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Abstract. The cellular automaton (CA) with multiple attractors in its
state space creates immense interest to devise solutions for pattern clas-
sification, pattern recognition, design of associative memory, query pro-
cessing, etc. This work characterizes the CA state space to explore the
essential properties of 1-dimensional nonlinear cellular automata with
single cycle attractors. The characterization of pseudo-exhaustive bits
(PE bits) is done to uniquely identify the attractor set of such a CA.
Theoretical framework thus evolved provides means to synthesize a CA
for a given attractor set with specified PE bits.

Keywords: Nonlinear cellular automata, attractor, MACA, PE bit,
classifier.

1 Introduction

The concept of Cellular Automata (CA) was initiated in 1950s by von Neumann
and Ulam [9]. Neumann’s CA involved 5-neighborhood interactions among the
cells with 29 states per cell. Researchers had tried to view rather simplified
structure of CA with the target to characterize its behavior, essentially keeping
the flavour as that of Neumann’s model [1,3,8]. In early 1980s, Stephen Wolfram
[10] studied a family of simple 3-neighborhood 1-dimensional cellular automata
[7] with two states per cell. This structure attracted a large section of researchers
working in diverse fields [2].

While characterizing the CA state space, the researchers identified a set of
CA states towards which the neighboring states asymptotically approach in the
course of dynamic evolution [11]. They referred this set of states as the attractor
of CA state space forming a basin of attractions. The CA with multiple attrac-
tors in its state space were of primary interest [2,6]. The single cycle attractor
is one where the number of states of an attractor is one [2]. Characterization of
single cycle attractors of the linear/ additive CA has been reported in [2,5,6].
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The applications of linear/ additive CA having multiple single cycle attractors
are also investigated. However, the characterization of single cycle attractors in
nonlinear CA state space is yet to be explored.

The above scenario motivates us to concentrate on the characterization of
single cycle attractors in 1-dimensional cellular automata [10]. A theoretical
framework has been developed to explore all the attractors of such a CA. This
further enables identification of pseudo-exhaustive (PE) bits [2] to address an
attractor and then synthesis of a CA for the given set of attractors & PE bits.
The algorithms/ schemes are proposed for efficient synthesis of such desired CA.

The preliminaries of CA, relevant for this work, have been reported in the
twin paper (Characterization of Non-reachable States in Irreversible CA State
Space). In the next section, we report the proposed characterization.

2 Characterization of Single Cycle Attractors

This section detailed out the theoretical framework developed to explore the
single cycle attractors of a given CA and the PE bits specifying the attractors.
It is based on the analysis of RMT s [4] of each cell rule of the CA.
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Fig. 1. State transitions of a CA with rule vector < 10, 69, 204, 68 >

2.1 Identification of Attractors of a CA

Since the next state (NS) of a single cycle attractor is the attractor itself (Fig.1),
there should be at least one RMT (Table 1) of each cell rule (Ri) for which the
CA cell (i) does not change its state. For example, RMT x0x (x = 0/1) is
considered to find the NS of cell i when the current states of its left neighbor
((i−1)th cell), self and right neighbor (((i+1)th) cell) are x, 0 and x respectively.
It implies, if such RMT is ’0’, the state change of cell (i) is 0 → 0. That is, for
the rule Ri, if RMT 0 (000), 1 (001), 4 (100) or 5 (101) is 0, the CA cell i
configured with Ri does not change its state. Similarly, if the RMT 2 (010), 3
(011), 6 (110) or 7 (111) is 1, it ensures a cell configured with Ri can stick to its
current state. For example, all RMT s of rule 204 help formation of attractors
(Fig.2).

Property 1: A rule Ri can contribute to the formation of single cycle attractor(s)
if at least one of the RMT s 0, 1, 4 or 5 is 0, or the RMT 2, 3, 6 or 7 is 1.
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Fig. 2. RMT s of rule 204

If any rule of a CA does not maintain Property 1, the CA can not have single
cycle attractors. The following recursive algorithm scans the rule vector R =<
R1, · · · , Ri, · · · , Rn > of a CA and explores all of its attractors.

