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Abstract. Many researchers have been studied synthesis method of
90/150 group CA. However, there is a lack of researches for synthesis
method of 90/150 nongroup CA. In this paper we propose an algorithm
for finding 90/150 Two Predecessor Cellular Automata. Using the pro-
posed algorithm we analyze 90/150 two predecessor CA. Especially, we
analyze 90/150 TPSACA and TPMACA which are useful to study hash-
ing. Also we analyze two types of 90/150 two predecessor CA. One is
two predecessor CA for the minimal polynomial whose type is of the
form xp(x) which is useful to study two predecessor CA whose depth
is 1. Another is two predecessor CA for the minimal polynomial whose
type is of the form x(x + 1)p(x) which is useful to study pseudorandom
number generation based on 90/150 two predecessor CA, where p(x) is
some primitive polynomial.

1 Introduction

Cellular Automata(abbreviately, CA) have been introduced by Von Neumann
and Ulam as models of self-organizing and self-reproducing behaviors ([1], [2]).
A CA is a discrete time dynamical system, which consists of a uniform array of
memories called cells. The states of cells in the array are updated according to
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a rule : the state of a cell at a given time depends only on its own state and
the states of its nearby neighbors at the previous step. A CA is a necessity in
many application areas such as test pattern generation, pseudorandom number
generation, cryptography, error correcting codes and signature analysis([3] ∼
[10]). The analysis of the state-transition behavior of group CA was studied by
many researchers ([6] ∼ [15]). Although the study of nonsingular linear machines
has received considerable attention from researchers, the study of the class of
machines with singular state-transition matrix has not received due attention.
The state-transition matrix of group CA is nonsingular. But the state-transition
matrix of nongroup CA is singular. Recently some interesting properties of non-
group CA have been employed in several applications([3], [5], [16] ∼ [20]). Espe-
cially, in ([3], [16]) they investigated a special class of nongroup CA denoted as
D1*CA. Based on this investigation, D1*CA has been proposed as an ideal test
machine which can be efficiently embedded in a finite state machine to enhance
the testability of the synthesis design. Also in [5] they investigated 90/150 two
predecessor CA whose minimal polynomial is of the form x(x + 1)p(x), where
p(x) is primitive. The use of these CA configurations simplifies the hardware
implementations and avoids several precomputations to obtain the matrix asso-
ciated to a quadratic function. Thus they studied several cases for different CA
lengths. But they didn’t show that there exists an n-cell 90/150 two predecessor
CA for each n ≥ 6. In this paper, using our algorithm for finding 90/150 two
predecessor CA, we analyze 90/150 two predecessor CA. Especially, we analyze
n-cell 90/150 TPSACA (whose minimal polynomial is xn) and n-cell TPMACA
(where minimal polynomial is xn−1(x + 1)) which are useful to study hashing
[16]. Also we analyze two types of 90/150 two predecessor CA. One is two pre-
decessor CA for the minimal polynomial whose type is of the form xp(x) which
is useful to study 90/150 two predecessor CA like D1*CA [3] whose depth is
1. The proposed n-cell 90/150 two predecessor CA has a maximum-length cy-
cle whose length is 2n−1 − 1 which is larger than that of D1*CA. Another is
90/150 two predecessor CA for the minimal polynomial whose type is of the
form x(x + 1)p(x) which is useful to study pseudorandom number generation
based on 90/150 nongroup CA [5], where p(x) is primitive.

2 CA Preliminaries

A CA consists of a number of interconnected cells arranged spatially in a regular
manner [2], where the state-transitions of each cell depends on the states of its
neighbors. If the next-state function of a cell is expressed in the form of a truth
table, then the decimal equivalent of the output is conventionally called the rule
number for the cell [2].

