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Abstract. Using actual census, family and age structure, land-use and
population-mobility data, we develop a stochastic cellular automata on
a social contact network to study the propagation of influenza epidemics
in the UK. In particular, we address age dependency and obtain the con-
tact networks through the analysis of location co-presence. We analyze
infection propensities as well as vaccination techniques. The results indi-
cate the relative merits of different vaccination strategies combined with
early detection without resorting to mass vaccination of a population.

1 Introduction

The effective response to an epidemic requires an interdisciplinary and multiscale
approach, exploiting aspects from individual health to population spreading pat-
terns. Modeling epidemics has therefore been one of the most valuable tools in
answering to these complex issues. Most mathematical models for the spread of
disease employ differential equations based on uniform mixing assumptions or
ad-hoc models for the contact process (see among others [1,2,3,4,5]).

Spatial diffusion of epidemics has been studied by means of partial differential
equations or by the equivalent discretization represented by cellular automata
on a regular lattice. The cellular automata method has the advantage of allowing
arbitrary transitions among states, thus making easier the modeling of a plausible
disease evolution, and to make possible the inclusion of quenched disorder, e.g.,
geographic constraints.

On the other hand, highly transmissible epidemics like flu are better modelled
on the social network of contacts, which is more important than the geographic
distance between any two people. However, the determination of the social net-
work from available data is far from being trivial. Another possibility is that of
resorting to agent-based modeling, following each agent during its displacements.
This is expensive in computational terms, while the additional level of accuracy
in the description is rarely justified by available experimental data. Eubank et
al. have employed TRANSIMS [6] for modeling transport infrastructure, and
built EPISIMS[7] for simulating disease spread. Other examples can be found in
Refs. [8,9,10].

We employ here a cellular automata model of epidemics on an effective social
network that is constructed by considering the actual interactions as the time
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average of the persistence of individuals being in the same location. Our model
utilises large-scale demographic and mobility data based on actual census and
land-use. Notably, Brownstein [11] showed that influenza spread firstly in chil-
dren aged 3-4 years old. Following these findings and data from HPA [12], our
model considers that flu season begins with preschoolers.

2 Methodology

We consider a generalized cellular automata model in which the cells or nodes
are the individuals, and the connections are defined by an adjacency matrix
Jij ∈ {0, 1}. In a regular lattice, Jij is translationally invariant.

The individual variable xi corresponds to the disease states: susceptible (S),
exposed (E), infectious (I), recovered (R). Each individual has moreover a set of
properties such as age, residential place, work place, etc. This can be considered
equivalent to a quenched disorder.

Susceptible individuals may become exposed to the disease with probability
PE|S if they come into “significant” contact with infected individuals through
the contact networks. This transition probability also depends on some external
parameters such as the virulence V of the flu strain and a seasonal factor T , that
may be used to tune the simulations. Exposed individual may become infectious
after an incubation period (given by the inverse of the incubation rate PI|E);
the recovery rate given by the inverse of the probability PR|I governs the aver-
age length of the infectious period. Vaccinated individuals are also considered
recovered. The model thus belongs to the class of SEIR model [13], in which the
crucial parameter is the asymptotic fraction of exposed people after the epidemic
has become extinct.

One of the main points of our study is to construct the people-people social
contact network Jij using locations, ages, residential and work places, and con-
sidering the time that two people spend together, in average, in such places. In
principle, Jij should be considered a weighted matrix. Due to the lack of precise
data, we set a threshold and classify contacts in two classes, “important ones”
(Jij = 1) and “influent” ones (Jij = 0). Moreover, we distinguish the contact
network according to the location k, so Jij(k) = 1 if, in average, people i and j
are expected to spend daily a significant fraction of time in location k.

2.1 Generating the Contact Network

In generating the set of people in the simulation, we utilise actual statistics as
well as certain assumptions. For instance, people under 21 years old are more
inclined to attend school or college rather than going to work. The age groups of
the population are split into the following: 0-4, 5-14, 15-21, 22-44, 45-64, 65-90
(and above). The simulated age distribution of the population corresponds to
actual statistics from the UK Census 20011, as depicted in Figure 1 (left). The
probability of each age group is then calculated accordingly.
1 http://www.statistics.gov.uk/
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Fig. 1. Population Structure of Cambridgeshire and London (left). Pairwise infection
propensity varies with age (right).

If person i goes to location k, an edge Tik is drawn. We could also extend
this definition by weighing the link with the time spent in the location, and
considering time coincidence. However, due to the lack of precise data, we just
consider the average one-day window, and set Tik = 1 is the person is expected to
spend more than one hour in that location. The effective social contact network
Jij is then obtained as

Jij(k) = TikTjk. (1)

The major characteristic of our system is the division of locations into three
distinct groups - public places, workplaces/schools and families. Intuitively, in-
dividuals are restricted to travel to certain locations according to their age. Four
workplace/school types, one for each of the first four age groups, are explicitly
represented in our model. Most individuals of age 0-64 are assumed to attend one
school or to work in one workplace. Public place degree and work place degree
are assumed to be normally distributed with means 3 and 1, respectively, both
with variance 1. Elderly of age 65 or above is assumed retired and can only go
to public places.

