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Abstract. Cellular Automata(CA) has been used as modeling and com-
puting paradigm for a long time. And CA has been used to model many
physical systems. While studying the models of such systems, it is seen
that as the complexity of the physical system increase, the CA based
model becomes very complex and difficult to track analytically. Also
such models fail to recognize the presence of inherent hierarchical nature
of a physical system. In this paper we give the characterization of lin-
ear group GF (2p) CA. Especially we analyze the relationship between
characteristic polynomial and transition rule of linear group GF (2p) CA.

1 Introduction

Cellular Automata(CA) was first introduced by Von Neumann [1] for modeling
biological self-reproduction. Wolfram [2] pioneered the investigation of CA as
mathematical models for self-organizing statistical systems and suggested the
use of a simple two-state, three-neighborhood CA with cells arranged linearly in
one dimension. Das et al. ([3] ∼ [5]) developed a matrix algebraic tool capable
of characterizing CA. Cho et al. [6] proposed a new method for the synthesis of
one-dimensional 90/150 linear hybrid group CA for CA-polynomials. And Cho
et al. ([3] ∼ [9]) and many researchers ([6], [10] ∼ [12]) analyzed CA to study
hash function, data storage, cryptography and so on.
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CA has been used as modeling and computing paradigm for a long time. And
CA has been used to model many physical systems. While studying the models
of such systems, it is seen that as the complexity of the physical system increase,
the CA based model becomes very complex and difficult to track analytically.
Also such models fail to recognize the presence of inherent hierarchical nature
of a physical system.

To overcome these problems Sikdar et al. [12] and Cho et al. [13] studied
GF (2p) CA.

In this paper, by using the results in [6] we give the characterization of linear
group GF (2p) CA. Especially we analyze the relationship between characteristic
polynomial and transition rule of linear group GF (2p) CA.

2 Linear GF (2p) CA Preliminaries

A GF (2p) CA can be viewed as an extension of GF (2) CA. It consists of an array
of cells, spartially interconnected in a regular manner, each cell being capable of
storing an element of GF (2p).

Under three neighborhood restriction, the next state of the ith cell is given
by a function of the weighted combination of the present states of the (i − 1)th,
ith and (i+1)th cells, the weights being elements of GF (2p). Thus if qi(t) is the
state of the ith cell at the tth instant, then

qi(t + 1) = φ(wi−1qi−1(t), wiqi(t), wi+1qi+1(t))

where φ denotes the local transition function of the ith cell and wi−1, wi and
wi+1 ∈ GF (2p) specify the weights of interconnections.

The transition rule for a three neighborhood GF (2p) CA cell is represented
by a vector of length 3, < wi−1, wi, wi+1 >. Here wi−1 indicates the weight of
dependence of the cell on its left neighborhood, while wi and wi+1 indicate the
weighted dependency on itself and its right neighborhood respectively. If the
same transition rule vector is applied to all the cells of a GF (2p) CA, the CA is
called an uniform GF (2p) CA, otherwise it is called a hybrid GF (2p) CA.

An n cell GF (2p) CA can be characterized by an n×n state transition matrix
T = (tij) as follows:

tij =

{
wij , if the next state of the ith cell depends on the present

state of the jth cell by a weight wij ∈ GF (2p),
0, otherwise.

For example, let the state transition matrix of a 3-cell GF (22) CA be the following:

T =

⎛
⎝ 0 α2 0

α2 α α2

0 α2 1

⎞
⎠

where α is a generator of GF (22) = {0, 1, α, α2}. α is a solution of the generator
polynomial g(x) = x2+x+1 and the generatingmatrix M is as the following form:

M =
(

1 1
1 0

)
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The next state X ′ of the present state X of an n-cell GF (2p) CA with state
transition matrix T is given by X ′ = TX. Here T is an n × n matrix and X and
X ′ are n × 1 vectors.

For the vectors X and X ′ we need a vector representation of each αi. Each
of the vectors X and X ′ consists of a string of elements αi ∈ GF (2p). Therefore
we need a binary representation of each of these αi. The last column vector of
M i is used as the vector representation of αi.

