
On the Addition of Recurrent Configurations of
the Sandpile-Model

Matthias Schulz

University of Karlsruhe, Department for Computer Sciences
Am Fasanengarten 5, 76128 Karlsruhe, Germany

schulz@ira.uka.de

Abstract. The sandpile model, introduced by Bak, Tang and Wiesen-
feld in 1987, is the standard example for a dynamic model showing Self-
Organized Criticality (SOC). Also, it has many nice algebraic properties;
for example, there is a set of configurations which is a group with a cer-
tain naturally defined addition.

We look at elements c, d of this group and try to find out how long
it takes to naively compute the sum c ⊕ d. While we can easily give an
upper bound, it is harder to find a lower bound. We prove some facts
about the number of topplings (elementary operations) that have to be
performed during the addition of two elements of the group and give a
heuristic for quickly finding local minima.

1 Introduction

The sandpile model was introduced by Bak, Tang and Wiesenfeld in 1987 [1]
as a model to explain 1

f noise. Grains of sand fall onto a grid, and if four or
more grains are lying upon a site in the grid, one grain of sand falls to the left,
right, top and bottom respectively. It has been found that the model displays
Self-Organized Criticality (SOC), which means that from some time on a critical
state is maintained if grains keep on falling randomly onto the grid.

Dhar and others [3] found many interesting algebraic properties of the sand-
pile model, especially the set of recurrent configurations (configurations which
can occur infinitely often in the process described above). One of the most in-
teresting findings was the fact that the set of recurrent configurations, together
with an addition, is an Abelian group.

In this paper, we consider the question how many topplings there will be at
least if we add two recurrent configurations. While it is hard to find the global
optimum, we introduce a probabilistic algorithm which gives us at least local
minima whose quality depends on the strategy used at one point.

2 Basics

Consider the grid Z = {0, . . . n − 1} × {0, . . . n − 1}. For each z ∈ Z, let N(z) be
the set of sites in the von-Neumann-neighborhood of z.

H. Umeo et al. (Eds): ACRI 2008, LNCS 5191, pp. 236–243, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Addition of Recurrent Configurations of the Sandpile-Model 237

From a configuration c : Z → N0 and a site z ∈ Z which satisfies c(z) > 3, we
get the successive configuration cz defined as

cz = c − 4ez +
∑

z′∈N(z) ez′ ,

where ∀z ∈ Z : ez(z′) =

{
1 if z′ = z

0 otherwise
.

Figuratively, if a site contains 4 or more grains of sand, 4 grains fall off this
site and onto the sites in the neighborhood or off the grid, when the site was at
the border of the grid. We say that the site toppled and a toppling occurred.

If all sites containing at least 4 grains topple at the same time and we bound
the number of grains initially in c, we get the rule for a cellular automaton.

It has been shown that the process of letting sites with at least 4 grains
topple eventually ends and leads to a configuration where each site contains at
most 3 grains of sand (cf. for example [2]). Also, the order in which the sites
topple is irrelevant, as all possible sequences lead to the same configuration, and
the number of times a site z topples during the process is also independent of
the order of the topplings. This process is called a relaxation and the resulting
configuration when starting from configuration c will be denoted by crel.

Let c be a configuration on Z. For all z ∈ Z, let fc(z) be the number of topplings
of z during the relaxation of c. Further, let B ∈ Z

Z×Z be the matrix with

B(i, j) =

⎧
⎪⎨

⎪⎩

4 if i = j

−1 if i ∈ N(j)
0 otherwise.

Then crel = c − B · fc.
Further, B is invertible; both is shown in [2].
Let C be the set of configurations c : N0 → Z with crel = c. (This means:

∀z ∈ Z : 0 ≤ c(z) ≤ 3.) The elements of C are called stable configurations.
We define the operation ⊕ on C by c ⊕ d = (c + d)rel. This operation is

associative and commutative, as shown in [3].
We define the maximal stable configuration m satisfying ∀z ∈ Z : m(z) = 3

and the set of configurations R = m ⊕ C. The elements of R are called recurrent
configurations.

Note that for each configuration c ∈ C and for each configuration d ∈ R, there
exists a configuration e ∈ C such that c ⊕ e = d:

From the definition of R, we know that there is a configuration e′ ∈ C such
that m⊕e′ = d, and therefore c⊕((m−c)⊕e′) = (c⊕(m−c))⊕e′ = m⊕e′ = d.