As suggested by EPISIMS [7], the degree distribution of locations obeys a
power law distribution with an exponent, γ, of roughly 2.8. Since the number
of edges is equal to the sum of all individuals’ degrees (which can be calculated
by the population data and the above assumptions), the degree distributions of
public places and workplaces are estimated as follows:

ni = c|L|i−γ ; (2)

c =

(
d1∑

i=d0

i−γ

)−1

, since
d1∑

i=d0

ni = |L|; (3)

|L| =
γ − 2
γ − 1

·
∑

p∈P Deg(p)
d0

, (4)

where ni is the number of locations with degree i, L and P are the set of
locations and people, Deg(p) is the degree of the person p ∈ P , d0 and d1 are
the minimum and maximum degree of any location. Effectively, each person on
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average is involved in total five contact networks from the three respective types
of locations. Apart from the family contact network which is generated based
on household statistics, the other networks are generated according to the above
estimated degree distributions. Note that d1 can be estimated by d0 · |L| 1

β . After
the set L and P are generated with their respective degrees, the probability of
the existence of an edge between any p ∈ P and l ∈ L is Deg(p) ·Deg(l)/σ where
σ is the total number of edges.

2.2 Disease Spreading and Intervention Mechanisms

The disease starts to spread through the social contact networks within the out-
break area after parameter initialisations (initial infective, virulence, incubation
rate and recovery rate), followed by diffusions to other areas. In estimating the
probability of a susceptible becoming exposed, we first define the notion of pair-
wise propensity of infection Q(i, s) between a susceptible of age s and infective
of age i:

Q(i, s) = Inf(i) · Sus(s) · V · T, (5)

where Inf(i) is the typical infectivity at age i and Sus(s) is the typical suscep-
tibility at age s. An example of how pairwise infection propensity varies with
infectives and susceptibles of different age is depicted in Figure 1 (right). In this
case they are estimated by some linear functions and can be easily further re-
fined. Since certain viruses are known to be more persistent and pathogenic than
others [14], we attempt to capture this concept by incorporating V , the virulence
of the virus. Time of the year, described by the seasonal factor T , is also known
to contribute largely to the prevalence of influenza[15]. For our purpose, T are
V are assumed to be constant. To estimate the overall probability PE|S(s, l) of
susceptible of age s catching the disease in the location l, we take the normalised
summation of the above pairwise infection propensity:

PE|S(s, l) =
∑

i Jis(l) · Q(i, s)
Deg(l)

. (6)

Noticeably, the probability of catching the disease in each neighbourhood
should be proportional to the time of stay. An individual has more chance to
contact with family members and colleagues than a stranger in say the same
shopping center due to the spatial size of the location. Since the degree of a
location somewhat reflects the spatial size and therefore the chance for a close
contact with an infective, we see how the above formulation is more sensitive to
the presence of infectives in a smaller place than a larger one.

The granularity of an area is crucial to the feasibility of the model. According
to the UK Census 2001, Output Areas(OAs) are based on postcodes normally
with size larger than 100 households. All the data used in simulation are based
on the OAs area level.In modeling the disease spread across areas, we look at
both the population density data and the UK national travel survey [16] which
contains traffic information on an area level. We then estimate the number of
individuals that are likely to travel to different areas every day. Needless to say,
they may either take out or bring back the flu with them.
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Fig. 2. A typical infective-time graph (left) and the corresponding epidemic spread in
areas (right)

Three types of vaccination programs are defined in the model: age-prioritised,
targeted and randomised regional vaccination. The first one prioritises on vacci-
nating a particular age group; the second attempts to vaccinate those who have
co-located with an infective whilst the last one is completely random. It may
well be argued that none of these schemes is realistic. In real world scenarios, an
epidemic would often have started before it was discovered by authorities. Trac-
ing for say those who have contacted the infectives may not be as easily done
as on a computer model. Vaccine of particular type may also not be effective
against the prevalent type of virus. Nonetheless, we think this will help in un-
derstanding different containment strategies and thereby preventing epidemics
from developing into a worldwide pandemic.

3 Results and Discussion

We have focused on the spread of influenza in England. The main simulation is
carried out in the county Cambridgeshire.

Figure 2 depicts a typical spread as modelled in our system. The peak of the
exposed people curve is followed by the peak of the curve for number of infectious
people. To ease the comparisons, we define the impact of an epidemic to be the
sum of infected and exposed individuals per day across the whole period (the
sum of the areas under the infective and exposed population curves). Two key
assumptions made in the following discussions are that exposed individuals are
allowed to recover directly, without being infectious; and vaccination is only
effective to susceptible individuals.

