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Abstract. Control problems on Cellular Automata (CA) models have
been introduced in a rigorous mathematical framework [10]. In this pa-
per, we attempt to apply the control theory concept to the special class
of fuzzy CA for which more freedom is gained using a continuum state
space. Focusing on the case of fuzzy rule 90, we investigate the possibility
of finding a control u = (u0, u1, · · · , uT−1) which forces the system at a
localized cell, to achieve a given desired state at time T . The problem is
studied starting from an initial configuration consisting of a single seed
on a zero background.
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1 Introduction

Cellular automata constitute a very interesting modelling approach which has
been explored from mathematical and computational points of view for theoret-
ical as well as practical aspects [17,4,3,13,14,19]. However, from the mainstream
literature, CA in their classical form are treated as closed systems, as they do
not take into account the interaction between the system and its environment.
Considering control problems on systems using CA approaches should be ben-
eficial for this field of research and makes connections with the field of systems
theory.

The basic idea of control theory states that systems behavior is caused by
a response to an outside stimulus and may be influenced so as to achieve a
desired goal [18]. In order to implement this influence, engineers build devices
that incorporate various mathematical techniques.

An appropriate way of introducing controls in CA models in order to make
them more useful in systems theory has been given in [10,6]. Some concepts re-
lated to the control theory (regional controllability, identification, spreadability)
has been studied mainly in the case of additive CA [7,8,9]. However, the problem
of obtaining analytical results is still posed.

We consider in this paper the fuzzy version of CA which constitute a di-
rect generalization of the classical binary CA models. These elementary cellular
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automata (ECA) which have been studied by Wolfram and others, are good
examples of systems with simple rules that may produce unusually complex be-
havior. We investigate the Fuzzy CA (FCA) as a real-valued version of ECA
which seem to provide the best results regarding the control problems.

Considering a FCA evolution on a time interval [0, T ], we will address the
question whether some particular target state is reachable starting from a specific
initial condition. The control value to be found is given by the vector u =
(u0, u1, · · · , uT−1). We enlarge the state space from [0, 1] to R in order to obtain
more flexibility regarding the control values and then a necessary and sufficient
condition is found. The same result is obtained when working on [0, 1] but only
for specific desired states or small values of T .

2 Basic Definitions

2.1 Cellular Automata

A cellular automaton (CA) may be thought of as a linear collection of cells where
all cells share the same local space (i.e., the set of values for the cells) the same
neighborhood structure (i.e., the cells on each side of a cell), and the same local
function or rule (i.e., the function defining the effect of the neighbors on each
cell, also called the transition function or rule function). The global evolution
of the CA is defined by the synchronous update of all cell values according to
repeated applications of the local function to the neighborhood of each cell. A
configuration of the automaton is a state of all lattice cells [22].

Cellular automata were one of the first abstract models for parallel comput-
ing. Conceived by John von Neumann [17] in the early 1950’s to investigate
self-reproduction, CA have been used mainly for studying parallel computing
methods and the formal properties of model systems.

Given a bi-infinite lattice of cells on a line, the local space {0, 1}, the usual
neighborhood structure 〈 left neighbor, itself, right neighbor 〉, and a rule function
g : {0, 1}3 −→ {0, 1}, the global dynamics of an elementary CA are defined by:

f : {0, 1}Z −→ {0, 1}Z

∀i ∈ Z, f(x)i = g(xi−1, xi, xi+1).

The rule function or local rule is then defined by the 8 possible local configura-
tions a cell detects in its direct neighborhood:

(000, 001, 010, 011, 100, 101, 110, 111) → (r0, · · · , r7),

where each triplet above represents a local configuration of the left neighbor, the
cell itself, and the right neighbor. In general, the value of the sum

∑7
i=0 2iri is

used as the name of the rule. It is well-known that the local rule of any boolean
CA can be expressed canonically as a disjunctive normal form (DNF), that is,

g(x1, x2, x3) = ∨i|ri=1 ∧j=1:3 x
dij

j

where dij is the j-th digit, read from left to right, of the binary expression of i,
and x0 (resp. x1) stands for ¬x (resp. x).
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2.2 Fuzzy Cellular Automata

The initial string now consists of a set of fuzzy states, that is, a collection of
arbitrary but fixed real numbers in the closed interval [0, 1] (as opposed to the
two-point set {0, 1}). The process of fuzzification described below entails redefin-
ing the local rule g above so that it can now act on triples of real numbers (as
opposed to triples of boolean numbers) and map the unit box [0, 1]3 ∈ R

3 into
the unit interval [0, 1].

