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Abstract. We consider two formulations of a cellular automata: the
first one uses a gather-update paradigm and the second one a collision-
propagation paradigm. We show the equivalence of both descriptions
and, using the latter paradigm, we propose a simple way to define a
Cellular Automata on a graph with arbitrary topology. Finally, we exploit
the duality of formulation to reconsider the problem of characterizing
invertible cellular automata.

1 Introduction

Traditionnally, a 1D, nearest neighbors Cellular Automata (CA) defined on a
discrete spatial domain D is expressed as [3,9]

s(r, t + 1) = F (s(r − 1, t), s(r, t), s(r + 1, t)) ∀r ∈ D (1)

where F is the update rule, s(r, t) the state of site r ∈ D at time t = 0, 1, 2, . . ..
The extension to higher dimensions or larger neighborhood is straightforward.
Eq. (1) refers to what we call here a gather-update (GU) formulation. The values
s(r−1, t), s(r+1, t) of the neighbors are first read by cell r (gather operation) and
then combined through F to update s(r) at the next time step. This formulation
is standard in the CA community.

However, in the community of lattice gas automata (LGA) and lattice Boltz-
mann (LB) [3] a different formulation is preferred. In LGA or LB, the state
f(r, t) of a cell is multi-valued, associating one value with each neighbor. For
instance, in 1D, f(r, t) is a three-value column vector

f(r, t) = (f0(r, t), f1(r, t), f2(r, t))
T (2)

The quantity f0 is an information only known to the cell itself whereas f1 and
f2 are data intended to the left and right neighbors.

The update scheme for this formulation is called the collision-propagation
paradigm. During the propagation phase, the state fi at location r is moved to
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the state fi at location r + vi, i.e. fi(r) → fi(r + vi). In 1D, with v0 = 0, v1 = 1,
v2 = −1 the effect of propagation is to shift the states i = 1 to the right and
those with i = 2 to the left. In general, this streaming of data can be expressed
as

f in(t + 1) = Pfout(t) (3)

where P is the propagation operator and it contains the information about the
neighborhood topology. Here we consider f(t) as the whole set of states at time
t. Thus P takes a full configuration and creates a new one in which each internal
state is shifted to the appropriate direction. Note that we have introduced the
upperscript in and out to better distinguish incoming and outgoing information.

After propagation, f can be updated according to the chosen evolution rule.
We call this phase the collision and we denote by C the operator which transform
f in(r, t + 1) into fout(r, t + 1) for all r ∈ D

fout
i (r, t) = Ci

(
f in(r, t)

)
or, in short fout(t) = Cf in(t) (4)

By combining eqs. (3) and (4) we get

f in(t + 1) = PCf in(t) or fout(t + 1) = CPfout(t) (5)

which we call the collision-propagation (PC) formulation. In what follows, f will
denote either f in or fout, depending on the context.

Note that at the boundary of the domain D, some of the fi may not be
properly defined after the propagation step. In our 1D example, f1 at the left-
most r and f2 at the right-most r will be unknown. Boundary conditions must be
then supplied before collision can be applied. We call B the operator acting upon
the configuration f and providing the required information, which is obviously
problem dependent. Then, eq. (5) becomes f in(t + 1) = PCBf in(t).

The above structure is at the heart of the Complex Automata (CxA) approach
recently proposed by us [5] for coupling several CA’s together. The description
of all the CA’s in terms of the P , B and C operator provide a generic way to
define coupling between different models (see also [1,6]).

2 Cellular Automata on a Graph Topology

CA are usually defined on a regular lattice of cells. This is quite natural if the CA
represents a spatial domain. But some problems are more efficiently described
by a complex network [2]. This is the case of many applications in economy,
social science, epidemiology or system biology.

There is no well established way to define a dynamical evolution of a system
whose structure is a complex network or a graph. Clearly, CA have been quite
successful to model complex dynamical systems on a regular topology and it is
natural to extend the definition of a CA to any set of interconnected cells. We
call such an extension a CAG (Cellular Automata on a Graph). Here we use the
collision-propagation (CP) paradigm to express it.
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Informally a CAG is defined as a triple (V, E, C) where (V, E) is a directed
graph with V the set of nodes and E the set of edges. We assume that each node
r contains internal state variables f in

i (r) and fout
i (r). The number of f in

i (r) is
equal to the in-degree kin of node r and the number of fout

j (r) to its out-degree
kout. In addition we may have two extra states f in

0 (r) and fout
0 (r).

