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Preface

This volume contains the proceedings of AMAST 2008, the 12th International
Conference on Algebraic Methodology and Software Technology, held during
July 28–31, 2008, in Urbana, Illinois, USA.

The major goal of the AMAST conferences is to promote research toward
setting software technology on a firm, mathematical basis. Work toward this goal
is a collaborative, international effort with contributions from both academia and
industry. The envisioned virtues of providing software technology developed on
a mathematical basis include: correctness, which can be proved mathematically;
safety, so that developed software can be used in the implementation of critical
systems; portability, i.e., independence from computing platforms and language
generations; and evolutionary change, i.e., the software is self-adaptable and
evolves with the problem domain.

The previous AMAST conferences were held in: Iowa City, Iowa, USA (1989,
1991 and 2000); Twente, The Netherlands (1993); Montreal, Canada (1995);
Munich, Germany (1996); Sydney, Australia (1997); Manaus, Brazil (1998);
Reunion Island, France (2002); Stirling, UK (2004, colocated with MPC 2004);
Kuressaare, Estonia (2006, colocated with MPC 2006).

For AMAST 2008 there were 58 submissions, which were thoroughly evalu-
ated by the Program Committee. Each submission had an average of five reviews.
Following a lively electronic meeting, the Program Committee selected 28 papers
to be presented at the conference, including 5 tool papers. In addition to the ac-
cepted papers, the conference also featured invited talks by three distinguished
speakers: Rajeev Alur (University of Pennsylvania), Jayadev Misra (University
of Texas at Austin), and Teodor Rus (University of Iowa). This volume includes
all the accepted papers, as well as abstracts or full papers by invited speakers.

AMAST 2008 was the result of a considerable effort by a number of peo-
ple. We express our gratitude to the AMAST 2008 Program Committee and
additional referees for their expertise and diligence in reviewing the submitted
papers, and to the AMAST Steering Committee for its guidance. Special thanks
go to Francesca Bell, Mark Hills, Ralf Sasse and Andrea Whitesell for helping
with local organization. Additional warmest thanks go to Ralf Sasse for help
with the preparation of this volume. We are also grateful to Springer for its con-
tinued support in the publication of the proceedings in the LNCS series, and to
Andrei Voronkov for providing the EasyChair system, which was used to manage
the submissions, the review process, the electronic PC meeting, and to assemble
the proceedings. Finally, we thank the Department of Computer Science of the
University of Illinois at Urbana-Champaign for hosting AMAST 2008.

May 2008 José Meseguer
Grigore Roşu
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Marrying Words and Trees

Rajeev Alur

University of Pennsylvania

We discuss the model of nested words for representation of data with both a
linear ordering and a hierarchically nested matching of items. Examples of data
with such dual linear-hierarchical structure include annotated linguistic data,
executions of structured programs, and HTML/XML documents. Nested words
generalize both words and ordered trees, and allow both word and tree opera-
tions. We define nested word automata—finite-state acceptors for nested words,
and show that the resulting class of regular languages of nested words has all
the appealing theoretical properties that the classical regular word languages
enjoy such as determinization, closure under a variety of operations, decidability
of emptiness as well as equivalence, and characterization using monadic second
order logic. The linear encodings of nested words gives the class of visibly push-
down languages of words, and this class lies between balanced languages and
deterministic context-free languages. We argue that for algorithmic verification
of structured programs, instead of viewing the program as a context-free lan-
guage over words, one should view it as a regular language of nested words (or
equivalently, as a visibly pushdown language), and this would allow model check-
ing of many properties (such as stack inspection, pre-post conditions) that are
not expressible in existing specification logics. We also study the relationship
between ordered trees and nested words, and the corresponding automata: while
the analysis complexity of nested word automata is the same as that of classical
tree automata, they combine both bottom-up and top-down traversals, and enjoy
expressiveness and succinctness benefits over tree automata. There is a rapidly
growing literature related to nested words, and we will briefly survey results on
languages infinite nested words, nested trees, temporal logics over nested words,
and new decidability results based on visibility.

More information about nested words and references can be found at
http://www.cis.upenn.edu/∼alur/nw.html

J. Meseguer and G. Roşu (Eds.): AMAST 2008, LNCS 5140, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Simulation Using Orchestration

(Extended Abstract)

David Kitchin, Evan Powell, and Jayadev Misra

The University of Texas at Austin

Abstract. The real world is inherently concurrent and temporal. For
simulating physical phenomena of the real world, one prefers frameworks
which easily express concurrency and account for the passage of time. We
propose Orc, a structured concurrent calculus, as a framework for writ-
ing simulations. Orc provides constructs to orchestrate the concurrent
invocation of services while managing time-outs, priorities, and failures
of services or communication. Orc’s treatment of time is of particular
interest in simulation. We propose an abstract notion of time and show
its utility in coding simulations. We also show how Orc’s structure allows
us to compute statistics from a simulation.

1 Introduction

Orc[3,4] is a language for structured concurrent programming. It is based on
the premise that structured concurrent programs should be developed much
like structured sequential programs, by decomposing a problem and combining
the solutions with the combinators of the language. Naturally, Orc combinators
support concurrency: parallel subcomputations, spawning of computations and
blocking or termination of subcomputations. Orc has a number of algebraic
properties which make it amenable to formal analysis.

Physical phenomena in the real world are inherently concurrent and tempo-
ral. Simulations of physical phenomena typically involve describing concurrent
entities, their interactions and passage of real time. The structure of Orc makes
such descriptions extremely modular. This paper presents a preliminary report
of our experience with coding simulations in Orc.

In Section 2, we give a brief overview of Orc, followed by example Orc programs
in Section 3. Portions of Sections 2 and 3 have appeared previously in [3,4]. Section
4 presents an abstraction of time, in which we treat both physical (Newtonian)
time and logical time analogously. In Section 5, we describe the implementation
of simulations in Orc using logical timers. Section 6 describes how to compute
statistics from a simulation. Section 7 includes plans for future research.

2 Overview of Orc

An Orc program consists of a goal expression and a set of definitions. The goal
expression is evaluated in order to run the program. The definitions are used in
the goal and in other definitions.

J. Meseguer and G. Roşu (Eds.): AMAST 2008, LNCS 5140, pp. 2–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Simulation Using Orchestration 3

An expression is either primitive or a combination of two expressions. A prim-
itive expression is a call to an existing service, a site, to perform its computations
and return a result; we describe sites in Section 2.1. Two expressions can be com-
bined to form a composite expression using Orc combinators; we describe the
combinators in Section 2.2. We allow expressions to be named in a definition,
and these names may then be used in other expressions. Naming permits us to
define an expression recursively by using its own name in the definition. Defini-
tions and recursion are treated in Section 2.3. We give a complete formal syntax
in Figure 2 of Section 2.4. Practical Orc examples use a modest set of syntactic
extensions, discussed in Section 2.5. Orc examples appear in Section 3.

During its evaluation, an Orc expression calls sites and publishes values. Be-
low, we describe the details of calls and publications.

2.1 Sites

A primitive Orc expression is a site call M(p̄), where M is a site name and p̄ a
list of actual parameters. A site is an external program, like a web service. The
site may be implemented on the client’s machine or a remote machine. A site
call elicits at most one response; it is possible that a site never responds to a
call. For example, evaluation of CNN (d), where CNN is a news service site and
d is a date, calls CNN with parameter value d; if CNN responds (with the news
page for the specified date), the response is published.

Site calls are strict, i.e., a site is called only if all its parameters have values.
We list a few sites in Figure 1 that are fundamental to effective programming

in Orc (in the figure, a signal represents a unit value and has no additional
information).

Site if is used for conditional evaluation. Site Rtimer is used to introduce
delays and impose time-outs, and is essential for time-based computations. Site
Signal() is a special case of if .

if (b): Returns a signal if b is true, and otherwise does not respond.
Rtimer(t): Returns a signal after exactly t, t ≥ 0, time units.
Signal(): Returns a signal immediately. Same as if (true).
0: Blocks forever. Same as if (false).

Fig. 1. Fundamental Sites

2.2 Combinators

There are three combinators in Orc for combining expressions. Given expressions
f and g, they are: symmetric parallel composition, written as f | g; sequential
composition with respect to variable x, written as f >x> g; and asymmetric
parallel composition with respect to variable x, written as f <x< g.

To evaluate f | g, we evaluate f and g independently. The sites called by f
and g are the ones called by f | g and any value published by either f or g
is published by f | g. There is no direct communication or interaction between
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these two computations. For example, evaluation of CNN (d) | BBC (d) initiates
two independent computations; up to two values will be published depending on
which sites respond.

In f >x> g, expression f is evaluated and each value published by it initiates
a fresh instance of g as a separate computation. The value published by f is
bound to x in g’s computation. Evaluation of f continues while (possibly several)
instances of g are run. If f publishes no value, g is never instantiated. The values
published by f >x> g are the ones published by all the instances of g (values
published by f are consumed within f >x> g). This is the only mechanism in
Orc similar to spawning threads.

As an example, the following expression calls sites CNN and BBC in parallel
to get the news for date d. Responses from either of these calls are bound to x
and then site email is called to send the information to address a. Thus, email
may be called 0, 1 or 2 times.

(CNN (d) | BBC (d)) >x> email (a, x)

Expression f � g is short-hand for f >x> g, where x is not free in g.
As a short example of time-based computation, Rtimer(2) �M() delays call-

ing siteM for two time units, andM() | (Rtimer(1) �M()) | (Rtimer(2) �M())
makes three calls to M at unit time intervals.

To evaluate (f <x< g), start by evaluating both f and g in parallel. Evaluation
of parts of f which do not depend on x can proceed, but site calls in which x
is a parameter are suspended until x has a value. If g publishes a value, then
x is assigned the (first such) value, g’s evaluation is then terminated and the
suspended parts of f can proceed. The values published by (f <x< g) are the
ones published by f . Any response received for g after its termination is ignored.
This is the only mechanism in Orc to block or terminate parts of a computation.

As an example, in ((M() | N(x)) <x< R()) sites M and R are called imme-
diately (thus, M is called immediately, even before x may have a value). Once
R responds with a value, x is bound to that value and N(x) is then called. Con-
trast the following two expressions; in the first one email is called at most once,
whereas the second one (shown earlier) may call email twice.

email(a, x) <x< (CNN (d) | BBC (d))
(CNN (d) | BBC (d)) >x> email (a, x)

2.3 Definitions and Recursion

Declaration E(x̄) Δ f defines expression E whose formal parameter list is x̄ and
body is expression f . We assume that only the variables x̄ are free in f . A call
E(p̄) is evaluated by replacing the formal parameters x̄ by the actual parameters
p̄ in the body of the definition f . Sites are called by value, while definitions are
called by name.

A definition may be recursive (or mutually recursive): a call to E may occur
in f , the body of the expression, yielding a recursively defined expression. Such
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expressions are used for encoding bounded as well as unbounded computations.
Below, Metronome publishes a signal every time unit starting immediately.

Metronome() Δ Signal() | (Rtimer(1) � Metronome())

2.4 Formal Syntax

The formal syntax of Orc is given in Figure 2.1 HereM is the name of a site and
E a defined expression. An actual parameter p may be a variable x or a value
m, and p̄ denotes a list of actual parameters.

The syntax also allows actual parameters (variables x and valuesm) to appear
alone as primitive expressions. The primitive expression m simply publishes m.
The primitive expression x waits for the variable x to become bound, and then
publishes the value bound to x.2

f, g, h ∈ Expression ::= M(p̄) E(p̄) p f >x> g f | g f <x< g

p ∈ Actual ::= x m
Definition ::= E(x̄) Δ f

Fig. 2. Syntax of Orc

Notation. The combinators are listed Figure 2 in decreasing order of precedence,
so f <x< g | h means f <x< (g | h), and f >x> g | h means (f >x> g) | h.
Expression f >x> g >y> h means f >x> (g >y> h), i.e., >x> is right-
associative, and f <x< g <y< h means (f <x< g) <y< h, i.e., <x< is left-
associative.

2.5 Syntax Extensions

In practice, Orc programs often incorporate syntactic sugar, to simplify and con-
dense expressions. These constructs do not fundamentally extend the calculus;
they are simply more compact representations.

Tuples. In additional to the fundamental sites shown earlier, it is also helpful
to have site support for constructing and examining data structures. We allow
the syntax (p̄), as a shorthand for tuple(p̄), where tuple is a site which creates a
single tuple value out of its argument values and publishes it. In order to examine
these tuples, we extend the syntax of the combinators >x> and <x< with
pattern matching; instead of binding a value to a variable, a combinator may
bind a tuple of values to a tuple of variables.

For example, the following expression publishes the values 6 and 7:

((3, 6) | (4, 7)) >(x, y)> y

1 Previous presentations of Orc have used the notation f where x :∈ g instead of
f <x< g.

2 Previous presentations of Orc used let(x) to publish the value of x.



6 D. Kitchin, E. Powell, and J. Misra

Dot Notation. In some cases, especially when writing code in an object-
oriented style, it is helpful to have a special notation for calls. We writeM.name
as syntactic sugar for M(name), where name is a message, and M maps mes-
sages to values. We use this notation to express both field accesses, written
as x.field , and method calls, written as x.method(p̄), which is a shorthand for
x.method >m> m(p̄).

Arithmetic and Logical Expressions. Orc does not include any operators for
data manipulation; so, 3+4 is an illegal expression in Orc. We get the same effect
by calling a predefined site Sum(3, 4). To simplify coding, we write arithmetic
and logical expressions in the standard way, like 3 + 4, which are compiled into
appropriate site calls.

3 Examples

We give a number of small examples in this section to familiarize the reader with
the Orc style of programming. Most of these examples have appeared earlier, in
[3] and [4].

Time-Out. The following expression publishes the first value published by
f if it is available before time t; otherwise it publishes 3. It evaluates f and
Rtimer(t) � 3 in parallel and takes the first value published by either:

z <z< (f | Rtimer(t) � 3)

A typical programming paradigm is to call site M and publish a pair (x, b) as
the value, where b is true if M publishes x before the time-out, and false if there
is a time-out. In the latter case, the value of x is irrelevant. Below, z is the pair
(x, b).

z <z< ( M() >x> (x, true)
| Rtimer(t) >x> (x, false) )

Fork-Join Parallelism. In concurrent programming, one often needs to spawn
two independent threads at a point in the computation, and resume the com-
putation after both threads complete. Such an execution style is called fork-join
parallelism. There is no special construct for fork-join in Orc, but it is easy
to code such computations. Below, we define forkjoin to call sites M and N
in parallel and publish their values as a tuple after they both complete their
executions.

forkjoin() Δ (x, y) <x< M()
<y< N()

Synchronization. There is no special machinery for synchronization in Orc;
the <x< combinator provides the necessary ingredients for programming
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synchronizations. Consider M � f and N � g; we wish to execute them inde-
pendently, but synchronize f and g by starting them only after both M and N
have completed. We evaluate forkjoin (as described above), and start f | g after
forkjoin publishes.

forkjoin() � (f | g)

Delay. The following expression publishes N ’s response as soon as possible, but
after at least one time unit. This is similar to a fork-join on Rtimer(1) and N .

Delay() Δ (Rtimer(1) � y) <y< N()

Priority. Call sites M and N simultaneously. If M responds within one time
unit, take its response, otherwise pick the first response. Using Delay defined
above,

x <x< (M() | Delay())

Iterative Process and Process Networks. A process in a typical network-
based computation repeatedly reads a value from a channel, computes with it and
writes the result to another channel. Below, c and e are channels, and c.get and
e.put are the methods to read from c and write to e. Below, P (c, e) repeatedly
reads from c and writes to e, and Net(c, d, e) is a network of two such processes
which share the output channel.

P (c, e) Δ c.get() >x> Compute(x)
>y> e.put(y)
� P (c, e)

Net(c, d, e) Δ P (c, e) | P (d, e)

Parallel-or. A classic problem in non-strict evaluation is parallel-or. Suppose
sites M and N publish booleans. We desire an expression that publishes true as
soon as either site returns true, and false only if both return false. Otherwise,
the expression never publishes. In the following solution, site or(x, y) returns
x ∨ y.

z <z< if (x) � true | if (y) � true | or(x, y)
<x< M()
<y< N()

4 Timers

The site Rtimer is a powerful tool for orchestration. It is used mainly for or-
chestrating events that happen in real time, including interruptions (time-outs).
However, the actual value of real time is never used in a computation. In this
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section, we consider a small combinatorial problem —computing the shortest
path between two designated nodes in a weighted directed graph— for which
we present a simple algorithm based on actual time values. Next, we introduce
a more abstract version of timer, which is logical (or virtual) that mimics the
(physical) real-time timer. We show that the shortest path problem can be solved
using logical timers.

4.1 Shortest Path Algorithm Using Real Time

Given is a directed graph each edge of which has a non-negative weight denoting
the distance between the two nodes. There are two special nodes, designated
source and sink. It is required to find a shortest path from the source to sink,
i.e., one with the least total distance. Henceforth, we simply calculate the length
of the shortest path; the actual shortest path can be computed by an easy
extension.

The traditional algorithm for solving this problem, due to Dijkstra [1], involves
inherently sequential computation. Consider, instead, the following real-time,
concurrent algorithm. From the source node, transmit a ray of light to each of
its neighbors. Rays propagate along each edge at constant speed in real time;
the weight of each edge is the time taken by the ray to traverse the edge. When
a node receives its first ray, it transmits a ray to each of its own neighbors.3

Subsequent rays received by that node are ignored. The length of the shortest
path is the total elapsed time from the start of the computation to the point
where the sink node receives its first ray.

We code three different versions of this algorithm, with varying levels of re-
finement. First, we abstract the structure of the graph using expression succ:

succ(u): Publish all pairs (v, d) where (u, v) is an edge with weight d.

The graph structure is completely characterized by the identities of the source
and the sink, and expression succ.

First Solution. We must note when a node first receives a ray, and be sure to
ignore subsequent rays. To implement this behavior, we associate a “write-once”
variable with each node in the graph, and use two sites to manipulate these
variables: For every node u in the graph, write(u, t) writes t into u. Writing is
once-only for each u; all subsequent writes block. And, read(u) blocks until u is
written; it never blocks subsequently, and returns the written value.

In the following algorithm, the first time eval1(u, t) is called for any u, (1)
the relative time in the evaluation is t, and (2) t is the length of the shortest
path to u from the source. Note that eval1 does not publish.

eval1(u, t) Δ write(u, t) � Succ(u) >(v, d)> Rtimer(d) � eval1(v, t+ d)

eval1(source, 0) | read(sink)
3 Assume that the amount of time to receive and rebroadcast a ray is inconsequential.
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Here, we write the value for the source at time 0. For any other node v, whose
predecessor along the shortest path (from the source) is u, we write the value d
time units after writing the value for u, where d is the weight of edge (u, v). And,
we read the value written for the sink as soon as possible. We have assumed that
executions of Succ, read and write do not consume any real time.

Second Solution. The previous solution does not quite implement the real-time
algorithm described for the problem. In particular, the path lengths are explicitly
passed as parameter values; a node does not consult the elapsed time to record
the length of the shortest path to it.

To this end, we associate real-time timers with computations. In the current
implementation of Orc, calling RealT imer site generates a new real-time timer
and initializes its value to 0. Every generated timer runs in real time. Therefore,
Rtimer measures the progress of every real-time timer. To evaluate f with timer
rt, write RealT imer >rt> f . Also, for each such timer rt, there is a site rt.C
that returns the current time of rt. The current time of rt is 0 when rt is created.

The following version of the shortest path algorithm is a more faithful ren-
dering of the initial description. We have replaced eval1(u, t) with eval2(u, rt),
where t can be computed from timer rt.

eval2(u, rt) Δ rt.C() >t> write(u, t) �
Succ(u) >(v, d)> Rtimer(d) � eval2(v, rt)

RealT imer >rt> (eval2(source, rt) | read(sink))

Third Solution. The previous solution records a time value for each node, whereas
our interest is only in the shortest path to the sink. Therefore, we may simplify
the recording for the nodes. Instead of write(u, t), we use mark(u) which merely
notes that a node has been reached by a ray of light. Similarly, instead of read(u),
we employ scan(u) which responds with a signal if u has been marked. The length
of the shortest path is the value of rt.C() when the sink is marked.

eval3(u, rt) Δ mark(u) � Succ(u) >(v, d)> Rtimer(d) � eval3(v, rt)

RealT imer >rt> (eval3(source, rt) | scan(sink) � rt.C())

4.2 Logical or Virtual Timers

Each of the shortest path algorithms given in the previous section waits for
real time intervals. The running time of each algorithm is proportional to the
actual length of the shortest path. This is quite inefficient. Additionally, We have
assumed that executions of Succ, read and write do not consume any real time,
which is unrealistic. To overcome these problem, we explore the use of logical
(virtual) timers to replace real-time timers.

There are three essential properties of real-time timers that we have used in
the previous section. Let rt be a real-time timer, and, as before, rt.C() returns
the current value of this timer.
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1. (Monotonicity) The values returned by successive calls to rt.C() are non-
decreasing.

2. (Relativity) Using a notation similar to Hoare-triples, where rt.C() denotes
the value returned by a call to rt.C(),

{rt.C() = n} Rtimer(t) {rt.C() = n+ t}

3. (Weak Progress) Some call to Rtimer(.) responds eventually.

Monotonicity guarantees that s ≤ t in rt.C() >s> · · · rt.C() >t> · · · . Rela-
tivity says that if Rtimer(t) is called when a timer value is n, the response to the
call is received at time n+ t. This property establishes the essential relationship
between rt.C and Rtimer. The progress property is a weak one, merely postu-
lating the passage of time. Typically, we need a Strong Progress property: every
call to Rtimer(t) responds eventually. However, it can not be met in arbitrary
Orc programs where infinite number of events may take place within bounded
time, as in the following examples.

Met() Δ Signal | Rtimer(0) �Met()
M() Δ N() | M()

It is the obligation of the programmer to ensure that only a finite number of
events occur during any finite time interval. A sufficient condition is that every
recursive call is preceded by a call Rtimer(t), where t is a positive integer. Then
we can guarantee the Strong Progress property.

A logical (or virtual) timer is generated by a call to site V irtT imer(). There
are two site calls associated with a logical timer lt: lt.C() and lt.R(t). These
calls are analogous to rt.C() and Rtimer(t) for real-time timers. Further, logical
timers obey the requirements of Monotonicity, Relativity and Weak Progress,
as for the real-time timers. They also obey the Strong Progress property un-
der analogous assumptions. We show in Section 4.3 how logical timers may be
implemented.

There is one key difference between real-time and virtual-time timers. For site
M other than a timer site, no logical time is consumed between calling the site
and receiving its response, whereas real time may be consumed. Conversely, no
real time is consumed in any interval where logical time is consumed.

We can rewrite the solutions to the shortest path problem using logical timers.
Below, we do so for the third solution in Section 4.1, using V irtT imer() to
generate a virtual timer.

eval4(u, lt) Δ mark(u) � Succ(u) >(v, d)> lt.R(d) � eval4(v, lt)

V irtT imer() >lt> (eval4(source, lt) | scan(sink) � lt.C())

Observe thatmark, scan and Succmay consume real time, though they do not
consume any logical time. Further, the actual computation time is now decoupled
from the length of the shortest path. Dijkstra’s shortest path algorithm [1] is a
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sequential simulation of this algorithm that includes an efficient implementation
of the logical timer.

4.3 Implementing Logical Timer

Let lt be a logical timer. Associate a value n with lt. Initially (when lt is created)
n = 0. A call to lt.C() responds with n. Call lt.R(t) is assigned a rank n + t
and queued (in a priority queue). Eventually, the timer responds with a signal
for the item of the lowest rank r in the queue, if an item exists, and removes it
from the queue. Simultaneously, it sets n to r.

It is easy to see that Monotonicity holds, that n never decreases: we have the
invariant n ≤ s, for any rank s in the queue, and that the latest response to
lt.C() is n. Similarly, Relativity is also easy to see. The requirement of Weak
Progress is met by eventually removing an item from the queue. Further, if only
a finite number of events occur in any bounded logical time interval, the Strong
Progress property is also met.

Note that the specification of a timer only ensures that the timer’s responses
are properly ordered with respect to each other. The relationship between a
timer’s responses and the behavior of other sites (or timers) is unspecified. This
gives us a great deal of flexibility in implementing timers.

4.4 Stopwatch

A stopwatch is a site that is aligned with some timer, real or virtual. We will see
some of its uses in simulation in Section 5.

A stopwatch is in one of two states, running or stopped, at any moment. It
supports 4 methods: (1) reset : is applicable when the stopwatch is stopped, and
then its value is set to 0; (2) read : returns the current value of the stopwatch;
(3) start : changes the state from stopped to running; and (4) stop: changes the
state from running to stopped.

A stopwatch can be implemented by having the variables running (boolean)
and m, n (integer). The current state is given by running. If ¬running holds
(i.e., the state is stopped), then m is the value of the stopwatch and n’s value
is irrelevant. If running holds, then m is the value of the stopwatch when it
was last started, and n is the value of lt, the timer with which the stopwatch
is aligned, when the stopwatch was last started. Initially, running is false and
both m and n are zero. The methods are implemented (in imperative-style) as
follows.

reset : m := 0
read : if running then return(m+ lt.C()− n) else return(m)
start : running := true; n := lt.C()
stop: running := false; m := m+ lt.C()− n

Note: Only the read method responds to its caller. The other methods do not
respond, though they update the internal state of the stopwatch.
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5 Simulation

The work reported in this section is at a preliminary stage.
A simulation is an abstraction of real-world processes. The goal of simulation

is to observe the behaviors of the abstract processes, and compute statistics. A
faithful simulation can predict the behavior of the real-world processes being
simulated. A simulation language supports descriptions of the real-world pro-
cesses, their interactions and the passage of real time. We contend that Orc is
an effective tool for writing simulations. We can describe the individual processes
as expressions in Orc. As we have demonstrated with the shortest path example
in Section 4, replacing real-time timer with a logical timer can efficiently sim-
ulate the passage of time while maintaining the expected causal order among
events.

Orc also simplifies data collection and statistics computation of the simulated
processes because of its structured approach to concurrency. Since the lexical
structure of the program reflects the dynamic structure of the computation,
it is easy to identify points in the program at which to add observations and
measurements. In an unstructured model of concurrency, this can be a more
challenging task.

We show two small examples of simulation in Orc in this section. The exam-
ples, though small, are typical of realistic simulations. We consider data collection
in the following section.

5.1 Example: Serving Customers in a Bank

Consider a bank that has two tellers to serve customers. A stream of customers
arrive at the bank according to some arrival distribution. Each customer joins
a queue on entering the bank. A teller asks the next customer to step forward
whenever she is free. The service time for a customer is determined by the type
of transaction. It is required to determine the average wait time for a customer,
the queue length distribution, and the percentage of time that a teller is idle. In
this section, we merely represent the system using Orc; computation of statistics
is covered in the following section.

We represent the bank as consisting of three concurrent activities, customers
and two tellers. We define each of these activities by an expression. Customers are
generated as a stream by expression Source according to some given distribution.
This expression also specifies the service time of each customer. We do not code
Source though a complete simulation would have to include it.

The goal expression, given at the top of Figure 3, starts a logical timer lt, runs
expression Bank for simtime logical time units (using the time-out paradigm),
and then publishes the statistics by calling Stats(). Observe that expression
Bank () does not publish, which is ensured by sequential composition with 0,
permitting us to use the time-out paradigm.

The Orc definitions have mostly described a physical system; therefore it is
extremely succinct. The description is modular, which allows for experimentation
with a variety of policies (e.g., assigning one teller to handle short jobs, for
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V irtT imer() >lt>
(z <z< Bank(lt) | lt.R(simtime)) �
Stats()

Bank(lt) Δ (Customers() | Teller(lt) | Teller(lt)) � 0
Customers() Δ Source() >c> enter(c)

Teller(lt) Δ next() >c>

lt.R(c.ServT ime) �
Teller(lt)

enter(c) Δ q.put(c)
next() Δ q.get()

Fig. 3. Bank simulation

instance) and different mixes of system parameters (e.g., hiring more tellers).
Further, there is no explicit mention of simulation in the definitions, only in the
goal expression. Advancing of the logical timer will be automatically handled by
the implementation.

5.2 Example: Serving Customers in a Fast Food Restaurant

The next example, serving customers in a fast food restaurant, is similar to that
of the bank, though there are key differences. As in the bank example, we have
a steady stream of customers entering a queue, and we have a single cashier
in place of tellers. Rather than servicing customers’ orders directly, the cashier
processes the orders and puts them in another queue to be handled by one of the

V irtT imer() >lt>
(z <z< Restaurant(lt) | lt.R(simtime)) �
Stats()

Restaurant (lt) Δ (Customers() | Cashier(lt) | Cook(lt) | Cook(lt)) � 0
Customers() Δ Source() >c> enter (c)
Cashier(lt) Δ next() >c>

lt.R(c.ringupT ime) �
orders.put(c.order) �
Cashier(lt)

Cook(lt) Δ orders.get() >order>

(
(e, s, d)

<e< prepTime(order .entree) >t> lt.R(t)
<s< prepTime(order .side) >t> lt.R(t)
<d< prepTime(order .drink) >t> lt.R(t)

) �
Cook(lt)

enter(c) Δ q.put(c)
next() Δ q.get()

Fig. 4. Fast food restaurant simulation
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two cooking stations. Cooking stations prepare the main entree, side dish and the
drink parts of an order in parallel, where each part takes some amount of time
to complete. An order is complete only after all its parts have been completed.
Unlike the bank example where each customer carried its service time with it,
we let the restaurant decide the service time for each customer c, by calling
ringupT ime(c) to determine the cashier’s time, and prepT ime(c.drink) for the
time required to prepare the drink order for c (and, similarly, for the other parts
of the order).

Figure 4 describes the simulation of the restaurant for simtime logical time
units. Note that Cook uses the fork-join strategy discussed in Section 3 (we have
abbreviated a cooking station by Cook ). Both q and orders are FIFO channels
which we use for our queues. Analogous to enter(c) and next(), we could have
entered and removed orders indirectly in queue orders rather than directly as
we do in Figure 4.

6 Measurement

The typical purpose of simulation is to measure the behaviors exhibited by the
simulated processes. These measurements are especially useful when they incor-
porate information about the passage of time in the simulation, such as the total
amount of time that a participant remained idle or the average delay experienced
by some process waiting on another process.

The current time associated with logical timer lt is lt.C. We use this value
to report the times at which certain events occur in the simulation. We also use
differences between observed times to determine the duration of some activity.

Consider a fragment of the bank example, where we are adding customers to
the queue and later removing them:

enter(c) Δ q.put(c)
next() Δ q.get()

We augment this part of the simulation with measurements to determine the
amount of time each customer spends waiting in line. We report the waiting time
with the site reportWait.

enter(c) Δ lt.C >s> q.put(c, s)
next() Δ q.get() >(c, t)>

lt.C >s>
reportWait(s− t) �
c

Histogram. We can also compute histograms or queue length distribution, as
follows. Let ti, where 0 ≤ i < N , be the duration during simulation for which the
length of q has been i. We create N + 1 stopwatches, sw[0..N ], at the beginning
of simulation. The final value of sw[i], 0 ≤ i < N , is ti. And, sw[N ] is the
duration for which the queue length is at least N .
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Now, modify enter(c) and next() to ensure that whenever the queue length is
i, 0 ≤ i < N , sw[i] is running and all other stopwatches are stopped (similarly
for sw[N ]). Therefore, initially, only sw[0] is running. Whenever a new item is
added to a queue of length i, 0 ≤ i < N , we stop sw[i] and start sw[i + 1]; for
i = N , nothing needs to be done. Similarly, after removing an item if the queue
length is i, 0 ≤ i < N , we start sw[i] and stop sw[i+ 1].

The modifications to enter(c) and next() are shown below. Assume q.length
returns the current length of q. Note that the code fragment
q.length >i> if (i < N) � (sw[i].stop | sw[i+ 1].start)
does not publish.

enter(c) Δ lt.C >s> q.put(c, s) �
q.length >i> if (i < N) � (sw[i].stop | sw[i+ 1].start)

next() Δ q.get() >(c, s)>

( lt.C >t> reportWait(s − t) � c
| q.length >i> if (i < N) � (sw[i].start | sw[i+ 1].stop)

)

7 Summary and Conclusions

This paper reports some preliminary work on coding simulations in Orc. Orc
supports descriptions of concurrent activities and real time, which make it pos-
sible to describe many physical systems. We have introduced logical timers in
this paper to facilitate computations that do not need to synchronize with the
wall clock. We have described some of the properties of logical timers and shown
their use in solving a combinatorial problem (shortest path) as well as in coding
simulations.

Orc cannot succinctly express certain simulations because it does not have the
fundamental notion of guarded choice, as found in the π-calculus [2] and other
concurrent calculi. For example, a Teller that watches two queues and takes a
customer whenever either queue becomes non-empty is difficult to code without
such a choice combinator. The addition of guarded choice to Orc is a topic of
ongoing research.

References

1. Dijkstra, E.: A note on two problems in connection with graphs. Numerische Math-
ematik 1, 83–89 (1959)

2. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

3. Misra, J., Cook, W.R.: Computation orchestration: A basis for wide-area computing.
Journal of Software and Systems Modeling (May 2006),
http://dx.doi.org/10.1007/s10270-006-0012-1

4. Wehrman, I., Kitchin, D., Cook, W.R., Misra, J.: A timed semantics of orc. Theo-
retical Computer Science (to appear, 2008)

http://dx.doi.org/10.1007/s10270-006-0012-1


Liberate Computer User from Programming

Teodor Rus�

Department of Computer Science
The University of Iowa, Iowa City, IA, USA

Abstract. This paper is about computer-based problem solving metho-
dology. The issue addressed is: can we develop a computer-based problem-
solving methodology which is not based on computer programming? The
answer we provide to this question is YES. This raises the next question:
if we do not use programming how do we communicate problem solving
algorithms to the computer? The answer to this question is: (1) develop
software tools that support domain algorithm execution in the problem
domain environment (no programming as usual) and (2) allow problem-
domain experts to express their problem-solving algorithms using the
natural language of their problem domains. We achieve this computer-
based problem solving methodology by computational emancipation of
the application domain, which consists of:

1. Characterize the application domain in terms of concepts that are
universal in the domain, have standalone computing meaning, and
are composable.

2. Structure the application domain using an ontology where terms de-
noting domain characteristic concepts are associated with computer
artifacts implementing them.

3. Develop a domain-dedicated virtual machine that executes domain
algorithms expressed in the natural language of the domain (with-
out asking to encode them into programs) and implement it on the
physical computers existent in the computer-network.

With this methodology computers execute algorithms whose expressions
are conceptual, similar to the way human brain would execute them.

1 Introduction

The computer is a wonderful problem-solving tool that performs computations
faster and more reliably than the human brain. But in the end the computer
is just a tool that can help people solve problems providing that they learn
how to use it. The biggest hurdle people face when using computers to solve
their problems is determined by the current computer-based problem solving
methodology which requires the computer user to perform the following two
steps:
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1. Develop a conceptual model of the problem and its solution algorithm1.
2. Map the solution algorithm into a program in computer memory.

Program execution is then carried out by the computer. For the purpose of this
paper the computer can be seen as a tuple 〈PC,Execute(), Next()〉 where:
– PC is a program counter register that points to the memory location holding

the operation to be executed;
– Execute() is the wired action carried out by the machine while performing

the operation shown by PC;
– Next() is the wired action that uses the current instruction to select the next

instruction to be executed by the computer.

The process by which machine instructions are carried out by the computer while
executing a program is further referred to as the program execution loop (PEL):

PC = First(Instruction);
while(not halt){Execute(PC); PC = Next(PC);}

Irrespective of its level of abstraction a program represents sequence of ma-
chine instructions and data encoded as bits and bytes that are further referred
to as “machine computation”. On the other hand the conceptual model and the
solution algorithm represent concepts, i.e., problem domain abstractions fabri-
cated by people’s mind. Because the essence of programming is program creation
and the essence of problem solving is conceptual modeling, the difference between
programming and problem solving, further referred to as the semantic gap, is ir-
reconcilable. It is the cause of the difficulties encountered by computer user with
current computer-based problem solving methodology. Depending upon computer
user expertise, computer programming can be a nightmare (for a non expert) or a
delight (for computer experts). Computer technology was developed as software
tools to support program development (using high-level notations of machine com-
putations) and to control program execution (handling computer resources re-
quired by PEL and treating events that may occur during PEL). Success stories
of computer use for solving difficult problems in all aspects of human life have led
to an explosion of computer technology. Following the cognition-process spiral we
observe that computer technology increases the human cognition power which in
turn increases the demand for more computer technology. The consequences are
many. Two of these consequences are: (a) complexity of software tools increases
with the number and the diversity of problem domains using the computer, and
(b) difficulty of computer use increases with software complexity. We use these
consequences here to motivate the issues addressed by this paper.

1.1 Using Computers without Programming

The effort of developing a computer-based problem solving methodology that is
not programming-based is justified by the observation that software tools meant
to make programming easier are programs. A computer user who is not a computer
1 We use here the term algorithm with an intuitive well-defined meaning, which may

depend upon the problem domain.



18 T. Rus

expert may have the same kind of difficulties in using such tools as she would have
with program development in the first place. In addition, looking at other tech-
nologies we may observe that, in general, they do not require their users to be their
experts. A tractor driver needs not be a tractor designer. Software tools are aimed
at making programming easier for programmers who are computer experts (some-
times referred to as IT experts). But current computer technology is ubiquitously
used in all aspects of human life by people who are not programmers. Therefore, to
set the standard of computer use to the same requirements as other technologies,
computer technology needs to drop the requirement of using computers by pro-
gramming. We need to allow a computer user to interact with her computer using
her natural language. We claim that this interaction is feasible with the computer
technology of today by making the computer↔user communication language be
the natural language of the user’s problem domain.

The difficulties encountered with natural language processing are alleviated
by appropriate structuring of problem domains. The model of this structuring
is provided by the scripting languages (such as job control languages and shells)
that are used by computer experts while they interact with their problem do-
main, which happens to be software development. The unit of action in these
languages is a command which tells the language interpreter to locate some pre-
viously developed program and to execute it on given parameters. For computer
experts these programs implement software tools. For application domain (AD)
experts these programs may implement AD concepts, and may be previously
developed by expert programmers. Such programs can be executed by the inter-
pretation of natural language terms associated with them, similar to scripting
language command interpretation. This association can be set as the basis for
bridging the semantic gap. A fragment of natural language developed on top
of the terms denoting these concepts used as lexicon becomes the Natural Lan-
guage of the Domain (NLD) to be used by AD experts to represent problem
models and solution algorithms. Note that NLDs developed on this scheme are
fragments of natural language dedicated to computer application domains. In
this paper we show how to identify and structure the characteristic knowledge
of an AD such that their terms to become the vocabulary of its NLD, and how to
execute the domain algorithms in the domain, without programming them. The
software tools we need to develop in order to support this manner of computer
usage provide a breakthrough in computer technology which open a huge market
for Application Driven Software (ADS) development.

1.2 Handling Software Complexity

The cognition-process spiral justifies the increasing demand to develop new soft-
ware tools and to integrate them within the software tools previously developed.
The resulting software complexity makes current computer-based problem solv-
ing a nightmare even for computer experts and has reached a level at which it
threatens to kill the information technology [Kri], [IBM02]. Current computer
technology solutions to the problems raised by increasing software complexity
are based on the development of new and even more complex software tools,
thus creating more software complexity.
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Addressing the issue of software tool complexity we observe that current
computer-based problem solving methodology makes no distinction between var-
ious problem domains. Yet experts of different problem domains may use differ-
ent mechanisms for the development of their problem models and algorithms.
The integration of this continuously increasing diversity of problem domains and
solution algorithms within the current “one-size-fits-all” problem solving pattern
of computer program generation is the main source of software complexity. The
solution to the problem raised by software complexity is to remove the source
of complexity. This means that we need to develop a computer-based problem-
solving methodology where each problem domain may have its own computer-
based problem solving pattern which can grow with the domain. That is, we
actually want to follow the principle of adapting the computer to the problem
domain rather than adapting the problem domain to the computer. This cannot
be carried by problem domain expert or by computer expert independent of each
other. This requires a cooperation along the following lines:
1. Problem domain expert characterizes her application domain in terms of

well-defined concepts that have computational meaning and (a) are universal
over the problem domain, (b) are standalone, and (c) are composable. This
allows her to outsource the problem of creating computer artifacts (including
programs) to the computer expert.

2. Computer expert develops implementations of the concepts that characterize
the AD and broadcasts them to the domain using appropriate URIs [BL98].

3. Problem domain expert and computer expert structure the application do-
main using an application domain ontology [SS04] where concepts are asso-
ciated with the URIs of the computer artifacts implementing them.

The process of computer-based problem solving may be further shared between
domain expert and computer expert by the following protocol:
– The AD expert collaborates with the computer expert to create the NLD to

be used for problem modeling and algorithm development. We discuss this
language in Section 2.3 of the paper.

– Computer expert creates a domain-dedicated virtual machine that can ex-
ecute domain algorithms in the AD environment. This is discussed in Sec-
tion 2.4 of the paper.

– AD expert and computer expert collaborate to create the software tools that
optimize and automate the problem solving process. These are creativity
support tools [Shn07] that allow NLD evolution with the domain ontology.
Some of these tools are discussed in Section 3.

1.3 Related Work

The entire research on programming is actually dedicated to making program-
ming easier and is consequently related to our work. Therefore we need to be
very specific in identifying the differences we make. For that we start with the
observation that programming per say is not a goal, it is a mean to achieve
the goal. The goal is problem solving. Of course, program creation is by itself a
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problem to solve and thus a goal which has a special place in the hierarchy
of goals called computer-based problem solving process. The link which binds to-
gether the entire research on making programming easier is the process of raising
the level of abstraction of program notation to match the programmer interest
and the problem to solve. The raising of the abstraction level led from machine
code to assembly, Fortran, Cobol, and further to Object Oriented. The matching
of programmer interest to problem to solve led to Fortran for easy evaluation
of numerical formulas, to Cobol for easy data manipulation, to Object Orienta-
tion to increase programming productivity, and further to today’s DSL [MJS05].
Many of these accomplishments have been achieved by “liberating programming
from various straitjackets” [Har08, Bac78, Apt96, Sim95] which suggested the
title of this paper. In all these papers programming is “liberated”. That is, in
order to use the computer, the computer user is still required to program her
problem solving algorithm. Since the goal is problem solving using computers
the real problem is actually the computer user’s liberation from programming.

Our main contribution is then the development of abstractions that liberate
computer user from programming. This means that we advocate the creation of
languages dedicated to problem solving not to program development. Of course,
if the problem to solve is program development then the language we advocate
is dedicated to program development. Since different problem domains may use
different mechanisms for modeling their problem solving process, first we create
the framework that allows computer user to employ her problem domain specific
language while developing problem models and solution algorithms. To ensure
the viability of this language we develop tools that make it coincide with the
natural language used by a large class of domain experts during problem solving
process. Finally, to eliminate programming requirement from computer use we
create software tools that support the NLD algorithm development and execution
in the problem domain. With the research we reported in [RC07, CR08] we
have shown how can this methodology be used in linear algebra and chemistry.
If the special train set in [SC98] is seen as a domain ontology, then we have
another example of NLD use to make programming easier for children. The
contribution of this paper is the development of the framework that shows that
we can achieve the dream of using computers without programming with current
computer technology for any computationally emancipated application domain.

Similar accomplishments are Microsoft tabletop systems, IBM Business Pro-
cess Execution Language[ACD+], Mathematica, Language Oriented Program-
ming [War94], Meta Programming System [Dim], etc. The difference is that in
all these applications the goal is easy computer program generation. There may
be other similar achievements which we are not aware of.

2 Computational Emancipation of Application Domains

The problem solving paradigm we discuss here relies on deep understanding of
the problem domain. This is accomplished by computational emancipation of
the application domain (CEAD) which is a dynamic process that consist of:
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1. Identifying domain characteristic concepts whose computational meaning is:
(a) universal in the domain, (b) standalone, and (c) composable.

2. Organizing domain characteristic concepts identified at (1) using a domain
ontology [NM] which evolves with the domain knowledge evolution.

3. Developing a notation to be used by the domain expert to express problem
models and solution algorithms and allow domain algorithm execution in the
domain environment.

2.1 Domain Characteristic Concepts

Domain characteristic concepts represent domain perennial knowledge that char-
acterize domain cognition process. Usually these concepts belong to the natural
language and are taken as granted by all domain experts. For computational
emancipation of the application domain they need to be explicitly identified and
organized using an appropriate domain ontology [GO94, GMJE05] because: (a)
they form the vocabulary of the NLD, (b) they are associated with computer ar-
tifacts implementing them thus providing the mechanism to bridge the semantic
gap, and (c) their computation meanings are composed during the problem solv-
ing process generating new characteristic concepts of the domain, thus ensuring
ontology evolution in sync with the domain’s cognition process. The collection
of terms used in the domain ontology to denote domain characteristic concepts
is also enriched with computer-technology terms whose usage transcended from
programming languages to natural language, preserving their meanings, and thus
achieving the goal of the computational thinking process [Win06, TW07].

The meaning of the terms used in the domain ontology is informally specified
as the domain abstractions which domain experts denote by these terms. For-
mally, these terms represent domain concepts that have a computational mean-
ing which is: universal in the domain, standalone, and composable. For example,
in high-school algebra, integer addition, denoted + : I × I → I, is:

1. universal over the set I of integer numbers because n1 + n2 ∈ I for any
n1, n2 ∈ I,

2. standalone because the computation of the number n1 + n2 depends only of
the numbers n1, n2,

3. composable because it can be composed with other operations, that is,
∀n1, n2, n3 ∈ I, (n1 + n2) + n3 ∈ I, that is, + is the same operation, re-
gardless of how do we define its arguments.

These kind of abstractions are well-known in mathematics but their properties
are not always preserved in programming languages. For example, a standard
library of a given programming language (PL) contains functions denoting com-
putations that may be universal with respect to PL, but usually are not stan-
dalone because they can be used only in the context of a valid program of the
PL, and are composable only through the composition rules defined by the PL.
Hence, these abstractions do not characterize the domain; they characterize the
machine-computations that implement the AD abstractions.
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2.2 Domain Ontology

A domain ontology is a repository of information which plays a double role
during the problem solving process. On the one hand it allows the domain ex-
pert to consistently use her knowledge for problem modeling and algorithm de-
velopment. On the other hand it provides the framework used by the virtual
machine that executes domain algorithms in the domain environment. Current
approaches for knowledge representation and structuring for semantic web de-
velopment [McB04] use a graph-representation for domain ontology structuring.
Due to the dynamic of problem solving process, evolving as problem domains
and sub-domains, it is important that domain ontology representation to cap-
ture the topological nature of knowledge evolution. In other words, the dynamic
of problem solving process is characterized by non-metric information, captured
by the topological notion of connectedness, rather than by shape, location, dis-
tance, size, etc. Therefore we suggest domain ontology representation by higraphs
[Har88], whose nodes are blobs. Following higraph definition each blob is regarded
as denoting a certain kind of set of knowledge provided with a nesting relation-
ship that represent set inclusion, not set membership. Blobs are represented in
the higraph by closed curves labeled by the terms used to denote the concept
they represent. If there is no need to distinguish between a blob and its sub-
blobs (as will be the case in the example below) then we my simple use the term
denoting the concept as the blob representation of the node rather than using
any geometric figure.

Subject
Property

Object

Subject �Action
Object

Fig. 1. The unit of action on a domain-ontology

The nodes of the domain ontology higraph represent data concepts and are
labeled by the terms used in natural language to designate these concepts. The
edges of the domain ontology higraph represent property and action concepts and
are labeled by the terms used in natural language to designate the properties and
the actions they represent. Here we distinguish between the two kind of edges in
a domain ontology graph: line-edges which represent properties of data concepts
and arrow-edges which represent actions that input data objects of the type
represented by the term that sits at the source of the arrow and output data ob-
jects of the type represented by the term that sits at the top of the arrow. Labels
on the line-edges are natural language terms that represent concepts denoting
properties and labels on the arrow-edges are natural language terms denoting
concepts that represent the actions performed by the edge. The unit of ac-
tion problem solver manipulates during problem solving process is expressible
through a simple-phrase that has the structure 〈Subject, Property/Action,
Object〉 and is represented in the domain ontology higraph as shown in
Figure 1.
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Here we illustrate the concept of a domain ontology with a sub-domain of the
natural language processing. Figure 2 shows the domain ontology of a subset
of the natural language processing domain that deals with the problem known
as the recognizing textual entailment [BM05], further referenced as the RTE
problem. RTE problem is stated as follows: Given two text phrases, T and H,
and a knowledge database such as WORD-NET, develop an algorithm that decides
whether T implies H or not.

Phrase

Syntax Semantics

DerivationTree

DiscoursRepresentationTree FOLexpression TruthValue

BackgroudKnowledge
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������
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�

�

��������
�

has a has a

is a
Parser

Boxer

Explorer

MakeFOL

MakeFOL

Prover

Fig. 2. Example domain-ontology

The terms Phrase, Syntax, Semantics, DerivationTree, DiscoursRepresenta-
tionTree, BackgroudKnowledge, TruthValue, used in the ontology in Figure 2 to
represent data concepts, are all universal in natural language processing because
they denote mathematically well-defined abstractions and all natural language
experts may use them with the same meaning. The concepts Parser, Boxer,
Explorer (knowledge explorer) and MakeFOL (make First Order Language ex-
pression) represent computational actions used in natural language processing
which are universal (i.e., perform the same functions in all aspects of natural lan-
guage processing) and standalone because the behavior they represent depends
only on the arguments they take in order to perform their tasks. Further, they
are composable because the computations they perform can be composed with
one another according to their input/output behavior patterns, thus defining
larger computations that represent valid concepts in the natural language of the
domain. For example, Parser, Boxer, Explorer, and Prover (theorem prover) can
be composed to form a Textual Entailment Recognizer. Note, in this ontology
the concept represented by the term Prover represents a theorem prover, it is
universal, standalone, and composable because in the RTE problem its meaning
is a computation that for any logical expression of the form T → H it returns
the truth-value of the logical implication T → H .

For any domain, the domain ontology is ever-expanding, that is, it is built up
“interactively and inter-subjectively” by the language used to communicate be-
tween domain experts based on their “commonsense” ontology [Bat93]. New terms
of the language come from the interaction between domain experts during their
communication process, from the interaction between domain experts and their
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domain ontology during problem solving process, and by inheritance from other
domains. For example, the RTE domain contains the terms: Phrase, Derivation-
Tree,DiscourseRepresentationStructurewhich denote concepts created in the RTE
domain, while the term Prover is inherited from mathematical logic. Other terms
(not shown in the domain ontology) such as assignment and variable are inher-
ited from computer technology and mathematics. Usually the terms inherited by a
domain from another domain may already exists in the domain that inherits them
with a different semantics. Here we assume that terms in NLD inherited from com-
puter technology (through computational thinking process) are used in the NLD
with the meaning they have in the computer technology. In addition, we assume
that the domain expert, during problem solving process, may create new terms as
she needs them for the development of problem model and solution algorithm.

2.3 Natural Language of the Application Domain

Domain experts use NLD to express their ideas. To automate NLD processing
domain experts still need to learn some syntax in order to express their ideas.
This is easy because they use the syntax of their natural language. The meaning
of their communication is specified by the domain ontology and therefore the
semantics of NLD is dynamic and is totally controlled by the domain experts.
During problem solving process the domain experts also use the NLD to commu-
nicate with the domain experts of other domains, such as computer technology
experts, whose NLDs are programming languages. How can this interaction be
performed without asking AD experts to learn PL or IT experts to learn NLD?
The answer to this question is provided by the process of bridging the semantic
gap performed by AD and IT experts through computational emancipation of
the application domains. Since domain concepts are universal over the domain,
are standalone, and are composable, they are implemented by the IT experts on
computer platforms of choice and are associated with the terms of the ontology
using URI-s. This allows domain experts and computer experts to bridge the se-
mantic gap between natural language and computer language. Examples of such
implementations would be libraries of functions that are universal (i.e., could be
called from any programming environment), are standalone (i.e., their execution
would depend only on their arguments), and are composable (i.e., they could be
freely composed with other such functions). We believe that current function-
libraries developed for given programming language environments could be easily
transformed into functions satisfying these properties. The consequence is that
with a CEAD-ed domain, the domain experts can communicate among them and
with the IT experts using the terms of the ontology because the communication
gap is bridged by the URI of the computer-artifacts associated with the NLD
terms in the domain ontology.

To keep NLD simple, the above informal discussion can be formalized by the
following three layers of NLD specification: vocabulary, simple phrase, and phrase.

1. Vocabulary: the vocabulary (or lexicon) of the NLD is a finite set of terms
VD∪AD, where VD is the set of terms used to denote concepts in the domain
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ontology and AD is the set of terms inherited from IT or invented by domain
expert to express actions/properties used to develop problem models and
solution algorithms. For example, the term assignment (symbol :=) is used
to express the process that evaluates a domain concept and gives the result as
the value to a domain variable (unknown). Consistency of this use is ensured
by the relationships provided by the domain ontology. For example, the
simple phrase “Parse Phrase: Y giving DerivationTree: X” can be naturally
expressed by “DerivationT ree X := Parser(Phrase Y )”. Every term of the
vocabulary is associated with three properties: arity, signature, and types:.
– The arity of a terms t shows the number of arguments t takes in order

to express an action or a property.
– The signature of a term t shows the order and the type of the arguments
t takes in order to express an action or a property.

– The type of a term t is the type of the concept created by the ac-
tion/property t performs.

Note that if t is a term in the vocabulary and its arity is 0 (zero) then it
represents a concept in the ontology and the action or property it expresses
is well defined by the URI associated with it.

2. Simple phrase: a simple phrase of NLD is any action or property speci-
fied by a sequence t0t1 . . . tk where arity(t0) = k, sig(t0) = t1, t2, . . . , tk,
and the type(t0 t1 . . . tk) = type(t0). Here the term t0 represents the ac-
tion/property and may be freely distributed over its arguments as is the
case of if then else inherited from PLs, or of the parentheses inherited from
mathematics. Semantically a simple phrase represents a unit of action em-
ployed by the domain expert to denote a step of her solution algorithm. For
example, v := n1 + n2 denotes the action of adding two numbers and giving
the result as the value to the variable v.

3. Phrase: a phrase in NLD is either a simple phrase or an action t0 t1 . . . tk
where arity(t0) = k, k ≥ 1, and t1, . . . , tk are phrases. Semantically a phrase
is a composed action. That is, a phrase represents a solution algorithm.

The BNF syntax of the NLD language whose semantics is specified above follows:

S = "AlgName:" [I";"][O";"] ActionList
I = "Input:" DL
O = "Output:"DL
DL= D | D "," DL
D = "ConceptType" VarList
VarList = Var | Var "," VarList
ActionList = Action | Action "compose" ActionList
Action = "Perform:" PhraseList
PhraseList = Phrase | Phrase ";" PhraseList
Phrase = Concept | Concept ArgList | "itOperator" Phrase
ArgList = "("Arg")" | "("Arg "," ArgList")"
Arg = Phrase | Concept
Var = "usersId"
Concept = "noun" | "verb"

where terminals are in quotes and nonterminals are capitalized.
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The RTEdecider algorithm that solves RTE problem has the following expres-
sion in the NLD of the RTE domain:

RTEdecider:
Input: T, H : Phrase;
Output: Result: Phrase;
Perform
treeT = Parser(T); treeH = Parser(H);
drsT = Boxer(treeT); drsH = Boxer(treeH);
bk = Explorer (drsT,drsH);
ET = MakeFOL(drsT); EH = MakeFOL(drsH);
Result = Prover((bk and ET) implies EH))

To emphasize the simplicity of this version of natural language processing we
show below the derivation of RTEdecider from the BNF rules specifying its
languages syntax:

S ---> RTEdecider: I; O; ActionList
---> Input: T, H : Phrase; O; ActionList
---> Input: T, H : Phrase;

Output: Result: Phrase; ActionList
---> Input: T, H : Phrase;

Output: Result: Phrase;
Perform PhraseList

--->* Input: T, H : Phrase;
Output Result: Phrase;
Perform

treeT = Parser(T); treeH = Parser(H);
drsT = Boxer(treeT); drsH = Boxer(treeH);
bk = Explorer (drsT,drsH);
ET = MakeFOL(drsT); EH = MakeFOL(drsH);
Result = Prover((bk and ET) implies EH))

A natural language expert can read and understand this algorithm without
any other explanation because the concepts used are those in the domain ontol-
ogy. Moreover, the domain expert understands the computation performed by
the NLD algorithms without thinking at the machine that may execute them
because each of the concepts used in the NLD algorithms has a well-defined
meaning for her at her natural language level. The computations expressed by
these algorithms are conceptually carried out by the domain expert handling
them. In other words, in order to execute these algorithms the domain expert
rely only on her domain knowledge. To carry out these computations she may
use the virtual machine dedicated to her problem domain, as we will explain in
Section 2.4, but she does not need to know where and how this computation is
physically done.
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2.4 Executing Natural Language Algorithms

Natural language algorithms are executed by a Domain Dedicated Virtual Ma-
chine (DDVM). This machine is virtual because its instructions perform actions
associated with the concepts in the domain ontology in a similar way in which a
Virtual Machine Monitor (VMM)[PG74] performs privileged operations of a real
computer platform. DDVM is dedicated to the domain because the only opera-
tions it can execute are those defined in the domain ontology. In the hands of a
domain expert, this machine behaves as a very large pocket-calculator provided
with a picture of a domain ontology on which the user can select and press keys
according to the actions she wants to execute. As with any pocket-calculator, the
user identifies the function she needs using the term written on the key-board
(which happens to be a term in the domain ontology). The user doesn’t care who
and how is actually performing that function, exactly as she doesn’t really care
who and how performs an arithmetic function of the pocket-calculator when she
uses one. Instead of being a universal abstract state machine[Gur00] meant to
define the concept of an algorithm, DDVM is a pragmatic machine, dedicated
to the domain, and different ADs are usually provided with different DDVMs.

For the purpose of this paper a DDVM is an abstraction that consists of: a Con-
cept Counter (CC), an Abstract Processor (AP), and a mechanism called Next().
Given a CEAD-ed domain ontology (DO) the DDVM(DO) performs as follows:

1. CC points to a concept in the DO.
2. AP executes the computation associated with the CC(DO), if any.
3. Next(CC) determines the next concept of the DO to be performed.

To underline the similarity of DDVM with a universal computer described by the
PEL-loop in Section 1, we denote the behavior of the DDVM(DO) by Domain
Execution Loop (DEL) and describe it by the following pseudo-code:

CC = StartConcept(DO);
while(CC not END){Execute(AP,CC); CC = Next(CC);}

The DEL we describe mimics the behavior of the PEL-loop performed by
real computers, but there are major differences. The concept counter (CC) of
the DEL-loop is similar to the program counter (PC) of the PEL-loop in that
it keeps track of what is to be performed. But rather than pointing to memory
containing machine instructions, CC points to concepts on the emancipated do-
main ontology. Additionally, the concept pointed to by CC is evaluated by the
abstract processor that performs the action Execute(AP,CC). By computational
emancipation of the application domain, the concept shown by CC in the on-
tology may be associated with a standalone computer artifact identified by an
URI. In this case Execute(AP,CC) creates a computer process and instructs it
to execute that computer artifact. Thus, Execute(AP,CC) is not carrying out
machine instructions. Machine instructions involved in this computation, if any,
are performed by the computer process generated by Execute(AP,CC). Hence,
from a domain expert viewpoint Execute(AP,CC) is actually a computational
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process performed by the brain, with or without the assistance of a real com-
puter platform. The Next() component of the virtual machine is responsible for
selecting the next component to be executed by the virtual machine. This is
similar to the Next() function performed by PEL. Exactly as in the case of a
real computer, we make the assumption that the next-operation performed by
DDVM is encoded in its current operation. Consequently, an NLD algorithm is
executed by DEL walking on the domain ontology in a similar way a program is
executed by PEL walking the memory of a real computer.

For an AD expert to solve a problem without programming she follows a four
step approach similar to Polya’s [Pol73] four steps methodology:

1. Formulate the problem;
2. Develop a domain algorithm that solves the problem;
3. Type the algorithm, i.e., input the algorithm in the computer;
4. Execute the algorithm by a command that sets CC to the first concept to

be evaluated by the DDVM while performing the algorithm.

To demonstrate this approach of problem solving we consider the example of
high-school algebra. Suppose that the following assignment is given by the tea-
cher: students, develop an algorithm to solve the quadratic equation ax2+bx+c =
0, where a, b, c are real numbers and a 
= 0, and then apply your algorithm for
the case of a = 1, b = 4, c = 4.

1. The problem is formalized as a formal equality ax2 + bx + c = 0 in the
language of high-school algebra.

2. Using the properties of equality the students develop the solution: x1,2 =
−b+|−√

b2−4∗a∗c
2∗a . Now the students organize computations to be performed

by DDVM(HighSchoolAlgebra) as the following high-school algebra algo-
rithm:

Solver:
Input real a, b, c where a not zero;
Output: real x1, x2; Local real t;
t := b^2 - 4*a*c;
if t >= 0 then
x1 := (-b + sqrt(t))/2*a; x2 := (-b - sqrt(t))/2*a;

else no real solutions

3. Input the algorithm (as a text) in their computers.
4. Initiate the algorithm by typing Start Solver.

The solution is obtained using a computer/user dialog where computer prompts
the student using usual terms of high-school algebra. Assuming that the com-
puter prompt is % this dialog could be:

%Enter a (student types 1)
%Enter b (student types 4)
%Enter c (student types 4)

In few fractions of second the computer prints: % Solution: x1 = -2, x2 = -2.
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There are a few key things to note. The first is that we initiate the virtual
machine by giving it the component of the domain algorithm to start the compu-
tation. In example above this is done by telling the DDVM to perform “Solver”.
The concepts used in the domain algorithm, such as +,−,, sqrt are associated
with computer artifacts implementing them on a real computer. The other con-
cepts, such as Let, if, else, :=, in, out, etc., are terms inherited from
computer technology in the language of high-school algebra. Students use them
because they belong to their natural language and DDVM understand them by
the software supporting this problem solving methodology.

As computer scientists the concepts used in this example are trivial because
they are also computer operations. But there is a very clear distinction be-
tween the two. The algebraic concepts used in the above solution are concepts
of high-school algebra and not references to the computer code which performs
(approximations) of the computations represented by these concepts. That is, in
high-school algebra the operations +,−,, sqrt, etc. are not the operations which
are utilized by a programming language such as C or Fortran. Rather, these
terms represent universal, standalone, composable computational processes used
by high-school students. It just happens that in this case these symbols represent
terms that IT experts are accustomed to seeing in their favorite programming
language.

This paradigm of algorithm execution does not imply that computer pro-
gramming disappears. It only implies that computer programming is done by
professional programmers while AD experts develop and run domain algorithms
using domain concepts. Domain experts are not required to be aware of what
or where the computer that performs the computation is. This means, students
learning algebra may focus on algebra not on Fortran, C, or any other language
that may be used to implement the concepts of high-school algebra.

To further the discussion of how NLD algorithms are carried out by the virtual
machine, and also to show that this paradigm of problem solving is universal (i.e.,
it is no different when we move from one domain to another), we consider the
example of the RTE problem discussed in Section 2.3 and its RTE solution given
as RTEdecider. So, suppose we have two phrases: Bill is a man and Bill is
human and we want to check whether Bill is a man implies Bill is human.
Using RTEdecider this is obtained by the following dialog with the machine
on which the computationally emancipated RTE domain, whose ontology is in
Figure 2, is implemented:
% Start RTEdecider:
% Input phrase T: Bill is a man
% Input phrase H: Bill is a human
After a few fractions of a second the computer answer: % True
As usual, the text after the prompt is typed by the machine and the typewriter
text is typed by the user.

As with the high-school algebra example, at the domain level the domain
expert does not care how these concepts are performed, just that they are per-
formed and they generate results. The whole point of this work is to utilize
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the computer as a mind-tool [Jon00]. The CEADed ontology allows the AD
expert to do that by letting the computer carry out the concepts in the ontol-
ogy rather than relying on the brain. From the viewpoint of a domain expert
using this paradigm of problem solving, the use of the computer is no differ-
ent from the using a pocket-calculator. The difference is that while the usual
pocket-calculator performs simple arithmetical operations, the DDVM performs
complex algorithms associated with concepts in the domain ontology.

3 Optimization of NLD Algorithm Execution

Carrying out an NLD algorithm incurs the cost of searching the domain on-
tology for concepts used in the solution algorithm. The challenge to IT is then
twofold: (a) computer experts need to develop the computer artifacts that im-
plement the concepts that populate the AD ontology, and (b) computer experts
need to develop software tools that support and optimize the process of NLD
algorithm execution. The computer artifacts involved at (a) are defined by the
properties of the domain characteristic concepts. The tools involved at (b) above
operate on NLD algorithms and the domain ontology, collect the ontology con-
cepts involved, perform any validation that may occur, and produce a solution
algorithm that eliminates the search process at algorithm execution time. This
optimization can be done by the domain expert “manually”, going from concept
to concept, collecting the URIs associated with each concept and generating an
expression of the domain algorithm using these URIs [RC06, RC07], similar to
what a translator of a natural language is performing. Due to the simple struc-
ture of the NLD, this can also be carried by a conventional compiler that maps
NLD into a process execution language where processes to be executed are com-
pletely defined in the ontology. The Software Architecture Description Language
(SADL) [RC06, RC07] was designed for this purpose and the SADL interpreter
was created as an automaton that executes SADL expressions representing NLD
algorithms.

3.1 SADL and SADL Interpreter

SADL is a process-description language similar to a shell scripting language.
The lexical elements of SADL are commands denoted by the terms from NLD
vocabulary. The semantics of the command denoted by a term t is the process
performing the software artifact associated with t in the domain ontology, or
the process that implements the meaning of the term t, if t is inherited. A
SADL simple process is a computer process that performs a command. A SADL
composed process consists of compositions of one or more SADL simple processes
that implement an NLD algorithm. The syntax of SADL is built on the extensible
markup language (XML). The two types of SADL processes are represented by
the two types of XML elements:



Liberate Computer User from Programming 31

– A SADL simple process is represented by an empty XML element of the
form <op atr1 = val1 . . . atrn = valn /> where the tag op is an element of
the NLD vocabulary and atr1, . . ., atrn are the attributes that define the
process associated with that tag, such as the URI of the code.

– A SADL composed process is represented by a content XML element of the
form <op atr1 = val1 . . . atrn = valn> p1 . . . pn </op> where the tag op is
an element of NLD vocabulary inherited from the computer technology rep-
resenting a process that composes the processes p1 . . . pn using the attributes
atr1, . . ., atrn to determine the behavior of the resulting composition.

Expressions in SADL contain all the necessary information to carry out the
domain algorithms without the need to search the domain ontology.

The SADL interpreter uses the DEL loop to carry out domain algorithms
by creating, composing, executing, and controlling the processes specified by
SADL commands. This is easily accomplished using systems, such as Unix-5,
that provide mechanisms supporting process creation, process execution, and
controlling process interaction. We illustrate this using the solution algorithm
for RTE problem discussed above, whose SADL expression follows:

<?xml version="1.0" ?>
<sadl>
<RTEdecider input="URI(T) URI(H)" output="URI(result)">

<Parser uri="URI(Parser)" input="URI(T)" output="URI(treeT)" />
<Parser uri="URI(Parser)" input="URI(H)" output="URI(treeH)" />
<Boxer uri="URI(Boxer)" input="URI(treeT)" output="URI(drsT)" />
<Boxer uri="URI(Boxer)" input="URI(treeH)" output="URI(drsH)" />
<Explorer uri="URI(Explorer)"

input="URI(drsT),URI(drsH)" output="URI(bk)" />
<MakeFOL uri="URI(MakeFOL)" input="URI(drsT)" output="URI(ET)" />
<MakeFOL uri="URI(MakeFOL)" input="URI(drsH)" output="URI(EH)" />
<And uri="URI(and)"input="URI(bk) URI(ET)"output="URI(antecedent)"/>
<Implies uri="URI(Implies)" input="URI(EH)" output="URI(wff)" />
<Prover uri="URI(Prover)"input="URI(wff)"output="URI(result)"/>

</RTE>
</sadl>

To increase readability here we use the notation ”URI(concept)” instead of
using the real URI of the concept in the ontology. Note however that SADL
and SADL interpreter are designed and implemented by IT experts as software
support for NLD algorithm executions and are invisible to the AD experts.

3.2 Mapping NLD Algorithms into SADL

The mapping of the NLD algorithms into SADL can be done by the domain ex-
pert by hand. This is feasible for toy problems. For more sophisticated problems
it is beneficial to automate this process. This is another class of software tools
that IT is challenged to develop in order to support computer user liberation
from programming. The development of a translator mapping NLD algorithms
into SADL expressions is facilitated by the following facts:
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1. The lexicons of the source language (i.e., the NLD) and the target language
(i.e., the SADL) are finite and one-to-one connected. However, notice that
these lexicons evolves with the domain expert cognition process. For that,
only the domain ontology needs to be updated.

2. As we have seen in Section 2.3, we can design the NLD language to have
a very simple syntax, that avoids the usual ambiguities present in natural
language. A Generalized Phrase Structure Grammar [HU93] is appropriate
for this purpose. This allows us to use TICS tools[RKS+] to automatically
generate the parser we need and to label the abstract syntax trees generated
by this parser with the URIs of the concepts in the ontology and the IT
operators encountered in the NLD algorithm.

3. The SADL expression is thus automatically generated by walking the ab-
stract syntax tree generated by the parser. No intricacies implied in code
generation for actual machines is involved. We encapsulate the NLD algo-
rithm translation into the command: Map2SADL DomainAlgorithm.

Since only the vocabularies of different NLD-s are different, the evolving of NLD
with the domain cognition process, or the porting of the Map2SADL translator
from one NLD to another NLD, can be done by the domain expert by updating
NLD vocabulary specification. Only the scanner needs to be reimplemented,
which is automatically generated from the NLD vocabulary specification [RH00].

4 Conclusions

Feasibility of computer use without programming is demonstrated by many soft-
ware tools in use today that expand from using a computer as a typewriter to
the enterprise management systems. But there is no recognized trend of liber-
ating computer user from programming. The ubiquitous expansion of computer
use (with and without programming) cannot be sustained without a systematic
research program toward liberating computer user from programming. This does
not mean that research on programming would disappear, only that the com-
puter science community needs to differentiate more carefully between computer
users and computer experts, and consequently it needs to balance the research
on software support for the two classes of experts. Once this is realized, it will be
easy to observe that the software needs of computer users depend on application
domains and domain expertise. In other words, the idea of liberating computer
user from programming means actually the liberation of computer technology
from the “one-size-fits-all” pattern imposed by current problem solving method-
ology. This pattern evolved from the Hilbert program [HPr] and characterizes
the syntactic computation encapsulated in the concept of an algorithms, which
correspond to the fixed rules of inference of a formalized axiomatic procedure. Its
limitations are theoretically justified by Gödel’s incompleteness theorem [NN01].
We believe that computer user liberation from the “straitjackets” imposed by
programming language syntax, thus making the computer a mind-tool, opens
the era of semantic computation, and consequently, will lead to a new explosion
in computer technology.
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Why do we want to present this research to AMAST community? The an-
swer to this question resides in the history of AMAST. AMAST has been cre-
ated to pursue the tendency of using algebraic (formal) thinking as mechanism
of discovery and innovation in software development. Twenty some years ago
software development had as the objective the development of tools to con-
trol the computing power embodied in computer hardware while providing it
as services to computer users. The computer was seen as a universal tool that
provides universal services. But by the ubiquitous computer use the universe
seems to become too large and threatens to crush the computer. Human cogni-
tion power increases with computer use and requires the diversification of service
types provided by the computer, thus leading to the need to abandon the “one-
size-fits-all” pattern of computer usage. To sustain this aspect of the human
cognition-process software tools need to evolve with the human cognition pro-
cess and this can be achieved only by looking at the computer as a cognitive
tool, in the hands of computer users. That is, the computer needs to be a tool in
the hands of its users rather than being a tool in the hands of its creators. This
can be achieved by moving computational thinking created by the development
of software technology[TW07] back into the application domain. We believe that
it is now time to continue the evolutionary view of algebraic methodology from
AM → ST to AM → ST → AD. This is where the AMAST following may
play a key role. Due to the thinking inertia created by the successes of computer
technology developed so far, we expect that the main foes of this new paradigm
of computer technology will be the computer experts themselves. The AMAST
following is probably best prepared to understand, to accept, and to handle
this situation. The AMAST community evolved as a class of computer experts
supporting the setting of software technology on firm, mathematical basis. Now
the AMAST-ers are called to collaborate with application domain experts to set
computer application domains on firm, mathematical basis, by their computa-
tional emancipation, thus contributing to the creation of new software technology
meant to liberate computer user from programming.
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Abstract. Feature-Oriented Software Development (FOSD) provides a multi-
tude of formalisms, methods, languages, and tools for building variable, cus-
tomizable, and extensible software. Along different lines of research, different
notions of a feature have been developed. Although these notions have similar
goals, no common basis for evaluation, comparison, and integration exists. We
present a feature algebra that captures the key ideas of feature orientation and
provides a common ground for current and future research in this field, in which
also alternative options can be explored.

1 Introduction

Feature-Oriented Software Development (FOSD) is a paradigm that provides formalisms,
methods, languages, and tools for building variable, customizable, and extensible soft-
ware. The main abstraction mechanism of FOSD is the feature. A feature reflects a stake-
holder’s requirement and is an increment in functionality; features are used to distinguish
between different variants of a program or software system [1]. Feature composition is
the process of composing code associated with features consistently.

Research along different lines has been undertaken to realize the vision of FOSD [1,
2, 3, 4, 5]. While there are the common notions of a feature and feature composition,
present approaches use different techniques, representations, and formalisms. For ex-
ample, AspectJ1 and AHEAD2 can both be used to implement features, but they pro-
vide different language constructs: on the one hand pointcuts, advice, and inter-type
declarations, and on the other hand collaborations and refinements [5]. A promising
way of integrating the separate lines of research is to provide an encompassing abstract
framework that captures many of the common ideas like introductions, refinements, or
quantification and hides (what we feel are) distracting differences.

We propose a first step toward such a framework for FOSD: a feature algebra. Firstly,
the feature algebra abstracts from the details of different programming languages and
environments used in FOSD. Secondly, alternative design decisions in the algebra, e.g.,
allowing terminal composition or not, reflect variants and alternatives in concrete pro-
gramming language mechanisms. Thirdly, the algebra is useful for describing, beside

1 http://www.eclipse.org/aspectj/
2 http://www.cs.utexas.edu/~schwartz/ATS.html

J. Meseguer and G. Roşu (Eds.): AMAST 2008, LNCS 5140, pp. 36–50, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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composition, also other operations on features formally and independently of the lan-
guage, e.g., type checking [6] and interaction analysis [7]. Fourthly, the algebraic de-
scription of a software system can be taken as an architectural view. External tools can
use the algebra as a basis for feature expression optimization [4, 8].

We introduce a uniform representation of features, outline the properties of the alge-
bra, and explain how the algebra models the key concepts of FOSD.

2 What Is a Feature?

Different researchers have been proposing different views of what a feature is or should
be. A definition that is common to most (if not all) work on FOSD is: a feature is a
structure that extends and modifies the structure of a given program in order to satisfy a
stakeholder’s requirement, to implement a design decision, and to offer a configuration
option. This informal definition guides our work on a formal framework of FOSD.

Typically, a series of features is composed to form a final program, which is itself a
feature. This way, a feature can be either a complete program which can be executed or
a program increment which requires further features to form a complete program.

Mathematically, we describe feature composition by the operator •, which is defined
over the set F of features. Typically, a program p (which is itself a feature) is composed
of a series of simpler features:

• : F × F → F p = fn • fn−1 • . . . • f2 • f1 (1)

The order of features in a composition matters since feature composition is not commu-
tative, and parenthesization does not matter since feature composition is associative, as
we will show.

For simplicity, we restrict feature composition such that each single feature can ap-
pear only once in a feature expression. Multiple instances of a single feature would be
possible but do not add anything new.

3 The Structure of Features

We develop our model of features in several steps and – even though the algebra is
language-independent – explain the details of the algebra and its implications by means
of Java code. First, a simple form of features, which we call basic features, are in-
troduced as trees that describe the collection of elementary components of an artifact,
such as classes, fields, or methods in Java (Sec. 3–5.1). In the next step, we introduce
modifications that act as rewrites on basic features (Sec. 5.2). Finally, full features are
defined as tuples, called quarks, consisting of both, a basic feature and modifications
(Sec. 6). Quarks can be composed to describe complex features in a structured way as
compositions of sequences of simpler features.

A basic feature consists of one or more source code artifacts, each of which can have
an internal structure. We model the structure of a basic feature as a tree, called feature
structure tree (FST), that organizes the feature’s structural elements, e.g., classes, fields,
or methods, hierarchically. Figure 1 depicts an excerpt of the Java implementation of
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1 package util;
2 c l a s s Calc {
3 i n t e0=0, e1=0, e2=0;
4 void enter( i n t v) { e2=e1; e1=e0; e0=v; }
5 void clear() { e0=e1=e2=0; }
6 String top() { re turn String.valueOf(e0); }
7 }

enterclear

top

Calc

util

e1

e0

e2

package

class

Base

method field

Fig. 1. Implementation and FST of the feature Base

a feature Base and its representation in form of an FST. One can think of an FST as
a stripped-down abstract syntax tree; however, it contains only the information that is
necessary for the specification of the structure of a basic feature. The nature of this
information depends on the degree of granularity at which software artifacts shall be
composed, as we discuss below.

For example, the FST we use to represent Java code contains nodes that denote pack-
ages, classes, interfaces, fields, and methods, etc. It does not contain information about
the internal structure of methods, etc. A different granularity would be to represent only
packages and classes but not methods or fields as FST nodes, or to represent statements
or expressions as well [9]. However, this decision does not affect our description of the
algebra.

Furthermore, a name3 and type information is attached to each node of an FST. This
helps to prevent the composition of incompatible nodes during feature composition,
e.g., the composition of two classes with different names, or of a field with a method of
the same name.

The rightmost child of a node represents the topmost element in the lexical order of
an artifact, e.g., the first member in a class is represented by the rightmost child node.
Note that in the chosen granularity for Java the order could be arbitrary, but this is
different at a finer granularity (the order of statements matters) and may differ in other
languages (the order of XHTML elements matters).

4 Feature Composition

How does the abstract description of a feature composition g • f map to the concrete
composition at the structural level? That is, how are FSTs composed in order to obtain
a new FST? Our answer is by FST superimposition [10, 11, 12, 3].

4.1 Tree Superimposition

The basic idea is that two trees are superimposed by superimposing their subtrees, start-
ing from the root and proceeding recursively. Two nodes are superimposed to form a
new node (a) when their parents have been superimposed previously or both are root
nodes and (b) when they have the same name and type. If two nodes have been superim-
posed, the whole process proceeds with their children. If not, they are added as separate

3 Depending on the language, a name could be a simple identifier, a signature, etc.
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child nodes to the superimposed parent node. This recurses until all leaves have been
processed.

According to the semantics of FSTs (see Sec. 3), the children are superimposed
beginning with the rightmost node preserving the order in the superimposed FST; nodes
that have not been superimposed are added to the left.

Figure 2 illustrates the process of FST superimposition; our feature Base is superim-
posed with a feature Add. The result is a new feature, which we call AddBase. Note that
the new method add appears to the left in AddBase.

enterclear

top

Calc

util

e1

e0

e2

util

add

Calc

Add

entercleartop

add

AddBase

Calc

util

e1

e0

e2

Base

Fig. 2. An example of FST superimposition (Add • Base = AddCalc)

4.2 Terminal and Non-terminal Nodes

Independently of any particular language, an FST is made up of two different kinds of
nodes:
Non-terminal nodes are the inner nodes of an FST. The subtree rooted at a non-

terminal node reflects the structure of some implementation artifact of a feature.
The artifact structure is regarded as transparent (substructures are represented by
child nodes) and is subject to the recursive superimposition process. A non-terminal
node has only a name and a type, i.e., no superimposition of additional content is
necessary.

Terminal nodes are the leaves of an FST. Conceptually, a terminal node may also be
the root of some structure, but this structure is regarded as opaque in our model
(substructures are not represented by child nodes). The content of a terminal is not
shown in the FST. A terminal node has a name, a type, and usually some content.

While superimposition of two non-terminals continues the recursive descent in the
FSTs, the superimposition of two terminals terminates the recursion and requires a spe-
cial treatment that may differ for each type of node.

Let us illustrate these concepts for Java. In Java, packages, classes, and interfaces are
represented by non-terminals. The implementation artifacts they contain are represented
by child nodes, e.g., a package contains several classes and classes contain inner classes,
methods, and fields. Two compatible non-terminals are superimposed by superimposing
their child nodes, e.g., two packages with equal names are merged into one package that
contains the superimposition of the child elements (classes, interfaces, subpackages) of
the two original packages. In contrast, Java methods, fields, imports, modifier lists,
and extends, implements, and throws clauses are represented by terminals (the
leaves of an FST), at which the recursion terminates. For each type of terminal node
there needs to be a language-specific rule for superimposing their content.
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4.3 Superimposition of Terminals

In order to superimpose terminals, each terminal type has to provide its own rule for
superimposition. Here are four examples for Java and similar languages:

– Two methods can be superimposed if it is specified how the method bodies are
superimposed (e.g., by overriding and calling the original method by using the key-
words original [13] or Super [3] inside a method body). It is a question of
programming style whether to allow or disallow replacement of method bodies
(i.e., overriding without calling the original method).

– Two fields are superimposed by replacing one initializing variable declaration with
the other or by requiring that at most one of the fields may have an initial value.

– Two implements, extends, or throws clauses are superimposed by concate-
nating their entries and removing duplicates.

– Two modifier lists are superimposed by a specific algorithm, e.g., public replaces
private, but not vice versa; a modifier list containing static superimposed
with one not containing static is an error; and so on.

Terminal types that do not provide a rule cannot be composed – an error is displayed.

4.4 Discussion

Superimposition of FSTs requires several properties of the language in which the ele-
ments of a feature are expressed:
1. The substructure of a feature must be hierarchical, i.e., a general tree.
2. Every structural element of a feature must have a name and type that become the

name and type of the node in the FST.
3. An element must not contain two or more direct child elements with the same name

and type.
4. Elements that do not have a hierarchical substructure (terminals) must provide su-

perimposition rules, or cannot be superimposed.
These constraints are usually satisfied by contemporary programming languages. But
also other (non-code) languages align well with them [3, 14]. Languages that do not
satisfy these constraints are not “feature-ready”, since they do not provide sufficient
structural information. However, it may be possible to make them so by extending them
with an overlaying module structure [14].

FST superimposition is associative only if the superimposition of the individual sub-
trees is associative and, to this end, if merging terminal content is associative. In order to
retain associativity, we add a further constraint: superimposition rules of terminals must
be associative. This constraint, too, is typically satisfied by contemporary programming
languages.

5 Feature Algebra

Our feature algebra models features and their composition on top of FSTs. The elements
of an algebraic expression correspond to the elements of an FST. The manipulation of
an expression implies a manipulation of one or more FSTs. The changes of an algebraic
expression are propagated to the associated feature implementations at code level.
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An important design decision is that there is a one-to-one correspondence between
an FST and its algebraic expression.4 That is, the expression is a formal means for
reasoning about the FST. Thus, FSTs can be converted, without information loss, to
algebraic expressions and vice versa. Our laws for algebraic expressions describe what
is allowed and disallowed when manipulating FSTs.

5.1 Introductions

For the purpose of expressing basic features and their composition, we use the notion of
an atomic introduction. An atomic introduction is a constituent of the implementation
of a basic feature that corresponds to a node in the FST, e.g., a method, field, class, or
package. When composing two basic features, introductions are the elementary units of
difference of one feature composed with another feature. A basic feature is represented
by the superimposition of all paths / atomic introductions in its FST. We model the
superimposition of FSTs via the operation of introduction sum.

Introduction Sum. Introduction sum ⊕ is a binary operation defined over the set I of
introductions. The result of an introduction sum is again an (non-atomic) introduction.
Thus, an FST can be represented in two ways: by the individual (atomic) summands
and by a metavariable that represents the sum:

⊕ : I × I → I i2 ⊕ i1 = i (2)

During composition, for each metavariable i, the individual atomic summands i2 ⊕ i1
are preserved. That is, introduction sum retains information about the summands, which
is useful for expression manipulation and code generation. Since the nodes of an FST
are unique, the atomic summands of a sum of introductions are unique as well, as we
will explain shortly.

In order to process algebraic expressions of features, we flatten the hierarchical struc-
ture of FSTs. That is, we convert the tree representation of an FST into a set of atomic
introductions, one per FST node. But, in order not to lose information about which struc-
tural elements contain which other elements, we preserve the paths of the FST nodes.

Specifically, we use a simple prefix notation to identify an atomic introduction, simi-
lar to fully qualified names in Java: the name of the FST node is prefixed with the name
of all its parent nodes, separated by dots.5 The leftmost prefix contains the name of the
feature an introduction belongs to, followed by an ‘::’, although, for brevity, the prefix
does not appear in the FST. Our feature Base (cf. Fig. 2) is denoted in path notation as
follows:

Prog = Base ::util.Calc.top⊕Base ::util.Calc.clear⊕Base ::util.Calc.enter
⊕ Base ::util.Calc.e2⊕Base ::util.Calc.e1⊕Base ::util.Calc.e0
⊕ Base ::util.Calc⊕Base ::util

4 A one-to-one correspondence for Java was only possible by ordering the children of a node
based on their lexical order (see Sec. 3).

5 To be specific, the fully qualified name of an atomic introduction must also include the type
of each path element. For lack of space and because there are no ambiguities in our examples,
we omit the type information here.
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The leftmost leaves of an FST become the leftmost summands of its introduction sum.
Note that not every sum represents a valid FST. A well-formedness rule is, that for every
dot-separated prefix of a summand, there is a summand with the same name, e.g., the
prefix Base ::util of Base ::util.Calc is itself a summand.

Two features are composed by adding their atomic introductions. Since each atomic
introduction preserves the path of the corresponding FST node, it is always known
from which feature an introduction was added during the manipulation of an algebraic
expression, e.g., Base in Base ::util.Calc. Furthermore, we can convert each algebraic
expression (containing a sum of introductions with prefixes) straightforwardly back to
a tree, either to the original FSTs or to a new composed FST. When converting an
introduction sum into a composed FST, it is associated with a new (composed) feature.
Two atomic introductions with the same fully qualified name, that belong to different
features, are composed via superimposition, as explained informally in Section 4.

For example, the introduction sum that represents the non-terminal superimposition
of Figure 2 is as follows:

Add ::util.Calc.add⊕ . . . ⊕ Base ::util.Calc.top⊕Base ::util.Calc.clear⊕ . . .

It follows that the above sum represents a composed FST consisting of a package util
with a class Calc that contains four methods (including add) and three fields.

For example, the superimposition of the two methods enter is represented in the
corresponding introduction sum as:

Count ::util.Calc.enter⊕ . . . ⊕ Base ::util.Calc.enter⊕ . . .

This sum represents a composed FST (only an excerpt is shown) consisting of a package
util with a class Calc that contains three methods and three fields, and the bodies of
the two enter methods are merged (similarly for clear).

Algebraic Properties. Introduction sum⊕ over the set I of introductions forms a non-
commutative idempotent monoid (I,⊕, ξ):6

Associativity: (k⊕ j)⊕ i = k⊕ (j ⊕ i) — Introduction sum is associative because
FST superimposition is associative. This applies for terminals and non-terminals.

Identity: ξ ⊕ i = i ⊕ ξ = i — ξ is the empty introduction, i.e., an FST without
nodes.

Non-commutativity: Since we consider superimposition of terminals, introduction
sum is not generally commutative. We consider the right operand to be introduced
first, the left one is added to it.

Idempotence: i⊕ j⊕ i = j⊕ i — Only the rightmost occurrence of an introduction
i is effective in a sum, because it has been introduced first. That is, duplicates of i
have no effect, as stressed at the end of Section 2. We refer to this rule as distant
idempotence. For j = ξ, direct idempotence (i⊕ i = i) follows.

6 All standard definitions of algebraic structures and properties are according to Hebisch and
Weinert [15].
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5.2 Modification

Beside superimposition also other techniques for feature composition have been pro-
posed, most notably composition by quantification [16, 5]. The idea is that, when ex-
pressing the changes that a feature causes to another feature, we specify the points
at which the two features are supposed to be composed. This idea has been explored
in depth in work on subject-oriented programming [17] and aspect-oriented program-
ming [18]. The process of determining where two features are to be composed is called
quantification [19]. In the remainder, we distinguish between two approaches of com-
position: composition by superimposition and composition by quantification. Our defi-
nition of feature composition (•) incorporates both (see Sec. 6).

In order to model composition by quantification, we introduce the notion of a modi-
fication. A modification consists of two parts:
1. A specification of the nodes in the FST at which a feature affects another feature

during composition.
2. A specification of how features are composed at these nodes.

In the context of our model, a modification is performed as an FST walk that determines
the nodes which are being modified and applies the necessary changes to these nodes.
The advantage of composition by quantification is that the specification of where a
program is extended is declarative. Querying an FST can return more than one node
at a time. This allows us to specify the modification of a whole set of nodes at once
without having to reiterate it for every set member.

Note that composition by superimposition and composition by quantification are sib-
lings. Quantification enables us to address parts of a feature more generically than su-
perimposition. But, once it is known which points have to be changed, the two kinds of
composition become equivalent. We have observed their conceptual duality before, but
at the level of two concrete programming techniques [5]. The feature algebra makes it
explicit at a more abstract level.

Semantics of Modification. A modification m consists of a query q that selects a
subset of the atomic introductions of an introduction sum and a definition of change c
that will be used to effect the desired changes:

m = (q, c) (3)

Query. A simple query can be represented by an FST in which the node names may
contain wildcards.7 For example, the query q with the search expression ‘util.Calc.∗’
applied to our example would return the sum of all introductions that are members of
the class Calc. This motivates the following definition.

Formally, a query applied to an atomic introduction returns either the same introduc-
tion or the empty introduction:

q(i) =
{
i, when i is matched by q
ξ, when i is not matched by q

(4)

7 In practice, queries with regular expressions or queries over types might be useful.
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A query applied to an introduction sum queries each summand:

q(in ⊕ . . .⊕ i2 ⊕ i1) = q(in)⊕ . . .⊕ q(i2)⊕ q(i1) (5)

Definition of change. An introduction i selected by a query is modified according to
the modification’s definition of change c; c is a rewrite that is able to apply two kinds
of changes: (a) it can add a new child to a given non-terminal and (b) it can alter the
content of a terminal; the application of c distributes over introduction sum:

c(in ⊕ . . .⊕ i2 ⊕ i1) = c(in)⊕ . . .⊕ c(i2)⊕ c(i1) c(ij) = τc(ic, ij)⊕ ij (6)

The atomic introduction ic represents a new child or the change applied to a terminal.
It has to be provided by the programmer in the form of a generic piece of code or some
other kind of specification. The function τc takes the generic definition of change ic and
the atomic introduction ij to be changed and generates the final non-generic definition
of change. That is, τc eliminates the genericity of ic by substituting missing parts with
details of the program to which c is applied.

For example, suppose a feature Count applies two modifications m1 and m2 to the
introductions of Base, with c1 adding a new field and c2 altering the method enter:

c1(Base ::util.Calc) = τc1(count, util.Calc)⊕Base ::util.Calc
= Count ::util.Calc.count⊕Base ::util.Calc

c2(Base ::util.Calc.enter)= τc2(enter, util.Calc.enter)⊕Base ::util.Calc.enter
= Count ::util.Calc.enter⊕Base ::util.Calc.enter

Of course, applying c1 and c2 to a different feature (say Base2) results in a different
program. Since change is expressed as an introduction sum, a modification cannot delete
nodes. The changes a feature can make via modifications are similar to the ones possible
via introduction sum, but expressed differently.

Modification Application and Composition. For simplicity, we usually hide the steps
of querying and applying the changes. We define an operator modification application
(�) over the set M of modifications and the set I of introductions. A modification
applied to an introduction returns either the introduction again or the introduction that
has been changed:

� :M × I → I m� i = (q, c)� i =
{
c(i), q(i) = i ∧ i 
= ξ
i, q(i) = ξ (7)

A consequence of this definition is that a modification cannot extend the empty intro-
duction, i.e., the empty program. This is different from introduction sum which we can
use to extend empty programs. While this fact is just a result of our definition, it reflects
what contemporary languages that support quantification are doing, e.g., AspectJ’s ad-
vice and inter-type declarations cannot extend the empty program.

A modification is applied to a sum of introductions by applying it to each introduc-
tion in turn and summing the results:

m� (in ⊕ . . .⊕ i2 ⊕ i1) = (m� in)⊕ . . .⊕ (m� i2)⊕ (m� i1) (8)
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The successive application of changes of a modification to an introduction sum implies
the left distributivity of � over ⊕.

Furthermore, the operator� is overloaded.8 With two modifications as arguments, it
denotes the operation modification composition. The semantics of modification compo-
sition is that the right operand is applied to an introduction, and then the left operand to
the result:

� :M ×M →M (m2 �m1)� i = m2 � (m1 � i) (9)

Here, the leftmost of the four occurrences of � is modification composition, all others
are modification application.

A fully precise definition of modification composition requires an elaborate con-
struction for combining the queries involved. Due to lack of space, we refer the reader
to a technical report [20, pp. 14ff].

Using modification composition, a series of modifications can be applied to an intro-
duction step by step:

(mn � . . .�m2 �m1)� i = mn � (. . .� (m2 � (m1 � i)) . . .) (10)

Note that the application of a modification may add new introductions that can be
changed subsequently by other modifications. But, as prescribed by Equation 6, it is
not possible to change an introduction sum such that some introductions are removed
and the modifications applied subsequently cannot affect them anymore. This design
decision is justified by the design of current languages that support feature composi-
tion, e.g., AspectJ’s aspects or AHEAD’s refinements [3] cannot remove members or
classes.

Algebraic Properties. We define two modificationsm1 and m2 as equivalent if they
act identically on all introductions, i.e., if m1 � i = m2 � i for all i. In the following,
we writeM also for the set of equivalence classes of modifications and� for the corre-
sponding induced operation on them. This induces a non-commutative non-idempotent
monoid (M,�, ζ):

Associativity: (o�n)�m = o�(n�m) — Modification composition is associative
by the definition of modification application.

Identity: ζ�m = m� ζ = m — ζ is the equivalence class of empty modifications.
ζ does not change a given introduction.

Non-commutativity: Modification composition is not commutative because introduc-
tion sum is not commutative.

Non-idempotence: Although the changes made by a modification reduce to introduc-
tion sum (cf. Eq. 6), and introduction sum is distantly idempotent, the consecutive
application of several modifications is not idempotent. The reason is that a mod-
ification m can add an introduction that is selected and changed by itself when
applied repeatedly.

8 We reuse the symbol � because introduction sum and modification application and compo-
sition become all integrated into one algebraic structure with identical operator symbols for
application and composition (see Sec. 5.3).
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5.3 Introductions and Modifications in Concert

In order to describe feature composition, our algebra integrates our two algebraic struc-
tures (I,⊕, ξ) and (M,�, ζ) by means of the operation of modification application.

(I,⊕, ξ) induces a non-commutative idempotent monoid and (M,�, ζ) induces a
non-commutative non-idempotent monoid. A notable property of (I,⊕, ξ) is that it is
a semimodule over the monoid (M,�, ζ) since the distributive and associative laws (8)
and (9) hold. In fact, the operation of modification application induces the semimodule
on top of the individual operations introduction sum and modification composition. A
semimodule over a monoid is related to a vector space but weaker (modification ap-
plication plays the role of the scalar product) [15]. In a vector space, there would be
an operation of modification sum that adds modifications similarly to introduction sum.
In prior work, we have explored and integrated modification sum into the feature alge-
bra [20] but, due to lack of space, we omit its description here. Moreover, the additive
and multiplicative operations in vector spaces are commutative and there are inverse
elements with respect to addition and multiplication. Nevertheless, the semimodule
property guarantees a pleasant and useful flexibility of feature composition, which is
manifested in the associativity and distributivity laws.

