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Abstract. This paper consists of two parts. In the first we pick up
again the question under which circumstances different pairs of a local
function and a neighborhood give rise to the same global behavior of CA
and disprove a conjecture made in an earlier paper. In the second part
we reconsider a construction showing that one can achieve universality
by only changing the (positions in the) neighborhood of a CA, while not
providing any information about the CA to be simulated in the initial
configuration. The construction uses an embedding which in some sense
is “non-local”. We show that under mild conditions this is necessary.

1 Introduction

Usually investigations of cellular automata without further discussion assume
some standard neighborhood because it is “without loss of generality”. In general
this is correct, except, of course, when one is interested in questions specifically
concerning neighborhoods. This is the guiding line of the current paper. It is a
continuation e. g. of [3] and [5] (an extended version will appear in [4]).

The rest of the paper is organized as follows: In Section 2 we introduce the
notions and notations used throughout the paper. Sections 3 and 4 concerned
with a “normal form” of pairs (f, ν) of a local function and a neighborhood
and the question under which circumstances different such pairs can give rise to
the same global behavior of CA. Finally, in Section 5 we take a second look at a
construction showing some kind of universality [5] and prove that the embedding
used for the simulation of CA necessarily has to have a certain propoerty.

2 Basics

We assume that readers are familiar with the basic concepts of cellular automata
(CA). In the first part of this paper we will consider d-dimensional Euclidean
CA for any d ∈ �+. We will write R for the set �d of all cells. In the second
part for the sake of simplicity we will assume that d = 1. The set of states of a
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single cell will usually be denoted by Q (or QA, . . . ). A local transition function
is of the form f : Qn → Q. Of course, one is interested in the case n ≥ 1. But
for technical reasons (a simpler proof of Lemma 3) we also allow n = 0; in this
case f : Q0 → Q simply is a constant.

A neighborhood is a mapping ν : �n → R, where�n denotes the set {1, 2, . . . , n}
of positive integers. As a special case we use �0 to denote the empty set. This can
equivalently be seen as a list ν with n components, written as ν(1), . . . , ν(n). Note
that for the use with a local function the order may be important. The set of all
neighborhoods of size n will be denoted as Nn.

A pair (f, ν) of a local function f : Qn → Q and a neighborhood ν ∈ Nn is
called a local structure. We call n the arity of the local structure.

Since Q and R are already implicit in f and ν we will simply speak of a CA
A = (f, ν). As usual, each local structure A = (f, ν) induces a global transition
function QR → QR (which we also denote by A) of a CA by

∀ x ∈ R : A(c)(x) = f(c(x + ν(1)), c(x + ν(2)), . . . , c(x + ν(n))) .

The general question we are interested in is:

What can and what cannot happen when changing the neighborhood of
a local function, i. e. when going from a local structure (f, ν) to a local
structure (f, ν′)?

A restricted version of this question is: What can and what cannot happen
when permuting the neighbors of a local function, i. e. when going from a local
structure (f, ν) to a local structure (f, ν′), where ν′ is a permutation of ν?

3 Reduced Local Structures

Definition 1. A local structure is called reduced, if and only if the following
conditions are fulfilled:

– f depends on each argument, i. e. for each i ∈ �n there are q1, . . . , qi−1, qi,
q′i, qi+1, . . . , qn ∈ Q such that

f(q1, . . . , qi−1, qi, qi+1, . . . , qn) �= f(q1, . . . , qi−1, q
′
i, qi+1, . . . , qn) .

– ν is injective, i. e. no x ∈ R appears twice in the list. Such neighborhoods are
called non-degenerate in [3].

A somewhat special case is a constant local function f and the empty neighbor-
hood. In this case f is of the form f : Q0 → Q, i. e. the only “argument list” for
f is the empty list, and ν : �0 → R is the empty list as well. This local structure
is reduced.

Obviously, for n ≥ 1 the transition function of each reduced local structure is
non-constant.



254 T. Worsch and H. Nishio

Definition 2. Two local structures (f, ν) and (f ′, ν′) are called equivalent if
and only if they induce the same global function. In that case we sometimes
write (f, ν) ≈ (f ′, ν′).

