
Domain Axioms for a Family of Near-Semirings

Jules Desharnais1 and Georg Struth2

1 Département d’informatique et de génie logiciel, Université Laval, Canada
Jules.Desharnais@ift.ulaval.ca

2 Department of Computer Science, University of Sheffield, United Kingdom
g.struth@dcs.shef.ac.uk

Abstract. Axioms for domain operations in several variants of Kleene
algebras and their semiring reducts are presented. They provide abstract
enabledness conditions for algebras designed for the verification and re-
finement of action systems, probabilistic protocols, basic processes and
games. The axiomatisations are simpler, more uniform and more flexible
than previous attempts; they are especially suited for automated deduc-
tion. This is further demonstrated through the automated verification of
some classical refinement laws for action systems.

1 Introduction

Variants of Kleene algebras provide the basic operations for modelling the dy-
namics of discrete systems. Choices between actions or processes are modelled
through addition, sequential composition through multiplication, finite and infi-
nite iteration via fixed points. Additive identities capture deadlock or abortion;
silent or ineffective actions correspond to multiplicative identities. A main benefit
of the approach is its suitability for first-order automated deduction in applica-
tions where model checking or interactive theorem proving is usually employed.

Axiomatic variations are dictated by the semantics of application domains.
Kleene algebras, for instance, capture partial program correctness under an-
gelic choice [10] or trace models of reactive systems. Variants in which some
axioms have been weakened admit predicate transformer models for total pro-
gram correctness under demonic choice [16], expectation transformer models for
probabilistic programs and protocols [11], and multirelational [7] or game-based
models [8] for situations where angelic and demonic choices interact. Other vari-
ants of Kleene algebras provide algebraic semantics for parallel reactive systems
modelled by action systems [3] or for basic process algebras [4].

A main source of variation is the interaction of choice with composition. For
games and processes, for instance, a choice between the sequences xy and xz
of actions x, y and z must be distinguished from a choice between y or z after
execution of x, hence x(y + z) �= xy + xz. Relation- or trace-based models, in
contrast, require this distributivity law. Other applications might exclude that
an infinite action x can be aborted after it has started, that is, x0 �= 0. Again,
this annihilation law certainly holds for binary relations.

In many of these applications, axiomatising a domain operator is essential. For
Kleene algebras, domain has been defined as a map into an embedded Boolean

J. Meseguer and G. Roşu (Eds.): AMAST 2008, LNCS 5140, pp. 330–345, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Domain Axioms for a Family of Near-Semirings 331

algebra that models a state space [5]. In fact, it suffices to axiomatise domain on
the semiring retract of the Kleene algebra. It turned out that this axiomatisation
can essentially be reused for some weaker variants [13] and applied to demonic
refinement algebras [15] and probabilistic Kleene algebras [12]. Operationally,
domain provides enabledness conditions for programs or processes. Moreover,
on Kleene algebras, domain induces modal operators and formalisms similar to
dynamic logic. Recently, domain axioms for Kleene algebras have been provided
in a one-sorted setting [6] which is simpler, more flexible and better suited for
automated deduction. But is this new axiomatisation stable and robust enough
to scale to weaker variants of Kleene algebras?

The present paper provides a positive answer. We adapt the new axioma-
tisation of domain semirings to demonic refinement algebras [16], probabilistic
refinement algebras [11], basic process algebras [4] and other variants of Kleene
algebras. Our first contribution is a systematic development of domain on fami-
lies of near-semirings [14]. As in the semiring case, we provide axioms that make
the algebras of domain elements into distributive lattices. Second, based on an-
tidomain operations, we provide simple axiomatisations that induce Boolean
domain algebras. It turns out that we can simply reuse the semiring domain ax-
ioms for demonic refinement algebras and probabilistic Kleene algebras. Third,
we also consider codomain operations for all variants. The entire development
and investigation is based on the automated theorem proving system (ATP sys-
tem) Prover9 and the counterexample generator Mace4 [2]. We therefore do not
display proofs we could automate, but provide an encoding for Prover9/Mace4
at a web site [1] from which all results in this paper can easily be reproduced.
A fourth contribution is an application of our new axioms to the automated
verification of some classical action system refinement laws [3,15].

2 From Near-Semirings to Semirings

To model actions or processes, we consider weak variants of semirings with dif-
ferent identities. A near-semiring [14] is a structure (S, +, ·) such that (S, +)
and (S, ·) are semigroups and all elements satisfy the right distributivity law

(x + y)z = xz + yz . (1)

Here and henceforth, the multiplication symbol is omitted. A pre-semiring is a
near-semiring in which all elements satisfy the left pre-isotonicity law

x + y = y ⇒ zx + zy = zy . (2)

A semiring is a near-semiring in which all elements also satisfy the left distribu-
tivity law x(y + z) = xy + yz. Every semiring is also a pre-semiring. We will
restrict our attention to commutative near-semirings without explicitly mention-
ing the commutativity law x + y = y + x. A near-semiring is idempotent if all
elements satisfy x + x = x. We also consider different identities.