The addition and multiplication operations follow the additive and multiplica-
tive rules of the underlying GF (22) as noted in Table 1.

Table 1. Multiplication and addition over GF (22)

× 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

In the above example M i (i = 2, 3) and αi (i = 1, 2, 3) are as the following form:

M2 =
(

0 1
1 1

)
, M3 =

(
1 0
0 1

)

α =< 10 >= 2, α2 =< 11 >= 3, α3 =< 01 >= 1

The characteristic polynomial Δ(x) of the state transition matrix T of a GF (2p)
CA is Δ(x) = |T + xI|. In the above example the characteristic polynomial of
T is Δ(x) = x3 + 2x2 + 3x + 3. This polynomial is a primitive polynomial on
GF (22) and thus its period is 63.

Let C be a GF (2p) CA whose state transition matrix is T . If det(T ) �= 0, then
C is called a group GF (2p) CA, otherwise it is called a nongroup GF (2p) CA.

3 Characterization of Linear Group GF (2p) CA

In the state transition matrix Tn of an n-cell GF (2p) CA C let the weight of the
right state and the weight of the left state be the same. Then this GF (2p) CA is
the natural extension of 90/150 GF (2) CA. Therefore the Tn is as the following:

Tn =

⎛
⎜⎜⎜⎜⎝

d1 i 0 · · · 0 0
i d2 i · · · 0 0
0 i d3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · i dn

⎞
⎟⎟⎟⎟⎠

where i ∈ {0, 1, 2, · · · , 2p − 1} is the weight.
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Remark. We denote Tn by Tn =< d1, d2, · · · , dj , · · · , dn >i, where dj ∈ GF (2p).

The following lemma can be proved by mathematical induction.

Lemma 3.1. Let Tn =< d1, d2, · · · , dn >i. Then we obtain the following
equation.

|T−1| = 0, |T0| = 1, |Tn| = dn|Tn−1| + i2|Tn−2|,

where |T | is the determinant of T .
Following two theorems give conditions for the uniform group GF (2p) CA.

Theorem 3.2. Let C be an n-cell uniform GF (2p) CA with the state transition
matrix Tn =< 0, · · · , 0 >i. If n is even (resp. odd), then C is a group(resp.
nongroup) GF (2p) CA.

Proof. Since dj = d = 0 for j = 1, 2, · · · , n, |Tn| = i2|Tn−2| by Lemma 3.1. Since
|T2| = i2|T0| = i2, |Tn| = i2|Tn−2| = in where n is even. Therefore for even n, C
is a group GF (2p) CA. Since |T1| = i2|T−1| = 0, |Tn| = i2|Tn−2| = 0 where n is
odd. Therefore for odd n, C is a nongroup GF (2p) CA.

Theorem 3.3. Let C be an n-cell uniform GF (2p) CA with the state transition
matrix Tn =< i, · · · , i >i. If n(mod3) �= 2 (resp. n(mod3) = 2), then C is a
group(resp. nongroup) GF (2p) CA.

Proof. By Lemma 3.1 |T0| = 1, |T1| = i and |T2| = 0. Since

|T3k+2| = i|T3k+1| + i2|T3k|
= i(i|T3k| + i2|T3k−1|) + i2|T3k|
= i3|T3k−1| = i3|T3(k−1)+2|,

|Tn| =

⎧⎨
⎩

(i3)k|T0|, n = 3k
(i3)k|T1|, n = 3k + 1
(i3)k|T2|, n = 3k + 2

Hence C is a group GF (2p) CA for n(mod3) �= 2.
Following two theorems give conditions for the hybrid group GF (2p) CA.

Theorem 3.4. Let C be an n-cell hybrid GF (2p) CA with the state transition
matrix Tn =< 0, d, 0, d, · · · >i. If n is even(resp. odd), then C is a group(resp.
nongroup) GF (2p) CA.