Lemma 3. For each local structure (f, ν) there is an equivalent reduced local
structure (f ′, ν′).

Proof. Let n denote the arity of (f, ν). Assume that (f, ν) is not reduced. We
will see that n ≥ 1 and show how to construct an equivalent local structure
(f ′, ν′) with arity n − 1.

Case 1: ν is not injective. Then clearly n ≥ 2. Let i and j be indices such that
i < j and νi = νj . Define ν′ ∈ Nn−1 as

– ν′
k =

{
νk iff k < j

νk+1 iff k ≥ j
, i. e. drop the j-th component of ν, and

– f ′ : Qn−1 → Q by f ′(q1, . . . , qn−1) = f(q1, . . . , qj−1, qi, qj , . . . , qn−1)
For any configuration c ∈ QR holds:

F ′(c)(0) = f ′(c(ν′
1), . . . , c(ν

′
n−1))

= f(c(ν′
1), . . . , c(ν

′
j−1), c(ν

′
i), c(ν

′
j), . . . , c(ν

′
n−1))

= f(c(ν1), . . . , c(νj−1), c(νi), c(νj+1), . . . , c(νn))
= f(c(ν1), . . . , c(νj−1), c(νj), c(νj+1), . . . , c(νn))
= F (c)(0)

Since application of local functions commutes with shifts, it followsF ′(c)(x) =
F (c)(x) for all x ∈ R.

Case 2: f does not depend on all arguments. Then clearly n ≥ 1. Assume that
it does not depend on argument i, 1 ≤ i ≤ n. Define ν′ ∈ Nn−1 as

– ν′
k =

{
νk iff k < i

νk+1 iff k ≥ i
, and

– f ′(q1, . . . , qn−1) = f(q1, . . . , qi−1, q, qi+1, . . . , qn−1) for any q ∈ Q. Since
f does not depend on the i-th argument, f ′ is well defined.

For any configuration c ∈ QR holds:

F ′(c)(0) = f ′(c(ν′
1), . . . , c(ν

′
i−1), c(ν

′
i), c(ν

′
i+1), . . . , c(ν

′
n−1))

= f(c(ν′
1), . . . , c(ν

′
i−1), q, c(ν

′
i), c(ν

′
i+1), . . . , c(ν

′
n−1))

= f(c(ν1), . . . , c(νi−1), q, c(νi+1), c(νi+2), . . . , c(νn))
= f(c(ν1), . . . , c(νi−1), c(νi), c(νi+1), c(νi+2), . . . , c(νn))
= F (c)(0)

As in case 1 it follows that F ′(c)(x) = F (c)(x) for all x ∈ R. 	
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The construction above does not imply that the equivalent reduced local struc-
ture itself is unique. In fact in general it is not: As a simple example consider the
local function f : {0, 1}2 → {0, 1} : (x1, x2) �→ x1 ∧x2. Since the order of the ar-
guments xi does not matter for the value f(x1, x2) the local structures (f, (0, 1))
and (f, (1, 0)) are equivalent. At the same time both are obviously reduced.

Open problem 4. Given any non-reduced local structure (f, ν) and an equiv-
alent reduced local structure (f ′, ν′), is there always a sequence of operations as
in the proof of Lemma 3 that transforms (f, ν) into (f ′, ν′)?

4 Equivalence of Local Structures

Definition 5. For n ≥ 1 let π ∈ Sn denote a permutation of the numbers in �n.

– For a neighborhood ν denote by νπ the neighborhood defined by νπ
π(i) = νi.

– For an n-tuple � ∈ Qn denote by �π the permutation of � such that �π(i) =
�(π(i)) for 1 ≤ i ≤ n.

– For a local function f : Qn → Q denote by fπ the local function fπ : Qn → Q
such that for all �: fπ(�) = f(�π).

In the first part of the definition we have preferred the given specification over
the equally possible νπ

i = νπ(i), because the former leads (in our opinion) to a
slightly nicer formulation of the following lemma.

Lemma 6. (f, ν) and (fπ, νπ) are equivalent for any permutation π.