6 The Quark Model

So far, we have introduced two sets (I and M ) and three operations (⊕ : I × I → I ,
� :M×M →M , and� :M×I → I) for feature composition. Now we integrate them
in a compact and concise notation. This way, we allow full features that involve both
introductions and modifications. Furthermore, we need to distinguish between local and
global modifications. For this purpose, we introduce the quark model.9

A quark is a triple that represents a full feature, which consists of a composition g
of global modifications, a sum i of introductions, and a further composition l of local
modifications:

f = 〈g, i, l〉 = 〈gj � . . .� g1, ik ⊕ . . .⊕ i1, lm � . . .� l1〉 (11)

Here, i is the introduction sum of feature f and represents an FST; l and g contain the
modifications that the feature f can make. A basic feature is represented in the quark
model as a triple 〈ζ, i, ζ〉 where ζ is the empty modification. The application of quark q
to introduction i is defined as the composition q • 〈ζ, i, ζ〉.

When two quarks are composed, a new quark is constructed following certain com-
position rules. The new introduction part of the quark is constructed using modification
application and introduction sum, while the new modification parts result by modifica-
tion composition. We distinguish between two kinds of modifications because there are
two options of using modifications when composing quarks: (a) Local modifications (l)
can affect only already present introductions of features. (b) Global modifications (g)

9 The idea and name of the quark model are due to Don Batory. Subsequently, the model was
developed further in cooperation with us [20]. The term ‘quark’ was chosen as an analogy to
the physical particles in quantum chromodynamics. Originally, quarks have been considered to
be fundamental, but newer theories, e.g., preon or string theory, predict a further substructure.
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can affect also introductions that are just being constructed during the composition. For
quarks that represent basic features (g and l are empty) both definitions (a) and (b) yield
〈ζ, i2, ζ〉 • 〈ζ, i1, ζ〉 = 〈ζ, i2 ⊕ i1, ζ〉, which in retrospect justifies our use of • also for
FST superimposition in Section 4.

The difference between local and global modifications requires a special treatment
of composition of full quarks. When composing a sequence of quarks, we can apply
the local modifications immediately. We cannot apply the global modifications imme-
diately. We have to wait until all introductions and local modifications in a series of
quarks have been composed; only then we can apply all global modifications. So, we
generalize the binary operator • to an n-ary one:

fn • . . . • f2 • f1 = 〈gn, in, ln〉 • . . . • 〈g2, i2, l2〉 • 〈g1, i1, l1〉
= 〈gn � . . .� g1, (gn � . . .� g1)�

(in ⊕ (ln � (. . . (i2 ⊕ (l2 � i1))))), ln � . . .� l1〉 (12)

This does not mean that the associativity properties of introduction sum and modifica-
tion composition are useless. Associativity is necessary to make the application of local
modifications to sums of introductions work smoothly.

7 Related Work

Lopez-Herrejon, Batory, and Lengauer model features as functions and feature com-
position as function composition [21, 7]. They distinguish between introductions and
advice, which correspond roughly to our introductions and modifications. However, in
their work there is no semantic model that defines precisely what introductions and
advice are. In our feature algebra, we define introductions in terms of FSTs and modi-
fications in terms of tree walks. This enables us to bridge the gap between algebra and
implementation.

Möller et al. have developed an algebra for expressing software and hardware vari-
abilities in the form of features [22]. This has recently been extended [23] to express a
limited form of feature interaction. However, their algebra does not consider the struc-
ture and implementation of features.

There are some calculi that support feature-like structures and composition by su-
perimposition [24, 25, 26, 27, 28, 29]. These calculi are typically tailored to Java-like
languages and emphasize the type system. Instead, our feature algebra enables reason-
ing about feature composition on a more abstract level. We emphasize the structure of
features and their static composition, independently of a particular language.

Several languages support features and their composition by superimposition [30,
31, 13, 32, 3]. Our algebra is a theoretical backbone that underlies and unifies all these
languages. It reveals the properties a language must have in order to be feature-ready.
Several languages exploit the synergistic potential of superimposition and quantifica-
tion [16,17,32,5]. The feature algebra allows us to study their relationship and integra-
tion, independently of a specific language.

Features are implemented not only by source code. Some tools support the feature-
based composition of non-source code artifacts [3,33,14]. Our algebra is general enough
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to describe a feature containing these non-code artifacts since all their representations
can be mapped to FSTs.

Finally, we have implemented a tool, called FSTComposer, that implements feature
composition as described by our algebra [34]. With it, we have been able to demonstrate
that such different languages as Java, XML, or Bali can be treated uniformly and the
composition scales to medium-sized software projects. The integration of a new lan-
guage requires only marginal effort because most information can be inferred from the
language’s grammar.

8 Conclusions and Perspectives

We have presented a model of FOSD in which features are represented as FSTs and
feature composition is expressed by tree superimposition and tree walks. This reflects
the state of the art in programming languages and composition models that favor su-
perimposition and quantification. Our algebra describes precisely what their proper-
ties are and how such concepts from FOSD languages like aspects, collaborations, or
refinements can be integrated. Though some of these approaches were integrated be-
fore in concrete languages, e.g., in FeatureC++ [32], aspectual feature modules [5], or
Caesar [16], the algebra integrates these approaches for the first time formally and ex-
poses fundamental concepts like the distinction of local vs. global modifications that
prompted controversial discussions in earlier work, e.g., [21].

Our feature algebra forms a semimodule over a monoid, which is a weaker form
of a vector space. The flexibility of this algebraic structure suggests that our decisions
regarding the semantics of introductions and modifications and their operations are not
arbitrary. With the presented configuration of our algebra, we achieve a high flexibility
in feature composition, which is manifested in the associativity and distributivity laws.

Although our algebra is quite flexible, we also made several restrictive decisions.
For example, introduction sum is idempotent and modifications are only allowed to add
children and to compose content of terminals. An advantage of an algebraic approach is
that we can evaluate the effects of our and alternative decisions directly by examining
the properties of the resulting algebra. For example, if we forbid superimposition of ter-
minals we can achieve commutativity of feature composition. Although this design de-
cision might appear trivial, it is not obvious from contemporary programming languages
but rather appears to be a byproduct of integrating other language constructs. With our
formalization, such consequences become obvious and are helpful for carefully balanc-
ing expressiveness and composition flexibility when designing a new language. In our
algebra, we decided to abandon commutativity in order to increase the expressive power
of introduction sum by including overriding. Likewise, disallowing modifications to re-
move nodes from an FST guarantees that the targets of a feature remain present in a
composition. Exploring the implications of our and alternative decisions is a promising
avenue of further work.

Finally, with the feature algebra, we provide a framework for feature composition
that is independent of a concrete language. Based on this framework, we have built the
language-independent composition tool FSTComposer. Uniformity in feature compo-
sition has been a long-standing goal of FOSD [3] but, until now, feature composition
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tools for new languages were usually developed ad-hoc. In future work, we will also use
the algebra for reasoning about types [6] and for interaction analysis [7] independently
of concrete language mechanisms, e.g., of AspectJ or AHEAD.
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Abstract. In a seminal paper Montanari and Meseguer showed that an
algebraic interpretation of Petri nets in terms of commutative monoids
can be used to provide an elegant characterisation of the deterministic
computations of a net, accounting for their sequential and parallel com-
position. Here we show that, along the same lines, by adding an (idem-
potent) operation and thus taking dioids (commutative semirings) rather
than monoids, one can faithfully characterise the non-deterministic com-
putations of a Petri net.

Introduction

Petri nets [12] are one of the best studied and most widely known models for con-
current systems. Due to the conceptual simplicity of the model and its intuitive
graphical presentation, since their introduction, which dates back to the 60’s [11],
Petri nets have attracted the interest of both theoreticians and practitioners.

The basic operational behaviour of a Petri net can be straightforwardly de-
fined in terms of the so-called token game and of firing sequences. Concurrency in
computations can be made explicit by resorting to a semantics given in terms of
(non-sequential) deterministic processes à la Goltz-Reisig [5]. A process describes
the events occurring in a computation and their mutual dependency relations.
Concretely, a deterministic processes is an acyclic, deterministic net whose struc-
ture induces a partial order on transitions which can be seen as occurrences of
transition firings in the original net. A deterministic process thus captures an
abstract notion of concurrent computation, in the sense that it can be seen as
a representative of a full class of firing sequences differing only for the order of
independent events, i.e., all the firing sequences corresponding to linearisations
of the underlying partial ordering.

Different (concurrent) computations can be merged into a single non-
deterministic process [3], a structure which, besides concurrency, captures also
the intrinsic non-deterministic nature of Petri nets. A non-deterministic process
is again a special Petri net, satisfying suitable acyclicity requirement, but where,
roughly speaking, transitions can compete for the use of tokens, thus leading to
a branching structure.
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The concurrent nature of Petri net computations has been expressed in an
elegant algebraic way in the so-called “Petri nets are monoids” approach [10].
A Petri net N is seen as a kind of signature Σ, and the computational model
of the net is characterised as a symmetric monoidal category P(N) freely gen-
erated from N , in the same way as the cartesian category L(Σ) of terms and
substitutions is freely generated from Σ. As (tuples of) terms in the free algebra
TΣ(X) are arrows of L(Σ), processes of N are arrows of P(N). The functoriality
of the monoidal operator ⊗ is shown to capture the essence of concurrency in
net computations. The construction of P(N) provides a concise description of
the concurrent operational semantics of P/T nets, and, as P(N) can be finitely
axiomatized, one also gets an axiomatization of deterministic processes.

After the original paper, further proposals for adding suitable operators to
the category of (deterministic) net computations were introduced, as summed
up in [9]. However, to the best of our knowledge, no explicit connection was
drawn from a categorical model to any set-theoretical notion of non-deterministic
process, thus re-establishing the same connection as with P(N) and the deter-
ministic processes of N . In this paper we show how the algebraic approach of [10]
can be naturally generalised in order to capture the non-deterministic compu-
tations of Petri nets. The algebraic model of a net described above is extended
by adding a second monoidal operator ⊕ which is intended to exactly model the
non-deterministic composition of computations.

The presence of two symmetric monoidal operators⊗ and ⊕, where the former
distributes over the latter, naturally leads to consider the so-called bimonoidal
(or rig) categories which, roughly speaking, are the categorical counterpart of
semirings (or rigs) pretty much as monoidal categories corresponds to monoids.
Additionally, the branching structure of non-deterministic computations is cap-
tured by the presence of a natural transformation ∇a : a→ a⊕a. As this recalls
the idempotency axioms of ⊕ in tropical semirings or dioids, we denoted the
corresponding categorical structure as a diodal category.

More in detail, we introduce a category of concatenable non-deterministic
processes CNP(N) for a Petri net N which generalises the category of deter-
ministic processes originally defined in [2,14]. Then we show that the category of
concatenable non-deterministic processes can be characterised as the free diodal
category NP(N) built over N . As a consequence the non-deterministic pro-
cesses of a net N , as introduced in [3], turn out to be in one to one corre-
spondence with a suitable class of arrows of NP(N), quotiented under natural
axioms.

The rest of the paper is organised as follows. In Section 1, after recalling
some basics about Petri nets, we review the notions of deterministic and non-
deterministic process. In Section 2 we present the construction of the category
of concatenable non-deterministic processes for a Petri net. Section 3 recalls
some basic notions on symmetric monoidal categories, introduces diodal cate-
gories and presents the main theorem, concerning the correspondence between
non-deterministic processes and arrows of a free diodal category. The paper is
rounded up with some remarks on our construction and pointers to further works.
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1 Petri Nets and Non-deterministic Processes

Given a set X , we denote by X⊗ the free commutative monoid over X (finite
multisets over X) with unit the empty set ∅. Furthermore, given a function
f : X → Y ⊗ we denote by f⊗ : X⊗ → Y ⊗ its commutative monoidal extension.
Given u ∈ X⊗, we denote by [[u]] the underlying subset of X defined in the
obvious way. When set relations are used over multisets, we implicitly refer to
the underlying set. E.g., for u, v ∈ X⊗ by x ∈ u we mean x ∈ [[u]] and similarly
u ∩ v means [[u]] ∩ [[v]].

Definition 1 (P/T net). A P/T Petri net is a tuple N = (ζ0, ζ1, S, T ), where
S is a set of places, T is a set of transitions, and ζ0, ζ1 : T → S⊗ are functions
assigning multisets called source and target, respectively, to each transition.

Hereafter, for any net N we assume N = (ζ0, ζ1, S, T ), with subscripts and
superscripts carrying over the names of the components. In order to simplify the
presentation, we require that for any net N , for all t ∈ T , ζ0(t) 
= ∅ 
= ζ1(t).

Given a net N , a multiset u ∈ S⊗, representing a state of the net, is often
referred to as a marking of N . It is called safe if any place occurs at most once
in it, i.e., u = [[u]].

The notion of net morphism naturally arises from an algebraic view, where
places and transitions play the role of sorts and operators.

Definition 2 (net morphism). A Petri net morphism f = 〈fs, ft〉 : N → N ′

is a pair where fs : S⊗ → S′⊗ is a monoid homomorphism, and ft : T → T ′ is a
function such that ζ′i ◦ ft = fs ◦ ζi, for any i ∈ {0, 1}. The category of P/T nets
(as objects) and their morphisms (as arrows) is denoted by Petri.

In the sequel, when the meaning is clear from the context, we omit the subscripts
from the morphism components, thus writing f instead of fs and ft.

Let N be a P/T net. The causality relation is the least transitive relation
<N⊆ (S ∪ T )× (S ∪ T ) such that

i. if s ∈ ζ0(t) then s <N t; ii. if s ∈ ζ1(t) then t <N s.

Given a place or transition x ∈ S ∪ T , the set of causes of x in T is defined as
�x� = {t ∈ T | t <N x}∪{t}; and, for X ⊆ S ∪T , �X� =

⋃
x∈X�x�. The conflict

relation #N ⊆ (S ∪ T )× (S ∪ T ) is the least symmetric relation such that

i. if t 
= t′ and ζ0(t) ∩ ζ0(t′) 
= ∅ then t#N t
′;

ii. if x#Nx
′ and x′ <N x

′′ then x#Nx
′′.

Definition 3 (occurrence net). An occurrence net is a P/T net N where
ζo(t), ζ1(t) are safe for all t ∈ T and (i) causality <N is a strict partial order
and, for any transition t, the set of causes �t� is finite; (ii) there are no backward
conflicts, i.e., for any t 
= t′, ζ1(t) ∩ ζ1(t′) = ∅; (iii) conflict #N is irreflexive.
The sets of minimal and maximal places of N w.r.t. <N are denoted by min(O)
and max(O). An occurrence net is deterministic if it has no forward conflicts,
i.e., for any t 
= t′, ζ0(t) ∩ ζ0(t′) = ∅.

A monomorphism e : O1 → O2 such that e⊗(min(O1)) = min(O2) is referred
to as an embedding of O1 in O2.
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An occurrence O net can be seen as the representation of a possibly non-
deterministic computation starting from min(O). Reachable states in O can be
characterised statically by using the dependency relation.

Definition 4 (cuts). Let O be an occurrence Petri net. A cut in O is a maximal
subset X of places such that neither s <O s

′ nor s#Os
′ for all s, s′ ∈ X. The

set of cuts of O is denoted by cuts(O). A subset of cuts W ⊆ cuts(O) is called
a covering of O if T =

⋃
{�X� : X ∈ W}.

It can be shown that any cut X ∈ cuts(O) is reachable by executing all the
transitions in �X� in any order compatible with <O. The only nonstandard
notion is that of covering: if a subset W of cuts is intended to represent the final
states of a set of possible computations of O, then W is a covering for O if any
possible transition in O is used in one of those computations.

We next review the notion of deterministic and non-deterministic process for
P/T nets. A process is represented as a morphism π : O→ N from an occurrence
Petri net O to the original net N [5]. Since morphisms are simulations, the
morphism maps computations of O into computations of N in such a way that
the process can be seen as a representative of a set of possible computations of
N . The occurrence net makes explicit the causal structure of such computations
since each transition is fired at most once and each place is filled with at most one
token during each computation. In this way transitions and places of O can be
thought of, respectively, as firing of transitions and tokens in places of the original
net. Actually, to allow for such an interpretation, some further restrictions have
to be imposed on the morphism π, namely it must map places into places (rather
than into multisets of places).

Let us call a net morphism f : N → N ′ elementary if for any s ∈ S, fs(s) ∈ S′
(places are sent to single places rather than to proper multisets).

Definition 5 (process). Let N be a P/T net. A non-deterministic process of N
is an elementary net morphism π : O→ N where O is a finite occurrence net and
if π(t) = π(t′) and ζ0(t) = ζ0(t′) then t = t′ for any t, t′ ∈ TO (irredundancy).

The process π is deterministic if the underlying occurrence net O is so. For a
finite process π we write min(π), max(π) and cuts(π) to refer to the sets min(O),
max(O) and cuts(O) in the underlying occurrence net. We also write ζ0(π) for
π⊗(min(π)) and ζ1(π) for π⊗(max(π)).

Intuitively, a process π represents a set of possible computations starting at the
marking ζ0(π). Not every elementary morphism is a process, as it might fail
to satisfy the irredundancy condition, which essentially imposes that the non-
deterministic composition of a computation with itself gives back the original
computation [3]. However we can easily show that the following result holds.

Proposition 1 (collapsing). Let N be a P/T net, O an occurrence net and
ξ : O → N an elementary morphism. Then there exists a unique (up to isomor-
phism) factorisation ξ = β;π(ξ), where β is epi and π(ξ) is a process such that
ζ0(π(ξ)) = ξ⊗(min(O)). The process π(ξ) is called the collapsing of ξ.
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ξ : O → N
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Fig. 1. An elementary morphism and its collapsing

Intuitively, the collapsing of ξ is obtained from ξ by merging pairs of transitions
which violate the irredundancy requirement. As an example, Fig. 1 presents on
the left an elementary morphism from an occurrence net to a Petri net, and
on the right its collapsing. The morphism is represented by labelling places and
transitions of the occurrence net by their images over N (and the net N which
they are mapped to is not relevant here and thus omitted).

2 Concatenable Processes

In this section, after reviewing the theory of concatenable deterministic pro-
cess [2,14], we propose a notion of concatenable non-deterministic process. This
leads to a category CNP(N) of non-deterministic processes for a net N , where
objects are states and arrows model non-deterministic computations of N .

2.1 Concatenable Deterministic Processes

Concatenable processes for Petri nets have been introduced in [2,14] as a re-
finement of Goltz-Reisig deterministic processes, endowed with operations of
sequential and parallel composition that are consistent with the causal structure
of computations. In order to properly define such operations we need to impose
a suitable ordering over the places in min(π) and max(π) for each process π.
Such an ordering allows to distinguish among “interface” places of Oπ which are
mapped to the same place of the original net, a capability which is essential to
track causal dependencies.

Definition 6. Let A, B be sets and f : A → B a function. An f -indexed
ordering is a family α = {αb | b ∈ B} of bijections αb : f−1(b) → [|f−1(b)|],
where [i] denotes the subset {1, . . . , i} of N, and f−1(b) = {a ∈ A | f(a) = b}.

The f -indexed ordering α is often identified with the function from A to N

that it naturally induces (formally defined as
⋃

b∈B αb). Let f1 : A1 → B and
f2 : A2 → B, with A1 ∩ A2 = ∅, so that f = f1 ∪ f2 : A1 ∪ A2 → B is a
function. Consider two fi-indexed orderings αi, i ∈ {1, 2}. Then we denote by
α1 ⊗ α2 the f -indexed ordering defined by α1 ⊗ α2(a) = α1(a) if a ∈ A1 and
α1 ⊗ α2(a) = α2(a) + |f−1

1 (f2(a))|, otherwise.
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Definition 7 (concatenable process). A concatenable process of a net N is
a triple δ = 〈μ, π, ν〉, where π is a deterministic process of N , μ is a π-indexed
ordering of min(π) and ν is a π-indexed ordering of max(π).

Isomorphism of concatenable processes is defined in the usual way (see e.g. [2])
and an isomorphism class of processes is called (abstract) concatenable process
and denoted by [δ], for δ is a member of the class. Often the word “abstract” is
omitted and δ denotes the corresponding isomorphism class.

Definition 8 (sequential and parallel composition). Let δ1 = 〈μ1, π1, ν1〉
and δ2 = 〈μ2, π2, ν2〉 be two concatenable processes of a net N .

– Let ζ1(π1) = ζ0(π2). Suppose T1∩T2 = ∅ and S1∩S2 = max(π1) = min(π2),
with π1(s) = π2(s) and ν1(s) = μ2(s) for each s ∈ S1∩S2. Then δ1; δ2 is the
concatenable process δ = 〈μ1, π, ν2〉, where the process π is the (component-
wise) union of π1 and π2.

– Suppose T1 ∩ T2 = S1 ∩ S2 = ∅. Then δ1 ⊗ δ2 is the concatenable process
δ = 〈μ, π, ν〉, where the process π is the (component-wise) union of π1 and
π2, μ = μ1 ⊗ μ2 and ν = ν1 ⊗ ν2.

The premise of the first item means that δ1 and δ2 overlap only on max(π1) =
min(π2), and on such places the labelling on the original net and the ordering co-
incide. Then, their concatenation is the process obtained by gluing the maximal
places of π1 and the minimal places of π2 according to their ordering. Parallel
composition is instead obtained simply by juxtaposing the two processes.

Concatenation and parallel composition clearly induce well-defined operations
on abstract processes, independent of the choice of representatives.

Definition 9 (category of concatenable processes). Let N be a net. The
category of (abstract) concatenable processes of N , denoted by CP(N), is de-
fined as follows. Objects are multisets of places of N , namely elements of S⊗.
Each (abstract) concatenable process [〈μ, π, ν〉] of N is an arrow from ζ0(π) to
ζ1(π). Parallel composition ⊗ makes CP(N) a symmetric monoidal category.

2.2 Concatenable Non-deterministic Processes

Intuitively, a concatenable non-deterministic process is a set of non-deterministic
processes, which, starting from a set of possible initial states, produces a set of
possible final states. For technical reasons, it is preferable to consider sequences
of processes rather than sets. Additionally, as in the deterministic case, in order
to allow for a sequential composition of computations keeping track of the causal
dependencies, initial and final states of computations are decorated.

Definition 10 (concatenable non-deterministic process). Let N be a net.
A concatenable non-deterministic process for N is a triple of finite non-empty
lists η = 〈α,π, ω〉 with

– π = π1 . . . πn, where each πi is a non-deterministic process;
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– α = α1 . . . αn, where each αi is a πi-indexed ordering of min(πi);
– ω = ω1 . . . ω�, where

• for each j ∈ {1, . . . , 
}, ωj : X → N with X ∈ cuts(πi) for some i and
ωj a πi-indexed ordering of X;

• for any i the cuts of Oi which occur in ω, i.e., {X ∈ cuts(πi) | ∃j. wj :
X → N}, are a covering of Oi.

The source of η is the list ζ0(η) = ζ0(π1) . . . ζ0(πn), i.e., the list of the sources
of the component processes, while the target of η is ζ1(η) = u1 . . . u� where uj =
π⊗i (X) if ωj : X → N and X ∈ cuts(Oi).

In order to ease notation we fix a naming scheme. We assume concatenable non-
deterministic processes to be of the kind η = 〈α,π, ω〉, with π = π1 . . . πn and
n = |π|. In turn, for each process πi in π we assume πi : Oi → N , where Oi has
Si and Ti as place and transition sets. Processes πi are supposed to be pairwise
disjoint. Superscripts carry over the name of the components.

Two concatenable non-deterministic processes η = 〈α,π, ω〉, η′ = 〈α′,π′, ω′〉
are isomorphic if |π| = |π′| and there exist non-deterministic process isomor-
phisms between πi and π′i, with i ∈ {1, . . . , |π|}, consistent with the decorations
and the ordering of sources and targets. Abstract concatenable non-deterministic
processes, i.e., isomorphism classes of processes, are often identified with one
of the representatives, i.e., we write η to refer to the corresponding abstract
process.

Graphically, a concatenable non-deterministic process η = 〈α,π, ω〉, with π =
〈π1 . . . πn〉, is represented by enclosing in a box the list of the nets O1, . . . , On,
underlying the component subprocesses, separated by vertical bars. Places and
transitions of Oi are labelled by their images through πi (the net N which they
are mapped to is not relevant here and thus omitted). The decoration of the
source of each process πi is represented by listing on the top of the process itself
the places in min(πi) in an order compatible with αi, i.e., if s, s′ ∈ min(Oi)
and πi(s) = πi(s′) and αi(s) < αi(s′) then s is listed first. Similarly, in the
bottom part of the box, we represent w = w1 . . . ω� as a list of elements, one
for each ωj . If ωj : X → N, with X ∈ cuts(πi), then the corresponding element
is itself a sequence which lists the places in X in an order compatible with ωj .
A process η = 〈α1α2, π1π2, ω1ω2ω3〉 consisting of two component processes π1
and π2, with three targets can be found in Fig. 2. In this case, for instance, α1

is the function α1(s1) = 0, α1(s2) = 0 and α1(s3) = 1. Concerning the targets,
{s5, s3}, {s6, s7} ∈ cuts(π1) and {s10} ∈ cuts(π2). It is easy to see that the cuts
{s5, s3}, {s6, s7} form a covering of O1, and similarly {s10} is a covering for O2.

Sequential and parallel composition for concatenable non-deterministic pro-
cesses can be defined as follows.

Definition 11 (sequential composition). Let η = 〈α,π, ω〉 and η′ =
〈α′,π′, ω′〉 be two concatenable non-deterministic processes of a net N such that
ζ1(η) = ζ0(η′), and thus |ω| = |α′|. Suppose that for any i, j it holds Ti ∩ T ′

j = ∅
and, for all j, if ωj : X → N, with X ∈ cuts(πi) then Si ∩ S′j = X = min(π′j),
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Fig. 2. A concatenable non-deterministic process

with πi(s) = π′j(s) and ωi(s) = α′j(s) for each s ∈ X. Then η1; η2 is the con-
catenable process η = 〈α,π′′, ω′〉, where π′′ = π′′1 . . . π

′′
|π| and each process π′′i is

obtained as follows: take the (component-wise) union of πi with all processes π′j
such that ωj : X → N with X ∈ cuts(πi) thus getting an elementary morphism
ξi : O′′

i → N and then consider the collapsing π(ξi) of such morphism.

Roughly, for any j ∈ {1, . . . , |ω|}, if ωj : X → N where X is a cut in πi, then
the process π′j in η′ must be attached to the set of places X in πi. Assuming
that πi and π′j overlap only on X = min(π′j), and on such places the labelling
on the original net and the ordering imposed by the two processes coincide,
then attaching πj to πi reduces to taking their component-wise union. Therefore
the composition has |π| components, each one obtained as the component-wise
union of each πi with all π′j which must be connected to πi.

Definition 12 (parallel composition). Let η = 〈α,π, ω〉 and η′ = 〈α′,π′, ω′〉
be two concatenable non-deterministic processes. Suppose |π| = n, |π′| = n′,
and Ti ∩ T ′

j = Si ∩ S′j = ∅ for any i, j. Then η ⊗ η′ is the concatenable process
η′′ = 〈α′′,π′′, ω′′〉, with

π′′ = π1,1 . . . πn,1π1,2 . . . πn,2 . . . πn′,1 . . . πn′,n

where each πi,j is the (component-wise) union of πi and π′j. Similarly α′′ =
α1,1 . . . αn′,n with αi,j = αi ⊗ α′j and ω′′ = ω1,1 . . . ω�′,� with ωi,j = ωi ⊗ ω′j.

Note that when composing in parallel two non-deterministic processes η and η′,
we compose each component of η with each component of η′. Intuitively, this
means that parallel composition distributes over non-deterministic composition.

Finally, we can easily define a notion of non-deterministic composition, which
is obtained by juxtaposing the two processes.

Definition 13 (non-deterministic composition). Let η = 〈α,π, ω〉 and
η′ = 〈α′,π′, ω′〉 be concatenable non-deterministic processes. Then η ⊕ η′ =
〈αα′,ππ′, ωω′〉, where the juxtaposition of two lists denotes their concatenation.
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Fig. 3. Three simple concatenable non-deterministic processes η1, η2, η3 and some
processes arising from their composition

It can be shown that, as in the deterministic case, concatenation and parallel
composition induce well-defined operations on abstract processes, independent
of the particular choice of the representatives.

As an example consider the three simple processes η1, η2, η3 in Fig. 3, consist-
ing of one transition only. Note that η1 nondeterministically offers two copies of
s′1 as target. The same figure reports the parallel composition η2 ⊗ η3, the non-
deterministic composition η2⊕η3, the processes η1; (η2⊕η3) and η1; (η2⊕η2). For
the last process observe that the two non-deterministic copies of u are joined as
an effect of the composition (yet the composite process still non-deterministically
offers two copies of s′2 as target).

Definition 14 (category of concatenable non-deterministic processes).
Let N be a net. The category of (abstract) concatenable non-deterministic pro-
cesses of N , denoted by CNP(N), is defined as follows. Objects are finite non-
empty lists of elements of S⊗. Each (abstract) concatenable non-deterministic
process of N is an arrow. Both parallel ⊗ and non-deterministic ⊕ composition
make CNP(N) a symmetric monoidal category.

Obviously, the non-deterministic processes of a net N , as given in Defini-
tion 5, correspond to the arrows of CNP(N) consisting of a single process
η = 〈α1, π1, ω〉, once we forget the decoration.
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3 Embedding Processes into Terms

This section presents the main result of the paper, namely, the description of
the abstract concatenable non-deterministic processes of a net N , as defined
in Section 2, as terms of a suitable algebra. Along the Petri nets are monoids
paradigm, this is a sort of monoidal category, freely generated from the net itself.

3.1 Categorical Notions

Here we introduce the relevant categorical notions that are needed for the alge-
braic description of processes. Most definitions are standard: for the presentation
of monoidal categories we closely follow [1].

Definition 15 (monoidal categories). A (strict) monoidal category is a
triple 〈C, ⊕ , e〉, where C is the underlying category, the tensor product
⊕ : C×C −→ C is a functor satisfying the law (t1⊕t2)⊕t3 = t1⊕(t2⊕t3), and e

is an object of C satisfying the law t⊕e = t = e⊕ t, for all arrows t, t1, t2, t3 ∈ C.
A symmetric monoidal category is a 4-tuple 〈C, ⊕ , e, γ〉, where 〈C, ⊕ , e〉

is a monoidal category, and γ : 1 ⊕ 2 ⇒ 2 ⊕ 1 : C × C −→ C is a natural
isomorphism1 satisfying the coherence axioms γa,e = a and

a⊕b⊕c
a⊕γb,c

γa⊕b,c

a⊕c⊕b

γa,c⊕b

c⊕a⊕b

a⊕b
γa,b

a⊕b

b⊕a

γb,a

a⊕b

A i-monoidal category is a 5-tuple 〈C, ⊕ , e, γ,∇〉, where 〈C, ⊕ , e, γ〉 is
a symmetric monoidal category and ∇ : 1 ⇒ 1 ⊕ 1 : C −→ C is a natural
transformation satisfying the coherence axioms ∇e = e and

a
∇a

∇a

a⊕a

a⊕∇a

a⊕a ∇a⊕a
a⊕a⊕a

a
∇a

∇a

a⊕a

γa,a

a⊕a

a⊕b
∇a⊕∇b

∇a⊕b

a⊕a⊕b⊕b

a⊕γa,b⊕b

a⊕b⊕a⊕b

While symmetric monoidal categories are a staple of theoretical computer sci-
ence, at least since the seminal work by Meseguer and Montanari [10], we intro-
duced i-monoidality in order to capture the idempotency of the additive operator.
Making each object s a cosemigroup object (not yet a comonoid object, since
the arrow s → e is missing [8]) and requiring the naturality of ∇ are suggested
by the need of equating somehow the addition of terms, yet banning the identity
t = t⊕ t: we offer further remarks in the concluding section.

1 Given functors F, G : A → B, a natural transformation τ : F ⇒ G : A → B is a
family of arrows of B indexed by objects of A, τ = {τa : F (a) → G(a) | a ∈ OA},
such that for every arrow f : a → a′ in A, τa; G(f) = F (f); τa′ in B. We say that τ
is an isomorphism if all its components τa’s are so.
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Definition 16 (diodal categories). A bimonoidal category is a 8-tuple 〈C, ⊕
, e, γ, ⊗ , o, ρ, δ〉, where 〈C, ⊕ , e, γ〉 and 〈C, ⊗ , o, ρ〉 are symmetric monoidal

categories satisfying the law t ⊗ e = e for all arrows t ∈ C and the coherence
axiom ρa,e = e, and δ : 1 ⊗ ( 2 ⊕ 3) ⇒ ( 1 ⊗ 2)⊕ ( 1 ⊗ 3) : C ⊗ C ⊗ C −→ C is
a natural isomorphism satisfying the axioms δo,b,c = b⊕ c, δa,b,e = a⊗ b and

a⊗(b⊕c)
δa,b,c

a⊗γb,c

(a⊗b)⊕(a⊗c)

a⊗(c⊕b)
δa,c,b

(a⊗c)⊕(a⊗b)

γa⊗c,a⊗b

Finally, a diodal category is a 9-tuple 〈C, ⊕ , o, ρ,∇, ⊗ , e, γ, δ〉, where
〈C, ⊕ , o, ρ,∇〉 is a i-monoidal category and 〈C, ⊕ , o, ρ, ⊗ , e, γ, δ〉 is a
bimonoidal category, satisfying the coherence axiom

a⊗b
a⊗∇b

∇a⊗b

a⊗(b⊕b)

δa,b,b

(a⊗b)⊕(a⊗b)

Bimonoidal categories, and their coherence laws, have been considered quite early
on in the literature [7]. Recently they surfaced, sometimes with the name rig or
semiring categories, in the definition of models for quantum programming [6].

We introduced diodal categories in order to obtain a categorical counterpart of
dioids, i.e., semirings where the additive operator is idempotent. In the following,
we consider diodal categories satisfying an additional requirement.

Definition 17 (bipermutative and dipermutative categories). A biper-
mutative category is a bimonoidal category such that δ is an identity, so that the
objects a⊗(b⊕c) and (a⊗b)⊕(a⊗c) coincide; and moreover ρa,b⊕c = ρa,b⊕ρa,c.
Dipermutative categories are diodal categories based on bipermutative categories.

3.2 Categories of Processes

In this part we introduce a concrete category, out of the transitions of the net, and
we prove that it forms a diodal category. More importantly, those arrows exactly
correspond to non-deterministic processes, along the lines of the characterisation
of deterministic processes via the category P(N) in [2].

Notation. Given a monoid 〈M,⊗, 1〉, we denote by M⊕ the free monoid overM
(finite non-empty lists over M): the unit of ⊕ is the list 〈1〉 containing only the
unit of the monoid. Note that the ⊗ operator can be extended set-wise to the
monoidM⊕, resulting in a semiring (not yet a dioid, since ⊕ is not idempotent).
So, assuming that M is X⊗, the resulting structure is denoted simply as X⊗,⊕,
and it coincides with the free ⊗-commutative semiring on X .

Definition 18 (a category for deterministic processes). Let N be a P/T
net. Then, DP(N) is the category whose objects are markings of N (i.e., elements
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s ∈ S⊗,⊕
N

ids : s→ s ∈ NP(N)

t ∈ TN

t : ζ0(t)→ ζ1(t) ∈ NP(N)

s, s′ ∈ S⊗,⊕
N

ρs,s′ : s⊗ s′ → s′ ⊗ s ∈ NP(N)

t : s→ s′, t1 : s′ → s1 ∈ NP(N)

t; t1 : s→ s1 ∈ NP(N)

t : s→ s′, t1 : s1 → s′
1 ∈ NP(N)

t⊗ t1 : s⊗ s1 → s′ ⊗ s′
1 ∈ NP(N)

Fig. 4. The deterministic fragment of the set of inference rules generating NP(N)

t; ids′ = t = ids; t t = t⊗ id∅ (t1 ⊗ t2); (t3 ⊗ t4) = (t1; t3)⊗ (t2; t4)

ρs,s′ ; ρs′,s = ids⊗s′ = ids ⊗ ids′ ρs,s′⊗s′′ = (ids ⊗ ρs′,s′′); (ρs,s′′ ⊗ ids′) ρs,∅ = ids

ρs1,s2 ; (t1 ⊗ t2) = (t2 ⊗ t1); ρs′
2,s′

1
ρa,b = ida⊗b for a �= b ∈ SN ρ; t = t;ρ′ for t ∈ TN

Fig. 5. The set of axioms for deterministic processes quotienting DP(N)

of S⊗N ), while the arrows are freely generated according to the rules in Fig. 4,
subject to the axioms in Fig. 5.2

Since the composition operator ; is partial, axioms in Fig. 5 hold when both sides
are defined; additionally, note that a, b denote places in SN , instead of elements
of S⊗N . The objects of DP(N) are thus markings of N , representing sources and
targets of deterministic processes. Its arrows are equivalence classes of concrete
elements generated by the set of inference rules in Fig. 4, modulo the equations
making it a symmetric monoidal category.

The further equations ρa,b = ida ⊗ idb and ρ; t = t; ρ′ (for permutations ρ, ρ′,
i.e., arrows built out of identities and ρa,b’s) represent a well-known idiosyncrasy
of the concrete representation of deterministic processes [13], so that e.g. for
transitions t1 and t2 with distinct sources and targets, the processes t1 ⊗ t2 and
t2⊗ t1 have to be identified, since, as discussed for concrete processes, the order
of distinct places is irrelevant. Analogous issues appear in the category below,
extending the former in order to include non-determinism.

Definition 19 (a category for non-deterministic processes). Let N be a
P/T net. Then, NP(N) is the category whose objects are finite non-empty lists
of markings of N (i.e., elements of S⊗,⊕

N ), while the arrows are freely generated
according to the rules in Fig. 4 and 6, subject to the axioms in Fig. 5 and 7.

Given a net N , the objects of NP(N) are lists of markings of N , each one repre-
senting the source of one non-deterministic component of the non-deterministic
process. Instead, arrows are equivalence classes of elements generated by the in-
ference rules in Fig. 4 and 6, modulo a set of equations making it a dipermutative
category. Note the lack of the equation γa,b = ida⊕b.

2 For the sake of space saving, we overloaded some symbols, so that for the current
definition S⊗,⊕

N and NP(N) in Fig. 4 should read as S⊗
N and DP(N).
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s, s′ ∈ S⊗⊕
N

γs,s′ : s⊕ s′ → s′ ⊕ s ∈ NP(N)

s ∈ S⊗,⊕
N

∇s : s→ s⊕ s ∈ NP(N)

t : s→ s′, t1 : s1 → s′
1 ∈ NP(N)

t⊕ t1 : s⊕ s1 → s′ ⊕ s′
1 ∈ NP(N)

Fig. 6. The inference rules for non-determinism generating NP(N)

t = t⊕ id〈∅〉 (t1 ⊕ t2); (t3 ⊕ t4) = (t1; t3)⊕ (t2; t4)

γs,s′ ; γs′,s = ids⊕s′ = ids⊕ ids′ γs,s′⊕s′′ = (ids⊕γs′,s′′); (γs,s′′ ⊕ ids′) γs,〈∅〉 = ids

∇s; γs,s = ∇s ∇s; (ids ⊗∇s) = ∇s; (∇s ⊗ ids) ∇s⊕s = (∇s ⊕∇s); (ids ⊕ γs,s ⊕ ids)

γs1,s2 ; (t1 ⊕ t2) = (t2 ⊕ t1); γs′
2,s′

1
∇〈∅〉 = id〈∅〉 = ρs,〈∅〉 ids ⊗∇s′ = ∇s⊗s′

t⊗ (t1 ⊕ t2) = (t⊗ t1)⊕ (t⊗ t2) ρs,s′⊕s′′ = ρs,s′ ⊕ ρs,s′′

Fig. 7. The set of axioms quotienting NP(N)

The objects of NP (N) are obtained by constructing the free ⊗-commutative
semiring, out of the initial set of places of the net N . As for arrows, the analogy
with the semiring construction out of a monoid is confirmed by the charac-
terization result stated below. For a marking s, we let sk denote the k-times
composition s⊕ . . .⊕ s; while we let ∇k

s denote the unique arrow with source s
and target sk, inductively built as ∇1

s = ids and ∇k+1
s = ∇k

s ; (ids ⊕∇s).

Proposition 2. Let s1, . . . , sl ∈ S⊗N and t ∈ NP(N) an arrow with source
s1 ⊕ . . .⊕ sl. Then, t can be decomposed as (∇k1

s1
⊕ . . .⊕∇kl

sl
); γ; (t1 ⊕ . . .⊕ tn),

for n = k1 + . . .+ kl, γ a permutation and ti’s in DP(N).

The permutation γ is just an arrow built out of identities and γa,b’s. The normal
form can be proved unique, up-to a syntactic ordering on arrows. The corollary
below exploits the axiom equating ∇s; γs,s to ∇s for s ∈ S⊗N .

Corollary 1. Let s ∈ S⊗N and t ∈ NP(N) an arrow with source s. Then, t can
be decomposed as ∇k

s ; (t1 ⊕ . . .⊕ tk), for ti’s in DP(N).

As shown above, and hinted at in the beginning of the section, the insertion of
the ⊕ operator mimics the well-known generation of a semiring from a monoid.
The arrows of the resulting category NP(N) can indeed be seen as suitable
list of arrows of DP(N). Recalling that DP(N), the sub-category obtained by
restricting to the ⊗-fragment of NP(N), coincides with the symmetric category
P(N) of deterministic processes [2,13], we can view arrows in NP(N) as lists of
deterministic processes. This fact is deepened and formalised in the next section.
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Fig. 8. Basic concatenable processes

3.3 Processes as Terms

Let us begin the section by recalling the main result concerning DP(N) and the
category of concatenable (deterministic) processes.

For stating this result and its generalisation to the non-deterministic case we
need the five basic processes represented in Fig. 8. In the discussion t represents
a generic transition of a fixed net N and a, b, c, d, e, f are names for places.
Any transition t can be seen as a concatenable (deterministic) process pt. As an
example, on the far left of the figure, we have a representation of the process pt,
for a transition t such that ζ0(t) = a ⊗ b and ζ1(t) = c ⊗ c. Next, there is the
representation of pe, the unique (deterministic) process with no transitions from
e to itself. Process pρ,d is the deterministic process from d⊗ d to itself, simply
swapping the multiset ordering. Then p∇,b is the non-deterministic processes
consisting of one place b only, with source b and as target twice the maximal cut
{b}, i.e., b ⊕ b. Finally, pγ,f represents the permutation for the two underlying
identity processes: source and target are f, f .

Proposition 3 (deterministic correspondence [13]). Let N be a net. The
function CN from the class of generating arrows of the category DP(N) to the
class of basic processes of N , defined by

CN (ida) = pa and CN (ρa,a) = pρ,a for a ∈ SN

CN(t) = pt for t ∈ TN

lifts to a full and faithful (symmetric monoidal) functor PN : DP(N) → CP(N).

Note that the functor induces a bijective correspondence between the arrows of
the category DP(N) and the concatenable (deterministic) processes of the net
N itself. Finally, our main result is now stated below.

Theorem 1 (non-deterministic correspondence). Let N be a net. The
function CNN from the class of generating arrows of the category NP(N) to
the class of basic processes of N , defined by extending CN with

CNN (∇a) = p∇,a and CNN (γa,a) = pγ,a for a ∈ SN

lifts to a full and faithful (diodal) functor NPN : NP(N) → CNP(N).
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The theorem clearly exploits the decomposition result discussed in Proposi-
tion 2. For our purposes, it basically states that the arrows of NP(N) do capture
the essence of the non-deterministic processes of a net. Note that the introduc-
tion of concatenable non-deterministic processes is indeed pivotal, since e.g. the
encodings CNN (∇s; (t ⊕ ids)) and CNN (t) have the same underlying process,
even if the decoration of their targets differ.

4 Conclusions and Further Works

Along the lines of the seminal paper [10], our work offered an algebraic presen-
tation for non-deterministic processes of Petri nets.

A first contribution of our work is the introduction of the concatenable ver-
sion of non-deterministic processes, building on the original proposal by Engel-
friet [3]. To the best of our knowledge, also putting diodal categories into the
limelight represents a small addition to the categorical lore. With respect to
former proposals for the categorical characterization of non-determinism, our
solution closely recalls linear categories [9]: our diodal categories lack a suitable
terminal object, in order to be monoidal categories with finite products. It is
precisely such a weaker structure that allows us to establish our main result: a
functorial bijection between concatenable non-deterministic processes of a net
N and the arrows of the free diodal category built out of N .

As for further refinements on the categorical model, as e.g. the self-dual cat-
egory for modelling processes of contextual nets proposed in [4], let us just
mention that we toyed with the idea of capturing the idempotency of ⊕ by mak-
ing ∇ a natural isomorphism (hence, more in tune with the algebraic notion
of dioids). The concrete description of concatenable non-deterministic processes
does not allow it, since there would be no possible interpretation for the arrow
(∇a)−1 : a⊕ a→ a. However, this is not unfortunate, since the naturality of ∇
would actually make the diagram below commute

a⊕a
(∇a)−1

∇a⊕∇a

a
∇a

a⊕a

a⊕a⊕a⊕a
a⊕γa,a⊕a

a⊕a⊕a⊕a

(∇a)−1⊕(∇a)−1

We would e.g. infer that (t1 ⊕ t2); (t3 ⊕ t4) is equated by functoriality to
(t1; t3) ⊕ (t2; t4) and by naturality to (t1; t3) ⊕ (t1; t4) ⊕ (t2; t3) ⊕ (t2; t4), while
those two expressions should intuitively represent different non-deterministic
processes. Idempotency and functoriality do look like clashing properties for the
⊕ operator, and we were not ready to let the latter go.
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Abstract. Term Rewriting Systems (TRSs) are now commonly used
as a modeling language for applications. In those rewriting based mod-
els, reachability analysis, i.e. proving or disproving that a given term is
reachable from a set of input terms, provides an efficient verification tech-
nique. Using a tree automata completion technique, it has been shown
that the non reachability of a term t can be verified by computing an
over-approximation of the set of reachable terms and proving that t is not
in the over-approximation. Since the verification of real programs gives
rise to rewrite models of significant size, efficient implementations of
completion are essential. We present in this paper a TRS transformation
preserving the reachability analysis by tree automata completion. This
transformation makes the completion implementation based on rewrit-
ing techniques possible. Thus, the reduction of a term to a state by a
tree automaton is fully handled by rewriting. This approach has been
prototyped in Tom, a language extension which adds rewriting primi-
tives to Java. The first experiments are very promising relative to the
state-of-the-art tool Timbuk.

1 Introduction

In the context of infinite state systems verification, a rising approach uses Term
Rewriting Systems (TRSs) as a model and reachability analysis as a verification
technique. In comparison with some other modeling techniques, TRSs have a
great advantage: they can be both executed and verified. On one hand, compar-
ing the execution of a TRS with the execution of a program gives a pragmatic
way to check the coherence between the formal model and the program to be
analyzed. On the other hand, most of the verification techniques have their
Term Rewriting counterpart: model-checking [10], static analysis and abstract
interpretation [13,12,19] or even interactive proofs [7]. Hence, it permits to use
any of them on the TRS model. Furthermore, since all those techniques oper-
ate on a common formal model, i.e. TRS, this may lead to an elegant way to
combine their verification power. However, like in the general verification set-
ting, efficiency problems occur when trying to apply those rewriting techniques
to real-size applications. This is the case when using model-checking on TRS

� This work was partially supported by ANR funding number ANR-06-SETI-14.

J. Meseguer and G. Roşu (Eds.): AMAST 2008, LNCS 5140, pp. 67–82, 2008.
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models of Java programs [18,11] or when using TRS based static analysis on
cryptographic protocols [14] or on Java Bytecode programs [5]. Thus, having
efficient verification tools on TRS models is crucial to guarantee their success as
a modeling technique.

In this paper, we aim at improving significantly the static analysis part. The
state of the art implementation is called Timbuk [16] and has been used to prove
properties on TRS models of cryptographic protocols [14,6] and Java Bytecode
programs [5]. This tool constructs approximations of reachable terms using the
so-called tree automata completion algorithm. Starting from a set of initial terms
(representing respectively all possible function calls, initial configuration for par-
allel processes, etc.) it computes a regular super-set of all terms reachable by
rewriting initial terms. This over-approximation, recognized by a tree automa-
ton, represents either a super-set of all possible evaluations (partial or completed)
for functions, or a super-set of all possible processes’ behaviors for parallel pro-
cesses. Then, it is possible to check some properties related to reachability (in
particular safety and security properties) on this approximation. The work re-
ported here improves by a factor 10 in general, and up to 100 on some Java
examples, the efficiency of the tree automata completion. First, the proposed
technique consists of decomposing each rewrite rule of the TRS in several sim-
pler rules and to apply the completion on the transformed TRS. We show that
the resulting automaton is also an approximation and thus the reachability is
preserved by this TRS transformation. Second, an efficient implementation is
obtained using compilation techniques, thanks to Tom [3,4], a Java extension
that offers powerful pattern-matching features.

After presenting the classical approach in Section 2, we present the transfor-
mation and prove that the reachability analysis after completion is preserved.
Then, we detail in Section 4 how it has been implemented in Tom and show
especially how some of the Tom features make the development painless. To
conclude, we present in Section 5 promising experimental results on the verifi-
cation of cryptographic protocols and Java program analysis.

2 Preliminaries

2.1 Terms and TRSs

Comprehensive surveys can be found in [9,2] for term rewriting systems, and
in [8,17] for tree automata and tree language theory.

Let F be a possibly infinite set of symbols, associated with an arity function
ar : F → N, and let X be a countable set of variables. Let <X be a total order
relation on variables. T (F ,X ) denotes the set of terms, and T (F) denotes the
set of ground terms (terms without variables). The set of variables of a term t is
denoted by Var(t). A substitution is a function σ from X into T (F ,X ), which
can be extended uniquely to an endomorphism of T (F ,X ). A position p for a
term t is a word over N. The empty sequence ε denotes the top-most position. The
set Pos(t) of positions of a term t is inductively defined by Pos(f(t1, . . . , tn)) =
{ε} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}, and Pos(t) = {ε} when t ∈ X . The
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depth of a term t, denoted by depth(t) is the length of the maximal sequence in
Pos(t). If p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p
denotes the term obtained by replacement of the subterm t|p at position p by the
term s. We also denote by t(p) the symbol occurring in t at position p. Given a
term t ∈ T (F ,X ) and A a set of symbols, let PosA(t) = {p ∈ Pos(t) | t(p) ∈ A}.
Thus PosF(t) is the set of positions of t, at each of which a function symbol
appears.

A term t is said to be flat if t is either a simple constant or a term of the form
f(x1, . . . , xn) where x1, . . . , xn ∈ X . We say a term t is almost flat if t is of the
form f(t1, . . . , tn) and the ti’s are flat terms or variables.

A TRS R is a set of rewrite rules l → r, where l, r ∈ T (F ,X ) and l 
∈ X . A
rewrite rule l → r is left-linear (resp. right-linear) if each variable of l (resp. r)
occurs only once within l (resp. r). A TRS R is left-linear (resp. right-linear) if
every rewrite rule l→ r of R is left-linear (resp. right-linear). A TRS R is linear
if it is right and left-linear. The TRS R induces a rewriting relation →R on terms
whose reflexive transitive closure is written →�

R. The set of R-descendants of a
set of terms E ⊆ T (F ,X ) is R∗(E) = {t ∈ T (F ,X ) | ∃s ∈ E s.t. s→�

R t}.

2.2 Tree Automata Completion

Note that R∗(E) is possibly infinite: R may not terminate and/or E may be
infinite. The set R∗(E) is generally not computable [17]. However, it is possible
to over-approximate it [12] using tree automata, i.e. a finite representation of
infinite (regular) sets of terms. We next define tree automata that will be used
to represent set E and over-approximation of R∗(E).

Let Q be an infinite set of symbols, with arity 0, called states such that
Q∩ F = ∅. T (F ∪Q) is called the set of configurations.

Definition 1 (Transition and normalized transition). A transition is a
rewrite rule c → q, where c is a configuration i.e. c ∈ T (F ∪Q) and q ∈ Q.
A normalized transition is a transition c → q where c = f(q1, . . . , qn), f ∈ F
whose arity is n, and q1, . . . , qn ∈ Q.

Definition 2 (Bottom-up non-deterministic finite tree automaton). A
bottom-up non-deterministic finite tree automaton (tree automaton for short) is
a quadruple A = 〈F ,Q,Qf , Δ〉, where the finite set of final states Qf is such
that Qf ⊆ Q and Δ is a finite set of normalized transitions.

The rewriting relation on T (F ∪Q) induced by the transitions of A (the set Δ)
is denoted by →Δ. When Δ is clear from the context, →Δ is also denoted by
→A.

Definition 3 (Recognized language). The tree language recognized by A in
a state q is L(A, q) = {t ∈ T (F) | t →�

A q}. The language recognized by A
is L(A) =

⋃
q∈Qf

L(A, q). A tree language is regular if and only if it can be
recognized by a tree automaton.
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Example 1. Let A be the tree automaton such thatQf = {q0} andΔ = {a→ q4,
b → q5, c → q6, d → q7, f(q4, q5) → q1, h(q6) → q2, h(q7) → q3, g(q1, q2) →
q0, g(q1, q3) → q0}. The language recognized by A is L(A) = {g(f(a, b), h(c)),
g(f(a, b), h(d))}. This example is used throughout this paper to explain the
concepts and algorithms presented in the paper.

Given a tree automaton A and a TRS R, the tree automata completion algo-
rithm, proposed in [13,12], computes a tree automaton Ak

R such that L(Ak
R) =

R∗(L(A)) when it is possible (for the classes of TRSs where an exact computa-
tion is possible, see [12]) and such that L(Ak

R) ⊇ R∗(L(A)) otherwise.
The tree automata completion works as follows. From A = A0

R completion
builds a sequenceA0

R.A1
R . . .Ak

R of automata such that if s ∈ L(Ai
R) and s→R t

then t ∈ L(Ai+1
R ). If we find a fix-point automaton Ak

R such that R∗(L(Ak
R)) =

L(Ak
R), then we have L(Ak

R) = R∗(L(A0
R)) (or L(Ak

R) ⊇ R∗(L(A)) if R is not
in the class of [12]). To build Ai+1

R from Ai
R, we achieve a completion step which

consists of finding critical pairs between →R and →Ai
R

. To define the notion of
critical pair, we extend the definition of substitutions to terms of T (F ∪Q). If
there exists a substitution σ : X �→ Q, a rule l → r ∈ R, and q ∈ Q satisfying
lσ →∗

Ai
R
q and lσ →R rσ, we say that 〈rσ, q〉 is a critical pair. Note that since

R, Ai
R, and the set of states of Q used in Ai

R are finite, there is only a finite
number of critical pairs. Note also that, in our case, it is enough to consider only
root overlap between rules of R and transitions of Ai

R. For every critical pair
detected between R and Ai

R such that rσ 
→∗
Ai

R
q, the tree automaton Ai+1

R is

constructed by adding a new transition rσ → q to Ai
R such that Ai+1

R recognizes
rσ in q, i.e. rσ →Ai+1

R
q.

lσ R
��

∗Ai
R

��

rσ

∗

Ai+1
R

��q

However, the transition rσ → q is not necessarily a normalized transition of the
form f(q1, . . . , qn) → q and so it has to be normalized first. Since normalization
consists of associating state symbols to subterms of the left-hand side of the new
transition, it always succeeds. Note that, when using new states to normalize
the transitions, completion is as precise as possible. However, without approx-
imation, completion is likely not to terminate (because of general undecidabil-
ity results [17]). To enforce termination, and produce an over-approximation,
the completion algorithm is parametrized by a set N of approximation rules.
When the set N is used during completion to normalize transitions, the ob-
tained tree automata are denoted by A1

N,R, . . . ,Ak
N,R. Each such rule describes

a context in which a list of rules can be used to normalize a term. For all
s, l1, . . . , ln ∈ T (F ∪Q,X ) and for all x, x1, . . . , xn ∈ Q ∪ X , the general form
for an approximation rule is:

[s→ x] → [l1 → x1, . . . , ln → xn].
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The expression [s → x] is a pattern to be matched with the new transitions
t→ q′ obtained by completion. The expression [l1 → x1, . . . , ln → xn] is a set of
rules used to normalize t. To normalize a transition of the form t→ q′, we match
s with t and x with q′, obtain a substitution σ from the matching and then we
normalize t with the rewrite system {l1σ → x1σ, . . . , lnσ → xnσ}. Furthermore,
if ∀i ∈ [1..n], xi ∈ Q or xi ∈ Var(li) ∪ Var(s) ∪ {x} then, since σ : X �→ Q,
x1σ, . . . , xnσ are necessarily states. If a transition cannot be fully normalized
using approximation rules N , normalization is finished using some new states,
see Example 2. Such normalization rules can either be defined by hand, in order
to prove precise properties on specific systems or can be automatically generated
in more specific settings [5,6].

The main property of the tree automata completion algorithm is that, what-
ever the state labels used to normalize the new transitions are, if completion
terminates then it produces an over-approximation of reachable terms [12].

Theorem 1 ([12]). Let R be a left-linear TRS, A be a tree automaton, and N
be a set of approximation rules. If completion terminates on Ak

N,R then

L(Ak
N,R) ⊇ R∗(L(A)).

Here is a simple example illustrating completion and the use of approximation
rules when the language R∗(E) is not regular.

Example 2. Let A be the tree automaton given in Example 1. In the following
we illustrate the effect of approximation rules. First, we consider the TRS R =
{g(f(a, x), h(y)) → g(f(a, f(a, x)), h(h(y)))}, composed of a single rule. The set
of R-descendants of L(A) is R∗(L(A)) = {g(fn(a, b), hn({c, d})) | n ≥ 0}.

Let N be the set of approximation rules such that N = {[g(f(a, f(a, x)),
h(h(y))) → z] → [a → q4, f(q4, x) → q5, f(q4, q5) → q5, h(y) → q6, h(q6) → q6,
g(q5, q6) → z]}. Intuitively, the approximated set of descendants will be the
following: L(A2

N,R) = {g(fn(a, b), hm({c, d})) | n,m ≥ 0}.
To get this result, we first compute the critical pairs. Let us consider σ1 =

{x �→ q5, y �→ q6} and σ2 = {x �→ q5, y �→ q7}, we have:

1. g(f(a, q5), h(q6))→∗
A q0 and g(f(a, q5), h(q6)) →R g(f(a, f(a, q5)), h(h(q6))),

2. g(f(a, q5), h(q7))→∗
A q0 and g(f(a, q5), h(q7)) →R g(f(a, f(a, q5)), h(h(q7))).

Let us call l = g(f(a, x), h(y)) and r = g(f(a, f(a, x)), h(h(y))) the respective
left-hand side and right-hand side of the rule of R. The transitions (1) rσ1 → q0
and (2) rσ2 → q0 have to be normalised using N . To normalize the transition (1),
we match the pattern of the approximation rule , i.e. g(f(a, f(a, x)), h(h(y))),
with rσ1 and match z with q0, and thus obtain a substitution σ = {x �→ q5, y �→
q6, z �→ q0}. Applying σ to [a → q4, f(q4, x) → q5, f(q4, q5) → q5, h(y) → q6,
h(q6) → q6, g(q5, q6) → z] gives [a → q4, f(q4, q5) → q5, h(q6) → q6, g(q5, q6) →
q0]. This last system is used to normalize the transition rσ1 → q0 into the set
S1 = {a → q4, f(q4, q5) → q5, h(q6) → q6, g(q5, q6) → q0}. At the same time,
the same process is performed for the transition (2), resulting in S2 = {a→ q4,
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f(q4, q5) → q5, h(q7) → q6, h(q6) → q6, g(q5, q6) → q0}. The tree automaton
A1

N,R is then obtained by adding S1 ∪ S2 to A.
The completion process continues for another step. As there are no more

critical pair, it ends on A2
N,R = A1

N,R whose set of transitions is {a → q4,
b → q5, c → q6, d → q7, f(q4, q5) → q1, h(q6) → q2, h(q7) → q3, g(q1, q2) → q0,
g(q1, q3) → q0, f(q4, q5) → q5, h(q6) → q6, g(q5, q6) → q0, h(q7) → q6}. We have
L(A2

N,R) = {g(fn(a, b), hm({c, d})) | n,m ≥ 0} which is an over-approximation
of R∗(L(A)) = {g(fn(a, b), hn({c, d})) | n ≥ 0}.
The tree automata completion algorithm and the approximation mechanism are
implemented in the Timbuk [16] tool. In the previous example, once the fix-
point automaton Ak

N,R has been computed, it is possible to check whether some
terms are reachable, i.e. recognized by Ak

N,R or not. This can be done using tree
automata intersections [12]. Another way to do that is to search for instances of a
pattern t, where t is a linear term of T (F ,X ), in the tree automaton. Given t it is
possible to check if there exists a substitution σ : X �→ Q and a state q ∈ Q such
that tσ →∗

Ak
N,R
q. If such a solution exists then it proves that there exists a term

s ∈ T (F), a position p ∈ Pos(s) and a substitution σ′ : X �→ T (F) such that
s[tσ′]p ∈ L(Ak

N,R) ⊇ R∗(L(A)), i.e. that tσ′ occurs as a subterm in the language
recognized by L(Ak

N,R). On the other hand, if there is no solution then it proves
that no such term is in the over-approximation, hence it is not in R∗(L(A)), i.e.
it is not reachable. For instance, the pattern g(h(x), f(y, z)) has no solution on
A2

N,R of Example 2, meaning that no term containing any ground instance of
this pattern is reachable from g(f(a, b), h(c)) and from g(f(a, b), h(d)).

3 TRS Transformation Preserving Reachability

In this section, we propose a TRS transformation preserving the reachability anal-
ysis of the original one. This transformation makes the completion implementa-
tion in Section 4 simpler because of the particular form of the resulting rules.

3.1 Definition of the TRS Transformation φ

We first propose in Definition 4 a function which associates to a term over F
and X a term which we consider as its context.

Definition 4. Let F ′ be the set of function symbols Ct with t ∈ T (F ,X ) and
F ∩ F ′ = ∅. We define the function ρ : T (F ,X ) → T (F ′,X ) such that ∀t ∈
T (F ,X ):

ρ(t) =

⎧⎨
⎩
Ct(x1, . . . , xn) where Var(t) = {x1, . . . , xn} and xi <X xi+1 if

t = f(t1, . . . , tn)
t if t ∈ X

Example 3. Consider l = g(f(a, x), h(y)) which is the left hand-side of the rule in
Example 2. Then, ρ(l) is equal to Cg(f(a,x),h(y))(x, y). Note that for any ground
term t, ρ(t) = Ct.



Towards an Efficient Implementation 73

The following definition allows the construction of a set of rules from a given
term. This TRS allows the rewriting of the given term t into its context Ct.
This definition is central for the construction of the transformation φ(R) given
in Definition 6.

Definition 5. Given a term t ∈ T (F ,X ) and the function ρ : T (F ,X ) →
T (F ′,X ):

Trsρ(t) =
{
{f(ρ(t1), . . . , ρ(tn)) → ρ(t)} ∪

⋃n
i=1 Trsρ(ti) if t = f(t1, . . . , tn)

∅ if t ∈ X .

Example 4. Let l = g(f(a, x), h(y)) be the left hand-side of the rule in Exam-
ple 2. Then, Trsρ(l) = {a → Ca, f(Ca, x) → Cf(a,x)(x), h(y) → Ch(y)(y),
g(Cf(a,x)(x), Ch(y)(y)) → Cg(f(a,x),h(y))(x, y)}.

Now we define the transformed TRS φ(R).

Definition 6 (TRS Transformation). Given a set of rewrite rules R:

φ(R) =
⋃

l→r∈R
Trsρ(l) ∪ {ρ(l) → r}

Example 5. Let R be the TRS defined in Example 2. As there is only one rule
l→ r with l = g(f(a, x), h(y)) and r = g(f(a, f(a, x)), h(h(y))), we have φ(R) =
Trsρ(l) ∪ {Cl(x, y) → r} where Trsρ(l) is defined as in Example 4.

Note that for any TRS R, the TRS φ(R) has two properties. First, for each rule
l → r of φ(R), l is almost flat (see the definition in Section 2.1). So depth(l) is
in the worst case equal to three. And second, for a rule l → r ∈ R, r is reachable
by rewriting from l and using φ(R). The latter is emphasized in the following
proposition.

Proposition 1. Let R be a left-linear TRS, for any rule l→ r ∈ R:

r ∈ φ(R)∗(l)

Proof. Direct consequence of Definition 6. � 

Another trivial property of φ(R) is about its linearity which is the same as R.

Proposition 2. If R is a left-linear TRS, then so is φ(R).

Proof. Direct consequence of Definitions 6 and 4. � 

3.2 Preservation of Reachability

As claimed at the very beginning of this section, the reachability analysis per-
formed on φ(R) can be propagated to the one performed on R itself. In other
words, given a set of terms E, an over-approximation of the set of terms reach-
able from E and using φ(R) is also an over-approximation of the set of reachable
terms which can be computed from E using R.
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Theorem 2. Let R and A be respectively a left-linear TRS and a tree au-
tomaton such that A = 〈F ,Q,Qf , Δ〉. Let A′ be a tree automaton such that
A′ = 〈F ∪ F ′,Q,Qf , Δ〉 where F ′ is specified as in Definition 4. For any set of
approximation rules N , if completion terminates on A′k

N,φ(R) then

R∗(L(A)) ⊆ L(A′k
N,φ(R)).

Proof. Let t and u be two ground terms over F such that t →R u. There
exists a rule l → r in R, a substitution μ : X → T (F) and a position p of
t such that t|p = lμ and u = t[rμ]p. According to Proposition 1, for a rule
l → r ∈ R, r ∈ φ(R)∗(l). Thus, t →∗

φ(R) u. Consequently, for R and A′,
R∗(L(A′)) ⊆ φ(R)∗(L(A′)). Note that since A′ differs from A only because of its
set F ′ of symbols, we have L(A) = L(A′) and thus R∗(L(A)) ⊆ φ(R)∗(L(A′)).
According to Theorem 1 and Proposition 2, φ(R)∗(L(A′)) ⊆ L(A′k

N,φ(R)). So one

can deduce that R∗(L(A)) ⊆ L(A′k
N,φ(R)). � 

Note that given A, R and N , one can perform completion using φ(R) and N
without modifying N . Moreover, for each r′ of l′ → r′ ∈ φ(R), either r′ occurs in
the right-hand side of a rule in R, or r′ is a flat term. The former is normalized
by the set of approximation rules if it is necessary. For the latter, any transition
resulting from the application of such a rule is already normalised. For example,
given an automaton A and the rule g(Cf(a,x)(x), Ch(y)(y)) → Cg(f(a,x),h(y))(x, y)
introduced in Example 4, if there exists σ : X → Q and q a state of A such that
g(Cf(a,x)(σ(x)), Ch(y)(σ(y))) →∗

A q, then Cg(f(a,x),h(y))(σ(x), σ(y)) → q is added
to A. And this transition is already normalised. Consequently, N does not act
for this kind of rule.

We have shown in this section that the TRS transformation is sound from a
reachability point of view: each term actually reachable by R can be computed
using φ(R). Indeed, for an over-approximation App computed using φ(R) from
a set of terms E (R∗(E) ⊆ App), if a term t /∈ App then t is actually unreachable
from E using either φ(R) or R.

4 Implementation in Tom

In this section, we show how the completion with φ(R) has been implemented in
the Tom language. The main principle of Tom is to integrate rewriting statements
into Java. After the compilation, every Tom statement is translated into Java
and we obtain a standalone Java program. In this section, we show how Tom
pattern-matching features have been the key of the completion implementation
with φ(R). See [3] for more details about the Tom language features.

4.1 General Process

In Figure 1, we present the general process which leads to the implementation
of the completion. In order to compare easily our implementation with Timbuk,
we use a similar input format.
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Completion

Automaton

Specification

CCG

Completion
Code

Generator

Tom compiler

Java
completion

specific to the 
input

Specification
input file

Fig. 1. CCG application: from a Specification to its dedicated Completion Program

For a given Timbuk specification, the application CCG generates a Tom pro-
gram of the completion algorithm dedicated to this specification. Actually, this
program is composed of three files. The file Specification defines the algebraic
signature and the file Completion describes the completion implementation.
These two files are specific to the input specification file. The last file Automaton
is generic and corresponds to a Tom program in which all data structures han-
dling tree automata can be found. These Tom files are finally compiled into Java
files providing an efficient application dedicated to the completion on the given
Timbuk specification.

To present how completion is encoded in Tom, we consider again the Exam-
ple 2 in the following sections.

4.2 The Specification File

Tom provides several constructs to manipulate algebraic structures. In particular,
it is possible to directly define an algebraic signature and from this signature, Tom
generates a typed term structure that can be directly used by a Java programmer.

For the Example 2, the signature generated by CCG in the file Specification
contains the set of symbols F , a new constructor denoted q(int), for specifying
states. The transitions are represented using the constructor transition of arity
2. Each context symbol Ct of the set F ′ introduced by φ(R) is denoted C_i. The
signature also contains a variadic operator called sons which is used to represent
expanded states. The expanded states of a state q corresponds to the list, built
using the variadic operator sons, of all t_i such that transition(t_i,q) is a
transition of the current automaton. For example, for the tree automaton given
in Example 2, the expanded state of q0, denoted q(0) in the implementation, is
sons(g(q(1),q(2)), g(q(1),q(3))).

Below, we give the signature generated by our compiler CCG, for the automa-
ton A and the set of rules R given in Example 2. The constructors Ca, Cf(a,x),
Ch(y) and Cg(f(a,x),h(y)) have been respectively renamed into C1, C2, C3 and C4.
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Term = f(Term,Term)
| g(Term,Term)
| h(Term)
| a() | b() | c() | d()
| q(int)
| sons(Term*)
| C1() | C2(Term) | C3(Term)| C4(Term,Term)
| transition(config:Term,state:Term)

4.3 The Automaton File

A tree automaton is an object of the class Automaton. This class is mainly
composed of two fields: transitionsByFunctionSymbol and expandedForms,
both of sort HashTable. The keys of the former are the function symbols of the
generated signature and its values are the sets of transitions. Given a function
symbol f (a key), the corresponding value is the set composed of transitions
whose left-hand side is built from f. The latter stores the expanded form of
states. Both hash-tables are updated during the completion process. Another
field newTransitions stores the new transitions built by a completion step.
Both data structures expandedForms and transitionsByFunctionSymbol are
updated according to this field when the method update() implemented in this
class is invoked. This method resets the set newTransitions to the empty set.
There are also other fields specifying the final states, handling the new states
introduced and so on.

4.4 The Completion File

The code of this class is automatically generated from the automaton A and the
TRS R given in the input specification. This class contains one field currentA
of sort Automaton representing the current automaton, as well as methods to
implement the completion with φ(R).

In Example 2, the main method completeAllSteps iterates by applying ev-
ery rule and updating currentA until reaching a fix-point (if it exists). The
function hasNewTransitions() returns true if the set newTransitions is not
empty. Note that for each rule of φ(R), a method completeStepWithRule[i] is
generated. Such a method performs one completion step for a given rule.

public void completeAllSteps(){
do {
// Current automaton update
currentA.update();
// Completion step with a -> C1
completeStepWithRule1();
// Completion step with f(C1,x) -> C2(x)
completeStepWithRule2();
// Completion step with h(y) -> C3(y)
completeStepWithRule3();
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// Completion step with g(C2(x),C3(y)) -> C4(x,y)
completeStepWithRule4();
// Completion step with C4(x,y) -> g(f(a,f(a,x)),h(h(y)))
completeStepWithRule5();

} while(currentA.hasNewTransitions());
}

We recall that, to perform a completion step, we need to find, for each rule
l → r ∈ φ(R), all substitutions σ : X → Q such that lσ →∗

A q and rσ 
→∗
A

q. Here, we use uttermost Tom matching on variadic operators to implement
efficiently this operation. This is possible because in φ(R), the left-hand sides
are almost flat (see the definition in Section 2.1).

In particular, according to Definition 6, l can be only of the form

(1) f(t1, . . . , tn) with ti ∈ X or ti = Ck(x1, . . . , xm), for i ∈ [1, n], Ck ∈ F ′, and
x1, . . . , xm ∈ X , or

(2) Ck′ (x1, . . . , xn), Ck′ ∈ F ′ and x1, . . . , xn ∈ X .

When l is of the form (2), finding a substitution σ such that lσ →∗
A q consists

of looking for every transition of A of the form Ck′(q1, . . . , qn) → q and matching
their left-hand side with Ck′ (x1, . . . , xn).

When l is of the form (1), every substitution σ satisfying lσ →∗
A q is such that

∃q1, . . . qn, n states of A, for which ∀ti, either tiσ = qi, or tiσ → qi is a transition
of A, and f(q1, . . . , qn) → q is a transition of A. In the following we show how
this operation can be realized using list matching on variadic operators.

Let l′ be l = f(t1, . . . , tn) where every ti of the form Ck(x1, . . . , xm) has been
replaced by the Tom pattern sons(_*,C_k(x_1,...,x_m),_*). Let us consider
a transition f(q1, . . . , qn) → q ∈ A. Remember that we look for σ such that
f(t1, . . . , tn)σ →∗

A q. Such a σ exists if t1σ →∗
A q1, . . . , tnσ →∗

A qn. Thanks to
our encoding using sons, we can expand every qi such that the corresponding
ti in l is not a variable. Finding σ simply consists of matching l′ against the
expanded form of f(q1, . . . , qn). Moreover, when the right-hand side r is of the
form Ck(x1, . . . , xm), verifying that rσ 
→∗

A q consists just of checking that rσ is
in the expanded form of q.

Let us consider the following rule g(Cf(a,x)(x), Ch(y)(y)) → Cg(f(a,x),h(y))

(x, y). Its completion method is completeStepWithRule4 and it is implemented
in Tom as follows.

public void completeStepWithRule4() {
for (Term tr: currentA.getExpectedTransitions("g")) {

Term t = tr.getconfig();
Term te = t.expandForRule4(currentA);
Term q = tr.getstate();
Term qe = q.expand(currentA);
%match(te) {
g(sons(_*,C2(x),_*),sons(_*,C3(y),_*)) -> {

if (! qe.contains(‘C4(x,y)) {
currentA.addNewTransitions(‘transition(C4(x,y),q));
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}
}

}
}

}

The method getExpectedTransitions("g") returns a set of transitions
whose topmost function symbol of its left-hand side is g. The function symbol g
is the symbol occurring at the root of the left-hand side of the considered rule i.e.
g(Cf(a,x)(x), Ch(y)(y)) → Cg(f(a,x),h(y))(x, y). The instruction tr.getconfig()
(resp. tr.getstate()) returns the value stored in the first (resp. second) sub-
term of tr (see the signature in Section 4.2). According to the current tree
automaton, the function expand returns the expanded form of a state and the
function expandForRule4builds the expanded form of t required for this rule. As
in this rule, each child of the left-hand side is of the form C_k(...), this form
corresponds to t where each child (state) has been replaced by its expanded
form.

In this function, two new Tom constructs are used. The first one is the ‘
(back-quote), whose action is to build a term in memory from the algebraic sig-
nature described in Section 4.3. For instance, the last instruction of the method
completeStepWithRule4 builds the ground term ‘transition(C4(x,y),q)
(with the variables x and y at this program point) and stores it into the set
newTransitions of currentA.

The second construct provided by Tom is the %match, which executes an action
associated to a pattern, when this one matches the subject. In the example above,
the first part of the pattern sons(_*,C2(x),_*) means that we try to find each
element of the list, placed under the symbol sons, which is of the form C2(x).
The second part sons(_*,C3(y),_*)) is interpreted similarly. The complete
pattern g(sons(_*,C2(x),_*),sons(_*,C3(y),_*)) matches for every couple
of elements of the form C2(x) and C3(y) and computes the corresponding sub-
stitution for x and y. At the right-hand side of this pattern, there is a Java action
that calls the method addNewTransitions on currentA. addNewTransitions
takes as parameter either a transition or a collection of transitions and adds it
(or them) into the set newTransitions. This action is executed as many times
as the pattern matches.

Note that the methods completeStepWithRule1, completeStepWithRule2
and completeStepWithRule3 can be defined similarly.

Below, we consider the method completeStepWithRule5 corresponding to
the rule C4(x,y) -> g(f(a,f(a,x)),h(h(y))). This method differs from the
other ones mainly because the right-hand side is neither flat, nor almost flat.
So to test if rσ 
→∗

A q, we use the function reduceIn(t,q) that returns true
if t can be reduced to q by the current automata currentA. Moreover, the
resulting transition must be normalized using the approximation rules N. Note
that this normalization is not necessary for the other rules because the resulting
transitions are already normalized.
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public void completeStepWithRule5() {
for (Term tr: currentA.getExpectedTransitions("C4")) {

Term t = tr.getconfig();
Term te = t.expandForRule5();
Term q = tr.getstate();
%match(te) {
C4(x,y) -> {

if (! currentA.reduceIn(‘g(f(a,f(a,x)),h(h(y))),q)) {
currentA.addANewTransitions(Norm(N,

‘transition(g(f(a,f(a,x)),h(h(y))),q)));
}

}
}

}
}

In this example, as no child of the rule left-hand side is of the form C_k(...),
expandForRule5 returns simply t.

Thus, the files Completion, Specification and Automaton are generated
and compiled with Tom. The resulting Java files are then compiled and the file
Completion.class can be executed using the command java.

5 Experiments

We give in this section significant examples to demonstrate the efficiency of
this technique. In the table below, the automaton size is given as (nb of tran-
sitions / nb of states). The benchmarks were done on a intel based platform
(2×Pentium 3GHz, running under FreeBSD), using Tom 2.5, Timbuk 2.2 and
Java 1.5.

Combinatory NSPK View-Only Java prog. 1 Java prog. 2

TRS size (nb of rules) 1 13 15 279 303

Initial Automaton size 43 / 23 14 / 4 21 / 18 26 / 49 33 / 33

Tom:
Final Automaton size 8043 / 23 171 / 21 938 / 89 1974 / 637 1611 / 672
Time (secs) 5.9 5.9 150 360 303
Timbuk:
Final Automaton size 8043 / 23 151 / 16 730 / 74 1127 / 334 751 / 335
Time (secs) 51.1 19.7 6420 25266 37387

Combinatory Example: This tiny example emphasizes that our prototype
is better than Timbuk in particular when a large number of substitutions is
computed during the completion. Let R = {g(f(x1), h(h(h(x2, x3), x4), x5)) →
u(x1, x2, x3, x4, x5)} and A be the tree automaton whose transition set is the
following: {nil → qh, f(qa1) → qf , g(qf , qh) → qg} ∪ {t→ qt, h(qh, qt) → qh | t ∈
{ai, bi, ci, di | i = 1, . . . , 5}}. For the variables x1, x3, x4 and x5 there are twenty
possible instantiations during the completion. The variables x1 and x2 take only
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and respectively the values qa1 and qh. So, there are 203 transitions to compute
by completion.

Needham-Schröeder Public Key Protocol: NSPK is a security protocol
whose goal is to ensure the mutual authentication of two participants. The first
version established in 1976 has been corrected by G. Lowe in 1995. Indeed, in
this first version, a man-in-the-middle attack was possible. The second version of
NSPK was already verified using Timbuk in [14]. Using the same approximation
rules, our prototype leads also to an over-approximation allowing us to verify
this protocol. The computation time of our prototype is better than Timbuk was.

The View-Only protocol: Let us now focus on the View-Only protocol. This
protocol is a component of the Smartright system [20] designed by Thomson. In
the context of home digital network, this system prevents users from unlawfully
copying movie broadcasts on the network. The view-only devices are a decoder
(DC) and a digital TV set (TVS). They share a secret key Kab securely sealed
in both of them. The goal of this protocol is to periodically change a secret
control word (CW) enabling to decode the current broadcast program. The Timbuk
specification of this protocol is described in [15]. The same properties have been
successfully verified with our encoding i.e. secrecy of CW, authentication of CW
(no control word sent by the intruder has been accepted) and no replay attack
on CW. The fix-point automaton has been obtained within a couple of minutes,
while Timbuk terminates within 107 minutes.

Java programs: In [5], Java program analysis is performed using approxima-
tions, i.e. tree automata completion. Starting from a Java byte code program P ,
a TRS encoding the Java Virtual Machine and the semantics of P is automati-
cally produced. The Java program 1 is the one detailed in [5]. For this program,
a fix-point automaton is obtained with Tom within 360 seconds whereas it takes
several hours for Timbuk to obtain the result. On this fix-point, the same analysis
as in [5] have been successfully performed.

The Java program 2 represents the construction of two linear chained lists of
integers. One is supposed to contain only positive integers, and the other only
negative ones. Integers are entered and stored in the corresponding list while
their value is different from 0. For verifying this program, we define approxima-
tion rules in such a way that all integers are abstracted into three equivalence
classes (equal to 0, strictly positive and strictly negative), the input stream is
specified as an infinite stack of integers and abstractions are performed on the
memory in order to handle an infinite number of object creations. On both fix-
point automaton, we can conclude that there are: no positive integer in the list
of negative ones and no negative integer in the list of positive ones.

Our experiments show that the new implementation is faster than the last
version of Timbuk. And this is the case for examples dealing with numerous
combinations and computations. It is often the case when we are dealing with
approximations. We have also applied the transformation φ on the input TRS
of the Timbuk tool. Thanks to these experiments, we are convinced that φ is not
the only reason for our better performance. In Timbuk, the most time consuming
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operation is the computation of critical pairs. Indeed, for every rule l → r, we
need to find every ground instance of l which can be reduced to a state q of
the current automaton. In [12], a solution based on tree automata intersections
is proposed but it remains inefficient when the number of rules and the size
of their left-hand side are huge. In our case, as CCG generates a completion
algorithm dedicated to a given specification, we do not need to implement a
general matching algorithm as in Timbuk. Moreover, since the left-hand sides of
φ(R) rules are almost flat, we use only the Tom pattern-matching features to
compute critical pairs.

6 Conclusion

In this paper, we have developed an original and efficient implementation of tree
automata completion. The first contribution is to have shown that decomposing
the TRS into smaller rules preserves the over-approximation property. The second
contribution is to have shown that, because of the special form of the decomposed
rules, it is possible to define completion in a non-standard way. Instead of sophisti-
cated and heavy algorithms over tree automata, our completion is built using sim-
ple rewriting techniques. Finally, another contribution of this paper is to propose
an implementation taking advantage of the list-matching compilation feature of
Tom to greatly improve the efficiency. On Java programs, which are now our main
concerns, the obtained results are up to 100 times faster than the current state of
the art implementation, i.e. Timbuk. The implementation proposed in this paper is
a first promising step towards efficient verification tools for infinite state systems.
We plan to apply this tool to the static analysis of industrial Java applications in
the context of the RAVAJ project [1]. Since Tom generates thread-safe code – code
supporting simultaneous execution by multiple threads – we are currently study-
ing a multi-threaded implementation of the completion. This could also be a way
to greatly improve the overall performance of our tree automata completion tool.
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Calculating Invariants as Coreflexive Bisimulations
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Abstract. Invariants, bisimulations and assertions are the main ingredients of
coalgebra theory applied to software systems. In this paper we reduce the first
to a particular case of the second and show how both together pave the way to a
theory of coalgebras which regards invariant predicates as types. An outcome of
such a theory is a calculus of invariants’ proof obligation discharge, a fragment
of which is presented in the paper.

The approach has two main ingredients: one is that of adopting relations as
“first class citizens” in a pointfree reasoning style; the other lies on a synergy
found between a relational construct, Reynolds’ relation on functions involved in
the abstraction theorem on parametric polymorphism and the coalgebraic account
of bisimulations and invariants. This leads to an elegant proof of the equivalence
between two different definitions of bisimulation found in coalgebra literature
(due to B. Jacobs and Aczel & Mendler, respectively) and to their instantiation to
the classical Park-Milner definition popular in process algebra.

Keywords: coalgebraic reasoning; proof obligations; pointfree transform; pro-
gram calculation.

1 Introduction

The most widespread application of computer systems today is to support business op-
erations. For this reason, the onus is on the software developer to ensure that business
rules are properly taken into account. Computer scientists regard such rules as examples
of invariant properties. The word “invariant” captures the idea that such desirable prop-
erties are to be maintained invariant, that is, unharmed across all transactions which are
embodied in the system’s functionality.

Changing business rules (ie. invariants) has a price: the code needs to be upgraded so
as to ensure that changes are properly taken into account. This calls for a general theory
of invariant preservation upon which one could base such an extended static checking
mechanism. And this theory requires a broad view of computer systems able to take
into account data persistence and continued interaction.

Coalgebra theory, widely acknowledged as the mathematics of state-based systems
[22], provides an adequate modeling framework for such systems. The basic insight in
coalgebraic modelling is that of representing state-based systems by functions of type

p : X −→ FX (1)
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which, for every state x ∈ X , describe the observable effects of an elementary step in
the evolution of the system (i.e., a state transition). The possible outcomes of such steps
are captured by notation FX , where functor F acts as a shape for the system’s interface.

Jacobs [11] identifies three cornerstones in the theory of coalgebras: invariants,
bisimilarity and assertions. The latter are modal properties of states. About the first
he writes: an important aspect of formally establishing the safety of systems is to prove
that certain crucial predicates are actually invariants.

In this paper we develop a theory of invariant preservation whose novelty resides
in explicitly expressing invariants as bisimulations. (See section 3 and its follow up.)
The third cornerstone, assertions, is addressed in section 6. Altogether, we adopt a cal-
culational style which stems from the explicit use of relational techniques, a body of
knowledge often referred to as the algebra of programming [7].

Our starting point is Jacobs definition of an invariant for a given coalgebra [11]:

Definition 1. Let F : Sets→ Sets be a polynomial functor. An invariant for a coalge-
bra c : X → F(X) is a predicate P ⊆ X satisfying for all x ∈ X ,

x ∈ P ⇒ c(x) ∈ Pred(F)(P ). (2)

Pred(F)(P ) stands for the lifting of predicate P via functor F. (We will spell out the
meaning of this construct very soon.)

Our approach will be to reason about (2) via the PF-transform [2,7,17] — a trans-
formation of first order predicate formulæ into pointfree binary relation formulæ which
will enable us to blend the concept of invariant with that of bisimulation in a handy
way. (In fact, we will show the former is a particular case of the latter.) By pointfree we
mean formulæ which are free of quantifiers and variables (points) such as x above 1.

Structure of the paper. The paper starts by PF-transforming definition (2), in section 2,
to conclude that invariants are a special case of bisimulations (section 3). Section 4
recasts bisimulations in terms of Reynolds’ arrow combinator and resorts to its calcu-
lational power to provide elegant proofs of equivalence between three most common
definitions of bisimulation. The development of (a fragment of) the theory of invariants
is pursued in section 5, upon a category of “predicates as types”. Moving on, section 6
illustrates how the approach proposed in this paper can be also of use to reason about
modal assertions over coalgebras. Finally, section 7 concludes and gives pointers to
related and future work.

2 Invariants PF-Transformed

Our first step is to convert definition (2) into a binary relational formula. The principle
is that of PF-transforming universally quantified formulæ by applying, from right to

1 The idea of encoding predicates in terms of relations was initiated by De Morgan in the 1860s
and followed by Peirce who, in the 1870s, found interesting equational laws of the calculus of
binary relations [19]. The pointfree nature of the notation which emerged from this embryonic
work was later further exploited by Tarski and his students [23]. In the 1980’s, Freyd and
Ščedrov [9] developed the notion of an allegory (a category whose morphisms are partially
ordered) which finally accommodates the binary relation calculus [7] as special case.
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left, the definition of relational inclusion which follows,

R ⊆ S ≡ 〈∀ y, x :: y R x⇒ y S x〉 (3)

forR,S two binary relations 2. In the case of (2), this means thatR will have to capture
set (predicate) P and S will have to do the same for set Pred(F)(P ). One of the stan-
dard ways of encoding a set X as a binary relation is as follows: one defines a relation
ΦX such that

y ΦX x ≡ y = x ∧ x ∈ X (4)

Relations of this kind are referred to as coreflexives because they are fragments of
the identity relation id: ΦX ⊆ id. For instance, set {1, 2, 3} is captured by relation
Φ{1,2,3} = {(1, 1), (2, 2), (3, 3)}. We also need the binary relation composition opera-
tor

b(R · S)c ≡ 〈∃ a :: b R a ∧ a S c〉 (5)

(read R · S as ”R after S”) and to assert a rule which will prove convenient,

(f b)R(g a) ≡ b(f◦ · R · g)a (6)

where f and g are functions and ◦ denotes the relational converse operator defined by:

a(R◦)b ≡ b R a (7)

In this context, we reason:

〈∀ x :: x ∈ P ⇒ c(x) ∈ Pred(F)(P )〉
≡ { ∀-one point rule }

〈∀ y, x : y = x : x ∈ P ⇒ c(y) = c(x) ∧ c(x) ∈ Pred(F)(P )〉
≡ { ∀-trading }

〈∀ y, x :: y = x ∧ x ∈ P ⇒ c(y) = c(x) ∧ c(x) ∈ Pred(F)(P )〉
≡ { (4) twice }

〈∀ y, x :: y ΦP x ⇒ c(y) ΦPred(F)(P ) c(x)〉

≡ { rule (6) }

〈∀ y, x :: y ΦP x ⇒ y(c◦ · ΦPred(F)(P ) · c)x〉

≡ { rule (3) }

ΦP ⊆ c◦ · ΦPred(F)(P ) · c (8)

Predicate Pred(F)(P ) is defined in [11] (Def. 4.1.1) by induction on the structure of
polynomial F. This can be abbreviated by regarding F as a relator [5] and representing

2 By y R x we mean the fact that pair (y, x) belongs to R. (Similarly for y S x.)
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P by its coreflexive ΦP . The concept of a relator F extends that of functor to relations:
FA describes a parametric type while FR is a relation from FA to FB providedR is a
relation fromA to B. Relators are monotone and commute with composition, converse
and the identity. In this context, Pred(F)(P ) coincides with relation FΦP . Thus we
resume to (8) and calculate further:

ΦP ⊆ c◦ · FΦP · c
≡ { see (10) below }

c · ΦP ⊆ FΦP · c (9)

where the last step is justified by the first of the following laws of the relational calculus,

f ·R ⊆ S ≡ R ⊆ f◦ · S (10)

R · f◦ ⊆ S ≡ R ⊆ S · f (11)

known as the shunting rules [7] 3.
Altogether, we arrive at (9), a quite compact version of (2). It tells that wherever c

runs on states satisfying P , any of its successor states will do so. The sections which
follow will give evidence of the advantages of such a transformation.

3 Invariants Are Bisimulations

We move on to the second cornerstone of coalgebra theory — bisimilarity. This is based
on the concept of bisimulation which is given by Jacobs [11] as follows:

Definition 2. A bisimulation for coalgebras c : X → F(X) and d : Y → F(Y ) is a
relation R ⊆ X × Y which is closed under c and d:

(x, y) ∈ R⇒ (c(x), d(y)) ∈ Rel(F)(R). (12)

for all x ∈ X and y ∈ Y .

X

c

��

Y
R��

d

��
⊆

FX FY
F R

��

X

c

��

X
ΦP��

c

��
⊆

FX FX
F ΦP

��

(a) (b)

This time Rel(F)(R) stands for the
relational lifting of R via functor F
which, in our relational setting, is cap-
tured by notation FR.

An exercise at all similar to the one
carried out in the previous section will
show (12) PF-transformed into

c · R ⊆ FR · d (13)

as depicted in diagram (a) above, where X and Y are the carriers of coalgebras c and
d, respectively. Since (9) instantiates (13) we have that invariants are special cases of
bisimulations: exactly those which are coreflexive relations, cf. diagram (b).

3 Functions are denoted by lowercase characters (eg. f , g, φ) and function application will be ab-
breviated by juxtaposition, eg. f a instead of f(a). Coalgebras qualify for these rules because
they are functions.
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We shall see briefly that this conclusion brings about its benefits, as much of the
theory of coalgebraic invariants stems directly from that of bisimulations 4. We will
address this one first.

4 Calculating Bisimulations

Let us first show how the classical definition of bisimulation used in process algebra
(due to Milner and Park [18]) can be retrieved from (13) simply by instantiating F to
the powerset relatorPX = {S |S ⊆ X}. We need the universal property of the power-
transpose isomorphism Λ

f = ΛR ≡ R = ∈ ·f (14)

which converts binary relations to set-valued functions [7], where A PA∈�� is the
membership relation. In [7] the powerset relator is defined by

PR = (∈ \(R· ∈)) ∩ (∈ \ (R◦· ∈))◦ (15)

where ∩ denotes relation intersection and R \ S denotes relational division,

a(R \ S)c ≡ 〈∀ b : b R a : b S c〉

a relational operator whose semantics is captured by universal property

R ·X ⊆ S ≡ X ⊆ R \ S (16)

The main ingredient of the calculation below is (14), which ensures that every pow-
erset coalgebra uniquely determines a binary relation (Λ is a bijection). In this context,
let R be a bisimulation between two powerset coalgebras ΛS and ΛU . We reason:

(ΛS) · R ⊆ (PR) · (ΛU)

≡ { unfolding PR (15) }

(ΛS) · R ⊆ (∈ \(R· ∈)) ∩ (∈ \ (R◦· ∈))◦ · (ΛU)

≡ { distribution (since ΛU is a function) thanks to (11) }

(ΛS) · R ⊆ (∈ \(R· ∈)) · (ΛU) ∧ (ΛS) ·R ⊆ (∈ \ (R◦· ∈))◦ · (ΛU)

≡ { property R \ (S · f) = (R \ S) · f ; converses }

(ΛS) · R ⊆ ∈ \ (R· ∈ ·ΛU) ∧ R◦ · (ΛS)◦ ⊆ (ΛU)◦ · (∈ \ (R◦· ∈))

≡ { shunting rules (10,11) and property above }

(ΛS) · R ⊆ ∈ \ (R· ∈ ·ΛU) ∧ (ΛU) · R◦ ⊆ ∈ \ (R◦· ∈ ·ΛS)

≡ { (16) twice }

4 It is interesting to note that Lemma 4.2.2 in [11] proves that relation {(x, x) | x ∈ P} is a
bisimulation yielded by invariant P , but no further advantage is taken from this fact.
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∈ · (ΛS) ·R ⊆ R· ∈ ·ΛU ∧ ∈ · (ΛU) ·R◦ ⊆ R◦· ∈ ·ΛS
≡ { cancellation ∈ · (ΛR) = R four times }

S · R ⊆ R · U ∧ U · R◦ ⊆ R◦ · S

p

S

��

q

U

��

R��

p′ q′
R

��

The two conjuncts state that R and its converse are simulations
between state transition relations S and U , which corresponds to the
Park-Milner definition 5: a bisimulation is a simulation between two
LTS such that its converse is also a simulation, where a simulation
between two LTS S and U is a relation R such that, if (p, q) ∈ R,
then for all p′ such that (p′, p) ∈ S, then there is a q′ such that
(p′, q′) ∈ R and (q′, q) ∈ U — see diagram on the right 6.

Rπ1

������� π2

�������

ρ

��
X

c
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Y
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��
FRF π1

������
F π2

������

FX FY

We furthermore want to check (13) against another (also
coalgebraic) definition of bisimulation due to Aczel &
Mendler [1]: given two coalgebras c : X → F (X) and
d : Y → F (Y ) an F-bisimulation is a relation R ⊆ X × Y
which can be extended to a coalgebra ρ such that projections
π1 and π2 lift to F-coalgebra morphisms. (See diagram aside.)

Jacobs [11] spends some time in proving the equivalence between the two definitions.
Our proof will be much shorter and calculational thanks to a small trick: we identify
(13) as instance

c(FR←R)d (17)

of Reynolds “arrow combinator”R← S which, givenR and S, relates two functions f
and g as follows [2]:

f(R← S)g ≡ f · S ⊆ R · g (18)

With points, f(R← S)g means 〈∀ y, x :: y S x ⇒ (f y)R(g x)〉. For instance, for f
and g the same function and S andR two partial orders, (18) means that such a function
is monotonic.

The fact that we can write (17) instead of c · R ⊆ FR · d (13) to mean that R
is a bisimulation between F coalgebras c and d is of great notational, conceptual and
calculational advantage. As far as notation is concerned, (17) is very appropriate for
telling that c and d produce FR-related outputs c y and d x provided their inputs are
R-related (y R x). Conceptually, FR ← R may be regarded as a relation involving
all coalgebras which are R-bisimilar. But it is the calculational power implicit in (17)
which really justifies the recasting of (13) in terms of Reynolds’ arrow combinator.

In another context, this combinator is studied in some detail in [2], where the follow-
ing PF-properties can be found:

id← id = id (19)
5 The pointwise definition of simulation is better perceived once S ·R ⊆ R ·U is re-written into
R ⊆ S \ (R ·U), recall (16) — similarly for the other conjunct. Matteo Vaccari [24] performs
a calculation similar to the above starting directly from this pointwise definition.

