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Abstract. This paper targets characterization of the non-reachable
states of 1-dimensional irreversible cellular automata (CA). A theoret-
ical framework has been developed to design algorithms for computing
the number of non-reachable states as well as the number of single cycle
attractors of such a CA.
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1 Introduction

In the early 1950s, von Neumann and Stan Ulam [6] initiated the concept of
cellular automata (CA). Stephen Wolfram first studied a family of simple 3-
neighborhood 1-dimensional cellular automata that could simulate complex be-
haviors [7]. This structure attracted a large section of researchers working in the
diverse fields and a specialized class of 1-dimensional CA, called linear/additive
CA, had gained the primary attention [1]. The matrix algebraic tool provided
the framework for characterization of linear/ additive CA. However, character-
ization of 3-neighborhood nonlinear CA is yet to be explored. This motivates
us to concentrate on the non-linear CA - its characterization and analysis of its
state space. In this work, we target the special class of CA called irreversible CA.
The non-reachable states and the attractors of irreversible CA are characterized.
The theoretical framework thus developed leads to the design of algorithms for
computing the number of non-reachable states as well as the number of single
cycle attractors in an irreversible CA.

2 Cellular Automata Basics

A Cellular Automaton (CA) consists of a number of cells organized in the form
of a lattice. It evolves in discrete space and time, and can be viewed as an
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autonomous finite state machine (FSM). Each cell stores a discrete variable at
time t that refers to the present state of the cell. The next state of the cell at
(t + 1) is affected by its state and the states of its neighbors at time t. In this
work, we concentrate on such 3-neighborhood CA (self, left and right neighbors),
where a CA cell is having two states - 0 or 1. Therefore, the next state St+1

i of
the ith CA cell is specified by the next state function fi as
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If St
0 = St

n and St
n+1 = St

1 (that is, left neighbor of the left most cell is the right
most cell and vice versa), then the CA is referred to as periodic boundary CA.
On the other hand, if St

0 = St
n+1 = 0, the CA is null boundary.

If the next state function of the ith cell is expressed in the form of a truth
table, then the decimal equivalent of its output is conventionally referred to as
the ‘Rule’ Ri [7]. In a two-state 3-neighborhood CA, there can be a total of 28

(256) rules. Three such rules 90, 150, and 75 are illustrated in Table 1. The first

Table 1. Truth table for rule 90, 150 and 75

Present state : 111 110 101 100 011 010 001 000 Rule
(RMT ) (7) (6) (5) (4) (3) (2) (1) (0)

(i) Next State : 0 1 0 1 1 0 1 0 90
(ii) Next State : 1 0 0 1 0 1 1 0 150
(iii) Next State : 0 1 0 0 1 0 1 1 75

Note: RMT stands for Rule Min Term. The value 0/1 noted in 3rd/4th/5th row shows
the output of the three variable switching function.

row of the table lists the possible 23 (8) combinations of the present states of
(i − 1)th, ith and (i + 1)th cells at time t. The last three rows indicate the next
states of the ith cell at (t + 1) for the rules, 90, 150 and 75 respectively.

Definition 1. A rule is Balanced if it contains equal number of 1s and 0s in
its 8−bit binary representation; otherwise it is an Unbalanced rule.

Definition 2. The set of rules R =< R1, R2, · · · , Ri, · · · , Rn > that configures
the cells of a CA is called the rule vector.

The sequence of states generated (state transitions) during its evolution with
time directs the CA behavior. The state transition diagram of an irreversible
CA may contain cyclic (lies in a cycle) and non-cyclic states (Fig.1). Further,
in an irreversible CA there are some states that are not reachable (non-reachable



162 S. Das and B.K. Sikdar

states) from the other state and some states are having more than one pre-
decessor [4,5]. For example, the states marked as 5 and 13 of Fig.1 are the
non-reachable states. Whereas 15 and 7 have more than one predecessor.