Inherent in this procedure is the fact that fuzzification will allow one to move
from the discrete (boolean CA) to the continuous (fuzzy CA, or FCA) by extend-
ing the domain of definition of the rule in such a way that the new “rule” agrees
with the original rule when we restrict its domain to the boolean set {0, 1}.
We describe a natural method of fuzzifying a given boolean rule herewith, the
source of which is in [2]. We adopt the now standard terminology from Flocchini
et al, [11].

Definition 1. A “fuzzy” cellular automaton or fuzzy CA or FCA for brevity, is
obtained by fuzzifying the local function of a given boolean CA in the following
way: For real numbers a, b ∈ [0, 1] we redefine the quantities (a∨ b) to be (a+ b),
(a∧b) to be (ab), and (¬a) to be (1−a) in the DNF. Thus a∨b = a+b, a∧b = a·b,
and ¬a = 1 − a, where + and “·” are ordinary addition and multiplication of
real numbers.

The case under consideration is rule 90. Since 90 = 21 +23 +24 +26 we see that
its rule number, 90 =

∑7
i=0 ri 2i, forces ri = 1 for i = 1, 3, 4, 6. Using the DNF

above gives us the rule function of FCA 90 in the form

g(x, y, z) = x + z − 2xz, (1)

for (x, y, z) ∈ [0, 1]3. We emphasize that in “fuzzifying” the DNF (??), we re-
placed ¬x by 1 − x, x ∨ y by x + y, and x ∧ y in (??) by their product, x · y.

In this case, the local fuzzy rule maps the triples of zeros and ones as follows:

000, 001, 010, 011, 100, 101, 110, 111 → 0, 0, 1, 1, 1, 0, 1, 0.

3 Control of Fuzzy Rule 90

3.1 Problem Statement

CA have been used extensively as a modelling tool to approximate nonlinear
discrete and continuous dynamical systems in a variety of applications. However
the inverse problem of determining a/the CA that satisfies some specified con-
straints has received very little attention. A possible formulation for an inverse
problem involves the search of an appropriate CA rule capable of carrying a
given system from an initial state to a desired final configuration during a time
horizon T .
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If the rule has the form st+1 = Fu(st, ut), the problem, usually referred to as
the controllability problem, consists in finding a control u = (u0, u1, · · · , uT−1)
in an appropriate control space such that, for some T ≥ 0,

sT = Sd

where Sd is the desired state, given in a suitable space of so-called reachable
states and sT is the CA configuration at time T .

3.2 The Case of an Excited Cell with a Single Initial Seed in a
Background of Zeros

The notion of controllability is geared to the possibility of forcing a system into
a particular state by using one or more appropriate control signals. In this work
we consider the case where the signals are applied at t = 0, 1, . . . , T − 1 so as to
influence the space-time diagram of the rule in order to achieve a desired state
AT

−T , · · · , AT−1, A
T
0 , at time T (cf., Table 1 below).

Hence the work presented here is related to the most general problem of
control theory using Cellular Automata models. We solve it in the case where
the initial string consists of two cells, one of which is a given fuzzy state x0

0 = a,
which may or may not be in [0, 1], and the other of which is a control, x0

1 = u0,
under which, in the cells xi

1, i = 1, 2, . . . , T − 1, there is a string of T − 1
other controls, all immersed in a background of zeros (the so-called homogeneous
background case). The space-time diagram under consideration is of the form of
Table 1

Table 1. The space time diagram showing the evolution of a rule function starting
from a single seed a with a column of values assigned to the controlled cell

−T · · · −3 −2 −1 0 1
0 0 · · · 0 0 0 a u0

1 0 · · · 0 0 a u0 u1

2 0 · · · 0 a u0 . u2

... · · · · · ·
...

i · · · 0 a u0 . . . · · · ui

...
...