6 A popular presentation of the classical definition of bisimulation uses LTS defined by the
labelled powerset relator P(A × X), for A a given set of actions. The reasoning for this
functor is the same: only P(id×R) should replace PR in the calculation.
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(R← S)◦ = R◦ ← S◦ (20)

R← S ⊆ V ← U ⇐ R ⊆ V ∧ U ⊆ S (21)

k(f ← g)h ≡ k · g = f · h (22)

From property (21) we learn that the combinator is monotonic on the left hand side
— and thus facts

S←R ⊆ (S ∪ V )←R (23)

$← S = $ (24)

hold 7 — and anti-monotonic on the right hand side — and thus property

R←⊥ = $ (25)

and the two distributive laws which follow:

S← (R1 ∪R2) = (S←R1) ∩ (S← R2) (26)

(S1 ∩ S2)← R = (S1 ← R) ∩ (S2 ←R) (27)

Let us see how the properties above explain those of bisimulation by themselves.
Property (20) ensures that the converse of a bisimulation is also a bisimulation. This
turns out to be an equivalence:

R is a bisimulation

≡ { (17) }
c(FR←R)d

≡ { converse }
d(FR←R)◦c

≡ { (20) }

d((FR)◦ ←R◦)c
≡ { relator F }
d(F(R◦)←R◦)c

≡ { (17) }
R◦ is a bisimulation

Next, we recall the definition of a coalgebra morphism:

Definition 3. Let (X, p : X −→ FX) and (Y, q : Y −→ FY ) be coalgebras for
functor F. A morphism connecting p and q is a function h between their carriers such
that q · h = Fh · p.

Clearly, property (22) tells immediately that coalgebra morphisms are bisimulations.
The easy calculation of F id← id = id (19) ensures id is a bisimulation between a

given coalgebra and itself. On the other side of the spectrum, (25) tells us that ⊥ is a
bisimulation for any pair of coalgebras c and d. (Just introduce points in F⊥←⊥ and
simplify.)

Let us now see how the fact that bisimulations are closed under union,

c(FR1 ← R1)d ∧ c(FR2 ← R2)d⇒ c(F(R1 ∪R2)← (R1 ∪R2))d (28)

7 Cf. f · S · g◦ ⊆ 
 ≡ TRUE concerning (24).
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stems from properties (21,23) and (26). First we PF-transform (28) to

(FR1 ← R1) ∩ (FR2 ←R2) ⊆ F(R1 ∪R2)← (R1 ∪R2)

and reason:

(FR1 ←R1) ∩ (FR2 ← R2)

⊆ { (23) (twice) ; monotonicity of ∩ }

((FR1 ∪ FR2)← R1) ∩ ((FR1 ∪ FR2)←R2)

= { (26) }

(FR1 ∪ FR2)← (R1 ∪R2)

⊆ { F is monotonic; (21) }

F(R1 ∪R2)← (R1 ∪R2)

Eventually, we are in position to address the equivalence between Jacobs’ and Aczel-
Mendler’s definitions of bisimulation. To the set of known rules about (18) we add the
following law

(r · s◦)← (f · g◦) = (r← f) · (s← g)◦ ⇐ pair r, s is a tabulation (29)

where a pair of functions A C
r�� s �� B form a tabulation iff split function 〈r, s〉

is injective, that is, iff r◦ · r ∩ s◦ · s = id holds 8.
Below we show that (29) is what matters in proving the equivalence between Jacobs’

definition of bisimulation (once PF-transformed) and that of Aczel & Mendler:

c(FR← R)d
≡ { tabulate R = π1 · π◦

2 }
c(F(π1 · π◦2)← (π1 · π◦2))d

≡ { relator commutes with composition and converse }
c(((Fπ1) · (Fπ2)◦)← (π1 · π◦2))d

≡ { new rule (29) }
c((Fπ1 ← π1) · ((Fπ2)◦ ← π◦2))d

≡ { converse rule (20) }
c((Fπ1 ← π1) · (Fπ2 ← π2)◦)d

≡ { (5) }
〈∃ a :: c(Fπ1 ← π1)a ∧ d(Fπ2 ← π2)a〉

cf. X

c

��

Y
R��

d

��

Z
π1

������� π2

�������

a��
FZF π1

		���
� F π2



���
�

FX FY
F R

��

Clearly, the meaning of the last line above is exactly Aczel-Mendler’s definition (cf. dia-
gram): it states that there exists a coalgebra a whose carrier is the ”graph” of bisimula-
tion R and which is such that projections π1 and π2 lift to the corresponding coalgebra
morphisms.

8 The proof of (29) can be found in [14]. It is a standard result that every R can be factored in
a tabulation R = r · s◦ [7]. An obvious and easy to check tabulation is r, s := π1, π2 [14],
which boils down to pairwise equality: (b, a) = (d, c) equivalent to b = d ∧ a = c.
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Note how simple the proof is. The elegance of the calculation lies in the synergy with
Reynolds’ arrow combinator. To the best of our knowledge, such a synergy is new in
the literature 9.

5 Calculating Invariants

Let us write FΦP ΦP
c�� to denote the fact that P is an invariant (9), which we

abbreviate to FΦ Φ
c�� since predicates and coreflexives are in one to one corre-

spondence. (We will use uppercase Greek letters to denote such coreflexives and will
refer to them as “invariants” with no further explanation.)

This notation suggests a category Pred of “predicates as objects” as a suitable uni-
verse for describing coalgebraic systems subject to invariants. Pred’s objects are pred-

icates, represented by coreflexives. An arrow Ψ Φ
f�� in Pred means a function

which ensures property Ψ on its output whenever property Φ holds on its input. Arrows
in Pred can therefore be seen as proof-obligations for the corresponding functions 10.
Formally:

Ψ Φ
f�� ≡ f(Ψ ← Φ)f ≡ f · Φ ⊆ Ψ · f (30)

Clearly, any relator (in Rel) restricts to a functor in Pred. In particular, the functorial

image of an arrow Ψ Φ
f�� is well-typed, cf.

FΨ FΦ
F f��

≡ { (30) }

F f · FΦ ⊆ FΨ · F f
≡ { functors }

F (f · Φ) ⊆ F (Ψ · f)

⇐ { F is monotone; (30) }

Ψ Φ
f��

Such a “predicates as types” view carries over universal constructs. As Pred’s hom
sets are included in Set, in order to verify whether a particular universal property in

9 For a longer bi-implication proof of this equivalence see Backhouse and Hoogendijk’s work
on final dialgebras [6]. A proof of the same result is implicit in Corollary 3.1 of [21] which
invokes a result by Carboni et al [8] on extending functors to relators.

10 See [16], where this view of proof obligations is actually extended to arbitrary binary relations.
This is suitable for specification languages such as eg. VDM, where the inclusion of a sub-
typing mechanism which allows truth-valued functions forces the type checking here to rely on
proofs [12].
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the latter lifts to a universal in Pred it is enough to check whether the corresponding
diagram exists and the universal arrow in Set is still an arrow in Pred. The fact that
composition satisfies constraints,

Ψ Φ
g·f�� ⇐ Ψ Υ

g�� ∧ Υ Φ
f�� (31)

stems directly from (30), as does the obvious rule concerning identity:

Ψ Φ
id�� ≡ Φ ⊆ Ψ (32)

(From (31) we infer also that exponential gΦ f = g · f is well-typed.) For a slightly
more elaborate example consider, for instance, functional products in the new setting:

Ψ Ψ × Υπ1�� π2 �� Υ

Φ

f

��������������
〈f,g〉

��

g



������������

(33)

Clearly, the proof-obligations associated to the two projections

π1 · (Ψ × Υ ) ⊆ Ψ · π1 , π2 · (Ψ × Υ ) ⊆ Υ · π2

are instances of Reynolds abstraction theorem [20,25,2]:

GA FA
f�� is polymorphic ≡ 〈∀ R :: f(GR← FR)f〉 (34)

So there is nothing to prove. To show that 〈f, g〉 is indeed an arrow in Pred we need to
recall the universal property of relational splits [7]

X ⊆ 〈R,S〉 ≡ π1 ·X ⊆ R ∧ π2 ·X ⊆ S (35)

and that ×-absorption holds. We reason 11:

Ψ × Υ Φ
〈f,g〉��

≡ { definition (30) }

〈f, g〉 · Φ ⊆ (Ψ × Υ ) · 〈f, g〉
≡ { absorption law for relational product }

〈f, g〉 · Φ ⊆ 〈Ψ · f, Υ · g〉
≡ { universal law for relational product (35) }

π1 · 〈f, g〉 · Φ ⊆ Ψ · f ∧ π2 · 〈f, g〉 · Φ ⊆ Υ · g
11 Note that the⇐ part of this equivalence is also ensured by the abstraction theorem (34) of the

split combinator (on functions).
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≡ { cancellation law for functional product }

f · Φ ⊆ Ψ · f ∧ g · Φ ⊆ Υ · g
≡ { definition (30) twice }

Ψ Φ
f�� ∧ Υ Φ

g��

As expected, a coalgebra FΦ Φ
c�� in Pred maintains property Φ invariant.

F(νF) νF
out��

FΦ

F[(c)]

��

Φc
��

[(c)]

��

Final coalgebras (and initial algebras) exist and coincide with
the ones in Set. Let us check, in this respect, the diagram
of unfold (aside), where νF denotes the final coalgebra and
[(c)] is the coinductive extension, or unfold, of coalgebra c. We
reason:

νF Φ
[(c)]��

≡ { definition (30) }

[(c)] · Φ ⊆ [(c)]

⇐ { fusion: [(T )] · S ⊆ [(R)] ⇐ T · S ⊆ F S ·R }

c · Φ ⊆ FΦ · c

≡ { definition (30) }

FΦ Φ
c��

We close this section by showing how the “invariants as bisimulations” approach
helps in developing of a number of simple, yet powerful rules to reason about “invariant-
typed” coalgebras. Our calculations below address three such rules.

Separation rule:

F (Φ · Ψ) Φ · Ψc�� ⇐ FΦ Φ
c�� ∧ FΨ Ψ

c�� (36)

This rule enables the decomposition of the proof obligation of a compound invariant
into two separate proof obligations, one per conjunct. Its calculation is as follows:

FΦ Φ
c�� ∧ FΨ Ψ

c��

≡ { (30) twice }

c · Φ ⊆ FΦ · c ∧ c · Ψ ⊆ FΨ · c
⇒ { monotonicity of composition (twice) }

c · Φ · Ψ ⊆ FΦ · c · Ψ ∧ FΦ · c · Ψ ⊆ FΦ · FΨ · c
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⇒ { transitivity }

c · Φ · Ψ ⊆ FΦ · (FΨ · c)
≡ { relator F and (30) }

F (Φ · Ψ) Φ · Ψc��

Interleaving rule:

F (Φ × Ψ) Φ× Ψ
c�d�� ⇐ FΦ Φ

c�� ∧ FΨ Ψ
d�� (37)

where � is an interleaving operator defined by c � d
def= δ · (c × d) whenever F has a

distributive law δ : FΦ× FΨ −→ F (Φ× Ψ) corresponding to the Kleisli composition
of F’s left and right strength (see [13] for details). The calculation of (37) follows:

FΦ Φ
c�� ∧ FΨ Ψ

d��

≡ { (30) twice }

c · Φ ⊆ FΦ · c ∧ d · Ψ ⊆ FΨ · d
⇒ { monotonicity of product and composition }

δ · (c · Φ× d · Ψ) ⊆ δ · (FΦ · c× FΨ · d)
⇒ { × relator }

δ · (c× d) · (Φ× Ψ) ⊆ δ · (FΦ× FΨ) · (c× d)
⇒ { δ’s free theorem (34) }

δ · (c× d) · (Φ× Ψ) ⊆ F (Φ× Ψ) · δ · (c× d)
≡ { definition of c � d and (30) }

F (Φ× Ψ) Φ× Ψ
c�d��

Pipeline. For F a monad,

FΦ Φ
c•d�� ⇐ FΦ Φ

c�� ∧ FΦ Φ
d�� (38)

where c • d corresponds to the Kleisli composition of c and d. We calculate:

(c • d) · Φ
= { definition of Kleisli composition }

μ · F c · d · Φ

⊆ { FΦ Φ
d�� and monotonicity }
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μ · F c · FΦ · d
= { F relator }

μ · F (c · Φ) · d
⊆ { FΦ Φ

c�� and monotonicity }

μ · F (FΦ · c) · d
= { F relator and μ’s free theorem (34) }

FΦ · μ · F c · d
= { definition of Kleisli composition }

FΦ · (c • d)

6 Calculating Assertions

As mentioned in the introduction to this paper, the third main ingredient of coalgebraic
reasoning identified in [11] is a language of modal assertions in which specifications
of the behaviour of systems can be expressed. Clearly, invariants bring about a “next
time” modal operator,

c(FΦ← Φ)c ≡ c · Φ ⊆ FΦ · c
≡ { shunting (10) }

Φ ⊆ c◦ · (FΦ) · c︸ ︷︷ ︸
©cΦ

(39)

which holds for those states whose all immediate successors, if any, satisfy Φ. From this
a PF-definition of the “next time Φ holds” modal operator emerges

©c Φ
def= c◦ · (FΦ) · c (40)

which PF-transforms Def. 4.3.1 of [11]. So, assertion Φ ⊆ ©cΦ is an alternative state-
ment of “Φ in an invariant” for coalgebra c.

This modal operator is easily shown to be the upper adjoint of Galois connection

πcΦ ⊆ Ψ ≡ Φ ⊆ ©cΨ (41)

whose lower adjoint is the projection operator πcΦ
def= c·Φ·c◦ which is central to [15] in

studying the PF-refactoring of data dependency theory (a part of database theory). From
this, one immediately infers that ©c is monotonic and distributes over conjunction:
©c(Φ·Ψ) = (©cΦ)·(©cΨ). Note that we express conjunction by composition because
these two operators coincide on coreflexives:

Φ ∩ Ψ = Φ · Ψ (42)
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Such properties can then be used to reason about operator ©c, as in, for example,

Φ is an invariant

≡ { (39) }

Φ ⊆ ©cΦ

⇒ { monotonicity of©c stemming from (41) }

©cΦ ⊆ ©c(©cΦ)

≡ { (39) }

©cΦ is an invariant

The whole construction of a modal logic relative to a coalgebra c, which is the basis
of assertion reasoning in coalgebra theory, can be pursued along similar lines. Consider,
for example, the definition of �P , the henceforth P operator of [11, Def. 4.2.8]:

(�P )x def= 〈∃ Q : Q is invariant : Q ⊆ P ∧ (Q x)〉

Converting predicates P and Q to coreflexives Φ and Ψ , respectively, and making ex-
plicit the supremum implicit in the existential quantification one gets,

�Φ = 〈
⋃
Ψ : Ψ ⊆ ©cΨ : Ψ ⊆ Φ〉

= { trading [4] }

〈
⋃
Ψ :: Ψ ⊆ ©cΨ ∧ Ψ ⊆ Φ〉

= { ∩-universal }

〈
⋃
Ψ :: Ψ ⊆ ©cΨ ∩ Φ〉

= { ∩ of coreflexives is composition (42) }

〈
⋃
Ψ : : Ψ ⊆ Φ · ©cΨ〉

which leads to a greatest (post)fixpoint definition:

�Φ = 〈ν Ψ : : Φ · ©cΨ〉 (43)

We end this section by showing how the PF-transform (and in particular the replace-
ment of intersection of coreflexives by composition (42)) together with the fixpoint
calculus [3] speed up derivation of laws in such a logic. The law we have chosen to
calculate is Lemma 4.2.9(ii) of [11]: �Φ ⊆ ��Φ. We drop subscript c of ©c (for
economy of notation) and calculate:

�Φ ⊆ ��Φ

≡ { (43) }
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�Φ ⊆ 〈ν Ψ :: (�Φ) · ©Ψ〉
⇐ { greatest fixed point induction: x ≤ fx ⇒ x ≤ νf [3] }

�Φ ⊆ �Φ · ©(�Φ)

≡ { �Φ · Φ = �Φ thanks to (42), since �Φ ⊆ Φ }

�Φ ⊆ �Φ · Φ · ©(�Φ)

≡ { property (for Φ coreflexive) Φ ·R ⊆ S ≡ Φ · R ⊆ Φ · S }

�Φ ⊆ Φ · ©(�Φ)

≡ { (43) and fixpoint calculus (νf ⊆ fνf ) }
true

7 Epilogue

Invariants are constraints on the carrier of coalgebras which restrict their behavior in
some desirable way but whose maintenance entails some kind of proof obligation dis-
charge. An approach is put forward in this paper for reasoning about coalgebraic invari-
ants which is both compositional and calculational: compositional because it is based
on rules which break the complexity of such proof obligations across the structures
involved; calculational because such rules are derived thanks to an algebra of invari-
ants regarded as coreflexive bisimulations, which is what invariants are once encoded
in the language of binary relations. Such calculational capabilities arise, in turn, from
encoding bisimulations as instances of Reynolds relation on functions. In this process,
functors which capture coalgebras’ dynamics are generalized to relators and the objects
of the underlying category are generalized to predicates.

The main contribution of the paper is the explicit adoption of such a construc-
tive, calculational style in approaching the problem. Both [21,6] already suggest a
relational/relator-based approach to bisimulation, [6] actually generalizing from coalge-
bras to dialgebras. However, no relationship is established with the algebra of Reynolds
relation on functions which, in close association with Reynolds abstraction theorem,
naturally leads to a category (Pred) whose objects are predicates (invariants).

In a wider context, the explicit adoption of such a category has potential to support a
constructive discipline of extended static checking (ESC) in a coalgebraic view of com-
puter systems, but surely there is much work to be done before this becomes of practical
use.On the theory side, theauthorswould like to investigateapossibleconnectionbetween
the “predicates as objects” approach and Frege structures [10] 12. Quoting this reference:

A Frege structure is a lambda structure F on the set A together with a desig-
nated subset ofA whose elements are called propositions (...) the propositional
connectives are required to yield propositions as values only when they operate
on propositions as arguments.

This is regarded as an interesting topic for future research.

12 We thank Peter Dybjer for pointing out this possibility.
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9. Freyd, P.J., Ščedrov, A.: Categories, Allegories. Mathematical Library, vol. 39. North-
Holland, Amsterdam (1990)

10. Hatcher, W.S.: Review: Peter Aczel. Frege structures and the notions of proposition, truth
and set. The Journal of Symbolic Logic 51(1), 244–246 (1986)

11. Jacobs, B.: Introduction to Coalgebra. Towards Mathematics of States and Observations.
Draft Copy. Institute for Computing and Information Sciences, Radboud University Ni-
jmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

12. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall Int., Englewood
Cliffs (1986)

13. Kock, A.: Strong functors and monoidal monads. Archiv für Mathematik 23, 113–120 (1972)
14. Oliveira, J.N.: Invariants as coreflexive bisimulations — in a coalgebraic setting, Presentation

at the IFIP WG 2.1 #62 Meeting Namur (December 2006)
15. Oliveira, J.N.: Pointfree foundations for (generic) lossless decomposition (submitted, 2007)
16. Oliveira, J.N.: Theory and applications of the PF-transform, Tutorial at LerNET 2008,
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Abstract. The notion of a session is fundamental in service-oriented applica-
tions, as it serves to separate interactions between clients and di�erent instances
of the same service, and to group together logical units of work. Recently, the Ser-
vice Centered Calculus (SCC) has been proposed as a process calculus designed
around the concept of a dyadic session between a service side and an invoker
side, where interaction protocols and service orchestration can be conveniently
expressed. In this paper we propose a generic type system to collect services’
behaviours and then we fix a class of well-typed processes that are guaranteed to
be deadlock free, in the sense that they either diverge by invoking new service
instances or reach a normal form. The type system is based on previous research
on traditional mobile calculi, here conveniently extended and simplified thanks
to the neat discipline imposed by the linguistic primitives of SCC.

1 Introduction

The success of service orientation is attracting the interest of both industry and academy.
On the one hand, important standardisation bodies and industrial consortia are devel-
oping the WS-* stack, targeting the engineering of web services technologies from a
pragmatic perspective. The related documentation is often centred around common pro-
gramming patterns: it is more focused on technical details of some case-studies, than
on the overall methodology, leaving many ambiguities open. On the other hand, sev-
eral e�orts are posed on mathematical foundations, by developing formal languages
and models tailored to service-oriented architectures. The main aim is to provide
current standards with unambiguous semantics, but hopefully, tackling the scenarios
from a more abstract perspective, the formalisation can lay the basis for sound ser-
vice orchestration methodologies. Within this research thread, many process calculi
have emerged ([6,5,17,4,2,16], to cite a few), that are enhanced with service-specific
primitives.

The aim of this paper is to study a type system for one of the above proposals, called
Service Centered Calculus (SCC) [2]. More precisely, we study a calculus derived from
SCC and from its refined variant CaSPiS [3] in which service invocation encompasses

� Research supported by the EU within the FET-GC II Integrated Project IST-2005-016004 S��-
����� and by the Italian FIRB Project T����.�	.

J. Meseguer and G. Roşu (Eds.): AMAST 2008, LNCS 5140, pp. 100–115, 2008.
c� Springer-Verlag Berlin Heidelberg 2008
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one-way and request-response protocols available in current WS-technology and al-
lows for more sophisticated message exchanges, according to the protocol exposed by
the service. The key feature is considering the messages exchanged between caller and
callee as correlated, enclosed in special units of work, called sessions, and isolated from
messages belonging to di�erent invocations to the same service. Di�erently from other
session languages inspired by pi-calculus [11,12,19,9], object-orientation [8,7] and cor-
relation sets [17], here the programmers should not bother with the manipulation of
sessions: they are created automatically, in a transparent manner, upon service invoca-
tion. In particular, in SCC the communication media for exchanging messages is always
implicit and determined by the context surrounding active abstractions and concretions.
For this reason, we allow service name mobility, but not session name mobility.

The automatic teller machine example in [12] can serve well to illustrate our ap-
proach to the typing of SCC. The ATM o�ers three options to choose from: deposit,
withdraw and balance. Once the user chooses one option the ATM establishes a new
direct connection with the bank to account for the operation. Afterwards, the result is
returned by the ATM to the user who can choose another option. At the type system
level, even if the connection with the bank is reiterated each time the user chooses an
option, it is only necessary to check a single instance to guarantee safety of the com-
munication, because each interaction belongs to a distinct session. For SCC we show
that, by constraining the communication activities, well-typedness not only guarantees
safety but a much stronger property such as deadlock freedom.

Since sessions can be nested but cannot be addressed explicitly in communication
primitives, the language is endowed with children-to-parent communications and with
in-session communications. These two communication patterns not only are expressive
enough to encode lazy �-calculus [2] but also makes it possible that typing a single
instance of a session suÆces to guarantee deadlock freedom of recursive processes
such as the factorial service (see Example 2). Another feature of SCC is the presence of
a pipe construct, inspired by Orc [6], an elegant language for structured orchestration.
Pipelines o�er a basic mechanism for composing processes: it is more general and
better suited w.r.t. concurrency than sequential composition and it does not require the
improper use of channels for a task that pertains to orchestration. As far as we know,
our type system is the first one to address the direct typing of such a pipe primitive.

The resulting language is somehow too permissive to be dealt with using session
types [11,19,12] directly, as they would require, e.g., each input in a session to be
matched by only an output. This condition is violated (and consequently subject re-
duction does not hold) if, for example, in the presence of an input we introduce paral-
lel outputs of di�erent types. Our type system extends ordinary session types to work
correctly with our language. Di�erently from [13], this permits each variable to be stat-
ically assigned a basic type or a service type (in the case of service name mobility).

The type system characterises a subclass of SCC processes typical of the service-
oriented scenarios (e.g., service declarations are top level and replicated) for which we
show the main theorem of this paper: we prove that these processes are deadlock free
in the sense that they either diverge by invoking service instances and opening new
sessions or reach a normal form in which only service declarations remain; that is,
every client terminates its computation unless someone diverges, but the entire system
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cannot block on pending communications. The proof technique makes an extensive use
of types to limit the number of possible cases, resulting less error prone.

A similar type system exists for SSCC (a variant of SCC based on named streams
instead of pipelines) [16] that guarantees session safety. Streams introduce some sort
of global bu�ers for extra-session communication and permit only a single type of val-
ues for each stream. Likewise, the type system described in [1] resembles ours but it
deals asymmetrically with services and clients, by guaranteeing only client progress.
Concerning deadlock freedom we use definitions in [14,15] as main references for our
definition, which is slightly di�erent because tailored to the service-oriented scenario.

Synopsis. Section 2 introduces our SCC-like calculus. Section 3 presents the type sys-
tem and the subject reduction result. Section 4 defines the class of initial processes and
proves the main theorem: every well-typed initial process is deadlock free. Section 5
summarises the results and points out directions for further work. Due to space limita-
tion proofs are just sketched or omitted.

2 Session Centered Calculus

2.1 SCC Overview: Room Reservation Example

Consider the following reservation service reserve for hotel rooms:

R � reserve�
�
�double�����������	
������ � �single���������	
�������

�

reserve o�ers two kinds of rooms, double or single, depending on the client choice.
If the client after an invocation reserve sends the label double to the service then the
service waits for a pair of names x and y (both of type str), and after receiving them,
generate a numeric reservation code (type int) derived from x and y that is sent back to
the client. Here ��	
 : str � str � int is a function only available on service side.

C � reserve��
�test� ��
� �single���������������
���� �


��
 �double�����������
���������
���� �

The above client, after invoking reserve and depending on some condition test, chooses
between the two available options. The situation of the freshly established session r after
the client’s choice of double is the following:

(� r)
�

r� � ���������
����(�)��
���� � � r� � (���)����	
������ � R
�

where the client protocol is running on the left (the session side r� with negative po-
larity) and the service protocol on the right (the session side r� with positive polarity).
Abstractions (e.g., (x� y)) and concretions (e.g., �”���”� ”�
�”�) running on opposite
sides (r� and r�) of the same session (bound name r) can exchange data, leading to

(� r)
�

r� � (�)��
���� � � r� � ���	
���������
���� � R
�

Say ��	
(”���”� ”�
�”) evaluates to 556047. Then, after another interaction, the
client side (r� ��
���� 556047) can return the result outside of r (to the parent session,
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P� Q�R ::� 0 (nil)
� s�P (service definition)
� v�P (invocation)
� �� v � v1 
��� P ���� Q (if-then-else)
� (x̃)�P (tuple input)
� �ṽ��P (values output)
� �n

i�1(li)�Pi (label-guarded sum)
� �l��P (label choice)
� ��
��� ṽ�P (return)
� (�m)P (restriction)
� rp � P (session)
� P � x̃ � Q (pipe)
� P�Q (parallel)

v ::� f(ṽ) (function call)
� x (variable)
� m (service�session)
� b (basic data value)

p� q ::� � � � (polarities)

Fig. 1. Syntax of our service calculus

if any). For example reserve��single���”���”��(x)��
���� x � y � Q invokes reserve
and delivers the result in y to Q. As many instances of Q are spawn as the number of
values that are issued. Since the execution of an invocation prefix opens a nested session,
the conjunct use of return and pipe is the easiest way to continue the computation within
the pre-existing session.

2.2 Syntax

The set of processes is defined by the grammar in Fig. 1. We let P� Q�R range over
processes, s over service names, r over session names, m over both session and service
names, l over labels, x over variables (for service names and data), and v over values,
which include an elsewhere specified set of basic data and expressions (possibly with
names, variables and functions). Tuples are denoted by �̃. Operators are listed in Fig. 1
in decreasing order of precedence, e.g., r� � P � x̃ � Q�R reads ((r� � P) � x̃ � Q)�R.

As usual, 0 is the nil process, the trailing of 0 is often omitted, parallel composition
is denoted by P�Q and restriction by (�m)P. The construct rp � P indicates a generic
session side with polarity p (taking values in ����	). Sessions are mostly intended as
run-time syntax. In fact, di�erently from other languages that provide primitives for
explicit session naming and creation, here all sessions could be built automatically,
resulting in a more elegant and disciplined style of writing processes. A fresh session
name r and two polarised session ends r� � P and r� � Q are generated (on client and
service sides, respectively) upon each service invocation s�P of the service s�Q. We say
r� �P is the dual session side of r� �Q and vice versa. As P and Q share a session, their
I�O communications are directed toward the dual session side. We let p� q range over
polarities and p� q are the opposite polarities of p and q, where � � � and � � �.

Labels l allow for expressing a choice on one side among a set of available options
at the other side. The primitive �
���� is used to output values to the parent session
and the pipe P � x̃ � Q is a construct for on-side communications, i.e., for propagating
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P�0 � P P�Q � Q�P (P�Q)�R � P�(Q�R)
(�m1)(�m)P � (�m)(�m1)P ((�m)P)�Q � (�m)(P�Q) if m � fn(Q)

((�m)P) � x̃ � Q � (�m)(P � x̃ � Q) if m � fn(Q) rp � (�m)P � (�m)(rp � P) if r � m
0 � x̃ � P � 0 (P�Q) � x̃ � R � (P � x̃ � R)�(Q � x̃ � R)

(rp � 0) � x̃ � R � rp � 0 rp
1 � (Q�rq

2 � 0) � rp
1 � Q�rq

2 � 0 (�r)(r� � 0�r� � 0) � 0

Fig. 2. Structural congruence

values in the same side of a session. Pipe is inspired by Orc [6] to activate a fresh
instance of Q on any value produced by P.

Processes are taken up to �-equivalence considering (x̃)�Q and P � x̃ � Q as binders
for variables x̃ in Q and (�m)P as the binder for m in P. The set fn(P) of free names of P
is defined as expected. It is worth noting that the standard capture avoiding substitution
P[ṽ�x̃], which replaces a tuple of variables with a tuple of values, assumes that variables
cannot appear in certain positions (i.e., x � P and x�P are forbidden by the syntax).

Each service definition is persistent (i.e., not consumed after an invocation) and avail-
able at top level (see Definition 4). For this reason, in the type system we shall give in
Section 3, their protocols are not supposed to return any value to the parent.

2.3 Operational Semantics

We describe the semantics of our language by means of an LTS that exploits the struc-
tural congruence 
, which is the least one defined by the equations in Fig. 2. They
include ordinary axioms about parallel and restriction, together with distributivity of
parallel over pipes, and a few axioms for garbage collecting terminated session ends
rp � 0. We say that Q is at the top level in P if P 
 (�m̃)Q�R for some m̃ and R.

Our transition system exploits the labels � in Fig. 3. We write � to mean either � or
�. We write (m̃)� to mean the label � where the names m̃ become bound. The notions
of bound names bn(�), free names fn(�) and names n(�) of a label � are defined as
expected. We remark that �-conversion is not applicable to labels.

The semantics is given in the early style, which guesses the values and labels in
the rules (I�) and (B�����), respectively. Rule (D��) shows the replicated nature of the
service and together with (I��) creates two processes which are ready to communicate
after that (SC	
) creates a new shared common session. (S����	�O
�) accounts for the
return of a value, which is converted in an output out of the current session when the
session construct is traversed. (S����	�) marks with the name of the exchanging session
each operation in that session. (C	

) permits both communication of basic values
and service names. Extrusion is handled by (O���) and (P��), but thanks to (E�
��)
restricted names can be moved to the top before communication and a closure rule
is not necessary. On the other hand, side condition of rule (P��) is useful for session
floating since r is bound in labels for the service invocation. Rule (P���) creates a new
concurrent copy of process Q together with the residual P� � x̃ � Q in the case that P
outputs a value. Rule (P���P���) makes a move in P if the action is not an output.

We shall write P
�
�� if there is a Q such that P

�
�� Q.
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� ::� s � r � s � r (service invocation � definition)
� � ṽ � 	 ṽ (value production � consumption)
� rp :� ṽ � rp :	 ṽ (value production � consumption within r)
� � l � 	 l (choice selection � branching)
� rp :� l � rp :	 l (choice selection � branching within r)
� � � r� (silent steps)
� 
 ṽ � (m)� (value return � extrusion)

Fig. 3. Labels of the transition system

(I�)

(x̃)�P
�ṽ
�� P[ṽ	x̃]

(O��)

�ṽ��P
�ṽ
�� P

(S������)

P
�

�� P� � � �
 ṽ�
 l� �

rp � P
rp :�
�� rp � P�

(C���)

P
rp :�ṽ
�� P� Q

r:p :�ṽ
�� Q�

P�Q
r�
�� (P��Q�)

(B	
���)

�n
i�0(li)�Pi

�li
�� Pi

(C�����)

�l��P
�l
�� P

(S�
���)

P
rp :�l
�� P� Q

rp :�l
�� Q�

P�Q
r�
�� (P��Q�)

(D��)
r � fn(s�P)

s�P
(r)s�r
�� r� � P�s�P

(I��)
r � fn(s�P)

s�P
(r)s�r
�� r� � P

(SC��)

P
(r)s�r
�� P� Q

(r)s�r
�� Q�

(P�Q)
�

�� (�r)(P��Q�)

(R��)

��
��� ṽ�P
�ṽ
�� P

(S������O��)

P
�ṽ
�� P�

rp � P
�ṽ
�� rp � P�

(N���I��)

P
(r� )s�r�

�� P� r � r�

rp � P
(r�)s�r�

�� rp � P�

(R��)

P
�

�� P� s � n(�)

(�s)P
�

�� (�s)P�

(O���)

P
�

�� P� � � �� ṽ� rp :� ṽ� � s � n(ṽ)

(�s)P
(s)�
�� P�

(S���R��)

P
r�
�� P�

(�r)P
�

�� (�r)P�

(P���)

P
�ṽ
�� P�

P � x̃ � Q
�

�� Q[ṽ	x̃]�(P� � x̃ � Q)

(P���P
��)

P
�

�� P� � �� ṽ

P � x̃ � Q
�

�� P� � x̃ � Q

(I�L)

P
�

�� P�

�� v � v 
��� P ���� Q
�

�� P�

(I�R)

v1 � v Q
�

�� Q�

�� v � v1 
��� P ���� Q
�

�� Q�

(P
	)

P
�

�� P� bn(�) � fn(Q) � �

P�Q
�

�� P��Q

(E����)

P � Q Q
�

�� Q� Q� � P�

P
�

�� P�

Fig. 4. Operational semantics
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3 Typing

The set of session types, U,T ,� � �, is defined by the grammar in Fig. 5. Session types
express sequences of typed tuples of input and output. Internal choice 
 records all
the choices at a certain point of a session, requested in the branches of a conditional
process. External choice & records the types of all o�ered options.

Sorts S can be either [T ] which represents a session with session type T or an ele-
ments of a given set of basic data types �. By convention we denote 	b � � the type of
the basic value b. We shall assume that int� str � �.

Our set of typing rules is in Fig. 6. Type judgements for values take the form 
 � v : S
where S is the sort of v. Type judgements for processes take the form 
 � P : U[T ],
where the type U represents the outputs of P to the parent session, while T is the type of
admissible interactions for the current session. We shall refer to such types as usages.
Sometimes we write [T ] as a shorthand for 
�	[T ]. The type environment 
 is a finite
partial mapping from variables and services to sorts and function types. The empty
environment is annotated �. When x � dom(
) we write 
� x : S for the environment
obtained by extending 
 with the binding of x to S (the same holds for m � dom(
)).

The first four rules for values are standard and the signature of each used external
function must be inserted in the environment as a functional type (rule (F
��V)) because
they are not bound by processes.

The type of 0 in (T���	) is 
�	[
�	] since no action is performed neither in the
current session nor towards the parent session. Rule (T���) constrains the protocol of
the service to be the same as that of the body process P and rule (T���) checks that the
invoked service behaves in the dual manner with respect to the client. Here the dual of
T , written T is inductively defined as:


�	 � 
�	 ?(S̃ )�T � !(S̃ )�T &�l1 : T1� � � � � ln : Tn	 � 
�l1 : T1� � � � � ln : Tn	

!(S̃ )�T � � ?(S̃ )�T � 
�l1 : T1� � � � � ln : Tn	 � &�l1 : T1� � � � � ln : Tn	

It can be readily observed that duality exchanges the role of ! with ? and of & with 
.
Rules (T��), (T	
�) and (T���) insert the usage type in the correct place. The type

for the input variable x̃ in rule (T��) is not declared in the syntax, but it can be inferred
with the help of the algorithm described in [18]. Rule (T������) allows for considering
a subset of possible branches; this subset can be chosen in a minimal way by letting
it include the branches used by the dual sessions in the rule (T��	���). In fact, the �


construct allows to choose between many branches at the same time and also di�erent
clients can invoke the same service making their own choices, and rule (T��) force all of
them to agree on the least common set of choices that must be available at the other side.

T�U ::� ��� (no action)
� ?(S 1� � � � � S n)�T (input of a tuple)
� !(S 1� � � � � S n)�T (output of a tuple)
� &�l1 : T1� � � � � ln : Tn� (external choice)
� ��l1 : T1� � � � � ln : Tn� (internal choice)

S ::� [T ] (session)
� � (basic data types)

Fig. 5. Syntax of types
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(S�	����)


� s : S � s : S
(V
	)


� x : S � x : S

(B
�V)
�b � �


 � b : �b

(F���)

 � v1 : S 1 � � � 
 � vn : S n �b � �


� f : S 1 � � � � � S n � �b � f(v1� � � � � vn) : �b

(T��	�)


 � 0 : ���[���]

(T���)

 � P : ���[T ] 
 � s : [T ]


 � s�P : ���[���]

(T���)


 � P : U[T ] 
 � v : [T ]


 � v�P : ���[U]

(T��)


� x̃ : S̃ � P : U[T ]


 � (x̃)�P : U[?(S̃ )�T ]

(T���)


 � P : U[T ] 
 � ṽ : S̃


 � �ṽ��P : U[!(S̃ )�T ]

(T	��)


 � P : U[T ] 
 � ṽ : S̃


 � ��
��� ṽ�P :!(S̃ )�U[T ]

(T�	
���)
I � �1� � � � � n� �i � I 
 � Pi : U[Ti]


 � �n
i�0(li)�Pi : U[&�li : Ti�]i�I

(T�
	L)

 � P : U[T ] 
 � Q : U�[���] U�� � U Æ U�


 � P�Q : U��[T ]

(TC�����)
l � li � �l1� � � � � ln� 
 � P : U[Ti]


 � �l��P : U[��l1 : T1� � � � � ln : Tn�]

(T�
	R)

 � P : U[���] 
 � Q : U�[T ] U�� � U Æ U�


 � P�Q : U��[T ]

(T����)


 � P : U[T ] 
� x̃ : S̃ � Q : U�[T �] pipe(U[T ]�U�[T �]� S̃ ) � U��[T ��]


 � P � x̃ � Q : U��[T ��]

(T���)

 � P : U[T ]


� r : [T ] � r� � P : ���[U]

(T���I)

 � P : U[T ]


� r : [T ] � r� � P : ���[U]

(T���)

�m : S � P : U[T ] exists(m� P)


 � (�m)P : U[T ]

(T��)

 � vi : S i i � 1� 2 
 � P : U[T ] 
 � Q : U[T ]


 � �� v1 � v2 
��� P ���� Q : U[T ]

Fig. 6. Typing rules

The two rules for parallel composition (T���L) and (T���R) allow parallel composition
of two processes only if at least one does not have any action in the current session,
i.e. if it has type U[
�	]. Note instead that both P and Q are allowed to produce values
upwards, in which case the operation U Æ U � is defined only if all the atomic parts in
U and U � are of the same kind, say !(S̃ ), and in that case U Æ U � � U�U � � U � Æ U.
This operation is sound because tail outputs of parallel values of the same type are not
observable at the type system level. Rule (T����) uses the function defined as

pipe(U[
�	]�U �[T �]� S̃ ) � U[
�	] (no pipe activation)
pipe(U[!(S̃ )]�U �[T ]� S̃ ) � U Æ U �[T ] (pipe activated once)
pipe(U[!(S̃ )k]�U �[
�	]� S̃ ) � U Æ U �k[
�	] k � 1 (multiple pipe activation)

where U �k is a sequence of k � 1 output usages of the same type. If no value is passed
to the pipe, then it is inessential. If it can be activated once, then its instance will act
as a continuation for the current session. If multiple activations are considered, which
will run in parallel, then each instance usage in the session must be 
�	. Intuitively pipe
constrains P � x̃ � Q in the current session to allow a single output P whenever the type
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of Q is di�erent from a single input or vice versa Q to be a single input whenever the
type of P is !(S̃ )k a sequence of k-times !(S̃ ). In this case the result is visible upward,
repeating U � for k times. The first case of pipe is necessary to guarantee the subject
reduction. (T���) and (T���I) are similar to service definition and invocation rules but r
is removed from the environment to forbid the nesting of the same session name.

With respect to the two type systems presented in [19] ours is more similar to the
one with balanced typing. In case the bound name m is a service, rule (T���) checks
the existence of a corresponding service definition by means of exists(m� P). Function
exists ensures that the process P declares the announced service (its inductive definition
is as expected). Finally, rule (T��) handles conditionals in the usual way.

Typing rules allow a deduction for processes like r :!(int) � r� � �1��r� � �2� which do
not preserve session linearity. We will exclude such processes by inroducing the notions
of balanced and initial processes (see Definitions 1 and 4, and Theorem 1).

Example 1. Let us take the reservation example. The type !(int)[!(str� str)�?(int)] ex-
presses the following client usage: the output of two strings is followed by the reading of
the result and an integer is returned outside the session (the first output out of the square
brackets indicates a return action, that is an output out of the current session). Previous
usage is compared with the session usage ?(str� str)�!(int) to ensure that the invocation
is sound. Below we report the typing proof for the client, where we let 
 � reserve :
[&�double :?(str� str)�!(int)� single :?(str)�!(int)	], P � �”���”��(x)��
���� x, Q �

�”���”� ”�
�”��(x)��
���� x and T � 
�double :!(str� str)�?(int)� single :!(str)�?(int)	:

�
�
�(T�
	)


 � P :!(int)[!(str)�?(int)]
(T������)


 � �single��P :!(int)[T ]

�
�
� (T�
	)


 � Q :!(int)[!(str� str)�?(int)]
(T������)


 � �double��Q :!(int)[T ]
(T��)


 � �� (test) 
��� �single��P ���� �double��Q :!(int)[T ]

Moreover, we could safely replace the service definition with

reserve�
�
�double��(���)���
�������� � �single��(�)���
��������� � �suite��R

�

(which extends the previous version of the service with additional behaviours) and still
we correctly type check the client. In fact, our type system can statically exclude the
new branch suite when the client is typed.

Example 2. Let us consider the factorial service f att, defined by:

f att����� �
 ����� ��
� ���


��
 f att������������
���� � � � � ����������

Notice that in this case we are able to express the factorial thanks to service persistence,
which guarantees a separation between each invocation. The entire program is well-
typed by type checking only a single session instance. As the Theorem 2 will show, this
check suÆces to ensure that f att is deadlock free. The typing proof is below, where we
recall that 
�	[!(int)] � [!(int)] and let P� � �n � 1��(x)��
���� x, P � f att�P�, Q� �

����(x� n)�, Q � P � x � Q� and 
 � f att : [?(int)�!(int)]� n : int� ��� : int � int � int.
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�
�
�

� � �1� : [!(int)]

�
�
�


 � P� :!(int)[!(int)�?(int)]

 � P : [!(int)]

�
�
�


� x : int � Q� : [!(int)]

 � P � x � Q� : [!(int)]


 � �� (n � 0) 
��� �1� ���� Q : ���[!(int)]
f att : [?(int)�!(int)]� ��� : � � � � (n)��� (n � 0) 
��� �1� ���� Q : ���[?(int)�!(int)]
f att : [?(int)�!(int)]� ��� : � � � � f att�(n)��� (n � 0) 
��� �1� ���� Q : ���[���]

Example 3. Beyond basic types, expressions may take the name of a service as a pa-
rameter. Take a load balancing service that is called to discover, at each invocation,
which service between a and b is more reliable for executing P.

(� a b)
�

loadbalance��
 �����
(a� b) � 1 ��
� �a� 
��
 �b� � a�P � b�P
�

� loadbalance��x)��
���� x � x � x�Q

Here the function �����
 is a basic expression of type [T ] � [T ] � int and uses the
names of the two services as parameters. The client after receiving the name of the
reliable service can substitute it for x for all future invocations of the service. It is a
nice exercise to verify that the ensemble of the above processes is well-typed under the
assumption that P and Q have types [T ] and [T ] respectively.

The type system enjoys subject congruence and subject reduction. In their proofs we
need some auxiliary lemmas that are proved by straightforward induction on the deriva-
tion of typing judgements.

Lemma 1 (Weakening). If 
 � P : U[T ] and m � fn(P) then 
�m : S � P : U[T ].

Lemma 2 (Strengthening). If 
�m : S � P : U[T ] and m � fn(P) then 
 � P : U[T ].

Proposition 1 (Subject Congruence). If 
 � P : U[T ] and P 
 Q then 
 � Q : U[T ]

The following substitution lemma is needed in the proof of subject reduction for dealing
with rules (I�) and (P���).

Lemma 3 (Substitution). Let 
� x : S � P : U[T ]. If 
 � v : S then 
 � P[v�x] : U[T ].

Definition 1 (Balanced Process). A process P is balanced if 
 � P : U[T ] for some

�U� T and for each session name r in P, each of r� and r� appears exactly once in P.

Theorem 1 (Subject Reduction). Let P be a balanced process and � be the smallest
relation such that: T �?(S̃ )�T, T �!(S̃ )�T, Ti � &�li : Ti	i�I and Ti � 
�li : Ti	i�I .

1. If P
�
��Q with � � �	� r		, then Q is balanced (session linearity).

2. If 
 � P : U[T ] and P
�
�� Q then 
 � Q : U[T ].

3. If 
� r : [T ] � P : U[T ��] and P
r�
�� Q then 
� r : [T �] � Q : U[T ��] where T � � T.

The proof is by induction on the derivation of the transition. Lemmas 1 and 2 serve to
insert in �remove from 
 assumptions about session names. Session linearity guaran-
tees that only “safe” programs are produced starting from balanced processes, i.e., that
situation like r� � �1��r� � �1� (where r� appears twice) cannot arise at run-time.
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4 Deadlock Freedom and Normal Form

Hereafter, we let �� � � � � range over possibly empty sequences of labels 	, r	 and r
,

where r
 will be introduced later by the rule (SC	
’). We let
�
��� represents the reflexive

and transitive closure of
�
�� �

r�
�� �

r�
�� (for all session names r). We say that a

process is deadlock free if it cannot be blocked waiting a synchronisation unless it
reaches the normal form. Normal form means that all the possible communications are
exhausted and only service definitions remain.

Definition 2 (Normal form). A process P is in normal form if there exist service names
s1� ���� sn and processes Q1� ���� Qn such that P 
(�s1) � � � (�sn)(s1�Q1� � � � �sn�Qn).

Definition 3 (Deadlock free). A process P is deadlock free if for each Q s.t. P
�
���Q

then either Q reaches a normal form or Q
�
��.

Since deadlock freedom is a strong property we need to focus on a specific set of pro-
cesses, called initial processes.

Definition 4 (Initial process). A process P is initial if it does not contain session con-
structs, all service definitions are at the top level and � � P : 
�	[
�	].

Note that initial processes are also balanced. Our main theorem shows that all initial
processes are deadlock free (see Theorem 2). Proving deadlock freedom involves the
possibility of exhibiting a 	 reduction after an arbitrary number of evaluation steps.
However, to characterise the next admissible reduction in a constructive way, we need
to argue about some specific session. To observe the name of the session in which a
synchronisation is taking place we need a mild modification to the rule (SC	
) of the
transition system. The basic idea is to remove the binders for session names, i.e., to
consider P� instead of P, for P 
 (�r̃)P� where P� has no binder on session names.
The revised rule (SC	
’) does not restrict the fresh session with a binder and uses the
already mentioned label r
 to identify the created session.

(SC��’)

P
(r)s�r
�� P� Q

(r)s�r
�� Q�

(P�Q)
r�
�� (P��Q�)

Another subtle aspect is that now session r is bound in the label r
, because it must be
fresh w.r.t. all the other pre-existing session names: we omit parentheses in favour of a
lighter syntax. On the other hand, the type environment 
 for closed processes can now
contain assumptions about session names. The modification of the rule is sound since
we are considering only processes that are reachable from initial processes. In fact, any
initial process will produce for each new session a corresponding binder to restrict the
session. For this reason the LTS with rule (SC	
’) has essentially the same behaviour
of the previous LTS with rule (SC	
) (just read both labels r
 and r	 as 	).

Lemma 4. If P is initial and P
�
���Q, then there exists a typing environment 
 for

session names in � such that 
 � Q : 
�	[
�	].
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To reason inductively on the way sessions are nested we introduce some convenient
notation for contexts �[[�]] and �rp [[�]], parent�children sessions relation �P and session
ancestors relation �P. The set of contexts is defined by the grammar:

� ::� [[�]] � ��P � rp � � � (�s)� � � � x̃ � P �rp ::� rp � ([[�]]�P)

As usual �[[P]] and �rp [[P]] are the processes obtained by filling the holes with P.

Definition 5 (Session nesting relation). Let r1 �P r2 i� P 
 �[[�rp
1
[[rq

2 � Q]]]] for some
contexts ���rp

1
, session rq

2, and process Q. We let �P be the transitive closure of �P.

The relation �P for initial processes is also acyclic (�P is irreflexive), it is preserved by

	 reductions and it holds that if P
r�
�� Q then �Q��P ��(x� r) � �r1�r1 �P r � x �P r1	.

The next proposition is a sort of progress property valid for the outermost (in terms of
�-relation) active sessions. In fact, if one of such sessions has a pending action enabled
then it is either guaranteed that after a finite number of steps a suitable synchronisation
is accomplished or a service invocation can open a new nested session.

Proposition 2. Let P be an initial process. If P
�
���Q, then for any session name r in

Q if ����rp � v� and R such that Q 
 �[[�rp [[�
���� � ��!]]]] all of the following hold:

1. if Q
rp:�ṽ
�� then Q

�
���

rp:�ṽ
�� � Q

�
���

r1�
�� Q1 and r �Q1 r1

2. if Q
rp:�ṽ
�� then Q

�
���

rp:�ṽ
�� � Q

�
���

r1�
�� Q1 and r �Q1 r1

3. if Q
rp:�l
�� then Q

�
���

rp:�l
�� � Q

�
���

r1�
�� Q1 and r �Q1 r1

4. if Q
rp:�l
�� then Q

�
���

rp:�l
�� � Q

�
���

r1�
�� Q1 and r �Q1 r1

5. if Q 
 �[[�rp [[P� � x̃ � Q�]]]] and 
1 � P� : U[!(S̃ )�T ] then

�[[�rp [[P�]]]]
�
���

rp:�ṽ
�� � �[[�rp [[P�]]]]

�
���

r1�
�� Q1 and r �Q1 r1

Proof. Take any pair (rp� Q) satisfying the premise. The proof is by induction on the
well-founded order over pairs (rp� Q) defined as the least transitive relation such that
(rp1

1 � Q1) � (rp2

2 � Q2) if one of the following holds:

– llns(r1� Q1) � llns(r2� Q2),
– or llns(r1� Q1) � llns(r2� Q2), Q1 
 �[[�rp [[Q�

1[ṽ�x̃]]]]] and Q2 
 �[[�rp [[Q�

2]]]] and
Q�

1 is a sub-term of Q�

2 with fn(Q�

2) � x̃ (the substitution [ṽ�x̃] is possibly empty),

where we let llns(r� Q) denote the length of the longest nesting sequence induced by �Q

and starting with r, that is of the form r �Q r1 �Q r2 � � � rn�1 �Q rn.
We sketch the proof for case (1). By Lemma 4, we know that there is a suitable 


such that 
 � Q : 
�	[
�	]. Depending on p, we need to prove one of cases below:

1.a if Q
r�:�ṽ
�� and 
 � 
1� r : [!(S̃ )�T ] then Q

�
���

r� :�ṽ
�� � Q

�
���

r1�
�� Q1 and r �Q1 r1

1.b if Q
r� :�ṽ
�� and 
 � 
1� r : [?(S̃ )�T ] then Q

�
���

r�:�ṽ
�� � Q

�
���

r1�
�� Q1 and r �Q1 r1
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(T���)

�� ṽ : S̃ � W : U[T ]


� � �ṽ��W : U[!(S̃ )�T ]

(T���)

�� s : [T �] � W :!(S̃ )�T [T �]

�� s : [T �] � s�W : [!(S̃ )�T ]
(a) Some rule instances considered in base cases: output and invoke

(T�
	L)


� � W : UW [!(S̃ )�T ] 
� � R : UR[���]


� � W �R : UW Æ UR[!(S̃ )�T ]

(T����)


� � W : UW [!(S̃ �)] 
�� x̃ : S̃ � � R : UR[!(S̃ )�T ]


� � W � x̃ � R : UW Æ UR[!(S̃ )�T ]
(b) Some rule instances considered in inductive cases: parallel and pipe

(T���I)

� � W :!(S̃ )�T [T �]

�� r1 : [T �] � r�1 � W : ���[!(S̃ )�T ]

(T���I � T��)

� � W :!(S̃ )�T [T ��]

�� r1 : [T �] � r�1 � (x̃)�W : ���[!(S̃ )�T ]
(c) Some rule instances considered in inductive cases: nested session

Fig. 7. Deduction rules

We can read the above statements as “a session side must respect, after a finite number
of steps �, the obligation imposed by its type unless it postpones the obligation with
a new service call”. The fact that the type of r reflects the enabled action is a direct
consequence of the subject reduction.

Case 1.a: If r : [!(S̃ )�T ] it means that Q 
 �[[r� � Q�]] with 
� � Q� : U[!(S̃ )�T ] for
suitable Q, 
� and U. The entire proof is completely type-driven, the key idea is that we
consider only instances of rules able to yield Q� : U[!(S̃ )�T ] in the conclusion. To ease
readability, in the rules we use W to range over processes and � over environments.

Base cases: The base cases are when llns(r� Q) has length 0, i.e., there is no nested
session in r� and r�. Since 
� � Q� : U[!(S̃ )�T ] we consider the instances of rules
compatible with an r� output action. Some of them are in Fig. 7(a). If (T	
�) is used,

then it means that Q� 
 �ṽ��W. Then Q
r�:�ṽ
�� and we are done by taking � empty.

Similarly, if (T���) is used, then Q� 
 s�W. Then Q
r1�
�� Q1 with r �Q1 r1 (by invoking

s) and we are done by taking � empty.

Inductive cases: When (T���L) is used the thesis follows by inductive hypothesis on
�[[r� � W]] (see Fig. 7(b)) and similarly when (T���R) is used. For (T����) we apply the

inductive hypothesis on�[[r� � W]]. By case (5), either�[[r� � W]]
��

���
r��ṽ
�� �[[r� � W�]]

and then �[[r� � (W � x̃ � R)]]
��

���
�
�� �[[r� � ((W� � x̃ � R)�R[ṽ�x̃])]], and then the

thesis follows by inductive hypothesis on �[[r� � R[ṽ�x̃]]], or instead�[[r� � W]]
�
���

r2�
��

and therefore �[[r� � (W � x̃ � R)]]
�
���

r2�
�� Q1 and r �Q1 r2. If (T���I) is used, then a

nested session r1 is present, with r �Q r1 (see Fig. 7(c)), and we have various cases all

similar. For example, if Q� 
 r�1 �(x̃)�W� then Q
r�1 :�ṽ�

�� and by inductive hypothesis either

Q
��

���

r�1 :�ṽ�

�� and then the thesis follows adding r1	 at the begin of the resulting sequence
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generated by another application of the inductive hypothesis on �[[r� � (r�1 � W)]], or

Q
��

���
r2�
�� Q1 with r1 �Q1 r2 and then the thesis follows since r �Q r1 and r1 �Q1 r2.

Case 1.b is similar (we might also have Q 
 �[[r� � �
���� ṽ�W]], but this case can be
discarded because it contradicts the assumptions). ��

We are now ready to prove the main result.

Theorem 2 (Deadlock freedom). Let P an initial process. Then for each Q s.t. P
�
���Q

then either Q
�
�� or Q is in normal form.

Proof. If Q is in normal form we are done. If not, by contradiction, if Proposition 2
holds then it cannot be the case Q blocked on a pending action in the middle of a
session. In fact, it is always possible to accomplish the synchronisation choosing the
right session that fits the proposition hypothesis since Q has type 
�	[
�	]. Such a
session cannot have a �
���� enabled because it would be seen as an output of the
parent session. Since the process is closed the type system ensures that every service
call is successful (rule (T���)). ��

Remark 1. The result can be extended to processes P that can output some values. In
fact, if 
 � P : 
�	[!(S̃ )k] then we can take any suitable Q (designed to work on the
resulting values) such that 
 � P � x̃ � Q : 
�	[
�	], thus fitting the requirements of
Proposition 2. (The simplest case is Q 
 0.)

Example 4. The process P � s�(x)�s��x��(y)��
���� y � s��5��(y) is well-typed in the
environment s :?(int)�!(int) and hence is deadlock free. Notice that the input of y never
succeeds but the process is deadlock free since it keeps invoking new instances of s (all
nested within the first established top session).

Even if simple, our framework also correctly type-checks non-tail recursive processes.
For example, the initial process s�s��
���� 1�(x)�s�(y) is well-formed and well-typed
in 
 � s :!(int) and thus it is deadlock free (in our sense). An equivalent �-calculus
process is �s(r)�(�r�)(s(r�)�r (1)�r�(x))�(�r)s(r)�r(y) and in Kobayashi’s type system [14]
the action r (1) cannot of course be ensured to succeed (check the tool available at
���"#$$%%%�&��
�
������&��'��("$	&��'$��"��'�$). In fact, r and r� have the
same type and hence the capability level of r equal to the obligation level of r� but rule
A’[14] is not applicable since r is created less recently than r�.

5 Conclusion

We have studied a service language with sessions and pipelines. Di�erently
from [11,12,19,8,9,7] our language build sessions automatically on each service in-
vocation and disallows session name mobility (but not service name mobility). To some
extent, the simple type system we have devised is similar to that of simply typed �-
calculus because it only tracks the exchanged values in each session. In fact, since ses-
sions are developed as low level run-time primitives, the type system does not need to
check session linearity. Instead we track active session usages w.r.t. the current session

http://www.kb.ecei.tohoku.ac.jp/~koba/typical/
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and the parent session. Subsequently, we restrict on the class of initial processes for
which well-typedness implies a suitable notion of deadlock freedom. Together with the
type interference algorithm, reported in [18], we have a simple tool to check deadlock
freedom. Among the main novelties we emphasise the typing rules for pipelines and the
particular well-founded order used for the induction in the proof of Proposition 2.

The full version of this work will address the enhancement of the type system with
a notion of sub-typing so that di�erent usages of the same service can be typed consis-
tently. Moreover, recursion and regular �-types [10] will be accounted for in the type
system, even if Proposition 2 will no longer hold in the present form. To see this, think
of a process making the same unbounded number of inputs and returns: if we type the
process as ���!(S̃ )��[���?(S̃ )��] then di�erent numbers of inputs and returns are al-
lowed. As future work, we want to relax some requirements on parallel usages, admit
session passing and extend the result to multiparty sessions.

Acknowledgements. We would like to thank Mariangiola Dezani-Ciancaglini, Marija
Kolundzija and the anonymous referees for their helpful and detailed comments.
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Abstract. Declarative debugging has been applied to many declarative program-
ming paradigms; in this paper, a declarative debugger for rewriting logic specifi-
cations, embodied in the Maude language, is presented. Starting from an incorrect
computation (a reduction, a type inference, or a rewrite), the debugger builds a
tree representing this computation and guides the user through it to find a wrong
statement. We present the debugger’s main features, such as support for func-
tional and system modules, two possible constructions of the debugging tree, two
different strategies to traverse it, use of a correct module to reduce the number
of questions asked to the user, selection of trusted vs. suspicious statements, and
trusting of statements “on the fly”.

1 Introduction

Declarative debugging, introduced by E. Y. Shapiro [8], is a semi-automatic technique
that starts from a computation considered incorrect by the user (error symptom) and lo-
cates a program fragment responsible for the error. It has been widely employed in the
logic [6], functional [7], and multiparadigm [3] programming languages. The declar-
ative debugging scheme uses a debugging tree as a logical representation of the com-
putation. Each node in the tree represents the result of a computation step, which must
follow from the results of its child nodes by some logical inference. Diagnosis proceeds
by traversing the debugging tree, asking questions to an external oracle (generally the
user) until a so-called buggy node is found. Any buggy node represents a wrong com-
putation step, and the debugger can display the program fragment responsible for it.

Maude [4] is a declarative language based on both equational and rewriting logic for
the specification and implementation of a whole range of models and systems. Here we
present a declarative debugger for Maude functional and system modules. Functional
modules define data types and operations on them by means of membership equational
logic theories that support multiple sorts, subsort relations, equations, and assertions of
membership in a sort. Declarative debugging of functional modules has been presented
in [2,1]. System modules specify rewrite theories that also support rules, defining local
concurrent transitions that can take place in a system.

The debugging process starts with an incorrect computation from an initial term. Our
debugger, after building a proof tree for that inference, will present to the user questions
about the computation. Moreover, since the questions are located in the proof tree, the
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MERIT-FORMS (TIN2005-09027-C03-03), and Comunidad de Madrid program PROMESAS
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answer allows the debugger to discard a subset of the questions, leading and shortening
the debugging process. The current version of the tool supports all kinds of modules
(except for the attribute strat), different ways of trusting statements, two possible
constructions of the debugging tree for rewritings, and two strategies for traversing it.
The debugger is implemented on top of Full Maude [4, Chap. 18]—allowing to debug
the different modules provided by it, such as object-oriented and parameterized ones—
and exploiting the reflective capabilities of Maude. Complete explanations about the
fundamentals and novelties of our debugging approach can be found in the technical
report [10], which, together with the source files for the debugger, examples, and related
papers, is available from the webpage http://maude.sip.ucm.es/debugging.

2 Using the Debugger

We make explicit first what is assumed about the modules introduced by the user; then
we present the available commands.

Assumptions. A rewrite theory has an underlying equational theory, containing equa-
tions and memberships, which is expected to satisfy the appropriate executability re-
quirements, namely, it has to be terminating, confluent, and sort decreasing. Rules are
assumed to be coherent with respect to the equations; for details, see [4].

In our debugger, unlabeled statements are assumed to be correct. Moreover, the user
can trust more statements or introduce a correct module to check the inferences. In
order to obtain a nonempty abbreviated proof tree, at least the buggy statement must be
suspicious; the user is responsible for the correctness of these decisions.

Commands. The debugger is initiated in Maude by loading the file dd.maude, which
starts an input/output loop that allows the user to interact with the tool. Since the debug-
ger is implemented on top of Full Maude, all modules must be introduced enclosed in
parentheses. If a module with correct definitions is used to reduce the number of ques-
tions, it must be indicated before starting the debugging with the command (correct
module MODULE-NAME .). Since rewriting with rules is not assumed to terminate, a
bound, which is 42 by default although can be unbounded, is used when searching in
the correct module and can be set with the command (set bound BOUND .). The user
can debug with only a subset of the labeled statements by using the command (set
debug select on .). Once this mode is activated, the user can select and deselect
statements by using (debug [de]select LABELS .). Moreover, all the labeled state-
ments of a flattened module can be selected or deselected with the commands (debug
include/exclude MODULES .). When debugging rewrites, two different trees can be
built: one whose questions are related to one-step rewrites and another one whose ques-
tions are related to several steps. The user can switch between these trees with the com-
mands (one-step tree .), which is the default one, and (many-steps tree .),
taking into account that the many-steps debugging tree usually leads to shorter debug-
ging sessions (in terms of the number of questions) but with likely more complicated
questions. The proof tree can be navigated by using two different strategies: the more
intuitive top-down strategy, that traverses the tree from the root asking each time for
the correctness of all the children of the current node, and then continues with one of

http://maude.sip.ucm.es/debugging
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the incorrect children; and the more efficient divide and query strategy, that each time
selects the node whose subtree’s size is the closest one to half the size of the whole tree,
the latter being the default one. The user can switch between them with the commands
(top-down strategy .) and (divide-query strategy .). Debugging is started
with the following commands for wrong reductions, memberships, and rewrites.1

(debug [in MODULE-NAME :] INITIAL-TERM -> WRONG-TERM .)
(debug [in MODULE-NAME :] INITIAL-TERM : WRONG-SORT .)
(debug [in MODULE-NAME :] INITIAL-TERM =>* WRONG-TERM .)

How the process continues depends on the selected strategy. In case the top-down
strategy is selected, several nodes will be displayed in each question. If there is an in-
valid node, we must select one of them with the command (node N .). If all the nodes
are correct, we answer (all valid .). In the divide and query strategy, each question
refers to one inference that can be either correct or wrong. The different answers are
transmitted with the commands (yes .) and (no .). Instead of just answering yes,
we can also trust some statements on the fly if, once the process has started, we decide
the bug is not there. To trust the current statement we type the command (trust .).
Finally, we can return to the previous state by using the command (undo .).

We show in the next sections how to use these commands to debug several examples.

3 Functional Module Example: Multisets

We use sets and multisets to illustrate how to debug functional modules. We describe
sets by means of a membership that asserts that a set is a multiset without repetitions.
However, the equation mt2 is wrong, because it should add 1 to mult(N, S):

cmb [set] : N S : Set if S : Set /\ mult(N, S) = 0 .
eq [mt2] : mult(N, N S) = mult(N, S) .

If we check now the type of 1 1 2 3 we obtain it is Set! We debug this wrong
behavior with the command

Maude> (debug 1 1 2 3 : Set .)

that builds the associated debugging tree, and selects a node using divide and query:

Is this membership (associated with the membership set) correct?
1 2 3 : Set
Maude> (yes .)

The debugger continues asking the questions below, now associated to equations:

Is this reduction (associated with the equation mt3) correct?
mult(1, 2 3) -> 0
Maude> (yes .)
Is this reduction (associated with the equation mt2) correct?
mult(1, 1 2 3) -> 0
Maude> (no .)

1 If no module name is given, the current module is used by default.
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With this information, the debugger finds the wrong statement:

The buggy node is: mult(1, 1 2 3) -> 0
With the associated equation: mt2

4 System Module Example: Operational Semantics

We illustrate in this section how to debug system modules by means of the semantics
of the WhileL language, a simple imperative language described in [5] and represented
in Maude in [9]. The syntax of the language includes skip, assignment, composition,
conditional statement, and while loop. The state of the execution is kept in the store, a
set of pairs of variables and values.

Evaluation semantics. The evaluation semantics takes a pair consisting of a command
and a store and returns a store.2 However, we have committed an error in the while loop:

crl [WhileR2] : < While be Do C, st > => < skip, st’ >
if < be, st > => T /\ < C, st > => < skip, st’ > .

That is, if the condition is true, the body is evaluated only once. Thus, if we execute
the program below to multiply x and y and keep the result in z

Maude> (rew < z := 0 ; (While Not Equal(x, 0) Do
z := z +. y ; x := x -. 1), x = 2 y = 3 z = 1 > .)

result Statement : < skip, y = 3 z = 3 x = 1 >

we obtain z = 3, while we expected to obtain z = 6. We debug this behavior with the
top-down strategy and the default one-step tree by typing the commands

Maude> (top-down strategy .)
Maude> (debug < z := 0 ; (While Not Equal(x, 0) Do

z := z +. y ; x := x -. 1), x = 2 y = 3 z = 1 >
=>* < skip, y = 3 z = 3 x = 1 > .)

The debugger computes the tree and asks about the validity of the root’s children:

Please, choose a wrong node:
Node 0 : < z := 0, x = 2 y = 3 z = 1 > =>1 < skip, x = 2 y = 3 z = 0 >
Node 1 : < While Not Equal(x,0) Do z := z +. y ; x := x -. 1, x = 2 y = 3 z = 0 >

=>1 < skip, y = 3 z = 3 x = 1 >
Maude> (node 1 .)

The second node is erroneous, because x has not reached 0, so the user selects this
node to continue the debugging, and the following question is related to its children:

Please, choose a wrong node:
Node 0 : < Not Equal(x,0), x = 2 y = 3 z = 0 > =>1 T
Node 1 : < z := z +. y ; x := x -. 1, x = 2 y = 3 z = 0 >

=>1 < skip, y = 3 z = 3 x = 1 >
Maude> (all valid .)

2 In order to reuse this module later, the returned result is a pair < skip, st >.
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Since both nodes are right, the debugger determines that the current node is buggy:

The buggy node is:
< While Not Equal(x,0) Do z := z +. y ; x := x -. 1, x = 2 y = 3 z = 0 >
=>1 < skip, y = 3 z = 3 x = 1 >
With the associated rule: WhileR2

Computation semantics. In contrast to the evaluation semantics, the computation se-
mantics describes the behavior of programs in terms of small steps. In order to illustrate
this, we make a mistake in the rule describing the semantics of the composition, keeping
the initial state instead of the new one computed in the condition:

crl [ComRc1] : < C ; C’, st > => < C’’ ; C’, st >
if < C, st > => < C’’, st’ > /\ C =/= C’’ .

If we rewrite now a program to swap the values of two variables, their values are not
exchanged. We use the many-steps tree to debug this wrong behavior:

Maude> (many-steps tree .)
Maude> (debug < x := x -. y ; y := x +. y ; x := y -. x, x = 5 y = 2 >

=>* < skip, y = 2 x = 0 > .)
Is this rewrite correct?
< y := x +. y ; x := y -. x, x = 5 y = 2 > =>+ < skip, y = 2 x = 0 >
Maude> (no .)

The transition is wrong because the variables have not been properly updated.

Is this rewrite (associated with the rule ComRc1) correct?
< y := x +. y ; x := y -. x,x = 5 y = 2 > =>1 < x := y -. x,x = 5 y = 2 >
Maude> (no .)
Is this rewrite (associated with the rule OpR) correct?
< x +. y, x = 5 y = 2 > =>1 7
Maude> (trust .)

We consider that the application of a primitive operation is simple enough to be
trusted. The next question is related to the application of an equation to update the store

Is this reduction (associated with the equation st1) correct?
x = 5 y = 2[7 / y] -> x = 5 y = 7
Maude> (yes .)

Finally, a question about assignment is posed:

Is this rewrite (associated with the rule AsRc) correct?
< y := x +. y, x = 5 y = 2 > =>1 < skip, x = 5 y = 7 >
Maude> (yes .)

With this information, the debugger is able to find the bug. However, since we have
the evaluation semantics of the language already specified and debugged, we can use
that module as correct module to reduce the number of questions to only one.
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Maude> (correct module EVALUATION-WHILE .)
Maude> (debug ... .)
Is this rewrite correct?
< y := x +. y ; x := y -. x, x = 5 y = 2 > =>+ < skip, y = 2 x = 0 >
Maude> (no .)

5 Conclusions

We have implemented a declarative debugger for Maude modules that allows to de-
bug wrong reductions, type inferences, and rewrites. Although the complexity of the
debugging process increases with the size of the proof tree, it does not depend on the
total number of statements but on the number of applications of suspicious statements
involved in the wrong inference. Moreover, bugs found when reducing complex initial
terms can, in general, be reproduced with simpler terms which give rise to smaller proof
trees. We plan to improve the interaction with the user by providing a complementary
graphical interface that allows the user to navigate the tree with more freedom. This in-
teraction could also be improved by allowing the user to give the answer “don’t know,”
that would postpone the answer to the question by asking alternative questions. We are
also studying how to handle the strat operator attribute, that allows the specifier to
define an evaluation strategy. This can be used to represent some kind of laziness.
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Abstract. We present a static analysis technique for modeling and ap-
proximating the long-run resource usage of programs. The approach is
based on a quantitative semantic framework where programs are repre-
sented as linear operators over dioids. We provide abstraction techniques
for such linear operators which make it feasible to compute safe over-
approximations of the long-run cost of a program. A theorem is proved
stating that such abstractions yield correct approximations of the pro-
gram’s long-run cost. These approximations are effectively computed as
the eigenvalue of the matrix representation of the abstract semantics.
The theoretical developments are illustrated on a concrete example taken
from the analysis of the cache behaviour of a simple bytecode language.

1 Introduction

This article is concerned with the semantics-based program analysis of quantita-
tive properties pertaining to the use of resources (time, memory, . . . ). Analysis
of such non-functional properties relies on an operational model of program ex-
ecution where the cost of each computational step is made explicit. We take as
starting point a standard small-step operational semantics expressed as a tran-
sition relation σ →q σ′ between states σ, σ′ ∈ Σ extended with costs q ∈ Q
associated to each transition. The set Q of costs is supposed to have two opera-
tions for composing costs: a “product” operator that combines the costs along an
execution path, and a “sum” operator that combines costs coming from different
paths. These operators will give Q a structure of dioid. The sum operator in-
duces a partial order on costs that will serve as a basis for approximating costs.
From such a rule-based semantics, there is a straightforward way to obtain a
transition matrix, which entries represent the cost of passing from one state of
the program to another. This expresses the semantics of a program as a linear
operator on Q(Σ), the moduloid of vectors of elements of Q indexed over Σ.

In this paper, we are interested in analysing programs with cyclic behaviour
(such as reactive systems) in which the asymptotic average cost along cycles,
rather than the global cost of the entire execution, is of interest. We define the
notion of long-run cost for a program which provides an over-approximation of
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the average cost per transition of long traces. This notion corresponds to the
maximum average of costs accumulated along a cycle of the program semantics
and is computed from the traces of the successive iterates of the cost matrix. The
quantitative operational semantics operates on state spaces that may be large or
even infinite so the computation of quantitative semantic models, like their qual-
itative counterparts, is usually not tractable. Hence, it is necessary to develop
techniques for abstracting this semantics, in order to return an approximation
of the program costs that is feasible to compute.

In line with the semantic machinery used to model programs, abstractions
are also defined as linear operators from the moduloid over the concrete state
space into the moduloid over the abstract one. Given such an abstraction over
the semantic domains, we then have to abstract the transition matrix of the
program itself into a matrix of reduced size. We give a sufficient condition for an
abstraction of the semantics to be correct, i.e. to give an over-approximation of
the real cost, and show how an abstract semantics that is correct by construction
can be derived from the concrete one. The long-run cost of a program is thus
safely approximated by an abstract long-run cost, with respect to the order
relation induced by the summation operator of the dioid.

The framework proposed here covers a number of different costs related to
resource usage (time and memory) of programs. To demonstrate the generality
of the framework, our running example considers the less common (compared to
time and space) analysis of cache behaviour and the number of cache misses in
programs. We illustrate the notions of quantitative semantics, abstraction and
long-run cost on a program written in a simple, intermediate bytecode language
(inspired by Java Card) onto which we impose a particular cache model.

The paper is structured as follows. Section 2 defines the quantitative semantics
as a linear operator over a moduloid. We give the general form of this seman-
tics, and precisely define the notion of cost dioid we use throughout the paper.
Section 3 defines the notion of abstraction together with its correctness, and
shows how we can derive an abstract semantics that is correct by construction.
Section 4 defines the notion of long-run cost, relating it to the asymptotic be-
haviour of the trace semantics, and shows how a correct abstraction yields an
over-approximation of the concrete long-run cost of a program. Section 5 lists
related work and Section 6 concludes and discusses future research directions.

2 Linear Operator Semantics

We give a general framework for expressing quantitative operational semantics.
Transitions of these semantics will be equipped with quantities (or costs) de-
pending on the accessed states. Let P be a program; its semantic domain is the
countable set of states Σ. The quantitative operational semantics of P is given
as a transition relation, defined by inference rules of the following form: σ →q σ′

where σ, σ′ are states of Σ, and q is the cost attached to the transition from
σ to σ′ (q is function of σ and σ′). We associate to P the transition system
T = 〈→., I〉, where I is the set of initial states of P . The trace semantics of P is
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defined as the trace semantics of T .

�P �tr = �T �tr = {σ0 →q0 . . . σn−1 →qn−1 σn | σ0 ∈ I, σi →qi σi+1}

2.1 Cost Dioid

The small-step, quantitative operational semantics induces a labelled transition
system over Σ with labels in Q and a transition relation →. ⊆ Σ × Σ → Q,
written σ →q σ′. Such a transition states that a direct (one-step) transition from
σ to σ′ costs q. These unitary transitions can be combined into big-step transi-
tions, using two operators: ⊗ for accumulating costs and ⊕ to get a maximum of
different costs. These operators will form a dioid on Q, as explained below. Costs
can be defined in more general ways (for instance, one could use a more general
algebra of costs as in [4]) but the present definition covers a number of different
costs and has interesting computational properties, since it can be used within
a linear operator semantic framework, as presented in the next subsection.

The operator ⊗ on Q defines the global cost of a sequence of transitions,
σ →q1 . . .→qn σ′ simply as q = q1 ⊗ . . . ⊗ qn. This is written σ π⇒

q
σ′ where π

is a sequence of states that has σ (resp. σ′) as first (resp. last) state.
There may be several ways to reach a state σ′ from a state σ, due to the

presence of loops and non-determinism in the semantics. Let the corresponding
set of possible paths be Πσ,σ′ = {π | σ π⇒

qπ

σ′}. The global cost between σ and
σ′ will be defined, using the operator ⊕ on Q, to be q =

⊕
π∈Πσ,σ′ qπ. Formally,

the two operators have to fulfill the conditions of a (commutative) dioid.

Definition 1. A commutative dioid is a structure (Q,⊕,⊗) such that

1. Operator ⊗ is associative, commutative and has a neutral element e. Quan-
tity e represents a transition that costs nothing.

2. Operator ⊕ is associative, commutative and has ⊥ as neutral element. Quan-
tity ⊥ represents the impossibility of a transition.

3. ⊗ is distributive over ⊕, and ⊥ is absorbing element for ⊗ (∀x.x ⊗ ⊥ =
⊥⊗ x = ⊥).

4. The preorder defined by ⊕ (a ≤ b ⇔ ∃c : a ⊕ c = b) is an order relation
( i.e. it satisfies a ≤ b and b ≤ a⇒ a = b).

By nature, a dioid cannot be a ring, since there is an inherent contradiction
between the fact that ⊕ induces an order relation and the fact that every element
has an inverse for ⊕. The following lemma is a classical result of dioid theory [17].

Lemma 1. ⊕ and ⊗ preserve the order ≤, i.e., for all a, b, c ∈ Q with a ≤ b,
a⊗ c ≤ b⊗ c and a⊕ c ≤ b⊕ c.

If several paths go from some state σ to a state σ′ at the same cost q, we will
require that the global cost is also q, i.e. we work with idempotent dioids.
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Definition 2. A dioid (Q,⊕,⊗) is idempotent if q ⊕ q = q for all q in Q.

For instance, (R, max,+) and (R, min,+) are idempotent dioids, where R stands
for R ∪ {−∞,+∞}. The induced orders are, respectively, the orders ≤ and ≥
over real numbers, extended to R in the usual way. Note that in an idempotent
dioid a ≤ b⇔ a⊕ b = b. Idempotent dioids are also called tropical semirings in
the literature. The fact that sets of states may be infinite, together with the use
of residuation theory in Section 3 impose that our dioids are complete [7].

Definition 3. An idempotent dioid is complete if it is closed with respect to
infinite sums (operator ⊕) and the distributivity law holds also for an infinite
number of summands.

A complete dioid is naturally equipped with a top element, that we shall write
$, which is the sum of all its elements. Remark that a complete dioid is always
a complete lattice, thus equipped with a meet operator ∧ [6]. The notion of
long-run cost we will define in Section 4 relies on the computation of an average
cost along the transitions of a cycle. This requires the existence of a nth root
function.

Definition 4. A dioid (Q,⊕,⊗) is equipped with a nth root function if for all
q in Q, equation Xn = q has a unique solution in Q, denoted by n

√
q.

A sequence containing n transitions, each costing, on the average, n
√
q, will thus

cost q. Some examples of nth root can be found in Figure 1. To be able to
easily deal with the nth root, we make the assumption that the nth power is
⊕-lower-semicontinuous (⊕-lsc for short).

Definition 5. In a complete dioid Q, the nth power is said to be ⊕-lsc if for all
X ⊆ Q, (

⊕
x∈X x)

n =
⊕

x∈X x
n.

This assumption and its consequences will be very useful for the theorems re-
lating long-run cost and trace semantics in Section 4. Note that this equality
remains true for finite X (in that case the nth power is said a ⊕-morphism).

The following definition summarizes the required conditions for our structure.

Definition 6 (Cost dioid). A cost dioid is a complete and idempotent com-
mutative dioid, equipped with an nth root operation, where the nth power is ⊕-lsc.

Proposition 1. In a cost dioid Q, we have:

(i) The nth root is ⊕-lsc: ∀X ⊆ Q, ∀n > 0, n

√⊕
x∈X

x =
⊕
x∈X

n
√
x,

(ii) For all a, b ∈ Q and n,m > 0, n
√
a⊕ m

√
b ≥ n+m

√
a⊗ b.

These properties follow from the fact that the nth power is ⊕-lsc [10].
Although the definition of cost dioids may seem rather restrictive, we now

show that many classes of dioids found in the literature are indeed cost dioids.
We first recall some standard definitions.
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Definition 7. A dioid (Q,⊕,⊗) is:

– selective if for all a, b in Q, a⊕ b = either a or b.
– double-idempotent if both ⊕ and ⊗ are idempotent.
– cancellative if for all a, b, c in Q, a⊗ b = a⊗ c and a 
= ⊥ imply b = c.

Note that in a double-idempotent dioid, xn = x. Thus, a double-idempotent
dioid is naturally equipped with a nth root, which is the identity function.

Proposition 2. The following dioids are cost dioids.

(1) Complete and selective commutative dioids with an nth root operation.
(2) Complete and double-idempotent commutative dioids.
(3) Complete idempotent commutative dioids satisfying the cancellation condi-

tion, and for which for all q in Q, equation Xn = q has always a solution.

carrier set ⊕ ⊗ n
√
q

Q ∪ {+∞,−∞} min max q
Double- R ∪ {+∞,−∞} max min q
idempotent P(S) ∩ ∪ q

P(S) ∪ ∩ q
Cancellative (R+ ∪ {+∞})m min + q

n

R+ ∪ {+∞} max × q
1
n

Selective Q ∪ {+∞,−∞} max + q
n

R ∪ {+∞,−∞} min + q
n

Fig. 1. Examples of cost dioids

For dioids of kind (1) and
(2) we only have to prove
that the nth power is ⊕-lsc.
For dioids of type (3) we also
have to prove that if equa-
tion Xn = q has a solution,
this solution is unique [10].

For instance, (R, max,+)
is a cost dioid that may
be used for the definition
of the Worst Case Execu-
tion Time: when two states
can be joined by several se-
quences of transitions which
cost different times, the worst time is taken. To compute the cost of a sequence of
transitions, we sum the costs of each transition. Figure 1 lists some cost dioids.

2.2 Semantics as Linear Operators over Dioids

The upshot of using the adequate cost dioid is that the cost computation can be
defined in terms of matrix operations in this dioid. The set of one-step transitions
can be equivalently represented by a transition matrix M ∈ MΣ×Σ(Q) with

Mσ,σ′ =
{
q if σ →q σ′

⊥ otherwise

Here, MΣ×Σ(Q) stands for the set of matrices with rows and columns indexed
over Σ, and values in Q. This set of matrices is naturally equipped with two
operators ⊕ and ⊗ in the classical way: operator ⊕ is extended pointwise, and
operator ⊗ corresponds to the matrix product (note that the iterate Mn embed
the costs for paths of length n). The resulting structure is also an idempotent and
complete dioid. The order induced by ⊕ corresponds to the pointwise extension
of the order over Q: M ≤M ′ ⇔ ∀i, j.Mi,j ≤M ′

i,j . A transition matrix may also
be seen as a linear operator on the moduloid Q(Σ), as defined below.
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Definition 8. Let (E,⊕,⊗) be a commutative dioid. A moduloid over E is a
set V with an internal operation ⊕ and an external operation � such that

1. (V,⊕) is a commutative monoid, with 0 as neutral element;
2. the � operator ranges from E × V to V , and verifies

(a) ∀λ ∈ E, ∀(x, y) ∈ V 2, λ� (x⊕ y) = (λ� x)⊕ (λ� y),
(b) ∀(λ, μ) ∈ E2, ∀x ∈ V, (λ⊕ μ)� x = (λ� x)⊕ (μ� x),
(c) ∀(λ, μ) ∈ E2, ∀x ∈ V, λ� (μ� x) = (λ⊗ μ)� x,
(d) ∀x ∈ V, e� x = x and ⊥� x = 0,
(e) ∀λ ∈ E, λ� 0 = 0.

If E is an idempotent dioid, then any moduloid V over E is also equipped
with a canonical order defined from the pointwise ⊕ operation. As for vector
spaces, if n is a given integer, En, set of vectors with n components in E, is
a moduloid. More generally, a vector u ∈ E(Σ), with Σ finite, |Σ| = n can
be seen as a function δu : [1, n] → E. Since Q is complete, we can generalize
to the infinite (countable) case: δu becomes a mapping from N to E, and the
same technique applies for matrices. The matrix-vector product is defined by:
(Mu)i =

⊕+∞
j=1 δM (i, j)⊗ δu(j). In this paper, we will keep the matrix notation

for the sake of simplicity, even for an infinite set of indices.

2.3 Running Example: Quantitative Semantics

Source Bytecode
x=1; 1: push 1

2: store x
for (i=2;. . . 3: push 2

4: store i
. . . i<=n;. . . 5: load i

6: load n
7: if ≤goto 14

x=x*i; 8: load x
9: load i
10: numop mul
11: store x

. . . i++) 12: inc i
13: goto 5

return x; 14: load x
15: return

Fig. 2. Factorial program

We illustrate the notions of cost and quantita-
tive semantics on a simple bytecode language,
inspired by the Java Card language. Figure 2
shows part of the factorial program written in
this language. The quantity we are interested in
is the number of cache misses related to read
accesses (read miss behaviour). In order to de-
scribe the read miss behaviour of programs, we
extend the semantics of a simple bytecode lan-
guage [19,16] with a cache model and with quan-
tities expressing the number of read misses.

The cost dioid considered here is (R, max,+).
A state contains a heap, a call stack of frames,
and within each frame an instruction pointer for
the current method, an array of local variables
and an operand stack. In addition to these stan-
dard elements, a state contains a set of logical
addresses, representing which values are present
in the cache at this point of the execution. This
set is managed similarly to the cache. For example, the maximum size of this set
will correspond to the size of the physical cache, and the replacement policy will
model the one it provides (e.g. LRU, FIFO). The cache description is hidden in a
function C′ = update(C, [access]) where C and C′ denote the cache before and
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after a transition, respectively, and where [access] is a list of memory accesses.
Due to the lack of space, full descriptions of possible update functions are not
given.

Memory is accessed with two primitives (a read or write access) which take
two parameters, specifying what volume of data is to be accessed, and where
these data are stored. For example, readτ (heap.3.x ) means that data of type τ
is read at the address heap.3.x , i.e. field x of the third object in the heap. In the
same way, stack.frameId.n points to the n-nth element in the operand stack
of a given frame, and local.frameId.local points to a local variable in a certain
frame. We give an example of a semantic rule: the load instruction, which loads
a typed local variable, indexed by i, on the top of the operand stack. The first
two premises of the rule correspond to the standard semantics. The third and
fourth premises define how the cache evolves when executing a load. The fifth
premise computes the cost. Some other rule examples can be found in [10].

InstrAt(m, ip) = load τ i ∧ L[i] = d
S′ = d :: S ∧ size(S) = t

access = [readτ (local.f.i); writeτ (stack.f.t+1)]
C′ = update(C, access)
q = nbRmiss(C, access)

〈H,* f,m, ip, L, S +:: fr, C〉 →q 〈H,* f,m, ip+ 1, L, S′ +:: fr, C′〉

The number of read misses depends on the current state of the cache and the
way it is accessed. This is defined precisely by the function nbRmiss(C, access)
that computes the number of read misses generated by the list of memory ac-
cesses access if the cache at the beginning of the instruction is C. Here is the
pseudocode of function nbRmiss.

nbRmiss(c,[]) = 0

nbRmiss(c,[a|r]) = nbRmiss(update(c,[a]),r) +
{

1 if a = read m and m /∈ c
0 otherwise

3 Abstraction

The transition matrix representing a program is in general of infinite dimen-
sion, so neither transitive closure nor traces can be computed in finite time. To
overcome this problem, we define an abstract matrix that can be used to ap-
proximate the computations of the original matrix. For example, if we compute
the minimum memory needed to run a program, a correct approximation of this
quantity must be greater than the effective minimum. In this section, we give
a sufficient condition for this approximation to be correct with respect to the
ordering induced by the dioid. To prove the correctness of an abstraction, we re-
state the classical abstract interpretation theory [12] in terms of linear operators
over moduloids.
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3.1 Galois Connections and Pseudo-Inverses

We first briefly recall the definition of Galois connections that are used in the
classical abstract interpretation theory.

Definition 9. Let (C,≤C) and (D,≤D) be two partially ordered sets (posets).
Two mappings α : C �→ D (called abstraction function) and γ : D �→ C (called
concretization function) form a Galois connection (C,α, γ,D) iff:

– ∀c ∈ C, ∀d ∈ D, c ≤C γ(d) ⇐⇒ α(c) ≤D d, or equivalently
– α and γ are monotonic and α ◦ γ ≤ IdD and IdC ≤ γ ◦ α

In our setting, the partial orders will be the orders induced by the ⊕ operators
over vectors in a moduloid. The question that naturally arises is that of the
existence of a concretization function, given an abstraction α. In [15], Di Pierro
and Wiklicky describe the framework of Probabilistic Abstract Interpretation,
where the abstraction function is a linear operator over the semiring of probabil-
ities. They obtain a concretization function through the Moore-Penrose pseudo-
inverse. As we will not be able to define an exact inverse in the general case, nor
to apply the Moore-Penrose pseudo-inverse since we do not work in a field, we
will use the theory of residuation to get a kind of inverse for α.

Proposition 3. Let E and F be two complete posets, f a monotone mapping
from E to F . We call subsolution of equation f(x) = b an element y such that
f(y) ≤ b. The following properties are equivalent.

1. For all b ∈ E, there exists a greatest subsolution to the equation f(x) = b.
2. f(⊥E) = ⊥F , and f is ⊕-lsc.
3. There exists a monotone mapping from F into E which is upper1 semi-

continuous such that f ◦ f † ≤ IdF and IdE ≤ f † ◦ f .

As a consequence, f † is unique. When f satisfies these properties, it is said to
be residuated, and f † is called its residual.

3.2 Abstraction over Cost Dioids

We now show how the notions of abstraction and concretization can be recast
in our setting. In the following, Σ will denote a set of concrete states and Σ�

a set of abstract states. An abstraction function maps concrete states in Σ to
their abstraction in Σ�. Given an abstraction function α, we can lift it to a linear
abstraction operator α↑ ∈MΣ�×Σ(Q) by setting

α↑
σ�,σ

=
{
e if α(σ) = σ�

⊥ otherwise

In what follows, α↑ will be denoted by α when no confusion can arise and ≤ will
stand for the order defined on MΣ�×Σ�(Q) in Section 2.2.

As the abstraction function is linear, it trivially fulfills requirements 2 of
Proposition 3 and we get the following result.
1 Upper semi-continuity is the analog of lower semi-continuity for the ∧ operator.
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Theorem 1. Let Σ and Σ� be the domains of concrete and abstract states, α
a mapping from Σ to Σ�, and α↑ ∈ MΣ�×Σ(Q) the linear mapping obtained
by lifting α. There exists a unique monotonic α† such that α↑ ◦ α† ≤ IdΣ� and
IdΣ ≤ α† ◦ α↑.

3.3 Induced Abstract Semantics

Let T be a transition system in the concrete domain Σ, over the cost dioid
(Q,⊕,⊗). We now want to define an abstract transition system over the abstract
domain Σ� that is “compatible” with T , both from the point of view of its traces
and from the costs it will lead to compute. The following definition of a correct
abstraction will ensure that the long-run cost of a program, as defined in the
next section, will be correctly over-approximated during the abstraction process.

Definition 10 (Correct abstraction). Let T = 〈M, I〉 a transition system
over the concrete domain, with M ∈ MΣ×Σ(Q) and I ⊆ Σ. Let T � = 〈M �, I�〉
be a transition system over the abstract domain, with M � ∈ MΣ�×Σ�(Q) and
I� ⊆ Σ�. Let α be an abstraction from Σ to Σ�. The triple (T, T �, α) is a correct
abstraction from Σ to Σ� if α↑ ◦M ≤M � ◦ α↑ and {α(σ) | σ ∈ I} ⊆ I�.

The classical framework of abstract interpretation gives a way to define a best
correct abstraction for a given concrete semantic operator. In the same way,
given an abstraction α and a concrete semantics linear operator, we can define
an abstract semantics operator that is correct by construction, as expressed by
the following proposition.

Proposition 4. Let α be an abstraction from Σ to Σ�, and T = 〈M, I〉 be
a transition system with M ∈ MΣ×Σ(Q) a linear operator over the concrete
moduloid and I the subset of initial states. We set T � = 〈M �, I�〉 with

M � = α↑ ◦M ◦ α† and I� = {α(σ) | σ ∈ I}

Then (T, T �, α) is a correct abstraction from Σ to Σ�. Moreover, given T and
α, T � provides the best possible abstraction in the sense that if (T, 〈M ′, I ′〉, α) is
another correct abstraction, then M � ≤M ′ and I� ⊆ I ′.

Proof. The proof follows from the facts that Id ≤ α† ◦ α and α ◦ α† ≤ Id .

The above definitions and properties deal with the matrix view of the semantics,
but what can be said about traces? The following proposition states that for each
program trace, there exists an “abstract” trace of same length which costs are
given by the induced abstract matrix. This property will be useful for ensuring
the correctness of abstractions in Section 4.

Proposition 5. Let consider the transition system T = 〈q, I〉 with I ⊆ Σ its
set of initial states and q : Σ ×Σ → Q its quantitative transition system in the
cost dioid Q. Let α be an abstraction function from Σ to Σ�. Let T � = 〈q�, I�〉
an abstract transition system defined by:
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– I� = {α(σ) | σ ∈ I}
– α−1 : Σ� → P(Σ) with α−1(σ�) = {σ | α(σ) = σ�}
– q∗(Σ1, Σ2) =

⊕
(σ1,σ2)∈Σ1×Σ2

q(σ1, σ2)

– q�(σ�
1, σ

�
2) = q∗(α−1(σ�

1), α−1(σ�
2))

then forall t = σ0 →q0 . . . σn ∈ �T �tr, |t| = n, there exists t� = σ�
0 →q′

0 . . . σ�
n ∈

�T ��tr , |t| = n such that qi ≤ q′i ∀i ∈ [0, n− 1] and σ�
i = α(σi) ∀i ∈ [0, n]. In

addition, M � = α↑ ◦M ◦ α† is the transition matrix for q�.

3.4 Running Example: Abstraction

In 2.3, we introduced a quantitative semantics describing the number of cache
misses in read access.M is the matrix describing this quantitative semantics for
the factorial program (see Figure 2 for the code). The exact computation of the
semantics would be too costly, even if we work with bounded numerical domains.
In this subsection, we are using the abstractions techniques in order to compute
an abstract semantics M � from the matrix M .

We abstract a concrete state by the instruction pointer and the k last data
accessed. Within this abstract domain, the loss of information lies in three points:

– Values (i.e. locals, stack and heap) are forgotten. This prevents us from
determining the value of branching condition.

– The cache size is reduced to k elements. When k grows, precision increase,
and so do the cost of the analysis.

– The method call stack is forgotten. We turn the analysis into an intra-
procedural one, not for efficiency but for clearer notation, as our factorial
function involves only one non-recursive function.

M � =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 9, [l.x, s.0] . . . 9, [l.i, l.x, s.0] . . .
...

8, [] 1 ⊥
8, [l.x] 0 ⊥
8, [s.0] 1 ⊥

8, [s.0, l.x] 0 ⊥
8, [l.x, s.0] 0 ⊥
8, [l.i, l.x] ⊥ 0

8, [l.i] ⊥ 1
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3. Transition matrix

We write the abstract state
as (ip, [v1, . . . , vk]) where ip
is the instruction pointer
and [v1, . . . , vk] is a list of
logical addresses of the last
data accessed, vk being the
most recent. s.0 refers to the
bottom element of the lo-
cal stack, l.x refers to the
local variable called x in
the source code. We recall
that we use the dioid Q =
(R, max,+).

We construct the abstract matrix associated to our abstract system. Its size
is bounded in terms of the cardinality of I, the set of all instruction pointers
appearing in program P , and the number of up-to-k-combinations of the different
logical data used in this function (which form a finite set L). A value q� of this
matrix, standing at row a� and column b� (a� and b� are two abstract states), is
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computed in this way: let A and B be the set of concrete states abstracted by
a� and b�. Then q� =

⊕
{q | a→q b, a ∈ A, b ∈ B}. For example

– σ = (8, [l.x]) →0 (9, [l.x, s.0]) = σ′,
Whatever the concrete state and its precise values, if it is abstracted by σ,
then it can turn into a state abstracted by σ′ for a cost of 0 read miss.