Also, if c is a recurrent configuration, then for all d ∈ C c ⊕ d ∈ R, too.
Therefore, if we have a Markov chain (C, P) with the states being stable

configurations and transition probability matrix satisfying P (c, d) = 0 if there
exists no z ∈ Z such that d = c ⊕ ez, R is the set of recurrent configurations of
this Markov chain.

A very interesting fact about R is that (R, ⊕) is an Abelian group, which is
proven in [3].

By id ∈ R we denote the identity element of the group (R, ⊕).
Let b ∈ C be the configuration which satisfies

238 M. Schulz

∀z ∈ Z : b(z) = 4 − |N(z)|.
(So, b(z) = 2 if z is a site in corner of Z, b(z) = 1 if z is a site on the border

of Z, and b(z) = 0 otherwise.)
It has been shown in [4] that
c ∈ R ⇐⇒ c ⊕ b = c and
c ∈ R ⇐⇒ fc+b = 1,
where ∀z ∈ Z : 1(z) = 1.

3 The Problem

Consider two recurrent configurations c and d. A naive way to compute c ⊕ d
would be to compute the sum c + d and to relax this configuration. This means
1�fc+d topplings have to be done.

It is quite easy to see that the worst case, i.e. the case for which |fc+d| =
1�fc+d is maximal, is when c = d = m; it can be shown that |fm+m| ∈ O(n4)
holds.

On the other hand, it is much harder to find a tight lower bound for |fc+d|
when c, d ∈ R, or to find configurations c, d ∈ R for which |fc+d| is minimal.
While we can find a configuration c such that m − c ∈ R for n ≤ 4, there is a
very obvious reason why there cannot be such a configuration c for n > 4: In
this case the configuration c + d contains more than 3n2 grains of sand and the
surplus grains have to fall off the grid, which means that sites on the border of
Z must topple.

In the following sections, we will show that each recurrent configuration con-
tains at least 2n2 − 2n grains of sand, which means that during the relaxation
of the sum c + d of two recurrent configurations c, d at least n2 − 4n grains of
sand must fall off the grid.

For n = 4 we will give recurrent configurations c, d ∈ R, such that c + d = m.
We will show how to find for c ∈ R a configuration c̄ ∈ R such that |fc+c̄| is

minimal.
We will show how we can get from a recurrent configuration c to a recurrent

configuration c′ such that fc′+ ¯(c′) ≤ fc+c̄ holds. (≤ here means component-wise
less or equal.) By repeating this process, we reach a local minimum.

4 Number of Grains in Recurrent Configurations

Let c be recurrent configuration. All grains that remain on a site z after it
toppled during the relaxation of c + b can be taken away without the resulting
configuration c′ becoming non-recurrent, since the same sequence of topplings
during the relaxation of c + b is a possible toppling sequence for c′ + b: If a site
z contained more than four grains of sand at the moment it toppled, then the
“surplus” grains are the ones that were taken away to get c′. Therefore, during
the relaxation of c′ + b each site contains exactly four grains of sand at the
moment it topples if we use the same sequence of topplings as for c + b.

On the Addition of Recurrent Configurations of the Sandpile-Model 239

We call a recurrent configuration c minimal recurrent, if ∀z ∈ Z : c − ez /∈ R.
This means that no grain of sand can be taken from c without getting a non-
recurrent configuration; it follows that each site contains exactly four grains of
sand at the moment it fires.

By counting the grains of sand each site contains just before it fires during
the relaxation of c+ b, we obviously get 4n2 grains. Since we counted each grain
of sand that still is in (c + b)rel twice and each grain of sand that got lost at the
edge once, we get

4n2 = 2|c| + |b|
and therefore, since |b| = 4n,
|c| = 2n2 − 2n .
This means that each recurrent configuration contains at least 2n2−2n grains

of sand and that the sum of two recurrent configurations c and d contains at
least 4n2 − 4n grains of sand. From this we get |fc+d| ≥ n2−4n

2 , since a toppling
can lead to the loss of no more than 2 grains of sand (except for n = 1, in which
case n2−4n

2 < 0 anyways).