An irreversible CA contains one or more cycles, called attractors. Fig.1 con-
tains two cycles – one of length 3 (7 → 3 → 11 → 7) and other is of length
1 (15). This paper concentrates on the characterization of non-reachable states
and the attractors of length 1 (single cycle attractors) in an irreversible CA.
Here we refer such single cycle attractors as simply attractors. The next section
introduces the concept of Reachability tree to formalize the characterization.

13 10 1 14 12 9 1564

825 7

11

0

3

Fig. 1. State transitions of an irreversible CA < 105, 177, 171, 75 >

3 Reachability Tree

Reachability Tree, proposed in [2,3], is a binary tree that represents the reachable
states of a CA. Each node of the tree is constructed with RMT (s) of a rule
(Section 2). The left edge of a node of the tree is considered as the 0-edge and
the right edge is as the 1-edge (Fig.2). The number of levels of the reachability
tree for an n−cell CA is (n + 1). Root node is at Level 0 and the leaf nodes are
at Level n. The nodes of Level i are constructed following the selected RMT s of
(i + 1)th CA cell rule Ri+1, while computing the next state.

The number of leaf nodes in the reachability tree denotes the number of
reachable states of a CA and a sequence of edges from the root to a leaf node,
representing an n−bit binary string, is the reachable state. The binary string is
formed assuming that the 0-edge and 1-edge represent 0 and 1 respectively.

During next state computation of a CA cell, the RMT s of the rule configuring
the CA cell take the leading role. However, the RMT s of two consecutive cell
rules Ri and Ri+1 are related while the CA changes its state. Since the CA is in
3-neighborhood, the RMT s are of 3-bit. So, a three bit window can be considered
that slides over the present state, from left to right, to get the next state [2]. If
the RMT window for ith cell is (bi−1bibi+1), bi = 0/1, then the RMT window
for (i+1)th cell will be either (bibi+10) or (bibi+11). In other words, if the ith CA
cell changes its state following the RMT k (decimal equivalent of bi−1bibi+1) of
rule Ri, then the (i + 1)th cell will generate its next state following the RMT
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Table 2. Relationship be-
tween RMT s of cell i and
cell (i + 1) for next state
computation

RMT at RMT s at
ith rule (i + 1)th rule

0 0, 1
1 2, 3
2 4, 5
3 6, 7
4 0, 1
5 2, 3
6 4, 5
7 6, 7

Table 3. RMT s of the CA < 8, 112, 44, 68 >

RMT 111 110 101 100 011 010 001 000 Rule
(7) (6) (5) (4) (3) (2) (1) (0)

First cell d d d d 1 0 0 0 8
Second cell 0 1 1 1 0 0 0 0 112
Third cell 0 0 1 0 1 1 0 0 44
Fourth cell d 1 d 0 d 1 d 0 68
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Fig. 2. Reachability Tree for the CA < 8, 112, 44, 68 >

2k mod 8 (bibi+10) or (2k + 1) mod 8 (bibi+11) of rule Ri+1. This relationship
between the RMT s of Ri and Ri+1, while computing the next state of a CA, is
shown in Table 2. The relation, noted in the table, plays an important role for
characterizing the CA behavior configured with different cell rules.

Fig.2 is the reachability tree for a CA < 8, 112, 44, 68 >. The RMT s of the
CA rules are noted in Table 3. The decimal numbers within a node at level i
represent the RMT s of the CA cell rule Ri+1 following which the cell (i+1) may
change its state. The RMT s of a rule for which we follow 0-edge or 1-edge are
noted in the bracket. For example, the root node (level 0) of Fig.2 is constructed
with RMT s 0, 1, 2 and 3 as cell 1 (rule 00001000) can change its state following
any one of the RMT s 0, 1, 2, and 3. As the state of its left neighbor is always
0, the RMT s 4, 5, 6 & 7 are the don′t cares for cell 1. It is obvious from Fig.2
that there are 12 possible sequences of edges in the tree. That is, 12, out of 16,
CA states are reachable and the rests are non-reachable. Based on the theory of
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Reachability tree, we next report the proposed characterization of non-reachable
states and the attractors of a CA.