– σ = (8, [s.0]) →1 (9, [l.x, s.0]) = σ′,
In the same way, all states abtracted by σ can generate up to one read miss
on their next instruction, turning into states abstracted by σ′.

Recall that the load x instruction at line 8 accesses these memory locations:
[readτ (local.f.i); writeτ (stack.f.t+1)] with i the local variable, t the current
stack height and f the current frame.

A ⊥-transition denotes an incompatibility between the two abstract states,
either in its control flow or its the cache evolution. Most of the matrix will be
filled by ⊥. This kind of matrix is called sparse matrix, and permits the use
of particularly small representations together with efficient algorithms. Figure 3
gives a submatrix of the abstract matrix M � ∈ M(I×{∅∪L∪L2})2(Q).

4 Long-Run Cost

So far, we have seen that all single-transition costs can be summarized in a
transition matrix. We now use this matrix and the mathematical results of dioid
algebra to define a notion of long run cost for a whole program. In [20] we
proposed a notion of global cost of a program, representing its cost from initial
to final states. It correctly deals with programs which are meant to terminate,
but in some cases this global cost turns out to be $, in particular when it is
evaluated on a coarse abstraction of the initial system. Getting $ as a result for
the global cost is rather unsatisfactory as it does not tell anything about the
concrete cost. For this case and for the case of programs which are not meant
to terminate (as reactive systems), we propose the notion of long-run cost , that
represents a maximal average cost over cycles of transitions. This terminology is
taken from [2,9], in the context of probabilistic processes modelled by Markov
decision processes. Behaviour patterns of interest (described by labelled graphs)
are associated to real numbers representing the success or the duration of the
pattern, and extensions of branching time temporal logics are proposed in order
to measure their long-run average outcome.

The average cost of a finite path is defined as the arithmetical mean (w.r.t. the
⊗ operator) of the costs labelling its transitions. In other words, it is the nth root
of the global cost of the path, where n is its length. We write q̃(π) = |π|

√
q(π) for

the average cost of path π, where q(π) is the global cost of π, and |π| its length.
The “maximum” average cost of all cycles in the graph will be the quantity
we are interested in: this quantity will be called long-run cost . The following
example illustrates these notions on a simple graph.
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a b
8

c3

2

d

4

5

Average cost of path abc = (8+3)/2 = 5.5
Cycle bcdb average cost = (3+4+5)/3 = 4
Cycle cc average cost = 2/1 = 2
Long-run cost = max(4, 2) = 4

By the properties of the dioids we consider, matrixMk sums up the transition
costs of all paths of length k. The diagonal of this matrix thus contains the costs
of all cycles of length k. If we add up all the elements on this diagonal, we get
the trace of the matrix. This observation gives rise to the following definition.

Definition 11. Let P be a program having T = 〈M, I〉 for transition system.
Let R be M restricted to the set of states, Σ, reachable from I. The long-run
cost of program P is defined as the long-run cost of T

ρ(P ) = ρ(T ) =
|Σ|⊕
k=1

k
√

tr Rk where tr R =
|Σ|⊕
1

Ri,i.

Note that this definition is valid even for an infinite number of states, since we
work with complete dioids. As an example, if we work in the dioid (Time, max,+),
where Time is isomorphic to R, ρ(P ) is the maximal average of time spent per
instruction, where the average is computed on any cycle by dividing the total
time spent in the cycle by the number of instructions in this cycle. In the case of
a finite set of states, the long-run cost is computable, and we note in the passing
that its definition coincides with the definition of the maximum of eigenvalues of
the matrix, in the case of an irreducible matrix in an idempotent semiring [11].

4.1 Semantics of the Long Run Cost

The following proposition establishes in a more formal manner the link between
this definition of long-run cost and the cycles of the semantics.

Proposition 6. Let Γ be the set of cycles in T . Then ρ(T ) =
⊕

c∈Γ q̃(c).

The idea of the proof is to show that the cycles of length less than |Σ| are enough
to know average costs, and that a partition of these cycles is related with the
different iterates of the matrix appearing in Definition 11. The proof becomes
straightforward in the case of an infinite set of states.

As we aim at giving a characterisation of the asymptotic behaviour of a pro-
gram, an alternative definition for long-run cost could have been:

lrc(T ) = lim sup
n→∞

⊕
t∈�T �tr
|t|=n

q̃(t)

Instead of defining the long-run cost w.r.t. the cycles, this definition considers
arbitrarily long traces. Unlike ρ(P ), lrc(P ) is not suitable for computation, even
if the set of states is finite. We will see in Subsection 4.3 that those two notions
coincide in a restricted class of cost dioids and when the set of states is finite.
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4.2 Ensuring Correctness

The question that naturally arises is to know if the notion of long-run cost is
preserved by abstraction. The following theorem states that a correct abstraction
gives an over-approximation of the concrete long-run cost.

Theorem 2. If (T, T �, α) is a correct abstraction, then ρ(T ) ≤Q ρ(T �).

The proof of theorem relies on the fact that the correctness is preserved when
the concrete and abstract matrices are iterated simultaneously [10].

Recall that Proposition 5 states that for any concrete trace, there exists an
abstract trace which cost is over the concrete one. It follows that the alternative
definition of long-run cost given in Section 4.1 is also preserved by abstraction:

Proposition 7. If (T, T �, α) is a correct abstraction, then

lim sup
n→∞

⊕
t∈�T �tr
|t|=n

q̃(t) ≤ lim sup
n→∞

⊕
t�∈�T ��tr

|t�|=n

q̃�(t�)

4.3 Traces Meet Cycles

We now show that, if Σ is finite, and for dioids where the carrier set is R and
operator ⊗ is the arithmetical + (so that the nth root operator corresponds
to division by n), the notion of long-run cost defined w.r.t. accessible cycles
coincides with the notion of long-run cost defined as the limit of the maximum
average cost of traces which length tends to infinity. To establish this result, we
have to show that the cost of a prefix of a trace becomes negligible when this
trace becomes arbitrarily long. We thus impose the following hypothesis:

Hypothesis 1 All transitions δ which are not in a cycle verify q(δ) 
= +∞.

Hypothesis 1 excludes certain pathological matrices with atomic operations that
have infinite costs. If a cycle contains a +∞ transition, the ρ value indicates it.

Theorem 3. Let T = 〈M, I〉 be a transition system with M ∈ Σ × Σ → Q. If
Σ is finite and Q is a cost dioid where the carrier set is R and operation ⊗ is
the arithmetical +, then with Hypothesis 1, we have

ρ(T ) = lim
n→∞

⊕
t∈�T �tr
|t|=n

q̃(t)

This theorem establishes a link between the semantics and a computable defi-
nition of the long-run cost. The key points of the proof are to ensure that this
limit exist, and to show that a small part of a trace can be neglected for very
long traces. This is proved by bounding

⊕
q̃(t) [10].
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4.4 Running Example: Long-Run Cost

To illustrate the use of the long-run cost (ρ), we will consider a cache which can
contain 4 integers. Such a small size could seem weird to the reader and unreal-
istic for a cache size, but the term cache can be interpreted here as some kind
of registers. The semantics of the factorial program is abstracted as described in
Section 3.4, with k = 4. Using Definition 11, we compute ρ(M �) = 2/9, meaning
that in an execution long enough, we observe on average 2 cache misses each 9
instructions. A prototype is under developement for the standard Java bytecode,
that already handles this kind of example. It implements the analysis technique
presented in this paper with the help of an existing Scilab library for max-plus al-
gebra, that offers an efficient ways to compute the long-run cost (sparse matrices
and Howard’s algorithm for eigenvalues [11]).

If we now consider a FIFO replacement policy for the same 4 integer registers,
we obtain a different long-run cost. The FIFO policy implementation is cheaper
in electronic components than the LRU one, but the analysis of the factorial
function says that ρ = 4/9, i.e., that we now have on average 4 cache misses for
9 instruction executed. Such a slowdown is coherent with the observations that
small cache memory requires more advanced cache policies.

5 Related Work

The present work is inspired by the quantitative abstract interpretation frame-
work developed by Di Pierro and Wiklicky [15]. We have followed their ap-
proach in modeling programs as linear operators over a vector space, with the
notable technical difference that their operators act over a semiring of probabili-
ties whereas ours work with idempotent dioids. Working with idempotent dioids
means that we have been able to exploit known results from Discrete Event
Systems theory which makes intensive use of such structures. Another difference
with respect to [15] lies in the kind of program being analyzed: we have been
considering an intermediate bytecode language rather than declarative languages
(probablistic concurrent constraint programming and the lambda calculus [14]).

In Di Pierro and Wiklicky’s work, the relation with abstract interpretation is
justified by the use of the pseudo-inverse of a linear operator, similar to a Galois
connection mechanism, enforcing the soundness of abstractions. Our approach
can be seen as intermediate between their and classical abstract interpretation:
on one hand, we use residuation theory in order to get a pseudo-inverse for
linear abstraction functions; on the other hand, we benefit from the partially
ordered structure of dioids to give guarantees of soundness under the assumption
α ◦M ≤D M

� ◦ α, which is a classical requirement in abstract interpretation.
Several other works make use of idempotent semiring for describing quan-

titative aspects of computations, namely under the form of constraint semir-
ings [8]. Recently, these have been used in the field of Quality of Services [13],
in particular with systems modelled by graph rewriting mechanisms [18]. In all
these approaches, the ⊕ and ⊗ operators of the constraint semiring are used for
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combining constraints. In [5], Aziz makes use of semirings in a mobile process cal-
culus derived from the π-calculus, in order to model the cost of communicating
actions. He also defines a static analysis framework, by abstracting “concrete”
semirings into abstract semirings of reduced cardinality, and defining abstract
semiring operators accordingly. For instance, the (R+ ∪{+∞},min,+) semiring
can be abstracted by a ({low ,medium , high},min,max) one. Even if dealing with
dioids as we do, none of these approaches make use of a notion of long-run cost
to express an average quantitative behaviour of a system.

In the specific context of Java bytecode, Albert and al. [1] defined a cost
analysis based on the generation of cost relations and recurrence equations. Ap-
proximation of costs is done in two steps: first, a classical abstract interpretation
is used to approximate size relations between variables. Secondly, combining size
relations then gives recurrence equations whose solutions are approximated by
using intervals when no closed form solution has been found. This gives in-
teresting results for a class of simple programs, in particular when arithmetic
operations are restricted to linear ones.

Our running example of estimating cache usage is meant for illustrative pur-
poses and is based on a rather abstract view of cache analysis, compared e.g. to
the detailed modeling and cache abstraction of Wilhelm and al. [3] who propose
in the AbsInt tool a cache behaviour prediction by abstract interpretation. Three
points of their work could be almost directly used in our framework: the various
models of cache (e.g. direct-mapped, A-way) to implement our update function,
their abstract domain, in order to design our quantitative abstractions, and their
observations about caches and writing, in order to develop an accurate model.
Their approach however is not directed toward long-run cost computation.

6 Conclusion

We have shown how to abstract the long-run cost of programs whose operational
semantics is defined as transition systems labelled by costs taken from a partic-
ular kind of dioids. In such cases, we have shown that the semantics is a linear
operator over the moduloid associated to this dioid. We have used a well-known
characterization of the asymptotic behaviour of a discrete event system to de-
fine the notion of long-run cost of such a semantics, and proposed a novel way
of analyzing the long-run behaviour of the program. We have characterized this
long-run cost as being a maximal average cost per transition on very long traces
of the semantics. Computing the exact long-run cost of a program is in general
too expensive, so we have extended the linear operator framework with a notion
of abstraction of the semantics which is also expressed as a linear operator. A
correctness relation between concrete and abstract semantic matrices ensures
that the cost computed from the abstract semantics is an over-approximation
of the concrete one. The notions of dioids, quantitative semantics, abstraction
and long-run cost have been illustrated all along the paper through a cache miss
analysis on a program written in a simple bytecode language.
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Future work. The examples in the paper have been computed both by hand
(for the abstraction part) and by a prototype analyzer for the computation of
long-run costs themselves. Future work includes improvement of the prototype
and developement of a framework for validating experimental results.

An interesting avenue for further work would be to relax the correctness crite-
rion so that the abstract estimate is “close” to (but not necessarily greater than)
the exact quantity. For certain quantitative measures, a notion of “closeness”
might be of interest, as opposed to the qualitative case where static analyses
must err on the safe side.
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Abstract. The so-called platooning problem consists in making autonomous ve-
hicles move in a convoy. It crosses several domains: distributed systems, embed-
ded systems, multi-agent systems and critical systems. We thus propose to use
the combination named CSP‖B of two well-known formal methods to assess and
verify properties of this complex system. To that end we make use of previous
theoretical results on CSP‖B. We also illustrate how this methodology spans the
multiple composition levels of the resulting model.

Keywords: formal methods, CSP‖B, distributed systems, case study, platooning.

1 Introduction

This paper is dedicated to the validation of land transportation systems. These sys-
tems, which are both distributed and embedded, require the expression of functional as
well as non functional-properties, for example time-constrained response and availabil-
ity of required services. Their dual nature is problematic: distributedness may exhibit
behaviours hard to understand while embeddedness imposes the satisfaction of safe-
ty/security/confidence requirements.

To address this problem we use the CSP‖B combination [1] of well-established for-
mal methods, CSP [2] and B [3]. Our case study is a convoy of so-called Cristal vehicles
seen as a multi-agent system which evolves following the Influence/Reaction model
(I/R) [4] in which agents are described separately from the environment.

This convoy, called a platoon, is a set of autonomous vehicles which have to move
following the path of the leader in a row. Its control concerns both a longitudinal con-
trol, i.e. maintaining an ideal distance between each vehicle, and a lateral control, i.e.
each vehicle should follow the track of its predecessor. As both controls can be stud-
ied independently [5] we will only focus on the longitudinal one. The Cristal driving

� This work is supported by the French National Research Agency ANR-06-SETI-017
TACOS project, (http://tacos.loria.fr), and the pôle de compétitivité Alsace/Franche-
Comté/CRISTAL project (http://www.projet-cristal.net).
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Fig. 1. A platoon of Cristals

system perceives information about its environment before producing an instantaneous
acceleration passed to its engine. As we consider only longitudinal control, we repre-
sent the position of the ith Cristal by a single variable xposi and its velocity by speedi.
The behaviour of the Cristal controllers can be summarised as follows, see Fig. 1:

(i) perception step: each Cristal driving system receives its velocity p_speedi and its
position p_xposi, from the physical part of the Cristal. Furthermore, it receives by
network communication the velocity p_pre_speedi and the position p_pre_xposi

of its leading Cristal;
(ii) decision step: each Cristal driving system can influence its speed and position

by computing and sending to its engine an instantaneous acceleration acceli. The
acceleration can be negative, corresponding to the braking of the Cristal;

(iii) reaction step: xposi and speedi are updated, depending on the current speed
speedi of the Cristal and a decided instantaneous acceleration acceli of the en-
gine.

Our approach is “bottom-up”-oriented: B machines describe the various components
of a Cristal vehicle while CSP expresses their assembly at the level of a single vehicle
and at the level of the whole convoy1. Our experience shows that writing and checking
CSP‖B specifications can help eliminate errors and ambiguities in an assembly and its
communication protocols.

2 Theoretical Background on CSP‖B

CSP‖B is a combination of formal methods aimed at exploiting the best features of
CSP and B, which happen to complement each other. Indeed, basic components are B
machines interacting with the rest of the world through operation calls. The assembly
is provided by CSP whose processes describe how B machines are scheduled and com-
municate with each other. We don’t explain here the B and CSP semantics though for
lack of space.

The main problem with combined specifications is consistency: CSP and B parts
should not be contradictory. The consistency is obtained through a verification

1 CSP‖B specifications are available at http://tacos.loria.fr/platoon.zip.

http://tacos.loria.fr/platoon.zip
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technique [6] consisting of verifying the divergence-freedom of a B machine-CSP pro-
cess coupling, and its deadlock-freedom.

The divergence-freedom of (P‖M) can be deduced by using a technique based on
Control Loop Invariants (CLI) [1]. Divergence-freedom is verified by exhibiting a pred-
icate that holds for each possible path the process P can take. Let BBODYS(p) be the
rewriting of the pth path S(p) of P into B using the translation rules of [1]. Here are the
most important theorems we will use throughout this paper:

Theorem 1 ([7, Theorem 1]). If there exists a predicate CLI such that for each
BBODYS(p) in P, CLI ∧ I ⇒ [BBODYS(p) ] CLI, then (P‖M) is divergence-free.

The deadlock-freedom of (P‖M) can be deduced by establishing the deadlock-
freedom of the P part.

Theorem 2 ([6, Theorem 5.9]). If P is a CSP controller for M with no blocking asser-
tion on any machine channels of M, and P is deadlock-free in the stable failures model,
then (P‖M) is deadlock-free in the stable failures model.

The following result is useful for establishing safety properties of controlled compo-
nents. It means that the trace refinement established purely for the CSP part of a con-
trolled component suffices to ensure the trace refinement for the overall component.

Corollary 1 ([6, Corollary 7.2]). For any controller P and any B machine M, one has
if S ,T P then S ,T (P‖M).

The given results are also generalised in [6] to a collection of B machine-CSP process
couples.

3 Specifying a Single Cristal

A Cristal vehicle is composed of two parts: its engine and a driving system, as depicted
in Fig. 2. Each part is built upon a B machine controlled by an associated CSP process.

The properties we want to be ensured by the model are deadlock-freedom of com-
munications between components of the vehicle and accuracy of the information about
position and speed. The former property is motivated by the fact that a vehicle could
become stuck because two components wait for each other. The latter property can be
interpreted as the fact that a decided acceleration should match as closely as possible the
perceptions. A solution then can be to force the Cristal to alternate between “perception
mode” and “reaction mode”. This is what we strive for as a safety property.

Fig. 2. Architectural view of a Cristal
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3.1 The Engine

MODEL Engine(Id)
VARIABLES

speed, xpos
OPERATIONS

speed0 ←− getSpeed = ...
xpos0 ←− getXpos = ...
setAccel(accel) =

PRE
accel ∈ MIN_ACCEL..MAX_ACCEL

THEN
ANY new_speed
WHERE new_speed = speed + accel
THEN

IF (new_speed > MAX_SPEED)
THEN

xpos := xpos + MAX_SPEED
‖ speed := MAX_SPEED

ELSE
IF (new_speed < 0)
THEN

xpos := xpos − (speed × speed) / (2 × accel)
‖ speed := 0

ELSE
xpos := xpos + speed + accel / 2
‖ speed := new_speed

END
END

END
END

The engine is built upon a B machine that
describes its knowledge about its current
speed and position, and its reaction when
passed a new instantaneous acceleration.

The CtrlEngine CSP controller alternates
PerEngine and ActEngine. In PerEngine,
we call through getSpeed?speed and
getXpos?xpos the homonymous B meth-
ods to retrieve the speed and the position
of the Cristal which are then passed on to
engineInfo.id!xpos!speed. In ActEngine, a
new instantaneous acceleration is received
through engineAccel.id?accel and passed on
through setAccel!accel to the B machine
which calculates the vehicle position and
speed updates w.r.t. this new acceleration.

The whole engine component is then
defined as the composition, for a given
id, of the Engine(id) machine and its
CtrlEngine(id) controller.

PerEngine(id) =
getXpos ? xpos → getSpeed ? speed → engineInfo.id ! xpos ! speed → ActEngine(id)
�
getSpeed ? speed → getXpos ? xpos → engineInfo.id ! xpos ! speed → ActEngine(id)

ActEngine(id) =
engineAccel.id ? accel → setAccel ! accel → PerEngine(id)

CtrlEngine(id) = PerEngine(id)

Verification. The Engine(Id) B machine consistency is successfully checked using
B4Free. The CtrlEngine(id) controller deadlock-freedom (in the stable failures model)
and its divergence-freedom are successfully checked with FDR2.

The composition of the B machine and the controller is verified for divergence-
freedom by applying Theorem 1: it is specific to CSP‖B and is not supported by tools
hence the translation to B is done by hand. The chosen CLI is actually as simple as
the $ predicate modulo the mandatory typing predicates. Then, by way of Theorem 1,
we deduce that (CtrlEngine(id) ‖Engine(id)) is divergence-free. Deadlock-freedom of
(CtrlEngine(id) ‖Engine(id)) is obtained from the deadlock-freedom of CtrlEngine(id)
and the application of Theorem 2 as well.

3.2 The Driving System

The (CtrlDrivingSystem‖DrivingSystem) controller‖B machine construction is built in
a similar way. This driving system can update its perceptions and decide of an accel-
eration passed to the engine later on. hciSpeed, hciAccel correspond to the interaction
with a human driver (if the vehicle is in SINGLE or LEADER mode). comIn and comOut
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correspond to the interaction with the leading and following vehicle (PLATOON mode).
engineInfo and engineAccel are used to exchange with the engine.

Using the same techniques and theorems as for the engine, the driving system is
shown divergence-free and deadlock-free.

3.3 The Cristal(mode,id) Assembly

A Cristal is defined as the composition of the engine and the driving system:

Cristal(mode,id) =(CtrlDrivingSystem(mode,id) ‖ DrivingSystem(id))�
{|engineInfo,

engineAccel|}

(CtrlEngine(id) ‖ Engine(id))

Divergence-freedom is obtained by applying the generalised version of Theorem 1 to
the divergence-freedom of both components (CtrlEngine(id) ‖Engine(id)) and ( CtrlDri
vingSystem(mode,id)‖DrivingSystem(id)). Deadlock-freedom of the Cristal stems from
deadlock-freedom of (CtrlEngine(id) ‖ CtrlDrivingSystem(mode,id)) and by applying
the generalised version of Theorem 2.

Let us note that earlier versions of the models had deadlocks exhibited by the FDR2
tool: having access to the faulty traces helped us understand the errors and modify the
driving system controller with a tighter scheduling leading to deadlock-freedom.

Safety Property. The property stating that perception and reaction should always al-
ternate can be re-expressed as a CSP process:

Property(id) = engineInfo.id?xpos?speed → engineAccel.id?accel → Property(id)

Checking that the Cristal meets this property is akin to checking that there is a trace
refinement between it and the Cristal. This is achieved by checking that Property(id) ,T

CtrlEngine(id) ‖CtrlDrivingSystem2(mode,id), from which it can be deduced by Corol-
lary 1 that Property(id) ,T Cristal (mode,id): the property is refined hence satisfied.

4 Specifying a Platoon of Cristals

Once we have a correct model for a single Cristal, we can focus on the specification of
a platoon, as shown Fig. 3. We want the Cristals to avoid going stale when they are in
the PLATOON mode. This might happen because one Cristal waits for information from
its leading Cristal, for instance, i.e. the communications are deadlocked.

Fig. 3. A Platoon of four Cristals
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The first Cristal of the platoon runs in the LEADER mode, while the others run in the
PLATOON mode. A process Net(id, id2) is associated with each Cristal for managing
communication: it receives information from id before sending these data to id2. Finally,
the platoon is defined by the parallel composition of all the Cristals and all the Nets,
synchronised on the communication channels:

Platoon(n) =
(
Cristal(LEADER,1)� (�

id:{2..n} Cristal(PLATOON,id)
))

�
{|comIn,comOut|}

((�
id:{1..n-1} Net(id,id+1)

)�Net(n,n)
)

Verification. Using FDR2, we successfully check that Net(id,id2) is deadlock-free and
divergence-free. As each Cristal and each Net have been proved divergence-free, the
platoon is divergence-free. To achieve consistency checking, the parallel composition
of the CSP parts of each Cristal and Net is shown deadlock-free, thanks to FDR2. Con-
sequently, by Theorem 2 the platoon is deadlock-free too. This verification validates
that the communications (expressed through the Nets components) do not deadlock.

5 Conclusion

The development of a new type of urban vehicle and the need for its certification ne-
cessitate their formal specification and validation. We propose a formal CSP‖B speci-
fication development of an autonomous vehicle’s components, and an architecture for
assembling vehicles in a convoy to follow the path of the leader vehicle in a row. Ap-
plication of known results to the composition in the CSP‖B framework and verification
using existing tools – the FDR2 model-checker and the B4Free prover – allow us to
ensure the consistency of the whole multi-agent system, in a compositional manner.
Having formal CSP‖B specifications helps – by establishing refinement relations – in
preventing incompatibility among various implementations. Moreover, writing formal
specifications helps in designing a way to manage the multiple architectural levels.
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Abstract. Hoare-style program verification relies on the construction and dis-
charge of verification conditions (VCs) but offers no support to trace, analyze,
and understand the VCs themselves. We describe a systematic extension of the
Hoare rules by labels so that the calculus itself can be used to build up explana-
tions of the VCs. The labels are maintained through the different processing steps
and rendered as natural language explanations. The generated explanations are
based only on an analysis of the labels rather than directly on the logical mean-
ing of the underlying VCs or their proofs. The explanations can be customized
to capture different aspects of the VCs; here, we focus on labelings that explain
their structure and purpose.

1 Introduction

Program verification is easy when automated tools do all the work: a verification condi-
tion generator (VCG) takes a program that is “marked-up” with logical annotations (i.e.,
pre-/post-conditions and invariants) and produces a number of verification conditions
(VCs) that are simplified, completed by a domain theory, and finally discharged by an
automated theorem prover (ATP). In practice, however, many things can, and typically
do, go wrong: the program may be incorrect or unsafe, the annotations may be incorrect
or incomplete, the simplifier may be too weak, the domain theory may be incomplete,
or the ATP may run out of resources. In each of these cases, users are typically con-
fronted only with failed VCs (i.e., the failure to prove them automatically) but receive
no additional information about the causes of the failure. They must thus analyze the
VCs, interpret their constituent parts, and relate them through the applied Hoare rules
and simplifications to the corresponding source code fragments. Even if all VCs can be
proven automatically, there is often still a need to understand their intent, for example
if the formal verification is being used to support a code review. Unfortunately, VCs are
a detailed, low-level representation of both the underlying information and the process
used to derive it, so understanding them is often difficult.

Here we describe an technique that helps users to trace and understand VCs. Our
idea is to systematically extend the Hoare rules by “semantic mark-up” so that we can
use the calculus itself to build up explanations of the VCs. This mark-up takes the form
of structured labels that are attached to the meta-variables used in the Hoare rules (or to
the annotations in the program), so that the VCG produces labeled versions of the VCs.
The labels are maintained through the different processing steps, and are then extracted
from the final VCs and rendered as natural language explanations.

J. Meseguer and G. Roşu (Eds.): AMAST 2008, LNCS 5140, pp. 145–159, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



146 E. Denney and B. Fischer

Most verification systems based on Hoare logic offer some basic tracing support by
emitting the current line number whenever a VC is constructed. However, these line
numbers on their own are insufficient to understand a VC since they do not provide any
information as to which other parts of the program have contributed to the VC, how it
has been constructed, or what its purpose is, and are thus insufficient as a basis for infor-
mative explanations. Some systems produce short captions for each VC (e.g., JACK [1]
or Perfect Developer [2]). Other techniques focus on a detailed linking between source
locations and VCs to support program debugging [11,12]. Our approach, in contrast,
serves as a customizable basis to explain different aspects of VCs. Here, we focus on
explaining the structure and purpose of VCs, helping users to understand what a VC
means and how it contributes to the overall certification of a program.

In our approach we only explain what has been explicitly declared to be significant
using labels. The generated explanations are based on an analysis of the labels and not
of the structure or logical meaning of the underlying VCs. For example, we do not try
to infer that two formulas are the base and step case of an induction and hence would
not generate an explanation to that end unless the formulas are specifically marked up
with this information. Finally, we restrict ourselves to explaining the construction of
VCs (which is the essence of the Hoare approach) rather than their proof. Hence, we
maintain, and can also introduce, labels during simplification, but strip them off before
proving the VCs. Techniques for explaining proofs (e.g., [9]) provide no additional in-
sight, and are in fact less useful for our purposes since the key information is expressed
in the annotations and VCs.

We developed our technique as part of an autocode certification system [4,6], and
we will use the safety verification of automatically generated code as an application
example. Here, human-readable explanations of the VCs are particularly important to
gain confidence into the generated code. However, our technique is not tied to either
code generation or safety certification and can be used in any Hoare-style verification
context. We first briefly describe the core calculus, and then its labeled extension. We
also describe several refinements to the labels, which give rise to richer explanations.
Some of these refinements are specific to our application domain (i.e., safety verifica-
tion) while others are specific to our verification method (i.e., automated annotation).

2 Logical Background

Hoare Logic and Program Verification.We follow the usual Hoare-style program ver-
ification approach: first, a VCG applies the rules of the underlying Hoare calculus to the
annotated program to produce a number of VCs, then an ATP discharges the VCs. This
splits the decidable construction of the VCs from their undecidable discharge, but in
return the VCs become removed from the program context, which exacerbates the un-
derstanding problem.

Here, we restrict our attention to an imperative core language which is sufficient for
the programs generated by NASA’s certifiable code generators, AUTOBAYES [10] and
AUTOFILTER [15], and by Real-Time Workshop (RTW), a commercial code generator
for Matlab. Extensions to other language constructs are straightforward, as long as the
appropriate (unlabeled) Hoare rules have been formulated.
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(assign)
Q[e/x, INIT/xinit] ∧ safeinit(e) {x := e} Q

(update)  
Q[upd(x, e1, e2)/x, upd(xinit, e1, INIT)/xinit]

∧ safeinit(e1) ∧ safeinit(e2)

!
{x[e1] := e2} Q

(if )
P1 {c1} Q P2 {c2} Q

(b ⇒ P1) ∧ (¬b ⇒ P2) ∧ safeinit(b) {if b then c1 else c2} Q

(while)
P {c} I I ∧ b ⇒ P I ∧ ¬b ⇒ Q

I ∧ safeinit(b) {while b inv I do c} Q

(for)
P {c} I [i + 1/i] I [INIT/iinit] ∧ e1 ≤ i ≤ e2 ⇒ P I [e2 + 1/i, INIT/iinit] ⇒ Q

e1 ≤ e2 ∧ I [e1/i] ∧ safeinit(e1) ∧ safeinit(e2) {for i := e1 to e2 inv I do c} Q

(skip)
Q {skip} Q

(comp)
P {c1} R R {c2} Q

P {c1 ; c2} Q
(assert)

P ′ ⇒ P P {c} Q′ Q′ ⇒ Q

P ′ {pre P ′ c post Q′} Q

Fig. 1. Core Hoare rules for initialization safety

Source-Level Safety Certification. Safety certification demonstrates that the execution
of a program does not violate certain conditions, which are formalized as a safety prop-
erty. A safety policy is a set of Hoare rules designed to show that safe programs satisfy
the safety property of interest [3]. Here, the important aspect of safety certification is
that the formulas in the rules have more internal structure. This can be exploited by our
approach to produce more detailed explanations.

Figure 1 shows the initialization safety policy, which we will use as our main ex-
ample here; we omit the rules for functions and procedures. The rules use the usual
Hoare triples P {c} Q, i.e., if the condition P holds and the command c terminates,
then Q holds afterwards. For example, the assert rule says that we must first prove that
the asserted postconditionQ′ implies the arbitrary incoming postconditionQ. We then
compute the P as weakest precondition (WPC) of c for Q′ and show that the asserted
precondition P ′ implies P . The asserted precondition P ′ is then passed on as WPC;
note that P is only WPC of the “plain” statement c, but not of the annotated statement.

Initialization safety ensures that each variable or individual array element has been
explicitly assigned a value before it is used. It uses a “shadow” environment where each
shadow variable xinit contains the value INIT after the corresponding variable x has been
assigned a value; shadow arrays capture the status of the individual array elements. All
statements accessing lvars affect the value of a shadow variable, and each correspond-
ing rule (the assign-, update-, and for rules) is responsible for updating the shadow
environment accordingly. The rules also add the appropriate safety predicates safeinit(e)
for all immediate subexpressions e of the statements. Since an expression is defined
to be safe if all corresponding shadow variables have the value INIT, safeinit(x[i]) for
example translates to iinit = INIT ∧ xinit[i] = INIT. Safety certification then computes the
WPC for the safety requirements on the output variables. The WPC contains all applied
safety predicates and safety substitutions. If the program is safe then the WPC will fol-
low from the assumptions, and all VCs will be provable. Rules for other policies can be
given by modifying the shadow variables and safety predicate.
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Annotation Construction. Hoare-style program verification requires logical annota-
tions, in particular loop invariants. In our application, we use the code generator to pro-
vide them together with the code [4,6]. The generator first produces core annotations
that focus on on locally relevant aspects, without describing all the global information
that may later be necessary for the proofs. A propagation step then pushes the core an-
notations along the edges of the control flow graph. This ensures that all loops have
the required invariant; typically, however, they consist mainly of assertions propagated
from elsewhere in the program. Figure 2 shows an example code fragment with anno-
tations. The VCG then processes the code after propagation.

Human-readable explanations provide insight into the VCs. For us, this is particu-
larly important because the underlying annotations have been derived automatically:
the explanations help us to gain confidence into the (large and complex) generator and
the certifier, and thus into the generated code. However, our approach is not tied to code
generation; we only use the generator as a convenient source of the annotations that
allow the construction of the VCs and thus the Hoare-style proofs.

3 Explaining the Purpose and Structure of VCs

After simplification, the VCs usually have a form that is reminiscent of Horn clauses
(i.e.,H1 ∧ . . .∧Hn ⇒ C). Here, the unique conclusionC of the VC can be considered
its purpose. However, for a meaningful explanation of the structure, we need a more de-
tailed characterization of the sub-formulas. This information cannot be recovered from
the VCs or the code but must be specified explicitly. The key insight of our approach
is that the different sub-formulas stem from specific positions in the Hoare rules, and
that the VCG can thus add the appropriate labels to the VCs. Here we first show gener-
ated example explanations, and then explain the underlying machinery. Section 4 shows
more refined explanations for our running example.

3.1 Simple Structural Explanations

Figure 2 shows a fragment of a Kalman filter algorithm with Bierman updates that
has been generated by AUTOFILTER from a simplified model of the Crew Exploration
Vehicle (CEV) dynamics; the entire program comprises about 800 lines of code. The
program initializes some of the vectors and matrices (such as h and r) with model-
specific values before they are used and potentially updated in the main while-loop.
It also uses two additional matrices u and d that are repeatedly zeroed out and then
partially recomputed before they are used in each iteration of the main loop (lines 728–
731). We will focus on these nested for-loops.

For initialization safety the annotations need to formalize that each of the vectors and
matrices is fully initialized after the respective code blocks. For the loops initializing
u and d, invariants formalizing their partial initialization are required to prove that the
postcondition holds. However, since these loops precede the use of vectors and matri-
ces initialized outside the main loop, the invariants become cluttered with propagated
annotations that are required to discharge the safety conditions from the later uses.
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5

183

525

683

728

729

730
731

· · ·
const M=6, N=12;
· · ·
<init h>
post ∀ 0≤ i<M,0≤j <N · hinit[i, j]= INIT
· · ·
<init r>
post ∀ 0≤ i, j <M · rinit[i, j]= INIT

· · ·
while t<Tmax

inv ∀ 0≤ i<M, 0≤j<N · hinit[i, j]= INIT ∧. . .∧ ∀ 0≤ i, j <M · rinit[i, j]= INIT ∧. . . do
· · ·
for k:=0 to N-1

inv ∀ 0≤ i<M,0≤j <N · hinit[i, j]= INIT ∧. . .∧ ∀ 0≤ i, j <M · rinit[i, j]= INIT ∧. . .
∧ ∀ 0≤ i, j <N · i < k ⇒ uinit[i, j]= INIT ∧ dinit[i, j]= INIT do

for l:=0 to N-1
inv ∀ 0≤ i<M,0≤j <N · hinit[i, j]= INIT ∧. . .∧ ∀ 0≤ i, j <M · rinit[i, j]= INIT ∧. . .
∧ ∀ 0≤ i, j <N · (i < k ∨ i = k ∧ j < l) ⇒ uinit[i, j]= INIT ∧ dinit[i, j]= INIT do
u[k,l]:=0;
d[k,l]:=0;

post ∀ 0≤ i<M, 0≤j<N · hinit[i, j]= INIT ∧. . .∧ ∀ 0≤ i, j <M · rinit[i, j]= INIT ∧. . .
∧ ∀ 0≤ i, j <N · i ≤ k ⇒ uinit[i, j]= INIT ∧ dinit[i, j]= INIT

post ∀ 0≤ i<M,0≤j<N · hinit[i, j]= INIT ∧. . .∧ ∀ 0≤ i, j <M · rinit[i, j]= INIT ∧. . .
∧ ∀ 0≤ i, j <N · uinit[i, j]= INIT ∧ dinit[i, j]= INIT

· · ·
<use u, d>
· · ·
<use h,..., r>
· · ·

end;

Fig. 2. Example code fragment and annotations generated by AutoFilter

The certification of the program generates 71 VCs; 12 of these are related to the loop
at lines 728–731. This shows that location information alone is insufficient as a basis
for explaining VCs. Here, we focus on one VC

0≤k≤11 ∧ 0≤ l≤11 ∧ ∀ 0≤ i,j <12 · hinit[i,j]= INIT

∧ . . .∧
∀ 0≤ i<6, 0≤j<12 · rinit[i,j]= INIT∧
∀ 0≤ i,j <12 · i < k ⇒ dinit[i,j]= INIT ∧ ∀ 0≤ i,j <12 · i=k ∧ j < l⇒ dinit[i,j]= INIT ∧
∀ 0≤ i,j <12 · i < k ⇒ uinit[i,j]= INIT ∧ ∀ 0≤ i,j <12 · i=k ∧ j < l ⇒ uinit[i,j]= INIT

⇒ ∀ 0≤ i,j <12 · (i = k ∧ j ≤ l ∧ j �= l)⇒ uinit[i,j]= INIT

that emerges from showing that the invariant is preserved through one iteration of the in-
ner loop. The full VC is substantially larger (approx. 180 lines) and contains many irrel-
evant hypotheses, which make it hard for a human to grasp. In fact, the sheer amount of
irrelevant information is often the biggest hurdle to understand automatically generated
VCs. However, if we (manually) interpret the formula, we can see that the hypotheses
are either constraints that originate from the loop bounds (0≤k, l≤11), post-conditions
that have originally been established before the loop and then been propagated into the
invariant (e.g., ∀ 0 ≤ i,j < 12 · hinit[i,j] = INIT), or the actual “local” invariant as hy-
potheses. The conclusion comprises parts of the invariant (where l has been replaced
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by l+ 1), but due to simplification this is difficult to see. In addition, all constants have
been replaced by their values. This post hoc analysis of the VC, however, is not possible
automatically. Simplification can change the VC structure arbitrarily, and even without
simplification two subformulas can look the same but have different meaning (cf. the
different occurrences of the loop invariant in the while rule.) In our approach, the VC is
marked up with labels that represent this information in order to generate the explana-
tion shown below; multiple annotations at the same source line are marked with #-signs.
Note that the generated explanation also spells out the verification context, which is the
VCs “secondary” purpose.

The purpose of this VC is to show that the loop invariant at line 729 (#1) under the substitu-
tions originating in line 5 and line 730 is still true after each iteration to line 731; it is also
used to show the preservation of the loop invariants at line 728, which in turn is used to show
the preservation of the loop invariants at line 683. Hence, given

- the loop bounds at line 728 under the substitution originating in line 5,
- the invariant at line 729 (#1) under the substitution originating in line 5,
- the invariant at line 729 (#2) under the substitution originating in line 5,

. . .
- the invariant at line 729 (#15) under the substitution originating in line 5,
- the loop bounds at line 729 under the substitution originating in line 5,

show that the loop invariant at line 729 (#1) under the substitutions originating in line 5 and
line 730 is still true after each iteration to line 731.

3.2 Mark-Up Structure

Concepts. The basic information for explanation generation is a set of underlying con-
cepts, which depends of course on the particular aspect of the VCs to be explained.
In the case of the structural explanations, most concepts characterize a proposition ei-
ther as hypotheses or conclusions, reflecting their eventual position in the VC. Other
concepts capture information about origin and secondary purpose of the propositions.

Hypotheses consist of assertions and control flow predicates. Assertions refer to sub-
formulas that occur as annotations in the program, either originally or after propagation.
They include asserted pre- and post-conditions (labels ass pre and ass post), function
pre- and post-conditions (ass fpre and ass fpost), and loop invariants. Since the loop
rules use the loop invariant as hypothesis in two different positions and instantiations,
we distinguish ass inv and ass inv exit (Figure 3). Control flow predicates refer to sub-
formulas that reflect the program’s control flow. For both if -statements and while-loops,
the control flow predicates occur in positive and negated forms, giving four different
concepts: if tt, if ff, while tt, and while ff. For for-loops, the control flow predicate does
not directly occur in the program but is derived from the given loop bounds.

Conclusions capture the primary purpose of a VC, which includes establishing (i.e.,
showing to hold at the given location) the different types of assertions. As in the case
of the hypotheses, invariants are used in two different forms, the entry form (or base
case) est inv and the step form est inv iter. Note that an assertion can be used both as
hypothesis and as conclusion, even in the same VC. The explanations distinguish these
two bits of information from the same source. For safety verification, we additionally
have the safety conditions safety that have to be demonstrated.

Qualifiers further characterize both hypotheses and conclusions by recording the ori-
gin of a sub-formula. The different substitution concepts reflect the substitutions of the
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underlying Hoare calculus. The concepts sub and upd capture the origin and effect of
assignments and array updates on the form of the resulting VCs; for the shadow envi-
ronment (Section 2), we additionally get safety substitutions sub safety and upd safety.

Contributors capture the secondary purpose of a VC; this arises when a recursive
call to the VCG produces VCs that are conceptually connected to the purpose of the
larger structure. In general, contributors arise for nested program structures which result
in “nested” VCs (e.g., loops within loops). For example, all VCs emerging from the
premise P {c} I of the while rule (cf. Figure 1) contribute to showing the preservation
of the invariant I over the loop body c, independent of their primary purpose, and are
thus labeled with pres inv.

Label Structure and Labeled Terms. We use labeled terms �t �l, where each term t
can be adorned with a label l, or, by abuse of notation, a list of labels. Labels have the
form c(o, n). Here c is one of the concepts introduced above; it describes the role the
labeled term plays and thus determines how it is rendered. The location o records where
it originated; it refers either to an individual position or to a range. We use file names
and line numbers for locations. n is a list of labels that contains further qualifying
information. Initially, n is empty; after normalization, it holds labels that have been
“bubbled-up” from subterms. In our running example, the loop bounds are originally
represented as �0 ≤ k ≤ �11�sub(5,〈〉)�bounds(728,〈〉), i.e., with the label on the upper bound
reflecting the source of the substitution, and the label on the sub-formula reflecting its
role. After simplification, the sub-label is nested inside the bounds-label, reflecting the
original nesting in the term: �0 ≤ k ≤ 11�bounds(728,〈sub(5,〈〉)〉).

3.3 Modified Hoare Rules

In general, it is not sufficient to just output explanations as the VCs are constructed.
Instead, the VCG must add the right labels at the right positions; it must also pass mark-
up back through the program by attaching it to the WPC, so that information from one
point in the program can be used at any other point. Modified Hoare rules concisely
capture the semantic mark-up (i.e., label types and positions) required for any given
explanation aspect. Labels are added in three places: to the “incoming” postcondition of
a recursive VCG call in the premise of an inference rule, to the WPC, or to a generated
VC. Figure 3 shows the core rules of the initialization safety policy marked-up for
explaining the structural aspect of VCs. The rules derive the usual triples, P {c}Q, but
now all elements can be labeled. For clarity, we omit the location information in the rule
formulation but assume that the VCG obtains it from the statements and annotations and
appropriately incorporates it into the labels.

The assign and update rules only require mark-up in the WPC. The safety predi-
cate can be a complex sub-formula, depending on the property to be certified and the
structure of the expression(s), but the mark-up is not dependent on the specific safety
property—all we need to know for an explanation is that this is in fact the safety pred-
icate. The substitutions need mark-up to record their type and the origin of the substi-
tuted expressions. By labeling only the expressions and not the variables we can use the
normal substitution mechanisms.
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(assign)
Q[�e�sub/x, �INIT�sub safety/xinit] ∧ �safeinit(e)

�safety {x := e} Q

(update)  
Q[�upd(x, e1, e2)�upd/x, �upd(xinit, e1, INIT)�upd safety/xinit]∧
�safeinit(e1)�safety ∧ �safeinit(e2)�safety

!
{x[e1] := e2} Q

(if )
P1 {c1} Q P2 {c2} Q

(�b�if tt ⇒ P1) ∧ (�¬b�if ff ⇒ P2) ∧ �safeinit(b)
�safety {if b then c1 else c2} Q

(while)
�
P {c} �I�est inv iter�pres inv

��I�ass inv ∧ �b�while tt ⇒ P
�pres inv

�I�ass inv exit ∧ �¬b�while ff ⇒ Q

�I�est inv ∧ �safeinit(b)
�safety {while b inv I do c} Q

(for)

�
P {c} �I [i + 1/i]�est inv iter�pres inv

��I�ass inv ∧ �e1 ≤ i ≤ e2
�bounds ⇒ P

�pres inv

�I [e2 + 1/i, INIT/iinit]�ass inv exit ⇒ Q 
e1 ≤ e2 ∧ �I [e1/i]�est inv∧
�safeinit(e1)�safety ∧ �safeinit(e2)�safety

!
{for i := e1 to e2 inv I do c} Q

(assert)
�P ′�ass pre ⇒ P P {c} �Q′�est post �Q′�ass post ⇒ Q

�P ′�est pre {pre P ′ c post Q′} Q

Fig. 3. Hoare rules for initialization safety with semantic markup

While labeling the if rule is straightforward, the loop rules are more complicated;
we focus on the while rule but the for rule has a similar structure. The WPC com-
prises the safety predicate, which is labeled as before, and the invariant, which has to
be established for loop entry and is thus labeled with est inv. In the premise, individual
sub-formulas of both the exit-condition I ∧ ¬b⇒ Q and the step-condition I ∧ b⇒ P
are labeled appropriately; in addition, the entire step-condition is labeled with its sec-
ondary purpose, namely to contribute to showing the preservation of the invariant. In
the triple P {c} I , the incoming postcondition I must be labeled with its purpose (i.e.,
re-establish the invariant after one loop iteration) for the recursive call; moreover, all
emerging VCs must be marked up with the secondary purpose pres inv. We indicate
this by labeling the entire triple. Note how the same formula I is used in four differ-
ent roles and consequently labeled in four different ways. This contextual knowledge is
only available at the point of rule application and can not be easily recovered by a post
hoc analysis of the generated VCs.

Finally, the assert rule is straightforward to mark up. The asserted pre- and post-
conditions are labeled according to their use either as hypotheses (in the VCs) or as
conclusions (in the WPC and recursion).

3.4 Labeled Rewriting

The VCs (whether labeled or unlabeled) become quite complex and need to be simpli-
fied aggressively before they can be proven by an ATP. Unfortunately, unlabeled simpli-
fication rules cannot be reused “as is” for the labeled case because (i) the
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labeling changes the term structure and thus the applicability of the rules and (ii) the
labels need careful handling—on the one hand, they cannot simply be distributed over
all operators because this can destroy their proper scope, while on the other, they can-
not just be pushed to the top of the VC because this would result in redundant and
imprecise explanations. The purpose of the labeled simplification rules is thus (i) to
remove redundant labels, (ii) to minimize the scope of the remaining labels, and (iii)
to keep enough labels to explain any unexpected failures, based on the assumption that
the majority of the VCs can be rewritten to true.

The rules themselves fall into five different groups. The first group contains rules
such as �true�l → true or P ⇒ P ′ → true if | P |= | P ′ | that remove labels from
trivially true (sub-) formulas because these require no explanations;1 The next group
consists of rules such as �false�l ∨ P → P that selectively remove trivially false labeled
sub-formulas. The remaining context then provides the information for the explana-
tions. However, the labels obviously need to be retained if the underlying unlabeled
rule version rewrite the entire formula into false, since there is no remaining context
to explain the failure, e.g., �false�l ∧ P → �false�l. The rules �P ∧Q�l → �P�l ∧ �Q�l

and P ⇒ �Q⇒ R�l → P ∧ �Q�l ⇒ �R�l comprise the fourth group; they distribute
labels over conjunction and (nested) implication, respectively, so that the label scopes
are minimized in the final simplified VCs. The last group encodes knowledge about
how the labels will be interpreted in the underlying domain. For example, the rule
sel(�upd(x, i1, t)�l, i2) → �i1 = i2�l ? �t�l : sel(x, i2) specifies the effect of selecting into
an updated array: in order to explain the resulting term we need to know that the dis-
appearing upd-functor is conceptually reflected in the guard and the success-branch of
the conditional, but not in the failure-branch, and that the label must thus be attached to
these two only. This group also contains an unnesting rule ��t�m�n → �t�n⊗m that “bub-
bles” nested labels to the top term, and so enables other labeled and unlabeled rules to
apply, but keeps the nesting structure on the labels itself. This ensures that qualifiers
remain nested properly, and apply to the originally qualified term.

3.5 Rendering

The final stage is generation of the actual explanations, i.e., turning the (labeled) VCs
into human-readable text, is called rendering. The underlying structure and actual tex-
tual representation of the explanations can be specified as a grammar (omitted here),
where the right-hand side of each rule is an explanation template that is similar to a
format string in C. These templates allow an easy customization and fine-grained con-
trol of the textual explanations. The renderer contains code to interpret the templates
as well as some glue code (e.g., sorting label lists by line numbers) that is spliced
in to support the text generation. It also provides default templates for concepts that
are useful for different explanation aspects, for example substitutions and the sim- and
nested-labels. Rendering comprises four steps: (i) VC normalization, using the labeled
rewrite system; (ii) label extraction, using the unnesting rule; (iii) label normalization,

1 We use an auxiliary function | · | to remove labels from terms and the label composition
operator ⊗ to append a list of inner labels to the list of labels nested in the outer label, i.e.,
c(o, l)⊗m = c(o, l •m), where • is list concatenation.
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to fit the labels to the explanation templates; (iv) text generation, using the explanation
templates. The third step flattens nested qualifiers, so that for example the label sub(p,
sub(q, sub(r))) is rewritten into the list 〈sub(p), sub(q), sub(r)〉. It also merges back
together conclusions from the same line which have been split over different literals
during the first step.

3.6 Putting It All Together

Our example VC emerges from the first hypothesis (i.e., I ∧ e1 ≤ i ≤ e2 ⇒ P ) of the
for rule. P is computed as the WPC of the two assignments in lines 730 and 731 with
respect to the appropriately labeled step form of the invariant at line 729:

�(∀ 0≤ i,j <N · i = k ∧ j ≤ l + 1⇒ (�upd(uinit, [k, l], INIT)�upd safety(728))[i,j]= INIT)

∧ . . . �est inv iter(729–731)

Here, the update rule added the upd safety-label, while the substitution ofN by 12 will
eventually introduce a sub-label. Since all this happens as part of handling the enclosing
for- and while-loops, P will be wrapped into two corresponding pres inv-labels.

Simplification splits the implication into several independent VCs, including the ex-
ample, and “bubbles” all labels to the top. The renderer then strips away the enclosing
contributors (i.e., the pres inv-labels) and uses the user-defined templates to convert
them into the text shown in Section 3.1. It will then search the remaining label list for
the unique conclusion (here est inv iter) to produce a caption from the corresponding
template and the contributor text, before it renders the assumptions.

3.7 Local Assumptions and Simultaneous Conclusions

All VCs generated in the example above have a unique conclusion that denotes their
primary purpose. However, for VCs that contain existential quantifiers (introduced by
the annotations or by the rule for procedure calls), this is not necessarily the case any
longer. Hence, we must explicitly represent and render multiple conclusions that have
to be satisfied simultaneously for an existentially quantified witness, and conclusions
from local assumptions. Consider, for example, the following VC, that arises in certify-
ing frame safety (i.e., consistent use of coordinate frames [14]) in navigation software
generated by Real-Time Workshop from a Simulink model:

. . . ∧ lo(T )=0 ∧ hi(T )=8 ∧ T [0]+T [4]+T [8] > 0 ∧ frame(T, dcm(eci, ned))
⇒ ∀q0 : real, v : vec · ∃d : DCM·

tr(d)=T [0]+T [4]+T [8] ∧ tr(d) > 0 ∧ rep dcm(d, T [5], T [7], T [2], T [6], T [1], T [3])
∧(∃q : quat · eq dcm quat(d, q) ∧ rep quat(q, q0, v[0], v[1], v[2])
⇒ frame(vupd(upd(M, 0, q0), 1, 3, v), quat(eci, ned)))

The purpose of this VC is to show the correctness of a procedure call. Hence, we need to
show for each argument (i.e., q0 and v) the existence of a direction cosine matrix d such
that the function’s three preconditions are satisfied and that the function postcondition
implies the required postcondition. Our system explains this as follows:
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. . . Hence, given
- the precondition at line 794 (#1),
- the condition at line 798 under the substitution originating in line 794,

show that there exists a DCM that will simultaneously
- establish the function precondition for the call at line 799 (#1),
- establish the function precondition for the call at line 799 (#2),
- establish the function precondition for the call at line 799 (#3) under the substitution

originating in line 794,
- establish the postcondition at line 815 (#1) assuming the function postcondition for the

call at line 799 (#1).

Note that the structure of the explanation reflects the VC’s logical structure, and shows
which goals have to be established simultaneously, and that the function postcondition
can only be used as assumption to establish the call-time postcondition, but of course
not the function’s preconditions. These labels do not give a detailed explanation of the
VC’s individual parts (e.g., the function postcondition); for that, we would need to mark
up the annotations with additional policy-specific details (see Section 4.3).

We only need to introduce two additional conclusion labels local and sim to repre-
sent local assumptions and simultaneous conclusions, as outlined above. In addition,
we need simplification rules that introduce these labels to properly maintain the VC
structure in the explanations, e.g., ∃x : t · �P�l ⇒ �Q�m → �∃x : t · P ⇒ Q�local(〈l, m〉).

4 Refined Explanations

Even though the explanations constructed so far relate primarily to the structure of the
VCs, they already provide some “semantic flavor”, since they distinguish the multiple
roles a single annotation can take. However, for structurally complex programs, the
labels do not yet convey enough information to allow users to understand the VCs in
detail. For example, a double-nested for-loop can produce a variety of VCs that will all
refer to “the invariant”, without further explaining whether it is the invariant of the inner
or the outer loop, leaving the user to trace through the exact program locations to resolve
this ambiguity. We can produce refined explanations that verbalize such conceptual
distinctions by introducing additional qualification labels that are wrapped inside the
existing structural labels. We chose this solution over extending the structural labels
because it allows us to handle orthogonal aspects independently, and makes it easier to
treat the extensions uniformly in different contexts.

4.1 Adding Index Information to Loop Explanations

Explanations of VCs emerging from for-loops are easier to understand if they are tied
closer to the program by adding more detailed information about the index variables and
bounds; our running example then becomes (cf. Section 3.1; emphasis added manually):

The purpose of this VC is to show that the loop invariant at line 729 (#1) under the substitu-
tions originating in line 5 and line 730 is still true after each iteration to line 731 (i.e., in the
form with l+1 replacing l); it is also used to show the preservation of the loop invariants at
line 728, which in turn . . .

Note that the way the qualifier is rendered depends on the particular loop concept that it
qualifies, to properly reflect the different substitutions that are applied to the invariant in
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the different cases (see Figure 3); for example, in the step case (i.e., for the est inv iter-
label), the variable is used, while in the base case, the lower bound is used; the qualifier
is ignored when the invariant is used as asserted hypothesis (i.e., for the ass inv-label).

The information required for all different cases (i.e., variable name, lower and upper
bounds) is almost impossible to recreate with a post hoc analysis of the formula. The
VCG can easily extract this from the index of the for-loop itself and add it as qualifier
to the different labels used in the for-rule, changing for example the label added to the
invariant in the base case to est inv(〈i := e1 to e2〉) (cf. Figure 3). Since the labeled sim-
plification rules ensure that the qualifiers are never moved outside their base label, the
explanation templates for the qualifiers simply need to take the base label as an addi-
tional argument to produce the right text, for examplerender(est inv iter, i:=e1 toe2)
= “in the form with ” • i • “+1 replacing ” • i.

4.2 Adding Relative Positions to Loop Explanations

VCs emerging from nested loops refer to the underlying loops via their absolute source
locations but since these are often very close to each other, they can easily be confused.
We can thus further improve the explanations by adding information about the relative
loop ordering, distinguishing, for example, the inner from the outer invariant. In con-
junction with the the syntactic index information described above, our running example
then becomes (emphasis added manually):

The purpose of this VC is to show that the loop invariant at line 729 (#1) (i.e., the inner
invariant) under the substitutions originating in line 5 and line 730 is still true after each
iteration to line 731 (i.e., in the form with l+1 replacing l); it is also used to show the
preservation of the loop invariants at line 728, which in turn . . .

Since the VCG has no built-in notion of “outer” and “inner” loops, it cannot add the
respective qualifiers automatically. Instead, the annotations in the program must be la-
beled accordingly, either by the programmer, or, in our case, the annotation generator.
No further changes are required to the machinery: the VCG simply processes the la-
beled annotations, and the outer- and inner-qualifiers are rendered by parameterized
templates as before.

4.3 Adding Domain-Specific Semantic Explanations

We can construct semantically “richer” explanations if we further expand the idea out-
lined in the previous section, and add more semantic labels to the annotations, which
represent domain-specific interpretations of the labeled sub-formulae. For example, in
initialization safety the VCs usually contain sub-formulae of the form ∀0 ≤ i, j <
N · Ainit[i, j] = INIT, which expresses the fact that the array A is fully initialized (e.g,
most postconditions in Figure 2). By labeling this formula, or more precisely, the anno-
tation from which it is taken, we can produce an appropriate explanation without any
need to analyze the formula structure: 2

2 Note that the formulae expressing the domain-specific concepts can become arbitrarily com-
plex, and make any post hoc analysis practically infeasible. For example, to express the row-
major, partial initialization of an array up to position (k, l), we would already need to identify
a formula equivalent to ∀0 ≤ i, j < N · (i < k ∨ i = k ∧ j < l)⇒ Ainit[i, j] = INIT.
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. . . Hence, given
- the loop bounds at line 728 under the substitution originating in line 5,
- the invariant at line 729 (#1) (i.e., the array h is fully initialized, which is established at

line 183) under the substitution originating in line 5,
. . .

- the invariant at line 729 (#11) (i.e., the array r is fully initialized, which is established
at line 525) under the substitution originating in line 5,
. . .

- the invariant at line 729 (#15) under the substitution originating in line 5,
- the loop bounds at line 729 under the substitution originating in line 5,

show that the loop invariant at line 729 (#1) under the substitutions originating in line 5 and
line 730 is still true after each iteration to line 731 (i.e., the array u is initialized up to position
(k,l).

For this extension, we need two different qualifiers, init(a, o) which states that the array
a is fully initialized after line o, and init upto(a, k, l) which states that a is initialized in
a row-major fashion up to position (k, l). Again, the annotation generator can add these
labels to the annotations in the program.

We can use the domain-specific information to give a semantic explanation of the
hierarchical relations between the VCs which complements the purely structural view
provided by the pres inv labels. We thus generalize the assert rule to use the domain-
specific labels as contributors:

(label)
�P ′�ass pre(l) ⇒ �P�contrib(l) �

P {c} �Q′�est post(l)�contrib(l) �Q′�ass post(l) ⇒ Q

�P ′�est pre(l) {pre P ′ c post �Q′�l} Q

The label rule “plucks” the label off the post-condition and passes it into the appro-
priate positions. The labels need to be modified to take the domain-specific labels as
an additional argument. For example, ass post(init(183, h)) refers to the postcondition
asserted after the statements that initialize the array h. In addition, we also introduce a
new contribution label (e.g., contrib(init(183, h)), similar to the invariant preservation in
the structural concept hierarchy. This is added to the WPC that is recursively computed
for the annotated statement, and to all VCs emerging during that process (e.g., if the
initialization uses a nested loop and thus generates multiple VCs). These more refined
labels let the renderer determine whether a VC actually establishes the asserted post-
condition of a domain-specific block, or whether it is just an individual contributor to
this.

5 Related Work

Most VCGs link VCs to source locations, i.e., the actual position in the code where the
respective rule was applied and hence where the VC originated. Usually, the systems
only deal with line numbers but Fraer [11] describes a system that supports a “deep
linking” to detailed term positions. JACK [1] and Perfect Developer [2] classify the VCs
on the top-level and produce short captions like “precondition satisfied”, “return value
satisfies specification”, etc. In general, however, none of these approaches maintain
more non-local information (e.g., substitution applications) or secondary purpose.

Our work grew out of the earlier work by Denney and Venkatesan [8] which used
information from a particular subset of VCs (in the current terminology: where the
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purpose is to establish a safety condition) in order to give a textual account for why the
code is safe. It soon became clear, however, that a full understanding of the certification
process requires the VCs themselves to be explained (as does any debugging of failed
VCs). The current work extends the explanations to arbitrarily constructed formulas,
that is, VCs where the labels on constituent parts come from different sources. This
allows formulas to be interpreted in different ways.

Leino et al. [12] use explanations for traces to safety conditions. This is sufficient for
debugging programs, which is their main motivation. Like our work, Leino’s approach
is based on extending an underlying logic with labels to represent explanatory semantic
information. Both approaches use essentially the same types of structural labels, and
Leino’s use of two different polarities (lblpos and lblneg) corresponds to our distinc-
tion between asserting and establishing an annotation. However, their system does not
represent the origin of substitutions nor the secondary purpose of the VCs. Similarly,
it does not incorporate refined explanations with additional information. Moreover, the
approaches differ in how these labels are used by the verification architectures. Leino’s
system introduces the labels by first desugaring the language into a lower-level form.
Labels are treated as uninterpreted predicate symbols and labeled formulas are there-
fore just ordinary formulas. This labeled language is then processed by a standard VCG
which is “label-blind”. In contrast, we do not have a desugaring stage, and mainly use
the VCG to insert the labels, which allows us to take advantage of domain-specific la-
bels. While our simplifier needs to be label-aware, we strip labels off the final VCs after
the explanation has been constructed, and thus do not place special requirements on the
ATP like they do. This allows us to use off-the-shelf high-performance ATPs.

6 Conclusions and Future Work

The explanation mechanism which we have described here has been successfully im-
plemented and incorporated into our certification browser [5,7]. This tool is used to
navigate the artifacts produced during certifiable code generation, and it uses the system
described in this paper to successfully explain all the VCs produced by AUTOFILTER,
AUTOBAYES, and Real-Time Workshop for a range of safety policies. Complexity of
VCs is largely independent of the size of the program, but we have applied our tool up
to the subsystem level (around 1000 lines of code), where the largest VCs are typically
around 200 lines of formula.

In addition to its use in debugging, the explainer can also be used as a means of gain-
ing assurance that the verification is itself trustworthy. This complements our previous
work on proof checking [13]: there a machine checks one formal artifact (the proof),
here we support human checking of another (the VCs). With this role in mind, we are
currently extending the tool to be useful for code reviews.

Much more work can be done to improve and extend the actual explanations them-
selves. Our approach can, for example, also be used to explain the provenance of a
VC (i.e., the tools and people involved in its construction) or to link it together with
supporting information such as code reviews, test suites, or off-line proofs. More gen-
erally, we would like to allow explanations to be based on entirely different explanation
structures or ontologies.
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Finally, there are also interesting theoretical issues. The renderer relies on the exis-
tence of an Explanation Normal Form, which states intuitively that each VC is labeled
with a unique conclusion. This is essentially a rudimentary soundness result, which can
be shown in two steps, first by induction over the marked-up Hoare rules in Figure 3
and then by induction over the labeled rewrite rules. We are currently developing a the-
oretical basis for the explanation of VCs that is generic in the aspect that is explained,
with appropriate notions of soundness and completeness.

Acknowledgments. This material is based upon work supported by NASA under
awards NCC2-1426 and NNA07BB97C.
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Abstract. ToolBus allows one to connect tools via a software bus.
Programming is done using the scripting language Tscript, which is
based on the process algebra ACP. Tscript was originally designed to
enable formal verification, but this option has so far not been explored in
any detail. We present a method for analyzing a Tscript by translating
it to the process algebraic language mCRL2, and then applying model
checking to verify behavioral properties.

1 Introduction

ToolBus [1,2] provides a simple, service-oriented view on organizing software
systems by separating the coordination of software components from the ac-
tual computation that they perform. It organizes a system along the lines of a
programmable software bus. Programming is done using the scripting language
Tscript that is based on the process algebra ACP (Algebra of Communicating
Processes) [3] and abstract data types. The tools connected to the ToolBus

can be written in any language and can run on different machines.
A Tscript can be tested, like any other software system, to observe whether

it exhibits the desired behavior. An alternative approach for analyzing commu-
nication protocols is model checking, which constitutes an automated check of
whether some behavioral property is satisfied. This can be, roughly, a safety
property, which must be satisfied throughout any run of the system, or a live-
ness property, which should eventually be satisfied in any run of the system.
To perform model checking, the communication protocol must be specified in
some formal language, and the behavioral properties in some temporal logic.
Strong points of model checking are that it attempts to performs an exhaus-
tive exploration of the state space of a system, and that it can often be fully
automated.

As one of the main aims of Tscript, Bergstra and Klint [2] mention that it
should have “a formal basis and can be formally analyzed”. The formal basis is

J. Meseguer and G. Roşu (Eds.): AMAST 2008, LNCS 5140, pp. 160–166, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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offered by the process algebra ACP, but ways to formally analyze Tscripts were
lacking so far. This is partly due to a number of obstructions for an automatic
translation from Tscript to ACP, which are explained below. This work was
initiated by the developers of the ToolBus, who are keen to integrate model
checking into the design process. This paper constitutes an important step in
this direction. We have charted the most important distinctions between ACP
and Tscript, and investigated how Tscript can be translated into the formal
modeling language mCRL2 [4]. This language is also based on the process algebra
ACP, extended with equational abstract data types [5].

Since both Tscript and mCRL2 are based on data terms and ACP, an au-
tomated translation is in principle feasible. And as a result, Tscript can then
be model checked using the mCRL2 or CADP toolset [6]. This method has
been applied on a standard example from the ToolBus distribution: a dis-
tributed auction. An implementation of an automatic translator from ToolBus

to mCRL2 is under development. However, we did have to circumvent several
obstructions in the translation from Tscript to mCRL2. Firstly, each Tscript

process has a built-in queue to store incoming messages, which is left implicit
in the process description; in mCRL2, all of these queues are specified explicitly
as a separate process. Secondly, Tscript supports dynamic process creation; in
mCRL2, we chose to start with a fixed number of ToolBus processes, and let
a master process divide connecting tools over these processes. Thirdly, we ex-
pressed the iterative star operator of Tscript as a recursive equation in mCRL2.
And fourthly, we developed some guidelines on how to deal with so-called result
variables in Tscript.

Our work has its origins in the formal verification of interface languages [7,8].
The aim is to get a separation of concerns, in which the (in our case Tscript)
interfaces that connect software components can be analyzed separately from
the components themselves. Our work is closest in spirit to Pipa [9], an interface
specification language for an aspect-oriented extension of Java called AspectJ
[10]. In [9] it is discussed how one could transform an AspectJ program together
with its Pipa specification into a Java program and JML specification, in order
to apply existing JML-based tools for verifying AspectJ programs, see also [11].
Diertens [12,13] uses the ToolBus to implement a platform for simulation and
animation of process algebra specifications in the language PSF. In this approach
Tscript is automatically generated from a PSF specification.

2 ToolBus and Tscript

The behavior of the ToolBus consists of the parallel composition of a variable
number of processes. In addition to these processes, a variable number of external
tools may be connected to the ToolBus. All interactions between processes
and connected tools are controlled by Tscripts, which are based on predefined
communication primitives. The classical procedure interface (a named procedure
with typed arguments and a typed result) is thus replaced by a more general
behavior description.
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A Tscript process is built from the standard process algebraic constructs:
atomic actions (including the deadlock delta and the internal action tau), al-
ternative composition +, sequential composition · and parallel composition ‖.
The binary star operation p ∗ q represents zero or more repetitions of p, followed
by q. Atomic actions are parametrized with data parameters (see below), and
can be provided with a relative or absolute time stamp. A process definition is
of the form Pname(x1, . . . , xn) is P , with P a Tscript process expression and
x1, . . . , xn a list of data parameters. Process instances may be created dynami-
cally using the create statement.

The following communication primitives are available. A process can send
a message (using snd-msg), which should be received, synchronously, by an-
other process (using rec-msg). Furthermore, a process can send a note (using
snd-note), which is broadcast to other, interested, processes. A process may
subscribe and unsubscribe to certain notes. The receiving processes read notes
asynchronously (using rec-note) at a low priority. Processes only receive notes
to which they have subscribed. Communication between ToolBus and tools is
based on handshaking communication. A process may send messages in several
formats to a tool (snd-eval, snd-do, snd-ack-event), and can receive values
(rec-value) and events (rec-event) from a tool.

The only values that can be exchanged between the ToolBus and connected
tools are terms of some sort (basic data types booleans, integers, strings and
lists). In these terms, two types of variables are distinguished: value variables
whose value is used in expressions, and result variables (written with a question
mark) that get a value assigned to them as a result of an action or a process
call. Manipulation of data is completely transparent, i.e., data can be received
from and sent to tools, but inside ToolBus there are hardly any operations on
them. ATerms [14] are used to represent data terms; ATerms support maximal
subterm sharing, and use a very concise, binary format. In general, an adapter is
needed for each connected tool, to adapt it to the common data representation
and message protocols imposed by ToolBus.

The ToolBus was introduced for the implementation of the ASF+SDF

Meta-Environment [15,16] but has been used for the implementation of various
other systems as well. The source code and binaries of the ToolBus and related
documentation can be found at www.meta-environment.org.

3 mCRL2 and CADP

An mCRL2 [4] specification is built from the standard process algebraic con-
structs: atomic actions (including the deadlock δ and the internal action τ),
alternative composition +, sequential composition · and parallel composition
‖. One can define synchronous communication between actions. The following
two operators combine data with processes. The sum operator

∑
d:D p(d) de-

scribes the process that can execute the process p(d) for some value d selected
from the sort D. The conditional operator → - describes the if -then-else.

www.meta-environment.org
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The process b → x - y (where b is a boolean) has the behavior of x if b is true
and the behavior of y if b is false.

Data elements are terms of some sort. In addition to equational abstract data
types, mCRL2 also supports built-in functional data types. Atomic actions are
parametrized with data parameters, and can be provided with an absolute time
stamp. A process definition is of the form Pname(x1, . . . , xn) = P , with P an
mCRL2 process and x1, . . . , xn a list of parameters.

The mCRL2 toolset (www.mcrl2.org) supports formal reasoning about sys-
tems specified in mCRL2. It is based on term rewriting techniques and on formal
transformation of process algebraic and data terms. mCRL2 specifications are
first transformed to a linear form [4, Section 5], in a condition-action-effect style.
The resulting specification can be simulated interactively or automatically, there
are a number of symbolic optimization tools, and the corresponding Labeled
Transition System (LTS) can be generated. This LTS can, in turn, be minimized
modulo a range of behavioral semantics and model checked with the mCRL2
toolset or the CADP toolset [6].

4 From Tscript to mCRL2

Both Tscript and mCRL2 are based on the process algebra ACP [3]. In spite of
this common origin, the languages have some important differences, presented
later in this section.

Note queues. According to the semantics of the ToolBus, each process created
by Tscript has a queue for incoming notes. A rec-note will inspect the note
queue of the current process, and if the queue contains a note of a given form,
it will remove the note and assign values to variables appearing in its argument
list; these can be used later on in the process expression in which the rec-note
occurs.

mCRL2 contains no built-in primitives for asynchronous communications.
Therefore in mCRL2, note queues are handled by a separate AsyncComm pro-
cess. It also takes care of subscriptions/unsubscriptions and lets any process send
any note at any time. Any process can inspect its queue for incoming notes by
synchronously communicating with AsyncComm.

Dynamic process creation. Process instances may be created dynamically in
Tscript using the create statement. Although not part of the language, such
a process creation mechanism can, in principle, be modeled in mCRL2 using re-
cursive parallelism. The latter, however, is not currently supported by the tools
in the mCRL2 toolset.

Here, we present a simple solution to this problem, by statically fixing the
maximal number of process instances that can be active simultaneously. These
process instances are present from the start, and the master process divides
connecting tools over these processes. To be more precise, for a given Tscript

process definition Pname, we assume the maximal number of its simultaneously

www.mcrl2.org
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active instances to be some m. For a translation of Pname to an mCRL2 process
Pname, we define the following process Pname inactive,
proc Pname inactive(pid :Pid) = r create(Pname, pid) · Pname(pid)
which after synchronizing with an action s create proceeds as the process Pname.
We instantiate m instances of Pname inactive in parallel by Pname inactive(1) ‖
. . . ‖ Pname inactive(m).

Successful termination of (dynamically) created processes in Tscript is de-
noted by a delta statement. In our approach, the mCRL2 processes do not
terminate, but become inactive instead. Therefore, the terminating delta state-
ments of Pname are translated to Pname inactive(pid) recursive calls.

A process willing to create an instance of Pname has to execute the mCRL2
expression

∑
pid:Pid s create(Pname, pid) (instead of a create command). As a

result of the synchronization with r create, the creating process gets the pid of
the “created” process.

Binary star versus recursion. Tscript makes use of the binary star operation
p∗ q, representing zero or more repetitions of p followed by q. Assuming that the
Tscript expression p is translated to an mCRL2 process expression P , and q to
Q, the whole Tscript expression p∗q is represented in mCRL2 by the recursion
variable PQ defined as PQ = P · PQ +Q.

Local variables. Tscript process definitions may make use of local variables and
assignments to them. They can be directly translated to process parameters in
mCRL2, provided all of them are (made) unique.

Special care has to be taken with the result variables of Tscript, which
get a value assigned depending on the context in which they occur. In case they
occur in input communication statements like rec-msg, rec-note or rec-value,
they can be represented as summations in mCRL2. For example, the Tscript

expression let V:Type in rec-msg(msg(V?))...endlet can be represented as
the mCRL2 expression

∑
V :Type rec msg(V ) · . . .

In case the result variables occur in process calls, the only way we see to trans-
late them to mCRL2, is to (at least partially) unfold the process call instance,
so that we get to a situation where the input variable occurs in a communicating
statement.

Discrete time. One simple option to implement discrete time in mCRL2, is to
make use of the tick action synchronization (cf. [17,18,19]). First, we identify the
places where waiting makes sense. These are places where input communication
statements are possible. In case no delays are present in these statements, we
introduce a possibility to perform the tick action and remain in the current state.
In case a Tscript statement is specified with a certain delay, we prepend the
resulting mCRL2 translation with the appropriate number of ticks. All Tscript

process translations have to synchronize on their tick actions.
Another option is to use the real-time operations built into mCRL2. The

current version of the mCRL2 toolset, however, has only limited support for the
analysis of such timed specifications. An interesting possibility is to use clocks
to specify timed primitives of Tscripts, and to use well-known techniques for
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analyzing Timed Automata [20] like regions and zones [21] in the context of
mCRL2 (cf. [22]).

Unbounded data types. A Tscript can use variables of unbounded data types,
like integers, in communications with the tools. These can be modeled in mCRL2,
but the analysis with explicit-state model checking techniques will not work. An
alternative approach could be in the use of abstract interpretation techniques in
the context of mCRL2 (cf. [23]).

5 Conclusion and Future Work

Our general aim is to have a process algebra-based software development envi-
ronment where both formal verification and production of an executable system
is possible. In this paper we looked at a possibility to bring formal verification
with mCRL2 to ToolBus scripts.

We presented a translation scheme from Tscript to mCRL2. This translation
makes it possible to apply formal verification techniques to Tscript. We aim at
an automated translation tool from Tscript to mCRL2, which will make it pos-
sible to verify Tscript in a fully automated fashion, and to explore behavioral
properties of large software systems that have been built with the ToolBus.

The following issues remain as future work.

– Although the translated mCRL2 model is similar in size to the original
ToolBus script, its underlying state space may be too large for formal
verification. The issues with unbounded data types, timing, and growing
note queues due to asynchronous communication, mentioned in Section 4,
have to be further addressed.

– The mCRL2 model generated from a particular ToolBus script can be
checked for deadlocks, livelocks and some other standard properties. For the
analysis of more specific behavioral details one would need properties for-
mulated by the developer of this particular script. Alternatively, a reference
mCRL2 model of the tools that communicate with the original script can be
considered as an environment for the generated mCRL2 model. Putting this
environment model in parallel with the generated mCRL2 model could lead
to a more detailed analysis of the external behavior of the original ToolBus

script.
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Abstract. A simple type confusion attack occurs in a security protocol,
when a principal interprets data of one type as data of another. These
attacks can be successfully prevented by “tagging” types of each field
of a message. Complex type confusions occur instead when tags can be
confused with data and when fields or sub-segments of fields may be
confused with concatenations of fields of other types. Capturing these
kinds of confusions is not easy in a process calculus setting, where it is
generally assumed that messages are correctly interpreted. In this paper,
we model in the process calculus LYSA only the misinterpretation due to
the confusion of a concatenation of fields with a single field, by extending
the notation of one-to-one variable binding to many-to-one binding. We
further present a formal way of detecting these possible misinterpreta-
tions, based on a Control Flow Analysis for this version of the calculus.
The analysis over-approximates all the possible behaviour of a protocol,
including those effected by these type confusions. As an example, we
considered the amended Needham-Schroeder symmetric protocol, where
we succeed in detecting the type confusion that lead to a complex type
flaw attacks it is subject to. Therefore, the analysis can capture potential
type confusions of this kind on security protocols, besides other security
properties such as confidentiality, freshness and message authentication.

1 Introduction

In the last decades, formal analyses of cryptographic protocols have been widely
studied and many formal methods have been put forward. Usually, protocol
specification is given at a very high level of abstraction and several implemen-
tation aspects, such as the cryptographic ones, are abstracted away. Despite the
abstract working hypotheses, many attacks have been found that are indepen-
dent of these aspects. Sometimes, this abstract view is not completely adequate,
though. At a high level, a message in a protocol consists of fields: each represents
some value, such as the name of a principal, a nonce or a key. This structure can
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be easily modelled by a process calculus. Nevertheless, at a more concrete level,
a message is nothing but a raw sequence of bits. In this view, the recipient of a
message has to decide the interpretation of the bit string, i.e. how to decompose
the string into substrings to be associated to the expected fields (of the expected
length) of the message. The message comes with no indication on its arity and
on the types of its components. This source of ambiguity can be exploited by an
intruder that can fool the recipient into accepting as valid a message different
from the expected one. A type confusion attack arises in this case.

A simple type confusion occurs when a field is confused with another [16]. The
current preventing techniques [13] consists in systematically associating message
fields with tags representing their intended type. On message reception, honest
participants check tags so that fields with different types cannot be mixed up. As
stated by Meadows [17], though, simple tags could not suffice for more complex
type confusion cases: “in which tags may be confused with data, and terms of
pieces of terms of one type may be confused with concatenations of terms of
several other types.” Tags should also provide the length of tagged fields.

Here, we are interested in semantically capturing attacks that occur when a
concatenation of fields is confused with a single field [24]. Suppose, e.g. that the
message pair (A,N), where A is a principal identity and N is a fresh nonce, is
interpreted as a key K, from the receiver of the message. For simplicity, we call
them complex type confusion attacks. This level of granularity is difficult to cap-
ture with a standard process calculus. An alternative could be separating control
from data, as in [1], and using equational theories on data; this however makes
mechanical analysis more expensive. In a standard process algebraic framework,
there is no way to confuse a term (A,N) with a term K. The term is assumed
to abstractly model a message, plugging in the model the hypothesis that the
message is correctly interpreted. In concrete implementation this confusion is
instead possible, provided that the two strings have the same length.

As a concrete example, consider the Amended Needham Schroeder symmetric
key protocol [9]. It aims at distributing a new session key K between two agents,
Alice (A) and Bob (B), via a trusted server S. Initially each agent is assumed to

1. A→ B : A
2. B → A : {A, NB}KB

3. A→ S : A, B, NA, {A, NB}KB

4. S → A : {NA, B, K, {K, NB , A}KB}KA

5. A→ B : {K, NB , A}KB

6. B → A : {N}K

7. A→ B : {N − 1}K

(a)

1. A→ B : A
2. B → A : {A, NB}KB

3. A→ S : A,B, NA, {A, NB}KB

1′. M → A : NA, B, K′

2′. A→M : {NA, B, K′, N ′
A}KA

4. M(S)→ A : {NA, B, K′, N ′
A}KA

5. A→M(B) : N ′
A

6. M(B)→ A : {N}K′

7. A→M : {N − 1}K′

(b)

Fig. 1. Amended Needham-Schroeder Symmetric Protocol: Protocol Narration (a) and
Type Flaw Attack (b)
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share a long term key, KA and KB resp., with the server. The protocol narration
is reported in Fig. 1 (a). In messages 1 and 2, A initiates the protocol with B.
In message 3 S generates a new session key K, that is distributed in messages 4
and 5. Nonces created by A and B are used to check freshness of the new key.
Finally, messages 6 and 7 are for mutual authentication of A and B: B generates
a new nonce N and exchanges it with A, encrypted with the new session key K.

The protocol is vulnerable to a complex type flaw attack, discovered by Long
[14] and shown in Fig. 1 (b). It requires two instances of the protocol, running in
parallel. In one, A plays the roles of initiator and in the other that of responder.
In the first instance, A initiates the protocol with B. In the meantime, the
attacker,M , initiates the second instance with A and sends the triple NA, B,K

′

to A (in step 1′). The nonce NA is a copy from step 3 in the first instance and
K ′ is a faked key generated by the attacker. A will generate and send out the
encryption of the received fields, NA, B,K

′, and a nonce N ′
A. The attackerM(S)

impersonates S and replays this message to A in the first instance. A decrypts
this message, checks the nonce NA and the identity B, and accepts K ′ as the
session key, which is actually generated by the attacker. After the challenge and
response steps (6 and 7), A will communicate with M using the faked key K ′.

Our idea is to explore complex type confusion attacks, by getting closer to
the implementation, without crossing the comfortable borders of process calculi.
To this aim, we formally model the possible misinterpretations between terms
and concatenations of terms. More precisely, we extend the notation of one-to-
one variable binding to many-to-one binding in the process calculus LYSA [5],
that we use to model security protocols. The Control Flow Analysis soundly
over-approximates the behaviour of protocols, by collecting the set of messages
that can be sent over the network, and by recording which values variables may
be bound to. Moreover, at each binding occurrence of a variable, the analysis
checks whether there is any many-to-one binding possible and records it as a
binding violation. The approach is able to detect complex type confusions possi-
bly leading to attacks in cryptographic protocols. Other security properties can
be addressed in the same framework, by just changing the values of interest of
the Control Flow Analysis, while its core does not change.

The paper is organized as follows. In Section 2, we present the syntax and
semantics of the LYSA calculus. In Section 3, we introduce the Control Flow
Analysis and we describe the Dolev-Yao attacker used in our setting. Moreover,
we conduct an experiment to analyse the amended Needham-Schoreder symmet-
ric key protocol. Section 4 concludes the paper.

2 The LYSA Calculus

The LySa calculus [5] is a process calculus, designed especially for modelling
cryptographic protocols in the tradition of the π- [20] and Spi- [2] calculi. It
differs from these essentially in two aspects: (1) the absence of channels: all
processes have only access to a single global communication channel, the network;
(2) the inclusion of pattern matching into the language constructs where values
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can become bound to values, i.e. into input and into decryption (while usually
there is a separate construct).

Syntax. In LYSA, the basic building blocks are values, V ∈ V al, which corre-
spond to closed terms, i.e. terms without free variables. Values are used to rep-
resent keys, nonces, encrypted messages, etc. Syntactically, they are described
by expressions E ∈ Expr (or terms) that may either be variables, names, or
encryptions. Variables and names come from two disjoint sets V ar, ranged over
by x, and Name, ranged over by n, respectively. Finally, expressions may be en-
cryptions of a k-tuple of other expressions, in which case, E0 is the key used to
perform the encryption. LYSA expressions are, in turn, used to construct LYSA

processes P ∈ Proc as shown below. Here, we assume perfect cryptography.

E ::= n | x | {E1, . . . , Ek}E0

P ::= 〈E1, . . . , Ek〉.P | (E1, . . . , Ej ;xj+1, . . . , xk)l.P
decrypt E as {E1, . . . , Ej ;xj+1, . . . , xk}l

E0
in P |

(ν n)P | P1|P2 | !P | 0

The set of free variables, resp. free names, of a term or a process is defined in the
standard way. As usual we omit the trailing 0 of processes. The label l from a denu-
merable set Lab (l ∈ Lab) in the input and in the decryption constructs uniquely
identifies each input and decryption point, resp., and is mechanically attached.

In addition to the classical constructs for composing processes, LYSA contains
an input and a decryption construct with pattern matching. Patterns are in
the form (E1, · · · , Ej ;xj+1, · · · , xk) and are matched against k-tuples of values
〈E′

1, · · · , E′
k〉. The intuition is that the matching succeeds when the first 1 ≤ i ≤ j

valuesE′
i pairwise correspond to the valuesEi, and the effect is to bind the remain-

ing k − j values to the variables xj+1, · · · , xk. Syntactically, this is indicated by a
semi-colon that separates the components where matching is performed from those
where only binding takes place. For example, let P = decrypt {y}K as {x; }l

K in P ′

and Q = decrypt {y}K as {;x}l
K in Q′. While the decryption in P succeeds only if

x matches y, the one in Q always does, binding x to y.

Extended LYSA. As seen above, in LYSA, values are passed around among
processes through pattern matching and variable binding. This is the way to
model how principals acquire knowledge from the network, by reading messages
(or performing decryptions), provided they have certain format forms. A re-
quirement for pattern matching is that patterns and expressions are of the same
length: processes only receive (or decrypt) messages, whose length is exactly as
expected and each variable is binding to one single value, later on as one-to-one
binding. We shall relax this constraint, because it implicitly prevents us from
modelling complex type confusions, i.e. the possibility to accept a concatenation
of fields as a single one. Consider the complex type flaw attack on the amended
Needham-Schroder protocol, shown in the Introduction. The principal A, in the
role of responder, is fooled by accepting NA, B,K

′ as the identity of the initia-
tor and generates the encryption {NA, B,K

′, N ′
A}KA , which will be replayed by

the attacker later on in the first instance. In LYSA, A’s input can be roughly
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expressed as (;xb), as she is expecting a single field representing the identity of
the initiator of the protocol. Because of the length requirement, though, xb can
only be binding to a single value and not to a concatenation of values, such as
the (NA, B,K

′) object of the output of the attacker.
To model complex type confusions, we need to allow a pattern matching to

succeed also in the cases in which the length of lists is different. The extension
of the notation of pattern matching and variable binding will be referred as
many-to-one binding. Patterns are then allowed to be matched against expres-
sions with at least the same number of elements. A single variable can then be
bound also to a concatenation of values. Since there may be more values than
variables, we partition the values into groups (or lists) such that there are the
same number of value groups and variables. Now, each group of values is bound
to the corresponding variable. In this new setting, the pattern in A’s input (;xb)
can instead successfully match the expression in the faked output of the attacker
〈NA, B,K

′〉 and result in the binding of xb to the value (NA, B,K
′).

We need some auxiliary definitions first. The domain of single values is built
from the following grammar and represents closed expressions (i.e. without free
variables), where each value is a singleton, i.e. it is not a list of values. In other
words, no many-to-one binding has affected the expression. These are the values
used in the original LYSA semantics.
val . v ::= n | {v1, . . . , vk}v0 .

General values are closed expressions, where each value V can be a list of values
(V1, .., Vn). These values are used to represent expressions closed after at least
one many-to-one-binding and are the values our semantics handles.
V al . V ::= v | (V1, .., Vn) | {V1, .., Vn}V0

To perform meaningful matching operations between lists of general values, we
first flatten them, thus obtaining flattened values that can be either single values
v or encryptions of general values.
Flat . T := v | {V1, .., Vn}V0

Flattening is obtained by using the following Flatten function Fl : V al→ Flat
• Fl(v) = v;
• Fl((V1, .., Vn)) = Fl(V1), ..., F l(Vn); • Fl({V1, .., Vn}V0) = {V1, .., Vn}V0 .
Example 1. Fl(((n1, n2), ({m1, (m2,m3)}m0))) = n1, n2, {m1, (m2,m3)}m0

The idea is that encryptions cannot be directly flattened when belonging to a
list of general values. Their contents are instead flattened when received and
analysed in the decryption phase.

To perform many-to-one bindings, we resort to a partition operator
∏

k that,
given a list of flattened values (T1, . . . , Tn), returns all the possible partitions
composed by k non-empty groups (or lists) of flattened values. For simplicity,
we use T̃ to represent a list of flattened values (T1, . . . , Tj)

Note that the function is only defined if n ≥ k, in which case it returns a set
of lists satisfying the condition. Now binding k variables x1, ..., xk to n flat-
tened values amounts to partitioning the values into k (the number of variables)
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non-empty lists of flattened values, (T̃1, ..., T̃k) ∈
∏

k(T1, . . . , Tn), and binding
variables xi to the corresponding list T̃i.

Example 2. Consider the successfulmatchingof (m;x1, x2)against (m,n1, n2, n3).
Since

∏
2(n1, n2, n3) = {((n1), (n2, n3)), ((n1, n2), (n3))}, it results in two possi-

ble effects (recall that for each i, T̃i must be non-empty), i.e.

– binding variable x1 to (n1) and binding variable x2 to (n2, n3), or
– binding variable x1 to (n1, n2) and binding variable x2 to (n3).

Finally, we define the relation =F as the least equivalence over V al and (by
overloading the symbol) and over Flat that includes:
– v =F v′ iff v = v′;
– (V1, ..., Vk) =F (V ′

1 , ..., V
′
n) iff Fl(V1, ..., Vk) = Fl(V ′

1 , ..., V
′
n);

– {V1, ..., Vk}V0 =F {V ′
1 , ..., V

′
n}V ′

0
iff Fl(V1, ..., Vk) = Fl(V ′

1 , ..., V
′
n) and

Fl(V0) = Fl(V ′
0);

Semantics. LYSA has a reduction semantics, based on a standard structural
equivalence. The reduction relation →R is the least relation on closed pro-
cesses that satisfies the rules in Tab. 1. It uses a standard notion of structural
congruence ≡.

At run time, the complex type confusions are checked by a reference monitor,
which aborts when there is a possibility that a concatenation of values is bound
to a single variable. We consider two variants of the reduction relation →R,
graphically identified by a different instantiation of the relation R, which deco-
rates the transition relation. The first variant takes advantage of checks on type
confusions, while the other one discards them: essentially, the first semantics
checks for the presence of complex type confusions. More precisely, the reference
monitor performs its checks at each binding occurrence, i.e. when the pattern
V1, . . . , Vk is matched against V ′

1 , . . . , V
′
k;xj , ..., xt. Both the lists of values are

flattened and result in s values T1, . . . , Ts, len values T ′
1, . . . , T

′
len, resp. The ref-

erence monitor checks whether the length of the list len+ (t− j) of the flattened
values of the pattern, corresponds to the length s of the list of the general values
to match against it. If (len+ t−j) = s then there is a one-to-one correspondence
between variables and flattened values. Otherwise, then there exists at least a
variable xi, which may bind to a list of more than one value. Formally:

– the reference monitor semantics, P →RM P
′, takes R = RM(s, len + t − j)

true when s = len+ t− j, where s and len+ t− j are defined as above;
– the standard semantics, P → P ′ takes R to be universally true.

The rule (Com) in the Tab. 1 states when an output 〈V1, . . . , Vk〉.P is matched
by an input (V ′

1 , . . . , V
′
j ;xj+1, . . . , xt)l.P ′. It requires that: (i) the first j general

values of the input pattern V ′
1 , . . . , V

′
j are flattened into len flattened values

T ′
1, . . . , T

′
len; (ii) the general values V1, . . . , Vk in the output tuple are flattened

into s flattened values T1, . . . , Ts; (iii) if s ≥ (len+t−j) and the first len values of
T1, . . . , Ts pairwise match with T ′

1, . . . , T
′
len then the matching succeeds; (iv) in
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Table 1. Operational Semantics; P →R P ′, parameterised on R

this case, the remaining values Tlen+1, . . . , Ts are partitioned into a sequence of
non-empty lists T̃i, whose number is equal to the one of the variables (i.e. t− j),
computed by the operator

∏
t−j . Furthermore, the reference monitor checks for

the possibility of many-to-one binding, i.e. checks whether s ≥ (len+t−j). If this
is the case, it aborts the execution. Note that, if instead s = (len+ t− j), then
Fl(V1, . . . , Vk) = V1, . . . , Vk, Fl(V ′

1 , . . . , V
′
j ) = V ′

1 , . . . , V
′
j , k = s, and j = len.

The rule (Dec) performs pattern matching and variable binding in the same
way as in (Com), with the following additional requirement: the keys for en-
cryption and decryption have to be equal, i.e. V0 =F V ′

0 . Similarly, the reference
monitor aborts the execution if many-to-one binding occurs.

The rules (New), (Par) and (Congr) are standard, where the (Congr) rule also
makes use of structural equivalence ≡.

As for the dynamic property of the process, we say that a process is complex
type coherent, when there is no complex type confusions, i.e. there is no many-
to-one binding in any of its executions. Consequently, the reference monitor will
never stop any execution step.

Definition 1 (Complex Type Coherence). A process P is complex type
coherent if for all the executions P →∗ P ′ → P ′′ whenever P ′ → P ′′ is derived
using either axiom
- (Com) on 〈V1, . . . , Vk〉.Q | (V ′

1 , . . . , V
′
j ;xj+1, . . . , xt)l.Q′ or

- (Dec) on decrypt {V1, . . . , Vk}V0 as {V ′
1 , . . . , V

′
j ;xj+1, . . . , xt}l

V ′
0

in Q
it is always the case that s = len+ t− j, where Fl(Vp, . . . , Vk) = Tp, ..., Ts and
Fl(V ′

p , . . . , V
′
j ) = Tp, ..., Tlen with p = 1 (p = 0) in the case of (Com), (Dec),

respectively.
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3 The Control Flow Analysis

Our analysis aims at safely over-approximating how a protocol behaves and when
the reference monitor may abort the computation.

The Control Flow Analysis describes a protocol behaviour by collecting all
the communications that a process may participate in. In particular, the analysis
records which value tuples may flow over the network (see the analysis component
κ below) and which value variables may be bound to (component ρ). This gives
information on bindings due to pattern matching. Moreover, at each binding
occurrence, the Control Flow Analysis checks whether there is any many-to-one
binding possible, and records it as a binding violation (component ψ). Formally,
the approximation, or estimate, is a triple (ρ, κ, ψ) (respectively, a pair (ρ, θ)
when analysing an expression E) that satisfies the judgements defined by the
axioms and rules in Tab. 2.

Analysis of Expressions. For each expression E, our analysis will determine
a superset of the possible values it may evaluate to. For this, the analysis keeps
track of the potential values of variables, by recording them into the global
abstract environment:
• ρ : X → P(V al) that maps the variables to the sets of general values that they
may be bound to, i.e. if a ∈ ρ(x) then x may take the value a.

The judgement for expressions takes the form ρ |= E : ϑ where ϑ ⊆ V al∗ is an
acceptable estimate (i.e. a sound over-approximation) of the set of general value
lists that E may evaluate to in the environment ρ. The judgement is defined by
the axioms and rules in the upper part of Tab. 2. Basically, the rules demand
that ϑ contains all the value lists associated with the components of a term,
e.g. a name n evaluates to the set ϑ, provided that n belongs to ϑ; similarly for
a variable x, provided that ϑ includes the set of value lists ρ(x) to which x is
associated with.

The rule (Enc) (i) checks the validity of estimates θi for each expression
Ei; (ii) requires that all the values T1, ..., Ts obtained by flattening the k-tuples
V1, ..., Vk, such that Vi ∈ θi, are collected into values of the form ({T1, · · · , Ts}l

V0
),

(iii) requires these values to belong to ϑ.

Analysis of Processes. In the analysis of processes, we focus on which tuples
of values can flow on the network:
• κ ⊆ P(V al∗), the abstract network environment, includes all the tuples forming
a message that may flow on the network, e.g. if the tuple 〈a, b〉 belongs to κ then
it can be sent on the network.

The judgement for processes has the form: (ρ, κ) |= P : ψ, where ψ is the pos-
sibly empty set of “error messages” of the form l, indicating a binding violation
at the point labelled l. We prove in Theorem 2 below that when ψ = ∅ we may
do without the reference monitor. The judgement is defined by the axioms and
rules in the lower part of Tab. 2 (where A ⇒ B means that B is analysed only
when A is evaluated to be true) and are explained below.