Proof. For any configuration c:

Fπ(c)(0) = fπ(c(νπ
1 ), . . . , c(νπ

n ))
= f(c(νπ

π(1)), . . . , c(ν
π
π(n)))

= f(c(ν1), . . . , c(νn))
= F (c)(0) 	


We are now going to show that for reduced (!) local structures the relationship
via a permutation π is the only possibility to get equivalence.

Lemma 7. If (f, ν) and (f ′, ν′) are two reduced local structures which are equiv-
alent, then there is a permutation π such that νπ = ν′.

It should be noted that e. g. for local structures with a local transition function
f which does not depend on an input the claim of the lemma is wrong. Changing
the position of the neighbor which “provides” the irrelevant input for f of course
does not change the global behavior.

Proof. Assume that there is an x which does not appear in ν′ but does appear in
ν, say at position i. Since (f, ν) is reduced, f does depend on its i-th argument
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and there are two configurations c and c̄, which do only differ at cell x, such that
F (c)(0) �= F (c̄)(0).

Since ν′ does not contain x, it is clear that F ′(c)(0) = F ′(c̄)(0). It is there-
fore impossible that F (c)(0) = F ′(c)(0) and simultaneously F (c̄)(0) = F ′(c̄)(0).
Hence F (c) �= F ′(c) and F �= F ′. 	

By choosing different neighborhoods which are not permutations of each other
one immediately gets the following; compare Theorem 1 of [3]:

Corollary 8. For each reduced non-constant local function there are infinitely
many compatible neighborhoods inducing pairwise different global CA functions.

Lemma 9. If (f, ν) and (f ′, ν′) are two reduced local structures which are equiv-
alent, then there is a permutation π such that (fπ, νπ) = (f ′, ν′).

Proof. By Lemma 7 we already know that ν and ν′ are permutations of each
other: ν′ = νπ for some π; and (f, ν) ≈ (f ′, νπ). But it is clear that different local
functions induce different global functions, if they use the same neighborhood.
Hence if one assumes f ′ �= fπ, then (f ′, νπ) �≈ (fπ, νπ) which together with
(fπ, νπ) ≈ (f, ν) (Lemma 6) contradicts (f, ν) ≈ (f ′, νπ). 	


5 Universality Revisited

In order to keep notation simple, we will only consider one-dimensional CA in
this section.

5.1 A Short Review of the Construction

In a previous paper [5] we have sketched a construction which allows to do the
following:

Fix an arbitrary set of states QA of cardinality a ≥ 2 and consider the set of
all CA Ai with local structures (fi, νi) of arbitrary local functions fi : Qni

A → QA

of any arity ni and compatible arbitrary neighborhoods νi ∈ Nni .
Then there is

– one set of states QB of cardinality b,
– one embedding E : QR

A → QR
B of configurations and

– one local function g : Qk
B → QB (k = 5 in [5])

such that
– for each (fi, νi) one can effectively construct a neighborhood ν′

i ∈ Nk such
that

– for each configuration c : R → QA

– using (g, ν′
i) on initial configuration E(c) simulates each step of each cell of

the CA given by (fi, νi).

In the construction we use QB = QA × Q′ where Q′ contains the symbols ◦ and
(among others) and the embedding is defined as

E(c)(x) =

{
(c(x), ◦) if x = 0
(c(x), ) otherwise
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5.2 Discussion of the Embedding

In this subsection we will discuss the embedding E in more detail.
The idea of setting a special marker in one cell has appeared in the literature

before. Durand-Lose [1] has used it in his construction to simulate irreversible
one-dimensional CA on reversible one-dimensional CA for infinite configurations.
This result has to be contrasted with a theorem by Hertling [2] stating that
such a simulation is impossible. Both authors are right, simply because they use
different notions of simulation. In particular, Durand-Lose uses an embedding
of configurations which does set a special marker in cell 0, while Hertling only
consider embeddings of a certain type called weak morphisms. E is a weak
morphims if there is an integer m such that

E(σ(c)) = σm(E(c))

holds for all configurations c; here σ is the shift (∀ x : σ(c)(x) = c(x+1)). Clearly,
an embedding setting a special marker in cell 0 violates this requirement.