5 Examples

It is easy to see that the highest n for which we can hope to find c, d ∈ R
such that |fc+d| = 0 (and therefore obviously minimal) is 4. We here give two
configurations c, d ∈ R which satisfy c + d ≤ m.

c =

⎛

⎜
⎜
⎝

2 1 3 1
1 2 2 1
2 1 1 2
2 0 2 1

⎞

⎟
⎟
⎠ , d =

⎛

⎜
⎜
⎝

1 2 0 2
2 1 1 2
1 2 2 1
1 3 1 2

⎞

⎟
⎟
⎠

Note that c + d = m and we get d by the point reflection in the center of the
grid. (Therefore c ∈ R ⇐⇒ d ∈ R). It is easy to verify that c ⊕ b = c and
d ⊕ b = d.

However, for n = 5, we don’t find configurations c, d with fc+d = 3, which is
the lower bound we get from the inequality |fc+d| ≥ n2−4n

2 , although the proof
is rather inelegant.

6 Searching for Local Minima

Now, we take a look at larger values for n and describe a search strategy for
recurrent configurations c, d such that |fc+d| becomes small.

First, we will show how to construct c̄ ∈ R such that for all d ∈ R fc+c̄ ≤ fc+d

holds.
Then we will describe how to optimize c.

6.1 Minimizing fc+d for Fixed c

Let cbe a recurrent configuration.Then for alld ∈ R the following inequality holds:

240 M. Schulz

fc+d ≥ fc+((m−c)⊕id):
There are no topplings during the relaxation of (c ⊕ d) + (m − (c ⊕ d)), and

therefore
c + d − B · fc+d + (m − (c ⊕ d)) =

c + d + (m − (c ⊕ d)) − B · fc+d =
c ⊕ (d ⊕ (m − (c ⊕ d))) =
c ⊕ (d + (m − (c ⊕ d)) − B · fd+(m−(c⊕d))).

We define c̄ = d ⊕ (m − (c ⊕ d)) and get
c + d + (m − (c ⊕ d)) − B · fc+d = c + c̄ − B · fc⊕c̄

⇒ c+d+(m−(c⊕d))−B ·fc+d = c+d+(m−(c⊕d))−B ·fd+(m−(c⊕d))−B ·fc+c̄

⇒ fc+d = fc+c̄ + fd+(m−(c⊕d)),
since B is invertible.
We see that fc+c̄ ≤ fc+d.
We know that d ⊕ (m − (c ⊕ d)) ∈ R since d ∈ R, and we know that c ⊕ (d ⊕

(m − (c ⊕ d))) = m.
On the other hand, id⊕ (m−c) ∈ R and c⊕ (id⊕ (m−c)) = m, and it follows

that for all d ∈ R the equation id ⊕ (m − c) = d ⊕ (m − (c ⊕ d)) holds.
Therefore for all d ∈ R the inequality fc+((m−c)⊕id) ≤ fc+d holds.
From now on, we call the configuration (m − c) ⊕ id the minimizing configu-

ration of c, denoted as c̄.
The task to minimize the topplings during the relaxation of the sum of two

recurrent configurations is now reduced to finding a recurrent configuration c
such that |fc+c̄| becomes minimal.

6.2 The Cutting Algorithm

Let c be a recurrent configuration, c̄ the minimizing configuration of c and e a
configuration in C which is component-wise less or equal to c.

It can be easily shown that fc+c̄ = f(c−e)+(c̄⊕e) + fc̄+e.
This means that there are fewer topplings during the relaxation of (c − e) +

(c̄⊕e) if there were topplings during the relaxation of c̄+e. If we make sure that
c − e is still a recurrent configuration, we find a pair of recurrent configurations
which induces fewer topplings during the relaxation of their sum.

(Also, if c − e is recurrent, it is easy to see that c̄ ⊕ e is the minimizing
configuration of c − e.)

The Cutting Algorithm gives for the recurrent configuration c (and its mini-
mizing configuration c̄) a recurrent configuration d (and its minimizing configu-
ration d̄) such that d ⊕ d̄ = c ⊕ c̄ and fd+d̄ ≤ fc+c̄ hold.

We start with c + b, work along a possible toppling sequence for c + b (i.e. in
each time step, we choose a site that can topple in the changed configuration) and
transfer grains of sand that are left on a site z after z has toppled from c to c̄.

As in the beginning of section 4, the chosen toppling sequence for c+b is also
a toppling sequence for the configuration we get after transferring grains from
c to c̄.