332 J. Desharnais and G. Struth

– δ satisfies the identity and left annihilation axioms x + δ = x and δx = δ.
– τ satisfies the right identity axiom xτ = x.
– 0 satisfies the δ-axioms and the right annihilation axiom x0 = 0.
– 1 satisfies the τ -axiom and the left identity axiom 1x = x.

In the presence of both additive or both multiplicative identities, these entities
coincide: δ = δ0 = 0 and τ = 1τ = 1. We will not consider 0 in this paper.

Idempotent near-semirings (S, +, ·), possibly with δ and τ , are also called
basic process algebras. There, δ is called deadlock and τ the silent action [4].
Idempotent pre-semirings (S, +, ·, 0, 1) arise as reducts of probabilistic Kleene
algebras [11] by forgetting an operation of finite iteration, and as game alge-
bras [8]. Idempotent semirings (S, +, ·, δ, 1) arise as reducts of demonic refine-
ment algebras [16] by forgetting an operation of strong iteration (see Section 9).
We will see that a uniform treatment of the last three variants can be achieved
via pre-semirings (S, +, ·, δ, 1).

Explicit axioms for near-semirings and pre-semirings, as input for Prover9,
can be found at a web site [1]. The following fact has been verified with Prover9.

Lemma 2.1. The relation ≤ defined, for all elements x and y of an idempotent
near-semiring, by x ≤ y ⇔ x + y = y is a partial order. The identity δ or 0
is the least element with respect to that order if it exists. Addition and right
multiplication are isotone with respect to the order.

Mace4 yields a 3-element counterexample to isotonicity of left multiplication for
near-semirings and a 4-element one for those with δ and 1. By Lemma 2.1, every
idempotent near-semiring can be ordered and (S, +) is a semilattice.

3 Domain Semirings

An operation of domain for semirings has been defined in a companion paper [6].
A domain semiring is a semiring (S, +, ·, 0, 1) extended by a function d : S → S
that satisfies

x + d(x)x = d(x)x , (D1)
d(xy) = d(xd(y)) , (D2)

d(x + y) = d(x) + d(y) , (D3)

d(x) + 1 = 1 , (D4)
d(0) = 0 . (D5)

We call (D1), (D2) and (D3) the basic domain axioms and overload (D4) and
(D5) also for τ and δ. Every domain semiring is automatically idempotent [6].
Mace4 easily shows that the domain axioms are irredundant, that is, counterex-
amples exist for each mutual implication.

The axioms can be abstracted from relational models, where the domain d(x)
of a binary relation x is the binary relation consisting of all ordered pairs (a, a)
with (a, b) ∈ x for some b. (D1) says that d(x) does not restrict the execution of
x. (D2) says that the enabledness of a sequence xy depends on y only through
its enabledness condition. (D3) says that the enabledness condition for a choice



Domain Axioms for a Family of Near-Semirings 333

between actions is the union of the enabledness conditions of the particular
actions. (D4) says that all enabledness conditions are below 1 and (D5) says
that enabling abort or deadlock yields abort or deadlock.

The set of domain elements of S is denoted by d(S) and it has been shown
that d(S) = {x ∈ S : d(x) = x}, whence domain elements are precisely the
fixpoints of the domain operation. This can be used to show that the domain
algebra (d(S), +, ·, 0, 1) of a domain semiring S is a bounded distributive lattice.
By d(x)+d(y) = d(d(x)+d(y)), e.g., domain elements are closed under addition.

The domain algebras of domain semirings can be turned into Boolean algebras
by adding an antidomain operation a : S → S that satisfies

d(x) + a(x) = 1 , (3) d(x)a(x) = 0 . (4)

The resulting structures are calledBoolean domain semirings. It can be shown that
the antidomain of an element is precisely the Boolean complement of its domain,
hence a(x)models those states forwhichx is not enabled. Since a2(x) = d(x) holds,
domain canbe eliminated fromall axioms and it follows that a semiring is aBoolean
domain semiring if and only if it satisfies the basic Boolean domain axioms

a(x)x = 0 , (BD1)

a(xy) + a(xa2(y)) = a(xa2(y)) , (BD2)

a2(x) + a(x) = 1 . (BD3)

These considerations form the basis for axiomatising domain on near-semirings.

4 Domain Conditions

Before investigating domain on a family of near-semirings, we collect some nat-
ural conditions that each domain operation should satisfy. First of all, axioma-
tisations should respect our intuitions about domain. Second, as in the semiring
case, they should induce distributive lattices or Boolean algebras.

Let S be a near-semiring. The main intuition behind domain is that a domain
element d(x) is a left preserver of x ∈ S in the sense that x ≤ d(x)x, as expressed
by (D1), or even

x = d(x)x . (5)

Since 1 is also a left preserver of x (if it exists), d(x) should even be the least
left preserver of x. Hence, for all x ∈ S and p ∈ d(S),

x ≤ px ⇔ d(x) ≤ p . (6)

Similarly, antidomain elements should be greatest left annihilators, that is,

px = δ ⇔ p ≤ a(x) . (7)

All axiomatisations of domain should therefore respect (5) and (6); all axioma-
tisations of antidomain should respect (7).

