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Martin Styner2, and Miguel A. González Ballester1
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Abstract. This paper presents a method for CT-US rigid registration in
minimally-invasive computer-assisted orthopaedic surgery, whereby the
registration procedure is reformulated to enable effectively real-time reg-
istrations. A linear Kalman filter based algorithm is compared to an
Unscented Kalman filter based method in simulated and experimental
scenarios. The validation schemes demonstrate that the linear Kalman fil-
ter is more accurate, more robust, and converges quicker than the UKF,
yielding an effectively real-time method for rigid registration applica-
tions, circumventing surgeons’ waiting times.

1 Introduction

In computer-assisted orthopaedic surgery (CAOS), surgeons often benefit from
enhanced visualization by registering a pre-operatively acquired medical image,
such as from CT or MRI, to the patient’s anatomy during surgery. Registration
is usually achieved by digitizing bone surface points from the patient using a
navigated pointer, and determining the optimal transformation between the pre-
operative data and the points. The use of navigated ultrasound (US) imaging
for acquiring bone surface points to be used in registration is an ongoing area
of research, and one of the main advantages of using US is that points can be
acquired non-invasively [1,2,3].

The use of the Unscented Kalman Filter (UKF) was recently proposed for rigid
registration in CAOS, and was shown to have improved performance compared
to the Iterative Closest Point method [4]. The advantage of the Kalman filter
is that it is a computationally efficient least-squares solver, which is an ideal
feature for intra-operative registration applications. Furthermore, the UKF was
originally formulated to avoid some of the linearizations that occur in the classic
formulation of the Kalman filter.
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(a) (b)

Fig. 1. (a) Typical result of US segmentation (dark points) overlaid onto an US image
and a contour generated from the ground truth (light grey) (b) segmented US points
overlaid onto ground truth

We consider a US-based registration application in this paper, and reformu-
late the registration procedure such that the registration is effectively real-time.
US images are considered as sequential signals, where each frame provides sur-
face points of the anatomy. The registration is updated as frames are acquired,
implying that iterations are no longer dependent on the number of points [4].
The registration itself begins during data acquisition, which implies that there is
no need to wait until a full set of points is obtained before starting the algorithm.

The linear Kalman filter formulation used in this paper is akin to the pertur-
bation Kalman filter [5]. The Extended Kalman Filter (EKF) could have been
an alternative formulation, but the linearizations employed for this study were
much simpler than the computation of Jacobian matrices [6]. We will demon-
strate that the linear Kalman filter converges more quickly than the UKF, and
is more robust with respect to starting positions. To evaluate the performance of
these methods, we consider minimally-invasive interventions around the spine as
potential target applications. The methods are compared using synthetic data
and also in an experimental set-up using navigated 2D US, whereby the ac-
curacy of the proposed registration method shows promise for use in clinical
applications.

2 CT to US Rigid Registration

In the usual US-based registration scenario, navigated US images provide a set
of bone surface points in the coordinate space of the patient’s anatomy, which
is referenced by the navigation system. To enhance the limited information pro-
vided by US, a surface model representation of the anatomy, as obtained from
a CT for instance, is then registered to the US-acquired bone surface points.

The problem at hand is in finding the transformation that would place the
CT-generated surface model in the coordinate space of the anatomy. For the
Kalman filters, the measurement, zk, is a set of points in world coordinates
acquired by segmenting the US images. At a given time step k, the state xk
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is comprised of the true parameters that represent the transformation between
the US points and the corresponding points on the surface model, ẑ-

k, which are
found by searching for closest points using Euclidean distances. The estimate of
this state is denoted x̂k, and is a 6 × 1 vector [α, β, γ, tx, ty, tz ]T .

2.1 Kalman Filtering for Registration

For the UKF and the EKF, the state xk represents the transformation from the
CT surface model to the set of US-acquired points [4,6], and can be regarded
as time-invariant. For the linear Kalman filter used here, however, we consider
that xk is time-variant, meaning that the state represents incremental transfor-
mations during the registration procedure [5]. For a given measurement zk, the
corresponding points ẑ-

k are found from the surface at the prior position, Sk−1.
To illustrate the registration method, consider the prediction and correction

steps of the linear Kalman filter equations [7], with the unused terms omitted:

x̂-
k = x̂k−1 (1)

x̂k = x̂-
k + Kk (zk − Hx̂-

k) (2)

At a given time step k, the correspondence is found between the new measure-
ment zk and Sk−1, yielding ẑ-

k. The predicted state x̂-
k is then updated (1) and

applied to ẑ-
k, yielding the estimated measurement ẑk = Hx̂-

k. The predicted
state is then corrected (2) and applied to the surface Sk−1, yielding Sk.