With the recovery rate fixed at 0.3, we first look at the effect on the impact of
varying the virulence and incubation rate as shown on the left part of Figure 3.
The impact surface is plotted by 10,000 data points to smooth out the ran-

domness. It is clear that the total impact of the epidemic increases with both
the incubation rate and the virulence of the virus. Based on the assumptions,
we see that the total impact increases with both incubation rate and virulence
from certain critical combinations with a gradually decreasing steepness (a very
different distribution is seen if less or none exposed individuals are allowed to
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Fig. 3. Effect of virulence, incubation rate (left) and initial infective age (right) on
Impact

recover directly, without being infectious). All 10000 runs are assumed to have
only one random initial infective. Randomness described by the large number of
dents on the surface accounts for majority cases of self-contained spreading of
virus in real life scenarios, even when the virulence is high.

The right part of Figure 3 depicts the impact of an epidemic caused by initial
infectives of different ages over 10 repetitions with V = 1, incubation rate = 0.5
and recovery rate = 0.3. The reader may wonder why the discrepancies occur
when, as we have just seen, the total impact distribution should be independent
of the initial infective’s age. The reason is that this average is dominated by the
number of “successful” epidemics over the 10 repetitions. In simpler terms, a
potential epidemic is more likely to be “successful” if the initial infective is of
age 0-4 given the current settings.

Lastly, we compare the three vaccination strategies. An area-wide threshold
percentage of infections(delay threshold) is used to trigger a region-wide vaccina-
tion program to simulate the delay caused by imperfect monitoring. Vaccination
supply is constrained by giving each area per day a number of vaccinations pro-
portional to its population (vaccination percentage). For instance, 50% allows
the area to be completely vaccinated in 2 days. We again assume that V = 1, in-
cubation rate = 0.5, recovery rate = 0.3 and the vaccinations are 100% effective
on individuals of all age. Suppose we know that the epidemic is started off by a 3
year old child, we plot the respective impacts for the three strategies against the
vaccination percentage and the delay threshold. Predictably, as shown in the top
part of Figure 4, a smaller delay threshold and faster rate of vaccination always
resulted in the least impacts on all three cases. To compare the three strate-
gies, we look at the three pairwise difference charts between them in the bottom
part of the figure. A colour corresponding to the top diagrams is used to show
the strategy that performed better (resulted in less impact) in that specific set-
ting. In general, targeted vaccination outperformed the other two when both the
delay threshold and vaccination percentage are low. The supremacy of targeted
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Fig. 4. Performance Comparison between three vaccination strategies

vaccination became less eminent as the delay lengthened. This is understandable
in that given the delay, the targeted individuals may have already outnumbered
the limited vaccination supply and many of them may have already been ex-
posed. As the constraint on allowed vaccinations loosens, i.e. the vaccination
percentage increases, age-prioritised vaccination starts to outperform the other
two. This indicates that blindly prioritising the vaccination on one age group
may not be beneficial if the daily vaccine provision is limited. Surely this allows
ample time for other potential age groups to propagate the disease unless the
vaccination is carried out as swiftly as possible.

4 Evaluation and Future Work

In this paper, we described a contact network model for modeling epidemics with
emphasis on demographic information. We discussed the parameters of the model
and tested three vaccination strategies. We found that targeted vaccination,
albeit unrealistic, is a better strategy under normal circumstances but given less
constraint on the provision of vaccines, age prioritised vaccination prevails.

An ideal time dependent bipartite graph requires every individual in the sys-
tem to be in only one place at a reasonably small time step and evolves according
to some mobility models. Various analyses of actual human social dynamics exist
[17]. When a social mobility model is employed and thereby a more realistic con-
tact network structure is known, the current people-people infection propensity
can be refined. To save the computational cost, the time step is one day and once
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the people-location bipartite graphs are built they remain unchanged throughout
the simulation. This static projection graph is more highly connected than the
time dependent version and is thus a safe simplification to make.

Certain virus is known to be able to survive in normal environment for hours
and even days. This can be incorporated into our model by imagining a contami-
nated location as an infective itself, but we think this unnecessarily increases the
degrees of freedom in the model and have therefore omitted this phenomenon.
Birth rate and death rate (the MSEIR model [5]) are also not considered.

To conclude, both epidemic spreading and vaccination strategies are highly
intricate and stochastic. Our model has shown how one infected individual is
sufficient in causing a small scale infection that involved only a few people in a
few days to a half a year region-wide epidemic. The ultimate aim of any kind
of epidemic modeling is to bolster the development of better efficient counter-
measure strategies and this will require further insights into social networks,
vaccination and virus-specific pathogenesis.
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