To induce a lattice as a domain algebra, it is necessary and sufficient that each
domain element satisfies, besides the basic domain axioms, the lattice conditions



334 J. Desharnais and G. Struth

d2(x) = d(x) , (8)
d(d(x) + d(y)) = d(x) + d(y) , (9)

d(d(x)d(y)) = d(x)d(y) , (10)

(d(x))2 = d(x) , (11)

d(x)d(y) = d(y)d(x) , (12)
d(x) = d(x) + d(x)d(y) , (13)
d(x) = d(x)(d(x) + d(y)) . (14)

The first three identities are closure conditions, and, more precisely, they are
necessary if the fixpoint characterisation of domain elements holds. The other
conditions correspond to lattice axioms. In the presence of τ or 1, d(τ) = τ or
d(1) = 1 should hold as well. The condition d(δ) = δ holds by axiom (D5).

In the presence of (3) and (4), the Boolean conditions

d(a(x)) = a(x) , (15) a(x)d(x) = δ (16)

should also be checked, but condition (16) follows from (4) and (12). The first
of the following conditions is needed for d-elimination; the second one is dual to
(D3) and again very natural.

a2(x) = d(x) , (17) a(x + y) = a(x)a(y) . (18)

Finally, for non-idempotent near-semirings, it must be checked that the resulting
domain weak semiring is idempotent, otherwise addition does not model choice.

We call a domain near-semirings or Boolean domain near-semiring healthy if
it satisfies the relevant conditions among (5) to (18). Further natural properties
may arise in particular applications and these can be added as axioms if needed.
Also, we always make sure that axiomatisations are irredundant in the sense that
no axiom is entailed by the remaining ones. This can usually (but not necessarily)
be established by Mace4 through finite counterexamples. In the case of pre-
semirings, additional domain conditions have a substantial impact on domain
algebras. These will be investigated in Section 6.

5 A Family of Domain Near-Semirings

We now consider domain or enabledness axioms for near-semirings with and
without δ, τ and 1. The general recipe is as follows: Start with the basic domain
axioms plus the domain axioms for the respective identities. Then add domain
conditions until the axiomatisation is healthy and induces a distributive lattice.
Finally, remove redundancies. Prover9 and Mace4 allowed us to considerably
simplify this analysis and we do not display any proofs that could be automated.

We first axiomatise various domain near-semirings. We do not investigate all
possible combinations of identities, but restrict ourselves to structures that have
previously been considered in applications. Pre-semirings with 1, for instance,
form the basis for probabilistic Kleene algebras, game algebras and demonic
refinement algebras, but we do not investigate pre-semirings with τ .

A domain near-semiring is a near-semiring (S, +, ·) extended by a domain
function d : S → S that satisfies (5), (D2), (D3), (12) and (14).



Domain Axioms for a Family of Near-Semirings 335

Table 1. A Family of Domain Near-Semirings

NS NSδ NSτ NSτ
δ NS1 NS1

δ PS1 PS1
δ

(D1) x ≤ d(x)x
√ √ √ √

(D2) d(xy) = d(xd(y))
√ √ √ √ √ √ √ √

(D3) d(x + y) = d(x) + d(y)
√ √ √ √ √ √ √ √

(D4) d(x) ≤ τ
√ √

(D4) d(x) ≤ 1
√ √ √ √

(D5) d(δ) = δ
√ √ √ √

(5) x = d(x)x
√ √ √ √

(12) d(x)d(y) = d(y)d(x)
√ √ √ √ √ √

(14) d(x) = d(x)(d(x) + d(y))
√ √

NS: near-semiring, PS: pre-semiring.

A domain near-semiring with τ is a near-semiring (S, +, ·, τ) extended by a
function d : S → S that satisfies (5), (D2), (D3), (D4) and (12).

A domain near-semiring with 1 is a near-semiring (S, +, ·, 1) extended by a
function d : S → S that satisfies the domain axioms (D1)-(D4) and (12).

A domain pre-semiring (with 1) is a pre-semiring (S, +, ·, 1) extended by a
function d : S → S that satisfies (D1)-(D4).

In each case a variant with δ is obtained by adding (D5). The explicit domain
axioms for these structures are displayed in Table 1.

The following fact has been verified by Prover9 and Mace4.

Lemma 5.1. All domain axiomatisations are healthy and irredundant.

For all domain near-semirings without 1, (5) cannot be replaced by (D1), since
in that case, (10) or idempotency would not be entailed. For near-semirings with
1, (D1) can be used. Healthiness implies the following facts.

Lemma 5.2. Domain near-semirings are idempotent and can be ordered.

Hence the approach applies to basic process algebras, probabilistic Kleene alge-
bras, game algebras and demonic refinement algebras, which are all idempotent.

Lemma 5.3. Domain elements of near-semirings are least left preservers.

So all axiomatisations respect our basic intuitions about domain and enabled-
ness. Mace4 can easily show that all classes considered are indeed distinct.

We now investigate the impact of healthiness on the domain algebra. First, we
can characterise domain elements within the language of domain weak semirings.