After each grain transfer we let the changed configuration c̄ relax; in the end
we get the configurations d = c − e ∈ R and c̄ ⊕ e, which is the minimizing

On the Addition of Recurrent Configurations of the Sandpile-Model 241

configuration d̄ of d. (The configuration e here is the configuration which assigns
each site the number of grains that were transferred on this site from c to c̄.)

Now, (c − e) ⊕ (c̄ ⊕ e) = m and f(c−e)+(c̄⊕e) = fc+c̄ − fc̄+e ≤ fc+c̄.
(Note that e depends on the toppling sequence and the number of grains which

are taken transferred from each site.)
We will denote the results (c−e, c̄⊕e) of the Cutting Algorithm for arguments

c, c̄ as cut(c, c̄).
The nice thing about the Cutting Algorithm is the fact that you can repeat

it and thereby get better results:
After computing (d, d̄) = cut(c, c̄), it is often possible to find a configuration

e ∈ C, e ≤ d such that d − e ∈ R and fd̄+e
= 0.
In pseudo code this process could be described as follows:

1: DO
2: (c, c̄) ← cut(c, c̄)
3: (c̄, c) ← cut(c̄, c)
4: WHILE(!exit condition)

A local minimum is reached in (c, c̄) if neither cut(c, c̄) nor cut(c̄, c) can be a
“better” pair than (c, c̄).

The exit condition in the pseudo code program should be chosen in a way
that makes it very likely that a local minimum has been reached. (A simple
possibility would be to count how many times in a row the vector fc+c̄ has not
changed and exit if this number is higher than a chosen threshold.)

6.3 The Local Minimum Condition

In this subsection we will show how to determine whether a pair (c, c̄) is a local
minimum. We will also be able to find a “better” pair (d, d̄).

A pair (c, c̄) is a local minimum if there exists no e ∈ C such that either
c− e ∈ R∧ fc̄+e
= 0 or c̄− e ∈ R∧ fc+e
= 0 holds, since we could get a “better”
pair (c − e, c̄ ⊕ e) respectively (c ⊕ e, c̄ − e) otherwise.

If (c, c̄) is not a local minimum, then there exists a configuration e ∈ C such
that c−e ∈ R∧fc̄+e
= 0 or c̄−e ∈ R∧fc+e
= 0 holds. Without loss of generality,
we assume the former. Then there exists a site z ∈ Z and a number k ∈ N such
that (c̄ + kez)(z) ≥ 4 and c − kez ∈ R; surely k ≥ 4 − c̄(z) holds.

It follows that fc̄+(4−c̄(z))ez

= 0 and c − (4 − c̄(z))ez ∈ R hold, and we can

formulate a local minimum condition as follows:
If ∃e ∈ C : c̄ − e ∈ R ∧ fc+e
= 0 holds, we can find a site z ∈ Z such that

fc+(4−c(z))ez

= 0 and c̄ − (4 − c(z))ez ∈ R hold.

So we can determine whether a given pair (c, c̄) is a local minimum by looking
at each site z ∈ Z and checking for z if any of the two configurations c − (4 −
c̄(z))ez and c̄ − (4 − c(z))ez is recurrent; this has a time complexity in O(n4)
and is therefore rather slow.

(One case where it is easy to verify that a local minimum has been reached:
If both c and c̄ are minimal recurrent configurations, we know that we have
reached a local minimum.)

242 M. Schulz

We define the function check(c, c̄) which checks for all sites z ∈ Z if c − (4 −
c̄(z))ez ∈ R holds. In this case, c is set to c − (4 − c̄(z))ez and c̄ to (c̄ + (4 −
c̄(z))ez)rel, and at the end of the procedure the value 0 is returned. If no site z
satisfies this condition, the value 1 is returned. (Note that |fc+c̄| decreases if 0
is returned.)

6.4 Outline of the Algorithm

For a fixed number k, we set (c, c̄) by turns to cut(c, c̄) and cut(c̄, c), each time
checking whether fc+c̄ changes.

After fc+c̄ has not changed for k runs of the loop, we use check (c, c̄) and
check (c̄, c) to see whether a local minimum has been reached or setting (c, c̄) to
a pair (c′, c̄′) with fc′+c̄′ ≤ fc+c̄ and fc′+c̄′
= fc+c̄.

If a local minimum has not been reached, we again use the Cutting Algorithm
until fc+c̄ has not changed for k times and use the check algorithm again.