CFA Rules Explanation. The rule for output (Out), computes all the mes-
sages that can be obtained by flattening all the general values to which
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Table 2. Analysis of terms; ρ |= E : ϑ, and processes: (ρ, κ) |= P : ψ

(Name)
(n) ∈ ϑ

ρ |= n : ϑ
(Var)

ρ(x) ⊆ ϑ

ρ |= x : ϑ

(Enc)

∧k
i=0 ρ |= Ei : ϑi ∧

∀V0, . . . , Vk : ∧k
i=0 Vi ∈ ϑi ∧ F l(V1, ..., Vk) = T1, ..., Ts ⇒

({T1, ..., Ts}V0) ∈ ϑ

ρ |= {E1, . . . , Ek}E0 : ϑ

(Out)

∧k
i=1 ρ |= Ei : ϑi ∧

∀V1, . . . , Vk : ∧k
i=1Vi ∈ ϑi ∧ F l(V1, ..., Vk) = T1, ..., Ts ⇒

〈T1, ..., Ts〉 ∈ κ ∧ (ρ, κ) |= P : ψ

(ρ, κ) |= 〈E1, . . . , Ek〉.P : ψ

(In)

∧j
i=1 ρ |= Ei : ϑ1 ∧

∀V ′
1, . . . , V

′
j : ∧j

i=1V
′
i ∈ ϑi ∧ F l(V ′

1 , ..., V ′
j ) = T ′

1, ..., T
′
len ⇒

∀〈T1, ..., Ts〉 ∈ κ : T1, ..., Tlen =F T ′
1, ..., T

′
len ⇒

∀(T̃j+1, . . . , T̃t) ∈
∏

t−j(Tlen+1, . . . , Tk)⇒
(∧t

i=j+1 T̃i ∈ ρ(xi) ∧ (s > len + t− j)⇒ l ∈ ψ ∧ (ρ, κ) |= P : ψ)

(ρ, κ) |= (E1, . . . , Ej ; xj+1, . . . , xt)l.P : ψ
where s ≥ len + t− j

(Dec)

ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

∀V ′
0, . . . , V

′
j : ∧j

i=0V
′
i ∈ ϑi ∧ F l(V ′

1 , ..., V ′
j ) = T ′

1, ..., T
′
len ⇒

∀{T1, . . . , Ts}V0 ∈ ϑ : T1, ..., Tlen =F T ′
1, ..., T

′
len ⇒

∀(T̃ ′
j+1, . . . , T̃

′
t ) ∈

∏
t−j(Tlen+1, . . . , Tk)⇒

(∧t
i=j+1 T̃ ′

i ∈ ρ(xi) ∧ (s > len + t− j)⇒ l ∈ ψ ∧ (ρ, κ) |= P : ψ)

(ρ, κ) |= decrypt E as {E1, . . . , Ej ; xj+1, . . . , xt}l
E0

in P : ψ

where s ≥ len + t− j

(New)
(ρ, κ) |= P : ψ

(ρ, κ) |= (ν n)P : ψ
(Par)

(ρ, κ) |= P1 : ψ ∧ (ρ, κ) |= P2 : ψ

(ρ, κ) |= P1|P2 : ψ

(Rep)
(ρ, κ) |= P : ψ

(ρ, κ) |=!P : ψ
(Nil) (ρ, κ) |= 0 : ψ

sub-expressions may be evaluated. The use of the flatten function makes sure
that each message is plain-structured, i.e. redundant parentheses are dropped.

More precisely, it (i) checks the validity of estimates θi for each expression
Ei; (ii) requires that all the values obtained by flattening the k-tuples V1, ..., Vk,
such that Vi ∈ θi, can flow on the network, i.e. that they are in the component ρ;
(iii) requires that the estimate (ρ, κ, ψ) is valid also for the continuation process
P . Suppose e.g. to analyse 〈A,NA〉.0. In this case, we have that ρ |= A : {(A)},
ρ |= NA : {(NA)}, Fl((A), (NA)) = A,NA and 〈A,NA〉 ∈ κ. Suppose instead to
have 〈A, xA〉.P and ρ(xA) = {(NA), (N ′

A)}. In this case we have Fl((A), (NA)) =
A,NA, Fl((A), (N ′

A)) = A,N ′
A, 〈A,NA〉 ∈ κ and also 〈A,N ′

A〉 ∈ κ.
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The rule for input (In) basically looks up in κ for matched tuples and performs
variable binding before analysing the continuation process. This is done in the
following steps: the rule (i) evaluates the first j expressions, whose results are
general values, V ′

i . These are flattened into a list of values T ′
1, ..., T

′
len in order to

perform the pattern matching. Then, the rule (ii) checks whether the first len
values of any message 〈T1, ..., Ts〉 in κ (i.e. any message predicted to flow on the
network) matches the values from previous step, i.e. T ′

1, ..., T
′
len. Also, the rule

(iii) partitions the remaining Tlen+1, ..., Ts values of the tuple 〈T1, ..., Ts〉 in all
the possible ways to obtain t− j lists of flattened values T̃i and requires each list
is bound to the corresponding variable T̃i ∈ ρ(xi). The rule (iv) checks whether
the flattened pattern and the flattened value are of the same length. If this is not
the case, the final step should be in putting l in the error component ψ. Finally,
the rule (v) analyses the continuation process. Suppose to analyse the process
(A, xA;x, xB).0, where 〈A,NA, B,NB〉 ∈ κ and (NA) ∈ ρ(xA). Concretising the
rule (Inp) gives j = 2, t = 2 and the followings,

ρ |= A : ϑ1 ∧ ρ |= xA : ϑ2 yielding ϑ1 � (A) and ϑ2 � (NA)
∀V ′

1 , V ′
2 : V ′

1 ∈ ϑ1 ∧ V ′
2 ∈ ϑ2 ∧ taking V ′

1 = (A) and V ′
2 = (NA) ∧

F l(V ′
1 , V ′

2) = T ′
1, ..., T

′
len len = 2 and T ′

1, ..., T
′
len = A,NA

∀〈T1, . . . , Ts〉 ∈ κ : if 〈A, NA, B, NB〉 ∈ κ and s = 4
i.e. T1 = A,T2 = NA, T3 = B, T4 = NB

T1, . . . , Tlen =F T ′
1, . . . , T

′
len ⇒ T1, T2 =F T ′

1, T
′
2 = A,NA

∀(T̃3, T̃4) ∈
∏

2(T3, T4)⇒
∏

2(T3, T4) =
∏

2(B, NB) = {((B), (NB))}
(T̃3 ∈ ρ(x) ∧ T̃4 ∈ ρ(xA)∧ gives (B) ∈ ρ(x) ∧ (NB) ∈ ρ(xB)
(s > len + t− j)⇒ l ∈ ψ∧ and 4 = 4 does not require l �∈ ψ
(ρ, κ) |= 0 : ψ) true

(ρ, κ) |= (A, xA; x, xB)l.0 : ψ

In particular, ((B), (NB)) ∈
∏

2(B,NB) implies that (B) ∈ ρ(x) and (NB) ∈
ρ(xB). Suppose to have also that 〈A,NA, B,NB,K〉 ∈ κ. In this case, ((B),
(NB,K)) ∈

∏
2(B,NB,K) and therefore (B) ∈ ρ(x) and (NB,K) ∈ ρ(xB) and

also ((B,NB),K) ∈
∏

2(B,NB,K) and therefore (B,NB) ∈ ρ(x) and (K) ∈
ρ(xB). More precisely:

ρ |= A : ϑ1 ∧ ρ |= xA : ϑ2 yielding ϑ1 � (A) and ϑ2 � (NA)
∀V ′

1 , V ′
2 : V ′

1 ∈ ϑ1 ∧ V ′
2 ∈ ϑ2 ∧ taking V ′

1 = (A) and V ′
2 = (NA) ∧

F l(V ′
1 , V ′

2 ) = T ′
1, ..., T

′
len len = 2 and T ′

1, ..., T
′
len = A, NA

∀〈T1, . . . , Ts〉 ∈ κ : if 〈A,NA, B, NB , K〉 ∈ κ and s = 5
i.e. T1 = A,T2 = NA, T3 = B, T4 = NB , T5 = K

T1, . . . , Tlen =F T ′
1, . . . , T

′
len ⇒ T1, T2 =F T ′

1, T
′
2 = A,NA

∀(T̃3, T̃4) ∈
∏

2(T3, T4, T5)⇒
∏

2(T3, T4, T5) =
∏

2(B, NB , K) =
{((B), (NB , K)), ((B, NB), (K))}

(T̃3 ∈ ρ(x) ∧ T̃4 ∈ ρ(xA) gives (B), (B, NB) ∈ ρ(x) and (K), (NB , K) ∈ ρ(xB)
(s > len + t− j)⇒ l ∈ ψ∧ 5 > 2 + 4− 2 requires l ∈ ψ
(ρ, κ) |= 0 : ψ true

(ρ, κ) |= (A, xA; x, xB)l.0 : ψ
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The rule for decryption (Dec) is similar to (In): the values to be matched are
those obtained by evaluating the expression E; while the matching ones are the
terms inside decryption. If the check succeeds then variables are bound and the
continuation process P is analysed. Moreover, the rule checks the possibility of
many-to-one binding: the component ψ must contain the label l corresponding to
the decryption. Suppose e.g. to have decrypt E as {E1, . . . , E2;x3, . . . , x4}l

E0
in P ,

with E = {A,NA, B,NB}K , E0 = K,E1 = A, E2 = xA and ρ(xA) = {(NA)}.
Then we have that ρ |= A : {(A)}, ρ |= xA : {(NA)} and Fl((A), (NA)) = A,NA.
Then ((B), (NB)) ∈

∏
2(B,NB) implies that (B) ∈ ρ(x3) and (NB) ∈ ρ(x4).

Suppose to have instead E = {A,NA, B,NB,K0}K , then ((B), (NB ,K0)) ∈∏
2(B,NB,K0) and therefore (B) ∈ ρ(x3) and (NB ,K0) ∈ ρ(x4) and also

((B,NB), (K0)) ∈
∏

2(B,NB,K0) and therefore (B,NB) ∈ ρ(x3) and (K0) ∈
ρ(x4). Furthermore l ∈ ψ.

The rule (Nil) does not restrict the estimate, while the rules (New), (Par) and
(Rep) ensure that the estimate also holds for the immediate sub-processes.

Semantics Properties. Our analysis is correct with respect to the operational
semantics of LYSA. The detailed proofs are omitted due to space limitations and
can be found in [4].

We have the following results. The first states that estimates are resistant to
substitution of closed terms for variables, and it holds for both extended terms
and processes. The second one says that estimates respect ≡.

Lemma 1. 1. (a)ρ |= E : ϑ∧ (T1, . . . , Tk) ∈ ρ(x) implyρ |= E[T1, . . . , Tk/x] : ϑ
(b) (ρ, κ) |= P : ψ ∧ (T1, . . . , Tk) ∈ ρ(x) imply (ρ, κ) |= P [T1, . . . , Tk/x] : ψ

2. If P ≡ Q and (ρ, κ) |= P then (ρ, κ) |= Q

Our analysis is semantically correct regardless of the way the semantics is param-
eterised, furthermore the reference monitor semantics cannot stop the execution
of P when ψ is empty. The proof is by induction on the inference of P → Q.

Theorem 1. (Subject reduction) If P → Q and (ρ, κ) |= P : ψ then
(ρ, κ) |= Q : ψ. Additionally, if ψ = ∅ then P →RM Q.

The next theorem shows that our analysis correctly predicts when we can safely
do without the reference monitor. We shall say that the reference monitor RM
cannot abort a process P when there exist no Q,Q′ such that P →∗ Q → Q′

and P →∗
RM Q�RM. (As usual, * stands for the transitive and reflexive closure

of the relation in question, and we omit the string of labels in this case; while
Q�RM stands for 
 ∃Q′ : Q→RM Q

′.) We then have:

Theorem 2. (Static check for reference monitor)

If (ρ, κ) |= P : ψ and ψ = ∅ then RM cannot abort P .

Modelling the Attackers. In a protocol execution, several principals exchange
messages over an open network, which is therefore vulnerable to a malicious
attacker. We assume it is an active Dolev-Yao attacker [10]: it can eavesdrop,
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and replay, encrypt, decrypt, generate messages providing that the necessary
information is within his knowledge, that it increases while interacting with
the network. This attacker can be modelled in LYSA as a process running in
parallel with the protocol process. Formally, we shall have Psys | P•, where Psys

represents the protocol process and P• is some arbitrary attacker. To get an
account of the infinitely many attackers, the overall idea is to find a formula F
(for a similar treatment see [5]) that characterizes P•: this means that whenever
a triple (ρ, κ, ψ) satisfies it, then (ρ, κ) |= P• : ψ and this holds for all attackers,
in particular for the hardest one [21]. Intuitively, the formula F has to mimic
how P• is analysed. The attacker process is parameterised on some attributes of
Psys, e.g. the length of all the encryptions that occurred and all the messages
sent over the network. In the formula, the names and variables the attacker uses
are apart from the ones used by Psys. We can then postulate a new distinguished
name n• (variable z•) in which the names (variables, resp.) of the attacker are
coalesced; therefore n• may represent any name generated by the attacker, while
ρ(z•) represents the attacker knowledge. It is possible to prove that if an estimate
of a process P with ψ = ∅ satisfies the attacker formula than RM does not abort
the execution of P | Q, regardless of the choice of the attacker Q. Further details
are in [4,5].

Implementation. Following [5], the implementation can be obtained along the
lines that first transform the analysis into a logically equivalent formulation writ-
ten in Alternation free Least Fixed Point logic (ALFP) [22], and then followed
by using the Succinct Solver [22], which computes the least interpretation of the
predicate symbols in a given ALFP formula.

3.1 Validation of the Amended Needham-Schroeder Protocol

Here, we will show that the analysis applied to the Amended Needham-Schroeder
protocol, successfully captures the complex type confusion leading to the attack,
presented in the Introduction.

In LYSA, each instance of the protocol is modelled as three processes, A, B
and S, running in parallel within the scope of the shared keys. To allow the
complex type confusion to arise, we put two instances together, and add indices
to names and variables used in each instance in order to tell them apart, namely

PNS = (ν KA)(ν KB)(A1 | A2 | B1 | B2 | S)

To save space, processes without indices are shown in Tab. 3. For clarity, each
message begins with the pair of principals involved in the exchange. In LYSA

we do not have other data constructors than encryption, but the predecessor
operation can be modelled by an encryption with the key PRED that is also
known to the attacker. For the sake of readability, we directly use N − 1. We
can apply our analysis and check that (ρ, κ) |= PNS : ψ, where ρ, κ and ψ have
the non-empty entries (only the interesting ones) listed in Tab. 3.

The message exchanges of the regular run (the first instance) performed by
A and B are correctly reflected by the analysis. In step 1, B receives the tuple
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Table 3. Amended Needham-Schroeder protocol: specification (above); some analysis
results (below)

sent by A and binds variable y1a to the value (A), as predicted by (A) ∈ ρ(y1a).
In step 2, B generates a nonce N1

B, encrypts it together to the value of y1a and
sends it out to the network. A reads this message, binds the variable x1enc to the
value ({A,N1

B}KB), as reflected by ({A,N1
B}KB ) ∈ ρ(x1enc); then, in step 3, it

generates N1
A and sends it to S as a plain-text, together with x1enc as predicted

by 〈A,S,N1
A, {A,N1

B}KB〉 ∈ κ, and so on.
Moreover, the non-empty error component ψ shows that a many-to-one bind-

ing may happen in the decryption with label l6 and therefore suggests a possible
complex type confusion leading to a complex type flaw attack.

By studying the contents of the analysis components ρ and κ, we can rebuild
the attack sequence. Since 〈A,S,N1

A, {A,N1
B}KB 〉 ∈ κ, then (N1

A) ∈ ρ(z•). This
corresponds to the fact that the attacker, able to intercept messages on the
net, can learn N1

A. The entry 〈A,B,N1
A, B, n•〉 ∈ κ reflects that the attacker

is able to constructs and sends to A a new message (N1
A, B, n•) to initiate the

second instance, where (n•) is within its knowledge. The entry (N1
A, B, n•) in

ρ(y2a) corresponds to the fact A receives this message, by binding y2a to the value
(N1

A, B, n•). This is a many-to-one binding, detected by the analysis, as reported
by the error component: l6 ∈ ψ. Afterwards, A encrypts what she has received
with a new nonceN2

A and sends it out, as indicated by 〈A,B,N1
A, B, n•, N

2
A〉 ∈ κ.

The attacker replays this to A, who takes it as the message from S in the step
4 of the first instance ((N1

A, B, n•, N
2
A) ∈ ρ(x1z)). The entry (n•) ∈ ρ(x1k) reflects

that in decrypting message 4, A binds x1k to the concatenation of values (n•) to
be used as the session key. After completing the challenge and response in step
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6 and 7, A then believes she is talking to B using the session key K, but indeed
she is talking to the attacker using (n•) as the new key. This exactly corresponds
to the complex type flaw attack shown before.

The protocol can be modified such that each principal use different keys for
different roles, i.e. all the principals taking the initiator’s role Ai share a master
key Ki

A with the server and all the principals taking the responder’s role Bj

share Kj
B with the server. In this case, the analysis holds for ψ = ∅ and thereby

it guarantees the absence of complex type confusions attacks.
Here, only two sessions are taken into account. However, as in [5], the proto-

col can be modelled in a way that multiple principals are participating in the
protocol at the same time and therefore mimic the scenario that several sessions
are running together. Due to space limitation, further details are skipped here.

4 Conclusion

We say that a complex type confusion attack happens when a concatenation of
fields in a message is interpreted as a single field. This kind of attack is not easy
to deal with in a process algebraic setting, because message specifications are
given at a high level: the focus is on their contents and not on their structure. In
this paper, we extended the notation of variable binding in the process calculus
LYSA from one-to-one to many-to-one binding, thus making it easier to model
the scenario where a list of fields is confused with a single field. The semantics
of the extended LYSA makes use of a reference monitor to capture the possible
many-to-one bindings at run time. We mechanise the search for complex type
confusions by defining a Control Flow Analysis for the extended LYSA calculus.
It checks at each input and decryption place whether a many-to-one binding
may happen. The analysis ensures that, if no such binding is possible, then the
process is not subject to complex type flaw attacks at run time. As far as the
attacker is concerned, we adopted the standard notion from Dolev-Yao threat
model [10], and we enriched it to deal with the new kind of variable binding.

We applied our Control Flow Analysis to the Amended Needham-Schroeder
Protocol (as shown in Section 3), to Otway-Rees [23], Yahalom [8] (not reported,
because of lack of space). It has confirmed that we can successfully detect the
complex type confusions leading to type flaw attacks on those protocols. This
detection is done in a purely mechanical and static way. The analysis also con-
firms the complex type flaw attacks on a version of the Neuman-Stubblebine
protocol, found in [27].

The technique presented here is for detecting complex type flaw attacks only.
Simple type flaw attacks, i.e. two single fields of different types are confused
with each other, not considered here, have been addressed instead in [6], under
a framework similar to the present one. Besides the type tags, several kinds of
annotations for LYSA has been developed for validating various security proper-
ties, e.g. confidentiality [12], freshness [11] and message authentication [5]. They
can be easily combined with the annotations introduced here, thus giving more
comprehensive results.
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Usual formal frameworks for the verification of security protocols need to be
suitably extended for modelling complex type flaw confusions. Extensions include
the possibility to decompose and rebuild message components, that we obtain by
playing with single, general and flattened values. In [7], for instance, the author
uses a concatenation operator to glue together different components in messages.
The approach is based on linear logic and it is capable of finding the complex type
flaw attack on the Otway-Rees protocol. Meadows [17,18] approach is more gen-
eral and can address also even more complex type confusions, e.g. those due to the
confusion between pieces of fields of one type with pieces of another. The author,
using the GDOI protocol as running example, develops a model of types that as-
sumes differing capacities for checking types by principals. Moreover, Meadows
presents a procedure to determine whether the types of two messages can be con-
fused, then also evaluating the probability of possible misinterpretations. In [15],
using the AVISPA [3] model checking tool, type flaw attacks of the GDOI pro-
tocol are captured. Furthermore, by using the Object-Z schema calculus [28,14]
the authors verify the attacks at a lower level and find which are the low-level as-
sumptions that lead to the attacks and which are the requirements that prevent
them. Type confusions are captured also in [19], by using an efficient Prolog based
constraint solver. The above settings, especially the ones in [17,18,15], are more
general than our, e.g. they capture more involved kinds of type confusions in a
complex setting, like the one of the GDOI protocol. Our work represents a first
step in modelling lower level features of protocol specifications in a process alge-
braic setting, like the ones that lead to type confusions. The idea is to only perform
the refinement of the high-level specifications necessary to capture the low-level
feature of interest. Our control flow analysis procedure always guarantees termi-
nation, even though it only offers an approximation of protocols behaviour and of
their dynamic properties. Due to the nature of the over-approximation, false pos-
itives may happen, as some of the many-to-one bindings are not necessary leading
to a complex type flaw attack. By taking the bit length of each field into account,
i.e. using them as thresholds like in [25,26], may greatly reduce the number of false
positives. For example, assuming that a nonce,N , is always represented by 8 bits,
an agent’s name, A, by 8 bits, and a key, K, by 12 bits, the concatenation of A
and N will be never confused with K and therefore it can be ruled out. In this
paper we focussed on a particular kind of confusions, leaving other kind of type
confusions for future work. We could use one-to-many bindings to deal with the
case in which pieces of fields are confused with each other. We also would like to
move to the multi-protocol setting, where the assumptions adopted in each pro-
tocol could be different, but messages could be easily confused, typically, because
of the re-use of keys.
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Abstract Interpretation Plugins for Type Systems
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Abstract. The precision of many type based analyses can be significantly in-
creased given additional information about the programs’ execution. For this
reason it is not uncommon for such analyses to integrate supporting analyses
computing, for instance, nil-pointer or alias information. Such integration is prob-
lematic for a number of reasons: 1) it obscures the original intention of the type
system especially if multiple additional analyses are added, 2) it makes use of al-
ready available analyses difficult, since they have to be rephrased as type systems,
and 3) it is non-modular: changing the supporting analyses implies changing the
entire type system.

Using ideas from abstract interpretation we present a method for parameter-
izing type systems over the results of abstract analyses in such a way that one
modular correctness proof can be obtained. This is achieved by defining a general
format for information transferal and use of the information provided by the ab-
stract analyses. The key gain from this method is a clear separation between the
correctness of the analyses and the type system, both in the implementation and
correctness proof, which leads to a comparatively easy way of changing the pa-
rameterized analysis, and making use of precise, and hence complicated analyses.

In addition, we exemplify the use of the framework by presenting a parame-
terized type system that uses additional information to improve the precision of
exception types in a small imperative language with arrays.

1 Introduction

In the book Types and Programming Languages [14] Pierce defines a type system in the
following way: "A type system is a tractable syntactic method for proving the absence
of certain program behaviors by classifying phrases according to the kinds of values
they compute".

Pierce limits his definition to the absence of certain program behaviors, since many
interesting (bad) behaviors cannot be ruled out statically. Well-known examples of this
include division by zero, nil-pointer dereference and class cast errors. The standard
solution to this is to lift the semantics and include these errors into the valid results
of the execution, often in the form of exceptions, and to have the type system rule out
all errors not modeled in the semantics, typically in addition to tracking what errors a
program may result in.

For a standard type system this solution is adequate; the types of programs are not
affected in any other way than the addition of a set of possible exceptions. In particular,
any inaccuracies in the set of possible exceptions are unproblematic to the type sys-
tem itself (albeit inconvenient to the programmer), and, thus, in standard programming
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languages not much effort is made to rule out syntactically present but semantically
impossible exceptions.

For type based program analyses, however, the situation is different. Not only are we
not able to change the semantics to fit the capabilities of the type system, since we are,
in effect, retrofitting a type system onto an existing language, but for some analyses —
notably, for information flow security type systems [15] — inaccuracies propagate from
e.g. the exception types via implicit flows to the other types lowering the precision of the
type system and possibly rendering more semantically secure programs to be classified
as insecure. Consider the following example:

try c1; c2; ... catch (Exception e) ch

If the command c1 may fail this affects whether the succeeding commands c2, . . . are
run or not, and thus any side effects — e.g. output on a public network — will encode
information about the data manipulated by c1. If this information must be protected, this
put serious limits on the succeeding commands c2, . . . and on the exception handler ch.

This is problematic, since dynamic error handling introduces many possible branches
— every partial instruction becomes a possible branch to the error handler if it cannot be
guaranteed not to crash, and, thus, a source of implicit flows. Hence, from a practical
standpoint, there is a need to increase the accuracy of type based information flow
analyses as demonstrated by some recent attempts [2,12,1]. Noting that the majority of
the information flow analyses are formulated in terms of type systems, we focus on how
to strengthen a type system with additional information to increase its accuracy.

Even though our main motivation for this work comes from information flow type
systems, we investigate the problem in terms of a standard type system; this both gen-
eralizes the method and simplifies the presentation. All our results are immediately
applicable to information flow type systems.

We see two major different methods of solving the problem of strengthening type
systems: 1) by integration, and 2) by parameterization. Briefly, 1) relies on extending
the type system to compute the additional needed information, and 2) relies on using
information about the programs’ execution provided by other analyses. Integration is
problematic for a number of reasons: 1) it obscures the original intention of the type
system especially if multiple additional analyses are added, 2) it makes use of already
available analyses difficult, since they have to be rephrased as type systems, and 3) it is
non-modular: changing the supporting analysis implies changing the entire type system.

Contribution. We present a modular approach for parameterizing type systems with
information about the program execution; the method is modular not only at the type
system level, but also at the proof level.

The novelty of the approach lies not in the idea of parameterizing information in
itself, rather, the novelty is the setting — the parameterization of type systems with in-
formation from abstract analyses — together with the identification of a general, widely
applicable format for information passing and inspection, which allows for modularity
with only small modifications to the type system and its correctness proof, and no modi-
fications to the abstract analyses. This modularity makes instancing parameterized type
systems with the results of different abstract analyses relatively cheap, which can be
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leveraged to create staged type systems, where increasingly precise analyses are chosen
based on previous typing errors.

Finally, we exemplify the use of the method in terms of a parameterized type system
for a small imperative language with arrays, and explore how the parameterization can
be used to rule out nil-pointer exceptions, and exceptions stemming from array indices
outside the bounds of the corresponding arrays.

Outline. Section 2 presents a small imperative language with arrays, used to explain
the method more concretely. Section 3 presents the parameterization: the abstract en-
vironment maps, the plugins properties and the plugins, and describes the process of
parameterizing a type system. Section 4 is a concrete example of applying the method
to get a parameterized type system of the language of Section 2. Section 5 discusses
related work, and finally Section 6 concludes and discusses future work.

2 Language

To be concrete we use a small imperative language with arrays to illustrate our method.

Syntax. The language is a standard while language with arrays. For simplicity we con-
sider all binary operators to be total; the same techniques described to handling the
partiality of array indexing apply to partial operators. The syntax of the language is
found in Table 1, where the allocation type τ [i] indicates that an array of size i with
elements of type τ should be allocated; the primitive types ranged over by τ are defined
in Section 4.1 below.

Table 1. Syntax

Expressions e ::= nil | i | x | e � e | x[e] | len(x)
Commands c ::= x := e | x[e] := x | if e c c | while e c | c; c | x := new (τ [i]) | skip

Semantics. The semantics of the expressions is given in terms of a big step semantics
with transitions of the form 〈E, e〉 ⇓ v⊥, where v⊥ ranges over error lifted values v (⊥
indicates errors), and E ranges over the set of environments Env , i.e. pairs (s, h) of a
store, and a heap. The values consist of the integers i and the pointers p. The arrays a are
pairs (i, d) of the size of the array and a map from integers to values with a continuous
domain starting from 0. Formally, d ranges over

⋃
n∈�{[0 �→ v1, . . . , n �→ vn]}. The

stores s are maps from variables x to values, and the heaps h are maps from pointers to
arrays.

In the definition of the semantics, if a = (i1, d) then let a(i2) denote d(i2). Further,
for E = (s, h), let E(x) denote s(x), E[x �→ v] denote (s[x �→ v], h), E(p) denote
h(p), and similarly for other operations on environments including variables or pointers.

The semantics of commands is given in terms of a small step semantics between
configurationsC with transitions of the form 〈E, c〉 → C, where C is either one of the
terminal configurations⊥E and 〈E, skip〉 indicating abnormal and normal termination



Abstract Interpretation Plugins for Type Systems 187

Table 2. Selected Semantic Rules for Expressions and Commands

E(x) = p E(p) = (i, d)

〈E, len(x)〉 ⇓ i

E(x) = nil

〈E, len(x)〉 ⇓ ⊥
E(x1) = nil

〈E,x1[i] := x2〉 → ⊥E

E(x1) = p E(p) = (i2, d) E(x2) = v i1 �∈ [0..(i2 − 1)]

〈E, x1[i1] := x2〉 → ⊥E

E(x1) = p E(p) = (i2, d) E(x2) = v i1 ∈ [0..(i2 − 1)]

〈E,x1[i1] := x2〉 → 〈E[p �→ (i2, d[i1 �→ v])], skip〉

〈E,while e c〉 → 〈E, if e (c; while e c) skip〉

〈E, e〉 ⇓ v

〈E, R[e]〉 → 〈E, R[v]〉
〈E, e〉 ⇓ ⊥

〈E, R[e]〉 → ⊥E

E(x) = p E(p) = (i1, d)
〈E, e〉 ⇓ i2 i2 �∈ [0..i1 − 1]

〈E,x[e]〉 ⇓ ⊥
〈E1, c1〉 → 〈E2, c2〉

〈E1, R[c1]〉 → 〈E2, R[c2]〉
〈E, c〉 → ⊥E

〈E,R[c]〉 → ⊥E

in the environment E, respectively, or a non-terminal configuration 〈E, c〉 where c 
=
skip. A selection of the semantic rules for expressions and commands are presented in
Table 2; the omitted rules are found in the extended version of this paper [9].

As is common for small step semantics we use evaluation contexts R.

R ::= · | x := R | x[R] := x | if R c c | R; c

The accompanying standard reduction rules allow for leftmost reduction of sequences,
error propagation and reduction of expressions inside commands.

3 Parameterization

With this we are ready to detail the method of parameterization. First, let us recapture
our goal: we want to describe a modular way of parameterizing a type system with
information about the programs’ execution in such a way that a modular correctness
proof can be formed for the resulting system, with the property that an instantiated
system satisfies a correspondingly instantiated correctness proof.

To achieve this, we define a general format of parameterized information and a gen-
eral method to access this information. Using the ideas of abstract interpretation, we let
the parameterized information be a map from program points to abstract environments,
intuitively representing the set of environments that can reach each program point. Such
a map is semantically sound — a solution in our terminology — w.r.t. a set of initial
concrete environments and a program, if every possible execution trace the initial envi-
ronments can give rise to is modeled by the map.

For modularity we do not want to assume anything about the structure of the abstract
environments, but treat them as completely opaque. Noting that each type system uses
a finite number of forms of questions, we parameterize the type system not only over
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the abstract environment map, but also over a set of plugins — sound approximations
of the semantic properties of the questions used by the type system.

Labeled Commands. Following the elegant approach of Sands and Hunt [13] we extend
the command language with label annotations, which allow for a particularly direct way
of recording the environments that enter and leave the labeled commands. Let l range
over labels drawn from the set of labelsL. A command c can be annotated with an entry
label (c)l , an exit label (c)l , or both.

We extend the reduction contexts with (R)l , which allows for reduction under exit
labels, and the semantics with the following transitions.

〈E, (c)l 〉 → 〈E, c〉 〈E, (skip)l〉 → 〈E, skip〉

The idea is that a transition of the form 〈E, (c)l 〉 → 〈E, c〉 leaves a marker in the
execution sequence that the command labeled with the entry label l was executed in E,
and a transition of the form 〈E, (skip)l 〉 → 〈E, skip〉 indicates that the environment
E was produced by the command labeled with the exit label l , which is why allowing
reduction under exit labels but not under entry labels is important.

3.1 Abstract Environment Maps

Using the ideas of abstract interpretation [4,5], let ��� be the set of abstract environ-
ments ranged over by �, equipped with a concretization function γ : ��� → P(Env),
and let an abstract environment map � : L → ��� be a map from program points
to abstract environments, associating each program point with an abstract environment
representing all concrete environments that may reach the program point.

We define two soundness properties for abstract environment maps that relate the
maps to the execution of a program when started in environments drawn from a set of
initial environments C.

An abstract environment map � is an entry solution written entrysolE1
c1

(�) w.r.t.
an initial concrete environment E1, and a program c1 if all 〈E2, (c2)l 〉 → 〈E2, c2〉
transitions in the trace originating in 〈E1, c1〉 are captured by �. The notion of exit
solution written exitsolE1

c (�) is defined similarly but w.r.t. all transitions of the form
〈E2, (skip)l 〉 → 〈E2, skip〉.

entrysolE1
c1

(�) ≡ ∀E2, c2, l . 〈E1, c1〉 →∗ 〈E2, R[(c2)l ]〉 =⇒ E2 ∈ γ(�(l))
exitsolE1

c (�) ≡ ∀E2, l . 〈E1, c〉 →∗ 〈E2, R[(skip)l ]〉 =⇒ E2 ∈ γ(�(l))

The definitions are lifted to sets of initial environments C in the obvious way.
Both the entry and exit solution properties are preserved under execution as defined

below.

Lemma 1 (Preservation of Entry and Exit Solutions under Execution). In the fol-
lowing, let C1 be the set of initial concrete environments and C2 the set of environments
that reach c2, i.e. C2 = {E2 | E1 ∈ C1, 〈E1, c1〉 → 〈E2, c2〉}.

entrysolC1
c1

(�) =⇒ entrysolC2
c2

(�) and exitsolC1
c1

(�) =⇒ exitsolC2
c2

(�)
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These properties immediately extend to any finite sequence of execution steps by in-
ductions over the length of the sequence.

Further, solutions can freely be paired to form new solutions similarly to the inde-
pendent attribute method for abstract interpretation [5]. This is important since it shows
that no generality is lost by parameterizing a type system over only one abstract envi-
ronment map.

3.2 Plugins

To the parameterized type systems, the structure of the abstract environments is opaque
and cannot be accessed directly. This allows for the decoupling of the parameterized
type system and the external analysis computing the abstract environments. However,
the parameterized type systems need a way to extract the desired information. To this
end we introduce the concept of plugins. Intuitively, a plugin provides information about
a specific property of an environment; for instance, a nil-pointer plugin provides infor-
mation about which parts of the environment are nil.

The plugins are defined to be sound approximations of plugin properties, defined as
families of relations on expressions.

Plugin Properties. Let R be an n-ary relation on values; R induces a plugin property,
writtenR�, which is a family of n-ary relations on expressions indexed by environments
in the following way.

(e1, . . . , en) ∈ R�
E ⇐⇒ 〈E, e1〉 ⇓ v1 ∧ . . . ∧ 〈E, en〉 ⇓ vn =⇒ (v1, . . . , vn) ∈ R

We can use the expression language to define semantic properties about environments,
since the expression language is simple, in particular, since it does not contain iteration,
and is free from side effects. A major advantage of the approach is that it allows for a
relatively simple treatment of expressions in programs.

The choice of using the expression language as the plugin language is merely out of
convenience — languages with richer expression language would mandate a separate
language for the plugins and treat the exceptions similarly to the statement, i.e. extend
the labeling and the solutions to the expressions. In our case, however, a separate plugin
language would be identical to the expressions.

Example 1 (Non-nil and Less-than Plugin Properties). The non-nil plugin property nn�

can be defined by a family of predicates indexed over concrete environments induced
by the value property nn defined such that nn(v) holds only if the value v is not equal to
nil. Similarly, the less-than plugin property lt� can be defined by lt such that lt(v1, v2)
holds only if the value v1 is less than the value v2. � 

Plugins. A plugin is a family of relations on expressions indexed by abstract environ-
ments. Given a plugin propertyR� we define plugins, R� as follows.

(e1, . . . , en) ∈ R�
�

=⇒ ∀E ∈ γ(�). (e1, . . . , en) ∈ R�
E

It is important to note that for each plugin property there are many possible plugins,
since the above formulation allows for approximative plugins. This means that regard-
less of the abstract environment, and the decidability of the plugin property R�, there
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exist decidable plugins, which guarantees the possibility of preservation of decidability
for parameterized type systems.

Example 2 (Use of Plugins). Assume a type system computing a set of possibly thrown
exceptions. When typing, for example, the array length operator len(x) we are inter-
ested in the plugin property given by the non-nil predicate nn. Let � be a sound repre-
sentation of all environments reaching len(x). Given nn�

�
(x), we know that x will not

be nil in any of the concrete environments represented by �, and, since � is a sound
representation of all environments that can reach the array length operator, we know
that a nil-pointer exception will not be thrown. � 

Despite the relative simplicity of the plugin format it is surprisingly powerful; in addi-
tion to the obvious information, such as is x ever nil, it turns out that plugins can be
used to explore the structure of the heap as we show in [10] where we use the parame-
terization to provide flow sensitive heap types.

3.3 Overview of a Parameterized Type System

Assume an arbitrary flow insensitive type system1 of the form Γ 0A c expressing that
c is well-typed in the type signature Γ , under the additional assumption A. We let the
exact forms of Γ and A be abstract; however, typical examples are that Γ is a store
type, and, for information flow type systems, that A is the security level of the context,
known as the pc [15].

The first step in parameterizing the type system is to identify the plugin properties
R�

1, . . . , R
�
m that are to be used in the parameterized type rules. For instance the non-

nil plugin property can be used to increase the precision of the type rule for the array
length operator as discussed in Example 2 above, cf. the corresponding type rules in
Section 4 below. Each type rule is then parameterized with an abstract environment
map �, and a number of plugins R�

1, . . . R
�
m, one for each of the plugin properties,

forming a parameterized system of the following form.

Γ 0
�, R�

1, . . . , R�
m

A c

A typical correctness argument for type systems is preservation [14], i.e. the preser-
vation of a type induced invariant, well-formedness, (see Section 4.3 below) under ex-
ecution. Well-formedness defines when an environment conforms to an environment
type, e.g. that all variables of integer type contain integers. Let wf Γ (E) denote that
E is well-formed in the environment type Γ ; a typical preservation statement has the
following form:

Γ 0A c =⇒ wf Γ (E1) ∧ 〈E1, c〉 → E2 =⇒ wf Γ (E2)

More generally, a class of correctness arguments for type systems have the form of
preservation of an arbitrary type indexed relation RΓ under execution:

1 Our method works equally well for flow sensitive type systems, but for brevity of explanation
this section is done in terms of a flow insensitive system.



Abstract Interpretation Plugins for Type Systems 191

Γ 0A c =⇒RΓ (E11, . . . , E1n)∧
〈E11, c〉 → E21 ∧ · · · ∧ 〈E1n, c〉 → E2n =⇒RΓ (E21, . . . , E2n)

This generalization is needed to capture invariants that are not safety properties, for
instance noninterference or live variable analysis.

For conservative parameterizations, i.e. where we add type rules with increased pre-
cision, the proofs of correctness are essentially identical to the old proofs, where certain
execution cases have been ruled out using the semantic interpretation of the plugins. To
see this consider that a typical proof of the above lemma proceeds with a case analysis
on the possible ways c can execute in the different environmentsE11 to E1n and proves
the property for each case. See the proof of Theorem 1 in Section 4.3 for an example of
this. The correctness statement for the parameterized types system becomes:

entrysolCc (�) ∧ E11 ∈ C ∧ · · · ∧E1n ∈ C ∧ Γ 0
�, R�

1, . . . , R�
m

A c =⇒

RΓ (E11, . . . , E1n)∧〈E11, c〉 → E21∧· · ·∧〈E1n, c〉 → E2n =⇒RΓ (E21, . . . , E2n)

The interpretation of this statement is that execution started in any of the environments
in the set of possible initial environments is RΓ -preserving, i.e. it narrows the validity
of the original lemma to the set of initial environments.

Proof of Correctness. It is important to note that we do not need to redo any parts of
the correctness proof when instantiating a parameterized type system.

The assumption that the extracted abstract environment maps are sound for the pro-
gram and set of initial environments under consideration, i.e. that they are solutions, is
established once per family of external analysis. This is established by, e.g., formulating
the family as a family of abstract interpretations and proving that all environment maps
extracted from an abstract analysis belonging to the family are sound for the program
and set of initial environments that the analysis was started with.

What is left per instantiation is to show that the used plugins are valid. In most cases,
this is trivial since the structure of the abstract environments have been chosen with this
in mind. Furthermore, many type systems can be improved with similar information;
thus, it should be possible to build a library with plugins for different plugin properties
that can be used when instantiating implementations of parameterized type systems.
This is important because it shows that creating new correct instantiations is a compar-
atively cheap operation, which leads to interesting implementation possibilities.

4 A Parameterized Type System

In this section we exemplify the ideas described in the previous section by presenting
a parameterized type system for the language introduced in Section 2. The type system
improves over the typical type system for such a language by using the parameterized
information to rule out exceptions that cannot occur.
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A larger example of a parameterized type system, showing how plugins can be used
to perform structural weakening and strong updates for a flow-sensitive type system,
can be found in [10].

4.1 Type Language

The primitive types ranged over by τ are the type of integers int , and array types, τ [],
indicating an array with elements of type τ . The store types ranged over byΣ are maps
from variables to primitive types. The exception types ranged over by ξ are ⊥Σ , indi-
cating the possibility that an exception is thrown, and $, indicating that no exception
is thrown. This is a simplification from typical models of exceptions, where multiple
types are used to indicate the reason for the exception. However, for the purpose of
exemplifying the parameterization this model suffices; the results are easily extended
to a richer model. In addition we use a standard subtype relation <:(omitted for space
reasons) with invariant array types.

4.2 Type Rules

The judgments for expressions, Σ 0�,nn�,lt� e : τ, ξ, is read as the expression e is
well-typed w.r.t. the abstract environment �, the non-nil plugin nn�, and the less-than
plugin lt�, in the environment type Σ, with return type τ possibly resulting in excep-
tions as indicated by ξ. The type system for commands is flow-sensitive; the judgment,
Σ1 0�,nn�,lt� c⇒ Σ2, ξ is read as the command c is well-typed w.r.t. the abstract envi-
ronment map �, the non-nil plugin nn�, and the less-than plugin lt�, in the environment
typeΣ1 resulting in the environment typeΣ2, possibly resulting in an exception as indi-
cated by ξ. The relevant type rules for expressions and commands are found in Table 3
where we use 0† as short notation for 0�,nn�,lt� and 0‡ as short notation for 0�,nn�,lt� ;
the omitted rules are found in the extended version of this paper [9].

Apart from the parts related to the parameterization, the expression and command
type rules are entirely standard. With respect to the parameterization specifics, the type
rules for array size, and array indexing make use of the parameterized information and

Table 3. Selected Type Rules for Expressions and Commands

Σ ��(l),nn�,lt� e : int , ξ Σ(x1) = τ1[] Σ(x2) = τ2 τ2 <: τ1

¬(nn�
�(l)(x1) ∧ −1 lt�

�(l) e ∧ e lt�
�(l) len(x1))

Σ �† (x1[e] := x2)
l ⇒ Σ,⊥Σ

Σ ��(l),nn�,lt� e : int , ξ Σ(x1) = τ1[] Σ(x2) = τ2 τ2 <: τ1

nn�
�(l)(x1) −1 lt�

�(l) e e lt�
�(l) len(x1)

Σ �† (x1[e] := x2)
l ⇒ Σ, ξ

Σ(x) = τ [] ¬nn�
�
(x)

Σ �‡ len(x) : int ,⊥Σ

Σ(x) = τ [] nn�
�
(x)

Σ �‡ len(x) : int ,
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occur in two forms: one that is able to exclude the possibility of exceptions, and one
that is not.

For the array size operator it suffices to rule out that the variable x ever contains nil
to rule out the possibility of exceptions, for array indexing (for both the expression and
the command) we must demand that the index is greater or equal to zero, and that the
index is smaller than the size of the array in addition to the demand that the variable is
non-nil. For an example detailing the type derivation of a small program with different
parameterized information see the example in the extended version of this paper [9].

4.3 Correctness

With this we are ready to formulate correctness for the parameterized type system. As
is standard we split the correctness argument into two theorems, progress — intuitively,
that well-typed commands and expressions are able to execute in all environments that
conform to the entry environment type of the command or expression — and preser-
vation — intuitively, that the result of running the command or expression conforms
to the exit type of the same. In contrast to the preservation proof, the progress proof is
independent of the parameterized information. For space reasons we omit the progress
proof.

Well-formedness. The well-formedness relation in Table 4 defines when a context is
well-formed w.r.t. a type. It is the extension of a standard well-formedness relation to
exception types. Most of the standard well-formedness relation has been omitted for
space reasons and is found in the extended version of this paper [9].

Table 4. Well-formedness

δ � v : τ
δ � v : τ, ξ δ � ⊥ : τ,⊥Σ

δ � E : Σ2

δ ��,nn�,lt� ⊥E : Σ1,⊥Σ2

δ � E : Σ

δ ��,nn�,lt� E : Σ, ξ

Σ1 ��,nn�,lt� c⇒ Σ2, ξ δ � E : Σ1

δ ��,nn�,lt� 〈E, c〉 : Σ2, ξ

∀i ∈ dom(a) . δ � a[i] : τ

δ � a : τ []

In short, a value is well-formed w.r.t. any exception type, whereas an error is only
well-formed w.r.t. an exception type that indicates the possibility of the error, and simi-
larly for well-formed environments, with the addition of the demand that the exception
environment is well-formed in the exception environment type. A configuration is well-
formed in the type Σ2, ξ if there exists an environment type Σ1 in which the environ-
ment E is well-formed such that the command is well-typed with Σ1 as entry type and
the Σ2, ξ as exit type.

Preservation of Types of Expressions and Commands. Preservation of types of expres-
sions expresses that well-typed expressions preserve well-formedness under execution,
i.e. for an expression e s.t.Σ 0�,nn�,lt� e : τ, ξ running e inΣ-well-formed environments
that are modeled by the abstract environment � will result in τ, ξ-well-formed values.
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Theorem 1 (Preservation of Types of Expressions)

Σ 0�,nn�,lt� e : τ, ξ =⇒ ∀E ∈ γ(�) . δ 0 E : Σ ∧ 〈E, e〉 ⇓ v =⇒ δ 0 v : τ, ξ

Proof By induction on the derivation of Σ 0�,nn�,lt� e : τ, ξ. Intuitively, in each case,
the proof proceeds by an inversion of 〈E, e〉 ⇓ v, which results in a number of sub-
cases — one for each semantic rule for the expression, including the ones resulting
in exceptions. However, in the cases where the type system can rule out exception it
contains enough information about the execution from the use of the plugins on the
abstract environment to disprove the possibility of an exception.

We exemplify the difference between a standard proof and a parameterized proof by
proving the correctness for the array indexing cases, corresponding to the two type rules
for array indexing — for space reasons, in the cases the antecedents of the expression
type rules and semantics rules are subsets of their command counterparts the expression
rules have been omitted in this version of the paper, and we refer the reader to the
command type rules in order to follow the proof below.

Assume Σ 0�,nn�,lt� e : τ, ξ, (2) E ∈ γ(�), (3) δ 0 E : Σ and (4) 〈E, e〉 ⇓ v. We
must show δ 0 v : τ, ξ.

array indexing with exceptions. In this case the last applied type rule in the derivation
is the rule that cannot rule out exceptions, which gives (5) Σ(x) = τ [], Σ 0�,nn�,lt�

e′ : int , ξ′, ¬(nn�
�
(x) ∧ −1 lt�

�
e′ ∧ e′ lt�

�
len(x)), ξ = ⊥Σ and that e = x[e′].

Inversion of (4) gives us the following four cases.
1) nil-pointer exception This case gives v = ⊥ from which the result δ 0 ⊥ :
τ,⊥Σ is immediate.

2) e leads to an exception Same as the case above.
3) index out of bounds Same as the case above.
4) successful execution Let E = (s, h); this case gives (6) s(x) = p, h(p) =

(i1, d), 〈E, e′〉 ⇓ i2, (7) i2 ∈ [0..(i1 − 1)] and v = d(i2). From (3, 5, 6) we
get δ 0 p : τ [], which in turn gives δ(p) <: τ [], which means (8) δ(p) = τ [],
since array subtyping is invariant. Further, (3) and (8) give δ 0 h(p) : τ [],
which gives ∀i ∈ dom((i1, d)) . δ 0 (i1, d)(i) : τ . Thus, (7) gives us that
i2 ∈ dom((i1, d)), from which we get the result δ 0 d(i2) : τ .

array indexing without exceptions In this case the last applied type rule in the deriva-
tion is the rule that rules out exceptions, which gives Σ(x) = τ [], Σ 0�,nn�,lt� e′ :
int , ξ, (5) nn�

�
(x), (6) − 1 lt�

�
e′, (7) e′ lt�

�
len(x), and that e = x[e′]. Again,

inversion of (4) gives us the following four cases.
1) nil-pointer exception This case gives (8) s(x) = nil. (1) and (5) give ∀E ∈
γ(�). x ∈ nn�E , which together with (2) gives (9) 〈E, x〉 ⇓ nil =⇒ nil ∈ nn.
(8) gives 〈E, x〉 ⇓ nil, which together with (9) gives nil ∈ nn which is a
contradiction.

2) e leads to an exception This case gives 〈E, e′〉 ⇓ ⊥ which together with the
induction hypothesis gives ξ = ⊥Σ from which the result is immediate.

3) index out of bounds This case gives s(x) = p, h(p) = (i1, d), 〈E, e′〉 ⇓ i2 and
(8) i2 
∈ [0..(i1 − 1)]. In a way similar to 1) above, we use (6) to disprove
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that i2 is less than 0 and (7) to disprove that i2 is greater than or equal to i1.
Together this contradicts (8) and we have reached a contradiction.

4) successful execution This case is proven in the same way as case 4) in array
indexing with exceptions.

Thus, as the proof of preservation of types for array indexing shows, we achieve
higher precision in the exception type by using the parameterized information to dis-
prove some cases as described in Section 3.3. As discussed, the proof for the parame-
terized type system is essentially identical to the original proof where there is no pa-
rameterized information, with the difference that two cases are disproved.

Given the well-formedness formulation for configurations above, preservation of types
of commands can be formulated in the same way as preservation of types of expressions.

Theorem 2 (Preservation of Types of Commands)

Σ1 0�,nn�,lt� c⇒ Σ2, ξ ∧ entrysolCc (�) =⇒

∀E ∈ C . δ1 0 E : Σ1 ∧ 〈E, c〉 → C =⇒ ∃δ2 . δ2 0�,nn�,lt� C : Σ2, ξ

Proof For space reasons the proof is found in the extended version of this paper [9].

Top-level Correctness of Commands. Let 〈E, c〉 →n C be the obvious lifting of the
small step evaluation to evaluation of n consecutive steps. With this we are ready to
formulate the top-level correctness of commands, that well-typed commands terminate
in a well-formed environment or result in well-formed configurations regardless of the
number of execution steps. For convenience we let T range over terminal configurations.

Theorem 3 (Top-level Correctness of Commands)

Σ1 0�,nn�,lt� c1 ⇒ Σ2, ξ ∧ entrysolCc1
(�) =⇒ ∀E1 ∈ C . δ1 0 E1 : Σ1 =⇒

∀n. (∃n′ ≤ n, T, δ2. 〈E1, c1〉 →n′
T ∧ δ2 0 T : Σ2, ξ)∨

(∃E2, c2, δ2. 〈E1, c1〉 →n 〈E2, c2〉 ∧ δ2 0�,nn�,lt� 〈E2, c2〉 : Σ2, ξ)

Proof For space reasons the proof is found in an extended version of this paper [9].

5 Related Work

The method presented in this paper combines an analysis, formulated as a type system,
with a number of external analyses, computing information useful to the type system,
by parameterizing the type system over the computed information.

Similar in spirit is the work by Foster, Fähndrich and Aiken [8] in which they present
a framework for augmenting existing type systems with type qualifiers, e.g. const and
nonnil. Our work differs from theirs in that they provide a framework to compute the
qualifiers, rather than making use of them.

In [3] Chin, Markstrum and Millstein investigate a method for supporting user-
defined semantic type qualifiers that are closely related to unary plugins. As above,
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their work is aimed at computing an analysis result, rather than modularly making use
of it. In addition to reason about soundness they propose a method to automatically
verify the soundness of the extension using an automatic theorem prover.

Among the type systems making use of additional information are type systems that
eliminate array bound checks, e.g. [16], using a decidable formulation of dependent
types. It should be pointed out that even though the type checking is decidable the
inference is not; nothing in our approach rules out inference. In [12] Hedin and Sands
use a simplistic type based inference of nil-pointers needed to allow the use of non-
secret fields in objects pointed to by pointers with secret pointer values. We believe that
the clarity, correctness proof and power of their system could benefit greatly by being
reformulated in our framework.

In [6] Crary and Weirich present a type system for resource bound verification, e.g.
memory usage and execution time. Their type system goes beyond the capacity of the
plugins framework — time and memory usage are not values in a standard semantics. It
could potentially be interesting to see to what extent the plugins model can be modified
to encompass such extensions.

While this work suggests resolving type errors by using more and more elaborate
parameterized analyses, Flanagan [7] suggests pushing checks that cannot be statically
resolved to runtime checks, cf. type cast checks in Java. For many uses of the plugins
framework, uniting the two approaches could prove beneficial — if the program cannot
be statically proven correct using a different external analysis, Flanagan’s method could
be applied to insert a dynamic check.

With respect to other work on combining static analyses, if the analyses we want
to combine are formulated as abstract interpretations, a number of techniques from the
large body of work on abstract interpretation [4,5,11] becomes applicable. An exam-
ple of such a combination is the reduced product method. Similar to our method, the
combination can be done in a systematic way and correctness of the resulting analysis
follows from correctness of the combined analyses.

An advantage of the abstract interpretation framework is that for partially overlap-
ping analyses and a combination like the reduced product, the analyses will benefit from
each other. Each analysis can make use of the information computed by the other anal-
yses, which stands in contrast to our method where the external analyses cannot make
direct use of the derivation of the parameterized type system.

However, an obvious restriction of the abstract interpretation framework is that all
analyses must be formulated as abstract interpretations, which is not always the case.
Reformulating, for example, a type based analysis into an abstract interpretation is not
always easily done nor desirable, as for example indicated by the field of security where
the analyses tend to be type based [15]. Our approach does not have that restriction. A type
system can be combined with any external analyses that compute valid solutions. If the
external analyses are formulated as abstract interpretations our method can be combined
with the abstract interpretation framework to make use of, for example, reduced products.

6 Conclusions and Future Work

We have presented a method for parameterizing program analyses for imperative small
step languages with information about the programs’ execution. The appeal of the
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method compared to approaches where additional information about the programs’ ex-
ecution is provided by extending the type system with capabilities of computing the
additional information, i.e. fusing the type system with another analysis, lies in that:

– The parameterization does not impose heavy changes to the type system. The rules
remain relatively close to the original rules; only the use of the additional infor-
mation is added to the rules where the information is used — other rules remain
essentially unaffected. Comparatively, fusing an analysis modifies all rules to com-
pute the information, in addition to the uses of the information in certain rules.

– The parameterization gives the possibility of changing the parameterized analysis
with relative ease — proofs for the family of analyses2, and decision procedures
with corresponding soundness proofs have to be done. Comparatively, changing
the analysis for a fused type system means creating a new fused type system and
correctness proof from scratch.

The method is based on the identification of a generic format for information exchange
between the program analysis and the parameterized results, together with methods —
the plugins — for asking specific questions about the each program parts execution
environment.

To exemplify the method we have given an overview of the steps involved in pa-
rameterizing an existing type system, including the changes to the type system itself,
but also the changes to the correctness proof of the type system. A corner stone in this
work is the attempt to make the correctness proof a natural part of the parameterization
process so that the proof burden for each parameterization is relatively low.

A drawback is that the resulting system may no longer be compositional; e.g. a com-
positional type system becomes non-compositional if the parameterized information
is not compositional. Another restriction is that the parameterization is one-way only;
there is no back propagation of type information that could have been used by the pa-
rameterized analysis.

Future Work. The motivation for this work grew out of a perceived need to increase the
precision of type based analyses of secure information flow. For this reason a natural
continuation of this work is to apply the method to an information flow type system.

In addition to this, an implementation of the parameterized type system of this pa-
per would be valuable to asses the practicality of the approach. Of particular interest
would be to implement a staged type system, where the reason for a type failure is an-
alyzed and given as feedback to the next stage. The benefit of doing this is apparent in
cases where the abstract environment map is a combination of the result of a number
of external analyses. One way to view a set of increasingly precise external analyses
is as a matrix with one dimension for each type of analysis and plugin property. In the
general setting where a parameterized type system uses multiple external analyses the
external analyses build up a multi-dimensional matrix where each point corresponds to
a particular instantiation of the type system.

2 The proof only has to be done once for each family, and typically includes a way of converting
the analysis information provided by the family to the format of the parameterization.
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Separation Logic Contracts for a Java-Like Language
with Fork/Join
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Abstract. We adapt a variant of permission-accounting separation logic to a con-
current Java-like language with fork/join. To support both concurrent reads and
information hiding, we combine fractional permissions with abstract predicates.
As an example, we present a separation logic contract for iterators that prevents
data races and concurrent modifications. Our program logic is presented in an al-
gorithmic style: we avoid structural rules for Hoare triples and formalize logical
reasoning about typed heaps by natural deduction rules and a set of sound ax-
ioms. We show that verified programs satisfy the following properties: data race
freedom, absence of null-dereferences and partial correctness.

1 Introduction

1.1 Context

Over the past ten years or so, substructural logics and type systems have proven to be
very valuable formalisms for reasoning about pointer-manipulating programs. Exam-
ples include static capabilities [10,11], alias types [29] and separation logic [18,28]. In
these systems, the underlying specification language contains linear formulas for spec-
ifying memory access policies. Whereas traditional program logics control memory
access via frame conditions, separation logic tightly integrates access policy specifica-
tions into the formula language itself. Formulas represent access tickets to heap space,
and possession of access tickets gets verified statically. Access policies are tightly cou-
pled with assertions about memory content, so that separation logic’s Hoare rules make
it impossible to maintain assertions that can be invalidated by thread interference or
memory updates through unknown aliases. This is achieved without annoying side con-
ditions like non-interference tests or frame conditions.

While initially separation logic mostly focused on low level programs, researchers
have more recently started to adapt it to object-oriented features for use in contract
languages for OO [25,26], and very recently [9,27].

1.2 Contributions

We present the careful design of a small Java-like model language with separation logic
contracts, including the definition of a program logic and its soundness proof. Our
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language has simple threads, with fork/join as concurrency primitives. In order to facil-
itate concurrent reads we employ fractional permissions [5]. Our rules allow multiple
threads to join on the same thread, in order to read-share the dead thread’s resources.
This is not possible with a lexically scoped parallel composition operator or with Posix
threads, and is thus not supported by recent work that adapts separation logic to Posix
threads [14]. To support data abstraction and recursive data types, we use abstract
predicates [26]. Class axioms complement abstract predicates to export relations be-
tween predicates without revealing their full definitions. Abstract predicates satisfying
a split/merge axiom generalize datagroups [21], which are common in specification lan-
guages for OO. In order to support concurrent read access to whole datagroups (rather
than single fields), access permission to datagroups can be split by splitting their per-
mission parameters. In order to allow fine-grained permission-splitting for overlapping
datagroups, we support datagroups with multiple permission parameters. To achieve
modular soundness in the presence of subclassing, we axiomatize the “stack of class
frames” [12,1] in separation logic. We support value-parametrized classes, where class
parameters have the same purpose as final ghost fields in specification languages like
JML [20]. In particular, class parameters can represent static ownership relations.

1.3 Background on Separation Logic and Fractional Permissions

Separation logic combines the usual logical operators with the points-to predicate x. f �→
v, the resource conjunction F *G, and the resource implication F -*G.

The predicate x. f �→ v has a dual purpose: firstly, it asserts that the object field x. f
contains data value v and, secondly, it represents a ticket that grants permission to access
the field x. f . This is formalized by separation logic’s Hoare rules for reading and writing
fields:

{x. f �→ * F}x. f =v{x. f �→ v * F} {x. f �→ v * F}y=x. f {x. f �→ v * v == y * F}

The crucial difference to standard Hoare logic is that both these rules have a precondi-
tion of the form x. f �→ .1 This formula functions as an access ticket for x. f .

It is important that tickets are not forgeable. One ticket is not the same as two tickets!
For this reason, the resource conjunction * is not idempotent: F is not equivalent to
F *F . The resource implication -* matches the resource conjunction *, in the sense
that the modus ponens law is satisfied: F *(F -*G) implies G. However, F *(F -*G)
does not imply F *G. In English, F -*G is pronounced as “consume F yielding G”. In
terms of tickets, F -*G permits to trade ticket F and receive ticket G in return.

Separation logic is particularly useful for concurrent programs: two concurrent
threads simply split the resources that they may access, as formalized by the rule for the
parallel composition t | t ′ of threads t and t ′ [22].

{F}t{G} {F ′}t ′{G′}
{F *F ′}t | t ′{G*G′}

1 x. f �→ is short for (∃v)(x. f �→ v).
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ready readyFor
Next

readyFor
Remove

init
hasNext()==true

 element=next()
get access right for element

remove()abandon access
right for element

init(c)
abandon access

right for c

hasNext()

abandon
iterator and

get back access
right for c

Fig. 1. Usage Protocol for Iterators

With this concurrency rule, separation logic prevents data races. There is a caveat,
though. The rule does not allow concurrent reads. Boyland [5] solved this problem
with a very intuitive idea, which was later adapted to separation logic [4]. The idea
is that (1) access tickets are splittable, (2) a split of an access ticket still grants read
access and (3) only a whole access ticket grants write access. To account for multiple
splits, Boyland uses fractions, hence the name fractional permissions. In permission-
accounting separation logic [4], access tickets x. f �→ v are superscripted by fractions π .

x. f
π�−→ v is equivalent to x. f

π/2�−→ v * x. f
π/2�−→ v. In the Hoare rules, writing requires

the full fraction 1, whereas reading just requires some fraction π :

{x. f
1�−→ * F}x. f =v{x. f

1�−→ v * F} {x. f
π�−→ v * F}y=x. f {x. f

π�−→ v * v == y * F}

Permission-accounting separation logic maintains the global invariant that the sum of
all fractional permissions to the same cell is always at most 1. This prevents read-write
and write-write conflicts, but permits concurrent reads.

In our Java-like language, we use ASCII and write Perm(x. f ,π) for x. f
π�−→ , and

PointsTo(x. f ,π ,v) for x. f
π�−→ v.

1.4 Example: A Usage Protocol for Iterators

Often one wants to constrain object clients to adhere to certain usage protocols. Object
usage protocols can, for instance, be specified in typestate systems [12] or, using ghost
fields, in general purpose specification languages. A limitation of these techniques is
that state transitions must always be associated with method calls. This is sometimes
not sufficient. Consider for instance a variant of Java’s Iterator interface (enriched
with an init method to avoid constructor contracts):
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interface Iterator {
void init(Collection c);
boolean hasNext();
Object next();
void remove();

}

If iterators are used in an undisciplined way, there
is the danger of unwanted concurrent modifica-
tion of the underlying collection (both of the col-
lection elements and the collection itself). More-
over, in concurrent programs bad iterator usage
can result in data races. It is therefore important
that Iterator clients adhere to a usage discipline.
Figure 1 shows a state machine that defines a safe

iterator usage discipline. Unfortunately, the dashed transitions are not supported by ex-
isting typestate systems, because they are not associated with method calls. Specifying
this protocol with classical program logics would be clumsy. In [13] (Section 1.1.4),
Girard explains how linear implications can be used to logically represent state transi-
tions. Applying this idea to the iterator protocol, we obtain the following formalization
where the dashed transitions are represented by resource implications:

interface Iterator<perm p, Collection iteratee> {
pred ready; // prestate for iteration cycle
pred readyForNext; // prestate for next()
pred readyForRemove<Object element>; // prestate for remove()

axiom ready -* iteratee.state<p>; // stop iterating
axiom readyForRemove<e> * e.state<p> -* ready; // back to ready

req init * c.state<p> * c==iteratee; ens ready;
void init(Collection c);

req ready; ens ready & (result -* readyForNext);
boolean hasNext();

req readyForNext; ens result.state<p> * readyForRemove<result>;
Object next();

req readyForRemove< > * p==1; ens ready;
void remove();

}

The interface has two parameters: firstly, a permission p and, secondly, the iteratee.
If the permission parameter is instantiated by a fraction p < 1, one obtains a read-only
iterator, otherwise a read-write iterator. The states of our our state diagram are repre-
sented by three abstract predicates: ready, readyForNext and readyForRemove.

Class axioms express relations between abstract predicates, without revealing the
complete predicate definitions. Implementations must define the abstract predicates by
separation logic formulas such that the class axioms are tautologically true. In the
example, the two class axioms represent the dashed transitions of the state machine.
We represent the heap space associated with an object by a generic datagroup state,
which has a default definition in the Object class and needs to be overridden by each
class. The definition of this state predicate should describe the heap space associ-
ated with the object. Often this heap space will consist of the object’s fields only, but
sometimes it will also include other objects and change dynamically, as in the case of
Collection objects. The state predicate is parametrized by a fraction so that it can
be read-shared.
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The precondition of init() consumes a fraction p of the access right for the iteratee
and puts the iterator in the ready state. The crux is that, by linearity, the iterator client
temporarily looses a p-fraction of the access right on the collection, which he can only
gain back by “invoking” the first class axiom. The init predicate in init()’s precon-
dition is a special abstract predicate that every object enters right after object creation
and that grants access to all of the object’s fields.

The postcondition of hasNext() uses a resource implication whose antecedent is
a boolean expression. We treat boolean expressions as copyable resources that satisfy
e -* (e*e).2 Furthermore, hasNext()’s postcondition uses additive conjunction &. A
resource satisfies F & G, if it satisfies both F and G.3 Operationally, & represents choice.
If F & G holds, then F and G are available, but are interdependent: using either one of
them destroys the other one, too. Additive conjunction can conveniently represent non-
deterministic state transitions, as exhibited in hasNext()’s postcondition. Note that
this postcondition allows clients to stay in the ready-state, even if hasNext()==true.
This can, for instance, be useful for removing the 10th element of an ordered collection.

In our companion report [16], we have implemented the Iterator interface for a
doubly linked list implementation of the Collection interface. In [15], we refine the
protocol to support unrestricted access to immutable collection elements, and to support
shallow collections that do not govern access to their elements.

1.5 Example: Representing Datagroups

We represent datagroups [21] as abstract predicates satisfying a datagroup axiom that
says split/merging datagroup parameters split/merges datagroups:

group P<T̄ x̄>;
Δ=

pred P<T̄ x̄>; axiom P<x̄> *-* (P<ē>*P<ē>);

where ei
Δ= xi/2, if Ti = perm, and ei

Δ= xi, otherwise

The formula F *-*G is short for (F -*G) & (G -*F). Here are simple examples of a
legal and an illegal datagroup definition (where | is disjunction):

group P<perm p> = Perm(this.f,p)* Perm(this.g,p);
legal because the datagroup axiom holds

group P<perm p> = Perm(this.f,p) | Perm(this.g,p);
illegal because the datagroup axiom’s right-to-left direction does not hold

2 We could equivalently use classical implication: result ⇒ readyForNext. Even the two
class axioms could equivalently use classical implication, because they are tautologies, and in
intuitionistic separation logic F -*G is a tautology if and only if F ⇒ G is. However, in our
implementations of the Iterator interface, we use true resource implications that cannot be
replaced by classical implications. In this paper, we avoid classical implication because having
just one implication simplifies the natural deduction rules for reasoning about resources.

3 In contrast, a resource satisfies F * G if it can be split into separate resources, one of which
satisfies F and the other satisfies G.
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On the right, you see a fractional
permission version of Leino’s run-
ning example [21]. The datagroups
position and color are nested
in state, as expressed by the
two class axioms. The formula
“F ispartof G” is a derived
form for G -* (F *(F -*G)). In-
tuitively, this formula says that F
is a physical part of G: one can
take G apart into F and its comple-
ment F -*G, and one can put the
two parts back together to obtain G
back.

interface Sprite {
group position<perm p>;
group color<perm p>;

axiom position<p> ispartof state<p>;
axiom color<p> ispartof state<p>;

req position<1>; ens position<1>;
void updatePosition();

req color<1>; ens color<1>;
void updateColor();

req state<1>; ens state<1>;
void update();

req state<p>; ens state<p>;
void display();

}

1.6 Example: Recursive and Overlapping Datagroups

Our next example illustrates that multiple threads can concurrently access overlapping
datagroups, as long as they only read-access their intersection. Consider a linked list
that implements a simple class roster. Each node stores a student identifier and a grade.
We design the roster interface so that multiple threads can concurrently read the ros-
ter. Moreover, when a thread updates the grades we allow other threads to concur-
rently read the student identifiers. To this end, the interface defines two datagroups
ids and links<p,q> and grades and links<p,q> that overlap in the links of the
list. The permission parameter p is associated with the student id fields and grade fields,
respectively. The permission parameter q is associated with the links.

interface Roster {

group ids and links<perm p, perm q>;
group grades and links<perm p, perm q>;

axiom state<p> *-* (ids and links<p,p/2> * grades and links<p,p/2>);

req grades and links<1,p> * ids and links<q,r>;
ens grades and links<1,p> * ids and links<q,r>;
void updateGrade(int id, int grade);

req ids and links<p,q>; ens ids and links<p,q>;
bool contains(int id);

}

The updateGrade() method requires write access (permission 1) for the grades and
read access for the links and ids. The contains() method requires read permission
for the ids and the links. The axiom exposes that the state datagroup is the union
of the datagroups ids and links and grades and links and that these datagroups
overlap on the links. In our companion report [16], we have implemented this
interface.



Separation Logic Contracts for a Java-Like Language with Fork/Join 205

2 A Model Language with Separation Logic Contacts

2.1 Syntax

We distinguish between read-only variables ı, read-write variables 
, and logic vari-
ables α . Method parameters (including this) are read-only. Logic variables can only
occur in specifications and types. They range over both fractional permissions and val-
ues (like integers, object identifiers and null).

C,D ∈ ClassId I ∈ InterId s,t ∈ TyId = ClassId ∪ InterId o, p,q ∈ObjId f ∈ FieldId
m ∈MethId P ∈ PredId ı ∈ RdVar 
 ∈ RdWrVar α ∈ LogVar = PermVar ∪ ValVar

x,y,z ∈ Var = RdVar ∪ RdWrVar ∪ LogVar

We include read-only variables (but not read-write variables) in the syntax domain
of values. This is convenient for our substitution-based operational semantics. Frac-
tional permissions are represented symbolically: splitn(1) represents the concrete
fraction 1

2n . In examples, we sometimes write 1
2n as syntax sugar for splitn(1). Spec-

ification values union values and fractional permissions. Interfaces and classes are
parametrized by specification values. Correspondingly, object types t<π̄> instantiate
the parameters.

n ∈ Int integers b ∈ Bool = {true,false} booleans
u,v,w ∈ Val ::= null | n | b | o | ı values

π ∈ SpecVal ::= v | 1 | split(π) specification values
T,U,V,W ∈ Ty ::= void | int | bool | t<π̄> | perm types

Interface Declarations:

F ∈ Formula ::= . . . specification formulas (defined in Section 2.3)
spec ::= req F ; ens F ; pre- and postconditions
mt ::= <T̄ ᾱ> spec U m(V̄ ı̄) method types (scope of ᾱ , ı̄ is T̄ ,spec,U,V̄ )
pt ::= pred P<T̄ ᾱ> predicate types
ax ::= axiom F class axioms
int ∈ Interface ::= interface I<T̄ ᾱ>ext Ū {pt* ax* mt*}

interfaces (scope of ᾱ is T̄ ,Ū ,pt*,ax*,mt*)
Syntactic restriction: The type “perm” may only occur inside angle brackets or formulas.

Method types include pre- and postconditions and are parametrized by logic variables.
In examples, we often leave these quantifiers over logic variables implicit. Interfaces
may declare abstract predicates and classes must implement them by providing con-
crete definitions as separation logic formulas. Like [26], we allow abstract predicates to
have parameters in addition to the implicit self-parameter (as listed in the typed formal
parameter lists T̄ ᾱ). The types T̄ for predicate parameters range over all Java types and
the distinguished type perm for fractional permissions.

We assume that the Object class declares a distinguished datagroup called state:

class Object { group state<perm p> = true; }
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This datagroup represents the access permissions for the object state. Every class must
extend it and thereby define what the object states of its instances are. Our syntax for
predicate extensions is as follows:

class C ext D { ... ext pred P<T̄ x̄> by F; ... }

Semantically, the extension F of abstract predicate P gets *-conjoined with P’s defini-
tion in C’s superclass D. We do not allow arbitrary predicate redefinitions in subclasses
in order to facilitate modular verification, avoiding re-verification of inherited methods.

Class Declarations:

fd ::= T f field declarations
pd ::= predicate definitions

final? pred P<T̄ ᾱ>=F root definition (scope of ᾱ is F)
final? ext pred P<T̄ ᾱ> by F extension (scope of ᾱ is F)

md ::= final? <T̄ ᾱ> spec U m(V̄ ı̄){c} method (scope of ᾱ, ı̄ is T̄ ,spec,U,V̄ ,c)
cl ∈ Class ::= final? classC<T̄ ᾱ> extU impl V̄ {fd* pd* ax* md*}

class (scope of ᾱ is T̄ ,U,V̄ , fd*,pd*,ax*,md*)
ct ⊆ Interface ∪ Class class tables
Syntactic restrictions:
• The type “perm” may only occur inside angle brackets or specification formulas.
• Cyclic predicate definitions in ct must be positive.

The first syntactic restriction ensures that fractional permissions do not spill into the
executable part of the language. The second syntactic restriction ensures that predicate
implementations (which can be recursive) are well-founded. We allow negative depen-
dencies of predicate P on predicate Q as long as Q does not also depend on P.

We use the symbol 1ct for the partial order on type identifiers induced by class
table ct, usually leaving the subscript ct implicit. We write s ≺1 t when s and t are
neighbours with respect to 1. Subtyping is inductively defined by the following rules:

T <: T T <: U,U <: V ⇒ T <: V s<T̄ ᾱ> ext t<π̄ ′> ⇒ s<π̄><: t<π̄ ′[π̄/ᾱ ]>

t<π̄><: Object t<T̄ ᾱ> impl I<π ′> ⇒ t<π̄><: I<π̄ ′[π̄/ᾱ ]>

We assume that class tables always contain the following class declaration:

class Thread ext Object {
final void fork(); final void join();
req false; ens true; void run() { null }

}

The run-method is meant to be overridden. The contracts for fork and join are omit-
ted, because our verification system ignores them anyway. Instead, it uses the precon-
dition for run as the precondition for fork and the postcondition for run as the post-
condition for join. The methods fork and join do not have implementations, but the
operational semantics treats them in a special way4: o.fork() creates a new thread,

4 In reality, they would be implemented natively.
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whose thread identifier is o, and executes o.run() in this thread. The o.fork-method
should not be called more than once (on the same receiver o). A second call results in
blocking. o.join() blocks until thread o has terminated.

Commands:

op ∈ Op ⊇ {==,!,&,|} ∪ {C isclassof |C ∈ ClassId}
c ∈ Cmd ::= commands

v return value (or null in case of type void)
T 
; c local variable declaration (scope of 
 is c)
final T ı=
; c local read-only variable declaration (scope of ı is c)
unpack (ex T α)(F); c unpacking an existential (scope of α is F , c)
hc; c first do hc, then do c

hc ∈HeadCmd ::= 
=v | 
=op(v̄) | 
=v. f | v. f =v | 
=(T)v | 
=newC<π̄> |
if(v){c}else{c′} | 
=v.m<π̄>(v̄) | assert(F)

Synt. Restr.: Logic variables that occur in 
=newC<π̄> must be bound by class parameters.

Our command language assumes that Java-like commands have been transformed so
that intermediate values are always assigned to local variables. Following [17], we as-
sume that methods only return at the end of their body. We omit the return-command.
Values are included in the syntax domain of commands, so that a terminating, non-
blocking execution of a command results in the return value. Methods of type void
return null, which is the only member of type void. We usually omit terminating
occurrences of null. The operator for existential unpacking has no effect at runtime.
It makes the existential variable α available in the continuation c for instantiation of
logic method parameters. In examples, we often omit explicit existential unpacking and
instantiation of logic method parameters. Making these explicit helps with the theory.

2.2 Operational Semantics

Runtime Structures:

ClVal = Val\RdVar closed values
s ∈ Stack = RdWrVar⇀ ClVal stacks
t ∈ Thread = Stack×Cmd ::= s in c threads
ts ∈ ThreadPool = ObjId⇀ Thread ::= o1 is t1 | · · · | on is tn thread pools
os ∈ObjStore = FieldId⇀ ClVal object stores
obj ∈Obj = Ty×ObjStore ::= (T,os) objects
h ∈Heap = ObjId⇀Obj heaps
st ∈ State = Heap×ThreadPool ::= 〈h, ts〉 states
prog ∈ Program = ClassTable×Cmd ::= (ct,c) programs

Each thread “s in c” consists of a thread-local stack s and a process continuation c. In
thread pools, each thread t is associated with a unique object identifier, which serves as
a thread identifier. The dynamic semantics of our language is a small-step operational
semantics st →ct st′ and can be found in [16].

There is one (and only one) reduction rule where our operational semantics de-
pends on class parameters, namely the reduction rule for type casts. Downcasts to
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parametrized types require a runtime check that looks at the type parameters, which
the standard JVM does not keep track of. There are at least three ways how one could
deal with that in practice: Firstly (and most pragmatically), one could simply forbid
downcasts to reference types that have a non-empty parameter list. Secondly, one could
develop an enhanced virtual machine that keeps track of class parameters. Thirdly, one
could devise a syntactic translation that erases class parameters such that the target of
this translation throws a ClassCastExceptionwhenever the source does.

2.3 Specification Formulas and Their Semantics

Specification Formulas:

e ∈ Exp ::= π | 
 | op(ē) lop ∈ {*,-*,&,|} qt ∈ {ex,fa}
κ ∈ Pred ::= predicates

P P at receiver’s dynamic class
P@C P at class C

E,F,G,H ∈ Formula ::= specification formulas
e boolean expression
PointsTo(e. f ,π,e′) e. f points to e′ and the access permission for e. f is π
Perm(e.join,π) permission to use a split of join’s postcondition
π.κ<π̄ ′> predicate π.κ applied to π̄ ′
F lop G binary logical operator
(qt T α)(F) quantifier

Derived forms: F *-*G
Δ= (F -*G) & (G -*F) F assures G

Δ= F -* (F *G)

F ispartof G
Δ= G -* (F *(F -*G))

The formula semantics is defined by a Kripke resource interpretation [23] of the form
Γ 0 E ;R;s |= F , where Γ is a type environment, E is a predicate environment that
maps predicate names to predicates, R is a resource, and s is a stack. Resources are
triples R = (h,P,Q) of heaps h and two permission tables P and Q. Permission
tables are functions of type ObjId× (FieldId×{join}) → [0,1] that map fields and
join to fractional permissions. The resource components h and P are local resources,
whereas Q is a global resource. We denote the projections to the resource components
by Rhp, Rloc and Rglo. The definition of the forcing relation |= is pretty standard, and
we refer to [16] for details.

2.4 Soundness Theorems

Below, we define a verification system whose top level judgment is prog : - (read: “prog
is verified”). We have proven a preservation theorem from which we can draw several
corollaries, namely, data race freedom, null error freedom and partial correctness.

A pair (hc,hc′) of head commands is called a data race iff hc = (o. f =v) and either
hc′ = (o. f =v′) or hc′ = (
=o. f ) for some o, f ,v,v′, 
. A head command hc is called a
null error iff hc = (
=null. f ) or hc = (null. f =v) or hc = (
=null.m<π̄>(v̄)). We
define initial states: init(c) = 〈{main �→ (Thread, /0)},main is ( /0 in c)〉, where main is
some distinguished object id for the main thread. The main thread has an empty set of
fields (hence the first /0), and its stack is initially empty (hence the second /0).



Separation Logic Contracts for a Java-Like Language with Fork/Join 209

Theorem 1 (Verified Programs are Data Race Free). If (ct,c) : - and init(c) →∗
ct

〈h, ts | o1 is (s1 in hc1;c1) | o2 is (s2 in hc2;c2)〉, then (hc1,hc2) is not a data race.

Theorem 2 (Verified Programs are Null Error Free). If (ct,c) : - and init(c) →∗
ct

〈h, ts | o is (s in hc;c)〉, then hc is not a null error.

Theorem 3 (Partial Correctness).
If (ct,c) : - and init(c) →∗

ct 〈h, ts | o is (s in assert(F); c)〉, then (Γ 0 E ;R;s |= F [σ ])
for some Γ , E , R such that Rhp = h, and σ ∈ LogVar⇀ SpecVal.

3 The Verification System

3.1 Proof Theory

Many presentations of separation logic are based on a model-theoretic logical conse-
quence. We, instead, define logical consequence proof-theoretically. This gives our sys-
tem an algorithmic flavour, similar to recent static assertion checkers for fragments of
separation logic [2,9] that are built upon proof-theoretic decision procedures5.

Γ ;v; F̄ 0 G from v’s point of view, G is a logical consequence of the * -conjunction of F̄
Γ ;v 0 F from v’s point of view, F is an axiom

In the former judgment, F̄ is a multiset of formulas. The parameter v represents the
current receiver, which is needed to determine the scope of predicate definitions.

The logical consequence judgment is driven by standard natural deduction rules that
are common to the logic of bunched implications [23] and linear logic [30]. These rules
are detailed in [16]. We admit weakening, because Java is a garbage-collected language.
The link between Γ ;v; F̄ 0 G and the axiom judgment Γ ;v 0 F is established by the
following rule. (We omit the definitions of typing judgments Γ 0 v : T and Γ 0 F : -.)

Γ ;v 0 G Γ 0 v : Object Γ 0 F̄ ,G : -
Γ ;v; F̄ 0 G

We now define the complete set of axioms. First, we repeat the split/merge law:

Γ ;v 0 PointsTo(e. f ,π,e′) *-* (PointsTo(e. f , π
2 ,e

′)* PointsTo(e. f , π
2 ,e

′))

Γ ;v 0 Perm(e.join,π) *-* (Perm(e.join, π
2 )* Perm(e.join, π

2 ))

For the following axioms, recall that “F assures G” abbreviates “F -* (F *G)”.

Γ ;v 0 true Γ ;v 0 false -*F Γ ;v 0 (e & F) -* (e * F)

Γ ;v 0 (PointsTo(e. f ,π,e′) & PointsTo(e. f ,π ′,e′′)) assures e′ == e′′

(Γ 0 e,e′ : T ∧ Γ ,x : T 0 F : -)⇒ Γ ;v 0 (F [e/x]*e == e′) -* F[e′/x]

The third of these axioms implies that boolean expressions are copyable: e -* (e*e).

5 Unfortunately, these fragments do not include -*, as needed for our iterator implementation.
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The following axiom lifts semantic validity of boolean expressions (which we do not
axiomatize) to our proof theory:

(Γ |= !e1 | !e2 | e′) ⇒ Γ ;v 0 (e1 *e2) -* e′

The next axiom allows to apply class axioms. Here, axiom(t<π̄ ′>) is the *-conjunction
of all class axioms in t<π̄ ′> and its supertypes.

(Γ 0 π : t<π̄ ′> ∧ axiom(t<π̄ ′>) = F) ⇒ Γ ;v 0 F [π/this]

The open/close axiom allows predicate receivers to replace abstract predicates by their
definitions. It uses a function pbody(v.P<π̄>,C<π̄ ′>) that returns the extension F of
predicate v.P<π̄> in class C<π̄ ′>.

(Γ 0 v : C<π̄ ′′> ∧ pbody(v.P<π̄, π̄ ′>,C<π̄ ′′>) = F ∧ C ≺1 D)
⇒ Γ ;v 0 v.P@C<π̄, π̄ ′> *-* (F *v.P@D<π̄>)

Note that the current receiver, as represented on the left of 0, has to match the predicate
receiver on the right. This rule is the only reason why our logical consequence judg-
ment tracks the current receiver. Note also that P@C may have a higher arity than P@D:
following [26] we allow subclasses to extend predicate arities.

The following axiom deals with unqualified predicates with missing parameters:

Γ ;v 0 π.P<π̄> *-* (ex T̄ ᾱ)(π.P<π̄, ᾱ>)

The following axioms capture additional facts about abstract predicates. Recall that
“F ispartof G” is defined as G -* (F *(F -*G)).

Γ ;v 0 null.κ<π̄> Γ ;v 0 π.P@Object Γ ;v 0 π.P@C<π̄> ispartof π.P<π̄>
C 1 D ⇒ Γ ;v 0 π.P@D<π̄> ispartof π.P@C<π̄, π̄ ′>

The next axioms allow to drop the class modifier C from π .P@C, if we know that C is
π’s dynamic class:

Γ ;v 0 ( π.P@C<π̄> * C isclassof π ) -* π.P<π̄>
(C is final or P is final in C) ⇒ Γ ;v 0 π.P@C<π̄> -* π.P<π̄>

Here, the expression “π isclassofC” evaluates to true whenever C is π’s dynamic
class. “C isclassof π” surely holds right after object π of class C has been created.
Consequently, our Hoare rules introduce it as a postcondition of object creation com-
mands. The second axiom makes use of final classes (resp. predicates), which are
classes (resp. predicates) that are prohibited to be extended.

3.2 Method Subtyping

Method types are of the following form:

<T̄ ᾱ>req F ; ens G; U m(V0 ı0;V̄ ı̄)
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In method types, we make the self-parameter explicit, separated from the other formal
parameters by a semicolon. In the scheme above, ı0 is the self-parameter.

Before presenting the method subtyping rule in full generality, we present its instance
for method types without logic parameters:

U,V0,V̄ ′ <: U ′,V ′
0,V̄ Γ , ı0 : V0, ı̄ : V̄ ′; ı0; true 0 F ′ -* (F *(faU result)(G -*G′))

Γ 0 req F; ens G; U m(V0 ı0;V̄ ı̄)<: req F ′; ens G′; U ′m(V ′
0 ı0;V̄ ′ ı̄)

This rule has the following two derived rules (where types are elided):

0 F ′ -* F 0 G′ -* G

0 req F ; ens G <: req F ′; ens G′ 0 req F ; ens G <: req F * H; ens G* H

The first of these derived rules is standard behavioural subtyping, the second one ab-
stracts separation logic’s frame rule. In order to see that these two rules follow from the
above rule, note that the following two formulas are tautologies (as can be easily proven
by natural deduction):

(F ′ -* F)* H -* F ′ -* F * H F * H -* F *(faU x)(G -* G* H)

The general method subtyping rule also accounts for logic parameters:6

m 
= run T̄ ′,U,V0,V̄ ′ <: T̄ ,U ′,V ′
0,V̄

Γ , ı0 : V0; ı0;true 0 (fa T̄ ′ ᾱ)(fa V̄ ′ ı̄)(F ′ -* (ex W̄ ᾱ ′)(F *(faU result)(G -*G′)))

Γ 0 <T̄ ᾱ,W̄ ᾱ ′>req F ; ens G; U m(V0 ı0;V̄ ı̄)<: <T̄ ′ ᾱ>req F ′; ens G′; U ′m(V ′
0 ı0;V̄ ′ ı̄)

Note that the subtype may have more logic parameters than the supertype. For instance,
we obtain the following derived rule:

0 <T α>req F ; ens G <: req (ex T α)(F); ens (ex T α)(G)

This derived rule is an abstraction of separation logic’s auxiliary variable rule. It follows
from the method subtyping rule by the following tautology:

(ex T α)(F) -* (ex T α)(F *(faU x)(G -* (ex T α)(G)))

3.3 Hoare Triples

Our Hoare rules are syntax-directed, omitting structural rules. Separation logic’s frame
rule is admissible. Separation logic’s auxiliary variable rule is subsumed by our syntax
for existential unpacking. We omit the rules of conjunction and disjunction, and did not
need them in the examples we considered. We could soundly add the rule of disjunction.
To add the rule of conjunction, we would need to assume that preconditions of run()
are supported [14].7

6 The subtyping rule for run is restricted to avoid dependencies between pre- and postcondition.
7 Supported formulas are formulas that have the property that, for any resource, the set of sub-

resources that satisfy it is either empty or has a least element. They play a similar role for
intuitionistic predicates, as precise formulas for non-intuitionistic predicates [24]. In our vari-
ant of separation logic, all predicates are intuitionistic, as we admit weakening.
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Hoare triples have the forms (Γ ;v 0 {F}c : T{G}) and (Γ ;v 0 {F}hc{G}), where v
is the receiver parameter. We present a few selected rules and refer to [16] for the com-
plete rule system.

The rules for reading and writing fields are standard:

Γ ;v;F 0 PointsTo(w. f ,π,u) Γ 0 w : U T f ∈ fld(U) T [w/this]<: Γ (
) 
 
∈ F

Γ ;v 0 {F}
=w. f{F *
 == u}

Γ 0 v,F : Object,- Γ 0 u : U T f ∈ fld(U) Γ 0 w : T [u/this]

Γ ;v 0 {F * PointsTo(u. f ,1,T)}u. f =w{F * PointsTo(u. f ,1,w)}

The rule for forking a thread consumes run’s precondition. The postcondition of
fork() is empty.8 The rule makes use of the function mtype(m,T ), which looks up
m’s type in the smallest supertype of T that declares m:

mtype(run,T ) = req G; ens G′; void run(T ı0;)

 
∈ F Γ (
) = void Γ 0 u : T <: Thread Γ ;v;F 0 u!=null

Γ ;v 0 {F * G[u/ı0]}
=u.fork(){F}

The most interesting rule is the one for joining threads. It allows the caller to ex-
change a fraction fr of the join-permission Perm(u.join,1) for a fraction fr of u.run’s
postcondition:9

mtype(run,T ) = req G; ens G′; void run(T ı0;) fr = all or G′ is supported

 
∈ F Γ (
) = void Γ 0 u : T <: Thread Γ ;v;F 0 u!=null

Γ ;v 0 {F * fr ·Perm(u.join,1)}
=u.join(){F * fr ·G′[u/ı0]}

Here, fr ranges over linear combinations. These represent numbers of the forms 1 or
∑n

i=1 biti · 1
2i :

bit ∈ {0,1} bits ::= 1 | bit,bits fr ∈ BinFrac ::= all | fr() | fr(bits)

To define the scalar multiplication fr ·F , we first extend the split-operation from per-
missions to formulas:

split(e) Δ= e split(π.κ<π̄ ′>) Δ= π.κ<split(π̄ ′)>
split(PointsTo(e. f ,π,e′)) Δ= PointsTo(e. f ,split(π),e′)

split(Perm(e.join,π)) Δ= Perm(e.join,split(π))
split(F lop G) Δ= split(F) lop split(G) split((qt T α)(F)) Δ= (qt T α)(split(F))

Now, the scalar multiplication fr ·F is defined as follows: all ·F = F , fr() ·F = true,
fr(1) ·F = split(F), fr(0,bits) ·F = fr(bits) · split(F), and fr(1,bits) ·F = split(F)*
fr(bits) · split(F). For instance, fr(1,0,1) ·F *-* (split(F)*split3(F)).

Via the bijection fr(bits) �→ ∑n
i=1 biti · 1

2i , we can define an addition on linear com-
binations that reflects the addition on concrete binary fractions. For proving soundness
of the join()-rule, it is crucial that join()’s postcondition satisfies the following dis-
tributivity law, which holds if G′ is supported:

(fr1 + fr2) ·G′ *-* (fr1 ·G′ * fr2 ·G′)

8 The permission Perm(u.join,1) gets introduced when the thread object u is created.
9 We assume that postconditions of methods with return type void do not mention the result-

variable.
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4 Comparison to Related Work and Conclusion

Parkinson/Bierman are the first to adapt separation logic to a Java-like language [25,26].
We build on their work, using abstract predicates, but extend it to a concurrent language
and combine abstract predicates with fractional permissions.

Boyland and Retert [7] explain the relation between write-effects, uniqueness and
datagroups in terms of a linear type-and-effect system. Their system features a nesting
operation and recursive definitions, which serve as an abstraction mechanism similar
to abstract predicates, but in addition promote linear formulas to non-linear ones. Re-
cently, Boyland presented a semantics for formulas that combine nesting and fractional
permissions [6]. His semantics is quite different from ours. Generally speaking, our
semantics is closer to standard semantics of BI [23]. Boyland facilitates permission
splitting for datagroups through an operation that scales formulas by fractions, whereas
we require datagroups to be fully permission-parametrized and scale the parameters.
Because we allow multiple parameters, our approach permits more fine-grained scaling
for overlapping datagroups (see Section 1.6 for an example).

Bierhoff and Aldrich [3] combine typestates and fractional permissions to specify
object usage protocols. They use iterators as an example, but they do not allow linear
implications in method contracts. As a result, their usage protocol regulates access to
the collection itself, but not access to the elements of the collection, and their protocol
would not prevent data races in concurrent programs. Krishnaswami [19] (in higher-
order separation logic) and Boyland et al [8] (in their linear type-and-effect system)
present iterator contracts that use linear implication and are related to ours.

Gotsman et al [14] recently adapted concurrent separation logic to Posix threads,
treating storable locks. They do not support read-sharing of join’s postcondition like us.

Regarding the interplay between abstract predicates and subclassing, we axioma-
tize the “stack of class frames” [12,1] to control predicate extensions in subclasses. The
stack of class frames supports the use of subclassing for specialization and is well-suited
for dealing with extended object state. Furthermore, the stack of class frames facilitates
fully modular verification, avoiding the need to re-verify inherited methods, which is re-
quired in [25,26] where unrestricted predicate re-definitions in subclasses are allowed.
In recent work, Parkinson and Bierman argue that a verification systems should support
subclassing for code reuse in addition to subclassing for specialization, and present a
system that supports both uses of subclassing while avoiding re-verification of inherited
methods [27]. To this end, they associate with each method two contracts: a concrete
“static” contract, and an abstract “dynamic” contract. Their system checks that predi-
cate re-definitions in subclasses are compatible with concrete static contracts of inher-
ited methods, thereby avoiding re-verification of implementations of inherited methods.
The advantage over the stack of class frames is increased flexibility, the disadvantage
is heavier specification machinery, although much of this can be hidden behind good
defaults. Chin et al [9] make a similar proposal.

Conclusion. We have presented a variant of concurrent separation logic with frac-
tional permissions for a Java-like language with fork/join and proved it sound. Future
work includes algorithmic checking and extension to handle lock synchronization.

Acknowledgments. We thank John Boyland, Marieke Huisman, Erik Poll and anony-
mous reviewers for their very useful comments that helped to improve this paper.
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Abstract. We propose a semantic foundation for the contract-based
design of software components. Our approach focuses on the character-
istic principles of component-oriented development, like provided and
required interface specifications and strong encapsulation. Semantically,
we adopt classical concepts of mathematical logic using models, in our
framework given by labelled transition systems with “states as algebras”,
sentences, and a satisfaction relation which characterizes those properties
of a component which are observable by the user in the “strongly reach-
able” states. We distinguish between models of interfaces and models of
component bodies. The latter are equipped with semantic encapsulation
constraints which guarantee, that if the component body is a correct
user of the required interface operations, then it can safely rely on all
properties of the required interface specification. Our model-theoretic se-
mantics of interfaces and component bodies suggests two semantic views
on a component, its external and its internal semantics which must be
properly related to ensure the correctness of a component. We also study
a refinement relation between required and provided interface specifica-
tions of different components used for component composition.

1 Introduction

In this study we propose a semantic foundation for contract-based component
systems in a state-based, sequential environment. Having its roots in the Hoare
calculus for imperative programs, contracts are often formulated in terms of
assertions describing invariants and pre/postconditions of operations. While for
object-oriented programs quite a number of assertion-based techniques have been
developed (see e.g. [8,2]), fewer proposals exist supporting the contract-based
development of components with provided and required interfaces. In particular,
some of those approaches lack a formal semantics (e.g. [6]) or are tailored to an
object-oriented setting (e.g. [9,12]).