Lemma 5.4. An element of a domain near-semiring is a domain element if and
only it is a fixpoint of the domain operation.

Proof. Let S be a near-semiring with a healthy mapping d, whence in particular
d2(x) = d(x) holds for all x ∈ S. We show that x ∈ d(S) if and only if x = d(x).
First, every x ∈ d(S) is the image of some y ∈ S, that is, x = d(y). Therefore,



336 J. Desharnais and G. Struth

d(x) = d(d(y)) = d(y) = x holds by healthiness. Second, x = d(x) trivially
implies that x ∈ d(S). �	

So (9) and (10) are indeed closure conditions for domain elements, and the
domain algebras can easily be characterised.

Proposition 5.5. Let S be a domain near-semiring. Then (d(S), +, ·) is a dis-
tributive lattice. If the near-semiring has an additive (multiplicative) identity, it
is the least (greatest) element of the lattice.

Proof. The lattice conditions imply that d(S) forms a lattice. The right dis-
tributivity axiom of near-semirings holds in particular for domain elements. By
standard lattice theory, d(S) is therefore a distributive lattice. The bound con-
ditions could readily be checked with Prover9. �	

Let us further discuss these results. We have seen that all near-semirings con-
sidered can be endowed with simple equational domain axioms that induce an
order on the near-semiring and a domain algebra which is a distributive lattice.
These axioms support our basic intuitions about domain and enabledness. In the
case of pre-semirings with 1, which form the basis for probabilistic Kleene alge-
bras, game algebras and demonic refinement algebras, the basic domain axioms
of domain semirings [6] can entirely be reused.

There is, however, a crucial difference between domain semirings and domain
for the weaker variants considered. Forward modal operators can be defined on
a domain semiring S as |x〉p = d(xp), for all x ∈ S and p ∈ d(S). The name
“modal operator” is justified since λp.|x〉p is a strict and additive mapping, that
is, it satisfies |x〉0 = 0 and |x〉(p+q) = |x〉p+ |x〉q. For weaker variants, λp.d(xp)
need be neither strict nor additive. Prover9 and Mace4 could show that strictness
holds only in the presence of the right annihilation law and additivity holds only
in the presence of the left distributivity law. Therefore, none of the weak variants
considered gives rise to a modal near-semiring; we do not obtain basic process
algebras, probabilistic Kleene algebras, game algebras or demonic refinement
algebras with modal operators from the domain axioms. This is an important
negative result. The situation is different for backward diamonds which are based
on an axiomatisation of codomain (cf. Section 8).

6 Boolean Domain Conditions

In domain semirings, domain algebras are strongly linked with maximal Boolean
subalgebras [6]. Prover9 could show that this link still exists for domain pre-
semirings with δ and 1, but not for near-semirings.

Proposition 6.1. Let S be a domain pre-semiring with δ and 1. An element
x ∈ S is a domain element if some y ∈ S satisfies x + y = 1 and yx = δ.

This statement does not hold in domain near-semirings with δ and 1; Mace4
presented a 5-element counterexample.



Domain Axioms for a Family of Near-Semirings 337

Corollary 6.2. Elements x and y of a domain pre-semiring with δ and 1 are
domain elements if x + y = 1, xy = δ and yx = δ.

Again, Mace4 presented a 5-element counterexample for near-semirings.
We say that an element x of a weak semiringnear-semiring S is complemented

if there exists some y ∈ S such that x + y = 1, xy = δ and yx = δ. We denote
the set of all complemented elements in S by BS .

Lemma 6.3. Let (S, +, ·, δ, 1) be a domain pre-semiring. Then (BS , +, ·, δ, 1) is
a Boolean algebra.

Proof. First, if x is complemented, then x is idempotent. Second, if x and y are
complemented, then xy = yx. Third, if x and y are complemented, then so are
x + y and xy. The second fact has a 280-step proof, the third one a 212-step
proof with Prover9. The first fact requires almost no time. �	

Lemma 6.3 has considerable impact on the structure of domain algebras.

Theorem 6.4. Let (S, +, ·, δ, 1) be a domain pre-semiring. Then d(S) contains
the greatest Boolean subalgebra of S bounded by δ and 1.

Again, Mace4 showed that Lemma 6.3 and Theorem 6.4 do not generalise to
near-semirings. Also, the domain algebra of a domain pre-semiring with δ and 1
need not itself be Boolean.

7 A Family of Boolean Domain Near-Semirings

We now provide axioms for near-semirings with δ and τ or 1 which induce
Boolean domain algebras. This situation corresponds perhaps most closely to
the state spaces or propositional structures underlying practical applications,
but as for semirings, Heyting domain algebras should also be possible [6].

A Boolean domain pre-semiring is a domain pre-semiring (S, +, ·, δ, 1) that
satisfies the domain axioms (D1)-(D5) and that is extended by an antidomain
operation a : S → S that satisfies (3) and (4).

Lemma 7.1. Boolean domain pre-semirings are healthy.

The proof of (18) with Prover9 has 168 steps. Corollary 6.2 and Theorem 6.4
imply the following fact.