Neighborhood state : 111 110 101 100 011 010 001 000
Next state: 0 1 0 1 1 0 1 0 (rule 90)
Next state: 1 0 0 1 0 1 1 0 (rule 150)

Definition 2.1. ([16], [18] ∼ [20])
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i) Group CA: A CA is called a group CA if all the states in its state-transition
diagram lie on cycles, otherwise it is referred to as a non-group CA.

ii) Attractor: A state having a self-loop is referred to as an attractor. An
attractor can be viewed as a cyclic state with unit cycle length.

iii) Depth: The maximum number of state transitions required to reach the
nearest cyclic state from any non-reachable state in the CA state-transition
diagram is defined as the depth of the non-group CA.

iv) Multiple-attractor CA(MACA): The non-group CA for which the state-
transition diagram consists of a set of disjoint components forming (inverted)
tree-like structures rooted at attractors are referred to as multiple-attractor CA.
Single attractor CA(SACA) is a MACA whose the number of attractors is just
one.

v) TPMACA: TPMACA is a MACA such that every reachable state in the
state-transition diagram has only two predecessors. TPSACA is a SACA such
that every reachable state in the state-transition diagram has only two prede-
cessors. The minimal polynomial of an n-cell TPSACA is xn.

3 An Algorithm for Finding 90/150 Two Predecessor CA

In this section we introduce an algorithm for finding 90/150 two predecessor CA.
Let U be the following upper triangular matrix.

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 ∗ · · · ∗ ∗ ∗
0 1 a2 · · · ∗ ∗ ∗
0 0 1 · · · ∗ ∗ ∗
...

...
...

. . .
...

...
...

0 0 0 · · · 1 an−2 ∗
0 0 0 · · · 0 1 an−1
0 0 0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

And let T be the following 90/150 tridiagonal matrix.

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

d1 1 0 0 · · · 0 0 0
1 d2 1 0 · · · 0 0 0
0 1 d3 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 dn−1 1
0 0 0 0 · · · 0 1 dn

⎞
⎟⎟⎟⎟⎟⎟⎠

(Hereafter we write T by T =< d1, d2, · · · , dn >, where di ∈ {0, 1}.)
Moreover, let f(x) = xn + cn−1x

n−1 + cn−2x
n−2 + · · · + c1x + c0, where

ci ∈ GF (2). Then the following n × n matrix C is said to be the companion
matrix of f(x).
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C =

⎛
⎜⎜⎜⎜⎝

0 0 0 · · · 0 c0
1 0 0 · · · 0 c1
0 1 0 · · · 0 c2
...

...
...

. . .
...

...
0 0 0 · · · 1 cn−1

⎞
⎟⎟⎟⎟⎠

Definition 3.1. ([21]) For a given n-vector x and n × n matrix M , let

K(M, x) = (x; Mx; M2x; · · · ; Mn−1x)

We call K(M, x) the Krylov matrix and x is called a seed vector.

Theorem 3.2. ([15]) Let T =< d1, d2, · · · , dn > and C be the companion matrix
of the characteristic polynomial of T . Let U be the upper triangular matrix as
the above form satisfying TU = UC. Then we obtain the following equation:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d1 = a1
d2 = a1 ⊕ a2
d3 = a2 ⊕ a3 (3.1)

...
dn−1 = an−2 ⊕ an−1
dn = an−1 ⊕ cn−1

Let f(x) be a polynomial corresponding to a 90/150 two predecessor CA, then
f(x) is called a 90/150 two predecessor CA polynomial.

Theorem 3.3. ([15]) Let B be the n × n matrix obtained by reducing the n
polynomials

xi−1 + x2i−1 + x2i (mod f(x)) (i = 1, 2, · · · , n) (3.2)

where f(x) is a reducible polynomial. And let the set {v|Bv = (0, · · · , 0, 1)t} be
nonempty set, then the elements of {v|Bv = (0, · · · , 0, 1)t} become seed vectors
for the Krylov matrix, where At is the transpose of A.

Theorem 3.4. Let the Krylov matrix in Theorem 3.3 have an LU factorization.
Then f(x) in Theorem 3.3 is a 90/150 two predecessor CA polynomial.

The following algorithm is an algorithm for finding a 90/150 two predecessor CA
for the given reducible polynomial.