Our goal is to provide a general semantic component model which reflects
the crucial ideas behind contract-based component design. A crucial aspect of
components concerns encapsulation via provided and required interfaces. The

� This research has been partially supported by the GLOWA-Danube project
01LW0602A2 sponsored by the German Federal Ministry of Education and Research.
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practical problem with this approach is that, to our knowledge, no established
programming language exists which supports strongly encapsulated component
development and thus most of so-called component-based systems are imple-
mented by common object-oriented implementation techniques which are known
to be not safe w.r.t. encapsulation. In this paper we propose a rigorous approach
to the semantics of components based on states as algebras and transition sys-
tems. Our component model allows us to characterize, on the semantic level,
the concept of encapsulation which has the benefit to be abstract and thus to
be usable as a reference model that exposes the semantic requirements for any
concrete component-based implementation language. More precisely, we claim
that (the sequential part of) a well-designed component language should lead
to programs which can be interpreted as models of our semantic domain and
thus our conditions for models of component bodies can be seen as a catalogue
of requirements. Hence, we do deliberately not study techniques that overcome
the problem of encapsulation and modular verification by investigating concrete
features, like ownership types etc. for object-oriented systems (see e.g. [2,10]) but
we focus on the semantic principles of models for component-oriented design.

It is another goal of our approach to study the meaning of contracts that are
used in provided and required interfaces. As pointed out in [4] there is a variety
of possibilities to understand invariants and pre/postconditions of operations.
In our aproach we follow the idea of [11] to consider application requirements
for operations which we will formalize as domain constraints for interface opera-
tions. Since, according to the contract principle, the domain constraint must be
satisfied whenever an operation is called we can identify the so-called strongly
reachable states as the relevant states that have to be taken into account when
defining a satisfaction relation for invariants and operation specifications. Thus
we show how our ideas for object-oriented specifications in [4] can be lifted to the
level of components which leads to a model-theoretic interpretation of interface
specifications. Let us stress that the concept of interface specifications as defined
here is generic and can be used to give semantics to any interface specification
language which deals with invariants and operation specifications.

By considering both, the semantics of interfaces and of component bodies,
we can distinguish the external and the internal semantics of a component. In
particular the internal semantics of a component is given by a function which
maps each model of the required interface of the component to an internal model
determined by the component’s body. A component is semantically correct, if
those models can be restricted by an abstraction function to a model of the
provided interface of the component. Since the semantics of interface specifica-
tions is given by model classes we can easily define a formal refinement relation
between required and provided interface specifications of different components
which can be used to construct the composition of components. In the sequel of
this paper we will use as a running example the following Bank component.

component Bank is
provided interface spec BankI =
observers isAccount: int -> boolean; balAccount: int -> int;
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operations transfer(input from, to, amount: int)
..."further operations for opening, closing accounts etc. are omitted"

domain transfer :
isAccount(from) and isAccount(to) and amount >= 0 and
balAccount(from) >= amount;

init ∀no:int. not(isAccount(no));
inv ∀no:int. isAccount(no) implies balAccount(no) >= 0;
effect transfer :

balAccount(from) = balAccount(from)@pre - amount and
balAccount(to) = balAccount(to)@pre + amount;

required interface spec AccountI =
observer bal: -> int;
operations
getBal(output amount: int); credit(input i: int); withdraw(input i: int);

domains getBal : true; credit : i >= 0; withdraw : i >= 0 and bal >= i;
init bal = 0;
inv bal >= 0;
effects getBal : amount = bal and bal = bal@pre;

credit : bal = bal@pre + i;
withdraw : bal = bal@pre - i;

body
let Account:AccountI;
private Map<Integer,Account> accounts = new HashMap<Integer,Account>();
public boolean isAccount(int no) {return accounts.containsKey(no);}
public int balAccount(int no) {return accounts.get(no).getBal();}
public void transfer(int from, to, amount)
{Account source = accounts.get(from); source.withdraw(amount);
Account target = accounts.get(to); target.credit(amount);}

2 Preliminaries

We assume that the reader is familiar with the basic notions of algebraic spec-
ifications, like the notions of (many-sorted) algebraic signature Σ = (S, F )
(where S is a set of sorts, also called types, and F is a set of function symbols
f : s1, . . . , sn → s), (partial) Σ-algebra A = ((As)s∈S , (fA)f∈F ), class Alg(Σ)
of all (partial) Σ-algebras, valuation ρ : X → A (where X is an S-sorted set of
variables), signature morphism γ : Σ → Σ′ and reduct A′|γ of a Σ′-algebra A′

along γ. Throughout this paper we fix a primitive signature ΣP for predefined
types and function symbols (e.g. for booleans, integers, collections, etc.) and a
fixed interpretation of ΣP by a given ΣP-algebra P. In the context of compo-
nent bodies we also consider user defined types. Given a (user-defined) type t,
the fixed signature ΣP is extended in a canonical way to a signature ΣP(t) which
contains generic predefined types applied to the new type t, e.g. List<t>, etc.
Then, given any carrier set tA for t, the fixed ΣP-algebra P is assumed to be
extended in a canonical way to a ΣP(t)-algebra P(tA) .
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3 Interface Specifications

3.1 Observer Signatures and Abstract States

As shown in our examples of interface specifications (BankI and AccountI above),
the application domain and the effect of an operation are specified by using so-
called (state) observers. An observer signature ΣObs is a pair (ΣP,Obs) consisting
of the primitive signature ΣP (see Section 2) and a set Obs of (state) observers.
An observer in Obs is a function symbol obs : t1 × · · · × tn → t with primitive
types t1, . . . , tn, t resp. (which can be considered as a higher-order state variable).
Hence an observer signature ΣObs provides an algebraic signature which extends
the primitive signature ΣP by the observers Obs. A state is uniquely determined
by an interpretation of the observers. Thus a state is formally represented by a
ΣObs-algebra σ ∈ Alg(ΣObs) (following the ideas of the “state as algebra” ap-
proach; see e.g. [5]). Examples of observers are given in the two interface speci-
fications BankI and AccountI of Sect. 1. Considering the AccountI interface, the
underlying observer signature ΣAccountI

Obs consists of the predefined signature ΣP

together with the observer bal: -> int. An actual state of an account with balance
zero would be given by the ΣAccountI

Obs -algebra σ with balσ = 0. For any observer
signature ΣObs we assume given a set of ΣObs-sentences which are:

1. either mono-state ΣObs-sentences ϕ with associated set var(ϕ) of sorted vari-
ables of predefined types;

2. or bi-state ΣObs-sentences π with associated (disjoint) sets varin(π) of sorted
input variables and varout(π) of sorted output variables of predefined types.

The ΣObs-sentences are assumed to be equipped with a satisfaction relation
|=ΣObs for ΣObs-states (i.e. for ΣObs-algebras):

1. σ, ρ |=ΣObs ϕ for a mono-state ΣObs-sentence ϕ, a ΣObs-state σ, and a valu-
ation ρ : var(ϕ) → P;

2. σ, ρ;σ′, ρ′ |=ΣObs π for a bi-state ΣObs-sentence π, ΣObs-states σ, σ′, and
valuations ρ : varin(π) → P, ρ′ : varout(π) → P.

In order to be generic and to focus on the essential ideas of our semantic frame-
work later on we do neither assume any particular syntax for ΣObs-sentences
nor any particular satisfaction relation for states. Intuitively, mono-state ΣObs-
sentences can be seen as state predicates and bi-state ΣObs-sentences as transi-
tion predicates. In the example in Sect. 1 we use an OCL-like syntax where the
@pre construct is used in bi-state sentences to refer to previous states.

3.2 Interface Signatures and Their Models

Interface signatures extend observer signatures by introducing operations which
may change states. An operation op has the form opname(Xin, Xout) where
Xin, in the following denoted by varin(op), is a (possibly empty) sequence of
input variables and Xout, in the following denoted by varout(op), is a disjoint
(possibly empty) sequence of output variables, in each case of primitive types.
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For each operation we assume given a so-called domain constraint (which can
be considered as an application requirement in the sense of [11] or as a UML
stereotyped �pre� constraint). A domain constraint imposes obligations on both
the user and the implementor of an operation: The user of the interface should
only call an operation in a state where the domain constraint of the operation is
satisfied. The implementor guarantees that then the operation will be executed.
Given an observer signature ΣObs, a domain constraint domop of an interface
operation op is a mono-state ΣObs-sentence with var(domop) ⊆ varin(op).

Definition 1. An interface signature ΣI = (ΣObs,Op, dom) consists of an ob-
server signature ΣObs, a set Op of operations and a family dom = (domop)op∈Op

of domain constraints (w.r.t. ΣObs).

Considering the interface specifications BankI and AccountI of Sect. 1, the un-
derlying interface signatures ΣBanI

I and ΣAccountI
I extend the respective observer

signatures by the declared operations and their domain constraints.
We will now provide a model-theoretic interpretation of interface signatures.

The crucial idea is that for a given interface signatureΣI, a ΣI-model provides an
abstract representation of a program which realizes the interface operations Op.
For this purpose we use as an underlying formalism labelled transition systems.
More precisely, given an interface signature ΣI = (ΣObs,Op, dom), we consider
structures (Q,α, q0, Δ) where Q is a set of states which is equipped with an
abstraction function α : Q → Alg(ΣObs) mapping “concrete” states in Q to
(fully) abstract states in Alg(ΣObs), q0 ∈ Q is the initial state and

Δ ⊆ Q× LabelΣI × (Q×OutputΣI
)

is a transition relation. The labels in LabelΣI express operation calls, formally
represented by pairs (op, ρ) consisting of the called operation op together with
actual input parameters provided by a valuation ρ : varin(op) → P. Similarly,
the outputs in OutputΣI

represent results of operations, formally represented by
valuations ρ′ : varout(op) → P with op ∈ Op. A transition (q, (op, ρ), q′, ρ′) ∈ Δ
models the fact that if in state q the operation op is called with actual input
parameters determined by the valuation ρ, then the operation can be executed
with successor state q′ and output values determined by ρ′.

Obviously, in the transition systems described above the non-reachable states
are of no interest. According to the contract principle one can even go further
and assume that a user calls an interface operation only in a state where its
domain constraint is satisfied (after abstraction w.r.t. α). Hence, in the context
of contract-based interfaces the only relevant states are those states reachable
from the initial state by admissible operation calls which will be called strongly
reachable states. Given an interface signature ΣI and a transition system M =
(Q,α, q0, Δ) as above the subset SRS(Q) ⊆ Q of the strongly reachable states
of M is inductively defined as follows:

(0) q0 ∈ SRS(Q).
(1) If q ∈ SRS(Q) and (q, (op, ρ), q′, ρ′) ∈ Δ such that α(q), ρ |=ΣObs domop ,

then q′ ∈ SRS(Q).
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The concept of the strongly reachable states reflects the obligations of the user
of the interface operations. However, the domain constraints do also impose an
obligation on the implementor of the interface operations who must guaranhtee
that an operation op is executable if it is called in a state where the domain
constraint domop is satisfied (w.r.t. the given input parameters). Thus we obtain
the following constraint for the transition relation Δ:

(dom). For all q ∈ SRS(Q), op ∈ Op, and ρ : varin(op) → P, if α(q), ρ |=ΣObs

domop then there exist q′ ∈ Q and ρ′ : varout(op) → P such that
(q, (op, ρ), q′, ρ′) ∈ Δ.

Definition 2. Let ΣI = (ΣObs,Op, dom) be an interface signature. A ΣI-model
is a transition system (Q,α, q0, Δ) as described above such that the condition
(dom) is satisfied. The class of all ΣI-models is denoted by Mod(ΣI).

3.3 ΣI-Sentences, Satisfaction Relation and Interface Specifications

We will now associate a set of ΣI-sentences to any interface signature ΣI which
allow to express three kinds of properties that are commonly considered in
state-based systems: initialization conditions, invariants and sentences describ-
ing the (observable) effects of operations. Given an interface signature ΣI =
(ΣObs,Op, dom), the set of ΣI-sentences is defined as follows:

For each mono-state ΣObs-sentence ϕ with var(ϕ) = ∅,
1. init ϕ is a ΣI-sentence, called initialization sentence and
2. inv ϕ is a ΣI-sentence, called invariant sentence.
3. For each op ∈ Op and for each bi-state ΣObs-sentence π with

varin(π) ⊆ varin(op) and varout(π) ⊆ varout(op),
op : π is a ΣI-sentence, called operation effect sentence.

The satisfaction relation |=ΣI between ΣI-models and ΣI-sentences is defined by:

1. M |=ΣI init ϕ if α(q0), ρ |=ΣObs ϕ.1

2. M |=ΣI inv ϕ if for all q ∈ SRS(Q) it holds α(q), ρ |=ΣObs ϕ.
3. M |=ΣI op : π if for all (q, (op, ρ), q′, ρ′) ∈ Δ with q ∈ SRS(Q) it holds:

If α(q), ρ |=ΣObs domop then α(q), ρ;α(q′), ρ′ |=ΣObs π.

The satisfaction relation abstracts from concrete states by the abstraction
function α (which comes with each ΣI-model) and it is based on the satisfac-
tion relation |=ΣObs for ΣObs-algebras; cf. Sect. 3.1. Moreover, it takes only into
account strongly reachable states because, according to the user’s obligations,
these are the only relevant states. The satisfaction relation for operation effect
sentences together with the (dom) condition forΣI-models express the implemen-
tor’s obligations of the contract: For any admissible operation call the operation
must be executable (according to (dom)) and in this case the operation must
have the desired effect.
1 In 1. and 2. the valuation ρ is irrelevant because the sentences have no variabes.
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Definition 3. An interface specification SPI = (ΣI, Ax) consists of an interface
signature ΣI and a set Ax of ΣI-sentences, called the axioms of the specification.
The semantics of SPI is given by �SPI� = {M ∈ Mod(ΣI) | M |=ΣI Ax}. Any
M ∈ �SPI� is called a model of SPI.

The semantics of an interface specification describes all ΣI-models which can
be considered as (abstract representations of) correct realizations of the inter-
face specification. The interface specifications BankI and AccountI displayed in
Sect. 1 consist of the respective interface signatures ΣBankI

I and ΣAccountI
I to-

gether with the given initialization, invariant and operation effect sentences. It
may be interesting to note that the explicit invariants are even redundant be-
cause they are logical consequences of the specifications which can be proved by
induction on the strongly reachable states. This statement examplifies the power
of our satisfaction relation based on the strongly reachable states. It would not
be true for the reachable states which are usually considered because, e.g. the
AccountI invariant could be easily violated by a call to withdraw if the domain
constraint of withdraw is not respected.

4 Component Bodies

In this section we focus on the second essential ingredient of components which
are component bodies.

4.1 Attribute Signatures and Concrete States

The provided interface of a component must be implemented by a component
body. For this purpose it is first necessary to define an appropriate concrete state
space over which the interface operations are implemented. In the following
we assume that the state space of a component body is provided by a set of
attributes (often called instance variables). Since the component body relies on
the required interface specification, the attributes may involve required types.
For the sake of simplicity we assume that a component refers to a single required
interface specification SPreq. To actually use the required interface, the body
must include a declaration rt :SPreq of a required type rt which then can be used
(additionally to the predefined types) for typing attributes. The state space of a
component body is (syntactically) described by an attribute signature.

An attribute signature ΣAtt (w.r.t. a given required interface specification
SPreq) is a triple (rt :SPreq, ΣP(rt),Att) where rt :SPreq is a type declaration
introducing a new type rt associated to SPreq, ΣP(rt) is the extension of the
primitive signature ΣP w.r.t. the new type rt (see Section 2), and Att is a set
of attributes which is used to define (concrete) states. An attribute in Att is a
(nullary) function symbol a :→ t with a result type in ΣP(rt). Hence, the pair
(ΣP(rt),Att) provides an algebraic signature. Considering the Bank component
of Sect. 1 the attribute signature ΣBank

Att of the body of the component introduces
(in the let construct) a new (local) type Account and one attribute, algebraically
represented by the constant accounts: -> Map<Integer,Account>.
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Let us now discuss how to associate a state space to a given attribute signature.
As for observer signatures the main idea is again to use algebras for the represen-
tation of states. Given an attribute signature ΣAtt = (rt :SPreq, ΣP(rt),Att), any
(ΣP(rt),Att)-algebra σ provides indeed an interpretation for all attributes and
therefore can be considered as a state. In particular, σ includes a carrier set rtσ

for the type rt . Intuitively, according to the type declaration rt :SPreq, the new
type rt denotes a set of instances of (some implementation of) SPreq. In contrast
to the interpretations of the primitive types, the interpretation of rt is not fixed
but can change from one state σ to another σ′ according to the actually existing
instances of type rt . Moreover, it is important that the actual state of a compo-
nent body depends also on the current state of each of the instances of rt which
in turn depends on the chosen implementation of the required interface specifi-
cation SPreq. Since an implementation of SPreq is formally given by a model of
SPreq, states according to an attribute signature ΣAtt can be represented by so-
called “indexed-algebras” which depend on a given model Mreq ∈ �SPreq� and
which are indexed in the sense that to each instance of rt there is assigned a state
in the state space ofMreq. Examples of indexed algebras are shown in Fig. 1.

Definition 4. Let ΣAtt = (rt :SPreq, ΣP(rt),Att) be an attribute signature. For
a model Mreq ∈ �SPreq� with state space Qreq, an Mreq-ΣAtt-indexed algebra
is a pair (σ, μ) where σ ∈ Alg(ΣP(rt),Att) and μ : rtσ → Qreq is a func-
tion. Alg(ΣAtt)Mreq denotes the class of Mreq-ΣAtt-indexed algebras. The family
Alg(ΣAtt) = (Alg(ΣAtt)Mreq)Mreq∈�SPreq� is the class of ΣAtt-indexed algebras.

4.2 Body Signatures and Their Models

Body signatures extend attribute signatures by introducing operations. For in-
stance, the body signature ΣBank

Body of the body of the component Bank extends
its attribute signature ΣBank

Att by the operations isAccount, balAccount and
transfer.

Definition 5. A body signature ΣBody = (ΣAtt,Op) consists of an attribute
signature ΣAtt = (rt :SPreq, ΣP(rt),Att) and a set Op of operations.

Given a body signature ΣBody = (ΣAtt,Op), a ΣBody-model should repre-
sent an implementation of the operations Op and hence will be again a la-
belled transition system. Since such an implementation obviously depends on
an actually used realization of SPreq we will consider families Mod(ΣBody) =
(Mod(ΣBody)Mreq )Mreq∈�SPreq� where each Mod(ΣBody)Mreq is a class of labelled
transition systems, calledMreq-ΣBody-models, which are supposed to provide an
implementation of the operations Op by using a given realizationMreq of SPreq.

Let us discuss which transition systems are appropriate forMreq-ΣBody-models.
First we notice that since we work already on concrete states there is, in contrast
to models of interface signatures, no need for an abstraction function. Hence an
Mreq-ΣBody-modelM = (Q, q0, Δ) will be a triple with a setQ of states, an initial
state q0 and a transition relation

Δ ⊆ Q× LabelΣBody × (Q×OutputΣBody
)
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To be more precise about the states, the labels and the transitions, we assume
given an arbitrary model Mreq = (Qreq, αreq, q0,req, Δreq) of SPreq. According to
the considerations on states in Section 4.1, the state space Q should obviously
be a subset of the class Alg(ΣAtt)Mreq , i.e. states are indexed algebras overMreq.

The set LabelΣBody = LabelOp∪Label req∪Label int is the union of three different
kinds of labels. The labels in LabelOp express calls to operations op ∈ Op repre-
sented, as before for interface operations, by pairs (op, ρ). The labels in Label req
express calls to required operations of SPreq represented by pairs (o.opreq, ρ)
where o is an instance of the required type rt, opreq is an operation of the re-
quired interface specification SPreq, and ρ is a valuation of the input variables
of opreq. Finally, we assume given a set Label int of internal labels which model
internal actions that can be performed in the body implementation. The out-
puts in OutputΣBody

are again defined as valuations of the output variables of
operations.

There are several constraints concerning the admissibility of transitions of an
Mreq-ΣBody-model. First, since such a model is supposed to represent an abstract
program which implements each operation in Op by an appropriate “operation
body” we require the following condition:

(impl). Any transition (q, (op, ρ), q′, ρ′) ∈ Δ with op ∈ Op has a realization by
a sequence of transitions (qi, (li, ρi), qi+1, ρi+1) ∈ Δ, i = 1, . . . , n − 1, n ≥ 2
such that q1 = q, qn = q′ and li ∈ Label req ∪ Label int for i = 1, . . . , n− 1.

Transitions of the form (q, (op, ρ), q′, ρ′) with op ∈ Op are often called “big
step” transitions while the transitions occurring in their realization are called
“small step” transitions. Small step transitions involve internal actions as well as
calls (o.opreq, ρ) to required interface operations. To guarantee that those calls
are really performed in accordance with the given model Mreq of SPreq (i.e. that
Mreq is really used when a call to a required interface operation occurs) we need
the following second condition.

(use). For any transition (q, (o.opreq, ρ), q′, ρ′) ∈ Δ with (o.opreq, ρ) ∈ Label req
and indexed algebras q = (σ, μ), q′ = (σ′, μ′) it holds o ∈ rtσ ∩ rtσ′

and
(μ(o), (opreq, ρ), μ

′(o), ρ′) ∈ Δreq, i.e. the latter is a transition in Mreq.

The next condition requires that anMreq-ΣBody-modelM = (Q, q0, Δ) should
respect the initial state of Mreq.

(init). For the indexed algebra q0 = (σ0, μ0) it holds that for all o ∈ rtσ0 ,
μ0(o) = q0,req.

A crucial requirement in any framework for modular system design concerns
encapsulation. In our context this means that in any realization of an operation
op ∈ Op the state of each instance o of the required type rt can only be modified
by calling a required interface operation on o. Since a realization consists of
(small step) transitions with labels in Label req ∪ Label int, we can formalize the
encapsulation requirement by two conditions according to the two kinds of labels.
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The first condition says that calling a required operation on an instance o of the
required type rt cannot modify the set of the existing instances of rt and can
also not change states of instances different from o.

(encreq). For each transition (q, (o.opreq, ρ), q′, ρ′) ∈ Δ with label (o.opreq, ρ) ∈
Label req, indexed algebras q = (σ, μ), q′ = (σ′, μ′) and instance o ∈ rtσ it
holds rtσ = rtσ

′
and for all p ∈ rtσ \ {o}, μ(p) = μ′(p).

The second encapsulation condition says (1) that transitions with internal labels
cannot modify the state of instances of the required type, and (2) that any new
instance generated by an internal action must be in the initial state according
to Mreq.

(encint). For each transition (q, l, q′, ρ′) ∈ Δ with internal label l ∈ Label int and
indexed algebras q = (σ, μ), q′ = (σ′, μ′) the following holds:
(1) For all o ∈ rtσ ∩ rtσ′

, μ(o) = μ′(o).
(2) For all o ∈ rtσ′ \ rtσ , μ′(o) = q0,req.

Definition 6. Let ΣBody = (ΣAtt,Op) be a body signature with attribute signa-
ture ΣAtt = (rt :SPreq, ΣP(rt),Att). The class of ΣBody-models is given by the
family Mod(ΣBody) = (Mod(ΣBody)Mreq)Mreq∈�SPreq� where Mod(ΣBody)Mreq is
the class of Mreq-ΣBody-models M = (Q, q0, Δ) described above such that the
conditions (impl), (use), (init), (encreq) and (encint) are satisfied.

We claim that Mod(ΣBody) provides an appropriate semantic domain for the in-
terpretation of component-oriented (sequential) programs. Indeed the first three
conditions (impl), (use) and (init) are well supported already by object-oriented
programming languages: (impl) means that the operations of Op are not abstract,
(use) means that a client cannot override imported (required) operations and (init),
as well as part (2) of (encint), mean that newly created objects are in the initial
state according to a particular object constructor. To ensure the other encapsula-
tion constraints in concrete programs is however still a significant issue.

On the other hand encapsulation is the crucial prerequisite to support modular
verification. Indeed we can show that the conditions required for ΣBody-models
ensure that for each model Mreq of SPreq with signature Σreq all properties
expressed by Σreq-sentences, which are valid in Mreq, can be propagated to the
level of any Mreq-ΣBody-model M under the assumption that M is a correct
user of Mreq, i.e. calls to a required interface operation opreq occur only in
states where the domain constraint of opreq is satisfied. This is expressed by the
following definition and theorem.

Definition 7. Let Mreq = (Qreq, αreq, q0,req, Δreq) ∈ �SPreq�.
An Mreq-ΣBody-model M = (Q, q0, Δ) is a correct user of Mreq if for each
transition (q, (o.opreq, ρ), q

′, ρ′) ∈ Δ with (o.opreq, ρ) ∈ Label req and with indexed
algebra q = (σ, μ) it holds αreq(μ(o)), ρ |=ΣObsreq

domopreq

Theorem 1. Let ΣBody = (ΣAtt,Op) be a body signature with attribute sig-
nature ΣAtt = (rt :SPreq, ΣP(rt),Att) and required interface specification SPreq

with signature Σreq = (ΣObsreq ,Opreq, domreq).
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Let Mreq = (Qreq, αreq, q0,req, Δreq) ∈ �SPreq� and M = (Q, q0, Δ) be an Mreq-
ΣBody-model which is a correct user of Mreq. Then the following holds for all
Σreq-sentences init ϕ, inv ϕ and opreq : π:

1. If Mreq |=Σreq init ϕ then
1.a. for q0 = (σ0, μ0) and for all o ∈ rtσ0 it holds αreq(μ0(o)), ρ |=ΣObsreq

ϕ.
1.b. for all transitions (q, l, q′, ρ′) ∈ Δ with internal label l ∈ Label int with

q = (σ, μ), q′ = (σ′, μ′) and for all o ∈ rtσ′ \ rtσ it holds
αreq(μ0(o)), ρ |=ΣObsreq

ϕ.
2. If Mreq |=Σreq inv ϕ then for all reachable states q = (σ, μ) of M and for

all o ∈ rtσ it holds αreq(μ(o)), ρ |=ΣObsreq
ϕ.

3. If Mreq |=Σreq opreq : π then for all reachable states q of M and for all
transitions (q, (o.opreq, ρ), q

′, ρ′) ∈ Δ with q = (σ, μ), q′ = (σ′, μ′) and o ∈
rtσ(= rtσ

′
) it holds αreq(μ(o)), ρ;αreq(μ′(o)), ρ′ |=ΣObsreq

π.

Proof. (1.a): According to the constraint (init), μ0(o) = q0,req. Since Mreq |=Σreq

init ϕ , αreq(q0,req), ρ |=ΣObsreq
ϕ. Hence, αreq(μ0(o)), ρ |=ΣObsreq

ϕ. (1.b) is
proved similarly. (2) and (3) are straightforward consequences of a lemma which
says that under the given assumptions:

(*) For all reachable states q = (σ, μ) of M and for all o ∈ rtσ , it holds
μ(o) ∈ SRS(Qreq), i.e. μ(o) is a strongly reachable state of Mreq.

The proof of (*) is performed by induction on the number of transitions that
are used to reach q. The induction base is obvious due to the constraint (init).
For the induction step it is enough, because of the constraint (impl), to consider
transitions with labels in Label req ∪ Label int.

Let us first consider a transition of the form (qpre, (p.opreq, ρ), q, ρ) ∈ Δ
with qpre = (σpre, μpre) and q = (σ, μ). Let o ∈ rtσ = rtσpre , by constraint
(encreq). By induction hypothesis, μpre(o) ∈ SRS(Qreq). Case 1: o 
= p. Then,
by (encreq), μpre(o) = μ(o) and hence μ(o) ∈ SRS(Qreq). Case 2: o = p. Then,
according to (use), (μpre(o), (opreq, ρ), μ(o), ρ) is a transition in Mreq. Since
μpre(o) ∈ SRS(Qreq) and since, by assumption, M is a correct user of Mreq,
μ(o) ∈ SRS(Qreq). Now, consider a transition (qpre, l, q, ρ) ∈ Δ with l ∈ Label int,
qpre = (σpre, μpre) and q = (σ, μ). Case 1: o ∈ rtσ and o ∈ rtσpre . Then, by part
(1) of (encint), μpre(o) = μ(o) and hence, by using the induction hypothesis,
μ(o) ∈ SRS(Qreq). Case 2: o ∈ rtσ but o /∈ rtσpre . Then, by part (2) of (encint),
μ(o) = q0,req ∈ SRS(Qreq). � 

Example 1. Let us assume given a modelMreq ∈ �AccountI� and anMreq-ΣBank
Body-

model M , part of which contains transitions as shown in Fig. 1. q1, q2, q3 visu-
alize Mreq-indexed algebras as states of M . qa1, qa2, qb1, qb2 are states of Mreq

and their abstractions w.r.t. bal are shown below the respective lines.
Assume that M is a correct user of Mreq and that q1 is a reachable state of

M . Then, according to Theorem 1, in all account states qa1, qa2, qb1, qb2 the
AccountI invariant bal >= 0 must be valid and, similarly, the effects specified for
the operations withdraw and credit must be valid in the respective states of
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b.credit(amount=10)

q2

Account = {a, b}
accounts(1) = a
accounts(2) = b

a −−>

b −−> qb1

bal = 20

qa2

bal = 40

internal action
"target=b"

q1

Account = {a, b}
accounts(1) = a
accounts(2) = b

a −−>

b −−> qb1

bal = 20

qa1

bal = 50

q2

Account = {a, b}
accounts(1) = a
accounts(2) = b

a −−>

b −−> qb1

bal = 20

qa2

bal = 40

q3

Account = {a, b}
accounts(1) = a
accounts(2) = b

a −−>

b −−> qb2

bal = 30

qa2

bal = 40

qa1

bal = 50

q1

Account = {a, b}
accounts(1) = a
accounts(2) = b

a −−>

b −−> qb1

bal = 20

"source=a"
internal action

transfer(from=1, to=2, amount=10)

a.withdraw(amount=10)

Fig. 1. Transitions in a body model of Bank

the accounts. So the user, i.e. the model M , can rely on these properties when
checking its correctness (cf. Section 5.1), i.e. Theorem 1 provides a semantic
foundation for modular verification.

4.3 Semantics of Component Bodies

A component body is a pair Body = (ΣBody,Prog) consisting of a body signa-
ture ΣBody = (ΣAtt,Op) and a program Prog which implements the operations
Op. Since the aim of this paper is merely to provide an abstract framework for
components, a concrete syntax and detailed semantics for Prog is clearly out of
scope (in Sect. 1 we rely on a Java-like syntax). The idea, however, is that for any
concrete realizationMreq of SPreq, Prog determines a particular implementation
of the operations Op by using Mreq, i.e. Prog determines a particular model of
the class Mod(ΣBody)Mreq . Hence, we propose that the semantics of a compo-
nent body is given by a function �Body� : �SPreq� → Mod(ΣBody) such that
�Body�(Mreq) ∈ Mod(ΣBody)Mreq for each Mreq ∈ �SPreq�. Let us remark that
this definition also subsumes the case where the attribute signature of ΣBody

has no required type declaration, i.e. ΣAtt = (ΣP,Att). Then the transition sys-
tems of Mod(ΣBody) simply work on states which are standard (non-indexed)
algebras σ ∈ Alg(ΣAtt) and thus �Body� simply determines exactly one model
in Mod(ΣBody).

5 Components

A component C = (SPprov, SPreq,Body, abs) consists of a provided interface
specification SPprov, a required interface specification SPreq, a component body
which implements the provided interface operations by using SPreq, and a presen-
tation, denoted by abs, of an abstraction function which relates concrete states
of the body with abstract states of the provided interface.
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5.1 Semantics and Correctness of Components

A component is syntactically well-formed if the component body provides im-
plementations for all operations of the provided interface. The semantics of a
component C = (SPprov, SPreq,Body, abs) consists of three parts,

1. its external semantics, seen by the user of the component, which is formally
given by the class �SPprov� of all models of SPprov,

2. its internal semantics which is given by the semantics of the component’s
body, i.e. by the function �Body� : �SPreq� → Mod(ΣBody), and by

3. the semantics of abs which is given by a function �abs� : Alg(ΣAtt) →
Alg(ΣObsprov) (where ΣAtt is the attribute signature underlying the com-
ponent body and ΣObsprov is the observer signature underlying the provided
interface specification).

Again we stay abstract and do not define a concrete syntax and semantics for
abstraction functions. If, for instance, the observers of the provided signature are
directly implemented in the component’s body (as done in the example), then a
correponding abstraction function can be derived automatically. If the observers
are model variables, used e.g. in [9,12], an explicit abstraction function has to
be defined.

To study the semantic correctness of a component we have to consider the
relationship between its external and its internal semantics. The idea is that for
any (used) modelMreq of the required interface specification the resulting ΣBody-
model �Body�(Mreq) is a model of the provided interface specification (taking
into account the given abstraction function). For the formalization of this idea
we still have to construct the restriction of ΣBody-models to those transitions
labelled with provided interface operations only.

Definition 8. Let Opprov be the set of operations of SPprov and Op be the set of
operations of ΣBody such that Opprov ⊆ Op. The restriction R : Mod(ΣBody) →
Mod(Σprov) of the ΣBody-models to the operations Opprov yields, for each M =
(Q, q0, Δ) ∈ Mod(ΣBody), the transition system R(M) = (Q,α, q0,R(Δ)) where
α is the restriction of �abs� to Q and R(Δ) = {(q, (opprov, ρ), q′, ρ′) ∈ Δ |
(opprov, ρ) ∈ LabelOp , opprov ∈ Opprov}.

Definition 9. Let C = (SPprov, SPreq,Body) be a (syntactically) well-formed
component.C is correct, if for eachMreq ∈ �SPreq�,R(�Body�(Mreq)) ∈ �SPprov�.

Hence, for proving the correctness of a component with provided interface spec-
ification SPprov = (Σprov,Axprov) and required interface specification SPreq =
(Σreq,Axreq) we have to verify that for any arbitrary model Mreq ∈ �SPreq�,
first, R(�Body�(Mreq)) is a Σprov-model, i.e. satisfies the condition (dom) for
Σprov-models, and, secondly, R(�Body�(Mreq)) |=ΣObsprov

Axprov, i.e. satisfies
the initialization, invariant and operation effect sentences of SPprov.

Of course, formal verification techniques to prove the correctness of a com-
ponent are an important issue. For that purpose one would need a concrete,
component-oriented specification and implementation language which is beyond
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the scope of this paper. However, the direction how to perform correctness proofs
can be summarized by the following two steps:

(1) In a first step we construct the proof obligations. For this purpose we
define a general mapping m that maps the axioms Axprov to appropriate for-
mulas formulated in terms of the attribute signature of the component body. In
particular, domain constraints and specifications of the provided interface op-
erations would be mapped to pre- and postconditions for the body’s operation
implementations. Such a mapping depends, of course, on the concrete form of
the abstraction function.

(2) In the second step we have to verify that the operation implementations in
the component’s body satisfy the generated proof obligations. For this purpose
the idea is to adjust exisiting proof techniques (e.g. Hoare style proof rules
or dynamic logic [1]) that work on the small step transitions of the operation
implementations. Here it becomes crucial that, according to Theorem 1, one can
indeed rely in each state of a small step transition on the properties described
by the axioms Axreq of the required interface specification SPreq; cf. Example 1.

5.2 Composition of Components

Up to now, we have considered basic components where the component body
(ΣBody,Prog) consists of a body signature and a program. In this section we
construct larger components from smaller ones by connecting required and pro-
vided interfaces of given components. To do the connection properly we need the
notion of interface refinement. In the following we use, for lack of space, the sim-
plified assumption that interface specifications, which are related by refinement,
have the same underlying observer signature and the same set of operations (but
possibly with different domain constraints).

Definition 10. Let SPreq = (Σreq,Axreq) and SP′
prov = (Σ′

prov,Ax′
prov) be

two interface specifications with signatures Σreq = (ΣObs,Op, dom), Σ′
prov =

(ΣObs,Op, dom ′) resp. SP′
prov is a refinement of SPreq if �SP′

prov� ⊆ �SPreq�.

Definition 11. Let two components C = (SPprov, SPreq,Body, abs) and C′ =
(SP′

prov, SP′
req,Body′, abs′) be given which both are well-formed and correct and

let ΣBody be the signature of Body. Let SP′
prov be a refinement of SPreq. Then

the composition of C and C′ yields the composite component

CC = (SPprov, SP′
req,BodyCC, abs).

The external semantics of CC is given by the external semantics of C (which
is �SPprov�), the semantics of abs is the semantic abstraction function �abs� of
C and the semantics of BodyCC is given by the function �BodyCC� : �SP′

req� →
Mod(ΣBody) such that for each M ′

req ∈ �SP′
req�,

�BodyCC�(M ′
req) = �Body�(R′(�Body′�(M ′

req))).
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This means that �BodyCC� is the composition of the functions �Body′� : �SP′
req�

→ Mod(Σ′
Body), R′ : Mod(Σ′

Body) → Mod(Σ′
prov) and �Body� : �SPreq� →

Mod(ΣBody). The composition of these functions is well-defined since C′ is cor-
rect, i.e. R′ : Mod(Σ′

Body) → �SP′
prov�, and since SP′

prov is a refinement of
SPreq, and hence R′ : Mod(Σ′

Body) → �SPreq�. Due to the correctness of C, the
composite component CC is again correct. Obviously, the composition operator
for components is associative (w.r.t. the given semantics).

6 Conclusion

We have shown how algebra and model theory can be adapted to provide a
formal foundation of contract-based component systems. A key principle was
strong encapsulation which has been formalized by semantic constraints which
guarantee the preservation of the properties of required interface specifications.
Of course, one may discuss whether the given semantic constraints are flexible
enough in practice. However, it should be clear that whenever the constraints are
violated encapsulation cannot be ensured anymore. On the other hand, models
of component bodies as considered here can still contain arbitrary aggregates
of instances of required type (even of different required types if our approach is
extended in a straightforward way to arbitrary many required (and provided)
interfaces). The difference to object-oriented programs is that in our approach
these aggregates must be administered by instances of components on the next
hierarchy level which makes reconfigurations specifiable and controllable. Since
our approach implies a restricted communication structure that does not allow
callbacks we still have to investigate to what extent practical examples can be
reorganized to communication patterns that conform with our semantic model.
Our approach is merely oriented towards the data of states and not to control
states and interaction protocols. The integration of our approach with formalisms
for dynamic systems and concurrent components (see e.g. [3]) is, of course, an
important topic of future research.

The main differences of our approach to the literature on modular design and
verification are: We do not focus on concrete techniques how to overcome the
problem with modular verification in object-oriented systems like, e.g., [2,10]
because we are interested in the basic semantic principles of encapsulation which
should provide requirements for a good design of modular component-oriented
languages. Modular verification should then be a direct consequence of the lan-
guage design. Also our satisfaction relation for interface models and sentences
is more powerful than the usual treatment of invariants and pre/postconditions
due to the consideration of the strongly reachable states. Moreover, the purely
model-theoretic approach pursued here allows us to reuse for free classical con-
cepts of mathematical logic. This is also the idea of model-theoretic approaches
to modular system design that have been studied in the context of institutions;
see e.g. [7]. In contrast to the abstract ideas on encapsulation expressed by the
satisfaction condition of institutions, we focus here on a particular setting con-
cerning encapsulation in a state-based environment with explicit required and
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provided interfaces specified by contracts. In this setting we try to be as ab-
stract as possible but also as concrete as necessary. But, indeed, Theorem 1 has
been inspired by the abstract ideas of institutions. A more concrete approach
considering modular specification of object-oriented components has been pro-
posed in [12]. The concept of boxes found in [12] looks similar to our notion of
indexed algebra and it would be interesting to work out in what extent [12] could
be considered as a special case of our framework adapted to an object-oriented
environment.
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Abstract. The authors have proposed using category-theoretic sketches
to enhance database design and integration methodologies. The algebraic
context is called the Sketch Data Model (SkDM) and mathematically de-
scribes databases, views and their updates, and other database concepts.
The system described here is a freely available graphical Java environ-
ment with a module that compiles a design incorporating algebraically
specified constraints into database schemas that interface directly with
modern database management systems. It therefore supports, inter alia,
rapid prototyping.
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1 Introduction

Although the database management systems (DBMS) in wide use for the past
dozen years have all been “relational”, the most popular design method remains
the Entity-Relationship-Attribute (ERA) diagram. That this is so is not surpris-
ing given that the latter is a natural and simply understood graphical paradigm.
Despite this design-implementation disconnect, there are straightforward proce-
dures and a variety of both commercial and freely available software applications
that allow creation and manipulation of ERA diagrams and then translate these
designs into relational database schemas. See [8] for some examples.

The system described here similarly implements the database design concepts
of the Sketch Data Model (SkDM) [4] which is based on categorical universal alge-
bra. The SkDM extends both the entity-relationship model [1] and the functional
data model of Shipman [6]. Entities and attributes are modeled using a simple
graphical language. Relationships among entities are expressed, and may also be
constrained, using concepts from category theory. SkDM constraints can express,
among other things, the selection, projection, join and (disjoint) union operations
of relational algebra. Formally, these ideas are expressed using a special case of
� Research partially supported by grants from the Australian Research Council and

NSERC Canada.
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the class of categorical theories called sketches. The particular sketches we use
are called Entity-Attribute (EA) sketches and are described below.

For the Sketch Data Model, our EASIK system supports graphical definition
and manipulation of EA-sketches and automatic compilation into SQL database
schemas. It is capable of graphically specifying EA sketches, storing their de-
scription in XML documents and generating relational (SQL) database schemas
that implement the SkDM designs, including constraints.

EASIK is the first system that supports SkDM modelling. It produces an SQL
database schema which can be loaded into a DBMS. Furthermore the resulting
database will enforce the SkDM constraints. Having such a system is crucial to
validating the SkDM project. The current system has two main modules. The
first module is a graphical engine that allows point-and-click construction and
manipulation of an EA sketch. From the graphically presented EA sketch the
system generates an XML document that encodes the sketch, including con-
straints. The second module compiles a design stored as an XML document to
an SQL database schema that implements the design. The SkDM has been the
subject of extensive theoretical studies by the authors and collaborators, for ex-
ample [3,4,5]. M. Johnson and C. N. G. Dampney have been engaged for several
industrial consultancies using the SkDM [2].

2 An Example

Before describing the EASIK implementation, we provide a short tour of the
sketch data model with the aid of an EASIK screen. Many other examples can
be found in [4] and papers cited there, including the case-studies and consul-
tancies. We assume familiarity with standard data modeling concepts such as
ERA diagrams and relational database schemas and algebra. Some familiarity
with the basic language of categories applied to Computer Science (for example
in [7]) will be helpful.

A conference program committee might use a database with information on
its own members, authors, articles submitted, and their status. Among the rules
we assume are the following: a person in the database is an author or committee
member (not both); there is an assignment of a single committee member as
first reader for each paper; papers may have several authors and vice versa; for
accepted papers one or more of the authors is recorded as a presenter.

AnEAsketchhas fourcomponentswhichweoutline foradatabaseschemato sup-
port the program committee example. For a formal definition of EA sketch see [5].

The first component is a directed graph G, like that in Figure 1. We note
some similarities with an Entity-Relationship diagram that might describe the
same application domain, and some important differences.

Nodes of G represent entities, but there are no “relationship” nodes. The au-
thorship entity allows several authors to be among the “authorship” of a paper
and one author to have authorship of several papers. In an ER diagram author-
ship might be a relationship from author to paper. Here that is expressed by the
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Fig. 1. EASIK screen for part of a Program Committee database

directed edges from authorship. Instead of being modeled as a relationship set in
the ER fashion, authorship is also modeled as an entity set. Thus, the directed
edges from authorship are modeled by functions specifying for each authorship
who is the author and which paper they wrote. The is a relationships are denoted
here by edges indicated - �� . The other directed edges in G, for example that
from paper to commMbr, are modeled by functions (and can be thought of as
methods or, from the database perspective, as integrity constraints). Given an
instance of their source type they return an instance of their target type.

The other three components of an EA sketch do not appear in ER diagrams
and they express database constraints. In EASIK they are indicated graphically.

The second component is a set of commutative diagrams. A commutative di-
agram is a pair of paths in G with common source and target. They are used to
specify equality of function constraints. In our example, the two paths from pre-
senter to paper are a commuting diagram. This represents a real-world constraint:
Each presenter instance has an authorship of a paper and each presenter instance
has an acceptedPaper which is the same paper. On the screen, this diamond of
edges encloses a CD icon for which the details are also found among constraints in
the right panel of the screen. In contrast, the two paths from authorship to person
(around the parallelogram) do not form a commutative diagram.

The last two components of an EA sketch express database constraints graph-
ically. They require a node of G to have a value in a database state that depends
on values of other nodes in the state.

The third component of an EA sketch is a set of finite cones in G. For details
of their syntax and semantics we refer the reader to [4] or [5], but we do note
here that is a edges are expressible using finite cones.

The fourth component of an EA sketch is a set of finite discrete (or sum)
cocones. A discrete cocone has a single vertex node, a set of base nodes a path
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to the vertex node from each base node. In Figure 1 there is a discrete cocone
with vertex person. Its base vertices are commMbr and author. The links to the
vertex from the base nodes are the is a edges. On the screen, these nodes link
with a + icon for which the details are also found in the right panel of the
screen. This cocone expresses that (the elements of the entity set) person are
exactly the disjoint union (sum) of (the elements of the entity sets) commMbr,
and author. Note that we thus enforce the constraint that committee members
are not allowed to be authors.

We do not show most of the attributes—the “A” in EA—in the screen graph
of Figure 1, but they are definitely a part of the EA sketch. Attributes are (often
large) fixed value sets. Examples in this case are the name of a person, the title
of a paper, the year-joined of a committee member, and so on. On the right panel
attributes and their data-types are listed with their entity. They may optionally
be shown on screen UML style, as we do for paper. Formally an attribute is the
vertex of a sum cocone whose linking paths are called elements. In every state
of the database, an attribute’s value is exactly the disjoint union of its elements.

The theory of the sketch data model considers categories of models of EA
sketches. A model is prescribed by value sets for entities and attributes and
functions among them prescribed by the edges of G which satisfy the constraints.
Our interest is instead to translate the sketch into an SQL database schema which
maintains the constraints on entity sets prescribed by the sketch.

3 Implementation of the SkDM with EASIK

We begin the description of our implementation with some of the design desider-
ata for EASIK:

The graphical front end is written in Java for portability. All user input
is gathered through the GUI environment. Saved files are XML documents.
EASIK supports the database design and then handles the generation of an
SQL database schema. Access to the database schema and data manipulation
(input and queries) is via a user selected database management system. (Thus,
database implementation requires an ambient DBMS; export of the SQL schema
as text is also available.) Entities have a system-generated primary key. Keys are
definable within the sketch and are in the exported SQL schema. Attributes must
be based on data types for the platform specified by the user and are specified in
an understandable format without adding clutter. Commutative diagrams and
other constraints are representable graphically and exported as triggers and pro-
cedures to the SQL schema. The user may select a path of edges of any length
to create constraints. The user may add, delete, edit and rename all sketch ele-
ments. Database schema export is accomplished automatically and includes all
information about constraints, primary and foreign keys. Drivers for interactions
with database platforms are included.

These design criteria are met by the application which is available for down-
load from http://mathcs.mta.ca/research/rosebrugh/Easik/. EASIK uses
the graph display package JGraph and translates between XML and Java via
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SAX. The Java source code and a Java archive (jar) file (including a Help sys-
tem) are available, as is extensive documentation and several examples.

EASIK opens with a graphical canvas with functionality for the creation of
entities (nodes), attributes and edges joining entities. EA sketch constraints from
several classes may be specified using the graphical interface. The components of
the sketch are accessible from a text panel. A stored EA sketch may be loaded.
The EA sketch information (entities, edges, attributes and constraints) in the
graphical display can be edited on screen.

The displayed sketch may be saved to an XML document that encodes enti-
ties, attributes, edges and all of the constraints plus the current graphical display.
The XML code follows a schema written in XSD. Fragments of XML code for
the above example follow:

<entities>
<entity name="paper" x="365" y="228">
<attribute attributeType="VarChar(255)" name="Title"/> ...
<edges>
<edge id="of" inj="false" source="authorship" target="paper"/> ...
<commutativediagram isVisible="true" x="373" y="126">
<pathref id="among;of"/>
<pathref id="of 1;isA 3"/>...

Generation of data description language (SQL code) for a database schema
from an EA sketch uses its stored XML document. The generation procedure
begins by creating a table for each entity with keys derived from the graph of
the EA sketch. A column of its entity table is created for each attribute. Each
edge is encoded as a foreign key created for its source entity table on the primary
key of its target entity table. The point is that, for any tuple in a source table
(entity set) its value under the function implementing the edge is specified in the
target table (entity set). The is a (injective) edges also use UNIQUE. An example
of generated SQL code follows. Note the attribute Title and the foreign key for
reader.

CREATE TABLE paper (paper id INTEGER AUTO INCREMENT ,
Title VARCHAR(255), commMbr id INTEGER NOT NULL ,
FOREIGN KEY (commMbr id ) REFERENCES commMbr (commMbr id ) ,
ON UPDATE CASCADE ON DELETE CASCADE ,
PRIMARY KEY (paper id ));

Cascading updates and deletes for the foreign key is a design decision entailed
by automatic generation.

The constraints of the EA sketch are coded as triggers and stored procedures.
For example, inserting a tuple in the domain table of a commutative diagram
invokes a trigger to enforce the requirement that the values the foreign keys
used to express the participating edges do match after following the two paths
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in the commutative diagram. In the example following, the stored procedure
ProgCttee commDiag0 is called to traverse the paths involved.

CREATE TRIGGER presenterAInsertTrig AFTER INSERT ON presenter
FOR EACH ROW BEGIN call ProgCttee commDiag0(NEW.presenter id ); END

The stored procedure is fairly routine imperative code.

4 Conclusions

The challenging problem solved by this early version of EASIK is automatic com-
pilation into SQL data definition language in a way that enforces the constraints
of an EA sketch. Thus its powerful constraint definition facility is available to
users via a simply understood graphical data model design tool. EASIK is the
first system to do this. Furthermore EASIK will support the development of
large systems using the SkDM approach. Such software support is vital with the
large applications common in industrial practice. The system described has some
limitations. Only a single EA sketch window may be opened. Limit cones are cur-
rently required to be one of two (very common) types. Testing with commercial
DBMS has been limited. Future versions will address these issues.

Database theory has worked within its own Relational Algebra for many years,
but enhancing the theory with categorical universal algebra is a more recent
development. The system described here provides a positive link between theory
(the algebraic methodology, SkDM) and practice (the software technology of
database management systems).

References

1. Chen, P.P.S.: The Entity-Relationship Model—Toward a Unified View of Data.
ACM Trans. Database Syst. 2, 9–36 (1976)

2. Dampney, C.N.G., Johnson, M.: Experience in developing interoperations among
legacy information systems using partial reverse engineering. In: Proceedings of the
IEEE International Conference on Software Maintenance, pp. 269–272 (2003)

3. Johnson, M., Rosebrugh, R.: Sketch data models, relational schema and data speci-
fications. In: Proceedings of CATS 2002. Electronic Notes in Theoretical Computer
Science, vol. 61(6), pp. 1–13 (2002)

4. Johnson, M., Rosebrugh, R.: Fibrations and universal view updatability. Theoretical
Computer Science 388, 109–129 (2007)

5. Johnson, M., Rosebrugh, R.: Constant complements, reversibility and universal view
updates. In: AMAST (to appear, 2008)

6. Shipman, D.: The functional data model and the data language DAPLEX. ACM
Trans. Database Syst. 6, 140–173 (1981)

7. Walters, R.F.C.: Categories and Computer Science. Cambridge University Press,
Cambridge (1991)

8. http://en.wikipedia.org/wiki/Entity-relationship (accessed on May 6, 2008)

http://en.wikipedia.org/wiki/Entity-relationship


Constant Complements, Reversibility and

Universal View Updates�

Michael Johnson1 and Robert Rosebrugh2

1 Department of Computer Science
Macquarie University
mike@ics.mq.edu.au

2 Department of Mathematics and Computer Science
Mount Allison University

rrosebrugh@mta.ca

Abstract. The algebraic specification of information systems (including
databases) has been advanced by the introduction of category theoretic
sketches and in particular by the authors’ Sketch Data Model (SkDM).
The SkDM led to a new treatment of view updating using universal prop-
erties already studied in category theory. We call the new treatment suc-
cinctly ”universal updating”. This paper outlines the theory of universal
updating and studies the relationships between it and recent theoretical re-
sults of Hegner and Lechtenbörger which in turn studied the classical ”con-
stant complement” approach to view updates. The main results demon-
strate that constant complement updates are universal, that on the other
hand there are sometimes universal updates even in the absence of constant
complements, and that in the SkDM constant complement updates are re-
versible. We show further that there may be universal updates which are
reversible even for views which have no complement. In short, the univer-
sal updates provide an attractive option including reversibility, even when
constant complements are not available. The paper is predominantly theo-
retical studying different algebraic approaches to information system soft-
ware but it also has important practical implications since it shows that
universal updates have important properties in common with classical up-
dates but they may be available even when classical approaches fail.
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1 Introduction

To provide usability, security, access limitation, and even interoperability for
database systems, the designer of a database schema may specify a subschema
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the view state may perform an update to the view state. The question arising
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J. Meseguer and G. Roşu (Eds.): AMAST 2008, LNCS 5140, pp. 238–252, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Constant Complements, Reversibility and Universal View Updates 239

is how to determine an appropriate update to the state of the total database.
This problem, known as the “view update problem” has been widely studied.
There is a variety of “solutions”, referred to as “translations”, but many of these
are either narrow in their application or not apparently close to actual database
models. The implementation of view updates, especially within standards such
as SQL, has been largely based on ad hoc and very limiting requirements.

Much of the literature on the view update problem is over 15 years old, but in
recent years there have been several new contributions. In 2002, Hegner [6] intro-
duced an order based theory of database views and their updates which general-
ized the constant complement approach to view updating originally developed by
Bancilhon and Spyratos [1]. In 2003 Lechtenbörger [10] explored the relationship
between the reversibility of updates and constant complements. More recently
Bohannon, Pierce and Vaughan [4] introduced lenses, a structure providing a
lifted state for a given state and the updated version of its view state. Lenses
guarantee translations for the constant complement views and they noted that
view updating in the style of Bancilhon and Spyratos allows only a “relatively
small number of updates on a view to be translated”. Dayal and Bernstein [5]
were more permissive in the view update translations that they proposed and
also considered a criterion that in modern terms would be described as a univer-
sal property: They discuss (p 401) the desire for view update translations to be
unique and minimal. In a similar vein, Hegner finds that “within the constant
complement order-based framework, the reflection of an order based update of a
view to the base schema is unique, without qualification.” The present authors
have investigated an approach to database schemas, states and views based on
categorical algebra [7]. This data model prescribes a solution to the view update
problem using precisely universal properties (unique minimal translations).

The problem addressed by this paper is to understand better the relationship
between universal updates and constant complement updates in the context of
our data model. Hegner’s order-based context models database states more ac-
curately than considering them to be abstract sets, and his results are suggestive
of what we will find. Lechtenbörger showed that, in a suitable sense, constant
complement updates were always reversible, and conversely if all updates to a
view are reversible then it is possible to find a constant complement for it. The
main contributions of the present article are

1. To develop the framework in which universal updates properly reflect ambi-
ent database structure

2. To show that in that framework constant complement updates are, in har-
mony with Hegner’s results, necessarily universal

3. To show that in that framework constant complement updates are, in har-
mony with Lechtenbörger’s results, reversible

4. To provide examples to demonstrate that universal updates are more general
than both constant complement updates and reversible updates

We note particularly that view updates can have very attractive properties in-
cluding universality and even reversibility without necessarily having any con-
stant complement (without contradicting Lechtenbörger’s results, see below).
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As mentioned above, the work presented here uses the sketch data model
(SkDM) [8], [9] which is based on categorical algebra. This data model is related
to both the popular and widely used entity-relationship model and to the func-
tional data model of Shipman [12]. Entities and attributes are modelled using
a simple graphical language. Relationships among them are constrained using
concepts from category theory that express selection, projection, join and union
constraints. The syntactic formalism derived from these ideas is expressed by
the concept of “sketch”. The sketches we use are called Entity-Attribute (EA)-
sketches and are described in detail below.

Straightforward procedures and a variety of software applications translate
entity-relationship diagrams into relational database schemas, whose semantics
are database states. For the sketch data model, a similar implementation is in
progress (see for example [11], an EA-sketch compiler which supports graphical
manipulation of EA-sketches and automatic conversion into Oracle and MySQL
database schemas).

The structure of the paper is as follows. In Section 2 we present a small moti-
vating example of a sketch data model followed by the formal definitions of EA
sketches, views, and propagatable (universal) updates. Section 3 is devoted to
developing the main results relating propagatable updates to constant comple-
ments and reversibility respectively. Finally, Section 4 relates those main results
to the work of others.

2 An Example and the Sketch Data Model

The results presented in Section 3 need the technical details of the sketch data
model which are given below. First we work through a motivating example.
Other examples can be found in [9] and in case-studies and consultancies, cited
there.

We assume some familiarity with Entity-Relationship (ER) notation and the
basic language of categories and functors applied to Computer Science as found,
for example, in [2].

Example 1. When aircraft land at an airport in restricted visibility conditions
they use an “instrument approach”. We describe part of a database schema
for instrument approaches. The main entities involved are airports, runways,
waypoints (fixes) and the instrument approaches themselves. For example, there
is a VOR (VHF Omni-Range) approach to Runway 18 at Willard Airport near
Champaign. An approach also involves a specified waypoint of one of several
types which defines its final approach fix (faf). The main types of waypoints
are VOR, NDB (another kind of navigation aid) and GPS waypoints (GPSWP).
Also required is a waypoint to fly to in case of a missed approach (overshoot).

An EA sketch has four components which we will now prescribe for our exam-
ple. The first component (as for ER diagrams) is a directed graph G. Figure 1
shows (the main elements of) the directed graph for an EA sketch.

Entities are nodes of G, but there are no “relationship” nodes. In an ER
diagram Approach might be a relationship from Runway to Waypoint. Here that
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Fig. 1. Graph for part of an instrument approach database schema

is expressed by the directed edges to and faf. In a database state an entity node
is modelled by an entity set just as for an ER diagram. Instead of being modelled
as a relationship set in the ER fashion, Approach is also modelled as an entity set.
However, the directed edges from Approach are modelled by functions. The is a
relationships are denoted here by edges indicated �� �� . As for an ER diagram,
they are modelled by injective mappings. The other directed edges in G are
modelled by functions (and can be thought of as methods or, from the database
perspective, as integrity constraints). Given an instance of their source type they
return an instance of their target type.

The other three components of an EA sketch do not appear in ER diagrams
and they express database constraints. The second component is a set of com-
mutative diagrams. Here a commutative diagram is a pair of paths in G with
common source and target. They specify equality functional constraints. In our
example, the right-then-top and bottom-then-left paths around the upper rect-
angle is a commuting diagram. It represents a real-world constraint: Each (in-
strument) Approach to a particular Runway at a particular Airport uses as faf
a Waypoint located at that same airport. In contrast, the two paths from Ap-
proach to Waypoint (the triangle) is not a commutative diagram—the rules for a
particular approach require that on overshooting, an aircraft holds at a partic-
ular Waypoint which will not usually be the final approach fix Waypoint. In this
example, the bottom rectangle is also a commutative diagram as noted below.

The last two components of an EA sketch also express database constraints.
They will require a node of G to have an entity set in a database state that
depends on those of other nodes for the state. The third component of an EA
sketch is a set of finite cones in G. A cone in G has a vertex, a base diagram,
and projection edges from the vertex to base nodes. An example from Figure 1
follows. This cone has vertex VORApproach (the vertex is a node of G). The
base diagram of the cone is the pair of edges VOR �� Waypoint �� Approach.
The base is a diagram in the graph, given formally by a graph morphism to
G. The projections from the vertex to the base nodes are the edges in G from
VORApproach to Approach, VOR and Waypoint—the last edge is not shown in
Figure 1, but it is the common value of the right-then-top and bottom-then-left
paths (since the bottom rectangle is commutative!) The constraint this cone
expresses is that in models VORApproach is the pullback of the base cospan. In
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fact this is precisely how join database constraints are specified. Selection, is a
and projection constraints can also be expressed with finite cones. We mention
a further point about the cones. An EA sketch is required to have a special cone
whose vertex is called 1 (and usually not depicted) and whose base diagram is
empty so that in models its value is 1.

The fourth component of an EA sketch is a set of finite discrete cocones.
A discrete cocone has a vertex, a base diagram and links to the vertex from
base nodes. Being discrete means no edges are permitted in the base diagram.
In Figure 1 there is a discrete cocone with vertex Waypoint. Its base nodes are
NDB, VOR, and GPSWP. The links to the vertex from the base nodes are the is a
edges. For discrete cocones the links are called injections ; they are necessarily
injective functions in database states. This cocone expresses the constraint that
the elements of (the entity set) Waypoint are exactly the disjoint union of (the
elements of the entity sets) NDB, VOR, and GPSWP. The formal requirement is
that the vertex be the sum, or coproduct, of the base nodes.

As is usual practice, we did not draw the attributes—the “A” in EA—in Fig-
ure 1, but they are definitely a part of the EA sketch. Attributes are (often large)
fixed value sets. Examples in this case are the radio frequency of a navigation
aid, the surface type of a runway, the length of a runway, the four character
identifying code of an airport, etc. An attribute is the vertex of a cocone whose
finite discrete base has all of its nodes specified by the special node 1 and whose
injection edges are called elements. In every state, an attribute’s value is exactly
the sum of its elements. Formally, the cocones that define attributes are part of
the underlying graph. (In practice, attributes are usually listed separately in a
data dictionary.)

We now proceed with the formalism required for EA sketches and their model
categories. The first three definitions are general [2] and are included to establish
notation before we specialize to our EA sketches and their models.

Definition 1. A sketch E = (G,D,L, C) consists of a directed graph G, a set
D of pairs of directed paths in G with common source and target (called the
commutative diagrams) and sets of cones L and cocones C in G. The category
generated by the graph G with commutative diagrams D is denoted C(E).

Definition 2. Let E = (G,D,L, C) and E
′ = (G′,D′,L′, C′) be sketches. A

sketch morphism h : E �� E
′ is a graph morphism G �� G′ which carries,

commutative diagrams in D, cones in L and cocones in C to respectively com-
mutative diagrams in D′, cones in L′ and cocones in C′.

Definition 3. Denote the category of finite sets by setf . A modelM of a sketch
E is a functor M : C(E) �� setf such that the cones in L and cocones in C
are sent to limit cones and colimit cocones in setf . If M and M ′ are models
of E a morphism φ : M �� M ′ is a natural transformation from M to M ′.
The category Mod(E) has objects the models of E and arrows the morphisms of
models.
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EA sketches as described in Example 1 have some limitations on their cones and
cocones and they are adequate for describing the needed database constraints,
but restrictive enough to permit definition of the query language.

Definition 4. An EA sketch E = (G,D,L, C) is a sketch with only finite cones
and finite discrete cocones and with a specified cone with empty base whose vertex
is called 1. Edges with domain 1 are called elements. Nodes which are vertices of
cocones all of whose injections are elements are called attributes. Nodes which
are neither attributes, nor 1, are called entities.

The next definitions are fundamental: the semantics i.e. database states, for an
EA sketch are specified by a set for each node of the graph and a function for
each edge subject to: equality of composition constraints (from the commutative
diagrams); select, project and join constraints (from the cones); and (disjoint)
union constraints (from the discrete cocones).

Definition 5. A database state D for an EA sketch E is a model of E. The
category of database states of E is Mod(E). An insert update (respectively delete
update) for a database state D is a monomorphism D �� �� D′ (respectively
D′ �� �� D) in Mod(E).

A morphism of database states is a monomorphism when each component mor-
phism is monic. Thus our definition of a delete (resp. insert) update means that
some elements are deleted (resp. inserted) in in the set specified for each node.
The following definition encodes the requirement of the relational model for en-
tity integrity, since it means that there is a chosen primary key for each entity.

Definition 6. The EA sketch E is keyed if for each entity E there is a specified
attribute AE called its key attribute and a chosen monic specification E �� �� AE.

For a keyed EA sketch, it turns out that all morphisms between database states
are monomorphisms ([8], Proposition 4.7) since all of the natural transformation
component mappings are injective.

Example 2. We give a simple EA sketch E1 that we will consider in the sequel.
It is a variant of an example in [6]. The database records people, their names
and departments and their assignments to projects.

The graph is just that depicted below. There are no commutative diagrams
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The attributes are KA, Name, KD and KP (we do not show their cocone
specifications in the diagram). Entities are Asst, Person, Dept and Proj. The
edges kA, n, kD and kP are keys, so there are also several cones not shown. -
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Before giving the definition of view, we briefly discuss the query language of an
EA sketch. One of the advantages of the sketch data model is that an EA sketch
comes equipped with a query language. For any EA sketch E there is a category
called the theory of the sketch denoted Q(E) (for details consult [3, Section 8.2]).
This Q(E) is constructed starting from C(E) and then formally adding to it all
finite limits and finite sums, subject to the (co)cones in L and C. For example,
Q(E1) has objects like Pers× Proj and Dept + Asst. From its construction, Q(E)
includes E and actually has all finite limits and finite sums. An essential point is
that Mod(Q(E)) is equivalent as a category to Mod(E). This is because a Q(E)
model restricts to an E model and conversely an E model determines values on
queries and so a Q(E) model.

A view allows a user of an information system to manipulate data which are
part of, or are derived from, an underlying database. As we are about to define
it, a view of an EA sketch E has a new EA sketch V with the entities of V

interpreted via a sketch morphism V as entities from the original EA sketch E

or even query results (entities of Q(E)). Formally,

Definition 7. A view of an EA sketch E is an EA sketch V together with a
sketch morphism V : V �� Q(E).

Example 3. A view V1 : V1
��Q(E1) of E1 is specified by the inclusion in Q(E1)

of the sketch whose graph is just the three edges kA, np and kP q (the latter two
being composites of edges in E1). Note that the composite edges np and kP q are
not edges in E1 but they are present in C(E1) and so in Q(E1). -

The equivalence of Mod(E) with Mod(Q(E)) means a database state D : E ��

setf can also be considered as a model of Q(E), also denoted D. Composing
the model D with a view V gives a database state DV : V �� Q(E) �� setf

for V, the V -view of D. This operation of composing with V is written V ∗ so
V ∗D = DV and so we obtain a functor V ∗ : Mod(E) �� Mod(V) which sends
a database state for E to one for V.

We sometimes refer to a database state of the form V ∗D as a “view”. Context
determines whether “view” refers to a database state, or to the sketch morphism
V . To avoid ambiguity we also refer to V ∗D as a view state and to V as the
view sketch. Our framework implies an inessential difference from other work on
views. When the database states are simply a set [1], [10] instead of a category
like Mod(E) the analogue of V ∗ is a mapping called the view definition mapping.
If the states are a partially ordered set [6] it is a monotone mapping. These
mappings are usually required to be surjective so that every view state arises
from a state of the underlying database. While V ∗ may be surjective on objects
(view states), we do not require this, so we formally allow view states not derived
from underlying database states. In examples V is usually one-one on objects
making V ∗ surjective on objects.

Since a view state is itself a database state for its view sketch, we may (subject
to the constraints of the view sketch) insert items in or delete items from a view
state. An insertion in, or deletion from, the view state V ∗D is translatable to
the underlying database state D if there is an insertion in or deletion from
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the underlying database which, on application of V ∗, becomes the given view
insert/delete. We will say the insertion or deletion is propagatable if there is a
unique “minimal” insert/delete in the following sense.

Definition 8. Let V : V �� Q(E) be a view of E. Suppose D is a database state
for E, T ′ a database state for V, and i : V ∗D �� �� T ′ is an insert update of V ∗D.
The insertion i is propagatable if there exists an insert update m : D �� �� D′ in
Mod(E) with the following property: i = V ∗m and for any database state D′′ and
insert update m′′ : D �� �� D′′ such that V ∗m′′ = i′i for some i′ : T ′ �� �� V ∗D′′,
there is a unique insert m′ : D′ �� �� D′′ such that V ∗m′ = i′ as in

V ∗D T ′�� i ��

D

V ∗D
�
�
�D D′�� m �� D′

T ′
�
�
�

V ∗D

V ∗D′′

��

V ∗m′′ ���������������� T ′

V ∗D′′



 i′



���

D′

D′′




m′



�
�

�

D′′

V ∗D′′
�
�
�

D

D′′

��

m′′ �������������������

where the dashed vertical lines indicate, for example, that V ∗D is the image of
D under V ∗. If every insert update on V ∗D is propagatable, we say that the view
state V ∗D is insert updatable.

Definitions of propagatable for a deletion d : T ′ �� �� V ∗D and delete updatable
for a view state are obtained by reversing some arrows. Note that the m whose
existence is required is essentially unique. By this we mean that for any other
n : D �� �� E′ that satisfies the requirements onm, there is an invertible morphism
of database states j : D′ �� E′ satisfying jm = n.

Example 4. Let D be a model of E1. We consider some updates for the view V1
of Example 3.

First, any delete from the value V ∗
1 D(Asst) is propagatable: the deleted as-

signment is simply deleted from D(Asst). There are no other consequences. Since
the other nodes of the graph of V1 are attributes and hence their values are the
same in every database state, no other deletes are possible.

Next consider inserting an item a into the view state V ∗
1 D at V ∗

1 D(Asst).
That is, we wish to add an assignment in the view. Once again, there are no
other possibilities for insertion in V ∗

1 D. This requires defining V ∗
1 D

�� �� T ′ and
so defining KA, Name and KP values T ′(kA)(a) and so on. If the proposed Name
and KP values, T ′(np)(a) and T ′(kP q)(a) are already in the images of D(n)
and D(kP ) because the person and project exist already, and provided there is
a free assignment key in D(KA) for the value of T ′(kA)(a), then the insert is
propagatable to a D �� �� D′ since values of D′(p)(a) (and hence also D′(d)(a))
and D′(q)(a) are determined. Even if the proposed KP value is not an image of
D(kP ) this remains true since it is then possible to insert an item b into D(Proj)
and set D′(q)(a) = b and D′(kP )(b) = T ′(kP q)(a). However, if the proposed
Name value is not an image of D(n), there is no canonical choice of Dept value
D′(dp)(a) and consequently the update is not propagatable. -
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When all insert (respectively, delete) updates of a view are propagatable then
V ∗ is called a right (resp. left) fibration. For criteria guaranteeing this property
see [9]. For historical reasons, the arrow m in Definition 8 is called op-cartesian,
while the analogous arrow for a delete is called cartesian and we will use these
names below.

3 The Main Results

In this section we will study constant complements and reversibility.
A notion of view complement appeared in the influential article of Bancilhon

and Spyratos [1], a study of the view update problem. They consider database
states to be a set S, view states to be a set V and give a surjective view definition
mapping f : S �� ��V from the database states onto the view states. A view update
is taken to be an endo-function u on the view states. A set U of view updates is
specified and assumed to be complete, i.e. closed under composition and including
the identity function. A translation Tu of a view update u is a database update
(endo-function on S) such that the view of a translated database state is the
update of the view of the state, i.e. f(Tu(s)) = u(f(s)) (and Tu acts as the
identity on any s whenever u acts as the identity on f(s)). A translation Tu is a
solution to the view update problem for the update u and a translator T for U
is a set of translations {Tu | u ∈ U}. The diagram following is suggestive:

f(s) u(f(s))� ��

s

f(s)

�
�s Tu(s)� �� Tu(s)

u(f(s))

�
�

Bancilhon and Spyratos show that a translator T for a complete update set
implies the existence of a “constant complement view” C. This is a second set C
of view states with a second view definition mapping, say g : S ��C, such that
the mapping 〈f, g〉 : S �� V × C is a bijection (C is a complement of V ) and
such that g(Tu(s)) = g(s) holds for Tu ∈ T, s ∈ S (any Tu in T is constant on
C). They also showed a converse. This is the basis of the “constant complement”
update strategy.

Lechtenbörger [10] has recently shown that constant complement translators
exist when all of the view updates are reversible by other view updates.

In the description above the database states are taken to be an unstructured
set and (subject to completeness) the updates are simply an abstract set of endo-
functions. Hegner [6] suggests that the database states and the view states ought
to be partially ordered sets. Then delete and insert updates should relate states
that are comparable, i.e for a state s and update u, either s ≤ u(s) or u(s) ≤ s.
Our definition above suggests that updates should be arrows in a category of
database states. We point out an important difference. In [1] and [6] an update
u acts on every (view) state—it is a process mapping states to updated states—
whereas for us, an update compares a single state to an updated state.

We start with the definition that begins to express these ideas in our context.
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Definition 9. Let E, V and C be EA sketches and V : V �� Q(E) and C :
C ��Q(E) be views. We say C is a complement of V if the functor

〈V ∗, C∗〉 : Mod(E) �� Mod(V)×Mod(C)

is full, faithful and injective on objects.

Definition 10. Let V : V �� Q(E) and C : C �� Q(E) be views with C a
complement of V and α : R �� V ∗D be an arrow in Mod(V). We say that α
has a C-constant update if there is α̂ in Mod(E) with α = V ∗α̂ and C∗(α̂) an
isomorphism. Dually, α has a C-opconstant update if β : V ∗D �� S is V ∗β̂
and C∗(β̂) is an isomorphism.

The definition does not require that α be propagatable, but only that it be the
image under V ∗ of some α̂. More generally,

Definition 11. Let V : V �� Q(E) and C : C �� Q(E) be views with C a
complement of V . We say that V has C-constant updates if every α : R �� V ∗D
has a C-constant update. V has C-opconstant updates is defined dually.

Example 5. Consider an EA sketch E that is specified completely (except for 1)
by a sum diagram

Support i �� Dept �� j
Production

That is, in any state the Dept entity set will be the disjoint union of the support
departments and the production departments. Suppose that V and C are the EA
sketches whose graphs have (in addition to 1) exactly one node each: Support
and Production respectively and that V : V ��Q(E) and C : C ��Q(E) are the
sketch morphisms providing the obvious inclusions of the two views. A state M
of E is determined by a sum diagram:

MSupport Mi ��MDept �� Mj
MProduction

in setf and a state of either V or C by any set. Thus

〈V ∗, C∗〉 : Mod(E) �� Mod(V)×Mod(C)

sends the sum diagram above to the pair 〈MSupport,MProduction〉 of sets. It is
immediate that C is a complement of V . Indeed, here 〈V ∗, C∗〉 is an equivalence.

Notice that any deletion α : R �� �� V ∗M in Mod(V) is propagatable: simply
delete appropriate elements fromMSupport and the corresponding elements from
MDept. If we denote the cartesian arrow by α̂ : αM ��M , so α = V ∗α̂ we see
that C∗(α̂) is the identity on MProduction. Thus, α has a C-constant update,
and indeed V has C-constant updates. Note further that α̂ is also opcartesian
for the arrow α : V ∗αM �� MSupport. That is, α is ‘reversible’ in the sense of
Definition 12.

Similarly, β has C-opconstant updates for any insertion β : V ∗M �� �� S in
Mod(V), and β is reversible. -
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The next two theorems show that the constant complement updates are among
the propagatable (universal) updates.

Theorem 1. Let V : V �� Q(E) be a view and let C : C �� Q(E) be a com-
plement and α : R �� �� V ∗M be a deletion in Mod(V). If α has a C-constant
update, then α is propagatable.

Proof. Suppose that α̂ : N �� M satisfies α = V ∗α̂, C∗α̂ is invertible, β̂ :
P ��M and γ : V ∗P �� R satisfy V ∗β̂ = αγ. We need to construct a unique
γ̂ : P �� N satisfying V ∗γ̂ = γ as in:

V ∗P Rγ
��

P

V ∗P
�
�P N

γ̂
�� N

R

�
�P M

β̂

��

R V ∗M��
α

��

N

R

�
�N M��

α̂
�� M

V ∗M
�
�

Since C is α-constant, we have 〈γ, (C∗α̂)−1C∗β̂〉 : 〈V ∗P,C∗P 〉 �� 〈V ∗N,C∗N〉.
Now 〈V ∗, C∗〉 is full by assumption, so there is an arrow γ̂ : P �� N with
V ∗γ̂ = γ and C∗γ̂ = (C∗α̂)−1C∗β̂.

To see that α̂γ̂ = β̂, recall that 〈V ∗, C∗〉 is faithful and note that:

〈V ∗, C∗〉α̂γ̂ = 〈V ∗α̂γ̂, C∗α̂γ̂〉
= 〈αγ,C∗α̂(C∗α)−1C∗β̂〉
= 〈V ∗β̂, C∗β̂〉
= 〈V ∗, C∗〉β̂

To see that γ̂ is unique, just note that α̂ is monic. � 
Theorem 2. Let V : V �� Q(E), let C : C �� Q(E) be a complement and
β : V ∗M �� �� S be an insertion in Mod(V). If β has a C-opconstant update,
then β is propagatable.

Proof. Suppose that β̂ : M �� N satisfies β = V ∗β̂, C∗β̂ is invertible, α̂ :
P ��M and γ : V ∗M ��S satisfy V ∗α̂ = γβ. The construction of γ̂ : N �� P
satisfying V ∗γ̂ = γ is formally dual to that above, indeed C∗γ̂ = C∗α̂(C∗β̂)−1.
To see that γ̂ is unique, suppose that V ∗γ = γ and γβ̂ = α̂. Then C∗(γβ̂) = C∗α̂
so C∗γ = C∗γC∗β̂(C∗β̂)−1 = C∗α̂(C∗β̂)−1 = C∗γ̂. Now by faithfulness of
〈V ∗, C∗〉 we conclude that γ = γ̂. � 
However, a view update may be propagatable for a view with a complement, but
there may not be a constant complement.

Example 6. A complementC1 for the view V1 of the (keyed) assignments database
from Example 3 is provided by the inclusion of the sketch C1 whose graph is:

Person

Name

��
n

��

Person Dept
d �� Dept

KD

��
kD ��

Proj

KP

��
kP ��
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We saw in Example 4 that the insertion of an assignment with a new project
value in a state of V1 can be propagatable. However, such an insertion α cannot
have a C1-constant update—its value at the entity Proj must change. Further-
more Proj must play a part in any complement, so this example shows not just
that C1 is not constant, but that no complement can be constant. -

Even more, a view may have all of its updates propagatable, but have no constant
complement updates at all.

Example 7. Suppose that an EA sketch E is specified completely by commutative
square with P the vertex of a cone to the right side and bottom edges (a pullback
diagram):

1 Locations
Pisa

��

P

1
��

P Suppliersb′
�� Suppliers

Locations

basedat��

Suppose that V is the EA sketch with one node P , and that V is the obvious
inclusion. No choice of view complement C : C ��Q(E) whose image is contained
in E, but which does not contain P , can provide a complement for V . To see
this notice first that P specifies an inverse image (it is really a simple selection
of Suppliers where based at equals Pisa). Any complement of V must contain at
least the nodes Suppliers and Locations and the edge based at. If any of these
is not present in a view C then 〈V ∗, C∗〉 fails to be injective on objects. On
the other hand, if C contains all of them then 〈V ∗, C∗〉 is injective on objects
and faithful, but it fails to be full. Indeed, for states M andM ′, the only arrows
〈h, k〉 : 〈V ∗M,C∗M〉 ��〈V ∗M ′, C∗M ′〉 in the image of 〈V ∗, C∗〉 are those where
h is the induced map between inverse image values at P . -

This example is important since the view V has been shown [9] to be updatable
universally. Indeed all inserts and deletes are propagatable for V . Even more,
they are all reversible. We will show below in Theorem 3 that if a V has C-
constant updates then it also has (even reversible) universal updatability, but
this example shows that implication has no converse. If we modify the previous
example by requiring that keys exist for P , Suppliers and Location, then the view
which consists of P and its key does have a complement.

A desirable property of view updates is to be “reversible”. For a view deletion
this means that it is propagatable, and that the propagated deletion is also
universal for the view insert which undoes the deletion. Formally,

Definition 12. Let V : V �� Q(E) be a view and α : R �� V ∗M a propa-
gatable deletion in Mod(V). We say that α is reversible if its cartesian arrow
α̂ : αM ��M is also opcartesian. Similarly, a propagatable insertion is reversible
if its opcartesian arrow is also cartesian.

Note the requirement that a deletion must be propagatable to be considered re-
versible. This is because talking about reversibility depends upon having chosen
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an update strategy—we need to know how to propagate view updates in order to
determine whether there is a view update whose propagation will undo a given
update. Since we have already seen that the universal update strategy is more
general than the constant complement update strategy, we base this definition on
the former to provide the greatest generality. First we give an example showing
that universal updatability does not guarantee reversibility.

Example 8. Consider the sketch E consisting of a single edge α : A �� B. For
the two views VA and VB which respectively include the single node A and the
single node B, it is the case that all deletes and inserts are propagatable. This
is easy to see directly since V ∗

A and V ∗
B simply select the domain and codomain

of a function (model), and it also follows from the well known fact that V ∗
A and

V ∗
B are both left and right fibrations.

On the other hand, neither deletes nor inserts are reversible for V ∗
A . Indeed, for

a model, that is a function, say f : X ��Y , let V ∗
Af be the insertion X �� �� X+

X ′. The propagated insertion is given by the model morphism from f to f +X ′

while the propagated deletion for X �� �� X +X ′ = V ∗
A(f +X ′) is the (different)

model morphism from jf to f +X ′ where j : Y �� Y +X ′ is the injection. A
similar argument shows that deletes are not reversible for V ∗

A . For the case of
V ∗

B deletes may or may not be reversible, but it turns out that inserts are. -

Next we show that deletions with updates that are constant in a complement
are also reversible.

Theorem 3. Let V : V ��Q(E) and C : C �� Q(E) be complementary views.
If α : R �� �� V ∗M is a deletion in Mod(V) with a C-constant update, then
it is reversible. Furthermore, if V has C-constant updates , then any deletion
α : R �� �� V ∗M is reversible.

The proof uses techniques very similar to those in Theorem 1. Lechtenbörger
[10] showed that, in the context of [1] a constant complement translator implies
reversibility of view updates. In that context reversibility for a set of updates
means that there is an update that will undo any view update. Our definition
of reversibility concerns a single propagatable update, but is similar to Lecht-
enbörger’s.

4 Related Work and Conclusions

The article of Bancilhon and Spyratos [1] remains influential. They treat a
database as an arbitrary set S, meant to specify its states, and consider a view to
be an arbitrary surjective mapping f : S �� ��V . They obtain a “translator under
constant complement” i.e. a function g : S ��C so that 〈f, g〉 is bijective, corre-
sponding to our complement, and a translation for which gTu = g, corresponding
to our constant. The approach of Bancilhon and Spyratos has been elucidated by
Bohannon et al [4]. They show that the set of translators under constant com-
plement (for a view) corresponds to the set of “very well behaved lenses”. A lens
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is a (partial) view f : C ��A and a (partial) function p : A×C ��C satisfying
suitable axioms. On a database state and an updated view state the function p
determines a database state—the updated database state for the updated view
state. While it is easy to interpret a surjective mapping as a view substitution
like the V ∗ above, the complements of [1] and [10] are projections to quotient
sets. As Lechtenbörger [10] writes: “it is unexplored how such a view could be
represented in SQL”.

Closer to the spirit of the present work, Hegner [6] considers an ordered set
D of database states. He defines a view to be a surjective monotone mapping
γ : D �� �� V to an ordered set V of view states such that γ reflects the order.
For Hegner a “closed update family” is an order-compatible equivalence relation
on the view poset. This means that related view states may be updated to one
another, symmetry expressing reversibility of view updates and transitivity that
they may be composed. Hegner defines an “update strategy” to be a function
V × D �� D satisfying certain axioms. It is very much like a lens, and an
equivalence relation determined by the update strategy is the lifted closed update
family.

We have seen that the existence of a constant complement view is sufficient to
guarantee well-behaved view updatability (propagatability) and reversibility in
the context of the sketch data model, but that it is by no means necessary. Either
of these desirable properties may hold without complements being possible.

The work presented here has been driven by the need, motivated by industrial
applications, to have definitions of view, complement, propagation, etc, which
better integrate with the actual representations of databases. We have tried
to move away from the idea of database states as an unstructured set, and to
accurately capture the (mathematical) structures that database states bear. In
addition, the theoretical operations which we develop on database states need
to respect those structures.

The difference between the results presented here and those of Lechtenbörger
is worth some reflection. At first sight they may appear contradictory: Lecht-
enbörger showed that reversibility implied the existence of a constant comple-
ment, a very appealing co-occurrence, while we showed that updates can be
reversible even when no constant complement can exist. The difference of course
lies in the definition of constant complement—when one requires views, and
hence complements, to arise as databases with data derived from the original
database (Definition 7), the extra structure limits the available views, eliminating
some of the quotient views that provide some of Lechtenbörger’s complements.
We must emphasize that we see these limitations as positive, limiting us as they
do to properly respect the actual structure of database states. Another notewor-
thy difference is that most earlier work studied complete sets of updates and
single updates that could be applied to every possible database state (they were
endofunctions on the set of database states). In contrast we have been studying
the propagatability of individual insert or delete updates acting on a given state.
This permits a more general treatment since we can study (universal) updates of
particular states. We are currently exploring how individual universal updates
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can be collected into structures corresponding to complete sets of updates so
that we can further compare the new results with earlier work.
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Abstract. Variants of causal functions on streams are defined, and the
interplay between them is studied from different perspectives with at-
tention to coalgebraic considerations. We prove that the sets of causal
and bicausal functions, respectively, are closed under a certain natural
coinductive construction. This closure property paves the way to con-
structing new final stream coalgebras over finite alphabets. This result
is used to show that the 2-adic version of the Collatz function yields a
final bit-stream coalgebra.

1 Introduction

The notion of streams is a basic yet fruitful beginning to the theory of coalgebras.
The ubiquity of sequences in computational and mathematical disciplines makes
them natural objects to investigate, and streams of various types have already
been extensively studied in coalgebraic terms. For example, Jan Rutten has
developed a certain calculus on streams over real numbers and bits [7,8].

The coinductive nature of streams make them useful for the study of dy-
namical systems. As analytical calculus was created to observe and explain the
continuous dynamics of planetary bodies, coinductive calculus has had some
success in capturing discrete, state-based transition systems such as automata.
The coalgebraic study of the rationality of the streams leads to applications in
automata theory. Automata theory to a large extent is a study of certain sets (of
languages) and operations defined on them. For example, the closure of regular
languages under complementation, union, concatenation and the Kleene star is
a celebrated result from automata theory. In the coalgebraic treatment of Mealy
automata [3,7], the set of causal functions Γ plays an analogous role to that
of the set of regular languages in classical automata theory in as much as it
captures the long-term behavior of Mealy automata.

The set Γ is of particular interest because it is the state space of a final
Mealy automata [8]. When a Mealy automatonM with input and output in sets
A and B, respectively, is encoded as a (B×−)A-coalgebra, there exists a unique
morphism from M into Γ . Building on variants of causal functions, this paper
proves a certain coinductive closure property on Γ and a related subset Γbi of
bicausal functions.
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We apply this theory to see that a well-known phenomenon observed about
the Collatz function extended to the 2-adic integers—which we will denote T—

is essentially coinductive. In particular, map Z2
〈h,T 〉−−−→ 2 × Z2 is a final stream

coalgebra.

2 Streams

Let ω = {0, 1, 2, 3, . . .} be the set of natural numbers, and let A be a fixed
alphabet set. Then, Aω = {ω σ−→ A} is the set of all A-streams (i.e. infinite A-
sequences). We will use variations of ρ, σ and τ to denote streams. For a stream
σ, we call σ(n) the nth component of σ.

We can define three basic stream functions of the following types:

Aω h−→ A Aω t−→ Aω A×Aω c−→ Aω

The functions h, t, and c are given by the following equations:

h(σ) = σ(0) t(σ)(n) = σ(n+ 1) c(α, σ)(n) =

{
α if n = 0
σ(n− 1) if n > 0

for σ ∈ Aω , α ∈ A, and n ∈ ω. The head function h yields the first component
in the stream, while the tail function t produces the stream where the first
component has been removed. Conversely, given an element α in A and an
A-stream σ, the constructor function c creates a stream where α is the first
component and σ is the tail. Note that the pair 〈h, t〉 : Aω → A × Aω and
c : A×Aω → Aω are inverses, i.e. σ = c(h(σ), t(σ)).

When it is necessary, these function names will be decorated with the alpha-
bet (e.g. hA, tA, cA) to distinguish them from those derived from a different
alphabet. Also, because it is visually useful to denote c(α, σ) as α:σ, we will
adhere to this infix convention throughout when referring to the application of
the function c. Moreover, we extend the use of this notation to prepending any
finite word to a stream. For a word w ∈ An and a stream σ ∈ Aω, we let w:σ
be the obvious stream where the first n components form w, and the rest is σ.
We also define particular restrictions of the constructor function c. For any fixed
α ∈ A, let cα : Aω → Aω be given by cα(σ) = α:σ.

Setting A = 2 (where 2 = {0, 1}) yields the simplest example of streams.
The set 2ω of so-called bit-streams appears in many contexts—computational
complexity, algorithmic randomness, and number theory, to name a few. It also
can appear as an idealization of physical models such as in cryptography, coding
theory, data-compression, and telecommunication and networks.

In the realm of number theory, 2ω appears as the underlying set of the com-
mutative ring Z2 of 2-adic integers [4]. Bit-streams encode a type of number
which admits addition and multiplication operations, much like a (finite) two’s
complement representation of an integer. In fact, it is entirely appropriate to
view Z2 as an infinite-precision implementation of two’s complement arithmetic.



Coinductive Properties of Causal Maps 255

Indeed any nonnegative integer can be thought of as a 2-adic integer by padding
its binary representation with 0’s. For example, 52 = 1010 and 122 = 00110.
The 2-adic representation has the LSB (i.e. least significant bit) first, and when
appropriate, w represents the infinite repetition of the word w for the rest of
the stream. Negative integers can be represented as a 2-adic by using the heuris-
tics of complementing each component and adding 1 (e.g. −52 = 1101 and
−122 = 00101). Addition and multiplication are performed with the usual two’s
complement algorithm including carry.

122 + (−52) = 00110 + 11011 = 11100 = 72.

Of course, there are 2-adic integers such as 110, which do not correspond to
conventional integers. It is easy to check

3 · 110 = 110 + 110 + 110 = 10 = 12.

This computation illustrates the fact that 110 is a 2-adic representation for 1
3 .

In fact, any 2-adic integer with the least significant bit of 1 has a multiplicative
inverse.

The four bit-stream operations—h, t, and c0, and c1—have natural 2-adic
parallels. These will be useful for developing examples.

h(x) = LSB(x) c0(x) = 2x

t(x) =

{
x
2 if h(x) = 0
x−1

2 if h(x) = 1
c1(x) = 2x+ 1

The tail function t is often known as the shift map in the dynamical systems
literature.

Causal Maps

The results in this paper address properties of stream operators that preserve
prefix equivalence to a certain extent. This section is devoted to defining and
developing some intuition for these functions.

Definition 1 (Prefix Equivalence). For a fixed set A and for any σ, τ ∈ Aω

and n ≥ 1, we say the two streams σ and τ are n-prefix-equivalent, denoted
σ ≡ τ (mod An), if σ(i) = τ(i) for 0 ≤ i < n.1

We will later make heavy use of the following obvious consequences of the defi-
nition of prefix equivalence.

Lemma 1. For σ, τ ∈ Aω,

1. σ ≡ τ (mod A) if and only if h(σ) = h(τ).
2. σ = τ if and only if σ ≡ τ (mod An) for all n ≥ 1.
3. If σ ≡ τ (mod An), then σ ≡ τ (mod Ak) for any k ≤ n.

We can now introduce the main subjects of our study.
1 Admittedly, the notation for prefix-equivalence is not the most economical. For the

sake of harmony with existing literature—for the 3x + 1 Problem (Section 4.2), in
particular—we adopt this heavier, ring-theoretic idiom.
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Definition 2. Let A and B be sets, and let f : Aω → Bω be a function. The
function f is causal if for all n ≥ 1 and σ, τ ∈ Aω,

σ ≡ τ (mod An) =⇒ f(σ) ≡ f(τ) (mod Bn).

The function f is bicausal if for all n ≥ 1 and σ, τ ∈ Aω,

σ ≡ τ (mod An) ⇐⇒ f(σ) ≡ f(τ) (mod Bn).

The function f is supercausal if for all n ≥ 1 and σ, τ ∈ Aω,

σ ≡ τ (mod An) =⇒ f(σ) ≡ f(τ) (mod Bn+1).

The function f is subcausal if for all n ≥ 1 and σ, τ ∈ Aω,

σ ≡ τ (mod An+1) =⇒ f(σ) ≡ f(τ) (mod Bn).

Intuitively, causal functions determine the n-prefix of the image given the n-
prefix of a stream. The n-prefix of an image under a bicausal function also can
determine the n-prefix of the preimage. Supercausal functions determine the
(n+ 1)-prefix of the image given only the n-prefix. Subcausal functions require
the (n+1)-prefix to determine the n-prefix of the image. To gain some familiarity
with these definitions, consider the following examples.

1. Bicausal maps and supercausal maps are causal. Causal maps are subcausal.
2. The identity function idAω : Aω → Aω is certainly bicausal. Also, for any
τ ∈ Bω the constant function Kτ : Aω → Bω , given by Kτ (σ) = τ for all
σ ∈ Aω, is causal.

3. The tail function Aω t−→ Aω is subcausal but is not causal.
4. For any α ∈ A, the map cα is supercausal.
5. If a bicausal map is bijective, then its inverse is also bicausal.

In terms of arithmetic on 2-adics integers, we can see that addition by any
constant is causal. It is easy to check that the first (i.e. least significant) n bits of
the summands determine the first n bits of the sum. Further, for any two causal
functions S, T : Z2 → Z2, the function U : Z2 → Z2 given by U(x) = S(x)+T (x)
is also causal.

Causal functions are exactly those which preserve prefix equivalence for every
prefix length. First let us consider how to construct such maps. One way to
produce a causal function is to map each symbol in the source alphabet to
another in the target alphabet. In addition, for each component of the stream,
one may have a different mapping between the alphabets. In fact, functions
produced in this fashion are more than causal, since each component of the
output stream is determined by a single component of the input. To be more
precise, given a sequence of maps E = {A en−→ B}n≥0, let ΠE : Aω → Bω be the
map given by

ΠE(σ)(i) = ei(σ(i)). (1)
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ΠE is causal since it acts on each component of a stream independently. If en is
also one-to-one for all n ∈ ω, then ΠE is bicausal.

Another (more general) way to produce causal functions is the following.

Given a sequence of maps F = {An+1 fn−→ B}n≥0, let ΩF : Aω → Bω be a map
given by

ΩF (σ)(i) = fi(σ(0), . . . , σ(i)). (2)

ΩF is causal since each fn is a function. Another way to look at F is to think of
it as a map f from finite non-empty A-strings to B (i.e. f : A+ → B). Any causal
function can originate from this example, where for n ≥ 0, each (n + 1)-prefix
in the source determines the nth component of the target stream.

Lemma 2. Concerning the composition of causal functions.

1. If S : Aω → Bω and T : Bω → Cω are both (bi)causal, then T ◦S is (bi)causal.
Consequently, if U : Aω → Aω is (bi)causal, then Un is also (bi)causal for
n ≥ 1.

2. If S : Aω → Bω is causal and T : Cω → Dω is supercausal (resp. subcausal),
then T ◦S and S ◦T are supercausal (resp. subcausal), whenever the compo-
sition makes sense.

3. If S : Aω → Bω is supercausal and T : Bω → Cω is subcausal, then T ◦ S is
causal.

If the premise of last statement were altered so that S is subcausal and T is
supercausal, then there is no guarantee that T ◦ S is causal. Consider the map
d : Aω → Aω, given by d(σ) = h(σ):σ. The map d prepends a duplicate of the
first component of a stream onto itself. We can see that d is supercausal and t
is subcausal, but the map d ◦ t is not causal. The function d does not recover
from the loss of the first component caused by t. In spite of this counterexample,
for any subcausal function S : Aω → Bω and β ∈ B, the composition cβ ◦ S is
causal.

We can also observe that bicausal functions are not necessarily bijections.
For example, consider the map ΠS : Nω → Nω where S = {λx.(x + 1)}n≥1 is
an N-indexed set. Essentially, ΠS maps an N-stream to a stream where each
component has been incremented by 1. It is easy to see that ΠS is not onto
though it is bicausal. Although bicausal functions are not surjective in general,
bicausal functions are necessarily injective.

Conversely, one might consider the question of whether causal bijections are
necessarily bicausal. Again, we can exhibit a counterexample. Let 
 : Nω → Nω

be given by


(σ) =

{
0: [h(σ) + 2 · h(t(σ))] :t2(σ) if h(σ) = 0 or h(σ) = 1
[h(σ)− 1]:t(σ) if h(σ) ≥ 2

Here, 
 is causal and bijective but not bicausal. The function 
 uses the fact
that the there is an injection from 2×N into N. The underlying alphabet A and
B for the domain and codomain, respectively, are infinite in these examples. In
the case where A and B have the same finite cardinality, a causal function is
bicausal if and only if it is bijective, as shown later in Lemma 5.
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3 Subcausal and Causal Functions

3.1 Subcausal Functions Are Woven from Causal Functions

Subcausal functions were defined in the previous section as functions which are
almost causal. To be more precise, subcausal functions map streams with a
common (n+1)-prefix to streams with a common n-prefix. The following lemma
illustrates some simple properties of iterated subcausal functions.