Proposition 7.2. The domain algebra of a Boolean domain pre-semiring is the
maximal Boolean subalgebra of the pre-semiring of subidentities.

Healthiness also implies that a2(x) = d(x), whence, as in the semiring case,
domain can be eliminated from the axiomatisation and the following theorem
could be shown automatically by Prover9.

Theorem 7.3. A pre-semiring S is a Boolean domain pre-semiring if and only
if it can be extended by an antidomain operation a : S → S that satisfies the
basic Boolean domain axioms (BD1), (BD2) and (BD3).



338 J. Desharnais and G. Struth

Moreover, Mace4 easily showed the following fact.

Lemma 7.4. The axioms (BD1)-(BD3) are irredundant.

Therefore, the basic Boolean domain axioms for semirings can be reused for
probabilistic Kleene algebras, game algebras and demonic refinement algebras.

We now consider domain near-semirings. First, we turn to the case with δ
and 1. A Boolean domain near-semiring with δ and 1 is a domain near-semiring
(S, +, ·, δ, 1) that satisfies the domain axioms (D1)-(D5) and (12) and that is
extended by an antidomain operation a : S → S that satisfies (3), (4) and (15).

Lemma 7.5. Boolean domain near-semirings with δ and 1 are healthy and ir-
redundant.

This could be shown by Prover9. Also, by Mace4, the Boolean domain semiring
axioms alone are too weak. The following fact is an immediate consequence.

Proposition 7.6. Boolean domain near-semirings with δ and 1 have Boolean
domain algebras.

However, this Boolean algebra need not always be maximal. Mace4 presented
a 5-element counterexample to Corollary 6.2. Healthiness again implies that
a2(x) = d(x), whence domain can be eliminated from the axiomatisation and
the following theorem could be shown by Prover9.

Theorem 7.7. A near-semiring (S, +, ·, δ, 1) is a Boolean domain near-semi-
ring if and only if it can be extended by an antidomain operation a : S → S that
satisfies the axioms (BD1)-(BD3) and (18).

Moreover, Mace4 easily showed that these antidomain axioms are irredundant.
A Boolean domain near-semiring with δ and τ is a domain near-semiring

(S, +, ·, δ, τ) that satisfies (5), (D2), (D3), (D5) and (12) and that is extended
by an antidomain operation a : S → S that satisfies (3), (4) and (15).

Lemma 7.8. Boolean domain near-semirings with δ and τ are healthy and ir-
redundant.

This could be proved by Prover9, too. The following fact follows immediately.

Proposition 7.9. Boolean domain near-semirings with δ and τ have Boolean
domain algebras.

Again, this Boolean algebra need not be maximal; there is a 5-element counterex-
ample. Since healthiness implies that a2(x) = d(x), domain can be eliminated
from the axiomatisation and the axioms can somewhat be simplified. However,
the compaction obtained is not comparable to the stronger near-semirings and
we therefore do not provide a deeper discussion.

The axioms for our family of Boolean domain near-semirings are summed up
in Table 2. The ordering can be used because of Lemma 5.2. The first column
is relevant for basic process algebras; the last column for probabilistic Kleene
algebras, game algebras and demonic refinement algebras. The axiomatisation



Domain Axioms for a Family of Near-Semirings 339

Table 2. A Family of Boolean Domain Near-Semirings

NSτ
δ NS1

δ PS1
δ

(BD1) a(x)x = δ
√ √

(BD2) a(xy) ≤ a(xa2(y))
√ √

(BD3) a2(x) + a(x) = 1
√ √

(18) a(x + y) = a(x)a(y)
√

(5) x = d(x)x
√

(D2) d(xy) = d(xd(y))
√

(D3) d(x + y) = d(x) + d(y)
√

(D5) d(δ) = δ
√

(3) d(x) + a(x) = 1
√

(4) d(x)a(x) = 0
√

(12) d(x)d(y) = d(y)d(x)
√

(15) d(a(x)) = a(x)
√

NS: near-semiring, PS: pre-semiring.

in that case is precisely that of Boolean domain semirings [6] and the three ba-
sic Boolean domain axioms that need to be added to the semiring axioms are
simpler and better suited for automated deduction than those of previous ap-
proaches [12,13,15], in which the Boolean algebra of states had to be axiomatised
and embedded explicitly in a two-sorted setting.

8 Codomain

In the semiring case, domain and codomain are duals with respect to semiring
opposition, which swaps the order of multiplication. Weaker variants break this
symmetry and codomain therefore deserves special attention. Codomain is of
independent interest because it induces an image operation which is useful, for
instance, in the context of Hoare-style logics and for reachability analysis.

A codomain semiring is a semiring (S, +, ·, 0, 1) extended by a function d◦ :
S → S that satisfies the basic codomain axioms

x + xd◦(x) = xd◦(x) ,

d◦(xy) = d◦(d◦(x)y) ,

d◦(x + y) = d◦(x) + d◦(y) ,

d◦(x) + 1 = 1 ,

d◦(0) = 0 .

