observation on the web site [7] that the pres-
ence of gliders in CA is more common than expected, and that it appears to
be hardly correlated with the classification of CA dynamics in the four classes
proposed by Wolfram in [8]. In other words, Life may be more common than
expected, yet it may be in unexpected places and spaces!
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