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Abstract. Deciphering the influence of the interaction among the con-
stituents of a complex system on the overall behaviour is one of the
main goals of complex systems science. The model we present in this
work is a 2D square cellular automaton whose of each cell is occupied
by a complete random Boolean network. Random Boolean networks are
a well-known simplified model of genetic regulatory networks and this
model of interacting RBNs may be therefore regarded as a simplified
model of a tissue or a monoclonal colony. The mechanism of cell-to-cell
interaction is here simulated letting some nodes of a particular network
being influenced by the state of some nodes belonging to its neighbour-
ing cells. One possible means to investigate the overall dynamics of a
complex system is studying its response to perturbations. Our analyses
follow this methodological approach. Even though the dynamics of the
system is far from trivial we could show in a clear way how the interaction
affects the dynamics and the global degree of order.

Keywords: genetic network model, random Boolean network, cellular
automaton, interaction, cell-criticality.

1 Introduction

One of the main goals of complex systems science is deciphering the influence of
the interactions among the system components on the global dynamics. In this
work we introduce a model in which another level of complexity is added: the
system components are themselves well-know models of complex systems, i.e.
random Boolean networks.

Random Boolean networks are a simplified model of genetic networks [1] and
the statistical analysis of their dynamical properties has proven fruitful in the
description of general emerging features of real networks [2,3,4,5,6].

The theme of interaction turns out to be deeply relevant when speaking of the
so-called “criticality” of living organisms. The idea that evolution would drive
living organism in a region of the space of parameters close to the boundary
between order and chaos [2,7] is an intriguing general hypothesis to investigate
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and, since it applies to organisms as a whole rather than to their individual
constituents, it makes particular sense to study the way by which the single
elements constituting the whole system (i.e. single cells) interact and how their
interaction affects the overall dynamical regime. Therefore, the aim of this work
is to analyse the relationship between the dynamics of a single, isolated RBN
(which has been extensively studied in the past) and that of a collection of
interacting networks: the model we are going to present is a 2-D lattice cellular
automaton in which of each cell (which is meant to simulate a biological cell)
hosts a complete RBN. This model could be regarded as a simplified description
of a tissue in a multicellular organism, or of a colony of unicellular organisms:
at this level of modelling the two cases are rather similar, since all that matters
is that neighbouring cells influence each other.1 The particular kind of cell-
to-cell interaction we want to represent implicates that the state of a cell is
determined by both its own genetic network and the state and of its neighbouring
cells. Cellular automata are particularly appropriate to simulate the evolution of
phenomena that depends on local rules, since every entity of the system change
its state taking into account what happens in its neighbourhood[12].

A particularly effective means to examine the dynamical regimes of complex
systems is studying their response to perturbations. The analyses presented in
this work follow this approach, in order to root out the different responses to
small perturbation in case of either isolated or coupled networks.

2 Random Boolean Networks (RBN)

For an exhaustive description of the model of random Boolean networks please
refer to [2,8,9]. Here we will only outline its main features.

A RBN is an oriented graph constituted of N Boolean nodes, which represent
the genes of a specific genetic network. A node is active (value = 1) if its corre-
sponding gene synthesises its protein, inactive (value = 0) otherwise. The direct
or indirect influences of genes on the expression of other genes in real networks
are represented in the model by directed links (if the activation of gene A influ-
ences the activation of gene B, node A will be an input of node B). Therefore,
the activation of a certain node depends on the value of its input nodes, accord-
ing a specific Boolean function. The updating of the network is synchronous,
the time is discrete and both the topology and the Boolean function associated
to each node do not change in time (this is the so-called quenched model [9].
In “classical” RBNs each node has the same number of ingoing connections kin
and its input nodes are chosen at random with uniform probability among the
remaining N − 1 nodes (self-coupling and multiple connections are forbidden).
The analysis of the dynamics that show up in RBNs reveals the presence of
two typical dynamical regimes, which can be defined as “ordered” and “chaotic”
1 Note that, according to the usual biological interpretation of RBNs, the attractor of

a given network is associated to the cell type: therefore a tissue should be composed
by cells which are all in the same attractor. This condition is not imposed in our
model.
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[2,9]. The dynamical regime of a RBN depends primarily on two parameters, the
average connectivity of the network K =< kin > and the bias p.2

3 Multi Random Boolean Network (MRBN)

The model of Multi random Boolean network (MRBN) has been introduced in
a previous work with different features and a different name [10]. In this section
we will briefly describe its most important characteristics.