We call an expression in the language of codomain near-semirings dual to an
expression in the language of domain near-semirings if it is dual with respect to
opposition, each term d(x) is replaced by d◦(x), and each term a(x) is replaced
by a◦(x). Here, a◦ denotes the anticodomain operation. We refer to antidomain
axioms as the duals of domain axioms. For instance, we write (D1◦) for the dual
of (D1), and likewise for the lattice and healthiness conditions.



340 J. Desharnais and G. Struth

Table 3. A Family of Codomain Near-Semirings

NS NSδ NSτ NSτ
δ NS1 NS1

δ PS1 PS1
δ

x + x = x
√ √ √ √

(D1◦) x ≤ xd◦(x)
√ √

(D2◦) d◦(xy) = d◦(d◦(x)y)
√ √ √ √ √ √ √ √

(D3◦) d◦(x + y) = d◦(x) + d◦(y)
√ √ √ √ √ √ √ √

(D4◦) d◦(x) ≤ τ
√ √

(D4◦) d◦(x) ≤ 1
√ √ √ √

(D5◦) d◦(δ) = δ
√ √ √ √

(5◦) x = xd◦(x)
√ √ √ √ √ √

(12◦) d◦(x)d◦(y) = d◦(y)d◦(x)
√ √ √ √ √ √

(14◦) d◦(x) = d◦(x)(d◦(x) + d◦(y))
√ √

d◦(τ ) = τ
√ √

NS: near-semiring, PS: pre-semiring.

Because of the lack of duality, the codomain axioms for our family of near-
semirings differ from the domain axioms if healthiness is to be preserved. In
particular, idempotency must sometimes be assumed.

A codomain near-semiring is an idempotent near-semiring (S, +, ·) extended
by a function d◦ : S → S that satisfies (5◦), (D2◦), (D3◦), (12◦) and (14◦).

A codomain near-semiring with τ is an idempotent near-semiring (S, +, ·, τ)
extended by d◦ : S → S that satisfies (5◦), (D2◦)-(D4◦), (12◦) and d◦(τ) = τ .

A codomain near-semiring with 1 is a near-semiring (S, +, ·, 1) extended by
d◦ : S → S that satisfies (5◦), (D2◦)-(D4◦) and (12◦).

A codomain pre-semiring is a pre-semiring (S, +, ·, 1) extended by d◦ : S → S
that satisfies (D1◦)-(D4◦).

Variants with δ are obtained by adding (D5◦). Table 3 shows all axiomatisa-
tions.

The following statements could be proved by Prover9.

Lemma 8.1

(i) All axiomatisations are healthy and irredundant.
(ii) All codomain near-semirings are idempotent and can be ordered.
(iii) Codomain elements of codomain near-semirings are least right preservers.
(iv) An element of a codomain near-semiring is a codomain element if and only

it is a fixpoint of the codomain operation.

Proposition 8.2. Let S be a codomain near-semiring. Then (d◦(S), +, ·) is a
distributive lattice. If the near-semiring has an additive (multiplicative) identity,
it is the least (greatest) element of the lattice.

In Section 5 we saw that the domain operations on our family of near-semirings
did not induce modal operators. Here the situation is different.

Proposition 8.3. For every codomain near-semiring S, all x ∈ S and all p, q ∈
d◦(S) satisfy d◦((p+q)x) = d◦(px)+d◦(qx), and d◦(δ) = δ if this identity exists.



Domain Axioms for a Family of Near-Semirings 341

Table 4. A Family of Boolean Codomain Near-Semirings

NSτ
δ NS1

δ PS1
δ

x ≤ xa◦(a◦(x))
√

(BD2◦) a◦(xy) ≤ a◦(a◦(a◦(x))y)
√

(BD3◦) a◦(a◦(x)) + a◦(x) = 1
√

a◦(x)a◦(a◦(x)) = δ
√

(5◦) x = xd◦(x)
√ √

(D2◦) d◦(xy) = d◦(d◦(x)y)
√ √

(D3◦) d◦(x + y) = d◦(x) + d◦(y)
√ √

(D5◦) d◦(δ) = δ
√ √

(12◦) d◦(x)d◦(y) = d◦(y)d◦(x)
√ √

(3◦) d◦(x) + a◦(x) = 1
√

(3◦) d◦(x) + a◦(x) = τ
√

(4◦) a◦(x)d◦(x) = δ
√ √

NS: near-semiring, PS: pre-semiring.

So codomain on near-semirings is strict and additive, and it induces backward
diamond operators 〈x|p = d◦(px) defined via images.

In analogy to Boolean domain near-semirings, we now axiomatise an anti-
codomain operation in order to obtain Boolean codomain algebras.

A Boolean codomain near-semiring with δ and τ is a codomain near-semiring
(S, +, ·, δ, τ) that satisfies (5◦), (D2◦), (D3◦), (D5◦) and (12) and that is ex-
tended by an anticodomain operation a◦ : S → S satisfying (3◦) and (4◦). In
particular, the near-semiring is idempotent. The definition of Boolean codomain
near-semiring with δ and 1 is analogous; both axiom sets are shown in Table 4.

A Boolean codomain pre-semiring is a codomain pre-semiring (S, +, ·, δ, 1)
that satisfies (D1◦)-(D3◦), (D5◦) and that is extended by an anticodomain op-
eration a◦ : S → S satisfying (3◦) and (4◦).