Algorithm. SynthesisOf90/150TPNCA
Input : Polynomial f(x)
Output : 90/150 two predecessor CA
Step 1 : Make the matrix B from (3.2).
Step 2 : Solve the equation Bv = (0, · · · , 0, 1)t. If there doesn’t exist a solution,

then STOP.
Step 3 : Construct a Krylov matrix H = K(Ct, v) by the seed vector v which

is a solution of the equation in Step 2.
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Step 4 : If H doesn’t have an LU factorization, then STOP.
Step 5 : Compute the LU factorization H = LU .
Step 6 : Compute 90/50 two predecessor CA for f(x) by the matrix U using

(3.1).

4 Analysis of 90/150 Two Predecessor CA

In this section we analyze 90/150 two predecessor CA.

Theorem 4.1. Let Δ2m be the characteristic polynomial of

< d1, d2, · · · , dm, dm, · · · , d2, d1 >

Then the following equation hold.

Δi+1Δ2m−i−1 + ΔiΔ2m−i−2 = Δi+2Δ2m−i−2 + Δi+1Δ2m−i−3,

where i = 1, · · · , 2m − 2, Δ−1 = 0 and Δ0 = 1.

Theorem 4.2. Let Δ2m be the characteristic polynomial of

< d1, d2, · · · , dm, dm, · · · , d2, d1 >

and let f(x) be the characteristic polynomial of < d1, d2, · · · , dm ⊕ 1 >. Then
the following holds:

Δ2m = {f(x)}2

Theorem 4.3. Let CS
k =< d1, · · · , dk > be a k-cell 90/150 TPSACA. Then

the following hold:
(i) CS

2k =< d1, · · · , dk ⊕ 1, dk ⊕ 1, · · · , d2, d1 > is a 2k-cell TPSACA with the
minimal polynomial x2k.
(ii) CS

2k+1 =< d1, · · · , dk, 0, dk, · · · , d1 > is a (2k + 1)-cell TPSACA with the
minimal polynomial x2k+1.

Theorem 4.4. Let N(Tm) = {(a1, a2, · · · , am)t|a1, a2, · · · , am ∈ {0, 1}}(:=
[(a1, · · · , am)t]) be the null space of the state-transition matrix Tn of an n-cell
90/150 TPSACA. Then the following hold:
(i) If n = 2m(m ∈ N) and N(Tm) = {(a1, a2, · · · , am)t|a1, a2, · · · , am ∈
{0, 1}}(:= [(a1, a2, · · · , am)t]), then N(Tn) = [(a1, a2, · · · , am, am, · · · , a2, a1)t].
(ii) If n = 2m + 1(m ∈ N) and N(Tm) = [(a1, a2, · · · , am)t], then
N(Tn) = [(a1, a2, · · · , am, 0, am, · · · , a2, a1)t].

Example 4.5. Since < 0, 0, 0 > is a 3-cell 90/150 TPSACA, < 0, 0, 1, 1, 0, 0 >
is a 6-cell 90/150 TPSACA and < 0, 0, 0, 0, 0, 0, 0 > is a 7-cell 90/150 TPSACA.

Theorem 4.6. Let Cn
S =< d1, · · · , dn > be an n-cell 90/150 TPSACA. Then

C2n+1
M =< d1, · · · , dn, 1, dn, · · · , d1 > is a (2n + 1)-cell 90/150 TPMACA with

the minimal polynomial x2n(x + 1).
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Table 1. TPSACA and TPMACA

n TPSACA N(TS) TPMACA N(TM ) N(TM ⊕ I)
1 0 1 1 0 1
2 11 11
3 000 101 010 101 111
4 1001 1111
5 11011 11011 11111 11011 10101
6 001100 101101
7 0000000 1010101 0001000 1010101 1101011
8 10000001 11111111
9 100101001 111101111 100111001 111101111 101111101
10 1101001011 1101111011
11 11011011011 11011011011 11011111011 11011011011 10111111101
12 001101101100 101101101101
13 0011000001100 1011010101101 0011001001100 1011010101101 1101011101011

Remark. For the case n is even, there does not exist n-cell 90/150 TPMACA
whose minimal polynomial is f(x) = xn + xn−1.