The quantity C is the collision operator which acts synchronously and locally
at each node r ∈ V and computes the outgoing values from the incoming ones

fout
j (r) = Cj(r)f in(r) 1 ≤ j ≤ kout

Note that now the action of C may depend on the node r for the simple reason
that different nodes may have a different number of neighbors.

The propagation P as well as the neighborhood are naturally defined from
the graph edges in E: assume there is an edge in E from node r0 to node r1. In
node r0 we suppose this outgoing edge is labeled with index ik. In r1, let us say
this incoming edge is labeled i�. Then, the propagation P will move fout

ik
(r0, t)

to f in
i�

(r1, t + 1).
As before, the C and P operators may be supplemented by an operator B to

define boundary conditions. Note however that in a graph, all existing entering
edges are expected to come from an existing node (a bit like in a periodic system)
and P does not create any missing information. In a CAG, interaction with the
external world is then naturally implemented with special nodes having given
boundary values and only outgoing edges.

From the above discussion, it is clear that the CP formalism easly describes
a CAG with the same compact relation as before, that is f in(t + 1) = Pfout(t)
and fout(t + 1) = Cf in(t + 1).

A software environment has been recently developed to implement a CAG [8].
Its output is illustrated in Fig. 1. The application we have considered is a simple
economical model on a complex network. The links of the network represents
the possible interactions between idealized agents trading goods against money.
Here we assumed that interactions between persons obey a scale-free topology.

In this application, the operator P implements the exchanges of good and money
between connected pairs of agents. Based on a local and self-adapting price p(r, t),
the operator C computes how an agent’s fortune is split among the sellers in its
neighborhood in order to buy their goods. In a second phase C also computes how
much goods each seller gives to each of its buyer in exchange of its money.

This simple market model and the simulation results are discussed in details
in [8]. Here we only want to stress the behavior observed in Fig. 1. Depending on
the initial condition and the graph topology, we can see the emergence of sub-
market, i.e. subgraphs that result from the deletion of the transaction between
some pairs of agents. It is indeed observed that two agents r1 and r2 that are
not in the same strongly connected component of the graph will gradually reduce
their interaction until the flux of money or goods that traverse the links r1 → r2
or r2 → r1 drops to zero. As time goes on, the dynamics reaches a stationnary
state. An interesting result of this model is that the local prices in each emergent
submarket converge to a unique value, but a different one in each submarket [8].
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Fig. 1. Left panel: the initial graph topology. Middle and right panels: the resulting
emergent submarkets with different initial money distributions.

3 Equivalence between the Gather-Update and
Collision-Propagation Formulation

In this section we show that the PC and GU formulations, despite their concep-
tual differences, are mathematically equivalent.

In GU, all the neighbors of cell r0 will gather the same information from
r0. When the neighbors of r0 need different data, the CP formulation is more
natural. This is the case in the above economical model in which a cell r0 gives a
different amount of money or goods to each of its neighbors. The same happens
in LGA/LB models because a different amount of particle flows to the different
neighbors. In the PC formulation, the flux of data between neighbors is made
explict whereas it is not in the GU model.

Another difference between the two formulations is that the GU combines in
one operation the reading of the neighbors state and the update of the site. On
the other hand the CP approach clearly disentangles the local part of the rule
(C) and its non-local part (P ), thus giving a formulation which is closer to the
computer implementation, at least in the case of a parallel code.

The translation from one formulation to the other is straightforward. Let us
first assume we have a rule in the CP approach where the state f(r) has, say, q+1
components. We write f(r) = (f0(r), f1(r), . . . , fq(r))T with fi(r) the quantity
that will be send to neighbor r + vi (v0 = 0). From fout(t + 1) = CPfout(t), we
have

fout
i (r) = Ci(fout

0 (r), fout
1 (r − v1) . . . fout

q (r − vq))T ∀i 0 ≤ i ≤ q

In the GU approach, a multi-valued state can be easily defined as s(r, t) =
fout(r, t). Since s has q + 1 components, the evolution rule F must be a set of
q + 1 rules F0, . . . , Fq such that

si(r, t + 1) = Fi(s(r, t), . . . , s(r − vq, t))

By definition of the GU formalism, Fi is a function of the entire state of the
neighbor cells. Therefore, in order for F to match the CP formulation, one has
to restrict F to one component only of the neighbor’s state. By introducing a
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selection operator Si such that Sis = si, we see that the equivalence between a
CP rule and a GU rule is obtained by choosing s(r, t) = fout(r, t) and

Fi(s(r, t), . . . , s(r − vq, t)) = Fi(S0s(r), S1s(r − v1), ..., Sqs(r − vq)) (6)
= Ci(S0s(r), S1s(r − v1), ..., Sqs(r − vq))

As an example, let us consider the simple 1D CA in which C is the identity. By
applying CP , the states f1 move east and the states f2 move west. In accordance
to eq. (6) this rule can also be written as

s1(r, t + 1) = s1(r − 1, t) s2(r, t + 1) = s2(r + 1, t) (7)

Thus the identity rule in CP implements simultaneously two rules in the GU
formulation, namely the so-called east and west rules.