Lemma 8.4. All axiomatisations satisfy the Boolean conditions (3◦) and (4◦);
their axioms are irredundant.

However, Boolean codomain near-semirings can be unhealthy. Mace4 showed
that each class contains models that do not satisfy (7◦) or (18◦). This remains
true for semirings with δ; the identity x0 = 0 is needed for healthiness. These
counterexamples formally support a previous remark in the two-sorted setting
for pre-semirings with δ and 1 [13]. Still we obtain the following result.

Proposition 8.5. Boolean codomain near-semirings have Boolean domain al-
gebras. Those of pre-semirings are maximal in the pre-semirings of subidentities.

In the case of Boolean codomain near-semirings (with δ and 1), Mace4 presents
a 16-element counterexample to Corollary 6.2, hence to maximality.

Proposition 8.6. A pre-semiring S is a Boolean codomain pre-semiring if and
only if it can be extended by an antidomain operation a◦ : S → S that satisfies
x ≤ xa◦(a◦(x)), the axioms (BD2◦),(BD3◦) and a◦(x)a◦(a◦(x)) = 0



342 J. Desharnais and G. Struth

These axioms are also displayed in Table 4. In sum, the development of codomain
near-semirings is similar to that of domain near-semirings, but, due to the lack of
duality with respect to opposition, slightly different and less compact axiomatisa-
tions arise. A significant difference is that—unlike for domain semirings—modal
operators are induced by the codomain operations.

9 Automated Action System Refinement

To demonstrate the power of our axiomatisations for formal software devel-
opment, we automatically verified some well-known action system refinement
laws [3], the proofs of which have already been replayed manually with demonic
refinement algebras [15] and the two-sorted domain axiomatisation [5].

Formally, a demonic refinement algebra [15] is a structure (S, +, ·, δ, 1, ω) such
that (S, +, ·) is an idempotent semiring and the strong iteration operation ω :
S → S satisfies the unfold and the coinduction axiom

1 + xxω = xω and y ≤ z + xy ⇒ y ≤ xωz .

von Wright’s original axiomatisation also uses an operation of finite iteration
that interacts with the strong variant [16]. Demonic refinement algebras model
positively conjunctive predicate transformers over some state space, which them-
selves model demonically nondeterministic programs according to a weakest pre-
condition semantics [16]. The law 1 + xωx = xω follows from the demonic re-
finement algebra axioms. Intuitively, strong iteration models a loop which is
possessed by a demon, that is, which may be finite or infinite.

We define the normaliser n(x) of an element x as

n(x) = xωa(x) .

Intuitively, n(x) relates the states in the domain d(x) of an action x with states
from which no further iteration is possible, hence with x-normal forms.

It is stipulated that an action x excludes an action y if x = a(y)x [15]. But
there is a more appealing equivalent definition for near-semirings (S, +, ·, 0, 1): x
excludes y iff d(x)d(y) = 0, that is, if they are not jointly enabled. It immediately
follows that exclusion is commutative.

Action systems formalise parallel reactive systems as loops containing de-
monic choices between individual actions which terminate when no more action
is enabled. In the algebraic semantics of demonic refinement algebras,

do x0 �
 . . . �
 xn−1 od = n(
n−1∑

i=0

xi) =
n−1∑

i=0

xω
i

n−1∏

i=0

a(xi) .

We first automatically verified the action system leapfrog law [3]

do xy od x ≤ x do yx od



Domain Axioms for a Family of Near-Semirings 343

for a loop without choice. In demonic refinement algebra it corresponds to

n(xy)x ≤ xn(yx) .

Statements of comparable complexity usually require hypothesis learning and
also here we could not prove the theorem in one full sweep within reasonable
time. Therefore we started with a set of hypotheses from which explosive axioms
like commutativity of addition have been discarded. We added further axioms
or lemmas until Mace4 failed to detect a counterexample, that is, until we could
expect that the hypotheses entail the goal. Then we ran the ATP system and,
when this failed within reasonable time, tried another hypothesis set.

For proving the action system leapfrog we used the additional hypotheses
a(xy)x = a(xy)xa(y), which itself could be proved by Prover9 in 168 steps, left-
isotonicity of multiplication and the sliding rule x(yx)ω = (xy)ωx, which has
automatically been verified before [9]. Then Prover9 needed 52 steps and the
equational proof extracted is simpler than that from the literature [15].

Second, we automatically verified the action system decomposition law [3]

do x �
 y od = do y od do x do y od od ,

which holds if x excludes y. In demonic refinement algebra we must prove that

x = a(y)x ⇒ n(x + y) = n(y)n(xn(y)) .

Following Solin and von Wright [15], we added d(x)� = x� as a further hypoth-
esis, where � = 1ω is the maximal element of the algebra.

Irredundancy of this identity could easily be established through a 5-element
counterexample by Mace4, which answers a question by Solin and von Wright.