Theorem 4.7. Let N(Tm) = [(a1, · · · , am)t] be the null space of the state-
transition matrix Tm of an m-cell 90/150 TPSACA Cm

S . Then the null space of
the (2m + 1)-cell 90/150 TPMACA C2m+1

M derived from Cm
S is

N(T2m+1) = [(a1, · · · , am−1, am, 0, am, am−1, · · · , a1)t])

In Table 1, N(TS) means the null space of n-cell 90/150 TPSACA and N(TM )
means the null space of n-cell 90/150 TPMACA. Also N(TM ⊕ I) means the set
of all attractors for each n-cell 90/150 TPMACA. 101 means [(1, 0, 1)t].

Chattopadhyay[22] presented an algorithm for finding MACA with all linear
rules (60, 90, 102, 150, 170, 204, 240), but in this paper we present a method which
synthesize TPMACA using rule 90 and rule 150.

Theorem 4.8. Let f(x) = xp(x), where p(x) is a polynomial of degree n − 1.
Then there exists a primitive polynomial p(x) such that f(x) is the minimal
polynomial corresponding to the n-cell 90/150 two predecessor CA.

Theorem 4.9. Let f(x) = x(x + 1)p(x), where p(x) is a polynomial of degree
n − 2(n ≥ 6). Then there exists a primitive polynomial p(x) such that f(x) is
the minimal polynomial corresponding to the n-cell 90/150 two predecessor CA.

Table 2 shows that there exists an n-cell 90/150 two predecessor CA for the
90/150 two predecessor CA polynomial of the form xp(x) (p(x) is some primitive
polynomial) for each n ≥ 4. Also Table 3 shows that there exists an n-cell 90/150
TPMACA for the 90/150 TPMACA polynomial of the form x(x + 1)p(x) (p(x)
is some primitive polynomial) for each n ≥ 6.
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Table 2. 90/150 CA for xp(x)
(In this table, 320 stands for the polynomial x3 + x2 + 1.)

n p(x) CA Configuration n p(x) CA Configuration
4 320 0111 13 12,10,9,8,6,2,0 1011101001000
5 430 00010 14 13,8,5,3,0 01100110101000
6 520 001001 15 14,11,9,7,0 100010001010000
7 65320 0011111 16 15,12,4,3,0 1000010010101010
8 740 00000011 17 16,15,12,10,0 11011110100010001
9 86520 000010001 18 17,3,0 100011101011110001
10 95320 0000100100 19 18,7,0 0001110111000101000
11 10,3,0 01011111110 20 19,10,9,3,0 01010100110000000010
12 11,2,0 011101000110 21 20,3,0 001001010110100100100

Table 3. 90/150 CA for x(x + 1)p(x)
(In this table, 210 stands for the polynomial x2 + x + 1.)

n p(x) CA Configuration n p(x) CA Configuration
4 210 1100 13 11,9,7,5,2,1,0 1111101110111
6 410 100110 14 12,10,2,1,0 01000110010010
7 53210 0100101 15 13,12,10,5,2,1,0 000101010001101
8 610 00001110 16 14,12,10,1,0 1100110011010011
9 73210 010000000 17 15,12,9,1,0 00000111110100111
10 85310 0001001001 18 16,14,12,1,0 101100100110001101
11 95410 10000110011 19 17,13,12,1,0 0100101010011011100
12 10,7,6,5,2,1,0 001111010101 20 18,17,12,10,9,1,0 00111100100000111000

5 Conclusion

In this paper we proposed an algorithm for finding 90/150 two predecessor CA.
Using the proposed algorithm we analyzed 90/150 two predecessor CA. Espe-
cially, we analyzed 90/150 TPSACA and 90/150 TPMACA which are useful to
study hashing. Also we analyzed two types of 90/150 two predecessor CA. One
is two predecessor CA for the minimal polynomial whose type is of the form
xp(x). Another is two predecessor CA for the minimal polynomial whose type is
of the form x(x + 1)p(x).
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