Lemma 3. Let T : Aω → Aω be a subcausal function. For all n and k such that
1 ≤ k ≤ n, if σ ≡ τ (mod An+1), then T k(σ) ≡ T k(τ) (mod An+1−k). If we fix
k = n, then for all n ≥ 1, if σ ≡ τ (mod An+1), then T n(σ) ≡ T n(τ) (mod A).

There is a somewhat more roundabout way to characterize subcausal functions,
which we discuss presently.

Definition 3. Let f : A× Aω → Bω be any function. Let Tf : Aω → Bω be the
map given by Tf = f ◦ 〈h, t〉. We call Tf the map woven from f .

From another perspective, we can think of f : A × Aω → Bω as an A-indexed
family of stream functions {Aω fα−→ Bω}α∈A where each fα(σ) = f(α, σ). This
correspondence is bijective and serves to illumine the choice of terminology. We
could have alternatively defined Tf , the map woven from f , by cases:

Tf (σ) = fh(σ)(t(σ)) (3)

For an example, suppose A = {0, 1, 2}. Then this perspective yields the defini-
tion:

Tf(σ) =

⎧⎪⎨
⎪⎩
f0(t(σ)) if h(σ) = 0
f1(t(σ)) if h(σ) = 1
f2(t(σ)) if h(σ) = 2

This definition by cases incorporates several stream functions and creates a new
one. In light of this perspective, we can re-characterize the notion of subcausal
functions.

Theorem 1. A function T : Aω → Bω is subcausal if and only if it is woven
from a family of causal maps.

Proof. First suppose that T is woven from an A-indexed family of causal maps
{Aω fα−→ Bω}. Further suppose σ ≡ τ (mod An+1). In particular, h(σ) = h(τ),
and consequently, fh(σ) = fh(τ). Also, t(σ) ≡ t(τ) (mod An) because t is sub-
causal. Since fα is causal for each α ∈ A, we have fh(σ)(t(σ)) ≡ fh(τ)(t(τ))
(mod Bn), i.e. T (σ) ≡ T (τ) (mod Bn).

Conversely, suppose T is subcausal. Then for α ∈ A, let fα : Aω → Bω be
given by fα(σ) = T (α:σ) = T (cα(σ)). Since each cα is supercausal and T is
subcausal, fα is causal. Let f : A×Aω → Aω be given by f(α, σ) = fα(σ). Then
for all σ ∈ Aω,

Tf(σ) = fh(σ)(t(σ)) = T (h(σ):t(σ)) = T (σ).

Therefore, T = Tf is woven from a family of causal functions.
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3.2 Causal Functions Are Inverse Limits of Solenoidal Systems

Generalizing some ideas from Bernstein and Lagarias [2], we arrive at an alter-
native characterization for causal functions. The property of stream functions,
which has until now been expressed in terms of preserving prefixes, can be framed
in category-theoretic language. The generality of the category-theoretic approach
suggests ways to extend the notion of causal functions. In this section, however,
we will use the new characterization to analyze when bicausal functions are
bijective.

For each n ≥ 1, let πA
n : An → An−1 given by πA

n (w)(i) = w(i) for w ∈ An and
0 ≤ i < n−1. Given a finite string w ∈ An of length n, the function πA

n produces
the (unique) (n−1)-prefix of w. For the sake of notational sanity, we will drop the
superscripted A decoration on πA

n and any similar notation whenever possible.

Definition 4. A family of functions {An Un−−→ Bn}∞n=0 is called a solenoidal
system if Un−1 ◦ πn = πn ◦ Un for all n ≥ 1.

A solenoidal system {An Un−−→ Bn}∞n=0 can be depicted in the following commut-
ing diagram.

A0

U0

��

A1

U1

��

π1�� A2

U2

��

π2�� · · ·π3�� An−1
πn−1��

Un−1

��

An

Un

��

πn�� · · ·��

B0 B1
π1

�� B2
π2

�� · · ·
π3

�� Bn−1
πn−1

�� Bn
πn

�� · · ·��

(4)

Definition 5. An (inverse) limit of such a solenoidal system is a function U :
ZA → ZB along with functions pAi : ZA → Ai and pBi : ZB → Bi, for each i, so
that
1. The following diagram commutes for each n ≥ 1.

An−1

Un−1

��

An

Un

��

πn�� ZA

pn��

pn−1

��

U

��
Bn−1 Bn

πn

�� ZB
pn

��

pn−1

��

2. If there is some other function V : YA → YB along with functions qAi : YA →
Ai and qBi : YB → Bi, for each i, so that the diagram

YA

V

��

qn−1 ��

qn




An−1

Un−1

��

An

Un

��

πn��

YB
qn−1

��

qn

��Bn−1 Bn
πn

��
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commutes for all n ≥ 1, then there is a unique pair of functions rA : YA → ZA

and rB : YB → ZB so that the following diagram commutes for all n ≥ 1.

YA

r

��

�

�
�

� � � � � � 
 �
�

�
�

V

��

qn−1 ��

qn




An−1

Un−1

��

An

Un

��

πn�� ZA

pn��

pn−1

��

U

��
YB

r

���
�

�
�


 � � � � � � �
�

�

qn−1

��

qn

��Bn−1 Bn
πn

�� ZB
pn

��

pn−1

��

Technically, an inverse limit is only unique up to isomorphisms, but for the
sake of clarity, given a solenoidal system, we fix the inverse limit to be the map
U : Aω → Bω in the following way. First, fix δAn : Aω → An and δBn : Bω → Bn

given by
δn(σ)(i) = σ(i) (5)

for 0 ≤ i < n. Intuitively, δn yields an n-prefix of a given stream. Note that
the δn’s are fixed independent of any solenoidal system. Let U = {Un} be a
solenoidal system. Then, let U be the function given by

U(σ)(n) = Un+1(δn+1(σ))(n). (6)

Because U is a solenoidal system, the subscripted index of U∗ and δ∗ in (6) can
be any integer greater than n. Consequently, U can then be shown to be the
inverse limit of U (with pn = δn) via some diagram chasing that we omit. The
important things to keep in mind are that for all n ≥ 1,

1. δn ◦ U = Un ◦ δn and πn ◦ δn = δn−1

2. δn was chosen so that σ ≡ τ (mod An) if and only if δn(σ) = δn(τ).

Definition 6. A function U : Aω → Bω is solenoidal if it is the inverse limit of
a solenoidal system.

Theorem 2. A function V : Aω → Bω is causal if and only if it is solenoidal.

Proof. Suppose V : Aω → Bω is causal. Then let U = {Un} where

Un(w) = δn ◦ V (w:ρ) (7)

for w ∈ An and ρ ∈ Aω. This definition is independent of the choice of ρ ∈ Aω ,
since V is causal. Let U : Aω → Bω be the inverse limit of U . For any σ ∈ Aω

we need to show that V (σ)(n) = U(σ)(n) for all n.
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Observing that δk(σ):tk(σ) = σ for all k ≥ 1, we have

U(σ)(n) = Un+1(δn+1(σ))(n) [def. of U , (6)]

= δn+1(V [δn+1(σ):tn+1(σ)])(n) [def. of Un+1, (7)]

= δn+1(V (σ))(n) [δk(σ):tk(σ) = σ for k ≥ 1]
= V (σ)(n) [def. of δn+1, (5)]

This shows that V (σ) = U(σ) for all σ ∈ Aω , and therefore that V is solenoidal.
Conversely, suppose V is solenoidal with a solenoidal system V = {Vn}. Let

σ, τ ∈ Aω be such that σ ≡ τ (mod An). Then, δn(σ) = δn(τ), and

δn(V (σ)) = Vn(δn(σ)) = Vn(δn(τ)) = δn(V (τ))

Therefore V (σ) ≡ V (τ) (mod Bn). Since σ and τ were arbitrarily chosen, this
shows that V is indeed causal.

When the δn’s were fixed previously, they essentially fixed the notion of the
unique inverse limit of a solenoidal system. Conversely, the solenoidal system
defined by (7) in this proof is then the unique solenoidal system that has U
as the (unique) inverse limit. Therefore, there is a one-to-one correspondence
between solenoidal (i.e. causal) functions and the solenoidal systems which yield
them.

If we restrict to the case where the alphabet A is finite, we can say a little bit
more.

Lemma 4. Let A be a finite set. A casual function U : Aω → Aω is bijective if
and only if its solenoidal system consists of bijections.

Proof. Let U : Aω → Aω be a causal function and let U = {Un} be its solenoidal
system. First suppose each Un is a bijection. Then V = {U−1

n } is a solenoidal
system and has an inverse limit V : Aω → Aω . By appealing to the uniqueness of
the inverse limit of {idAn = Un ◦U−1

n = U−1
n ◦Un}n≥0, we have U ◦V = V ◦U =

idAω , i.e. U is a bijection.
Conversely, assume that U is a causal bijection with a solenoidal system U =

{Un}. Let w ∈ An and τ ∈ Aω. Then

Un(δn(U−1(w:τ))) = δn(U(U−1(w:τ))) = δn(w:τ) = w.

Therefore Un : An → An is a surjection. Since the domain and codomain of Un

are the same finite set, Un is also injective.

Lemma 5. Let A be a finite set, and let U : Aω → Aω be a causal function.
Then, U is bijective if and only if U is bicausal.

Proof. For this proof, let U : Aω → Aω be a causal function, and let U =
{Un : An → An} be its solenoidal system.

First suppose U is a bijection. Then each Un is a bijection. Take the solenoidal
system V = {U−1

n }, consisting of the inverses. Since inverses of bijections are
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still bijections, there is a causal bijection V which has V as a solenoidal system.
Moreover, V = U−1. This proves that U is bicausal.

Conversely, suppose U is bicausal. Then for v, w ∈ An, if Un(v) = Un(w),
then δn(U(v:ρ)) = δn(U(w:ρ)) for any ρ ∈ Aω , i.e. U(v:ρ) ≡ U(w:ρ) (mod An).
Since U is bicausal, v:ρ ≡ w:ρ (mod An), or equivalently, v = w. This shows
that Un : An → An is injective for each n ≥ 1. Since An is finite, Un is also
surjective. By Lemma 4, U is bijective.

As an example, consider the following simple result.

Lemma 6. The 2-adic map x �→ 3x+ 2 is bicausal.

Proof. Observe that c0 : x �→ 2x, id : x �→ x and the constant map x �→ 2 are all
causal. Therefore, x �→ 3x+ 2 is causal since 3x+ 2 = 2x+ x+ 2. To see that it
is a bijection, it suffices to note that Z2 is a ring and 3 (i.e. 110) is invertible in
Z2, which was verified earlier. Since x �→ 3x+ 2 is a causal bijection on a stream
over a finite alphabet, it is also bicausal by Lemma 5.

In this proof, we only used the fact that 3 is a unit in Z2. Any odd 2-adic integer
(in 2Z2 + 1) is invertible, so in fact the map x �→ ax + b is bicausal for any
a ∈ 2Z2 + 1 and b ∈ Z2.

4 Stream Coalgebra and Coinduction

There are many places where the theory of coalgebras (and stream coalgebras
in particular) is presented in extensive detail [7,9], so we will omit most of the
development. Suffice it to say that for a fixed set B, a B-stream coalgebra is
simply a map of the type X → B × X , where X is some arbitrary set. A B-

stream morphism from (X
〈a,b〉−−−→ B × X) to (Y

〈a′,b′〉−−−−→ B × Y ) is a function

X
f−→ Y so that

X
〈a,b〉 ��

f

��

B ×X
idB×f

��
Y 〈a′,b′〉

�� B × Y

commutes, i.e. (idB × f) ◦ 〈a, b〉 = 〈a′, b′〉 ◦ f . The class of B-stream coalgebras
forms a category with terminal objects which we call final (B-stream) coalgebras.

The canonical example of a finalB-stream coalgebra is the mapBω 〈h,t〉−−−→ B×Bω.
Finality in this category can be stated in the following way. Given any B-stream

coalgebra, X
〈h′,t′〉−−−−→ B ×X , there exists a unique map Φ : X → Bω so that the

diagram

X
〈h′,t′〉 ��

Φ

��

B ×X
idB×Φ

��
Bω

〈h,t〉
�� B × Bω

(8)
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commutes, i.e. h′ = h ◦ Φ and t ◦ Φ = Φ ◦ t′. Finality induces a map Φ into the
final coalgebra. The map Φ here is the coalgebra morphism coinductively induced
by 〈h′, t′〉.

Note that even if X = Bω , a coinductively induced coalgebra morphism is not
necessarily causal. To see this, consider a coalgebra morphism Ψ coinductively

induced by Aω 〈h,t2〉−−−−→ A × Aω. It can be checked that Ψ(σ)(n) = σ(2n) for
all n. Ψ is not causal since a 2n-prefix only determines n components of the
output. The following are some results concerning some sufficient conditions for
the coinductively induced coalgebra morphism to be causal.

Theorem 3. Let T : Aω → Aω be woven from a family of causal functions, and
let H : Aω → B be a function such that

σ ≡ τ (mod A) ⇐⇒ H(σ) = H(τ), (9)

for all σ, τ ∈ Aω. Let Aω ϕ−→ Bω be the (unique) coalgebra homomorphism in-

duced by the coalgebra Aω 〈H,T 〉−−−−→ B ×Aω. Then, ϕ is causal.

Proof. Since ϕ is coinductively induced by 〈H,T 〉, the commutative diagram (8)
provides the equations h◦ϕ = H and t◦ϕ = ϕ◦T . More generally, tn◦ϕ = ϕ◦T n

for all n ≥ 1.
The proof proceeds by induction. The base case is given as the hypothesis in

(9).

σ ≡ τ (mod A) ⇔ H(σ) = H(τ) [hyp., (9)]
⇔ h(ϕ(σ)) = h(ϕ(τ)) [(8)]
⇔ ϕ(σ) ≡ ϕ(τ) (mod B) [Lemma 1]

Now assume for some n ≥ 1 that if σ̂ ≡ τ̂ (mod An), then ϕ(σ̂) ≡ ϕ(τ̂ )
(mod Bn). And suppose further that σ ≡ τ (mod An+1). This means in par-
ticular that σ ≡ τ (mod An), and by the induction hypothesis, ϕ(σ) ≡ ϕ(τ)
(mod Bn). Therefore, one only needs to show that ϕ(σ)(n) = ϕ(τ)(n).

The function T is subcausal by Theorem 1. Further, by Lemma 3, we see
that T n(σ) ≡ T n(τ) (mod A), or equivalently, H(T n(σ)) = H(T n(τ)) via the
hypothesis given as (9).

We proceed:

ϕ(σ)(n) = h(tn(ϕ(σ))) [def.]
= h(ϕ(T n(σ))) [tn ◦ ϕ = ϕ ◦ T n]
= H(T n(σ)) [h ◦ ϕ = H ]
= H(T n(τ)) [Lemma 3, (9)]
= h(ϕ(T n(τ))) = h(tn(ϕ(τ))) = ϕ(τ)(n)

Therefore, ϕ(σ) ≡ ϕ(τ) (mod Bn+1), and this completes the induction.

By taking B = A andH = hA, we can immediately derive the following corollary.
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Corollary 1. Let T : Aω → Aω be a function. Let ϕ : Aω → Aω be the (unique)

coalgebra homomorphism induced by the coalgebra Aω 〈h,T 〉−−−→ A × Aω. If T is
woven from a family of causal functions, then ϕ is causal.

Next, consider the similar situation where the induced homomorphism is bi-
causal. In this case, we can also prove the converse.

Theorem 4. Let T : Aω → Bω be a function, and let H : Aω → B be a map
such that

σ ≡ τ (mod A) ⇐⇒ H(σ) = H(τ), (10)

for all σ, τ ∈ Aω. Let ϕ : Aω → Bω be the (unique) coalgebra homomorphism

induced by the coalgebra Aω 〈H,T 〉−−−−→ B×Aω. Then ϕ is a bicausal function if and
only if T is woven from a family of bicausal functions.

Proof. First we consider the “if” direction. Suppose T is woven from a family of
bicausal functions {fα}. In light of Theorem 3, we only need to show that ϕ is
“co-causal,” i.e. for all n ≥ 1, if ϕ(σ) ≡ ϕ(τ) (mod Bn), then σ ≡ τ (mod An).
The proof proceeds by induction.

The base case is the same as the argument in Lemma 3 which relies on the
given biconditional (10). Assume for some n ≥ 1, for all σ̂, τ̂ ∈ Aω, that if
ϕ(σ̂) ≡ ϕ(τ̂ ) (mod Bn), then σ̂ ≡ τ̂ (mod An). Also suppose for some σ, τ ∈ Aω

that ϕ(σ) ≡ ϕ(τ) (mod Bn+1). In particular, ϕ(σ) ≡ ϕ(τ) (mod B), which
implies that σ ≡ τ (mod A), via the base case. With Lemma 1, we conclude
that the head of σ and τ coincide. Let α = h(σ) = h(τ). Then,

ϕ(σ) ≡ ϕ(τ ) (mod Bn+1)
⇒ t(ϕ(σ)) ≡ t(ϕ(τ)) (mod Bn) [t subcausal]
⇔ ϕ(T (σ)) ≡ ϕ(T (τ)) (mod Bn) [t ◦ ϕ = ϕ ◦ T ]
⇒ T (σ) ≡ T (τ) (mod An) [induction hypothesis]
⇔ fα(t(σ)) ≡ fα(t(τ)) (mod An) [def. of T ]
⇔ t(σ) ≡ t(τ) (mod An) [fα is bicausal]

⇔ α:t(σ) ≡ α:t(τ) (mod An+1) [cα is supercausal]

⇔ σ ≡ τ (mod An+1) [α = h(σ) = h(τ); Lemma 1]

This concludes the induction.
Next consider the “only if” direction. Suppose that ϕ is bicausal. In addition,

suppose that σ ≡ τ (mod An+1). Then,

σ ≡ τ (mod An+1) ⇔ ϕ(σ) ≡ ϕ(τ) (mod Bn+1) [ϕ is bicausal]
⇒ t(ϕ(σ)) ≡ t(ϕ(τ)) (mod Bn) [t is subcausal]
⇔ ϕ ◦ T (σ) ≡ ϕ ◦ T (τ) (mod Bn) [t ◦ ϕ = ϕ ◦ T ]
⇔ T (σ) ≡ T (τ) (mod An) [ϕ is bicausal]

This shows that T is subcausal, and therefore woven from a set Ξ of causal
functions (via Theorem 1).
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Recall from the proof of Theorem 1, that each causal function fα in Ξ is given
by fα(σ) = T (α:σ). Then,

fα(σ) ≡ fα(τ) (mod An)
⇔ T (α:σ) ≡ T (α:τ) (mod An) [def. of fα ∈ Ξ]
⇔ ϕ(T (α:σ)) ≡ ϕ(T (α:τ)) (mod Bn) [ϕ bicausal]
⇔ t(ϕ(α:σ)) ≡ t(ϕ(α:τ)) (mod Bn) [t ◦ ϕ = ϕ ◦ T ]

⇔ ϕ(α:σ) ≡ ϕ(α:τ) (mod Bn+1) [h(ϕ(α:σ)) = h(ϕ(α:τ))]

⇔ α:σ ≡ α:τ (mod An+1) [ϕ bicausal]
⇔ σ ≡ τ (mod An) [t subcausal]

Therefore all the causal functions in Ξ are in fact bicausal.

Bernstein and Lagarias ([2], Appendix B) prove a variant of Theorem 4 for the
case whereA = B = {0, 1}, using the equivalence of bicausal functions and causal
bijections. The result herein identifies the central role of bicausal functions and
uses coinductive methods to handle the more general case.

As before, by taking B = A and H = hA, we can get the following corollary.

Corollary 2. Let T : Aω → Aω be a function. Let ϕ : Aω → Aω be the (unique)

coalgebra homomorphism induced by the coalgebra Aω 〈h,T 〉−−−→ A×Aω. Then ϕ is
bicausal function if and only if T is woven from a family of bicausal functions.

4.1 Coinductive Closure Property

Both Corollaries 1 and 2 can be viewed as a coinductive closure property on
the set of (bi)causal functions. Let Γ = {f : Aω → Aω | f is causal} and Γbi =
{f : Aω → Aω | f is bicausal}. Given an A-indexed subset {fα} of Γ (or Γbi) we
can construct a new (bi)causal function. Let T : Aω → Aω be woven from {fα},
i.e. T (σ) = fh(σ)(t(σ)). The corollaries guarantee that the coalgebra morphism
induced by 〈h, T 〉 is (bi)causal. This construction gives a different way to specify
causal functions in addition to the ΠE (1) and ΩF (2) constructions presented
earlier.

The ability to construct new bicausal functions opens up an avenue toward
producing stream coalgebra isomorphisms as long as the alphabet is finite. Fix
A to be a finite set, and let {fα} ⊆ Γbi be an A-indexed family of bicausal
functions. Let S : Aω → Aω be woven from {fα}. By Corollary 2, the coalgebra
homomorphism ψ induced by 〈h, S〉 is bicausal.

Aω
〈h,S〉 ��

ψ

��

A×Aω

idA×ψ

��
Aω

〈h,t〉
�� A×Aω
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By Lemma 5, ψ is a bijection, and it can be checked that bijective coalgebra

homomorphisms are isomorphisms [9]. Therefore, the coalgebraAω 〈h,S〉−−−→ A×Aω

is isomorphic to the canonical final coalgebra Aω 〈h,t〉−−−→ A×Aω. In other words,
〈h, S〉 is itself a final stream coalgebra. Depending on the choice of bicausal
functions in {fα}, one can produce many different final stream coalgebras using
this construction.

4.2 3x + 1 Conjugacy Map

The inspiration of this paper came from a particular analysis of the 3x + 1
Problem [2]. The unsettled conjecture is simply stated in terms of the Collatz
function C : N → N given by

C(x) =

{
x
2 if x ≡ 0 (mod 2)

3x+1
2 if x ≡ 1 (mod 2)

(11)

The conjecture states that for all n ≥ 1 there exists a k so that Ck(n) = 1. At
this point, the 3x+ 1 Problem is still open [1,5,6].

The extension of the Collatz function to the 2-adic map T : Z2 → Z2 is woven
from two maps, x �→ x and x �→ 3x+ 2.

T (x) =

{
t(x) if x ≡ 0 (mod 2)
3t(x) + 2 if x ≡ 1 (mod 2)

(12)

The observations that t(x) = x
2 and 3t(x) + 2 = 3x+1

2 shows that T is the 2-adic
version of the Collatz function (11). Because T is woven from two bicausal maps,

the coalgebra Z2
〈h,T 〉−−−→ 2 × Z2 induces a coalgebra isomorphism Q : Z2 → 2ω.

Therefore, we can conclude:

Theorem 5. Let T : Z2 → Z2 be the extension of the Collatz function to the

2-adics. Then, the bit-stream coalgebra Z2
〈h,T 〉−−−→ 2 × Z2 is (isomorphic to) a

final bit-stream coalgebra.

It is already well-known that T is topologically conjugate to the shift map, which
in this paper is denoted t. That is to say, there exists a (homeomorphic) map
Φ : Z2 → Z2 so that t = Φ−1◦T ◦Φ. Theorem 5 is very much related to topological
conjugacy, but the coinductive approach in this paper is novel and gives a general
way to produce such conjugacies without reference to the additional structures
that the set of 2-adic integers often enjoys.

5 Discussion and Future Directions

Chronologically, this investigation began with the observation that the topolog-
ical conjugacy of the 2-adic Collatz function T to the tail map t amounts to a
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stream coalgebra isomorphism. In particular, the finality of Z2
〈h,T 〉−−−→ 2 × Z2 in

the category of (2×−)-coalgebras (Theorem 5) is an interesting new fact in the
field.

Looking to the future, the immediate question to raise is whether the new
coinductive observation about the 2-adic Collatz function gives any insight into
the conjecture itself. The principal difficulty has to do with the generality of
this kind of approach [1]. The previous section shows that the conjugacy with
the tail map is not a phenomenon limited to the Collatz function. Furthermore,
the conjugacy comes from basic coinductive principles rather than algebraic,
topological or measure-theoretic considerations. While the coinductive approach
opens up another perspective into the 3x+ 1 Problem, whether it is ultimately
useful in settling the conjecture remains to be seen.

In terms of the larger theory, other algebraic and coalgebraic properties of Γ
and Γbi should be explored, especially in light of recent developments concerning
Mealy automata [3,7]. We have shown that Γ and Γbi are both closed under
composition and a certain coinductive construction. Moreover, Γbi is also closed
under inverses when the alphabet is finite. It would be interesting to see whether
the analogies between regular languages and causal functions can be made more
explicit. In addition, given the category-theoretic perspective of causal functions
as limits of a solenoidal systems, it may be possible to generalize the notion
of causal functions to accommodate categories and endofunctors which encode
more complicated infinite structures than streams.

Acknowledgment. I am very grateful for discussions with Jonathan Yazinski
about the 3x+ 1 Problem which proved most inspirational.
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Abstract. When extending timed process algebra with discrete stochas-
tic time, typical standard notions like time additivity are hard to preserve
in the presence of the race condition. We propose context-sensitive in-
terpolation as a restricted form of time additivity to accommodate the
extension with stochastic time. We also present a stochastic process al-
gebra featuring an explicit account of two types of race conditions in
terms of conditional random variables. The approach enables composi-
tional modeling, a non-trivial expansion law, and explicit manipulation
of maximal progress.

1 Introduction

Originally, process algebras focused on qualitative aspects of systems. Usually,
the qualitative behavior is specified by using action prefix operators that give
the dynamics of the system. The processes are combined using two basic opera-
tors: (1) alternative composition that provides the alternatives in a given situa-
tion/state and (2) parallel composition that enables the compositional modeling
by allowing communication of action transitions.

Later, timed process algebras followed, which allowed for modeling and anal-
ysis of time features as well [1]. In this setting, action transitions are either
immediate, i.e., they do not allow passage of time, or they are delayable, i.e.,
they allow arbitrary passage of time. Typically, time is introduced by means of a
prefix for timed delay, which specifies the amount of time that passes before the
remaining process is enabled or by means of time stamps, which record the time
when the process starts. We focus on theories comprising timed delays, where
the composition operators have to cater for the interaction between processes
that allow and disallow passage of time.

To support the combined modeling of functionality and performance of a sys-
tem in a compositional manner, stochastic process algebras emerged. First came
the Markovian process algebras, like EMPA, PEPA, IMC, etc., which exploited
the memoryless property of the exponential distribution. Later, prompted by the
need for more accurate approximations, stochastic process algebras with general
� Corresponding author.
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distribution were developed, like TIPP, GSMPA, SPADES, IGSMP, NMSPA,
and MODEST [2,3,4,5,6,7]. They found their use, e.g., in modeling contempo-
rary Internet protocols with real-time time-outs and communications governed
by heavy-tail distributions of high variance. Stochastic time is commonly in-
troduced by stochastic delay prefixes, often exploiting stochastic clocks. In this
setting, the composition operators induce probabilistic choice, as passage of time
imposes a race condition on the stochastic delays [8].

The transition from untimed process algebra to timed process algebras pro-
gressed by (conservatively) extending untimed theories with temporal capabili-
ties. However, in turn, stochastic process theories did not simply replace timed
delays by stochastic delays or clocks. It is argued that the main reason for this
lies in the nature of the stochastic time and the underlying performance mod-
els. Stochastic time usually imposes a probabilistic choice in the form of a race
condition on the stochastic delays, different from the typical merging of timed
delays. The performance models are generally a type of Markov process, which
does not conform to the semantics of the standard timed delays. It proved very
difficult to support the characteristic features of the timed process theories, like
time additivity and time determinism [1]. Therefore, stochastic process theories
were developed from scratch, and afterwards, it was shown that timed process
theories can be embedded in some form as well. For example, in the setting of
SPADES, [9] gives a structural translation from stochastic automata to timed
automata with deadlines that preserves timed traces and enables embedding of
real-time. This approach has found its way into the MODEST formalism and as-
sociated toolset [7]. A translation from IGSMP into pure real-time models called
interactive timed automata is reported in [5].

In this paper, we approach the above issue both from the timed and stochas-
tic points of view. We investigate what needs to be in place to generalize timed
delays to stochastic ones. Therefore, we analyze stochastic bisimulation as well
as the fit of real-time features, like time determinism and time additivity, in a
stochastic-time setting. This leads us to the notion of context-sensitive interpola-
tion on the side of the timed theories and the notion of dependent race condition
on the stochastic side. The former can be viewed as an interpretation of the
race condition in the timed setting, whereas the latter allows merging of name-
dependent stochastic delays with the same sample. We benefit from our findings
in the development of a stochastic process algebra that retains many features of
the timed process theories, but permits a restricted form of time additivity only.

The present work builds on earlier investigations. A preliminary effort to
embed real-time in stochastic process algebras was given in [10]. A subsequent
study led to the notion of dependent and independent race conditions that paved
the way for the treatment of the expansion law and the maximal progress in the
vein of timed process theories [11]. Equational theory that captures both real-
time and stochastic-time aspects in the context of complete races was presented
in [12]. There a decomposition of a race into disjoint events is exploited to
explicitly state the winners and the losers of the race. The passage of time is
stated in terms of (probabilistic) unit timed delays in a racing context. In this
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Fig. 1. a) Clocks with residual lifetimes, b) clocks with spent lifetimes, and c) stochastic
delays with winning order. Aging of distribution F by time d is denoted by F |d.

setting, stochastic delays are expressed as (infinite) solutions of guarded recursive
specifications.

The approach in the present paper is exactly the opposite and it reveals
the other side of the same coin. Here, we treat timed and stochastic delays
as ‘atomic’, rather than series of unit timed delays. This puts the timed de-
lays on the same level with the stochastic ones as passage of time is studied in
terms of discrete events, where the actual duration/sample of the delay plays
a background role. We opt for discrete stochastic time to enable simultaneous
expiration of multiple delays. The results should extend to continuous time for
well-behaved measurable distributions [13]. The race condition remains the cen-
tral notion in both settings. We only analyze process specifications that induce
complete races with all possible outcomes. This simplifies matters of operational
semantics and equational theory. Due to the substantial technical overhead, we
focus here on the core issues and reduce technical detail to the bare minimum.
The interested reader is referred to [14] for a more extensive explanation.

2 Race Conditions

In the absence of the memoryless property, stochastic delays are modeled using
clocks. Clocks are set at the beginning of the delay, samples updated after each
expiration. Clocks can keep track of the time that is left before expiration or
the time that the clock has been active. The former technique [15] is depicted in
Fig. 1a). It is argued to support discrete event simulation, but also considered
unfair in the resolution of the race condition as the winners are known before
the race is finished. The latter [2,3,5,6], depicted in Fig. 1b), has been advocated
for its correspondence to standard time, as samples increase as time passes. An
alternative, but equivalent approach, depicted in Fig. 1c), is to make a proba-
bilistic assumption on the outcome of the race and, afterwards, to sample from
the (joint) probability distribution of the winning clocks [16]. So, we do not keep
track of clock lifetimes, but only the order in which they expire.

Preliminaries. We use discrete random variables to represent durations of
stochastic delays. The set of discrete distribution functions F such that F(n) = 0
for n ≤ 0 is denoted by F ; the set of the corresponding random variables by V .
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We use X , Y , and Z to range over V and FX , FY and FZ for their respective
distribution functions. Also, W , L, V , and D range over 2V . By assumption, the
support set supp(X) = {n > 0 | P (X = n) > 0 } of a random variable X is finite
or countably infinite. The domain of a function f :A→ B is denoted by dom(f).
In case f is bijective, we write f :A↔ B. We restrict and rename functions on
disjoint subsets of the domain by g{f1/D1} . . . {fn/Dn}(x) = fi(x) if x ∈ Di,
and g(x) if x ∈ A \ (

⋃n
i=1Di), for functions g, f1, . . . , fn :A → B and disjoint

subsets D1, . . . , Dn ⊆ A.

Racing delays. A stochastic delay is a timed delay of a duration guided by
a random variable. We use the random variable as the name of the stochastic
delay. We observe simultaneous passage of time for a number of stochastic delays
until one or some of them expire. This phenomenon is referred to as the race
condition and the underlying process as the race. For multiple racing stochastic
delays, different stochastic delays may be observed simultaneously as being the
shortest. The ones that have the shortest sample are called winners, the others
are referred to as losers. The outcome of a race is completely determined by
the winners and the losers, and the set of all outcomes of a race forms a set of
disjoint events. So, we can explicitly represent the outcome of the race by a pair
of disjoint sets of stochastic delays [WL ], where W and L are the sets of winners
and losers, respectively. We omit empty sets and set brackets when clear from
the context. So, [X ] represents a stochastic delay guided by X ∈ V .

Outcomes of races may be involved in other races. So, we refer to an out-
come [WL ] as a (conditional) stochastic delay induced by the disjoint sets of win-
ners W and losers L. The probability of the outcome [WL ] is

P (X1 = X2 for X1, X2 ∈W and X3 < Y for X3 ∈ W, Y ∈ L)
and the stochastic delay is guided by the conditional random variable

〈X | X1 = X2 for X1, X2 ∈W and X3 < Y for X3 ∈ W, Y ∈ L 〉
for any X ∈ W . Two stochastic delays [W1

L1 ] and [W2
L2 ] can form a joint outcome,

if it is possible to consistently combine the winners and losers such that the
resulting outcome has disjoint winners and losers. Therefore, we have to look
at the relation between the winners and the losers. There are three possible
combinations: (1) L1∩W2 
= ∅, which means that the race is lost by L1∪W2∪L2,
(2)W1∩W2 
= ∅, hence the race is won byW1∪W2, and (3)W1∩L2 
= ∅, implying
the race is lost by W1 ∪ L1 ∪ L2. Obviously, these conditions are disjoint and
cannot be applied together. For example, if (1) holds then the outcome is given
by [ W1

L1∪W2∪L2]. If none of the restrictions hold, then there are three possible
outcomes: [ W1

L1∪W2∪L2], [W1∪W2
L1∪L2 ], and [ W2

W1∪L1∪L2]. If at least two restrictions apply,
then the outcomes cannot be combined as they represent disjoint events. In this
case we say for the delays [W1

L1 ] and [W2
L2 ], with W1 ∪L1 =W2 ∪ L2, that the race

is resolved. The extra condition ensures that the outcomes stem from the same
race, i.e, they have the same racing delays. For example, [XY ] and [Y, Z

X ] cannot
form a joint outcome, but they do not come from the same race, which renders
their combination inconsistent.

Resolved races play an important role as they enumerate every possible out-
come of the race. We define a predicate rr([W1

L1 ], [W2
L2 ]) that checks whether [W1

L1 ]
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and [W2
L2 ] are in a resolved race. It is satisfied if W1 ∪ L1 =W2 ∪ L2 and at least

two of the following three conditions hold: (1) L1 ∩W2 
= ∅, (2) W1 ∩W2 
= ∅,
and (3) W1 ∩ L2 
= ∅.

A discrete timed delay of duration n is denoted by σn. It expires after n units
of time. Timed delays actually form a trivial race in which the shortest ‘sample’ is
always exhibited by the same set of timed delays and always has a fixed duration.
There are three possible disjoint outcomes of a race between timed delays, σm

and σn, say: (1) if m < n then σm wins, (2) if m = n then they both win, and
(3) if m > n then σn wins. Now, it is clear that by replacing all timed delays
with stochastic ones, instead of one outcome, one has potentially three possible
outcomes of each race.

Timed and stochastic delay prefixes. By . we denote the standard
prefixing operation. To express a race, we use the alternative composition + .
So, the term σm.p1 + σn.p2 represents two processes in a race that are prefixed
by timed delays of m and n time units, respectively. Suppose that m < n. Then
this term is equivalent to σm.(p1+σn−m.p2), with p1 and p2 both prefixed by σm

and, p2 additionally prefixed by σn−m. The remaining two cases are m = n, with
σm.(p1 + p2), and m > n, with σn.(σm−n.p1 + p2).

In the stochastic setting, we write [X ].p1 + [Y ].p2 for two processes in a race
of the stochastic delays [X ] and [Y ]. There are no restrictions in this race, so all
outcomes are possible. There are three possible (disjoint) outcomes of this race
yielding (1) [XY ], (2)

[
X, Y

∅
]
, and (3) [YX]. The probabilities for this outcomes are

given by (1) P (X < Y ), (2) P (X = Y ), and (3) P (Y < X), respectively. The
passage of time is guided by the conditional random variables (1) 〈X | X < Y 〉,
(2) 〈X | X = Y 〉, and (3) 〈Y | Y < X 〉. In (1) the stochastic delay X expires,
whereas Y becomes dependent on the amount of time that has passed for X .
We represent this by the term [XY ].(p1 +[Y ].p2), where both names Y refer to the
same stochastic delay. The inner occurrence of Y , in [Y ], is bound by [XY ] as time
passes for both X and Y , according to the principle of time determinism [1,17].
In (2) the delays expire together as given by the term

[
X, Y

∅
]
.(p1 + p2). In (3),

symmetrical to (1), we have [YX].([X ].p1 + p2). We emphasize the similarity with
standard-time semantics as discussed above.

Dependent and independent race condition. Consider the term [X ].p1 ‖
[X ].p2, where ‖ denotes the parallel composition. We note that the alternative
and the parallel composition impose the same race condition. Standardly, the
race is performed on two stochastic delays with the same distribution FX ∈ F .
However, both delays will not necessarily exhibit the same sample, unless FX is
Dirac. Intuitively, the above term is equivalent to [X ].p1 ‖ [Y ].p2 with FX = FY

leading to the three possible outcomes.
However, in real-time semantics, timed delays with the same duration are

merged together. For example, σm.p1 ‖ σm.p2 is equivalent to σm.(p1 ‖ p2). This
parallel composition represents components that should delay together. Note,
this is not obtained above in the stochastic setting. Therefore, we introduced
the notion of a dependent race condition in [11,12], in which stochastic delays
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with the same name exhibit the same sample. So, if a dependent race condition
is imposed on the term [X ].p1 ‖ [X ].p2, it is equivalent to [X ].(p1 ‖ p2). However,
the race may be independent as well (see Section 3 below).

We introduce a scope operator to specify dependent delay names, denoted
by | |

D
. The stochastic delays involved are those in D. They are treated as de-

pendent. Thus, | [XY ].p1|X denotes that X is a dependent stochastic delay and
that Y is independent. By default, every delay is considered as dependent.
Hence, [WL ].p is equivalent to | [WL ].p|

W∪L
. Multiple scope operators intersect.

E.g., | | [XY ].p|
X
|
Y

denotes a process prefixed by the independent delay [XY ] since
{X} ∩ {Y } = ∅. Coming back to our example, an independent race condition
will be specified as | [X ].p1|∅ ‖ | [X ].p1|∅; a dependent one as [X ].p1 ‖ [X ].p2. Ad-
ditionally, (in)dependence on the winners can be specified as well. For example,
in the term [XY ].(| [Y ].p1|∅ + [Y ].p2) the delay [Y ] in | [Y ].p1|∅ is not dependent
on the passage of time for X , whereas the delay [Y ] occurring in [Y ].p2 is.

Bisimulation relations. Timed bisimulation requires that bisimilar processes
delay the same amount of time. Typically, time additivity applies [1], i.e., merging
of subsequent timed delays into a joint single delay with the same accumulative
duration, to compare the delays. For example, σ3.σ2.p and σ5.p are typically
considered to be equivalent.

However, stochastic bisimulation is an atomic step bisimulation, i.e., it only
considers one atomic stochastic delay transition at a time. To the best of our
knowledge, with the exception of [18], all stochastic process theories consider
stochastic bisimulation that is atomic in this sense: In [2], the actions are cou-
pled with the stochastic clocks. In [4], there is an alternation between clocks and
action transitions, whereas in [3,5] the merging is impeded by the combination
of the pre-selection policy and start-termination semantics. Although originally
introduced with atomic stochastic bisimulation [6], an effort is made in [18] to
define a notion of weak stochastic bisimulation that merges subsequent stochas-
tic delays. Unfortunately, such an approach is not compositional as the merging
of stochastic delays does not support the race condition. A simple example illus-
trates this. Intuitively, the process [X ].[Y ].p has the same stochastic properties
as the process [Z].p provided that FZ = FX+Y . However, standard compositions
involving these processes may not be bisimilar. For example, [X ].[Y ].p + [U ].q
is not bisimilar to [Z].p + [U ].q, the latter not providing the interleaving point
between [X ] and [Y ], which imposes different probabilistic behavior.

3 Context Sensitive Interpolation

Suppose we wish to extend the term σ2.σ3.p with stochastic time. In view of
time additivity, we may consider, e.g., the term σ5.p or even σ1.σ3.σ1.p as
well. However, from the discussion in Section 2, it is clear that [X2].[X3].p is
different from [X5].p and [X1].[X3].[X1].p, for any non-Dirac random variable
X1, X2, X3, X5 ∈ V , suitably chosen to represent the delays of duration 1, 2,
3, and 5, respectively. The race involving [X5] and [X2].[X3] produces different
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probabilities and samples for the winning delays. A solution is to consider timed
delays as atomic, i.e., to explicitly state the delay that we want model.

Extending timed delays with stochastic delays. To manipulate atomic
timed delays, a new, more restrictive notion of time additivity is required.

Fig. 2. a) A timed delay prefix σn.p, b) arbitrary interpolation of σn into σn′
, σn′′

and σn′′′
, c) parallel composition of σn.p and σm.q, and d) context-sensitive interpo-

lation of σn in the context of the parallel composition with σm.q
.

Fig. 2b) depicts arbitrary interpolation of the timed delay σn of the process σn.p
of Fig. 2a) to three timed delays σn′

, σn′′
, and σn′′′

satisfying n′ +n′′ +n′′′ = n.
If interpreted as an atomic timed delay, the delay must be left intact, unless in
a context of a composition that would induce a race. A race with another timed
delay σm of the process σm.q is depicted in Fig. 2c). Only then we can interpolate
the longer delay (in this case n > m, as depicted in Fig. 2d), conforming to race
condition semantics. We note that the resulting process (σn−m.p) ‖ q performs
the remaining delay σn−m.

Fig. 3. a) Stochastic extension of the composition in Fig. 2c), b) independent race
condition with every possible outcome, c) stochastic extension of σn.p in accordance
with Fig. 2d), and d) dependent race condition synchronizing the dependent delays

In stochastic time semantics, such behavior can be interpreted both for the
independent or dependent race condition as depicted in Fig. 3. Suppose that the
original timed delay σn is replaced by the stochastic delay [X ], obtaining [X ].p
as depicted in Fig. 3a), and σm.q is extended to [Y ].q. In Fig. 3b), we consider
an independent race given by the term | [X ].p|∅ ‖ | [Y ].q|∅, which results in the
three possible outcomes as discussed in Section 2. Here, we label the transitions
with the winners on top and the losers below. This way independent components
competing for the same resource can be modeled conveniently.

Now, suppose that the components are considered dependent regarding their
timing aspects. For example, σn.p is a controller that has a timeout greater
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than the response time of the process that it controls. This can be represented
in the timed model as σm.q and conditioned by the fact that n > m. In such a
situation, the stochastic modeling using the independent race condition leads to
undesirable behavior. For example, the premature expiration of the stochastic
delay of the controller given by the outcome [XY ] may introduce non-existent
deadlock behavior as it did not wait for the result of the process that successfully
finished its task. In this case, relying on the context-sensitive interpolation, the
correct modeling of σn.p would be [Y ].[Z].p as depicted in Fig. 3c). The idea is
that both, the controller and the process, should synchronize on the dependent
stochastic delay [Y ]. The delay is followed by the short timeout [Z] that models
the extra timed delay σn−m in the context-sensitive interpolated representation
(σm.(σn−m.p) ‖ q) of (σn.p) ‖ (σm.q). The situation is depicted in Fig. 3d).

Another way of modeling the above system is to explicitly state that the
stochastic delay [Y ] should be the winner of the race between [X ] and [Y ]. This is
done by specifying σm.q in stochastic time as [YX].q. Such a specification expresses
the result of the race between [X ] and [Y ]. The parallel composition [X ].p‖ [YX].q
is resolved as [YX].([X ].p‖q). In this case, however, the race is incomplete, i.e., the
other disjoint outcomes

[
X, Y

∅
]

and [YX] are not present. A major consequence is
that the equational theory of terms exhibiting incomplete races is more intricate
as the alternative composition is no longer associative and one must rely on
normal form representations [14].

Fingerprint of operational rules and axioms. From a process theoretical
point of view, the fundamental properties of time are time determinism and time
additivity [1,17]. They can be captured by the following operational rules.

(1)
σn.p n�−→ p

(2)
p n�−→ p′

σm.p m+n�−→ p′
(3)
p1

n�−→ p′1, p2 n�−→ p′2
p1 + p2 n�−→ p′1 + p′2

·

When treating timed delays as atomic, rule 1 holds again, but rule 2 for time
additivity now fails. Therefore, we add instead of rule 2, two new rules similar
to rule 3 for time determinism that perform the context-sensitive interpolation
when competing delays have different durations:

(4)
p1

m�−→ p′1, p2 n�−→ p′2,m < n
p1 + p2 m�−→ p′1 + σn−m.p′2

(5)
p1

m�−→ p′1, p2 n�−→ p′2,m > n
p1 + p2 n�−→ σm−n.p′1 + p′2

·

Note the emphasis on performing the shortest winning duration first. The rules 4
and 5 give rise to the following two axioms:

σm.p1 + σm.p2 = σm.(p1 + p2) A1 σm.p1 + σm+n.p2 =σm.(p1 + σn.p2) A2 .

Axiom A1 enables time determinism, whereas Axiom A2 replaces the standard
axiom σm.σn.p = σm+n.p for time additivity. Together with commutativity the
latter allows for context-sensitive interpolation. If zero delays are allowed, then
rule 3 and axiom A1 become obsolete. More details can be found in [19].

To summarize, at first sight context-sensitive interpolation may seem too re-
strictive, but it does exactly what time additivity is typically used for: merging
of delays with the same duration by taking the shortest/minimal delay. More-
over, context-sensitive interpolation fits naturally in the expansion of the parallel
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composition, which makes it a suitable candidate for a finer notion of time addi-
tivity in real-time process algebras. We also note that the results can be directly
extended to the continuous setting. Finally, the bisimulation relation remains
unchanged as context-sensitive interpolation is handled in the operational se-
mantics. However, it is noted that the resulting process equivalence is finer. For
example, σ2.σ3.p and σ5.p are no longer related, though σ2.σ3.p and σ5.p+σ2.δ
are, where δ represents the deadlock process constant obeying p+ δ = p.

We proceed by presenting a stochastic process theory that makes use of the
concepts discussed above to deal with stochastic time as an extension of the
real-time process theory. The gain lays in an expansion law that respects time
determinism and the explicit treatment of the maximal progress.

4 The Stochastic Process Theory TCPdst

We present the theory TCPdst(A,V , γ) of communicating processes with discrete
stochastic time, where A denotes the set of actions, V is the set of stochastic
delays, and γ is the action synchronization function extending ACP-style process
algebras with discrete relative timing of [17]. The semantics is given in terms
of stochastic transition schemes that, in essence, represent stochastic automata
with symbolic explicit representation of the race condition. Here, we focus on the
handling of the race condition, the expansion for the parallel composition and the
maximal progress operator. We illustrate the process theory for race-complete
process specifications that induce complete races only.

Environments and distributions of racing delays. We use a construct,
called an environment, to keep track of the dependencies of the racing delays.
Recall, [WL ] denotes an outcome of a race that was won by W and lost by L, for
W,L ⊆ V . However, because of time determinism, time has passed equally for
all racing delays in W ∪L. To denote that after a delay [WL ], the same time that
passed for the winnersW has also passed for the losers L, we use an environment
α : V → 2V . For each X ∈ V , α(X) is a set that contains one representative of
the winners of every race that X lost. One representative suffices, because all
winners share the same sample in the winning race. If α(X) = ∅, then X has
never lost a race. We write E for the set of all environments.

For example, the process term [X, Y
Z ].[U

Z].p has a stochastic delay transition
in which X and Y are the winners and Z is the loser. In the resulting process
[UZ].p, the variable Z must be made dependent on the amount of time that has
passed for X and Y before. This can be denoted either by α(Z) = {X} or
α(Z) = {Y }, assuming α(Z) = ∅ initially. As Z again loses a race, this time
to U , the transition induced by [U

Z] updates α(Z) to α(Z) = {X,U}, provided
X was chosen as a representative in the first race.

The environment does not affect the outgoing transitions. It is used to calcu-
late the correct distribution of the racing delays. Suppose that s(X) gives the
exhibited sample for an expired delayX of a race. Then the racing delay Y in the
environment α has participated in races that it lost with the total amount of time
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t(Y ) =
∑

X∈α(Y ) (s(X) + t(X)). By convention, t(Y ) = 0 if α(Y ) = ∅. The
distribution of Y , given FY (t(Y )) < 1, at that point in time is

FY (n) =
FY (n+ t(Y ))− FY (t(Y ))

1− FY (t(Y ))
·

Thus, in order to compute the updated distribution of a racing delay Y , one
has to know its complete dependence history, i.e., the names of all delays that
contribute in the derivation of t(Y ). The dependence history in an environment α
of a set of racing delays R is defined by Hα(R) = R∪

⋃
X∈R (α(X)∪Hα(α(X))).

Stochastic transition schemes. The semantics of process terms is given
by stochastic transition schemes. A state s of the transition scheme in an en-
vironment α is given by the pair 〈s, α〉 ∈ S × E . The function I(s) gives the
set of independent delays of the state s. Every state may have a termina-
tion option, denoted by the predicate ↓. There are three types of transitions:
(1) a−→, immediate action transitions labeled by a ∈ A, that do not allow pas-
sage of time and model undelayable action prefixes; (2) �, delay transitions
that allow arbitrary passage of time; and (3) W�−→

L
, (resolved) stochastic delay

transitions, driven by the winners W and the losers L, that model stochastic
delay prefixes. The stochastic delay transitions must be well-defined: for every
u W�−→

L
u′, the set of winners W and the set of losers L are disjoint. Moreover,

every two different transitions originating from the same state are in a resolved
race. More precisely, if u W1�−→

L1
u1 
= u W2�−→

L2
u2, then rr([W1

L1 ], [W2
L2 ]) holds, implying

that W1 ∪ L1 = W2 ∪ L2. Thus, for every state s there exists a set of racing
delays R(s) satisfying R(s) = W ∪ L for every 〈s, α〉 W�−→

L
〈s′, α′〉. Then, the set

of dependent delays is given by D(s) = R(s) \ I(s).

Bisimulation. We define a strong bisimulation relation on stochastic transi-
tion schemes. It requires stochastic delays to have the same dependence history
modulo names of the independent delays. This ensures that the induced races
have the same probabilistic behavior. As usual, bisimilar terms are required to
have the same termination options, action and delay transitions [1,17].

A symmetric relation R on S × E is a bisimulation if, for every two states
u1, u2 such that R(u1, u2), it holds that: (1) if u1↓ then u2↓; (2) if u1 � u′1
for some u′1 ∈ S × E , then u2 � u′2 for some u′2 ∈ S × E ; (3) if u1

a−→ u′1 for
some u′1 ∈ S×E , then u2

a−→u′2 for some u′2 ∈ S×E ; and (4) if u1
W1�−→
L1
u′1 for some

u′1 ∈ S × E , then u2
W2�−→
L2
u′2 for some u′2 ∈ S × E . Moreover, u′1 and u′2 in (1)–(4)

are again related by R. In (4) W1 and L1 differ from W2 and L2, respectively,
only in the names of the independent racing delays, while comprising delays with
the same distributions. Also, an additional condition is imposed to ensure that
the dependence history of the losers of u1 that are racing as dependent delays
in u′1 is preserved in u′1 as well. Two states u1 and u2 are bisimilar if there exists
a bisimulation relation R that relates them.

Signature. The deadlocked process is denoted by δ; successful termination
by ε. Undelayable and delayable action prefixes are unary operators a. and
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Table 1. Some illustrative operational rules

(6) 〈a.p, α〉 a−→ 〈p, α∅〉 (7) 〈a.p, α〉 a−→ 〈p,α∅〉 (8) 〈a.p, α〉� 〈a.p, α〉

(9) 〈
[
W
L

]
.p, α〉 W�−→

L
〈|p|

L
, α∅{α′/Hα′(L)}〉,

with α′ = α{(α + W )/L}
(10)

〈p, α〉 W�−→
L
〈p′, α′〉

〈|p|B , α〉 W�−→
L
〈p′, α′〉

(11)
〈p1, α〉 W1�−→

L1
〈p′

1, α1〉, 〈p2, α〉 ��−→, ��

〈p1 + p2, α〉 W1�−→
L1
〈p′

1, α1〉
(12)

〈p1, α〉� 〈p′
1, α1〉, 〈p2, α〉 W2�−→

L2
〈p′

2, α2〉

〈p1 + p2, α〉 W2�−→
L2
〈p′

1 + p′
2, α2〉

(13)
〈p1, α〉 W1�−→

L1
〈p′

1, α1〉, 〈p2, α〉 W2�−→
L2
〈p′

2, α2〉, (W1 ∪W2) ∩ (L1 ∪ L2) = ∅

〈p1 ‖ p2, α〉 W1∪W2�−→
L1∪L2

〈p′
1 ‖ p′

2, α1{α2/L2}〉

(14)
〈p1, α〉 W1�−→

L1
〈p′

1, α1〉, 〈p2, α〉 W2�−→
L2
〈p′

2, α2〉, rr(
[
W1
L1

]
,
[
W2
L2

]
)

〈p1 + p2, α〉 W1�−→
L1
〈p′

1, α1〉

a. , for every a ∈ A. Similarly, a stochastic delay prefix is of the form [WL ]. for
W,L ⊆ V disjoint, W 
= ∅. The dependence scope is given by | |

D
, for D ⊆ V .

The encapsulation operator ∂H( ), for H ⊆ A, suppresses the actions in H . The
maximal progress operator θH( ) gives priority to undelayable actions in H . The
alternative composition is given by + , at the same time representing a nonde-
terministic choice between actions and termination, a weak choice between action
and passage of time, and imposing a race condition on the stochastic delays.
The parallel composition is given by ‖ . It allows passage of time only if both
components do so. Recursion is introduced by guarded recursive specifications.

Structural operational semantics. The general idea of having both depen-
dent and independent delays available is the following: For specification, one can
use multiple instances of a component using independent delays. As the delays
are independent, there is no need to worry about the actual samples. How-
ever, the racing delays in the stochastic transition schemes have unique names,
whereas the process terms may exhibit naming conflicts. For example, the term
p = |[X ].q|∅ ‖ |[X ].q|∅ expresses a race between two components guided by inde-
pendent delays with the same name. However, the stochastic delay transitions
of 〈p, α〉 comprise two racing delays with unique names, and equal distributions.

For p to have a proper semantics, the conflicting independent delays have to
be detected and renamed, e.g., to |[Y ].q|∅ ‖ |[X ].q|∅ where FX = FY . For that
purpose, we use D(p) and I(p) to extract dependent and independent racing
delay names of the term p, respectively [14]. Then, the set of racing delay names
is given by R(p) = D(p)∪I(p). Now, p1 and p2 are not in conflict when composed,
if I(p1)∩R(p2) = R(p1)∩I(p2). We use α-conversion to enable dynamic renaming
that resolves local conflicts in the vein of [15]. Intuitively, α-conversion enables
renaming of independent delays without distorting the structure of the term,
conforming to the bisimulation relation as stated below [14].
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Table 2. Some illustrative axioms of the process theory TCPdst

|a.p|∅ = a.p A3
[
W
L

]
.p =

[
W
L

]
.|p|L A4 ||p|B1

|B2
= |p|B1∩B2

A5

|p1 + p2|B = |p1|B + |p2|B if I(|p1|B) ∩ R(|p2|B) = R(|p1|B) ∩ I(|p2|B) = ∅ A6

a.p1 +
[
W
L

]
.p2 = a.p1 +

[
W
L

]
.(a.p1 + p2) A7[

W1
L1

]
.p1+

[
W2
L2

]
.p2 =

[
W1

L1∪W2∪L2

]
.(|p1|L1

+
[
W2
L2

]
.p2) +[

W1∪W2
L1∪L2

]
.(|p1|L1

+|p2|L2
) +

[
W2

W1∪L1∪L2

]
.(
[
W1
L1

]
.p1+|p2|L2

)

if W1 ∩W2 = L1 ∩W2 = W1 ∩ L2 = ∅ A8

Theorem 1. α-conversion is a congruence contained in bisimilarity. � 

We illustrate the features of the operational semantics for some characteristic
rules given in Table 1. We refer to [14] for the rest. Also, for compactness, we
assume that terms do not exhibit naming conflicts. We define environments α∅
by α∅(X) = ∅, and α +W by (α +W )(X) = α(X) ∪ {Y } for X ∈ V , W ⊆ V
non-empty, and Y ∈W randomly chosen. The notation ��−→ and �� express that
the term does not have a stochastic delay or a delay transition, respectively.

Let us comment on the rules. Rules 6 to 8 deal with undelayable and de-
layable actions. Rule 9 enables stochastic delay transitions. The environment is
updated by first updating the dependence sets of the losers, obtaining the new
environment α′. Afterward, only the relevant dependence history of the losers,
given by Hα′(L), is retained. The losers in the resulting term |p|

L
are treated

as dependent as their names must be protected. The dependence scope operator
does not affect any transitions as illustrated by rule 10. It is only used to specify
dependent and independent delay names. Rule 11 illustrates the default weak
choice between action transitions and passage of time. Action transitions do not
have priority, unless explicitly stated by the maximal progress operator. Delay
transitions merge with other delay or stochastic delay transitions, illustrated
by rule 12. Rule 13 gives the synchronization of stochastic delays in the paral-
lel composition. Rule 14 illustrates handling of resolved races, if a probabilistic
choice between stochastic delays transitions is enabled. Resolved races do not
occur in the parallel composition, as they represent disjoint events that cannot
occur concurrently.

The following result gives rise to a term model in the vein of [17].

Theorem 2. Bisimilarity is a congruence in TCPdst. � 

Equational theory. We discuss a selection of axioms in Table 2. Axioms A3
and A4 illustrate how to deal with the dependence scope and prefix operators.
Multiple scopes intersect as given by axiom A5. Axiom A6 allows the merging of
scopes if there are no naming conflicts. Arbitrary passage of time of the delayable
actions is expressed by axiom A7. Axiom A8 illustrates the resolution of a race
without restrictions and all possible outcomes produced. Under restrictions, e.g.,
if L1 ∩W2 
= ∅, only the first summand persists on the right.



280 J. Markovski and E.P. de Vink

Theorem 3. The process theory TCPdst is sound and ground-complete axiom-
atization for race-complete process specifications. � 

Head normal forms. To expand the parallel composition and the maximal
progress operator, we want stochastic delays to be in a resolved race [11,14].
For that purpose, we rewrite terms in a head normal form that makes the race
condition and the dependent delay names explicit.
Theorem 4. Every term p can be rewritten in the following normal form:

p = |
∑u

i=1 ai.pi +
∑d

j=1 bj .qj +
∑s

k=1 [Wk
Lk

].rk ( + ε)( + δ)|
D

with Wk ∪ Lk = R(p), D ⊆ R(p), and rr([Wk
Lk

],
[

Wk′
Lk′

]
) holds for 1 ≤ k, k′ ≤ n,

k 
= k′, and bj .qj ∈ {ai.pi | 1 ≤ i ≤ u} for every 1 ≤ j ≤ d. � 
The summand ε may or may not exist,

∑n
i=1 pi = p1 + . . . + pn if n > 0 and

otherwise it does not exist, δ exists if none of the other summands do.
The availability of head normal form is of technical importance. It is instru-

mental for proving ground-completeness and showing uniqueness of solutions
of guarded recursive specifications in the term model [20]. Also, it enables an
expansion of the parallel composition and resolution of the maximal progress.

Expansion law. First, we analyze the parallel composition of p, as above, and
p′ = |

∑u′

i′=1 a
′
i′ .pi′ +

∑d′

j′=1 b
′
j′ .q′j′ +

∑s′

k′=1

[
W ′

k′
L′

k′

]
.r′k′ ( + ε)( + δ)|

D′ , separately for
every type of prefix. By und(p ‖ p′) we denote the process∑u

i=1 ai.(|pi|∅ ‖ p
′) +

∑u′

i′=1 a
′
i′ .(p ‖ |p′i′ |∅) +

∑
γ(ai,a′

i′ )=aaii′ aaii′ .(|pi|∅ ‖ |p
′
i′ |∅)

that gives the expansion of the undelayable action prefixes. The stochastic delays
that follow the leading prefix are independent as there is no race. Similarly, for
delayable action prefixes, we put del(p ‖ p′) =∑d

j=1 bj .(|qj |∅ ‖ q
′) +

∑d′

j′=1 b
′
j′ .(q ‖ |q′j′ |∅) +

∑
γ(bj,b′

j′ )=bbjj′ bbjj′ .(|qj |∅ ‖ |q
′
j′ |∅).

The stochastic delay prefixes are merged according to the restrictions imposed
on the races, as discussed above for axiom A8. We have std(p ‖ p′) =∑

Wk∩W ′
k′ �=∅,Wk∩L′

k′=Lk∩W ′
k′=∅

[
Wk∪W ′

k′
Lk∪L′

k′

]
.(|rk|Lk

‖ |r′k′ |L′
k′

) +
∑

Lk∩W ′
k′ �=∅,Wk∩W ′

k′=Wk∩L′
k′=∅

[
Wk

Lk∪W ′
k′ ∪L′

k′

]
.(|rk|Lk

‖
[

W ′
k′

L′
k′

]
.r′k′ ) +

∑
Wk∩L′

k′ �=∅,Wk∩W ′
k′=W ′

k′∩Lk=∅
[

W ′
k′

Wk∪Lk∪L′
k′

]
.([Wk

Lk
].rk ‖ |r′k′ |L′

k′
) +

∑
Wk∩W ′

k′=Wk∩L′
k′=Lk∩W ′

k′=∅
([

Wk
Lk∪W ′

k′ ∪L′
k′

]
.(|rk|Lk

‖
[

W ′
k′

L′
k′

]
.r′k′ ) +[

Wk∪W ′
k′

Lk∪L′
k′

]
.(|rk|Lk

‖ |r′k′ |L′
k′

) +
[

W ′
k′

Wk∪Lk∪L′
k′

]
.([Wk

Lk
].rk ‖ |r′k′ |L′

k′
)
)
.

The leading stochastic delay determines the set of losers in the term it prefixes.
Now, we have all the ingredients to state an expansion law.

Theorem 5. The expansion of the parallel composition p ‖ p′ is given by
p ‖ p′ = |und(p ‖ p′) + del(p ‖ p′) + std(p ‖ p′) ( + ε)( + δ)|

D∪D′

provided that there are no naming conflicts, i.e., R(p)∩D′ = D∩R(p′) = ∅. � 
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The summand ε exists if both p and p′ contain it; δ exists if none of the other
summands do.

For comparison, we give an abstract description of the expansion of the parallel
composition in clock-based approaches [5,4,21,8] that employ start-termination
semantics. There, the stochastic delay [X ] is split on a starting X+ and an
ending X− activity. Intuitively

[X ].p ‖ [Y ].q = X+.X−.p ‖ Y +.Y −.q = X+.Y +.(X−.p ‖ Y −.q)+Y +.X+.(X−.p ‖ Y −.q).

This allows for a much more elegant expansion law, than Theorem 5. However,
such treatment only involves the setting of the joint sets of clocks, i.e., the
enabling of the starting activities. There is no relation between the passage of
time of the components as in standard real-time semantics, where

t.p ‖ s.q = min(t, s).
(
(t−min(t, s)).p ‖ (s−min(t, s)).q

)
.

As a consequence, the maximal progress operator cannot be handled explicitly
as there is no knowledge about the relationship between the winners and the
losers. This leads to more complicated definitions of the bisimulation relations,
which must account for the priority of the internal actions [4,5,6,7].

Maximal progress. The advantage of the stochastic delays over clocks em-
ploying start-termination semantics is that by resolving the race condition ex-
plicitly, we can track how time advances. This gives a clear relation between
the winning and the losing samples, so one can pinpoint the progress of time
exactly. We are able to resolve the maximal progress operator θH using normal
form representations as stated below.

Theorem 6. For a normal form p, it holds that

θH(p) = |
∑u

i=1 ai.θH(pi) +
∑d

j=1 bj .θH(qj) +
∑s

k=1 [Wk
Lk

].θH(rk) ( + ε)( + δ)|
D

if (
⋃u

i=1 ai ∪
⋃d

j=1 bj) ∩H = ∅, or by

θH(p) = |
∑u

i=1 ai.θH(pi)+
∑d

j=1 bj .θH(qj) (+ε)(+δ)|
D

, otherwise. � 

As an aside, the explicit treatment of the race condition corresponds to the re-
gional trees that are used in modelchecking of stochastic automata (in residual
lifetime semantics) [22]. Originally, regional trees were obtained from stochastic
automata [15] by explicitly ordering clock samples by their duration as symbol-
ically represented by the stochastic delay prefix.

5 Conclusions and Future Work

We investigated the phenomenon of ‘stochastifying’ timed process theories, i.e.,
generalizing real-time process specifications to stochastic time. We approached
the problem from both directions, aiming to apply the principles of timed process
theories in stochastic time and adapting the real-time semantics to conform to
the race condition. Regarding timed process algebra, we introduced the notion of
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context-sensitive interpolation, a restriction of time additivity that fits with race
condition semantics. We built a stochastic process algebra featuring stochastic
delay prefixes that come close to timed delay prefixes, as the relation between
the winning and losing delays of the race is specifically modeled. This enabled
an expansion of the parallel composition in the style of real-time process theories
as well as explicit handling of the maximal progress.

As future work, we continue our axiomatization efforts to completely describe
specifications that involve incomplete races as well. Current investigations point
out that we need to work with normal forms, as the alternative composition is
no longer associative. We also schedule further study of real-time process the-
ories that implement context-sensitive interpolation and single-step-style timed
bisimulation. At this point, we expect that such theories can accommodate for
verification and analysis of processes with timed delays too. Our long-term goal
is to analyze protocols, such as contemporary Internet protocols, involving both
time-outs and generally distributed delays.

Acknowledgments. Many thanks to Jos Baeten, Bas Luttik, Nikola Trčka,
and Walter van Niftrik for fruitful discussions on the topic.
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Abstract. Vx86 is the first static analyzer for sequential Intel x86
assembler code using automated deductive verification. It proves the
correctness of assembler code against function contracts, which are ex-
pressed in terms of pre-, post-, and frame conditions using first-order
predicates. Vx86 takes the annotated assembler code, translates it into
C code simulating the processor, and then uses an existing C verifier to
either prove the correctness of the assembler program or find errors in
it. First experiments on applying Vx86 on the Windows Hypervisor code
base are encouraging. Vx86 verified the Windows Hypervisor’s memory
safety, arithmetic safety, call safety and interrupt safety.

1 Introduction

The correctness of operating systems is critical for the security and reliability
of any computer system. However, debugging and testing operating systems is
very difficult: kernel operations are hard to monitor, and algorithms are highly
optimized and often concurrent. These factors suggest that one should verify
operating systems. In fact, there are currently several projects that try to do
just that [21,15,10,19]. However, such projects still leave us far from a practical
methodology for verifying real systems.

One gap is in the verification targets. Existing verification projects often use
idealistic sequential code written in clean programming languages. In contrast,
modern system code is typically multithreaded, racy, written in C and assembler.
Assembler is used (1) to access special instructions that are not available in C (like
CPUID, which returns some important properties of the processor), and (2) to im-
prove the performance of critical algorithms like interrupt dispatch, context switch,
clearing pages, etc. While several verifiers for C exist [11,14,17], we think that it is
imperative to verify the assembler portion of a verified operating system as well.

To address this gap, we developed an automatic static analysis tool, called
Vx86, targeted towards the verification of the Windows Hypervisor [4,5]. Vx86
proves correctness of Intel x86 assembler code with AMD virtualization exten-
sions against procedure contracts and loop invariants. It does so by building
on top of other tools. First, Vx86 translates annotated assembler code to anno-
tated C code. The C translation makes the machine model explicit and provides
a meaning for the instructions by simulating the instructions on the machine
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state. The resulting C code is then passed to VCC, Microsoft’s Verifying C
Compiler [16]. VCC translates the annotated C programs into BoogiePL [9], an
intermediate language for verification. Boogie [1] then generates logical verifica-
tion conditions for the translated C code and passes them on to the automatic
first-order theorem prover Z3 [8] to either prove the correctness of the translated
assembler program or find errors in it.

We found that the simulation approach is a very good fit for our assembler
verification effort. There are two reasons for that, one is technical and the other
one is social. The technical reason is that C and assembler are in fact very
closely related: both use arbitrary pointer arithmetic, both have a very weak
type system (albeit a bit stronger in the case of C). So C verifiers, which are
good enough for verifying low level OS code, should be good enough to deal with
assembler code as well. Mapping assembler code to C thus obviates the need of
implementing a full-blown assembler verifier. The social reason is that the users
of the assembler verifier are likely to also use the C verifier for other parts of the
code, therefore they can get familiar with only one tool instead of two.

This paper presents the design and use of Vx86. Our contributions are

– the development of a translator from annotated assembler code to C (see
Subsection 3.1).

– the development of a semantics of x86 assembler with virtualization exten-
sions by providing a simulator in C (see Subsection 3.2).

– the development of correctness criteria for assembler code (see Subsection 4.2).
– the application of the resulting verifier on the Windows Hypervisor code

base (approximately 4,000 lines of assembler code) (see Subsection 4.3).

Section 2 introduces the challenges in assembler verification; furthermore it pro-
vides some background on VCC. Sections 5 and 6 discuss related work and
conclude.

2 Background

2.1 Running Example: SetZero

We will explain the inner workings of Vx86 with the SetZero assembler code
(see Figure 1 on the following page). It is literally taken from the Windows
Hypervisor code base; it sets a memory block of 4096 bytes to zero.

This code is written in assembler, because it is optimized for branch predic-
tion, cache lines and pipelines of the processor, something that the Microsoft C
compiler cannot achieve.

2.2 Challenges in Assembler Verification

Verifying assembler code is challenging.

– Almost all assembler languages, including Microsoft’s x86 assembler, are un-
typed; however, most of the automatic verification tools use type information
to help with the problems of aliasing, framing, etc.
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1 %LEAF ENTRY SetZero, TEXT$00
db 066h, 066h, 066h, 090h
db 066h, 066h, 066h, 090h
db 090h
ALTERNATE ENTRY SetZero

6 xor eax, eax
mov edx, X64 PAGE SIZE / 64

@@:
mov [rcx ], rax
mov 8[rcx ], rax

11 mov 16[rcx ], rax
add rcx, 64
mov (24 − 64)[rcx ], rax
mov (32 − 64)[rcx ], rax
dec edx

16 mov (40 − 64)[rcx ], rax
mov (48 − 64)[rcx ], rax
mov (56 − 64)[rcx ], rax
jnz short @b
ret

21 LEAF END SetZero, TEXT$00

Fig. 1. Original SetZero assembler code

– Assembler control flow is unstructured, therefore we need to find a place
where to put loop invariants.

– Many assembler instructions have side effects not only on the mentioned
registers but on the whole processor state. For faithful verification all of these
effects have to be captured, since program logic may later depend on them;
conditional jumps, for instance, depend on a flag set in earlier instructions.

– Assembler code often uses bitfields and words interchangeably. For example,
the flag register is typically used as a bitfield, but when saved and restored,
it is used as a single unit.

– The use of general purpose registers is even more demanding; they are not
only used as bitfields and as integers, but also as pointers. A register mask,
for example, is used to select the page of a pointer address.

VCC, a verifier that is currently being developed for verifying the C part of
the Windows Hypervisor, is designed so that it can support weak type systems,
bitvectors, as well as arbitrary goto-systems. This allows us to build Vx86 on
top of VCC because it meets all necessary requirements.

2.3 Microsoft’s Verifying C Compiler

VCC is a static analysis tool that uses automatic first order theorem proving
to show formally that a given sequential C program, compiled for the Intel or
AMD x86-32 or x86-64 processors, does what is stated in its specification.

VCC’s specification language includes first-order predicates expressed in pre–
/postconditions, loop invariants, assertions and assumptions. For modular
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reasoning VCC introduces a “region-based” memory management using pure
functions and abstract framing to guarantee that functions only write, read, al-
locate, and free certain locations. VCC also supports ghost state, that consists
of specification-only variables that allow one to argue about values that were
saved before.

VCC uses three formally related semantics. VCC’s base memory model rep-
resents values as bit vectors and accesses memory in individual bytes, a simple
abstraction represents values as mathematical integers and accesses memory in
word sizes, the third model uses the C type system in addition to the second
model to rule out many pointer aliases.

In this paper we show in detail how Vx86 uses VCC to verify the partial
correctness of the SetZero function, as well discuss the results of verification of
a sizable chunk of assembler code from the Windows Hypervisor.

3 Translating Annotated Assembler Code to C

Vx86 processes annotated x86 assembler code, written in the input language for
Microsoft’s Macro Assembler 8.0 (MASM). Vx86 works as follows:

1. the annotated assembler code is preprocessed by MASM, this inlines all
needed assembler macros and definitions;

2. the expanded assembler file is translated to annotated C code;
3. the annotated C code is extended with definitions that (a) make the machine

state explicit, and (b) provide a meaning for the assembler instructions in
terms of the machine state;

4. the annotated and now self-contained C code is passed to VCC for verifica-
tion.

3.1 Specification and Syntax Translation of the Assembler Language

To simplify our translation task and to make the verification of the Hypervisor’s
C code as well as assembler code as uniform as possible, we decided to simply
adopt VCC’s specification language for Vx86. Specification constructs in Vx86
are introduced using special comments, e.g. pre, post conditions, writes clauses
and local ghost variables appear after the assembler header, invariants appear
after labels, assumptions, assertions and assignments to ghost variables can ap-
pear anywhere in the running code. Figure 2 on the next page describes the fully
annotated SetZero Code.

The SetZero assembler procedure requires (1) that X64 PAGE SIZE bytes
in the main memory starting at the address pointed to by rcx are valid, i.e.
allocated (let us call that region the page), and that rcx +X64 PAGE SIZE
is not allowed to overflow. SetZero guarantees that it only writes the page, as
well as the registers rcx, edx, rax and rflags. SetZero ensures that the page is
zero. In the body, there is a loop between the label @@ and the jump jnz back
to it. After the alignment a ghost variable count of type signed 64 bit integer is
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;ˆ requires (valid ((U1∗)rcx,X64 PAGE SIZE))
;ˆ requires (rcx+X64 PAGE SIZE < (U8)−1)
;ˆ writes(region((U1∗)(old(rcx)),X64 PAGE SIZE), rcx, edx, rax, rflags)

4 ;ˆ ensures ( forall (U4 i; (0 <= i && i < X64 PAGE SIZE/8) ==>
;ˆ ∗((U8∗)(U1∗)(old(rcx)) + i) == 0))

LEAF ENTRY SetZero, TEXT$00

db 066h, 066h, 066h, 090h ; fill for alignment
9 db 066h, 066h, 066h, 090h ;

db 090h ;

;ˆ spec(I8 count = 0);
; a ghost variable

14
ALTERNATE ENTRY SetZero
xor eax, eax
mov edx, X64 PAGE SIZE / 64

@@:
19 ;ˆ invariant (valid ((U1∗)(old(rcx)),X64 PAGE SIZE))

;ˆ invariant (8 ∗ count == (U1∗)rcx − (U1∗)old(rcx))
;ˆ invariant (0 < edx && edx <= (X64 PAGE SIZE/64))
;ˆ invariant ((U1∗)(old(rcx))−64∗edx+X64 PAGE SIZE == (U1∗)rcx)
;ˆ invariant ((U1∗)(old(rcx)) <= (U1∗)rcx)

24 ;ˆ invariant ((U1∗)rcx < (U1∗)(old(rcx))+X64 PAGE SIZE)
;ˆ invariant (rax == 0)
;ˆ invariant ( forall (U4 i; (0 <= i && i < count) ==>
;ˆ ∗((U8∗)(U1∗)(old(rcx)) + i) == 0));

mov [rcx ], rax
29 mov 8[rcx ], rax

mov 16[rcx ], rax
add rcx, 64
mov (24 − 64)[rcx ], rax
mov (32 − 64)[rcx ], rax

34 dec edx
mov (40 − 64)[rcx ], rax
mov (48 − 64)[rcx ], rax
mov (56 − 64)[rcx ], rax

;ˆ spec({ count += 8; })
39 jnz short @b

ret

LEAF END SetZero, TEXT$00

Fig. 2. With contracts annotated SetZero assembler code

introduced. This variable, which is updated as part of the loop body, is needed
for describing the loop invariant.

Note that for verification purposes registers and the global memory are con-
sidered to be global variables, except that registers are treated specially; they are
64, 80 or 128 bit variables that lie outside the address range of global memory.
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typedef unsigned long long U8;
typedef unsigned long U4;

3 typedef unsigned char U1;
typedef struct Flags t {

unsigned cf : 1; unsigned res1 : 3;
unsigned af :1; unsigned res2 :1;
unsigned zf :1; unsigned sf :1;

8 unsigned res3 :3; unsigned of :1;
unsigned res4 :20; U4 res6;
} flags t ;

// registers
13 register U8 rax, rcx, rdx;

//flags
flags t rflags ;
#define eax rax //casts are introduced automatically where needed
#define edx rdx //casts are introduced automatically where needed

18 //eax and edx are the 32 bit versions of the 64 bit rax and rdx

//flag computations
#define zf comp(a) rflags.zf = (unsigned)(a == 0)
#define sf comp(a) rflags.sf = (a < 0)

23 //instructions
#define xor(a,b) a = (aˆb); zf comp(a); sf comp(a); rflags . af=0; rflags . of=0
#define mov U4(a,b) unchecked(a = (U8)((U4)b))
#define mov(a,b) unchecked(a = b)
#define add(a,b) a = (U8)((U1∗)a + (b)); zf comp(a); sf comp(a)

28 #define dec(a) a = a − 1; zf comp(a); sf comp(a)
#define ret() return
#define jnz(a) if (! rflags . zf) goto a

Fig. 3. Vx86’s machine state and instruction definitions in C

A challenging part of the syntax translation is the introduction of casts. In
x86 assembler every register and memory access can be 8, 16, 32, or 64 bit wide.
The access modes do not only differ in the number of bits they read or write,
but also in the side effects to the higher bits. 8 and 16 bit access modes are just
writing the bits given, leaving the rest of the register unchanged. On the other
hand, 32 bit access mode extends with zeroes to a 64 bit register. For Vx86
we decided to model general purpose registers as 64 bit unsigned integers; all
access modes other than 64 bit are represented in terms of their effect on 64 bit
quantities. Due to VCC’s ability to switch between different memory models,
registers can be viewed as bitvectors or integers.

In assembler, jumps often depend on the value of the status register, i.e. one in-
struction sets the status register and the following jump is depending on the flags.
In our running example, dec may set the zero flag and jnz performs the jump if
the zero flag was set. We translate goto systems from assembler directly into goto
systems in C, we only have to resolve symbolic assembler labels, e.g. @b and @@ in
our example are resolved to a unique label.While most verifiers do not support un-
structured goto’s, VCC does. It translates goto systems into unstructured control
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#include ”vcc.h”
#include ”Assembler.h”

//Page Size
5 #define X64 PAGE SIZE 0x01000ULL

void SetZero()
requires (...) writes (...) ensures (...)

{
10 spec (...);

SetZero:
xor(eax, eax);
mov U4(edx, X64 PAGE SIZE / 64);

l0 :
15 invariant (...)

mov(∗(U8∗)((U1∗)rcx), rax);
mov(∗(U8∗)((U1∗)rcx + 8), rax);
mov(∗(U8∗)((U1∗)rcx + 16), rax);
add(rcx, 64);

20 mov(∗(U8∗)((U1∗)rcx + (24 − 64)), rax);
assert (...);

mov(∗(U8∗)((U1∗)rcx + (32 − 64)), rax);
dec(edx);
mov(∗(U8∗)((U1∗)rcx + (40 − 64)), rax);

25 mov(∗(U8∗)((U1∗)rcx + (48 − 64)), rax);
mov(∗(U8∗)((U1∗)rcx + (56 − 64)), rax);

spec (...);
jnz( l0 );
ret ();

30 }

Fig. 4. Vx86 generated C code for SetZero

flow in Boogie. Next, Boogie translates unstructured goto systems into a system
of equations that represent the verification condition. Vx86 does not make the PC
explicit. In x86 assembler it is quite difficult to compute addresses instead of using
labels to jump, because instructions do not have fixed size.

3.2 Simulator for Assembler

Figure 3 on the preceding page provides an excerpt of the simulator for x86
assembler. The figure only provides the definitions which are needed to verify
SetZero. The full file has approximately 8,000 bytes of definitions.

The general purpose registers of the x86 processor are defined as 64 bit global
variables in our C model. Special registers, like the flag register, are represented
using bitfields. Other registers like the floating point registers, which are 80 bit
wide and the multimedia registers, which are 128 bit wide, are modelled with the
help of structs that have the same form as they would have on the real processor.



Vx86: x86 Assembler Simulated in C Powered 291

The meaning of each assembler instruction is provided by a simulation on these
newly introduced memory locations. For providing the instruction semantics we
relied on the instruction manuals from AMD and Intel. For example, the instruc-
tion “add rax,rbx” is not only translated to the C construct “rax=rax+rbx” but
also into several statements to report the proper flag changes like “rflags.zf =
(rax == 0)” and “rflags.sf = (rax < 0)”. Note that such flag changes are per-
formed by most of the assembler instructions.

Unfortunately, the processor instruction manual is not very precise when it
comes to the virtualization extensions. For those instructions, the processor state
after executing certain operations is only partially defined (see also Subsec-
tion 4.1). On the other hand, the Windows Hypervisor does not contain code
that operates on floating point and multimedia values; they are only used for
saving and restoring the processor state, therefore we do not need to model these
instructions in detail.

Figure 4 contains the translation of the annotated SetZero assembler code
into C (note that we do not include the contracts here, because they are pasted
literally from the assembler code into the C code). This code is then passed to
VCC; it verifies in less than a second. Alternatively, the code can be passed to a
normal C compiler, and then executed or debugged using a regular C debugger.

4 Evaluation

The goal of our verification effort is to verify the assembler portion of the Windows
Hypervisor. This section provides some background on Windows Hypervisor, ex-
plains the properties that we have verified so far and gives performance data.

4.1 The Windows Hypervisor

The Windows Hypervisor is a thin layer of software written in C and assem-
bler that sits directly on x64 hardware, turning a real multi-processor (MP) x64
machine into a number of MP x64 virtual machines (VMs). These VMs provide
additional machine instructions (hypercalls) to create and manage VMs, hard-
ware resources, and inter-VM communication. VMs are viewed as a key enabling
technology for a variety of services, such as server consolidation, sandboxing of
device drivers, testing, running multiple OSs on a hardware machine, live VM mi-
gration, snapshotting/recovery, and high availability. Moreover, it provides such
functionality in an OS-neutral way, with a trusted computing base 2-3 orders of
magnitude smaller than that of a typical commercial operating system.

The Windows Hypervisor code base is separated into source files written in C
and x86 assembler. Assembler code is mainly used to achieve performance opti-
mizations, which cannot be expressed in C, and to access processor instructions
that do not have corresponding C instructions. For both reasons, it is obvious
that the code should not be changed just to be able to verify it.

The assembler code of the Hypervisor is located in different files, which means
there is no inline assembler in the C code. This allows for modular reasoning:
the assembler code can be verified separately against its specification.
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If C code calls assembler functions, a C prototype for the assembler func-
tion has to be provided that expresses the assembler specification not in terms
of registers but in terms of C’s parameters and memory. We assume that the
C compiler translates calls to assembler code using a standard register trans-
fer protocol, where the function’s first parameter is passed in register rcx, the
next in rdx, etc. We also assume that every variable of the calling C function is
marked as volatile, which means that the compiler is not allowed to store vari-
ables temporarily in registers but variables are always read from and written to
main memory.

Intel and AMD have developed hardware support for hypervisor systems. For
example, they can switch to the hypervisor if hardware interrupts occur and
provide multi-stage page tables so that the operating systems do not see that
they are working in translated mode. Unfortunately, both companies have their
own virtualization instructions. Since the AMD instruction set is older and the
implementation in the hypervisor thus (hopefully) has less errors in it, we decided
to first support AMD. In future work, there will also be an implementation of the
Intel virtualization hardware. Both hardware types can be supported at the same
time because they have different instruction names and different processor states.
Compared to standard assembler instructions the virtualization instructions are
very complex. They are used for context switches between the hypervisor (host
system) and the operating systems (guest systems). A typical scenario for a
context switch consists of the following sequence of operations: (1) save the host
state, (2) load the guest state, (3) run the guest, (4) save the guest state, (5) load
the host state. Properties about those virtualization instructions include facts
like “the state of the host after the restoring process is the same as it was at the
point of the saving”. Such a property does not only include the values of registers
but also the stack that is administrated by the processor. If the stack has changed
(either the place or the content) then the host will have a completely different
state. Properties involving virtualization typically range over many registers and
memory locations. Additionally, the processor state is usually available twice:
once for the host system and once for the guest system. The verification tool
then has to scale well to handle such complex functions and specifications, and
we have seen verification times for virtualization function degrade (see below).

On the other hand, several functions in the Windows Hypervisor are only
used for optimization reasons. The specifications for those functions are not too
complicated as we have seen before. However, looking at an optimized imple-
mentation is often scary; algorithms are optimized for filling the pipeline most
efficiently, to exploit branch prediction and caching. Verifiers however are good
at keeping track of detail and so these algorithms are a great target for modern
verification technology.

4.2 Well-Formedness Properties

So far we verified only assembler code that is guaranteed to be executed se-
quentially; this amounts to approximately 4,000 lines. For these 4,000 lines we
verified memory safety, arithmetic safety, call safety, and interrupt safety.
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Memory safety means that all memory accesses are only performed on valid
(i.e., previously allocated and not freed) memory. Therefore, the precondition of
an assembler function needs to include validity of all memory locations that are
accessed. If a function tries to access memory that cannot be proven valid, VCC
reports an error. Similarly, we specify explicitly the set of memory locations
being written to, and it is an error to write to a memory location not listed in
the writes clause. These properties are enforced to be transitive, i.e., if function
f calls g then the writes set of g needs to be contained within the writes set of
f , and also the precondition of g needs to follow from the context at the call site
(including preconditions of f).

Arithmetic safety means absence of overflows, unless otherwise stated. For
operations that can overflow (like addition, multiplication or signed division)
VCC automatically adds assertions that check if the result is in the proper
range. When an overflow behavior is desired, the user can specify this explicitly.

Call safety means that the stack is cleaned up after every function call and
registers are saved before every function call. If f calls g and the postcondition
of g does not guarantee that it restores values of registers, then f needs to
save itself the registers it cares about. The registers are saved on the stack,
therefore it is important to know that g will not modify stack locations above
the current stack pointer (stacks are growing down on x86 architecture), and that
g does not change the stack pointer. This is expressed using the postcondition
ensures(rsp == old(rsp)) and by not including region starting with rsp in the
writes clause of g (or for that matter in its validity preconditions). On the other
hand, all accesses of g to the stack (like push) need to be specified in the way we
usually specify memory safety, that is by a precondition like requires(valid(rsp−
40, 40)).

Interrupt safety means that the stack is cleaned up after processing the
whole interrupt. We cannot verify interrupt handlers like regular functions, be-
cause some of their subroutines push some registers on the stack, while only
other subroutines pop them.

For a few functions we also verified functional correctness, like in the SetZero
example shown earlier.

4.3 Experimental Results

We analyzed all assembler files as given, i.e. without a single change except for
adding contracts.

Sizes of Verification Task. Table 5 on the next page presents the size in
bytes of different files in different processing stages. The column Annotated ASM
denotes the size in bytes of the annotated assembler function, i.e. the files the
user edits. The column Preproc ASM shows the file sizes after assembler macro
expansion. The column Translated C shows the file size after the translation to
C. At this point, we have the syntax translation but we do not have the simulator
in the code, but only included as header file. Finally, column Preproc C presents
the result of the C preprocessing phase. This is the file we finally give to VCC for
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File Annotated ASM Preproc ASM Translated C Preproc C
zero 7,821 16,781 18,040 31,609

crashdump 5,625 17,791 20,217 31,028
GuestContext 1,422 16,673 18,136 29,297

Trap 82,316 420,854 444,865 486,510

Fig. 5. File sizes in bytes at different stage of the translation

Filename Verification Time[s]
zero 1.45

crashdump 3.29
GuestContext < 0.01

Trap 67.20

Fig. 6. Verification times for various files of the Windows Hypervisor

verification. Note that the translation is processing instruction by instruction.
The time consumption is only mentionable for the largest file Trap and takes 2
seconds there.

Verification Times. Table 6 gives the verification time in seconds for differ-
ent functions. We checked 17 files of the Windows Hypervisor for all previously
mentioned properties, like memory safety, arithmetic safety, call safety, and in-
terrupt safety. This corresponds to approximately 4,000 lines of assembler code,
which is around 90% of the assembler code that is part of Windows Hypervisor.
The remaining 10% might be executed concurrently, which we currently cannot
handle.

The table shows only the functions of the four files we previously mentioned.
We observe that the time needed for verification increases linearly with size.

This is due to the fact that our verification is modular, i.e. procedure by pro-
cedure. As long as the procedures do not grow too much in size and do not
introduce too many control flow paths, we can verify substantial code. For in-
stance, the procedure ExceptionDispatch, which is part of the Trap file, has
approximately 300 instructions. These 300 instructions turn into several hun-
dred C assignments. Nevertheless, it verifies in approximately 3 seconds. This
shows that our approach cannot be used only for short toy functions but also
for long and complex assembler implementations.

5 Related Work

The CLI stack project in the late 1980s [2] was the first project focussing on the
pervasive verification of computer systems. In total the system consisted of four
levels: starting from a verified FM 8502 microprocessor via a simple assembler
language up to a verified operating system. Later Boyer and Yu [3] refined this
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approach and verified MC68020 assembler programs. They used the theorem
prover Nqthm as their verification tool; they formalized the MC68020 as Nqthm
theories, thus in effect giving an interpreter for the processor; assembler programs
are then translated into expressions over this special logic. Vx86 differs in various
dimensions from this early work, Vx86 works on the much more complex x86,
Vx86 incorporates contracts (including framing) into the assembler, Vx86 uses
an automatic theorem prover (ATP), Vx86 has been used to verify parts of a
real industrial strength operating system.

There are various projects to verify micro-kernels. Verisoft [12] is in spirit
similar to the CLI project. Verisoft developed machine-models for assembler,
small step and big step semantics for more abstract programming languages,
and programs for devices, kernels, operating systems and applications. However,
the Verisoft project only dealt with idealistic processors, inline assembler, and
OS. The L4.verifed project [13] aims at the formal verification of an industrial
strength implementation of a L4 micro-kernel, which is highly optimized for
the ARM platform. While the L4 project tries to do low level C verification, it
has – to the best of our knowledge – not yet started verifying assembler code.
Verisoft and the L4 project use the same verification technology. Both systems
use the interactive theorem prover Isabelle and a Hoare calculus embedded in
Isabelle [20] to verify properties of the micro-kernel. The automation was slightly
improved with the integration of automatic tools that can verify parts of the
proof obligations [7]. However the resulting system does not yet achieve the
automatization we achieved.

Another approach to guarantee that assembler programs are safe are Typed
Assembly Languages (TAL) [6]. TALs are low-level, statically typed target lan-
guages. TALs guarantee type safety, which typically implies memory safety. How-
ever, TALs do not guarantee arithmetic safety, call safety, interrupt safety or
other functional properties. Furthermore, TALs are often idealistic assembler
languages, they are only used as target languages for compilers; as such they do
not deal with the whole instruction set of the processor. We, however, also have
to deal with instructions like HLT or CPUID and the virtualization instruction
set.

Proof carrying code (PCC) has a similar goal [18]. Instead of defining type
safety for assembler code, PCC adds proofs to untrusted assembler files, which
establish certain properties. The receiver of the untrusted code is then able to use
a simple and fast proof validator to check that the proof is valid and hence the
untrusted code is safe to execute. Like TAL, PCC has focuses on memory safety;
it is not a general verification architecture. However, we think that translating
contracts from source level into assembler and then using Vx86 to discharge
those contracts could be an interesting alternative to extend the reach of PCC.

To our knowledge, there is no other project that tries to verify an existing
code base for an optimized hypervisor or which verifies assembler code using
contract annotations and an ATP.
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6 Conclusion and Future Work

Vx86 is a verifier for proving the correctness of sequential Intel x86 assembler
code with AMD virtualization extensions against their contracts. Our approach
has been to (1) provide a C simulator for Intel x86, and (2) to translate the
annotated assembler code into C code for this simulator. Despite the fact that
providing a C simulator seems to be a detour for verifying assembler code, it has
turned out that this still allows us to verify the assembler portion of a complex
industrial program, like Windows Hypervisor, in reasonable time.

In the process of developing Vx86 we heave learnt the following characteristics
of handwritten assembler programs: they might have complex control flow, but
they operate only on a few registers and the memory; the operations on registers
are often low-level, in addition operations have many side effects. Recursive data
structures, which typically need transitivity to describe effects on them, are
rarely used in hand-written assembler. As a consequence, changes to registers
and the memory can often easily be described by enumeration and quantification.

We have also learned that assembler code is particularly well suited for auto-
mated verification:

– Providing an assembler verifier is overdue – except for assemblers there are
no tools to help assembly writers.

– Verifying assembler code is beneficial – if assembler code fails systems typi-
cally crash.

– Writing assembler contracts is feasible – the contracts often only mention a
limited amount of objects, furthermore the contracts are often easier than
the highly optimized implementation.

– Discharging assembler contracts is a sweet spot for ATPs – ATPs can deal
well with lots of low level detail, since they often have specialized decision
procedures for them, they can also deal well with quantifiers; however they
often cannot deal well with complex heap structures; luckily user written
assembler programs do not use them.

Vx86’s simulator semantics is currently based on our understanding of the
Intel and AMD instruction manuals. To be more reliable we need a review by
hardware developers. If changes are necessary we should be able to incorporate
them easily, we just need to change the simulator, the rest of the translation is
unaffected.

Vx86 is not yet concurrency aware. Certain parts of the assembler code base
are often concurrent. If the Windows Hypervisor, for example, shuts down the
physical machine, it does so by stopping all its processors, or in more detail:
the last processor which is alive finally has to shut everything down. As soon
as VCC will support concurrency, we will investigate how Vx86 can reuse that
model.

Vx86 is of course not restricted to consume only Windows Hypervisor code,
it can be used to verify other code bases as well. Furthermore, we think that
the presented approach is a viable way to quickly provide verifiers for other
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processors. In fact, we were recently asked whether we could provide a verifier
for an ARM assembler as well. We think that this should be possible in a couple
of weeks.

Authors would like to thank Herman Venter for his help with getting Vx86
running and Peter Mueller for his very useful comments about this paper.
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Abstract. The motivation for this work is to support a natural
separation of concerns during formal system development. In a
development-by-refinement context, we would like to be able to first treat
basic functionality and normal-case behavior, and then later add in com-
plicating factors such as physical limitations (memory, time, bandwidth,
hardware reliability, and so on) and security concerns. Handling these
complicating factors often does not result in a refinement, since safety or
liveness properties may not be preserved. We extend our earlier work on
evolving specifications (1) to allow the preservation of both safety and
liveness properties under refinement, and (2) to explore a more general
notion of refinement morphism to express the introduction of complicat-
ing factors.

1 Introduction

It is natural for developers to initially focus on essential requirements, and to
first consider only “normal” behaviors when writing specifications. Gradually,
through refinement, the developer can then strengthen the initial optimistic as-
sumptions, and handle the exceptional, unusual and abnormal cases, as well as
introduce stronger requirements.

However, this approach presents a conceptual problem for a formal specifica-
tion framework. Refining a specification by catching some exceptional behavior
may not preserve the liveness properties of the system. Refining a specification
by explicitly handling some exceptional behavior may not preserve its safety
properties. So the question is: which properties should the useful refinement
operations preserve?

In the present paper, this problem is formalized and solved in the framework
of Evolving Specifications (especs) [11]. In order to express and characterize the
conditions under which the relevant safety and liveness properties are preserved,
we extend the framework by temporal modalities. In order to capture the spe-
cific preservation properties, combining safety and liveness in a way suitable for
exception handling, we use guard intervals [9], spanned between the conditions
under which an operation may fire, and the conditions under which it must
fire. The capability to separate concerns for normal behavior from the excep-
tional cases opens an alley towards better understanding and implementing the
mechanisms to introduce new safety and security policies in a system, and their
semantic effects on a design.