4 Characterization of CA Targeting Non-reachable
States and the Attractors

This section presents a scheme to characterize the irreversible CA states. It iden-
tifies the non-reachable states and also computes the number of non-reachable
states of an irreversible CA in linear time. It also finds the number of single
cycle attractors of a CA. The theoretical aspects of such characterization are
formulated in the following theorems.

Theorem 1. An n−cell irreversible CA contains at least 2n−3 non-reachable
states.

Proof. In 3-neighborhood, 1
8 of the total CA states are to be determined by each

of the 8 RMT s of ith CA cell rule Ri. Since the CA is irreversible, there is at
least one RMT of Ri that causes an unbalanced reachability tree for the CA.
Therefore, 1

8 of total states are obviously non-reachable. Hence, the number of
non-reachable states is at least 2n

8 = 2n−3.

Theorem 2. An n−cell irreversible CA constructed only with the balanced rules
contains at least 2n−2 non-reachable states.

Proof. Let us consider the reachability tree for an n−cell irreversible CA, con-
figured only with balanced rules, is balanced up to the ith level and rule Ri

is responsible for that. Since Ri is balanced, therefore, there exist at least 2
RMT s that cause the tree as unbalanced. As 1

8 of total states are determined
by an RMT , total number of non-reachable states for such CA is (1

8 + 1
8 = 1

4 )
of the total states. Hence an n−cell irreversible CA, configured with balanced
rules, contains at least 2n−2 non-reachable states. Hence the proof.

Corollary 1. An n−cell linear/additive irreversible CA contains at least 2n−2

non-reachable states.

Proof. Since a linear/additive rule is balanced [2,3], the result is directly followed
from Theorem 2.

We next propose an algorithm that calculates the number of non-reachable states
of an irreversible CA utilizing the concept of reachability tree.

4.1 Computing the Number of Non-reachable States

The algorithm (CalNonReachableStates) assumes the variables S, an array of
sets, and nos (the number of sets in S). The arrays oldWeight and newWeight
are used to store the number of states that may be reachable and to store
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the number of states that are non-reachable respectively. The number of non-
reachable states are finally stored in the variable NS.

Algorithm 1: CalNonReachableStates
Input: n (CA size), Rule[n][8] (CA).
Output: number of non-reachable states.
Step 1: Find S[1] = {j}, where Rule[1][j] = 0 and 1 ≤ j ≤ 3,

and S[2] = {j}, where Rule[1][j] = 1 and 1 ≤ j ≤ 3.
If S[i] = φ (i=1/2), set NS := 2n−1, oldWeight[1] := 2n−1 and nos := 1.
Otherwise, set oldWeight[1] := 2n−1, oldWeight[2] := 2n−1 and nos := 2.

Step 2: For i = 2 to n − 1 do 2.1 to 2.4
2.1 For j = 1 to nos

Determine RMT s for the next level nodes from S[j] following Table 2.
Distribute these RMT s of ith rule with value 0 into S′[2j − 1] and 1 into

S′[2j].
Set newWeight[2j-1] := oldWeight[j]/2 and newWeight[2j] := oldWeight[j]/2.
If S′[k] = φ, set NS := NS + newWeight[k], where k = 2j − 1, 2j.

2.2 Replace RMT s 4, 5, 6 and 7 by equivalent RMT s 0, 1, 2 and 3 respectively
for each S′[k].

2.3IfS′[k] = S′[k′] for anyk′, setoldWeight[k] :=newWeight[k]+newWeight[k′];
otherwise, set oldWeight[k] := newWeight[k].

2.4 Assign unique sets of S′ to S, and nos := number of sets in S.
Step 3: For j = 1 to nos

Determine next RMT s of S[j], of which 2 are invalid since it is the last rule.
Distribute these RMT s of last rule with value 0 into S′[2j − 1] and 1 into

S′[2j].
If S′[k] = φ, then set NS := NS +oldWeight[k]/2, where k = 2j − 1, 2j.

Step 4: Report the value of NS as the number of non-reachable states of the CA.

Complexity: Since Algorithm 1 uses a loop in Step 2 that depends on n, and
the maximum value of nos. nos is constant. Therefore, the time complexity of
the algorithm is O(n).