Proof. i) n = 2m + 1 :
Since |T2m+1| = 0 · |T2m| + i2|T2m−1| = i2|T2(m−1)+1| by Lemma 3.1, |T2m+1| =
(i2)m|T1| = 0.
ii) n = 2m :
Since |T2m| = d · |T2m−1| + i2|T2m−2| by Lemma 3.1 and |T2m−1| = 0 by i),
|T2m| = i2|T2m−2|. Therefore |T2m| = (i2)m|T0| = i2m. Hence C is a group(resp.
nongroup) GF (2p) CA for even(resp. odd) n.



140 U.-S. Choi et al.

Theorem 3.5. Let C be an n-cell hybrid GF (2p) CA with the state transition
matrix Tn =< d, 0, d, 0, · · · >i. If n(mod4) �= 3 (resp. n(mod4) = 3), then C is a
group(resp. nongroup) GF (2p) CA.

Proof. Sine |T0| = 1 and |T3| = 0 by Lemma 3.1, we obtain the following
equations.

|T4k+3| = d · |T4k+2| + i2|T4k+1|
= d · {0 · |T4k+1| + i2|T4k|} + i2{d · |T4k| + i2|T4k−1|} (3.1)
= i4|T4k−1| = i4|T4(k−1)+3|
= (i4)k|T3| = 0

|T2m| = 0 · |T2m−1| + i2|T2m−2| = i2|T2(m−1)| (3.2)

= (i2)m|T0| = i2m

By (3.1) and (3.2),

|T4k+1| = d · |T4k| + i2|T4k−1|
= d · i4k + i2|T4(k−1)+3|
= d · i4k.

This completes the proof.

4 The Relationship between Characteristic Polynomial
and Transition Rule of Linear GF (2p) CA

In this section we analyze the relationship between characteristic polynomial
and transition rule of linear GF (2p) CA. The following theorem can be proved
by mathematical induction.

Theorem 4.1. Let C be an n-cell GF (2p) CA with the state transition matrix
T =< d1, d2, · · · , dn >i and with the characteristic polynomial Δn. Then we
obtain the following equation.

Δ−1 = 0
Δ0 = 1 (4.1)
Δk = (x + dk)Δk−1 + i2Δk−2

where Δk is the characteristic polynomial of < d1, d2, · · · , dk >i,k = 1, 2, · · · , n.
Theorem 4.1 provides an efficient algorithm to compute the characteristic

polynomial of a GF (2p) CA. Initially, Δ−1 and Δ0 are set to zero and one,
respectively. Equation (4.1) is applied to obtain Δ1. It is then reapplied to Δ0
and Δ1 to calculate Δ2. Continuing, the polynomials Δ3, Δ4, · · · , Δn are com-
puted. Since Δn is the characteristic polynomial of T , the calculation of the
characteristic polynomial is completed.
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The following is an example of the calculation of the characteristic polynomial
of the GF (2p) CA with the rule vector < 0, 1, 2, 1 >2.

Example 4.2. Let C be a GF (22) CA with the rule vector < 0, 1, 2, 1 >2.

Δ−1 = 0
Δ0 = 1
Δ1 = (x + d1)Δ0 + 22Δ−1

= (x + 0) · 1 + 22 · 0
= x

Δ2 = (x + d2)Δ1 + 22Δ0

= (x + 1) · x + 22 · 1 (4.2)
= x2 + x + 3

Δ3 = (x + d3)Δ2 + 22Δ1

= (x + 2) · (x2 + x + 3) + 22 · x

= x3 + 3x2 + 2x + 1
Δ4 = (x + d4)Δ3 + 32Δ2

= (x + 1) · (x3 + 3x2 + 2x + 1) + 22 · (x2 + x + 3)
= x4 + 2x3 + 2x2 + 3

This recurrence relation forms the basis for the synthesis of GF (2p) CA. Initially,
we show how recurrence (4.1) satisfies the division algorithm for polynomials.
Then we demonstrate that the repeated application of the recurrence relation is
a reverse GCD computation.