No model was used for propagating the state x̂k. zk and corresponding points
ẑ-

k are sets of vertically concatenated points such that they each become 3N × 1
column vectors. For instance, ẑ-

k is written as [ẑ-
x1, ẑ

-
y1, ẑ

-
z1, . . . , ẑ

-
xN , ẑ-

yN , ẑ-
zN ]Tk ,

where N is the number of points segmented from US [4].
The matrix H relates the measurement zk to the state x̂k, and is used in all

the correction steps of the Kalman filter. In the registration scenario, H should
relate points in Cartesian coordinates to the parameters of a rigid transformation
matrix, which is denoted T, such that:

ẑk = Tẑ-
k = Hx̂-

k (3)

In order to determine H, it becomes necessary to employ approximations for the
terms in T. We employ a zeroth order truncation of the Taylor Series represen-
tations of cosine and sine, such that for a given angle θ, cos θ ≈ 1 and sin θ ≈ θ,
which should be valid for small angles. We denote the approximation of T by
TA (using the αβγ convention), and (3) for a single point can be written as:

TAẑ-
k =

⎛
⎝

1 γ + αβ αγ − β tx
−γ 1 − αβγ α + βγ ty
β −α 1 tz

⎞
⎠

⎛
⎜⎜⎝

ẑ-
xk

ẑ-
yk

ẑ-
zk

1

⎞
⎟⎟⎠ (4)
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The residual in the Kalman filter update step (2), zk−Hx̂-
k, can be reinterpreted

as zk − TAẑ-
k, and TAẑ-

k can finally be expressed as:

TAẑ-
k =

⎛
⎝

ẑ-
xk

ẑ-
yk

ẑ-
zk

⎞
⎠ + Hx̂-

k +

⎛
⎝

αβẑ-
yk + αγẑ-

zk

βγẑ-
zk − αβγẑ-

yk

0

⎞
⎠ (5)

Where H, to be used in the Kalman filter equations, becomes:

H =

⎛
⎝

0 −ẑ-
zk ẑ-

yk 1 0 0
ẑ-

zk 0 −ẑ-
xk 0 1 0

−ẑ-
yk ẑ-

xk 0 0 0 1

⎞
⎠ (6)

For a single point, H is a 3 × 6 matrix that comprises the cross product matrix
on the left side, and I3 on the right side. For N points, where ẑ-

k is a 3N × 1
vector, H is a 3N × 6 matrix.

Moghari et al. [4] applied the UKF to estimate rigid transformation param-
eters in US-to-CT registration. By their implementation, the UKF iterates N
times, where N is the number of points in their zk, and for each iteration, the
number of points is gradually increasing. While this approach usually provides
smooth filter behavior, it does not take advantage of the Kalman filter’s sequen-
tial real-time nature.

With the UKF, no explicit relationship between the transformation parame-
ters x̂k and the points zk needs to be defined, but rather the UKF operates on
the principle of an implicit linearization of the relationship. At each prediction
step, the estimated state x̂k is applied to the surface at the initial position, S1,
producing Sk. Correspondence is determined between the measurement and Sk,
and when the registration is completed, the resulting state is applied to S1.

2.2 Frame-by-Frame Registration Procedure

In the usual approach to registration, the registration procedure does not begin
until a full set of points is acquired from the anatomy. For the work presented
here, we propose using the Kalman filter to update the registration as navigated
2D US images are acquired.

For both Kalman filters, each US frame is treated as one signal, which yields
a coplanar cloud of points, zk. The registration is updated with each newly
acquired frame, and so the time step k is now related to the number of US frames,
as they are acquired, rather than the number of points. During image acquisition,
the surgeon can then receive visual (fig. 1(b)) and numerical feedback in terms
of how well the Kalman filter fits the surface to the US-acquired points. The
result of this approach is that fewer iterations are needed for the registrations.
To stabilize the frame-by-frame processing of the filters, a small subset of points
from prior US frames is used to complement the point sets of new frames. In
§3, the original UKF registration algorithm is compared to the frame-by-frame
UKF and linear Kalman filter registration methods.
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3 Results

3.1 Simulated Data

In order to compare their performance on ideal data, the three Kalman filter reg-
istration methods were used with synthetic data. For the measurement, consider
100 randomly selected points from a 3D surface model of an L4 vertebra, in the
area that would be accessible by US. N (0, 1[mm2]) noise was added to the coor-
dinates of the points. In the original UKF registration method (point-by-point
UKF), each point is treated 99/2 times on average. To achieve a comparison using

(a) (b)

Fig. 2. Distribution of RMS corresponding point-to-point errors, computed between
surfaces at estimated positions and the ground truth, for (a) synthetic data and (b)
experimental validation, comparing the three Kalman filter-based approaches

(a) (b)

Fig. 3. (a) Mean errors plotted with respect to number of iterations and (b) distribu-
tion of RMS point-to-surface errors, computed using nearest points between estimated
surfaces and ground truth
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the full-dataset approach, the frame-by-frame filters were iterated 50 times over
the 100 points. A set of 500 randomly-generated rigid transformations (within a
range of ± 5 [deg.] for the three angles, ± 10 [mm] for two translations and 0-20
[mm] in the US scanning direction) was applied to the surface model, and each
Kalman filter was used to register the surface to the points for each transforma-
tion. Errors were computed by measuring the distances between corresponding
points on the registered surface and the surface at the true position.