4.2 Computing the Number of Attractors

Since the next state of a single cycle attractor is the attractor itself (attractor
15 of Fig.1), there should be at least one RMT (Table 1) of each cell rule (Ri)
for which the CA R cell (i) does not change its state. For example, the RMT
x0x (x = 0/1) of a rule is considered to find the next state of cell i when the
current states of its left neighbor ((i − 1)th cell), self (ith) and right neighbor
(((i+1)th cell) are x, 0 and x respectively. It implies, if the RMT is ’0’, the state
change of the cell (i) is 0 → 0. That is, for the rule Ri, if the RMT 0 (000), 1
(001), 4 (100) or 5 (101) is 0, the CA cell i configured with Ri does not change
its state. Similarly, if the RMT s 2 (010), 3 (011), 6 (110) or 7 (111) is 1 in Ri,
the cell configured with Ri can stick to its current state in the next time step. For
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0 Rule for cell  i

RMTs
111 110 101 010 000100 011

(0)(2)(3)(5)(6)(7) (1)
001

(4)

1 1 1 10 0 0

Fig. 3. RMT s of rule 204

example, if a CA cell is configured with the rule 204 (Fig.3), all RMT s of the
rule help formation of attractors.

Property 1: A rule Ri can contribute to the formation of single cycle attractor(s)
if at least one of the RMT s 0, 1, 4 or 5 is 0, or the RMT 2, 3, 6 or 7 is 1.
If any rule does not maintain Property 1, the CA can not have single cycle at-
tractors. The following algorithm CalNoOfAttractors scans a CA rule vector R
from left to right and explores all the attractors of the CA.

Algorithm 2: CalNoOfAttractors
Input: n (CA size), Rule[n][8] (CA).
Output: NoA (number of attractors).
Step 1: If any rule does not maintain Property 1, return NoA = 0.
Step 2: If RMT j (j =0, 1, 2, 3) is capable of generating the attractors, assign
S[1] = {j}, where Rule[1][j] = 0, S[2] = {j}, and Rule[1][j] = 1.

If S[i] = φ, then set oldWeight[1] := 2n−1 and nos := 1, where i = 1 or 2.
Otherwise, set oldWeight[1] := 2n−1, oldWeight[2] := 2n−1 and nos := 2.

Step 3: For i = 2 to n − 1 do 3.1 to 3.4
3.1 For j = 1 to nos

Determine RMT s for the next level nodes from S[j] following Table 2.
Remove the RMT s that are not capable of generating attractors.
Distribute these RMT s of ith rule with value 0 into S′[2j − 1] and 1 into

S′[2j].
Set newWeight[2j-1] := oldWeight[j]/2 and newWeight[2j] := oldWeight[j]/2.

3.2 Replace RMT s 4, 5, 6 and 7 by equivalent RMT s 0, 1, 2 and 3 respectively
for each S′[k].

3.3IfS′[k] = S′[k′] for anyk′, setoldWeight[k] :=newWeight[k]+newWeight[k′];
Otherwise, set oldWeight[k] := newWeight[k].

3.4 Assign unique sets of S′ to S, and nos := number of sets in S.
Step 4: For j = 1 to nos

Determine next RMT s of S[j], of which 2 are invalid since it is the last rule.
Remove the RMT s that are not capable of generating attractors.
Distribute these RMT s of last rule with value 0 into S′[2j − 1] and 1 into

S′[2j].
If S′[k] = φ, then set NoA := NoA +oldWeight[k]/2, where k = 2j − 1, 2j.

Step 5: Report NoA as the number of attractors.

Complexity: The complexity of Algorithm 2 is also O(n) as it is for Algorithm 1.



Characterization of Non-reachable States 167

5 Conclusion

This paper presents an efficient scheme to calculate the number of non-reachable
states of an irreversible CA in linear time. An algorithm is also proposed that
computes the number of single cycle attractors of such a CA. A theoretical
framework has been reported to characterize the non-reachable states as well as
the attractors of the CA.
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