We now show that repeated application of the division algorithm reverses the
computation of the characteristic polynomial of a GF (2p) CA. Suppose that Δn

and Δn−1 are known. By the division algorithm, x + dn and Δn−2 are uniquely
determined and easily calculated. If the division algorithm is then applied to
Δn−1 and Δn−2, it will calculate x + dn−1 and Δn−3. We may continue this
process until we have computed x + d1 and Δ−1 = 0.

Example 4.3. Let C be a 4-cell GF (22) CA with Δ4 = x4 +2x3 +2x2 +3 and
Δ3 = x3 + 3x2 + 2x + 1.

dividend divisor quotient remainder GF (22) CA byte
Δ4 Δ3 x + 1 22(x2 + x + 3) 1
Δ3 x2 + x + 3 x + 2 22x 2 (4.3)

x2 + x + 3 x x + 1 22 · 1 1
x 1 x + 0 22 · 0 0

From the calculation, we see that the divisor column is the same as the dividend
column shifted up one position and the remainder column is a shift of the i2 times
with the divisor column. Comparing (4.2) to (4.3), we see that the sequence of
polynomial in (4.3) is the reverse of the sequence of intermediate polynomials in
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the characteristic polynomial calculation. Furthermore, (4.3) yields the sequence
of quotients

[x + 0, x + 1, x + 2, x + 1]

By taking the constant terms of these quotients and reversing, we obtain the
rule vector < 0, 1, 2, 1 >2.

In Example 4.3 let Δ3 = x3+3. Then we obtain the rule vector < 3, 1, 2, 2 >3.
Also let Δ3 = x3. Then we obtain the rule vector < 0, 0, 0, 2 >3.

If C is an n-cell GF (2) 90/150 CA with the primitive polynomial as the
characteristic polynomial, then there exist two Δn−1. But the Δn−1 are several
in the Example 4.3.

By Theorem 4.1 we can obtain a GF (2p) CA with Δn and Δn−1. But the
method for finding Δn−1 does not exist until now.

Theorem 4.4. Let C be an n-cell GF (2p) CA with the state transition matrix
T =< d1, d2, · · · , dn >i. And let p(x) = xn + cn−1x

n−1 + · · · + c1x + c0 be
the primitive polynomial which is the characteristic polynomial of T . For the
nonsingular upper tridiagonal matrix U and for the companion matrix C of
p(x), let U and C be as the following:

U = (uij) =

⎧⎪⎨
⎪⎩

ui, i = j
ai, i = j − 1
0, i > j
xij ∈ GF (2p), otherwise

C = (sij) =

⎧⎨
⎩

1, i = j + 1 (j < n)
ci−1, j = n
0, otherwise,

where ci is the coefficient of p(x). Then we obtain the following equation.⎧⎨
⎩

d1 = u−1
1 a1

dk = u−1
k−1ak−1 + u−1

k ak (1 < k < n) (4.4)
dn = u−1

n−1an−1 + cn−1

Proof. Since the characteristic polynomials and the minimal polynomials of T

and C are the same, T and C are similar. So TU = UC. Then we obtain the
following:⎧⎪⎨

⎪⎩
a1 = u1d1
ak = iak−1 + ukdk (1 < k < n)
cn−1un = ian−1 + undn (4.5)
ui+1 = iui

Since i = u−1
k−1uk, we obtain the following required result⎧⎨

⎩
d1 = u−1a1
dk = u−1

k−1ak−1 + u−1
k ak (1 < k < n) (4.6)

dn = u−1
n−1an−1 + cn−1

5 Conclusion

In this paper we analyzed linear GF (2p) CA. Especially, we proposed transition
rules of linear group GF (2p) CA. Also we analyzed the characterization of linear
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group GF (2p) CA. Especially we analyzed the relationship between characteris-
tic polynomial and transition rule of linear group GF (2p) CA. Our results and
Cho et al.’s results [6] will be helpful for the development of the synthesis of
linear GF (2p) CA.
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