A Multi random Boolean network is a cellular automaton in each of whose
cells is hosted a complete random Boolean network. In our case, we have a 2D
square lattice automaton with M2 cells. The neighbourhood we consider is of the
von Neumann type (composed by the cell itself and its N, E, S, W neighbours)
and the overall topology is toroidal. Every RBN of the MRBN is identical in

Fig. 1. (Left) The spatial shape of the CA is that of a torus, the neighbourhood is
of the Von Neumann type. (right) The interaction mechanism for the central cell in
the figure (nodes are numbered row by row from the top-left corner): nodes 2 and 5
of all the neighbouring cells can produce a specific signal molecule (triangle-shaped)
according a specific Boolean function. If at least one of the neighbours of the central cell
produces its signal molecule then the receptor of the central network (white-coloured)
is active. Afterwards, the activation value of the receptor influences its output nodes,
i.e. nodes 2 and 3 inside the central cell.

terms of number of Boolean nodes (N), topology (i.e. the ingoing and outgoing
connections per node) and Boolean functions associated to each node, while
the initial activation states of the genes are assigned randomly. The choice of
homogeneous RBNs for all the cells of the automaton is due to the fact that
the cells of a given multicellular organism or monoclonal colony share the same

2 p is the probability that the output of a certain Boolean function associated to a
node is equal to 0. In this case we refer to the average value of p for the whole set
of N nodes.
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genetic material. In our model, the common structural features of the RBNs, i.e.
number of nodes, topology and Boolean functions per node, define their common
genome.

Real cells interact in many different ways. In this work we only consider the
particular kind of interaction that occurs when certain molecules synthesized in
a particular cell bind to specific membrane receptors of its neighbouring cells,
so influencing the internal dynamic of the cells which host the receptors. In our
model, every cell of the MRBN owns a certain number of nodes defined as recep-
tors, whose ratio on the total number of nodes is defined as interaction strength,
f . The activation state of a receptor is determined by the presence of a certain
entity defined as signal molecule, produced by some genes in the neighbouring
cells (according a specific Boolean function), but it is not affected by the pres-
ence of the signal molecule synthesized by the cell itself. The receptor has its
own outputs and they can be either receptors or internal nodes of the network
(Fig. 1). The interaction mechanism depends on the choice of an interaction rule.
In this work we suppose that if at least one of the cells in the neighbourhood
of cell A produces a signal molecule, then the correspondent receptor in cell A
is active (value = 1), inactive (value = 0) otherwise. Note that receptors are
considered as actual nodes of the network (e.g. a network with N = 100 and
f = 10% owns 90 internal nodes and 10 receptors).

It is important to specify that, in order to isolate the influence of the interac-
tion strength, it is necessary to keep the other structural features of the MRBN
fixed, i.e. dimension of the lattice M , topology of interaction, interaction rule
and genome of each RBN.