This is repeated until a local minimum is reached, which eventually must
happen, since |fc+c̄| always decreases when the check algorithm finds that no
local minimum has been reached.

7 Analysis

There are two functions used to decrease |fc+c̄|: cut(c, c̄) and check (c, c̄).
While cut(c, c̄) is generally much faster to compute than check (c, c̄), cut(c, c̄) is

a probabilistic function and may not reduce |fc+c̄| although it would be possible;
on the other hand, check (c, c̄) reduces |fc+c̄| if (c, c̄) is not a local minimum, but
generally needs much more time to do so than a call of cut(c, c̄) does.

Therefore, we recommend using cut(c, c̄) most of the time and check (c, c̄) only
after no improvements have been made for some time.

7.1 Strategies for Choosing the Toppling Sequence

During cut(c, c̄), we have to choose a sequence for the sites of Z to topple during
the relaxation of c + b, and for each site that toppled we have to choose how
many grains we transfer to c̄.

Several strategies have been tried, in every strategy we used rectangular
distribution:

1. Random/Biased : If we choose a random strategy, we randomly choose a site
z which contains at least 4 grains at each step and let it topple.

If we choose a biased strategy, we choose a number k and pick up to k
times a site z with at least 4 grains on it and choose the first one for which
the sum of grains in both configurations is at least 8 and let it topple. If no
such site is picked, we choose the last of the k sites and let it topple.

2. Generous/Sparing: A generous strategy always transfers all grains on z after
it toppled from one configuration to the other.

On the Addition of Recurrent Configurations of the Sandpile-Model 243

A sparse strategy only transfers grains on z from one configuration to the
other if this leads to topplings, and in this case only as many as necessary
for a toppling to occur.

Experiments suggest that a generous strategy yields the better results than a
sparing strategy, considering running time as well as |fc+c̄|.

For example, on a 200 × 200 grid with k = 10, the random, generous strategy
yielded a result after 188 iterations of the inner loop and 2 check calls (which
confirmed the local optimum) a configuration c for which |fc+c̄| = 56865720.

On the same grid, the biased, generous strategy with three tries needed 183
iterations and just two check calls to verify the local minimum and yielded a
configuration c for which |fc+c̄| = 56847147.

The random, sparing strategy needed 839 iterations of the inner loop and 12
check calls to yield a a configuration c for which |fc+c̄| = 57027080.

8 Conclusion

We have introduced the problem of finding two recurrent configurations such
that the relaxation of their sum needs as few topplings as possible.

While it is easy to find a second recurrent configuration which minimizes the
number of topplings if the first configuration is given, it is non-trivial to find the
global minimum among all pairs of recurrent configurations.

We have given a probabilistic algorithm which finds local minima. The per-
formance of the algorithm depends on the strategy to choose the sequence of
sites z ∈ Z during one routine; the best strategy found is to choose the next site
randomly, although further experiments concerning the quality of the various
strategies should be done.

We conjecture that for each local minimum (c, c̄) the vector fc+c̄ is minimal,
meaning there are no recurrent configurations d, d̄ such that fd+d̄ ≤ fc+c̄ and
fd+d̄
= fc+c̄ hold.

Other future work includes the searching for better strategies for the choosing
of a toppling sequence for c + b in the Cutting Algorithm and the question how
hard it is to decide whether a given pair (c, c̄) is the global optimum.

References

1. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: An explanation of the
1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)

2. Chung, F., Ellis, R.: A chip-firing game and dirichlet eigenvalues. Discrete Mathe-
matics 257, 341–355 (2002)

3. Dhar, D., Ruelle, P., Sen, S., Verma, D.N.: Algebraic aspects of abelian sandpile
models. J.PHYS.A 28, 805 (1995)

4. Majumdar, S.N., Dhar, D.: Equivalence between the abelian sandpile model and the
q −→ 0 limit of the potts model. Physica A: Statistical and Theoretical Physics 185,
129–145 (1992)

	On the Addition of Recurrent Configurations of the Sandpile-Model
	Introduction
	Basics
	The Problem
	Number of Grains in Recurrent Configurations
	Examples
	Searching for Local Minima
	Minimizing f_{c+d} for Fixed c
	The Cutting Algorithm
	The Local Minimum Condition
	Outline of the Algorithm

	Analysis
	Strategies for Choosing the Toppling Sequence

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