T − 1 0 a · · · · · · · · · · · · uT−1

T xT
−T · · · xT

−3 xT
−2 xT

−1 xT
0

and the problem is to reach a state (xT
−T , · · · , xT−1, x

T
0 ) which coincides with a

desired one A = (AT
−T , · · · , AT

−1, A
T
0 ) ∈ R

T+1 at time T . In other words, the
so-called input-to-final-state reachability map

K : R
T −→ R

T+1

u = (u0, u1, . . . , uT−1) −→ xT = (xT
−T , · · · , xT

−1, x
T
0 )
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is surjective on some appropriate subset of the range. Prior to formulating our
results we need a few lemmas.

Lemma 1. The rule function g(x, y, z) 
= 1/2 if and only if x 
= 1/2 and z 
=
1/2.

Proof. Sufficiency: Assume, on the contrary, that g(x, y, z) = 1/2. Then x + z −
2xz = 1/2; and this implies that x(1 − 2z) = 1/2 − z = (1 − 2z)/2 or since
z 
= 1/2 then x = 1/2 which is impossible. On the other hand, if either x = 1/2
or z = 1/2, the rule function g(x, y, z) = 1/2 which contradicts the assumption.

Our first result deals with the case where the domain of rule 90 is enlarged to
all of R

3. By doing so, we can obtain a necessary and sufficient condition for the
controllability of the system.

Theorem 1. Let T > 0 be a given (final) time, A = (AT
−T , · · · , AT

−1, A
T
0 ) ∈

R
T+1 be a given desired state. Consider the controllability problem associated

with Table 1 with a ∈ R, g(x, y, z) = x + z − 2xz defined on all of R
3.

1. If AT
−T 
= a then the control problem has no solution.

2. If AT
−T = a, then the control problem has a (unique) solution in the admissi-

ble set Uad = R
T \{(1/2, 1/2, . . . , 1/2)} if and only if all the coordinates of A

are different from 1/2, i.e., for every N , 0 ≤ N ≤ T we have AT
−T+N 
= 1/2.

Proof. From Table 1 it is clear that AT
−T = a, this proves the first claim. Hence

this last equality is in force throughout. We proceed on a case-by-case basis for
i = 1, 2, 3 and then appeal to an induction argument for the general case. The
case i = 0 being trivial we proceed immediately to the next case.

In the case where i = 1 we observe that xi
−i+1 = x1

0 = g(0, a, u0) = u0, for
every i, 0 ≤ i ≤ T .

When i = 2 note that x1
1 = u1, and since x2

0 = g(x1
−1, x

1
0, x

1
1) by definition,

we get

x2
0 = x1

−1 + (1 − 2x1
−1)u1. (2)

Similarly,

x3
−1 = g(x2

−2, x
2
−1, x

2
0),

= x2
−2 + (1 − 2x2

−2)x
2
0,

= x2
−2 + (1 − 2x2

−2)(x
1
−1 + (1 − 2x1

−1)u1), (by (2))
= x2

−2 + (1 − 2x2
−2)x

1
−1 + (1 − 2x2

−2)(1 − 2x1
−1)u1. (3)

The form of the next term, x4
−2 necessary for our purposes is found similarly.

Thus, substituting (3)) for x3
−1 we find,

x4
−2 = g(x3

−3, x
3
−2, x

3
−1),

= x3
−3 + (1 − 2x3

−3)x
3
−1,

= x3
−3 + (1 − 2x3

−3)(x
2
−2 + (1 − 2x2

−2)x
1
−1 + (1 − 2x2

−2)(1 − 2x1
−1)u1),

= x3
−3 + (1 − 2x3

−3)x
2
−2 + (1 − 2x3

−3)(1 − 2x2
−2)x

1
−1 +

+(1 − 2x3
−3)(1 − 2x2

−2)(1 − 2x1
−1)u1.
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Continuing in this way we define the terms xn
−m when n − m = 2 recursively

and find that the cell values along this diagonal are given by

xn
−n+2 = xn−1

−n+1 +
n−2∑

k=1

n−2∏

j=k

(1 − 2xj+1
−j−1)xk

−k + u1

n−1∏

j=1

(1 − 2xj
−j). (4)

We calculate one more case, i = 3, prior to stating the general form of the
xT
−T+i for any i and for any diagonal. Note that x2

1 = u2. Next,

x3
0 = x2

−1 + (1 − 2x2
−1)u2, (5)

and

x4
−1 = g(x3

−2, x
3
−1, x

3
0),

= x3
−2 + (1 − 2x3

−2)x
3
0,

= x3
−2 + (1 − 2x3

−2)(x
2
−1 + (1 − 2x2

−1)u2), (by (5))
= x3

−2 + (1 − 2x3
−2)x

2
−1 + (1 − 2x3

−2)(1 − 2x2
−1)u2.