We can now consider the inverse problem, i.e. how to write a GU rule in the
CP form. Let us assume we have

s(r, t + 1) = F (s(r, t), s(r − v1, t) . . . , s(r − vq, t))

where s and F are possibly multi-component quantities. To obtain a CP version,
the first step is to replicate s for all q +1 neighbor directions. We thus introduce
an expansion operator E such that fout(r) = Es(r) means fout

i (r) = s(r), for
0 ≤ i ≤ q. We can also define the inverse of E, the projection operator Π
such that Πfout(r) = fout

0 (r) = s(r). The propagation can then be applied to
fout = Es. To match the behavior of F in the GU formulation, one has to choose
Ci = F , for all 0 ≤ i ≤ q. It is indeed easy to check that

Es(t + 1) = f(t + 1) or ΠCPEs(t) = s(t + 1)

To illustrate this construction we take the east CA rule s(r, t+1) = s(r−1, t)
which simply moves information to east. The rule is F (s(r), s(r − 1), s(r + 1)) =
s(r − 1). On a spatial configuration . . . abc . . . it acts as follows

. . . abc . . .
F→ . . . zab . . .

where z is the state of the cell on the left. In the CP case, with the collision
C0(f0, f1, f2) = C1(f0, f1, f2) = C2(f0, f1, f2) = f1 we have for the vector f =
Es

. . .

⎛

⎝
a
a
a

⎞

⎠

⎛

⎝
b
b
b

⎞

⎠

⎛

⎝
c
c
c

⎞

⎠ P→ . . .

⎛

⎝
a
z
b

⎞

⎠

⎛

⎝
b
a
c

⎞

⎠

⎛

⎝
c
b
d

⎞

⎠ . . .
C→ . . .

⎛

⎝
z
z
z

⎞

⎠

⎛

⎝
a
a
a

⎞

⎠

⎛

⎝
b
b
b

⎞

⎠ . . .

which is, as expected, Es(t + 1).

4 Invertible CA

The question of finding the inverse of a CA rule has been discussed in several
papers [4], but mostly in the framework of a GU formulation. In the CP model,
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there is an easy way to build an invertible rule, using the physical interpretation
of a collision process followed by particle motion [3,7]: assume we have f(n) =
(PC)nf(0) for some given C operator. After n iterations let us apply a still to
be specified local transformation A to the configuration f(n) and apply, for n
steps, another collision operator C′. A rule is said invertible if we then obtain
back the initial configuration f(0), up to the transformation A. This condition
reads (PC′)nA(PC)nf(0) = Af(0) or, simply, (PC′)nA(PC)n = A since it is
true for any f(0). With

(PC′)nA(PC)n = (PC′)n−1PC′APC(PC)n−1

we see, by induction over n that condition (PC′)nA(PC)n = A is equivalent to

A = PC′APC (8)

In other words, if we can find A and C′ such that the above condition holds, the
CA is invertible.

It is easy to check that a way to solve (8) is to impose

A = R−1C PRP = R−1 C′R−1C = R (9)

for some reverse operator R having an inverse R−1. This solution is inspired
from LGA models of particles [3,9]: to reverse the particles motion, one needs
to perform an extra collision, reverse their velocity (R does it) and then run the
LGA n times to finally obtain the initial state with reversed velocities.

It is interesting to note that eq. (9) includes Fredkins method [9] to produce
a reversible rule in the GU approach

s(r, t + 1) = F ({s(r − vi, t)}q
i=0) ⊕ s(r, t − 1) (10)

where ⊕ denotes the logical xor and s is a Boolean state. The rule is reversible
(self-inverse) for any F since it can be written as s(r, t−1) = F ({s(r−vi, t)}q

i=0)⊕
s(r, t + 1) due to the property of the xor.