As can be inferred from the graph in fig. 2(a), the two UKF methods have
similarly distributed mean errors, but the point-by-point UKF had much higher
errors in several cases. This result indicates that the point-by-point UKF was
more susceptible to initial positions than the full-dataset approach, and that
100 points were not enough for it to converge to a desirable result. The linear
Kalman filter rapidly converged to the correct solution (overall mean error of
0.79 [mm]) and was robust with respect to starting positions. Nevertheless, it is
to be expected that given a larger set of points, and more iterations during the
registration, the UKF would eventually achieve an accurate registration.

3.2 Experimental Validation with Real US Data

The experimental validation was performed on a navigated plastic L4 vertebra
immersed in a water bath. A ground truth registration was obtained using a
navigated pointer to digitize surface points and then applying a surface matching
algorithm (point-to-surface error was 0.5 [mm]). After calibrating the US probe
[8], navigated 2D B-mode US images where then acquired using the Philips
Sonos 7500 ultrasound system. 36 tracked US frames were acquired, focusing on
the areas that would be visible in a real patient set-up (fig. 1(b)). Bone contour
points were then automatically extracted by combining Otsu thresholding with a
morphological opening, and a thinning of the resulting border along the US scan
lines. This preliminary segmentation method is suitable for water bath scans,
with an expected segmentation error of 1-2 [mm], and less than one second of
computation per frame. For each frame, the segmentation was sampled to yield
100 bone contour points. Fig. 1(a) shows an ultrasound image with a typical
outcome of the segmentation procedure and the contour from the ground truth.

As in §3.1, 500 transformations were randomly generated and applied to the
ground truth. The Kalman filters were then used to register the transformed
surface to the US points. For the frame-by-frame filters, 8 points were randomly
selected from each prior US image as new frames were used for the registration.
The point-by-point UKF was halted once 300 points were processed in order to
keep this method computationally feasible.

Fig. 2(b) shows the distribution of mean errors over all registrations, which
were computed by measuring distances of corresponding points between regis-
tered surfaces and the ground truth, providing a measure in the areas that were
not scanned by ultrasound (i.e. the vertebral body). The linear Kalman filter
presented in this paper showed superior performance in terms of accuracy (over-
all mean error of 1.48 [mm]) and robustness with respect to starting positions
(standard deviation of 0.20 [mm]). Although the point-by-point UKF achieved a
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Fig. 4. Distributions of transformation parameter errors

lower mean error than the frame-by-frame UKF, it demonstrated higher sensitiv-
ity to starting positions in 6 cases, when it had mean errors higher than 5 [mm].
The point-by-point UKF results may have been improved if it was iterated over
more points, but this would have led to an exorbitant amount of computation
(e.g. for N points, computing matrix inverses for 3N × 3N matrices).

Fig. 3(a) shows the trend of mean errors with respect to iteration number
for each of the three methods. The point-by-point UKF was iterated 300 times,
and showed a generally smooth behavior in its estimation. The frame-by-frame
methods, which were iterated 36 times, demonstrated much quicker convergence
in their estimation, with the linear Kalman filter converging the quickest. Fig.
3(b) shows the distribution of mean distances between the US points and the
surface. This result is analogous to the result in [4], and consistent with the the
more reliable measure in fig. 2(b).

The histograms in fig. 4 reflect the differences between transformation pa-
rameters obtained by the frame-by-frame Kalman filters and those of the 500
randomly-generated transformations, whereby the linear Kalman filter showed
a more consistent estimation of the parameters than the UKF.

4 Conclusions

The experimental results suggest that the linear Kalman filter produces more
accurate results compared to the Unscented Kalman Filter in the frame-by-
frame registration framework presented in this paper. The greatest reason for this
unexpected outcome stems from the approach to the design of the filters. Both in
this work and in [4], batch processing of points for each iteration was performed
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by concatenating the points into higher-dimensional vectors. In this way, it is
assumed that noise on the points is independent, which is the same assumption
as would be made if the points were treated sequentially [6]. In concatenating
the points, however, their covariance as calculated from the state, a 3×3 matrix
for each point, is also concatenated to yield a 3N × 3N matrix. This would then
lead to an ill-conditioned system, but this effect is implicitly mitigated by the
Kalman filter due to the additive measurement noise, which regularizes the ill-
conditioned covariance matrix. Further discussion on the additive measurement
noise can be found in [4], but it would be interesting to investigate more optimal
approaches to the sequential batch processing employed here [9].

Nevertheless, the current design demonstrated rapid convergence, reliability
under different initial conditions, as well as an accuracy high enough to motivate
more thorough investigation, nearer to clinical situations. Although the valida-
tion schemes focused on potential applications in the spine, the methods were
formulated generally enough that they may be applicable to various minimally-
invasive orthopedic procedures.
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