Algorithm 1: FindAttractors (i, State)
Input: n (CA size), CA rule vector.
Output: set of attractors.
A). if i = 1, i.e, for the first rule {

if RMT 0 is 0 then
Set first two bits of State as 00 and call FindAttractors (i+1, State)

if RMT 1 is 0 then
Set first two bits of State as 01 and call FindAttractors (i+1, State)

if RMT 2 is 1 then
Set first two bits of State as 10 and call FindAttractors (i+1, State)

if RMT 3 is 1 then
Set first two bits of State as 11 and call FindAttractors (i+1, State) }

else if (1 < i < n), i.e, for an intermediate rule {
B). Set (i + 1)th bit of State as 0, and

Compute k – decimal equivalent of (i − 1), i, and (i + 1)th bit sequence of State

Check whether the RMT k of the ith rule can stick to the ith bit of State.
C). If yes, call FindAttractors (i+1, State)
D). Set (i + 1)th bit of State as 1

Compute k and check whether RMT k of ith rule can stick to ith bit of State.
If yes, call FindAttractors (i+1, State) }

else
E). Compute k= decimal equivalent of the (n − 1)th bit, nth bit of State and 0

If RMT k of last rule is the last bit of State, output the state as an attractor.
The argument State contains partially constructed attractor states. To find

the exact form of an attractor, we need to run FindAttractors(1, State).

Example 1. Consider a 4-cell CA with rule vector < 10, 69, 204, 68 > (Table 1).
To find attractors, we call FindAttractors(1,State), where State (- - - -) is empty.
Initially, the algorithm finds that i = 1 and RMT 0 for the first rule is 0. Hence
if a state starts with 00, the first bit will stick to 0. That is, the state may be
an attractor. Therefore, the first two bits of 4-bit State is filled up with 00, and
the recursive algorithm FindAttractors (i = 2 and State (0 0 - -)) is called.

First recursive call (i = 2 and State = 00- -): According to the algorithm, (i+1)th

bit -that is, the third bit of State is set to 0 (Algorithm 1 Step B). Hence, k = 0
(000), the (i − 1)th bit of the State = 0, ith bit = 0, and (i + 1)th bit = 0.
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Table 1. RMT s of the CA < 10, 69, 204, 68 > cell rules

RMT 111 110 101 100 011 010 001 000 Rule
(7) (6) (5) (4) (3) (2) (1) (0)

First cell d d d d 1 0 1 0 10
Second cell 0 1 0 0 0 1 0 1 69
Third cell 1 1 0 0 1 1 0 0 204
Fourth cell d 1 d 0 d 1 d 0 68

RMT stands for rule min term. d denotes don’t care bit. It can either be 0/1.

However, the ith (second) bit of the State -that is, 0 and the RMT x (RMT
0) of ith rule (69, Table 1) is (1) not the same. Then, execute Step D, and the
second bit of State is set to 1. Now the State is 001-, and k = 1. The RMTk
(1) of the second rule (69) is 0 -that is, the second bit value of State, and so
FindAttractors is called with i = 3 and State (001-).

Second recursive call (i = 3 and State = 001-): Since i < 4, as like the 1st

recursive call, the next bit (fourth bit) of State is set to 0. Therefore, the final
State is 0010, and k = 2 (010). The RMT 2 of third rule, however, is 1 -that
is, the third bit value of the State. So, FindAttractors is called with i = 4 and
State = 0010.

Third recursive call (i = 4 and State = 0010): Here it is checked whether the
last bit of State can be justified by the last cell rule to recognize the State as an
attractor. Now, k = 4 (100) and RMT 4 of the last rule can generate the fourth
bit of the State. Therefore, the State (0010) is a single cycle attractor (2).

Now i = 3. The fourth bit of State is set to 1. Hence the State is 0011, and
k = 3 (011). The RMT 3 of third rule is again 1 -that is, the third bit of the
State. So, the algorithm is further called with i = 4 and State = 0011.

Fourth recursive call (i = 4 and State = 0011): As like the third recursive call,
it checks whether the new last bit of State can be justified by the last cell rule.
Here k = 6 (110) and the RMT 6 of last rule is 1. Hence, the State 0011 (3) is
also an attractor.

If the execution of algorithm is continued, we can identify another two attrac-
tors - 1100 (12) and 1101 (13) (Fig.1).

To identify all the attractors of a CA, we may not repeat FindAttractors.
An attractor A can be derived once B and C are identified as the attractors.

Theorem 1. If B = b1b2 · · · bi−1bibi+1 · · · bn and C = c1c2 · · · ci−1cici+1 · · · cn

are two attractors of an n−cell CA and bi−1 = ci−1, bi = ci & bi+1
⊕

ci+1 = 1,
then B′ = b1b2 · · · bi−1bici+1 · · · cn and C′ = c1c2 · · · ci−1cibi+1 · · · bn are also the
attractors of the CA [4].

Example 2. Let B = 010101 and C = 000111 be the two attractors of a 6-
cell CA. For the attractors B and C, the third and fourth bits are the same
(bi−1 = ci−1 and bi = ci). Whereas the fifth bits (bi+1 and ci+1) are different.
Therefore, the derived attractors are B′ = 010111 and C′ = 000101.
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Corollary 1. The derived attractors (B′ and C′) are same as the original (B
and C) if bk = ck, ∀k, where 1 ≤ k < i − 1.