Now this additional hypothesis implies that � = n(x)�, which could be shown
by Prover9 in 56 steps. The equational proof is

� = a(x)� + d(x)� = a(x)� + x� ≤ n(x)� ≤ � ,

where the third step uses coinduction. Using this fact as a hypothesis together
with the standard law (x + y)ω = yω(xyω)ω , which has already been auto-
matically verified [9], again the sliding rule and commutativity of antidomain
elements allowed Prover9 to show our claim in 56 steps. Surprisingly, the as-
sumption x = a(y)x instead of d(x)d(y) = 0 turned out to be beneficial here.

The property d(x) ≤ d(xn(y)) has been used in the previous more complex
manual proof [15]. Using � = n(x)� again, we could find an instantaneous
automated proof which yields a simpler equational argument:

a(x) = a(xd(�)) = a(x�) = a(xn(y)�) = a(xn(y)d(�)) = a(xn(y)) .

In all these examples, using an ATP system therefore led to particularly simple
proofs. Similar results for other domain near-semirings can be expected.



344 J. Desharnais and G. Struth

10 Conclusion

We have axiomatised domain operations that serve as enabledness conditions for
variants of Kleene algebras with applications in program refinement, the analysis
of probabilistic protocols, game theory and process algebra. The axioms obtained
are simpler, more flexible and better suited for automation than previous ap-
proaches. They provide a basis from which further constraints imposed by the
semantics of applications can be included. In the case of process algebras, for
instance, the interaction of enabledness with parallel composition needs further
investigation. We have also shown that the approach yields efficient automated
proof support for applications in the refinement of parallel reactive systems.

The study of domain in weak Kleene algebras was strongly based on the ATP
system Prover9 and the counterexample generator Mace4. These tools allowed us
to drastically speed up the analysis, condense the presentation and dispense with
routine technical proofs while even gaining in trustworthiness. The automated
game of conjectures and refutations, the search for proofs and counterexamples,
often took only a few seconds where humans would easily have spent several
hours, and hardly more than a few minutes on a standard PC.

Beyond, that, the integration of algebraic methodology into off-the-shelf ATP
technology could contribute towards bridging the gap between higher-order proof
checking and model checking in software verification, and yield light-weight for-
mal methods with heavy-weight automation.

The next step is to link the abstract algebraic level with concrete data (types)
and their manipulation through assignment or communication. To achieve this
as far as possible within ATP systems and to integrate appropriate decision
procedures remains a challenge both for program analysis and theorem proving.

References

1. http://www.dcs.shef.ac.uk/∼georg/ka
2. Prover9 and Mace4, http://www.cs.unm.edu/∼mccune/prover9
3. Back, R.J.R., von Wright, J.: Reasoning algebraically about loops. Acta Informat-

ica 36(4), 295–334 (1999)
4. Bergstra, J.A., Fokkink, W.J., Ponse, A.: Process algebra with recursive operations.

In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra,
pp. 333–389. Elsevier, Amsterdam (2001)

5. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM
TOCL 7(4), 798–833 (2006)

6. Desharnais, J., Struth, G.: Domain semirings revisited. Technical Report CS-08-
01, Department of Computer Science, University of Sheffield (2008); Accepted for
Mathematics of Program Construction (MPC) (2008)

7. Furusawa, H., Tsumagari, N., Nishizawa, K.: A non-probabilistic model of proba-
bilistic Kleene algebra. In: Berghammer, R., Möller, B., Struth, G. (eds.) Relations
and Kleene Algebra in Computer Science. LNCS, vol. 4988, pp. 110–122. Springer,
Heidelberg (2008)

8. Goranko, V.: The basic algebra of game equivalences. Studia Logica 75, 221–238
(2003)

http://www.dcs.shef.ac.uk/~georg/ka
http://www.cs.unm.edu/~mccune/prover9


Domain Axioms for a Family of Near-Semirings 345

9. Höfner, P., Struth, G.: Can refinement be automated? ENTCS 201, 197–222 (2007)
10. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM TOCL 1(1), 60–76

(2000)
11. McIver, A.K., Gonzalia, C., Cohen, E., Morgan, C.C.: Using probabilistic Kleene

algebra pKA for protocol verification. J. Logic and Algebraic Programming 76(1),
90–111 (2008)

12. Meinicke, L., Solin, K.: Refinement algebra for probabilistic programs. ENTCS 201,
177–195 (2007)

13. Möller, B.: Kleene getting lazy. Sc. Computer Programming 65(2), 195–214 (2007)
14. Pilz, G.: Near-Rings: The Theory and Its Application. North-Holland, Amsterdam

(1983)
15. Solin, K., von Wright, J.: Refinement algebra with operators for enabledness and

termination. In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 397–415.
Springer, Heidelberg (2006)

16. von Wright, J.: Towards a refinement algebra. Sc. Computer Programming 51(1-2),
23–45 (2004)


	Domain Axioms for a Family of Near-Semirings
	Introduction
	From Near-Semirings to Semirings
	Domain Semirings
	Domain Conditions
	A Family of Domain Near-Semirings
	Boolean Domain Conditions
	A Family of Boolean Domain Near-Semirings
	Codomain
	Automated Action System Refinement
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