4 Experiments

The simulations have been made on 100 distinct MRBNs, different in terms of the
genome of their characterizing RBNs. All the MRBNs are 20*20 square lattices
and the RBNs are composed of N = 100 nodes. 3 Past researches demonstrated
how MRBNs whose RBNs are characterized by different genomes may show
deeply different behaviours and this is the reason why it is important to make
specific analysis on single MRBNs. The parameters of the RBNs in the cells are
chosen in such a way to be “critical” [9], even though the dynamical behaviour of
each single realization may be highly different from the average critical dynamics
[11]. The networks are “classical” RBNs, with an equal number of incoming
connections per node (kin = K = 2). The input nodes are chosen at random
with uniform probability excluding self-couplings and multiple connections. The
Boolean functions are assigned with uniform likelihood on the set of all the
possible functions. The initial states of the nodes are chosen at random for every
RBN, independently from those of the other cells. In order to investigate the
influence of the interaction strength on the dynamic, we analysed the differences
3 Obviously, real networks are much larger in terms of number of nodes and interacting

cells. Future researches will be aimed to study lager simulated networks and to
investigate on possible scale properties of such systems.
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in the behaviour of each single MRBN in presence of different values of the
interaction strength.4

One possible method to investigate the dynamical regime of complex systems
in general is to analyse their response to perturbation. A large sensitivity to
the initial conditions of the system is usually related to disordered (or chaotic)
systems, while, vice versa, a low sensitiveness (higher robustness) refers to or-
dered systems. For what concerns RBNs one possible means to discriminate the
dynamical regimes is to observe the variation in time of the Hamming distance
between a “control” network (wild type WT ) and a perturbed network (PN).
In our case the perturbation is the flip of one node chosen at random, i.e. the
change of the activation value of one node in the initial condition of the net-
work.5 The variation of the Hamming distance in time is a relevant parameter
since it provides a clear indication on how the dynamics of two systems diverge.
In the case of a flip perturbation, a Hamming distance tending to 0 is peculiar of
ordered networks, a value close to 1 is related to critical networks, while values
higher than 1 refers to chaotic ones [9].In the simulations on MRBNs a node is
chosen at random in a random cell and its initial activation value is flipped. It
is then possible to calculate the variation of the Hamming distance of the whole
automaton and the number of cell affected by the perturbations, i.e. the number
of cells whose Hamming distance is higher than 0 after a certain transient.

5 Results

As clarified in the introduction, the primary aim of this research is decipher-
ing the relation between the dynamical behaviour of a single random Boolean
network and the emerging dynamics of a collection of coupled RBNs. We firstly
analysed the variation of the Hamming distance in time of perturbed isolated
RBNs with “critical” structural parameters. Although the average variation of
the Hamming distance on the whole set of networks closely resembles the results
of past studies of the same kind [9], there is an interesting aspect which is hidden
by an analysis on average values. RBNs with identical structural parameters can
indeed behave in a highly different way in response to perturbations and it is
actually possible to group networks on the basis of the variation of the Hamming
distance in time (Fig. 5(left)):

– Ordered behaviour: networks with average Hamming distance tending to
values lower than 0.5

– Chaotic behaviour: networks with average Hamming distance tending to
values higher than 1.5

– Critical behaviour: networks with average Hamming distance tending to val-
ues in the range 0.5 and 1.5.

4 Every simulation on every MRBN is repeated 150 times. The simulation runs differ
for the choice of the set of the receptors and for the initial condition of the nodes of
the RBNs constituting the MRBN.

5 Note that receptors and signal molecules also can be chosen for the flip.
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Grouping the networks in the three classes above, we found out that: about 50%
of the networks belong to the ordered group, 25% of the networks to the chaotic
one and the remaining 25% belongs to the critical class. It is interesting to notice
how the Hamming distance reaches its asymptotic value after a relatively small
number of time steps for all the analysed RBNs. Coupling RBNs into MRBNs,

Fig. 2. (Left) Variation of the average Hamming distance in time for the three classes
and for the complete set of 100 isolated RBNs (on 150runs). (right) Variation of the av-
erage simulation runs for the three classes and for the whole set of MRBNs in which the
overall Hamming distance after 100 time steps is higher than 0, for different values of the
interaction strength. The values in correspondence of f = 0 refer to the isolated RBNs.