Open problem 10. We note in passing that in addition Hertling’s notion of
simulation is not compatible with that used by Durand-Lose, and that it is
an open problem whether all of the differences are really necessary in order to
be able to realize a simulation of irreversible CA on reversible CA for infinite
configurations.

We now turn to the universality construction mentioned above and have a closer
look at spatially period configurations.

Definition 11. A configuration c is spatially periodic or simply periodic1 if there
is a positive integer p ≥ 1 such that σp(c) = c. If � is the smallest such integer
we also say that c is �-periodic.

It should be clear that the application of a global CA function F maps configura-
tions with period p to configurations with period p again. The smallest positive
period may decrease from � to a divisor of �.

Observation 12. If σp(c) = c and E(σ(c)) = σm(E(c)), then E(c)=E(σp(c))=
σpm(E(c)). I. e., under weak morphisms periodic configurations have to be em-
bedded into periodic ones and the period can increase by at most a constant
factor (m).

For the moment fix some arity n and consider all Ai with local structures
(fi, (1, 2, . . . , n)) of this arity. There are aan

different such CA.
We will use a periodic configuration cn which as its building block uses a de

Bruijn sequence of length an. That is, the an subwords of length n starting at
positions 1, 2, . . . , an in cn are pairwise different (and their union is Qn

A). Con-
figuration cn has smallest positive period an. Hence, according to Observation 12
c′n = E(cn) has a smallest positive period of at most man.

We are interested in running some CA Bi with (g, ν′
i) on the periodic config-

uration c′n. In general the following holds:
1 We will not consider periodicity in time in this paper.
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Lemma 13. Let c denote an �-periodic configuration for some CA B = (g, μ)
and let B′ = (g, μ′) where μ′ denotes the neighborhood with μ′(i) = μ(i) mod �
for all i. Then for all t ≥ 0 holds:

Bt(c) = B′t(c) .

This is so since c and all of its successor configurations have period � and hence
it does not matter if the position of a neighbor is shifted by a multiple of �.

Theorem 14. If the embedding is a weak morphism, it is impossible to achieve
universality as described in Subsection 5.1.

Proof. Configuration cn has been chosen such that all aan

different CA produce
aan

different successor configurations. Assume that c′n is �′-periodic. According
to Lemma 13 there are at most �′k different global behaviors possible for the
Bi when starting from c′n. Thus one needs �′k ≥ aan

. Writing a′ for a1/k and
denoting the minimum positive period of cn by � this means �′ ≥ (a′)�. In other
words the periods of configurations have to grow exponentially in �. Since we
want to be able to simulate all CA Ai, one can choose n sufficiently large and
increase the gap between � and �′ arbitrarily. Comparing this with Observation 12
immediately gives the claim. 	


Open problem 15. The embedding described in Subsection 5.1 does more
than “significantly” increasing the period length of periodic configurations. It
completely breaks spatial periodicity. It is an open problem whether that neces-
sarily has to be the case.

For the sake of a simple proof of Theorem 14 we have assumed that one wants to
be able to simulate all CA. Looking at the proof one can see that we only used
the fact for each of the neighborhoods (1, 2, . . . , n) we used all local functions of
arity n. But in fact somewhat weaker conditions suffice: For example the number
mn of local functions using such a neighborhoods does not have to be aan

. One
only needs that the condition �′k ≥ mn implies that �′ grows more than linearly
in �. To this end k

√
mn ∈ ω(an) is sufficient, e. g. mn ≥ (an)2k.

6 Summary and Outlook

We have shown that “factoring out” relations by permutation different reduced
local structures are exactly those which give rise to different global CA functions.

The universality contruction shows what can be achieved by changing the
neighborhood if the local function is chosen carefully. We have proven that in
order to achieve universality, the embedding cannot ever be a weak morphism.

It remains the main open problem for future research to find ways of charac-
terizing at least partially how much can possibly happen for local functions if
they are not designed for a specific task, but coming from a non-trivial set of
local functions.
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