The term x5−2 is found as above. This gives,

x5
−2 = g(x4

−3, x
4
−2, x

4
−1),

= x4
−3 + (1 − 2x4

−3)x
4
−1

= x4
−3 + (1 − 2x4

−3)(x
3
−2 + (1 − 2x3

−2)x
2
−1 + (1 − 2x3

−2)(1 − 2x2
−1)u2)

= x4
−3 + (1 − 2x4

−3)x
3
−2 + (1 − 2x4

−3)(1 − 2x3
−2)x

2
−1 +

+(1 − 2x4
−3)(1 − 2x3

−2)(1 − 2x2
−1)u2.

As before, we proceed by induction to find that, for this third left-diagonal (here
n − m = 3)

xn
−m = xn−1

−m−1 +
m∑

k=1

xk+1
−k

m∏

j=k

(1 − 2xj+2
−j−1) + u2

m+1∏

j=1

(1 − 2xj+1
−j ),

or, upon setting m − 3, we obtain

xn
−n+3 = xn−1

−n+2 +
n−3∑

k=1

xk+1
−k

n−3∏

j=k

(1 − 2xj+2
−j−1) + u2

n−2∏

j=1

(1 − 2xj+1
−j ). (6)

This argument extends to the general case of the i-th left diagonal, where i ≤
T − 1. In this case every cell value of this diagonal is given by terms of the form

xn
−n+i = xn−1

−n+i−1 +
n−i∑

k=1

xi+k−2
−k

n−i∏

j=k

(1 − 2xi+j−1
−j−1 ) +

+ui−1

n−i+1∏

j=1

(1 − 2xi+j−2
−j ). (7)
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where n = 0, 1, 2, . . . , T . So, for the desired final row (see Table 1), n = T and
i = N therefore

xT
−T+N = xT−1

−T+N−1 +
T−N∑

k=1

xN+k−2
−k

T−N∏

j=k

(1 − 2xN+j−1
−j−1 ) +

+uN−1

T−N+1∏

j=1

(1 − 2xN+j−2
−j ), (8)

where N = 0, 1, . . . , T . Let AT
−T+N = xT

−T+N be the given final state at time T ,
where 0 ≤ N ≤ T .

For N = 1 the coefficient of u0 in (8) is 1 by Table 1. Hence a control u0 exists
with the property that the space-time diagram of Table 1 will reach AT

−T+1 at
time T . This unique control u0 is now fixed.

The case N = 2 gives that the coefficient of u1 in (8) is given by

T−1∏

j=1

(1 − 2xj
−j) =

T−1∏

j=1

(1 − 2a) = (1 − 2a)T−1.

Since AT
−T = a 
= 1/2 by hypothesis, it follows that u1 exists and is unique. This

now fixes the control u1.
When N = 3, since xj+1

−j = u0 for all j, the coefficient of u2 in (8) is

T−2∏

j=1

(1 − 2xj+1
−j ) =

T−2∏

j=1

(1 − 2u0) = (1 − 2u0)T−2.

It follows that the control u2 exists and is unique. The three controls u0, u1, u2 now
found will bring the system in Table 1 to the given values AT

−T , AT
−T+1, A

T
−T+2 at

time T .
For general N the coefficient of uN−1 is

T−N+1∏

j=1

(1 − 2xN+j−2
−j )

where we require that the xN+j−2
−j 
= 1/2 for all j, j = 1, 2, . . . , T − N + 1. We

show next that this is always the case.
If possible, let j be a subscript with xN+j−2

−j = 1/2. Then

xN+j−1
−j−1 = g(xN+j−2

−j−2 , xN+j−2
−j−1 , xN+j−2

−j )

= xN+j−2
−j−2 + 1/2 − 2xN+j−2

−j−2 /2
= 1/2.