Let us now transform (10) in a CP form. To keep the notation simple we
consider a 1D case. Two states per cell must be stored: the current and previous
time step. Let us call them s and s̄. According to the procedure above, we
construct

f(r, t) = E(s, s̄)T = (s(r, t), s̄(r, t), s(r, t), s̄(r, t), s(r, t), s̄(r, t))T

where, by choice, components 3,4 are propagated to the right, components 5,6
to the left and components 1,2 are the rest states. Let us define the collision C
as follows

Cif = F (f1, f3, f5) ⊕ fi+1 i = 1, 3, 5
C2f = f1 C4f = f5 C6f = f3 (11)

Let us define R as the operator which, first, swaps the values which propagate in
one direction with those propagating in the other direction and, second, swaps
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fi and fi+1 for i = 1, 3, 5. R can be expressed by a 6 × 6 matrix

R =

⎛

⎝
B 0 0
0 0 B
0 B 0

⎞

⎠ with B =
(

0 1
1 0

)

It is easily verified that B2 = 1 and R = R−1. Let us now check whether
condition (9) holds. We have

PRPf(r) = PR(f1(r), f2(r), f3(r − 1), f4(r − 1), f5(r + 1), f6(r + 1))T

= P (f2(r), f1(r), f6(r + 1), f5(r + 1), f4(r − 1), f3(r − 1))T (12)
= (f2(r), f1(r), f6(r+1−1), f5(r+1−1), f4(r−1+1), f3(r−1+1))T

= Rf(r)

Thus PRP = R. For the collision condition C′R−1C = R we choose C′ = C
since the rule is expected to be its own inverse. By dropping the cell location r
and writing F for F (f1, f3, f5) we have

CRCf = CR(F ⊕ f2, f1, F ⊕ f4, f5, F ⊕ f6, f3)T

= C(f1, F ⊕ f2, f3, F ⊕ f6, f5, F ⊕ f4)T (13)
= (F ⊕ F ⊕ f2, f1, F ⊕ F ⊕ f6, f5, F ⊕ F ⊕ f4, f3)T

= (f2, f1, f6, f5, f4, f3)T = Rf

Thus CRC = R and Fredkins method is a special case of eq. (9).
It should be noted that another way to solve eq. (8) is

A = PR PRP = R−1 C′R−1C = R (14)

If we choose R = P−1 (P−1 always exists since it corresponds to moving the
information backwards) then (14) requires C′PCP = 1. Consider a 1D rule
s(r, t + 1) = F (s(r − 1, t), s(r, t), s(r + 1, t)) and its potential inverse s(r, t +
1) = G(s(r − 1, t), s(r, t), s(r + 1, t)). We set f(r) = (f1, f0, f2) = Es(r) =
(s(r), s(r), s(r)) and we associate C to F and C′ to G. Thus

C ′PCPf = C ′P

⎛

⎝
F (s(r − 1), s(r), s(r + 1))
F (s(r − 1), s(r), s(r + 1))
F (s(r − 1), s(r), s(r + 1))

⎞

⎠ = C ′

⎛

⎝
F (s(r − 2), s(r − 1), s(r))
F (s(r − 1), s(r), s(r + 1))
F (s(r), s(r + 1), s(r + 2))

⎞

⎠

Then C′PCP = 1 if

G[F (s(r−2), s(r−1), s(r)), F (s(r−1), s(r), s(r+1)), F (s(r), s(r +1), s(r +2))] = s(r)
(15)

which is the expected non-local relation expressing that rules F and G are inverse
of each other. It is clear that rule east F (s(r − 1), s(r), s(r + 1)) = s(r − 1) and
rule west G(s(r − 1), s(r), s(r + 1)) = s(r + 1) obey this inverse relation.

In general, the validity of eq. (15) requires to check all 25 values of s(r − 2),
s(r − 1), s(r), s(r + 1), s(r + 2). In 2D and a von Neumann neighborhood
213 = 8192 tests would be necessary to check whether C′PCP = 1. In contrast,
the verification of the local condition C′R−1C = R requires only 3×23 operations
in 1D and 5 × 25 = 160 in 2D.
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5 Conclusions

We have formally discussed the relation between the collison-propagation (CP)
and the gather-update (GU) formulation of a CA rule. The CP formulation is
naturally adapted to situations where the flow of information depends on the
neighbors. It is also well suited to couple several CA [5].

Furthermore we have introduced the concept of CAG (cellular automata on
a graph) by applying the CP approach to irregular topologies and asymmetrical
neighborhoods.

We have finally explored the conditions of finding the inverse of a CA rule
using both formulation. We found that two classes of invertible CA can be iden-
tified: the information to inverse the rule is local (as in the Fredkins construction
or in discrete fluid models); or the information to inverse the rule is non-local
(shared by the neighbors) and the problem is numerically more intensive.

This work is supported by the European Commission (COAST project EU-
FP6-IST-FET Contract 033664) and the Swiss National Science Foundation.
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