Proof. If bk = ck, ∀k where 1 ≤ k < i − 1, then we can write B′ = b1b2 · · · bi−1bi

ci+1 · · · cn = c1c2 · · · ci−2bi−1bici+1 · · · cn = c1c2 · · · ci−2ci−1cici+1 · · · cn = C.
Similarly, it can be shown that C′ = B. Hence the proof.

Corollary 2. An n−cell CA synthesized from 2 arbitrary attractors, can have
maximum 2m+1 attractors, where m = �n−1

3 �.

Proof. Let us consider a CA is synthesized from the attractors B and C. For
one set of (i − 1, i, i + 1), maintaining Theorem 1, the number of attractors is
doubled. That is, two pairs (22) of attractors are there. If there is another such
set of (i − 1, i, i + 1), each pair of attractors derives another pair of attractors.
Hence, for two such sets of (i − 1, i, i + 1), number of attractors is 22+1.

However, it is obvious that if i = 2 (Theorem 1), then B = B′ and C = C′.
That is, no new attractor is derived. Therefore, excluding the left most bit,
maximum number of possible (i − 1, i, i + 1) set is �n−1

3 �. Therefore, maximum
number of possible attractors is 2m+1, where m = �n−1

3 �. Hence the proof.

2.2 Extraction of PE-Bits

A number of works [2,5] have been reported, where MACA (multiple attractor
cellular automata) is considered to classify the set of data. The CA of Fig.1
can be employed to classify the patterns of two classes. Class I is represented
by S1 & S2 with attractors 2 (0010) & 12 (1100). Whereas class II (S3 & S4)
is represented by the attractors 13 (1101) & 3 (0011). To find the class of a
pattern p (1010), the CA is to be run for same time steps considering p as the
seed. Finally, the CA settles to an attractor A (2). Hence p (1010) belongs to
the class of A - that is, class I.

In Fig.1, there are 4 attractors. We need 4 places to store the class information.
The places can be identified by the least significant 2 bits of the attractors. That
is, for an input pattern, if the CA settles to the attractor 12 (1100), then we
have to search the place 00. These two least significant bit positions are the
pseudo-exhaustive (PE) bits of the CA.

The scheme to identify the PE bits of a linear MACA has been reported
in [2]. However, extraction of PE-bit positions in nonlinear CA is yet to be
addressed. We next report characterization of MACA that guides identification
of pseudo-exhaustive bits of the attractors of an MACA.

Theorem 2. 2k attractors, derived from 2 attractors, can uniquely be identified
by k bit positions.

Proof. Consider, a CA is synthesized from two given attractors B and C. Ac-
cording to Theorem 1, for one set of (i − 1, i, i + 1), the number of attractors
is doubled. For these four attractors, (i + 1)th and (i − 2)th bits (or any bit
from 1 to (n− 2)) are unique. Therefore, the four attractors can be identified by



Exploring CA State Space to Synthesize Cellular Automata 157

these two bits. If there is another such set (i − 1, i, i + 1), each of the attractor
pairs derives another pair of attractors. An additional bit -that is, last bit of the
set, is required to identify the attractors. Hence, for two such sets of (i − 1, i,
i + 1), total number of attractors are 22+1 and 3 bits are sufficient to identify
the attractors. Therefore, if there are (k − 1) sets of (i − 1, i, i+ 1), then we can
find 2k number of attractors that can be identified by k bits. Hence the proof.

Example 3. The 4 attractors (010101, 000111, 010111 & 000101) of Example 2,
derived from 010101 and 000111, can uniquely be identified by the second and
fifth bits (from left) of the attractors.

Theorem 2 states that if we can construct two attractors that can derive in total
2k attractors (Theorem 1), and then if a CA is synthesized considering those 2
attractors, the CA will must have 2k attractors with k PE-bits.

3 Synthesis of CA with Single Cycle Attractors

The theoretical framework reported in the earlier section enables synthesis of a
CA (R) for a given set of attractors. The following algorithm SynMACA reports
the synthesis of such a CA.

Algorithm 2: SynMACA
Input: set of attractors.
Output: CA (rule vector).
For each of the attractors {

for ith CA cell (1 ≤ i ≤ n)
S1: Set RMT k as the ith bit of the attractor, where k is the decimal equivalent of

the sequence of (i − 1), i, and (i + 1) bits of the attractor, assuming 0th and (n + 1)th

bits are 0. }
S2: Set the unfilled RMT s such that those RMT s as a whole can not contribute to

generate single cycle attractors. Output the CA rule vector.