we could study the changes of the dynamics in response to different value of
the interaction strength. We focused our attention on some significant values
of the interaction strength, i.e. 2%, 10%, 20%.6 Once more it turns out to be
fruitful to observe the behaviour of each MRBN separatedly; furthermore, we
decided to keep the distinction in three groups on the basis of the dynamics
of the isolated characterizing RBNs7 (e.g. MRBNs whose characterizing RBNs
have been signed as critical when analysed sigularly will be defined as critical
MRBNs). Since for a certain number of MRBNs the Hamming distance reaches
its asymptotic value after a large number of time steps, we decided to analyse
the system after a precise transient (i.e. 100 time steps). In Fig. 5(right) we
can notice how the number of runs in which the Hamming distance is higher
than 0 after the transient (in other words, the number of runs in which the
perturbation is not completely absorbed by the system) dramatically decreases
when the RBNs begin to interact and, then, it diminishes monotonously as the
interaction strength raises. The trend is analogous for all the three classes of
MRBNs, even if the magnitudes are substantially different and coherent with
the specific degree of order.

Apparently, the system would tend to more ordered states in correspondence
of higher values of the interaction strength, for all the three classes of behaviour.
6 Higher values of the interaction strength would entail a too large ratio of receptors

over the number of internal nodes.
7 Note that this classification of the MRBNs is possible because their characterizing

RBNs are exactly those previously analyzed and grouped in three classes.
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Fig. 3. (Left) Variation of the average ratio [Hamming distance/number of perturbed
cells] after 100 time steps for the three different classes and for the whole set of 100
MRBNs (on 150 runs) for different values of f . The values in corrispondence of f = 0
refer to the average Hamming distance of the isolated RBNs. (right) Variation of the
average number of perturbed cells after 100 time steps for the three different classes and
for the whole set of MRBNs (150 runs) for different values of the interaction strength.

Nevertheless, the dynamics is far more complex. Figure 3 shows that if we con-
sider an isolated RBN and we perturb it, the average Hamming distance reaches
a value slightly higher than the critical value 1, while when the cells begin to
interact within a MRBN the average value of the Hamming distance over the
number of perturbed cells decrease and it continues to decrease as the interac-
tion strength raises. On the other hand, in correspondence of higher values of
the interaction strength the average number of cells involved in the perturba-
tion plainly increases. Note that, even though the typical trends in the observed
variables are analogous for the three classes, also in this case the differences in
the magnitude are remarkable. Hence, the distinction in classes turns out to be
robust also when RBNs interact and three distinct dynamical behaviours can
indeed be identified.

From these results we can notice how a higher interaction strength may either
contribute to brake the perturbation, or allow the diffusion of perturbations that
hit a larger number of cells, although involving fewer nodes within each of them
(on the average). We may ascribe this peculiar behaviour to the features of
the specific interaction mechanism we adopted and, in particular, to the role of
receptors in the overall dynamics. Nevertheless, further analyses on the model
are needed to reach a definitive conclusion.

6 Conclusions

A first remark is about the intrinsic complexity of the model. The dynamical be-
haviour that shows up is far from trivial and so is its interpretation. Nevertheless,
the analyses made on the model provided some interesting cues.

The approach that involves perturbations to examine the response of the sys-
tem has proven to be effective for different reasons. First of all, it allows to
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clearly discriminate three classes of RBNs on the basis of their actual dynamical
regime, i.e. ordered, critical or chaotic. Once again, it is possible to demonstrate
how networks with identical critical structural parameters can indeed show sub-
stantially different dynamic behaviours when analysed singularly. Besides, the
dynamic behaviour of isolated RBNs is actually confirmed and enhanced when
RBNs are coupled, even though we observe a general shift toward the ordered
regime region in correspondence of a stronger interaction.

Yet, as we have shown, interaction leads to dynamic behaviours indeed hard
to interpret. Therefore, further development of the model are needed, primarily
aimed to grasp the relation among the features of the interaction mechanism and
the overall dynamics: for instance, the study of the effect of different interaction
rules, or the analysis of MRBNs whose RBNs are characterized by a constant
number of internal nodes for different values of the interaction strength.
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