Similarly, we get that xN+j
−j−2 = 1/2, and so on for all the cells down this diagonal

(cells whose terms are necessarily of the form xN+j−k
−j+k−2, k = 0, 1, 2, . . . ). Since this
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diagonal must intersect the row of A’s in Table 1, we see that there must be some
M such that AT

−T+M = 1/2 and this contradicts the hypothesis. It now follows
that a unique control uN−1 exists satisfying the requirement of controllability
stated at the outset. Incidentally, this same argument shows that the uN−1 
=
1/2. Since N is arbitrary, we get that all uN 
= 1/2, for N = 0, 1, . . . , T − 1.

The necessity is straightforward. For if such controls uN , N = 0, 1, . . . , T − 1
exist satisfying the controllability hypothesis then we claim that AT

−T+N 
= 1/2
for all N . Otherwise using Lemma 1 we can “work our way up and to the right”
of this cell and deduce that some uN = 1/2. Since this is not an admissible
control value by hypothesis this contradiction then proves the necessity.

We give the general idea on how to proceed: if for some N we have AT
−T+N =

1/2, then by Lemma 1 either the cell directly above it and to the left or the cell
directly above it and to the right must have value equal to 1/2. The worst case
scenario is if we keep going up and left, away from the line of controls on the
extreme right using repeated applications of Lemma 1 (cf., Table 1). Then at
some point in this procedure we must cross the first non-zero diagonal L−

0 at the
extreme left which consists of the quantity “a” only. Since a 
= 1/2 by hypothesis,
this cannot occur. Hence as we work our way up the space-time diagram using
said Lemma, eventually the process must bring us to some control uN with value
necessarily equal to 1/2; and this is a contradiction.

Example 1. Let a = 1/3, and T = 5 in Table 1. In addition let A5
−5 = 1/3,

A5
−4 = 1/4, A5

−3 = 1/5, A5
−2 = 1/6, A5

−1 = 1/7, A5
0 = 1/8 be the set of

reachable states. Recall that u0 = 1/4. Then a straightforward calculation using
the rule function g(x, y, z) = x + z − 2xz gives the following table of values;

Table 2.

t −5 −4 −3 −2 −1 0 1
0 0 0 0 0 0 1/3 1/4 = u0

1 0 0 0 0 1/3 1/4 −119/5 = u1

2 0 0 0 1/3 1/4 −38/5 −13/6 = u2

3 0 0 1/3 1/4 −11/5 −5/6 788/1702 = u3

4 0 1/3 1/4 −2/5 −1/6 19/63 7/32 = u4

5 1/3 1/4 1/5 1/6 1/7 1/8 .

When we speak of controllability on J where J is either [0, 1] or R we mean that
the admissible controls set Uad defined in Theorem 1 above is of the form Uad =
JT \ {(1/2, 1/2, . . . , 1/2)} and the AT

−T+N ∈ J for all N = 0, 1, . . . , T − 1. The
next theorem gives some results for the more difficult problem of controllability
on [0, 1].

Remark 1. Note that in the preceding example x5−3 = 1/5 by hypothesis. In
this case the resulting equation admits the solution u1 = −119/5 < 0; indeed
many such values are negative. Thus the controllability problem on [0, 1] has
no solution, although the same problem on R has a unique solution (as per
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Theorem 1) and it is exhibited in Table 2. This example shows us that for
controllability we must expect a delicate generally nonlinear interplay between
the values of the A’s, a and the controls ui.

Remark 2. We have presented in this paper only the case of J = R. The general
controllability problem on [0, 1] for fuzzy rule 90 have also been solved but only
for T ≤ 5. We gather that, in general, we can expect a solution to the controlla-
bility problem for [0, 1] provided the AT

−T+N , N ≥ 3, are very close to but not
equal to 1/2 and the time T is not too large. This is because the exponentially
fast asymptotes derived in [11] guarantee that AT

−T+N → 1/2 as T → ∞ for
every N . As one can gather from the obtained results the rule of thumb is, the
larger the time, the closer the initial conditions are to be to 1/2, in which case
there is some hope for solvability.
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