The avoidance of RMT s that can generate single cycle attractors (S2, Algo-
rithm 2), can be realized following the designed next algorithm. It synthesizes a
CA that does not have any single cycle attractor.

Algorithm 3: CAWithoutSingleCycle
Input: n (CA size)
Output: CA

Step 1: Randomly synthesize an n-cell CA.
Step 2: If the CA is having no single cycle, goto Step 6.
Step 3: Select a CA cell arbitrarily as the victim.
Step 4: Identify the RMT s of victim cell rule that generates attractors.
Step 5: Replace the value of each such RMT by its complement.
Step 6: Report the final CA.

Example 4. This example illustrates the execution steps of Algorithm 2. Consider
the three 4-bit single cycle attractors - 0010 (2), 0101 (5) and 1111 (15). The
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algorithm scans each attractor from left to right and sets the RMT s accordingly.
Since the CA is a 3-neighborhood CA, a 3-bit window can be considered that
slides from left to right, assuming the left of the leftmost bit and right the
rightmost bit are 0. Hence while scanning attractor 2, it sets RMT 0 (000) of
first rule as 0, RMT 1 (001) of 2nd rule as 0, RMT 2 (010) of third rule as 1
and 0 to RMT 4 (100) of the 4th rule. Similarly, the attractors 3 and 15 can
be considered to fill up the RMT s of cell rules. However, a number of RMT s
remain unfilled. The unfilled RMT s are set in such a way that those can not
contribute to produce attractors. Here for simplicity, we set each unfilled RMT
abc by b′, where b′ is the complement of b (underlined RMT s of Table 2). The
CA synthesized from Algorithm 3, for a given set of attractors S, may have
additional attractors called the spurious attractors that are not belong to S. For
example, Algorithm 3 outputs a CA < 14, 145, 191, 65 > for the attractor set -
{0010 (2), 1011 (11) and 1111 (15)}. The attractor set of the CA contains two
spurious attractors– 1010 (10) and 0011 (3) (Theorem 1).

Table 2. Formation of CA < 8, 181, 151, 69 >

RMT 111 110 101 100 011 010 001 000 Rule
(7) (6) (5) (4) (3) (2) (1) (0)

First cell d d d d 1 0 0 0 8
Second cell 1 0 1 1 0 1 0 1 181
Third cell 1 0 0 1 0 1 1 1 151
Fourth cell d 1 d 0 d 1 d 1 69

The synthesis of an n-cell CA with k (k ≤ 1 + �n−1
3 �, Corollary 2) pseudo-

exhaustive bits is described in the following algorithm. It exploits Theorem 1
and constructs an n-bit attractor (A) randomly. Then a new one (say B), based
on the A, is formed such that while synthesizing an MACA with the attractors
A & B, a number (2k-2) of spurious attractors are generated.

Algorithm 4: SynMACAwithPE
Input: n (length of MACA), k (number of PE-bits)
Output: non-linear MACA (rule vector) with k pseudo-exhaustive bit positions
Step 1: Randomly synthesize an n-bit attractor A.
Step 2: Arbitrarily identify k bit positions on A such that an identified bit can have at
least one identified bit either of its left or right at a distance not less than 3 bit.
Step 3: Synthesize an n-bit attractor B following the rules -

(i) Identified bits of A & B should be complement to each other.
(ii) If ith and jth bits are two consecutive identified bits and |i− j| ≥ 3, ∀i, j, the

bits starting from (j + 1)th to (i − 1)th positions of A & B are the same.
(iii) Randomly fill up the other bits of B such that the non-identified bits can

not behave like an identified bit - that is, (i) and (ii) are denied.
Step 4: Synthesize CA that includes the attractors A and B (Algorithm 3).

Example 5. Let us consider synthesis of an n = 4 cell MACA with k = 2
PE bits. Assume A = 0101 is randomly selected as an attractor. The 1st and
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4th bits are identified as PE. The attractor B = 1100 is synthesized from A
following Step 3 of Algorithm 4. If we run Algorithm 3, a CA < 9, 119, 3, 20 > is
synthesized. It is having 4 single cycle attractors (0100, 0101, 1100, and 1101)
that can be identified by the 1st and 4th bits (00, 01, 10, and 11) only.

The earlier discussion points to the fact that for a given attractor set [the PE-
bits], we can synthesize an MACA following Algorithm 3 [Algorithm 4]. However,
the performance of Algorithm 4 is limited by the number of PE-bits (k) expected.

4 Conclusion

This paper reports a detail characterization of single cycle attractors in the CA
state space. Pseudo-exhaustive (PE) bits to identify the single cycle attractors
are identified. A theoretical framework is proposed to synthesize a CA with
specified PE bits and the attractor set.
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