J. Meseguer and G. Roşu (Eds.): AMAST 2008, LNCS 5140, pp. 299–314, 2008.
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1.1 A Simple Real-World Example

We illustrate our approach with a running example that is taken from the au-
tomotive domain: A modern car contains numerous devices such as radio tuner,
CD player, navigation system, mobile phone and so forth. We presume here that
all these devices are connected through a MOST bus (a modern optical bus that
is often used in European cars) such that the user interaction with all services
can take place over a common microphone, amplifiers and graphical display. The
MOST bus architecture [1] provides both synchronous and asynchronous chan-
nels (and also command channels) for the interconnection of devices. Throughout
this paper we will use (admittedly oversimplified) features of the MOST archi-
tecture as illustrating examples. The basic concept is illustrated in Fig. 1: All
devices – including the MOST bus itself – are considered as “components” (more
or less like in UML).

component

Most-System

Most-System

Silent

CD
Playing

Radio
Playing

stopCD
startCD

startRadio
stopRadio

startRadio

startCD

UML-style component Espec behavior specification

Fig. 1. The modes and transitions of a trivial MOST system

The behavior of a component is described in the espec formalism. For the
sake of illustration we consider an oversimplified two-device system consisting of
a radio and a CD player. This leads to three general modes, namely CD-Playing ,
Radio-Playing and Silent . Therefore Fig. 1 essentially describes the system from
the viewpoint of the MOST bus: At any given point in time either the radio is
playing or the CD player or none of them. There are six transitions, for which we
allow overloaded naming, as long as their source or target modes are different.

Each device requires four bus channels to connect with the amplifier. In a
natural specification development process, we would like to be able to simply
assume that four channels are available when transitioning, say, from Silent to
CD-Playing . Only later would we deal with abnormal situations in which that
is not the case, as illustrated in Section 5.

1.2 Background

In previous work we introduced Evolving Specifications (especs) as a framework
for specifying, composing, and refining systems [11,12,10]. This framework ex-
tends our earlier work on the algebraic/categorical specification of software [8],
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which it still contains as a subframework. Especs add the dimension of stateful
behavior, and thus leads into the realm of system specifications. This approach is
in the tradition of many approaches in the literature to address issues of system
design by utilizing category-theoretic mechanisms (e.g. [3].)

Modes and Transitions. Although formally our evolving specifications resem-
ble state machines, we prefer to speak of “modes (of operation)”, rather than
states. A specification usually describes how a system evolves from mode to
mode: e.g., a CD player, may be in the mode Playing , performing the various
activities within that mode, until a suitable event triggers a transition into an-
other mode, say Searching . From an intuitive semantic point of view, a mode
M can be viewed as a set of (finite or infinite) traces of states :

Beh(M) = { T | T = 〈S1,S2,S3, . . . 〉, Si |= Theory(M) } (1)

The modes M1, M2, . . . are specified by logical theories1 M1,M2, . . . . Therefore
the semantics of a mode Mi consists of all traces of states, which fulfill the
corresponding theory Mi, as is expressed in (1).

We remain completely abstract w.r.t. the specific nature of states in order to
encompass all kinds of underlying systems; therefore we only require them to
be models of the given theories. (Actually we also look into variants, where the
state traces are replaced or complemented by continuous behaviors, comparable
to hybrid automata.) Hence we focus solely on the modes from now on.

The modes of a system are connected by transitions (as illustrated in Fig. 2).
These transitions t are usually guarded, which we denote here as g � t.

M0

M0

M1

M1

M2

M2

g1 � t1

g2 � t2

Fig. 2. Modes and transitions

Note: Each mode is assumed to have an identity transition with guard true
and transition id (nothing changes). This transition – which we do not draw
explicitly in our illustrations – corresponds to “stuttering”, and is left to be
specified in later refinements.

Semantically, a transition such as g1 � t1 in Fig. 2 usually means that, when-
ever the guard g1 holds in some state Sj of M0, then the transition may be
taken. But it can only be taken in states where the guard holds. For reasons to
1 We essentially identify the modes with their theories; therefore we purposely distin-

guish them only by the font.
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be seen in a moment we refer to these kinds of guards as safety guards. Safety
guards represent very weak and liberal constraints: They may hold arbitrarily
often during a mode without their transition being taken. In particular, guards
g1 and g2 of competing transitions (such as in Fig. 2) need not be disjoint.

But there is a second view of guards, where a transition such as g1 � t1 in
Fig. 2 means that, whenever the guard g1 holds in some state Sj of M0, then
the transition must be taken. Consequently, competing transitions must have
disjoint guards g1 and g2 . For reasons to become clear in a moment, we refer to
guards of this kind as liveness guards.

These semantic intuitions have led to the formalism of evolving specifications
[11]. Its main conceptual components are:

Transitions. The transition M1
g�t M2 is captured as an interpretation

M2
t−→M1, which rewrites the theory M2 in terms of the theory M1:

M2 |= q =⇒ M1 |= (g ⇒ t(q)) (2)

Within the category of specifications, such guarded transitions are modeled
as opspans of interpretations in the form

M1 −→ (M1 ∧ g) t←−M2 (3)

The formal details of categorical semantics of evolving specifications can be
found in [11,12]. Intuitively, the action t performed by a transition can be
construed as a predicate transformer.
Within this formal and intuitive framework, the guards allow two semanti-
cally relevant interpretations:

Safety guards. An occurrence of the transition M1
g�t M2 in an execution

Q is enabled, when M1 ∧ g is satisfied for the variable assignments at that
point of the execution.

Liveness guards. An occurrence of the transition M1
g�t M2 in an execu-

tion Q is forced, whenM1∧g is satisfied for the variable assignments at that
point of the execution.

While the framework of [12] left the choice between these two interpretations
to the designer, deciding if the refinements should preserve safety or liveness,
in Section 3 below, we shall present a unified semantical framework, subsuming
both of the above interpretations.

Definition 1. A run of a system is a sequence of modes M0 M1 M2 . . .
for which there are transitions Mi

g�t Mi+1. The behavior Beh(Spec) of a
system specification is the set of all its runs.

1.3 Refinement

The main point of especs is to provide a precise and convenient framework
to specify the functions and behavior of software systems incrementally. The
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main point of their categorical semantics is to provide a formal underpinning for
refinement and composition, in terms of morphisms and colimits.

The basic principle can be summarized as follows: As usual, a refinement adds
details, but preserves certain properties. Hence, the theory increases and the set
of models becomes smaller:(

Speca
ϕ Specc

)
=⇒

(
Beh(Speca) ⊇ Beh(Specc)

)
(4)

Due to the added details, one often refers to the original specification Speca as
the abstract model and to the refined specification Specc as the concrete model.

Speca
Ma

Ma

Na

Na

“abstract”

Specc
Mc

Mc

N 1
c

N1
c

“concrete”

N 2
c

N2
c

ϕ

ga� ta

g1
c � t1c

g 2
c � t 2

c

ϕ0 ϕ0

ϕ0

ϕ0

ϕ0

Fig. 3. Refinement of modes and transitions

As is illustrated in Fig. 3 it is possible that several modes of the concrete model
correspond to (“refine”) a single mode of the abstract model. And also several
concrete transitions may correspond to (“refine”) a single abstract transition
(see [12]).

Definition 2. A refinement ϕ : Speca �� Specc as depicted in Fig. 3 consists
of two components:

– a graph morphism ϕ0 : Diagc �� Diaga, assigning to each concrete mode
an abstract mode, and to each concrete transition an abstract transition,
which it refines;

– a tuple of traditional specification morphisms ϕN
1 : ϕ0(N) �� N , one for

each concrete mode N ∈ Diagc, telling how the specification of the mode N
refines the specification of the mode ϕ0(N).

Whereas this bipartite view of the structure preservation is rather familiar, e.g.
from theory of institutions [5], the treatment of the guards under refinement is
more intricate, since we need to distinguish safety guards and liveness guards.
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Safety morphisms are required to preserve safety properties: the refinement
and the composition steps along the safety morphisms must not introduce
new runs — every run in the concrete system is a refinement of (or is simu-
lated by) some run of the abstract system.
To preserve only the enabled executions, the specification components ς1 of
a safety morphism ς : Speca �� Specc must satisfy, for every concrete
transition Mc

gc�tc Nc,

Mc |= (gc ⇒ ς1(ga)) (5)

where ga is the guard of the ϕ0-image of this transition.
This formalizes the fact that a concrete transition may only be taken if the
corresponding abstract transition may have been taken as well.

Liveness morphisms are required to preserve liveness properties: the refine-
ment and the composition steps along the morphisms must not introduce
new deadlocks, but guarantee that every trace in the abstract system in-
duces some refined trace in the concrete system.
To preserve all the forced executions, the specification components λ1 of
a liveness morphism λ : Speca �� Specc must satisfy, for every concrete
transition Mc

gc�tc Nc,

Mc |= (λ1(ga) ⇒ gc) (6)

This formalizes the fact that whenever an abstract transition must be taken
then the corresponding concrete transition must be taken as well.

Every first order trace property can be expressed as a conjunction of a safety
property and a liveness property [2]. In order to specify refinements preserving
arbitrary first order properties of interest, it is therefore sufficient to assure that
both safety and liveness properties are preserved. A general method to realize this
by combining the two types of espec morphisms described above is presented in
Section 3. To motivate it, we first summarize a more special problem that drives
this paper.

1.4 The Problem to Be Solved

In rare cases, the process of system design can be subdivided into refinement
steps where only safety or only liveness is preserved. In most cases, however,
a property required from the system inextricably combines liveness and safety
aspects. See [6] or [7] for examples.

Related to this is another issue: In many situations it is natural to first spec-
ify the normal behaviors of the system, under some simplifying assumptions,
and to handle separately the exceptional behaviors, when these assumptions are
not satisfied. The refinement step where the exceptions are recognized does not
preserve liveness (since it blocks some runs), whereas the refinement step where
they are handled does not preserve safety (since it adds new runs).

This leaves us with two complementary tasks of refining the notion of espec
refinement, respectively capturing
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1. general properties, which combine safety and liveness properties, and
2. exception recognition and handling.

The solutions of these two tasks will be outlined in Sections 3 and 4.2. As a
preparatory step we formalize in Section 2 the above remarks about the safety
guards and the liveness guards by defining an obvious interpretation of temporal
logics of especs.

2 Temporal Evolving Specifications (tespecs)

The temporal statements in an espec are expressed in a global language, common
to all modes. That is, the atomic formulas are given by the intersection of (the
signatures of) all mode theoriesMi. Over these we build temporal formulas using
the usual connectors from propositional logic and the two tense operators

© q (next)
qW r (waiting-for)

We define the validity of a (temporal) formula q in a certain mode M0 based on
its validity for all runs M0 M1 M2 . . . that begin with M0. Based on
the standard notion of validity (Mi |= q) for non-temporal formulas q, we define
the validity of the temporal formalas in the usual way:

M0 |= © q ⇐⇒ M1 |= q (7)
M0 |= qW r ⇐⇒ (∀i. Mi |= q) ∨ ∃k. (Mk |= r) ∧ (∀j < k. Mj |= q) (8)

Remark : Temporal formulas quantify over the coarse-grained modes (runs) and
not over the fine-grained internal states (traces) inside the modes.
Together with the usual connectors of classical logic, we can introduce the well-
known further temporal modalities

� q = qW ⊥ (henceforth)
♦ q = ¬�¬q (eventually)
q U r = qW r ∧ ♦ r (until)

(9)

Now we can formalize the statements from the Introduction. Actually, much
stronger and more precise statements could be proved.

Definition 3. A safety property has the form � q. A liveness property has the
form ♦ q.
The following lemma points to the way in which the (global) safety and liveness
properties are logically related to the (local) guards of transitions.

Lemma 1. (i) A system described by an espec satisfies a safety property
� q, if and only if in each run (i) the property q is satisfied at the initial mode
M0, and (ii) it is invariant under every enabled transition, i.e.

M0 |= q
and (M |= q ∧ g) =⇒ (N |= q), for all M g�t N (10)
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(ii) A system satisfies a liveness property ♦ q, if and only if in each run
either the property q is satisfied at the initial mode, or there is an enabled
transition, where q is established.

M0 |= q
or (M |= ¬q ∧ g) ∧ (N |= q), for some M g�t N (11)

Proposition 1. An espec morphism preserves safety (resp. liveness) properties
if and only if it preserves all safety (resp. liveness) guards.

Note: The characterization of liveness in the definitions (8) and (9) and in
Lemma 1(ii) reflects the liveness view of branching-time logic in the Manna-
Pnueli style, where ♦ q essentially means that in every run there is at least one
state where q holds. If we would instead internalize the quantification over all
runs into the definition of the validity, we would obtain the view of the temporal
logic CTL∗. This view represents the very weak property that there is at least
one possible run containing at least one state, where q holds. So our approach
could be geared towards both variants without much effort.

3 Guard Intervals

In the previous sections we have been working with the concepts of safety and
liveness guards, but without notational means to distinguish them. Since many
specifications combine both safety and liveness aspects,it turns out to be useful
to bring them together. This leads to the idea of guard intervals, originally
implemented in the CommUnity system [9].

M1

M1

M2

M2

〈f, p〉� t

Definition 4. A guard interval is given in the form 〈f, p〉, where as an addi-
tional constraint the implication f ⇒ p must hold.

– f is the forcing guard, i.e. the liveness guard that determines which (good)
things must happen;

– p is the permitting guard, i.e. the safety guard that says which things are
not bad and may happen.

Let S be some state in a run of M1. Then the transition M1
〈f,p〉�t M2 is

– enabled if S |= p;
– forced if moreover S |= f .

As we shall see next, under refinement the interval monotonically tightens, but
not necessarily to a singleton.
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Remark. The idea to capture the safety and the progress properties of executions
by pairs of guards goes back to Fiadeiro’s and Lopez’ work on the CommUnity
system [9]. Like especs, CommUnity belongs to the broad family of categorical
specification systems [3,5], where the property preservation under refinements is
enforced as the structure preservation, imposed on the morphisms. However, the
differences between the tasks supported by CommUnity and the tasks set out
in this paper lead to different treatments of guard intervals. In particular, while
the superposition morphisms of CommUnity only allow strengthening of both
safety and liveness guards [9, Def./Prop. 4.1], and their refinement morphisms
add a further constraint [9, Def./Prop. 5.1], leading to the equivalence of each
abstract liveness guard with the disjunction of its concretizations, a simpler
preservation requirement will turn out to be more appropriate in our framework.
This requirement is the subject of the next section.

Refinement with Guard Intervals

Let us consider a refinement of guard intervals as depicted in Fig. 4 below (where,
as earlier, ϕ denotes the specification morphism and ψ the opposite morphism on
the diagrams). When will it preserve both liveness and the safety? The answer
is a direct consequence of equations (5) and (6) in Section 1.3:

– The forcing guard f has to be weakened ;
– The permitting guard p has to be strengthened.

Spec
M

M

N

N

Spec′ M′

M ′

N ′

N ′

ϕ

〈f, p〉� t

〈f ′, p′〉� t′

Ψ Ψ
Ψ

Fig. 4. Refinement of guard intervals

Gathering these implications, together with the constraint of Def. 4, in the
form

M′ |= ϕ(f) ⇒ f ′ ∧ f ′ ⇒ p′ ∧ p′ ⇒ ϕ(p) (12)

we see that the refinement actually tightens the guard interval, just like it does
in real number computation, so that above implications can be construed as the
interval inclusion 〈f ′, p′〉 ⊆ 〈ϕ(f), ϕ(p)〉. For especs, this just captures the fact
that the behaviors in which the refined transition is taken is strictly included,
modulo the interpretations, among the behaviors where the abstract transition
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is taken. The effect of a nontrivial liveness guard (i.e. not always false) is to force
the inclusion of the transition in all refinements.

If liveness properties are proved relative to the liveness guards (forced transi-
tions) then since the liveness guards are only weakened under refinement, they
will be preserved under any refinement. Similarly, if safety properties are proved
relative to the safety guards (enabled transitions) then since the safety guards
are only strengthened under refinement, they will be preserved under any refine-
ment.

This extension of the espec formalism by the pairs of guards 〈f, p〉 is easily
seen to be yet another instance of the abstract framework of [12]. The procedure
of adjoining guards to the category Spec of specification, described in Section 3
of that paper, only needs to be modified by taking

G(K,M) = {〈f, p〉 ∈ L2
K | K ∧ f ⇒M ⇒ K ∧ p} (13)

Defining the espec morphisms as above then allows capturing the suitable combi-
nations of safety and liveness properties, expressible by the guard intervals. The
language of especs with guard intervals is more expressive than the ordinary
guarded language, as it can express certain combinations of temporal modali-
ties. The exact characterization of its expressiveness appears to be nontrivial.

The well-known topological analysis of liveness and safety properties [2] tells
that every first order trace property can be expressed as an intersection of a
safety and a liveness property, i.e. in the form � q ∧ ♦ r.

Based on Lemma 1 we know that by representing a first order property in the
form � q∧♦ r, and setting up the guard intervals in an abstract espec to realize
this property, we can be sure that the espec morphisms preserving the guard
intervals will preserve this property.

Proposition 2. An espec morphism with guard intervals preserves all first order
properties.

4 “Normally” Modality

When they explain the functioning of a system (be it existing or planned), engi-
neers usually begin in the style: “Disregarding pathological borderline cases, the
normal behavior is . . . ”. In practice, there is a healthy distinction between the
essential purpose of the system and all the nitty-gritty details of possible com-
plications and unwanted effects. As soon as one tries to transfer this principle to
the rigorous world of mathematical specifications, severe problems arise. Specify-
ing the essential features without explicitly precluding the undesired exceptional
situations often leads to inconsistencies. On the other hand, enumerating the un-
desired situations, and their interactions, is known to lead to “formal noise” that
exceeds the specification proper by an order of magnitude.

We attempt to mitigate this situation by introducing a special operator nor-
mally, denoted by �. We could define this operator as some kind of modality,
but our framework allows us to introduce it as a simple abbreviation.
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Definition 5 (Normally). The normally operator � is an abbreviation for an
uninterpreted guarding predicate n:

� property abbreviates nrml ⇒ property
� guard � transition abbreviates nrml ∧ guard � transition

Note that there is a fresh predicate symbol nrml for each occurrence of the op-
erator �.

As a shorthand notation we may qualify a whole specification or a whole mode
or transition with the normally operator. This means that every single axiom and
transition is implicitly preceded by the operator �.

In the later course of the development of the model this variable nrml can be
made explicit and then be more and more concretely interpreted by giving axioms
for it. This way, one can successively add exception handling to an originally
“purely optimistic” model.

Together with our concept of refinement, this operator stratifies specifications
considerably. The following program illustrates our use of the normally operator.

espec Player is

. . .
mode Playing is

� #(channels) = 4
. . .

end-espec Player

This specification says that an active CD player “normally” has four channels
available for streaming (thus enabling stereo). However, there may be situations
in which the MOST bus does not have enough free channels. Then we have
to take appropriate measures in order to build a workaround (e.g. changing to
mono). But we do not want to clutter our specification of the essential behavior
with that kind of exception handling in the early stages of our development.
These kinds of complications need to be worked into the specification at some
later stage – and it needs to be done in a systematic way; this is achieved in our
approach by employing suitable refinement morphisms.

4.1 Refinement of “Normally”

Many of the occurrences of the normally operator � can be refined by the stan-
dard mechanisms developed so far. Since the operator usually corresponds to the
addition of uninterpreted predicate symbols, we simply need to define axioms
that interpret these symbols in order to make the specification more concrete.
This is a classical refinement morphism.

However, there is one additional activity that we need to add for purely prag-
matic reasons, even though it partly conflicts with our notion of refinement mor-
phisms: If in a specification Syst a whole transition is qualified as “normally”,
i.e. �(M g�t N ), then the designer often wants to express the fact that there
may be further transitions out of M, which are not yet relevant at this stage of
the development.
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A later refinement Syst′ may then add another transition M g′�t′
K out

of M. The problem is that this need not correspond to any transition of the
original specification Syst. Hence, the mapping ϕ0 (see Section 1.3) is not a
proper diagram morphism.

There are a number of ways out of this dilemma. In the next section we show
a special instance of this paradigm in order to demonstrate how the principal
mechanism works.

4.2 Especs of Exceptions

The normally operator � allows a relatively fine-grained qualification of those
aspects that are in the core of a system (as opposed to borderline cases such as
errors or rare events). However, it does not really help to solve another unpleasant
feature of real systems: exceptions.

Since exceptions can happen anywhere and anytime, the whole specification
would have to be qualified by �, meaning that every single axiom, mode and
transition is qualified as “normally”. This would make the refinement effort
to successively eliminate all occurrences of � unbearable. Hence we need other
means to systematically cope with this kind of global pathology.

Raising an exception interrupts some existing computation flow, and therefore
may not preserve liveness properties. Catching an exception introduces some new
computation flows, and therefore may not preserve safety properties. That is why
imposing policies, to distinguish normal behaviors and to handle exceptional
behaviors, is a challenge for systematic system design.

More precisely, we are given a basic system Syst� satisfying a behavior B under
“normal” circumstances, i.e. as long as there are no exceptions: Syst� |= B. From
this system we want to derive a system SystE satisfying B whenever the norm
¬E (no exceptions) is satisfied, otherwise satisfying the handling requirement
H . Formally, we require:

SystE |= (¬E ⇒ B) ∧ (E ⇒ H) (14)

This is realized by building system SystE with

SystE |= (¬E ∧B) W (E ∧H) (15)

The system SystE is systematically obtained from Syst� as follows:

– the modes of SystE are:
• the modes of Syst�,
• an adjoined handling mode H,

– the transitions of SystE are:
• for each transition M 〈f,p〉�t N in Syst� a transition M 〈f,¬E∧p〉�t N

in SystE , provided f ⇒ ¬E, and
• for each mode M of Syst� a new transition M E�t̂ H in SystE , where
t̂ initializes the variables of H .
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Proposition 3. SystE satisfies (15) and hence (14).

As can be seen here easily, this is a global treatment of a global normally opera-
tor: Such an operator implicitly qualifies all modes and transitions by �. And the
above construction simply refines all the different predicate symbols (to which
these � operators correspond) by one single predicate ¬E.

The question is: What kind of espec morphism supports refinements in the
form Syst� �� SystE? The problem is that the mode H, adjoined in SystE
does not arise from any mode present in Syst�.

One possible answer is to first extend Syst� by an unreachable mode H, with a
transition from each mode M, but guarded by ⊥. Such an unreachable abstrac-
tion Syst� �� Syst⊥ leads to an espec Syst⊥ semantically equivalent to Syst�;
that is, both systems have the same traces. So Syst� and Syst⊥ satisfy the same
properties.

On the other hand, Syst⊥ can be refined to SystE . This refinement, of course,
does not preserve safety, since H is not unreachable in SystE . However, it is not
hard to prove that

Proposition 4. The span Syst� �� Syst⊥ �� SystE , viewed as a general-
ized morphism, preserves liveness, and moreover it preserves all properties B of
Syst�, relativized to ¬E, in the sense of (15).

5 Parameterized Especs: Modeling the Environment

In system design, the need arises to specify the properties and behavior of a com-
ponent’s environment, including required behaviors, invariant properties, and
required services. The correctness of the component’s behavior follows from the
assumption that the environment behaves as specified, together with the internal
structure and behavior of the component. This is sometimes referred to as the
“rely-guarantee” paradigm. Parameterized especs neatly satisfy this need.

A parameter to an espec is an espec that models the environment – what
behavior and properties the component expects of the environment, and what
services it requires. The binding of a parameter to the environment is given
by an espec morphism π – the environment is expected to be a refinement of
the parameter. The environment will typically have much more structure and
behavior than is specified by the parameter, but it must have at least as much
as is required for the correct operation of the component.

In our running example of the MOST bus this will typically lead to situations
as depicted in Fig. 5. Each device has a body specification for the device proper
and a parameter specification for its interface to the context; both are linked
through a parameter morphism π. The interfaces are then linked to the overall
system, i.e. the MOST bus, through refinement morphisms ϕ. This makes it
relatively easy to add any number of components to some MOST system with-
out running into an unmanageable combinatorial explosion of the size of the
specifications and, above all, of the number of interconnections.
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Fig. 5. Modularization through parameter morphisms

This raises the question of the refinement of parameterized specifications.
Fig. 6 shows an example of such a refinement.

In the original abstract model an audio device is simply assumed to switch
between the two modes Silent and Playing . Accordingly the environment is
expected to consider the device as Disabled or Enabled (with the appropriate
matchings).

However, in the MOST bus the enabling of a device is performed by a full-
fledged connection protocol : In order to become playing, the device needs a num-
ber of channels to be allocated by the MOST bus. After having received them,
the device still cannot play, since the channels also need to be allocated to the
amplifiers. Therefore the device has to go into an intermediate mode Ready ,
while the environment is in the mode Connecting . (It is only by chance that the
number of modes and transitions in the parameter and the body coincide in this
example. In general they will be different.)

This refinement is realized by the morphism that is sketched in Fig. 6. How-
ever, this diagram only gives a rough idea of the construction, since it does not
express the various compatibility constraints between the two parameter mor-
phisms and the refinement morphism ϕ. Fortunately most of them are generated
automatically by the category-theoretic principles underlying the construction.

Consider the situation of Fig. 5 and the little program in Section 4. Let us
assume that the parameter specification establishes �#(channels) = 4 in the
mode Enabled .

Now consider the mode CD-Playing of the MOST system in Fig. 5 and sup-
pose that it only contains the assertion #(channels) ≥ 2 . What does this mean
in our overall design?
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Fig. 6. Refinement of parameterized specifications

Due to our various morphisms we need to establish the property

CD-Playing |= � #(channels) = 4 (16)

This leaves us with the problem of establishing the property (with an unin-
terpreted symbol nrml)

#(channels) ≥ 2 |= nrml ⇒ #(channels) = 4 (17)

So the further refinements must add interpretations to nrml that allow us
to complete this required proof. In practice this means that upon connection
establishment the CD player needs to obtain the required number of channels
from the MOST system, which is stored in a local variable chNr. Then nrml
simply is refined to chNr = 4. The span construction of Proposition 4 adds a
new transition to a handler mode for the case when chNr < 4.

6 Conclusion

The methodology that we have presented in this paper has a number of benefits.
It allows the systematic incremental development of models as opposed to the
predominant current practice of creating monolithic models in a more or less
informally crafted process. Moreover, the resulting models are formally specified,
which allows not only automatic code generation (at least of prototypes), but also
supports all kinds of analyses, ranging from logical consistency or completeness
checks to plain testing.

With respect to the underlying formalism, a lot of work still needs to be
done. For example, we currently study different approaches to the role of the
“normally” operator and its refinement. Also, the role of guard refinement in
the context of automotive applications needs to be assessed in greater detail, in
particular with respect to liveness vs. safety preservation. Moreover, the role of
(dynamic) addition and deletion of components needs to be further investigated.
Yet another challenge is to provide a more convenient notation that will be more
readily accepted by engineers.
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Abstract. Several proof systems allow the formal verification of Java
programs, and a specification language was specifically designed for Java.
However, none of these systems support generics that were introduced
in Java 5. Generics are very important and useful when the collection
framework (lists, sets, hash tables etc.) is used. Though they are mainly
dealt with at compile time, they have some effect on the run-time behav-
ior of a Java program. Most notably, heap pollution can cause exceptions.
A verification system for Java must incorporate these effects. In this pa-
per we describe what effects can occur at run time, and how they are
handled in the KIV system [18] [2]. To the authors knowledge, this makes
KIV the first verification system to support Java’s generics.

1 Introduction

The Java programming language [9] was from the beginning very popular with
respect to a formal treatment. Alves-Foss published early results (many of which
dealt with Java’s type system) in 1999 in [1]. Later work focused more on the
specification and verification of Java programs. The Java Modeling Language
JML [15] [19] allows the specification of Java programs in a language similar to
Java itself and is supported by many tools [6]. Several tools support the formal
verification of Java programs: the KeY tool [5], the LOOP compiler [14] using
PVS, or Krakatoa [21], to name just three. ESC/Java2 [7] and Jack [4] are static
checkers for Java that use underlying automated theorem prover(s) for their
reasoning.

Impressive applications have been specified and verified. Many verification
systems and case studies focus on Java Card [26] programs. This makes sense,
because programs running on Smart Cards are typically security critical. They
handle electronic cash (e.g. the Mondex card [22]), act as official documents,
or contain important personal information like finger prints, or health records.
A programming error could have serious consequences. And, from a verification
point of view, the programs are small, and do not employ all features of the Java
language. Examples are [13] [23] [11].

But there is a problem with ‘normal’ Java: The Java language evolves, and
every few years new features are introduced that have a significant impact on
a verification system. The same is true for C#. Java 1 [8] was released 1996,
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Java 2 [16] in 2000, and introduced inner classes. Java 5 [9] in 2005 added gener-
ics, annotations, enums, autoboxing, and other features (Java 6 added Scripting).
Experience shows that it is very difficult for the developers of verification systems
to keep up with the new features. (The same is true for formal API specifica-
tions.) They were designed without formal methods in mind, and it is very hard
to estimate how difficult it is to include these features in a prover, and what their
effects on actual proofs are without actually doing it. Furthermore, one may feel
that these features are not really necessary. They simplify programming in Java,
but if a program is to be formally proved anyway, this may not seem important.

We do not feel this way. We believe that there are programs worth verifying
that use generics, and that it is important to analyze the effects of specific
language features on formal proof systems. These and other results should be
taken into account in the design of future programming languages.

Several groups are currently trying to support Java generics for formal speci-
fication or verification purposes. The JML developers are “working on Java 1.5
(generics)” [20]; “reason about Java 1.5 source” is “ongoing work” for ESC/-
Java3 [17], and the KeY group has evaluated the consequences of supporting
generics in the KeY prover [27]. Spec# [3] supports generics for C#, but this is
easier because no heap pollution can occur.

This paper describes how generics are incorporated in the KIV prover. The
results can probably be adapted to other proof systems with little effort. It turns
out that generics have only a slight impact on run-time verification, mainly
because of heap pollution. The rest of the paper is organized as follows: Section
2 gives a short introduction to generics from a user’s (i.e. a programmer’s) point
of view, and section 3 describes the phenomenon of heap pollution. Section 4
gives a short introduction to the Java calculus in KIV, and the next two sections
describe in detail the effects of generics on run-time behavior. Section 7 reports
on results, and concludes.

2 Generics in Java

Generics were introduced in Java 5; they are described in the third edition of
the Java Language Specification (JLS 3) [9]. This section provides only a very
cursory overview that is focused on the run-time behavior of generics. Wildcards,
or bounds are omitted since they are relevant only when their type erasure is
computed (see Sect. 6).

Generic types are very useful for collections, e.g. lists. In Java 4, nothing is
known about the elements of a list. When an element is retrieved with
li.get(0) the result is of type Object. If a programmer uses a list of in-
tegers (i.e. he knows that all elements will be integers) the result must be cast
anyway: (Integer)li.get(0). This can lead to an exception at run time
if inadvertently a list of strings is supplied. The type system of Java without
generics does not help in this case. With generics it is possible to declare a pa-
rameterized type List<Integer>. In this case the compiler will prevent the
programmer from supplying a list of strings (of type List<String>) where a
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list of integers is expected, or to add a string to a list of integers. Additionally,
no cast is necessary. Listing 1 shows a small example. The example includes two
other features that were introduced in Java 5: autoboxing (automatic conversion
of primitive types into their object counterpart and back) in lines 6, 11, 12, and
the enhanced for statement in line 6.

1 import java.util.*;
2 public class Example1 {
3
4 public int sum(List<Integer> li) {
5 int res = 0;
6 for(int i : li) res += i;
7 return res;
8 }
9 public void example1() {

10 List<Integer> li = new ArrayList<Integer>();
11 li.add(5);
12 li.add(7);
13 System.out.println(sum(li));
14 }
15 }

Listing 1. An example with parameterized lists

Trying to call the sum method with a list of strings (of type List<String>)
does not compile. The List interface is generic; it is declared as

public interface List<E> extends Collection<E> {

Here, E is a type variable that is instantiated with Integer in the example. The
add method used in lines 11 and 12 is declared as boolean add(E e); and the
get method (that is used implicitly in the loop) as E get(int index). This
means the declared result type of the get method is the type variable E; if E is in-
stantiated toInteger the compiler knows that the result will be of typeInteger.

The most important aspect of generics with respect to formal verification
is the fact that generics are “forgotten” at run time (“some type information
is erased during compilation”, JLS 3 p. 56). The reason is compatibility with
existing code; see the discussion in JLS 3, p. 57. In fact, the byte code produced
for the sum method in Listing 1 is identical to the byte code produced by the
source code in listing 2.

This code does not use generics. Furthermore, the enhanced for loop has been
replaced by a standard loop that uses an Iterator to access the list elements.
Line 4 contains an explicit cast of the list element to Integer. Without it the
code does not compile. However, the cast will produce a ClassCastException
at run time if sum is called with a list of strings. The source code in Listing 2
compiles in Java 4, and also in Java 5. This may be unexpected because the
parameterized interface List is used without an instance for the element type
(A parameterized class or interface without its parameters is called a raw type).
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1 public int sum(List li) {
2 int res = 0;
3 for(Iterator iter = li.iterator(); iter.hasNext(); ) {
4 int i = ((Integer)iter.next()).intValue();
5 res += i;
6 }
7 return res;
8 }

Listing 2. The same example without generics

But it is legal in Java 5 for compatibility reasons as mentioned above: Otherwise
it would not be possible to reuse existing class files that were compiled with Java
4. Usage of the raw type (among others) gives rise to an unchecked warning by
the Java 5 compiler:

Note: Some input files use unchecked or unsafe operations.

The code in listing 1 does not produce any compilation warnings. Still the byte
code for listing 1 is the same as for listing 2. Especially the cast to Integer is
contained in the byte code. This has implications for a formal verification in the
presence of heap pollution, and will be explained in detail in sections 5 and 6.

3 Heap Pollution

Heap pollution is described in JLS 3, 4.12.2.1:

It is possible that a variable of a parameterized type refers to an object
that is not of that parameterized type. This situation is known as heap
pollution. This situation can only occur if the program performed some
operation that would give rise to an unchecked warning at compile-time.

Heap pollution can lead to a ClassCastException at run time. Listing 3
shows a simple example.

1 public int sum(List<Integer> li) {
2 int res = 0;
3 for(int i : li) res += i; // throws
4 return res;
5 }
6 public void example3() {
7 List li = new ArrayList<String>(); // raw type
8 li.add("foo");
9 List<Integer> lii = (List<Integer>)li; // ok

10 System.out.println(sum(lii));
11 }

Listing 3. An example for heap pollution
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In line 7 a raw type is used and a list containing a string is created. In
line 9 this list is assigned to a variable of type List<Integer>, causing heap
pollution. The code compiles, but running example3() causes a ClassCast-
Exception in line 3. Line 9 does not cause a ClassCastException because
the cast effectively checks whether the argument is of type List – the type
parameter is erased and not available (and hence not checked) at run time. The
byte code for line 3 contains an explicit cast to Integer as described in the
previous section, causing the exception. The behavior of the code is the same if
li is passed directly to the sum() method.

Heap pollution can occur even without involvement of the heap, and it is easy
to write very obfuscated programs where it is difficult to guess whether they will
compile, and what their run time behavior will be. Listing 4 contains an example
for this.

1 public class Example4<X>{
2
3 public X m(boolean flag){
4 if(flag) return (X) "string";
5 else return (X) Integer.valueOf(3);
6 }
7 public static void main(String[] args){
8 Example4 ex = new Example4<String>();
9 Example4<Integer> ex4 = ex; // raw type

10 Integer x = ex4.m(false); // ok
11 Integer y = ex4.m(true); // throws
12 }
13 }

Listing 4. Heap pollution without the heap

The example compiles. Method m in line 3 returns either a String or an
Integer object. This is possible because the type variable X is erased at run
time, and on the byte code level the method has the result type Object. Line
9 causes “heap pollution” because a raw type is used. In line 10 m returns
an Integer, and the assignment to x works. Line 11 causes a ClassCast-
Exception, because a String is returned.

Of course, both examples produce “unchecked” warnings at run time. It is
tempting to reason in the following manner: “Good programming practice will
not create code that produces unchecked warning. Therefore, we exclude those
programs from formal verification.” However, that is not true. Except for very
simple examples it is almost impossible to avoid unchecked warnings. For ex-
ample, the Java Collection Framework produces 96 unchecked warnings. This
means that a useful verification system must cope with them.
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4 Java Verification in KIV

The KIV system has a calculus for the interactive verification of sequential Java
programs. Before describing the specific features of generics concerning verifica-
tion we give a short introduction to the KIV calculus.

The calculus is a sequent calculus for dynamic logic [12] based on algebraic
specifications with a loose semantics. Dynamic logic extends predicate logic with
two modal operators, box [ . ] and diamond 〈 . 〉. Box and diamond contain a
context (a store) st and a Java program running in this context. The context
contains the Java heap with the objects, and additional information about static
fields, initialization of classes, and the execution state to model exceptions. It is
specified algebraically. The class and interface declarations are part of a global
environment. The intuitive meaning of 〈st ; α〉 ϕ is: with initial store st the Java
statement α terminates, and afterwards ϕ holds. ϕ is again a formula of dynamic
logic, i.e. it may contain boxes or diamonds. The meaning of [st ; α] ϕ is: if α ter-
minates then afterwards ϕ holds. A sequent ϕ1, . . . , ϕm 0 ψ1, . . . , ψn consists of
two lists of formulas (often abbreviated by Γ and Δ) divided by 0 and is equiva-
lent to the formula ϕ1 ∧ . . . ∧ ϕm → ψ1 ∨ . . . ∨ ψn. The formulas ϕ1, . . . ϕm

can be thought of as preconditions, while one of ψ1, . . . , ψn must be proved. A
Hoare triple {ϕ}α{ψ} can be expressed as ϕ 0 [st;α]ψ or ϕ 0 〈st;α〉 ψ if termi-
nation is included. Java’s type system is not built into the calculus, but rather
specified algebraically. Logically, Java types in KIV are simple algebraic data
types. This makes it trivial to incorporate parameterized types, type variables,
wildcards, and bounds.

The calculus essentially has one rule for every Java expression and statement,
plus some general rules. It works by symbolic execution of the Java program from
its beginning to its end (i.e. computation of strongest postcondition). This means
it follows the natural execution of the program, which is very important for
interactive proofs. Nested expressions and blocks are flattened to a sequence of
simple expressions and statements that can be executed directly. Obviously, this
flattening must obey the evaluation order of Java. The result of a sub expression
is ‘stored’ with an assignment to a local variable. This is shown in the following
example.

Γ 0 〈st ; x = m1(m2(y), m3());〉 x = 5

1. Here the arguments of the method call m1 must be evaluated first. This is
done by introducing a new local variable x2, and a new assignment to x2:

2. Γ 0 〈st ; x2 = m2(y); 〉 〈st ; x = m1(x2, m3());〉 x = 5
The sub expression is replaced by x2. Since the argument to m2 is a variable
the method call can be evaluated. A proof rule for the method call basically
replaces the method call by its body. If m2 is declared as
int m2(int i) { return i + 1; }
the following goal is obtained:

3. Γ, i = y 0 〈st ; return i + 1;〉 〈st ; target(x2)〉
〈st ; x = m1(x2, m3());〉 x = 5



Verification of Java Programs with Generics 321

The formal parameter is bound to the actual parameter by the equation
i = y. This is only possible if the actual argument is already fully evaluated,
i.e. in KIV either a local variable or a literal.
The target(x2) statement (not part of Java, of course) acts as a catcher
for the return statement, and assigns x2 to the returned value. For i +
1 another variable is introduced:

4. Γ, i = y, i1 = i+ 1 0 〈st ; x2 = i1;〉 〈st ; x = m1(x2, m3());〉 x = 5
The assignment becomes an equation, and then the next sub expression can
be flattened. If variable conflicts occur, then a renaming will also take place:

5. Γ, i = y, i1 = i+ 1, x2 = i1 0 〈st ; x = m1(x2, m3());〉 x = 5

And so on. After a finite number of applications of the flattening rule a list of
assignments is returned where every sub expression is either a local variable or
a literal. Then a rule for the main expression (e.g. a method call) or statement
is applicable.

As a last example we show the rule for an instance method invocation
e.m(e1,...,en);. Figure 1 shows a class hierarchy where class c1 contains
a method declaration m with a body α1 that is overridden in class c2 with
another body α2.

The compiler determines at compile time a suitable method declaration, and
the method call is annotated with the computed method signature, i.e. the
method name m and the formal parameter types of the declaration. The ar-
gument types are needed because of overloading. Java verification in the KIV

c3

c4

m(. . .){α1}

m(. . .){α2}
c2

c1

Object

1. Γ, mode(st) �= normal � ϕ, Δ
2. Γ, e = null, mode(st) = normal �
〈st;throw new NullPointerException();〉 ϕ, Δ

3. Γ, e �= null, mode(st) = normal � classOf(e, st) ∈ {c1, c2, c3}, Δ
4. Γ, e �= null, mode(st) = normal, classOf(e, st) ∈ {c1, c3},

this′ = e, z = e1, . . . , en � 〈st; α′
1〉 〈st; target(x)〉 ϕ, Δ

5. Γ, e �= null, mode(st) = normal, classOf(e, st) ∈ {c2},
this′ = e, z = e1, . . . , en � 〈st; α′

2〉 〈st; target(x)〉 ϕ, Δ

Γ � 〈st;x = e.m(e1,...,en);〉 ϕ, Δ

Fig. 1. Example class hierarchy and rule for instance method invocation
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system uses as input an annotated abstract syntax tree of the Java program and
class declarations; so every method call is annotated with the computed method
signature, too. The dynamic method lookup for an instance method then works
as follows: The run-time class of the invoking object is determined, and the class
declaration is searched for a method declaration with an identical signature as
the annotated signature. If one is found this is the method to invoke. Otherwise
the super class is searched and so on. The proof rule in the KIV system works
in the same manner.

The proof rule is only applicable if e and the arguments e1, . . . , en are fully
evaluated, i.e. local variables or literals obtained by the flattening rule. This
ensures that no side effects can occur. Premise 1 ensures that the method call
is evaluated at all, and not skipped due to an exception. Premise 2 throws a
NullPointerException if e is null. Premise 3 ensures that the type of e is
either c1, c2, or c3. If e is a reference to an object with type c1 or c3 then method
m(. . .){α1} is invoked (premise 4); if the type of e is c2 then method m(. . .){α2}
is invoked (premise 5). In both premises the parameters e1, . . . , en are bound to
new variables z, a new variable this′ is introduced for this and bound to e,
in the method body the formal parameters are replaced with the new variables
yielding α′i, and the new statement target(x) is added that will catch a return
statement and bind x to the returned value.

Instead of expanding the method call, pre- and postconditions can be used
(proof by contract). The calculus is well suited for interactive proofs because it
follows the evaluation order of the Java statements and expressions as described
in the Java language specification. Other proof rules modify or access the heap,
but they are not relevant with respect to the formal verification of generics. We
refer the reader to other literature [24] [25] [10].

5 Method Invocation

Method invocation is a situation where generics influence the run-time behavior
of Java, for two reasons:

1. Dynamic method lookup is more complicated than before because of type
variables and instantiation.

2. Heap pollution can cause an Exception during method invocation conversion
(JLS 3, section 5.3).

Both items are described in turn.

Dynamic method lookup. In the presence of generics, it can be very complicated
to compute the correct method signature that is associated with a method call
at compile time. The description in JLS 3 is 32 pages long as compared to 9
pages in JLS 2. As mentioned in the previous section this annotation process is
outside of KIV’s formal framework. The dynamic method lookup also becomes
more complicated if the types of the signature contain type variables. Listing 5
contains an example. (The heap pollution in the example can be ignored for the
moment.)
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1 interface I<T> { public int m(T x) ; }
2
3 class C<X> implements I<Integer> {
4 public int m(Integer x) { return 6; } // overrides m in I
5 public int m(String x) { return 8; } // does not
6 }
7 public class Example5 {
8
9 public static void main(String[] args) {

10 I<Object> o = new C(); // raw type
11 System.out.println(o.m(5)); // prints 6
12 System.out.println(o.m("foo")); // throws
13 }
14 }

Listing 5. An example for dynamic method lookup

The program compiles. Since class C implements I<Integer> the method
m(Integer x) in line 4 implements the method m(T x) in interface I. The
two method calls in lines 11 and 12 are annotated with the method signature
m(T) because the type of the invoking expression is I. At run time, it is not
correct to search simply for a declaration with signature m(T). Rather, it must
be determined that the type variable T is instantiated with Integer in class C,
so in class C a method with signature m(Integer) must be searched. In other
classes that implement I the type variable may be instantiated with another
class, or not at all. The same is possible for subclasses of C that override m.

The proof rule for dynamic method lookup in KIV now works as follows:

– The annotation for the method call must also include the name of the class
or interface containing the suitable method declaration, not only the method
signature. In the example this is interface I.

– Given a run-time class C, searching for the method declaration is done as
follows: It is computed in which manner C inherits the method m(T) from I.
This is done by following the chain of implements (or extends) clauses
downward from I to C. In this process a substitution for the type variable T
is computed. Because C<X> implements I<Integer>, and I has type
variable T, the substitution is T ← Integer.

It may be noted that the description of the dynamic method lookup in JLS
3 (15.12.4.4) is identical to JLS 2, and the complication with instantiation of
type variables is not mentioned. Another possibility for a proof rule would be to
annotate every method declaration with those method signatures it overrides or
implements. Then searching a class of a matching method signature would mean
to search the annotations as well. This is comparable to using a dispatch table
in a real implementation.

Method invocation conversion. JLS 3 states that the arguments of the method
call are evaluated from left to right (15.12.4.2), then method invocation
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conversion takes place (15.12.4.3), then an additional check is performed that
may throw a ClassCastException (15.12.4.3). This is not correct, because
after evaluation of one argument unboxing takes place (if necessary), and only
then the next argument is evaluated. The evaluation order is significant, be-
cause unboxing can cause a NullPointerException if the reference to un-
box is null. However, the additional checks (casts) are performed only after all
arguments have been evaluated and converted.

Listing 5 is also an example why an additional cast may be necessary. In line
12 the method m is called with a string. The actual method to invoke depends
on the run-time class of the invoking expression and the method signature as
computed at compile time. In the example it is m(T) in interface I which is
overridden by the method m(Integer) in class C as described above. Since
a string cannot be converted to an Integer, a ClassCastException must be
thrown. The method m(String) does not implement m(T) in I, and is not used
even though the argument is a String. On the other hand, the incompatibility
cannot be determined at compile time because another class D could implement
I<String>, and for an invoker of class D a String argument is perfectly valid.

1. Γ, mode(st) �= normal � ϕ, Δ
2. Γ, o = null, mode(st) = normal �
〈st;throw new NullPointerException();〉 ϕ, Δ

3. Γ, o �= null, mode(st) = normal � classOf(o, st) = C, Δ
4. Γ, o �= null, mode(st) = normal, classOf(o, st) = C, this = o, �
〈st;x = (Integer)e;〉 〈st; return 6; 〉 〈st; target〉 ϕ

Γ � 〈st;o.m(e);〉 ϕ

Fig. 2. Method call for o.m(e)

The proof rule for a method call now works as follows (Fig. 2):

1. All arguments must be either local variables or literals, and autoboxing has
been applied if necessary. This guarantees that no side effects occur.

2. For a given run-time class of the invoker the correct method declaration to
invoke is determined as described above, in the example m(Integer x)
{...}.

3. For every parameter of this declaration and actual argument:
(a) If the static type of the actual argument is a subtype of the parame-

ter type, then simply an equation formal parameter variable = actual
argument is generated.

(b) Otherwise an assignment to the formal parameter variable is generated,
and the actual argument is cast to the formal parameter type. In the
example the assignment x = (Integer)e; (premise 4 in Fig. 2) is
generated.

4. The method call is replaced by its body, and all generated assignments are
added before the body, in the example x = (Integer)e; return 6;
(premise 4 in Fig. 2)



Verification of Java Programs with Generics 325

The Java compiler introduces a so called bridge method (JLS 3, 15.12.4.5) at
compile time that is called at run time and performs the casts. In the example the
bridge method is added to class C: m(Object o){return m((Integer)o);}.
The proof rule has the identical behavior, but without additional transformations
that are outside the formal framework.

6 Invalid Result Values

Section 15.5 of JLS 3 states rather cryptically

A run-time type error can occur only in these situations: [...] • In an
implicit, compiler-generated cast introduced to ensure the validity of an
operation on a non-reifiable type. [...]

Because of heap pollution, the result of a method call (or a field access) can
return a value that is not a subtype of (the erasure of) its static type (JLS
3, section 5.2). In these cases sometimes a ClassCastException is thrown.
Listing 6 shows an example.

1 class Bag<E> {
2 public E content;
3 public Bag(E val) { content = val; }
4 public E get() { return content; }
5 }
6 public class Example6 {
7
8 static void mo(Object o) {
9 if (o instanceof String) System.out.println(1);

10 else System.out.println(2);
11 }
12 static void mi(Integer i) { System.out.println(i); }
13
14 public static void main(String[] args) {
15 Bag<Integer> bi = new Bag("foo"); // raw type
16 mo(bi.get()); // ok, prints 1
17 mi(bi.get()); // throws
18 }
19 }

Listing 6. An example for invalid return values

Line 15 creates heap pollution. In the following lines the static type of the
variable bi is Bag<Integer>which means that the content field of bi should
hold an Integer. However, it holds the string "foo". The method call bi.get()
returns this string.

Line 16 does not raise an exception. This is surprising since the result of the
method call bi.get() (the string) is not a subtype of its static type Integer.
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However, the result value is used in a context where only an Object is required.
Therefore it is not necessary to throw a ClassCastException (JLS 3 5.2 and
5.3). The string is passed to the method mo, and the method prints 1. Line 17
throws a ClassCastException because the result is used in a context that
requires an Integer. This is a different situation than the method calls in listing
5 where bridge methods are used. The Java compiler guarantees this behavior
by simply inserting casts into the byte code. The byte code always contains the
casts, even when no “unchecked” warnings are issued because the heap pollution
could stem from already compiled code.

What are the implications for the formal verification? One possibility would
be to modify the source code during parsing and annotation. However, this would
be outside the formal framework, and in interactive proofs it is desirable to be as
close to the source code as possible. Therefore, these implicit (or “unchecked”)
casts are included in the calculus:

1. A new proof rule is introduced for “unchecked” casts.
2. The proof rules for field access and method call are applicable only if no

“unchecked” casts are required.
3. The flattening rule is modified to keep track of the type required by the

context.

In the same manner, a proof rule for autoboxing has been included in the calcu-
lus. The new proof rule for an “unchecked” cast is applicable for a method call
x = e.m(e1, . . . , en); (and similarly for a field access x = e.f) iff

– e and e1, . . . , en are local variables (possibly introduced by flattening), and
– the declared return type of m (in constrast to the computed result type) is

a type variable T, and
– the erasure of T is not a subtype of the static type of x. For a type variable

or wildcard without bounds this means that the type of x is neither Object
nor an unbounded type variable. For bounded type variables T extends C
or wildcards ? extends C the erasure is C.

Then the proof rule simply introduces a cast to the static type of x. Fig. 3
shows the rules. Conversely, the proof rules for method calls and field access
are only applicable if the “unchecked” rule is not applicable. The flattening rule
guarantees that the “unchecked” rule is not applied a second time.

Line 16 in listing 6 contains an example that the context is used to decide
whether a cast is added or not. Since the flattening rule transforms mo(bi.
get()) into x = bi.get(); mo(x); the static type of x must be Object
(the context type), not Integer (the computed result type of bi.get()). The
modified flattening rule must use the context type where necessary.

Γ � 〈st;x = (Ty)e.m(e1, . . . , en); 〉 ϕ

Γ � 〈st;x = e.m(e1, . . . , en); 〉 ϕ

Γ � 〈st; x = (Ty)e.f;〉 ϕ

Γ � 〈st;x = e.f;〉 ϕ

Fig. 3. The new “unchecked” proof rules
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This finishes the description of implicit casts for result values. JLS 3 does not
mention it, but the Java compilers treat an array access for an array of type E[]
with E a type variable in the same manner as a field access or method call. This
means an array access a[i] can also cause a ClassCastException.

7 Verification with Generics in KIV

The examples in the paper can be verified in KIV with the modified calculus. It
turns out that generics have almost no effect on the specification and verification
methodology used in KIV which is based on algebraic specifications and the proof
of functional properties. This is illustrated with the following example: We want
to prove that the sum method from listing 1 correctly computes the sum of
some integers,

∑
ints. ints is an algebraically specified list of integers, and

∑
an algebraic function. The proof can only succeed if we know (or assume) that
the input li to the sum method represents this list of integers, isList(ints, li, st).
isList is a predicate that “looks” into the heap st. The goal to prove is therefore

isList(ints, li, st), . . .0 〈st; i = x.sum(li); 〉 i =
∑

ints

This property is not trivial: The iterator (used by the enhanced for loop as in
listing 2) must be implemented correctly; the hasNext method must eventu-
ally return false (for termination); the next method must successively return
Integer objects (not null, and not other objects because of heap pollution)
that represent the integers in ints; no integer over- or underflow may occur.

Essentially this means we need a very precise knowledge about the data struc-
ture represented by li in the heap – independent of whether generic types
are used or not. Of course, we do not have this knowledge because it is not
known which List implementation is used. Therefore, we must make assump-
tions about the methods iterator, hasNext, and next, and the predicate
isList (proof by contract). Then, for a given List implementation we can spec-
ify isList and prove the assumptions. E.g., the assumption for next is:

isIterator(ints, iter, st), ints 
= [], . . .
0 〈st; o = iter.next();〉 ( isIntegerObject(ints.first, o, st)

∧ isIterator(ints.rest, iter, st) ∧ . . . )

Two auxiliary predicates are used: isIterator(ints, iter, st) is true if iter is an
Iterator object that represents the integers ints. Then the next method
returns an Integer object that represents the first value of ints (isIntegerOb-
ject(ints.first, o, st), and by side effect the iterator has been modified so that it
represents the remaining integers ints.rest (isIterator(ints.rest, iter, st)). Again,
this is completely independent of generic types.

For a given List implementation (for example, the ArrayList of the Java
collection framework) the predicates must be specified. This requires a look
into the actual implementation (how the next method accesses the element to
return etc.), and a class invariant about the iterator (the cursor field used by
the iterator is not greater than the size field of the ArrayList which in turn
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is less than the length of the array holding the elements etc.). And it must be
specified that all list elements are indeed Integer objects.

8 Conclusion

We have extended KIV’s Java calculus to support the formal verification of Java
generics. It may be mentioned that JLS 3 is sometimes cryptic, unclear, and
possibly wrong for generics. The main design decision was not to modify the
source code to verify, but to include the run-time effects of generics dynamically
into the appropriate proof rules. The effects are: First, dynamic method lookup
is more complicated than before (Listing 5); second, because of the possibility
of heap pollution (Sect. 3) a method invocation may require additional checks
(Listing 5); third, because of heap pollution the result of a method call or a
field access can cause a ClassCastException (Listing 6). This has the subtle
consequence that in addition to the static type of an expression the context
(the expected or required type) of the expression becomes important. It is now
possible to verify programs with “unchecked” warnings, and in the presence of
heap pollution (for example, the programs in this paper).

Experience shows that the effects of generics on proofs in KIV are small be-
cause the additional casts cause little overhead, and because KIV’s methodology
relies on algebraic properties where static types play a negligible role. A possible
direction for future work is a formal specification of a type correct Java program
with generics, and a proof of type soundness.
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Abstract. Axioms for domain operations in several variants of Kleene
algebras and their semiring reducts are presented. They provide abstract
enabledness conditions for algebras designed for the verification and re-
finement of action systems, probabilistic protocols, basic processes and
games. The axiomatisations are simpler, more uniform and more flexible
than previous attempts; they are especially suited for automated deduc-
tion. This is further demonstrated through the automated verification of
some classical refinement laws for action systems.

1 Introduction

Variants of Kleene algebras provide the basic operations for modelling the dy-
namics of discrete systems. Choices between actions or processes are modelled
through addition, sequential composition through multiplication, finite and infi-
nite iteration via fixed points. Additive identities capture deadlock or abortion;
silent or ineffective actions correspond to multiplicative identities. A main benefit
of the approach is its suitability for first-order automated deduction in applica-
tions where model checking or interactive theorem proving is usually employed.

Axiomatic variations are dictated by the semantics of application domains.
Kleene algebras, for instance, capture partial program correctness under an-
gelic choice [10] or trace models of reactive systems. Variants in which some
axioms have been weakened admit predicate transformer models for total pro-
gram correctness under demonic choice [16], expectation transformer models for
probabilistic programs and protocols [11], and multirelational [7] or game-based
models [8] for situations where angelic and demonic choices interact. Other vari-
ants of Kleene algebras provide algebraic semantics for parallel reactive systems
modelled by action systems [3] or for basic process algebras [4].

A main source of variation is the interaction of choice with composition. For
games and processes, for instance, a choice between the sequences xy and xz
of actions x, y and z must be distinguished from a choice between y or z after
execution of x, hence x(y + z) 
= xy + xz. Relation- or trace-based models, in
contrast, require this distributivity law. Other applications might exclude that
an infinite action x can be aborted after it has started, that is, x0 
= 0. Again,
this annihilation law certainly holds for binary relations.

In many of these applications, axiomatising a domain operator is essential. For
Kleene algebras, domain has been defined as a map into an embedded Boolean
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algebra that models a state space [5]. In fact, it suffices to axiomatise domain on
the semiring retract of the Kleene algebra. It turned out that this axiomatisation
can essentially be reused for some weaker variants [13] and applied to demonic
refinement algebras [15] and probabilistic Kleene algebras [12]. Operationally,
domain provides enabledness conditions for programs or processes. Moreover,
on Kleene algebras, domain induces modal operators and formalisms similar to
dynamic logic. Recently, domain axioms for Kleene algebras have been provided
in a one-sorted setting [6] which is simpler, more flexible and better suited for
automated deduction. But is this new axiomatisation stable and robust enough
to scale to weaker variants of Kleene algebras?

The present paper provides a positive answer. We adapt the new axioma-
tisation of domain semirings to demonic refinement algebras [16], probabilistic
refinement algebras [11], basic process algebras [4] and other variants of Kleene
algebras. Our first contribution is a systematic development of domain on fami-
lies of near-semirings [14]. As in the semiring case, we provide axioms that make
the algebras of domain elements into distributive lattices. Second, based on an-
tidomain operations, we provide simple axiomatisations that induce Boolean
domain algebras. It turns out that we can simply reuse the semiring domain ax-
ioms for demonic refinement algebras and probabilistic Kleene algebras. Third,
we also consider codomain operations for all variants. The entire development
and investigation is based on the automated theorem proving system (ATP sys-
tem) Prover9 and the counterexample generator Mace4 [2]. We therefore do not
display proofs we could automate, but provide an encoding for Prover9/Mace4
at a web site [1] from which all results in this paper can easily be reproduced.
A fourth contribution is an application of our new axioms to the automated
verification of some classical action system refinement laws [3,15].

2 From Near-Semirings to Semirings

To model actions or processes, we consider weak variants of semirings with dif-
ferent identities. A near-semiring [14] is a structure (S,+, ·) such that (S,+)
and (S, ·) are semigroups and all elements satisfy the right distributivity law

(x+ y)z = xz + yz . (1)

Here and henceforth, the multiplication symbol is omitted. A pre-semiring is a
near-semiring in which all elements satisfy the left pre-isotonicity law

x+ y = y ⇒ zx+ zy = zy . (2)

A semiring is a near-semiring in which all elements also satisfy the left distribu-
tivity law x(y + z) = xy + yz. Every semiring is also a pre-semiring. We will
restrict our attention to commutative near-semirings without explicitly mention-
ing the commutativity law x + y = y + x. A near-semiring is idempotent if all
elements satisfy x+ x = x. We also consider different identities.
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– δ satisfies the identity and left annihilation axioms x+ δ = x and δx = δ.
– τ satisfies the right identity axiom xτ = x.
– 0 satisfies the δ-axioms and the right annihilation axiom x0 = 0.
– 1 satisfies the τ -axiom and the left identity axiom 1x = x.

In the presence of both additive or both multiplicative identities, these entities
coincide: δ = δ0 = 0 and τ = 1τ = 1. We will not consider 0 in this paper.

Idempotent near-semirings (S,+, ·), possibly with δ and τ , are also called
basic process algebras. There, δ is called deadlock and τ the silent action [4].
Idempotent pre-semirings (S,+, ·, 0, 1) arise as reducts of probabilistic Kleene
algebras [11] by forgetting an operation of finite iteration, and as game alge-
bras [8]. Idempotent semirings (S,+, ·, δ, 1) arise as reducts of demonic refine-
ment algebras [16] by forgetting an operation of strong iteration (see Section 9).
We will see that a uniform treatment of the last three variants can be achieved
via pre-semirings (S,+, ·, δ, 1).

Explicit axioms for near-semirings and pre-semirings, as input for Prover9,
can be found at a web site [1]. The following fact has been verified with Prover9.

Lemma 2.1. The relation ≤ defined, for all elements x and y of an idempotent
near-semiring, by x ≤ y ⇔ x + y = y is a partial order. The identity δ or 0
is the least element with respect to that order if it exists. Addition and right
multiplication are isotone with respect to the order.

Mace4 yields a 3-element counterexample to isotonicity of left multiplication for
near-semirings and a 4-element one for those with δ and 1. By Lemma 2.1, every
idempotent near-semiring can be ordered and (S,+) is a semilattice.

3 Domain Semirings

An operation of domain for semirings has been defined in a companion paper [6].
A domain semiring is a semiring (S,+, ·, 0, 1) extended by a function d : S → S
that satisfies

x+ d(x)x = d(x)x , (D1)
d(xy) = d(xd(y)) , (D2)

d(x + y) = d(x) + d(y) , (D3)

d(x) + 1 = 1 , (D4)
d(0) = 0 . (D5)

We call (D1), (D2) and (D3) the basic domain axioms and overload (D4) and
(D5) also for τ and δ. Every domain semiring is automatically idempotent [6].
Mace4 easily shows that the domain axioms are irredundant, that is, counterex-
amples exist for each mutual implication.

The axioms can be abstracted from relational models, where the domain d(x)
of a binary relation x is the binary relation consisting of all ordered pairs (a, a)
with (a, b) ∈ x for some b. (D1) says that d(x) does not restrict the execution of
x. (D2) says that the enabledness of a sequence xy depends on y only through
its enabledness condition. (D3) says that the enabledness condition for a choice
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between actions is the union of the enabledness conditions of the particular
actions. (D4) says that all enabledness conditions are below 1 and (D5) says
that enabling abort or deadlock yields abort or deadlock.

The set of domain elements of S is denoted by d(S) and it has been shown
that d(S) = {x ∈ S : d(x) = x}, whence domain elements are precisely the
fixpoints of the domain operation. This can be used to show that the domain
algebra (d(S),+, ·, 0, 1) of a domain semiring S is a bounded distributive lattice.
By d(x)+d(y) = d(d(x)+d(y)), e.g., domain elements are closed under addition.

The domain algebras of domain semirings can be turned into Boolean algebras
by adding an antidomain operation a : S → S that satisfies

d(x) + a(x) = 1 , (3) d(x)a(x) = 0 . (4)

The resulting structures are called Boolean domain semirings. It can be shown that
the antidomain of an element is precisely the Boolean complement of its domain,
hence a(x) models those states for whichx is not enabled. Since a2(x) = d(x) holds,
domain can be eliminated from all axioms and it follows that a semiring is a Boolean
domain semiring if and only if it satisfies the basic Boolean domain axioms

a(x)x = 0 , (BD1)

a(xy) + a(xa2(y)) = a(xa2(y)) , (BD2)

a2(x) + a(x) = 1 . (BD3)

These considerations form the basis for axiomatising domain on near-semirings.

4 Domain Conditions

Before investigating domain on a family of near-semirings, we collect some nat-
ural conditions that each domain operation should satisfy. First of all, axioma-
tisations should respect our intuitions about domain. Second, as in the semiring
case, they should induce distributive lattices or Boolean algebras.

Let S be a near-semiring. The main intuition behind domain is that a domain
element d(x) is a left preserver of x ∈ S in the sense that x ≤ d(x)x, as expressed
by (D1), or even

x = d(x)x . (5)

Since 1 is also a left preserver of x (if it exists), d(x) should even be the least
left preserver of x. Hence, for all x ∈ S and p ∈ d(S),

x ≤ px⇔ d(x) ≤ p . (6)

Similarly, antidomain elements should be greatest left annihilators, that is,

px = δ ⇔ p ≤ a(x) . (7)

All axiomatisations of domain should therefore respect (5) and (6); all axioma-
tisations of antidomain should respect (7).

To induce a lattice as a domain algebra, it is necessary and sufficient that each
domain element satisfies, besides the basic domain axioms, the lattice conditions
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d2(x) = d(x) , (8)
d(d(x) + d(y)) = d(x) + d(y) , (9)
d(d(x)d(y)) = d(x)d(y) , (10)

(d(x))2 = d(x) , (11)

d(x)d(y) = d(y)d(x) , (12)
d(x) = d(x) + d(x)d(y) , (13)
d(x) = d(x)(d(x) + d(y)) . (14)

The first three identities are closure conditions, and, more precisely, they are
necessary if the fixpoint characterisation of domain elements holds. The other
conditions correspond to lattice axioms. In the presence of τ or 1, d(τ) = τ or
d(1) = 1 should hold as well. The condition d(δ) = δ holds by axiom (D5).

In the presence of (3) and (4), the Boolean conditions

d(a(x)) = a(x) , (15) a(x)d(x) = δ (16)

should also be checked, but condition (16) follows from (4) and (12). The first
of the following conditions is needed for d-elimination; the second one is dual to
(D3) and again very natural.

a2(x) = d(x) , (17) a(x+ y) = a(x)a(y) . (18)

Finally, for non-idempotent near-semirings, it must be checked that the resulting
domain weak semiring is idempotent, otherwise addition does not model choice.

We call a domain near-semirings or Boolean domain near-semiring healthy if
it satisfies the relevant conditions among (5) to (18). Further natural properties
may arise in particular applications and these can be added as axioms if needed.
Also, we always make sure that axiomatisations are irredundant in the sense that
no axiom is entailed by the remaining ones. This can usually (but not necessarily)
be established by Mace4 through finite counterexamples. In the case of pre-
semirings, additional domain conditions have a substantial impact on domain
algebras. These will be investigated in Section 6.

5 A Family of Domain Near-Semirings

We now consider domain or enabledness axioms for near-semirings with and
without δ, τ and 1. The general recipe is as follows: Start with the basic domain
axioms plus the domain axioms for the respective identities. Then add domain
conditions until the axiomatisation is healthy and induces a distributive lattice.
Finally, remove redundancies. Prover9 and Mace4 allowed us to considerably
simplify this analysis and we do not display any proofs that could be automated.

We first axiomatise various domain near-semirings. We do not investigate all
possible combinations of identities, but restrict ourselves to structures that have
previously been considered in applications. Pre-semirings with 1, for instance,
form the basis for probabilistic Kleene algebras, game algebras and demonic
refinement algebras, but we do not investigate pre-semirings with τ .

A domain near-semiring is a near-semiring (S,+, ·) extended by a domain
function d : S → S that satisfies (5), (D2), (D3), (12) and (14).



Domain Axioms for a Family of Near-Semirings 335

Table 1. A Family of Domain Near-Semirings

NS NSδ NSτ NSτ
δ NS1 NS1

δ PS1 PS1
δ

(D1) x ≤ d(x)x
√ √ √ √

(D2) d(xy) = d(xd(y))
√ √ √ √ √ √ √ √

(D3) d(x + y) = d(x) + d(y)
√ √ √ √ √ √ √ √

(D4) d(x) ≤ τ
√ √

(D4) d(x) ≤ 1
√ √ √ √

(D5) d(δ) = δ
√ √ √ √

(5) x = d(x)x
√ √ √ √

(12) d(x)d(y) = d(y)d(x)
√ √ √ √ √ √

(14) d(x) = d(x)(d(x) + d(y))
√ √

NS: near-semiring, PS: pre-semiring.

A domain near-semiring with τ is a near-semiring (S,+, ·, τ) extended by a
function d : S → S that satisfies (5), (D2), (D3), (D4) and (12).

A domain near-semiring with 1 is a near-semiring (S,+, ·, 1) extended by a
function d : S → S that satisfies the domain axioms (D1)-(D4) and (12).

A domain pre-semiring (with 1) is a pre-semiring (S,+, ·, 1) extended by a
function d : S → S that satisfies (D1)-(D4).

In each case a variant with δ is obtained by adding (D5). The explicit domain
axioms for these structures are displayed in Table 1.

The following fact has been verified by Prover9 and Mace4.

Lemma 5.1. All domain axiomatisations are healthy and irredundant.

For all domain near-semirings without 1, (5) cannot be replaced by (D1), since
in that case, (10) or idempotency would not be entailed. For near-semirings with
1, (D1) can be used. Healthiness implies the following facts.

Lemma 5.2. Domain near-semirings are idempotent and can be ordered.

Hence the approach applies to basic process algebras, probabilistic Kleene alge-
bras, game algebras and demonic refinement algebras, which are all idempotent.

Lemma 5.3. Domain elements of near-semirings are least left preservers.

So all axiomatisations respect our basic intuitions about domain and enabled-
ness. Mace4 can easily show that all classes considered are indeed distinct.

We now investigate the impact of healthiness on the domain algebra. First, we
can characterise domain elements within the language of domain weak semirings.

Lemma 5.4. An element of a domain near-semiring is a domain element if and
only it is a fixpoint of the domain operation.

Proof. Let S be a near-semiring with a healthy mapping d, whence in particular
d2(x) = d(x) holds for all x ∈ S. We show that x ∈ d(S) if and only if x = d(x).
First, every x ∈ d(S) is the image of some y ∈ S, that is, x = d(y). Therefore,
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d(x) = d(d(y)) = d(y) = x holds by healthiness. Second, x = d(x) trivially
implies that x ∈ d(S). � 

So (9) and (10) are indeed closure conditions for domain elements, and the
domain algebras can easily be characterised.

Proposition 5.5. Let S be a domain near-semiring. Then (d(S),+, ·) is a dis-
tributive lattice. If the near-semiring has an additive (multiplicative) identity, it
is the least (greatest) element of the lattice.

Proof. The lattice conditions imply that d(S) forms a lattice. The right dis-
tributivity axiom of near-semirings holds in particular for domain elements. By
standard lattice theory, d(S) is therefore a distributive lattice. The bound con-
ditions could readily be checked with Prover9. � 

Let us further discuss these results. We have seen that all near-semirings con-
sidered can be endowed with simple equational domain axioms that induce an
order on the near-semiring and a domain algebra which is a distributive lattice.
These axioms support our basic intuitions about domain and enabledness. In the
case of pre-semirings with 1, which form the basis for probabilistic Kleene alge-
bras, game algebras and demonic refinement algebras, the basic domain axioms
of domain semirings [6] can entirely be reused.

There is, however, a crucial difference between domain semirings and domain
for the weaker variants considered. Forward modal operators can be defined on
a domain semiring S as |x〉p = d(xp), for all x ∈ S and p ∈ d(S). The name
“modal operator” is justified since λp.|x〉p is a strict and additive mapping, that
is, it satisfies |x〉0 = 0 and |x〉(p+q) = |x〉p+ |x〉q. For weaker variants, λp.d(xp)
need be neither strict nor additive. Prover9 and Mace4 could show that strictness
holds only in the presence of the right annihilation law and additivity holds only
in the presence of the left distributivity law. Therefore, none of the weak variants
considered gives rise to a modal near-semiring; we do not obtain basic process
algebras, probabilistic Kleene algebras, game algebras or demonic refinement
algebras with modal operators from the domain axioms. This is an important
negative result. The situation is different for backward diamonds which are based
on an axiomatisation of codomain (cf. Section 8).

6 Boolean Domain Conditions

In domain semirings, domain algebras are strongly linked with maximal Boolean
subalgebras [6]. Prover9 could show that this link still exists for domain pre-
semirings with δ and 1, but not for near-semirings.

Proposition 6.1. Let S be a domain pre-semiring with δ and 1. An element
x ∈ S is a domain element if some y ∈ S satisfies x+ y = 1 and yx = δ.

This statement does not hold in domain near-semirings with δ and 1; Mace4
presented a 5-element counterexample.
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Corollary 6.2. Elements x and y of a domain pre-semiring with δ and 1 are
domain elements if x+ y = 1, xy = δ and yx = δ.

Again, Mace4 presented a 5-element counterexample for near-semirings.
We say that an element x of a weak semiringnear-semiring S is complemented

if there exists some y ∈ S such that x + y = 1, xy = δ and yx = δ. We denote
the set of all complemented elements in S by BS .

Lemma 6.3. Let (S,+, ·, δ, 1) be a domain pre-semiring. Then (BS ,+, ·, δ, 1) is
a Boolean algebra.

Proof. First, if x is complemented, then x is idempotent. Second, if x and y are
complemented, then xy = yx. Third, if x and y are complemented, then so are
x + y and xy. The second fact has a 280-step proof, the third one a 212-step
proof with Prover9. The first fact requires almost no time. � 

Lemma 6.3 has considerable impact on the structure of domain algebras.

Theorem 6.4. Let (S,+, ·, δ, 1) be a domain pre-semiring. Then d(S) contains
the greatest Boolean subalgebra of S bounded by δ and 1.

Again, Mace4 showed that Lemma 6.3 and Theorem 6.4 do not generalise to
near-semirings. Also, the domain algebra of a domain pre-semiring with δ and 1
need not itself be Boolean.

7 A Family of Boolean Domain Near-Semirings

We now provide axioms for near-semirings with δ and τ or 1 which induce
Boolean domain algebras. This situation corresponds perhaps most closely to
the state spaces or propositional structures underlying practical applications,
but as for semirings, Heyting domain algebras should also be possible [6].

A Boolean domain pre-semiring is a domain pre-semiring (S,+, ·, δ, 1) that
satisfies the domain axioms (D1)-(D5) and that is extended by an antidomain
operation a : S → S that satisfies (3) and (4).

Lemma 7.1. Boolean domain pre-semirings are healthy.

The proof of (18) with Prover9 has 168 steps. Corollary 6.2 and Theorem 6.4
imply the following fact.

Proposition 7.2. The domain algebra of a Boolean domain pre-semiring is the
maximal Boolean subalgebra of the pre-semiring of subidentities.

Healthiness also implies that a2(x) = d(x), whence, as in the semiring case,
domain can be eliminated from the axiomatisation and the following theorem
could be shown automatically by Prover9.

Theorem 7.3. A pre-semiring S is a Boolean domain pre-semiring if and only
if it can be extended by an antidomain operation a : S → S that satisfies the
basic Boolean domain axioms (BD1), (BD2) and (BD3).
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Moreover, Mace4 easily showed the following fact.

Lemma 7.4. The axioms (BD1)-(BD3) are irredundant.

Therefore, the basic Boolean domain axioms for semirings can be reused for
probabilistic Kleene algebras, game algebras and demonic refinement algebras.

We now consider domain near-semirings. First, we turn to the case with δ
and 1. A Boolean domain near-semiring with δ and 1 is a domain near-semiring
(S,+, ·, δ, 1) that satisfies the domain axioms (D1)-(D5) and (12) and that is
extended by an antidomain operation a : S → S that satisfies (3), (4) and (15).

Lemma 7.5. Boolean domain near-semirings with δ and 1 are healthy and ir-
redundant.

This could be shown by Prover9. Also, by Mace4, the Boolean domain semiring
axioms alone are too weak. The following fact is an immediate consequence.

Proposition 7.6. Boolean domain near-semirings with δ and 1 have Boolean
domain algebras.

However, this Boolean algebra need not always be maximal. Mace4 presented
a 5-element counterexample to Corollary 6.2. Healthiness again implies that
a2(x) = d(x), whence domain can be eliminated from the axiomatisation and
the following theorem could be shown by Prover9.

Theorem 7.7. A near-semiring (S,+, ·, δ, 1) is a Boolean domain near-semi-
ring if and only if it can be extended by an antidomain operation a : S → S that
satisfies the axioms (BD1)-(BD3) and (18).

Moreover, Mace4 easily showed that these antidomain axioms are irredundant.
A Boolean domain near-semiring with δ and τ is a domain near-semiring

(S,+, ·, δ, τ) that satisfies (5), (D2), (D3), (D5) and (12) and that is extended
by an antidomain operation a : S → S that satisfies (3), (4) and (15).

Lemma 7.8. Boolean domain near-semirings with δ and τ are healthy and ir-
redundant.

This could be proved by Prover9, too. The following fact follows immediately.

Proposition 7.9. Boolean domain near-semirings with δ and τ have Boolean
domain algebras.

Again, this Boolean algebra need not be maximal; there is a 5-element counterex-
ample. Since healthiness implies that a2(x) = d(x), domain can be eliminated
from the axiomatisation and the axioms can somewhat be simplified. However,
the compaction obtained is not comparable to the stronger near-semirings and
we therefore do not provide a deeper discussion.

The axioms for our family of Boolean domain near-semirings are summed up
in Table 2. The ordering can be used because of Lemma 5.2. The first column
is relevant for basic process algebras; the last column for probabilistic Kleene
algebras, game algebras and demonic refinement algebras. The axiomatisation
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Table 2. A Family of Boolean Domain Near-Semirings

NSτ
δ NS1

δ PS1
δ

(BD1) a(x)x = δ
√ √

(BD2) a(xy) ≤ a(xa2(y))
√ √

(BD3) a2(x) + a(x) = 1
√ √

(18) a(x + y) = a(x)a(y)
√

(5) x = d(x)x
√

(D2) d(xy) = d(xd(y))
√

(D3) d(x + y) = d(x) + d(y)
√

(D5) d(δ) = δ
√

(3) d(x) + a(x) = 1
√

(4) d(x)a(x) = 0
√

(12) d(x)d(y) = d(y)d(x)
√

(15) d(a(x)) = a(x)
√

NS: near-semiring, PS: pre-semiring.

in that case is precisely that of Boolean domain semirings [6] and the three ba-
sic Boolean domain axioms that need to be added to the semiring axioms are
simpler and better suited for automated deduction than those of previous ap-
proaches [12,13,15], in which the Boolean algebra of states had to be axiomatised
and embedded explicitly in a two-sorted setting.

8 Codomain

In the semiring case, domain and codomain are duals with respect to semiring
opposition, which swaps the order of multiplication. Weaker variants break this
symmetry and codomain therefore deserves special attention. Codomain is of
independent interest because it induces an image operation which is useful, for
instance, in the context of Hoare-style logics and for reachability analysis.

A codomain semiring is a semiring (S,+, ·, 0, 1) extended by a function d◦ :
S → S that satisfies the basic codomain axioms

x+ xd◦(x) = xd◦(x) ,
d◦(xy) = d◦(d◦(x)y) ,

d◦(x + y) = d◦(x) + d◦(y) ,

d◦(x) + 1 = 1 ,
d◦(0) = 0 .

We call an expression in the language of codomain near-semirings dual to an
expression in the language of domain near-semirings if it is dual with respect to
opposition, each term d(x) is replaced by d◦(x), and each term a(x) is replaced
by a◦(x). Here, a◦ denotes the anticodomain operation. We refer to antidomain
axioms as the duals of domain axioms. For instance, we write (D1◦) for the dual
of (D1), and likewise for the lattice and healthiness conditions.
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Table 3. A Family of Codomain Near-Semirings

NS NSδ NSτ NSτ
δ NS1 NS1

δ PS1 PS1
δ

x + x = x
√ √ √ √

(D1◦) x ≤ xd◦(x)
√ √

(D2◦) d◦(xy) = d◦(d◦(x)y)
√ √ √ √ √ √ √ √

(D3◦) d◦(x + y) = d◦(x) + d◦(y)
√ √ √ √ √ √ √ √

(D4◦) d◦(x) ≤ τ
√ √

(D4◦) d◦(x) ≤ 1
√ √ √ √

(D5◦) d◦(δ) = δ
√ √ √ √

(5◦) x = xd◦(x)
√ √ √ √ √ √

(12◦) d◦(x)d◦(y) = d◦(y)d◦(x)
√ √ √ √ √ √

(14◦) d◦(x) = d◦(x)(d◦(x) + d◦(y))
√ √

d◦(τ ) = τ
√ √

NS: near-semiring, PS: pre-semiring.

Because of the lack of duality, the codomain axioms for our family of near-
semirings differ from the domain axioms if healthiness is to be preserved. In
particular, idempotency must sometimes be assumed.

A codomain near-semiring is an idempotent near-semiring (S,+, ·) extended
by a function d◦ : S → S that satisfies (5◦), (D2◦), (D3◦), (12◦) and (14◦).

A codomain near-semiring with τ is an idempotent near-semiring (S,+, ·, τ)
extended by d◦ : S → S that satisfies (5◦), (D2◦)-(D4◦), (12◦) and d◦(τ) = τ .

A codomain near-semiring with 1 is a near-semiring (S,+, ·, 1) extended by
d◦ : S → S that satisfies (5◦), (D2◦)-(D4◦) and (12◦).

A codomain pre-semiring is a pre-semiring (S,+, ·, 1) extended by d◦ : S → S
that satisfies (D1◦)-(D4◦).

Variants with δ are obtained by adding (D5◦). Table 3 shows all axiomatisa-
tions.

The following statements could be proved by Prover9.

Lemma 8.1

(i) All axiomatisations are healthy and irredundant.
(ii) All codomain near-semirings are idempotent and can be ordered.
(iii) Codomain elements of codomain near-semirings are least right preservers.
(iv) An element of a codomain near-semiring is a codomain element if and only

it is a fixpoint of the codomain operation.

Proposition 8.2. Let S be a codomain near-semiring. Then (d◦(S),+, ·) is a
distributive lattice. If the near-semiring has an additive (multiplicative) identity,
it is the least (greatest) element of the lattice.

In Section 5 we saw that the domain operations on our family of near-semirings
did not induce modal operators. Here the situation is different.

Proposition 8.3. For every codomain near-semiring S, all x ∈ S and all p, q ∈
d◦(S) satisfy d◦((p+q)x) = d◦(px)+d◦(qx), and d◦(δ) = δ if this identity exists.
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Table 4. A Family of Boolean Codomain Near-Semirings

NSτ
δ NS1

δ PS1
δ

x ≤ xa◦(a◦(x))
√

(BD2◦) a◦(xy) ≤ a◦(a◦(a◦(x))y)
√

(BD3◦) a◦(a◦(x)) + a◦(x) = 1
√

a◦(x)a◦(a◦(x)) = δ
√

(5◦) x = xd◦(x)
√ √

(D2◦) d◦(xy) = d◦(d◦(x)y)
√ √

(D3◦) d◦(x + y) = d◦(x) + d◦(y)
√ √

(D5◦) d◦(δ) = δ
√ √

(12◦) d◦(x)d◦(y) = d◦(y)d◦(x)
√ √

(3◦) d◦(x) + a◦(x) = 1
√

(3◦) d◦(x) + a◦(x) = τ
√

(4◦) a◦(x)d◦(x) = δ
√ √

NS: near-semiring, PS: pre-semiring.

So codomain on near-semirings is strict and additive, and it induces backward
diamond operators 〈x|p = d◦(px) defined via images.

In analogy to Boolean domain near-semirings, we now axiomatise an anti-
codomain operation in order to obtain Boolean codomain algebras.

A Boolean codomain near-semiring with δ and τ is a codomain near-semiring
(S,+, ·, δ, τ) that satisfies (5◦), (D2◦), (D3◦), (D5◦) and (12) and that is ex-
tended by an anticodomain operation a◦ : S → S satisfying (3◦) and (4◦). In
particular, the near-semiring is idempotent. The definition of Boolean codomain
near-semiring with δ and 1 is analogous; both axiom sets are shown in Table 4.

A Boolean codomain pre-semiring is a codomain pre-semiring (S,+, ·, δ, 1)
that satisfies (D1◦)-(D3◦), (D5◦) and that is extended by an anticodomain op-
eration a◦ : S → S satisfying (3◦) and (4◦).

Lemma 8.4. All axiomatisations satisfy the Boolean conditions (3◦) and (4◦);
their axioms are irredundant.

However, Boolean codomain near-semirings can be unhealthy. Mace4 showed
that each class contains models that do not satisfy (7◦) or (18◦). This remains
true for semirings with δ; the identity x0 = 0 is needed for healthiness. These
counterexamples formally support a previous remark in the two-sorted setting
for pre-semirings with δ and 1 [13]. Still we obtain the following result.

Proposition 8.5. Boolean codomain near-semirings have Boolean domain al-
gebras. Those of pre-semirings are maximal in the pre-semirings of subidentities.

In the case of Boolean codomain near-semirings (with δ and 1), Mace4 presents
a 16-element counterexample to Corollary 6.2, hence to maximality.

Proposition 8.6. A pre-semiring S is a Boolean codomain pre-semiring if and
only if it can be extended by an antidomain operation a◦ : S → S that satisfies
x ≤ xa◦(a◦(x)), the axioms (BD2◦),(BD3◦) and a◦(x)a◦(a◦(x)) = 0
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These axioms are also displayed in Table 4. In sum, the development of codomain
near-semirings is similar to that of domain near-semirings, but, due to the lack of
duality with respect to opposition, slightly different and less compact axiomatisa-
tions arise. A significant difference is that—unlike for domain semirings—modal
operators are induced by the codomain operations.

9 Automated Action System Refinement

To demonstrate the power of our axiomatisations for formal software devel-
opment, we automatically verified some well-known action system refinement
laws [3], the proofs of which have already been replayed manually with demonic
refinement algebras [15] and the two-sorted domain axiomatisation [5].

Formally, a demonic refinement algebra [15] is a structure (S,+, ·, δ, 1, ω) such
that (S,+, ·) is an idempotent semiring and the strong iteration operation ω :
S → S satisfies the unfold and the coinduction axiom

1 + xxω = xω and y ≤ z + xy ⇒ y ≤ xωz .

von Wright’s original axiomatisation also uses an operation of finite iteration
that interacts with the strong variant [16]. Demonic refinement algebras model
positively conjunctive predicate transformers over some state space, which them-
selves model demonically nondeterministic programs according to a weakest pre-
condition semantics [16]. The law 1 + xωx = xω follows from the demonic re-
finement algebra axioms. Intuitively, strong iteration models a loop which is
possessed by a demon, that is, which may be finite or infinite.

We define the normaliser n(x) of an element x as

n(x) = xωa(x) .

Intuitively, n(x) relates the states in the domain d(x) of an action x with states
from which no further iteration is possible, hence with x-normal forms.

It is stipulated that an action x excludes an action y if x = a(y)x [15]. But
there is a more appealing equivalent definition for near-semirings (S,+, ·, 0, 1): x
excludes y iff d(x)d(y) = 0, that is, if they are not jointly enabled. It immediately
follows that exclusion is commutative.

Action systems formalise parallel reactive systems as loops containing de-
monic choices between individual actions which terminate when no more action
is enabled. In the algebraic semantics of demonic refinement algebras,

do x0 5� . . . 5� xn−1 od = n(
n−1∑
i=0

xi) =
n−1∑
i=0

xω
i

n−1∏
i=0

a(xi) .

We first automatically verified the action system leapfrog law [3]

do xy od x ≤ x do yx od
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for a loop without choice. In demonic refinement algebra it corresponds to

n(xy)x ≤ xn(yx) .

Statements of comparable complexity usually require hypothesis learning and
also here we could not prove the theorem in one full sweep within reasonable
time. Therefore we started with a set of hypotheses from which explosive axioms
like commutativity of addition have been discarded. We added further axioms
or lemmas until Mace4 failed to detect a counterexample, that is, until we could
expect that the hypotheses entail the goal. Then we ran the ATP system and,
when this failed within reasonable time, tried another hypothesis set.

For proving the action system leapfrog we used the additional hypotheses
a(xy)x = a(xy)xa(y), which itself could be proved by Prover9 in 168 steps, left-
isotonicity of multiplication and the sliding rule x(yx)ω = (xy)ωx, which has
automatically been verified before [9]. Then Prover9 needed 52 steps and the
equational proof extracted is simpler than that from the literature [15].

Second, we automatically verified the action system decomposition law [3]

do x 5� y od = do y od do x do y od od ,

which holds if x excludes y. In demonic refinement algebra we must prove that

x = a(y)x⇒ n(x+ y) = n(y)n(xn(y)) .

Following Solin and von Wright [15], we added d(x)$ = x$ as a further hypoth-
esis, where $ = 1ω is the maximal element of the algebra.

Irredundancy of this identity could easily be established through a 5-element
counterexample by Mace4, which answers a question by Solin and von Wright.

Now this additional hypothesis implies that $ = n(x)$, which could be shown
by Prover9 in 56 steps. The equational proof is

$ = a(x)$ + d(x)$ = a(x)$ + x$ ≤ n(x)$ ≤ $ ,

where the third step uses coinduction. Using this fact as a hypothesis together
with the standard law (x + y)ω = yω(xyω)ω , which has already been auto-
matically verified [9], again the sliding rule and commutativity of antidomain
elements allowed Prover9 to show our claim in 56 steps. Surprisingly, the as-
sumption x = a(y)x instead of d(x)d(y) = 0 turned out to be beneficial here.

The property d(x) ≤ d(xn(y)) has been used in the previous more complex
manual proof [15]. Using $ = n(x)$ again, we could find an instantaneous
automated proof which yields a simpler equational argument:

a(x) = a(xd($)) = a(x$) = a(xn(y)$) = a(xn(y)d($)) = a(xn(y)) .

In all these examples, using an ATP system therefore led to particularly simple
proofs. Similar results for other domain near-semirings can be expected.
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10 Conclusion

We have axiomatised domain operations that serve as enabledness conditions for
variants of Kleene algebras with applications in program refinement, the analysis
of probabilistic protocols, game theory and process algebra. The axioms obtained
are simpler, more flexible and better suited for automation than previous ap-
proaches. They provide a basis from which further constraints imposed by the
semantics of applications can be included. In the case of process algebras, for
instance, the interaction of enabledness with parallel composition needs further
investigation. We have also shown that the approach yields efficient automated
proof support for applications in the refinement of parallel reactive systems.

The study of domain in weak Kleene algebras was strongly based on the ATP
system Prover9 and the counterexample generator Mace4. These tools allowed us
to drastically speed up the analysis, condense the presentation and dispense with
routine technical proofs while even gaining in trustworthiness. The automated
game of conjectures and refutations, the search for proofs and counterexamples,
often took only a few seconds where humans would easily have spent several
hours, and hardly more than a few minutes on a standard PC.

Beyond, that, the integration of algebraic methodology into off-the-shelf ATP
technology could contribute towards bridging the gap between higher-order proof
checking and model checking in software verification, and yield light-weight for-
mal methods with heavy-weight automation.

The next step is to link the abstract algebraic level with concrete data (types)
and their manipulation through assignment or communication. To achieve this
as far as possible within ATP systems and to integrate appropriate decision
procedures remains a challenge both for program analysis and theorem proving.
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Abstract. Many complex analysis problems can be most clearly and
easily specified as logic rules and queries, where rules specify how given
facts can be combined to infer new facts, and queries select facts of
interest to the analysis problem at hand. However, it has been extremely
challenging to obtain efficient implementations from logic rules and to
understand their time and space complexities, especially for on-demand
analysis driven by queries.

This paper describes a powerful method for generating specialized
rules and programs for demand-driven analysis from Datalog rules and
queries, and further for providing time and space complexity guarantees.
The method combines recursion conversion with specialization of rules
and then uses a method for program generation and complexity calcu-
lation from rules. We compare carefully with the best prior methods by
examining many variants of rules and queries for the same graph reacha-
bility problems, and show the application of our method in implementing
graph query languages in general.

1 Introduction

Many complex analysis problems can be most effectively and easily described
using a declarative language. The declarative specification makes it easy to un-
derstand the nature of the problem, without being distracted by implementation
details. One way of writing a declarative specification is to write logic rules and
queries.

Logic rules specify how given facts in a problem setting can be combined
to infer new facts. For example, for program analysis, definitions of flow and
dependence relations can be specified as rules; for model checking, definitions of
system behaviors can be specified as rules; and for system security, access control
policies can be specified as rules.

Once the specification of a problem is given by logic rules, queries can be used
to select facts of interest to the analysis problem at hand. For program analysis,
flow and dependence information involving particular program points of interest
can be specified as queries; for model checking the properties to be checked can
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be specified as queries; and for system security, checking access to resources by
users can be specified as queries. Queries can be used to filter the facts inferred
by the rules, and moreover be a guide in the inference of the facts of interest.
We use on-demand analysis to refer to an analysis that is expressed by a query,
querying over facts that can be inferred from the rules.

Even when logic rules and queries are implemented in, say, a Prolog system,
evaluated using various existing methods, or rewritten using methods such as
magic set transformations to allow more efficient evaluation, such implementa-
tion is typically for fast prototyping. Furthermore, the running times of imple-
mentations using these methods can vary dramatically depending on the order
of rules and the orders of hypotheses in rules, and even less is known about
the space usage. Developing efficient implementations for answering queries on-
demand for any given rules and queries with time and space guarantees is a
nontrivial, recurring task.

This paper describes a powerful method for generating specialized rules and
programs for demand-driven analysis from Datalog rules and queries, and for
providing time and space complexity guarantees. Datalog [6] is an important
logic-based language for specifying rules. Especially in recent years, Datalog-like
rules have been used increasingly for expressing complex analysis problems, for
example, pointer analysis and program analysis in general [16], model checking
push-down systems [11], role-based access control [3], trust management [13],
and information flow analysis [12]. Datalog-based languages are also important
in graph queries [8,20] and semantic web applications [9] in general.

Given a set of rules and a kind of query, i.e., a query predicate with indications
of which arguments will be bound, our method generates a set of rules and
a program that is specialized for the kind of query, and produces complexity
formulas for the time and space complexities of the generated program. The
generated program for the specialized rules can take any set of given facts and
any values of the bound parameters of the query predicate, and return the query
result with the calculated time and space complexities. The method combines
three transformation steps.

Recursion conversion: Transforms recursive rules into appropriate left or right
linear recursive forms based on the kinds of queries, so that the connection
between the queries and given facts can be established efficiently. Queries can
then be answered equally efficiently for equivalent but slightly different recursive
rules, which could otherwise differ asymptotically in running times.

Specialization: Specializes the transformed rules with respect to the kinds of
query, so that bound parameters of the query predicate are used to restrict
possible instantiations of the rules as much as possible. This is a drastically
simplified form of partial evaluation [17] and may yield asymptotic improvements
in running time.

Program generation and complexity calculation: Transforms specialized
rules into efficient algorithms and data structures for the given analysis problem,
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and calculates the time and space complexities of the generated program. This uses
the method developed previously [19] for bottom-up evaluation of Datalog rules.

The main contributions of this paper are not in each of the three transfor-
mation steps, but in their combination to produce efficient specialized rules and
programs for on-demand analysis and to provide complexity guarantees. No less
important is the evaluation of the method in precise comparison with the best
prior methods whose effect on complexities are well-known to be difficult to un-
derstand. We also show the application of our method on graph query languages.

2 Language and Cost Model

We describe the Datalog language for defining rules and queries and give our
cost model.

Datalog rules. Datalog is a declarative language for defining facts and rules
that are used to infer new facts from given ones. A Datalog program is a finite
set of clauses of the form: p1(x11, ..., x1a1), ..., ph(xh1, ..., xhah

) → p(x1, ..., xa).,
where h is a natural number, each pi (respectively p) is a relation of ai (respec-
tively a) arguments, called a predicate, each xij and xk is either a constant or
a variable, and variables in xk’s must be a subset of the variables in xij ’s. A
predicate with arguments is called an atom. If h = 0, then there are no pi’s or
xij ’s, and xk’s must be constants, in which case p(x1, ..., xa) is called a fact. An
atom on the left hand side of a rule is called a hypothesis, and the atom on the
right hand side is called the conclusion. Semantically, a rule of the form above
says that if there is a substitution of variables in the rule with constants such
that all of the hypotheses instantiated using the substitution are facts, then the
instantiated conclusion is a fact.

Datalog queries. A query for a set of Datalog rules and facts is of the form
q(y1, .., yn)?, where q is a predicate of n arguments. The meaning is to return all
tuples of q that are given or can be inferred based on the rules, restricted by the
constants in yi’s, if any. We denote constants by a,b,c, and variables by x,y,z.

Example. A canonical example of a Datalog program is the transitive closure
of a relation, which can be expressed with two rules. We can think of the relation
as the edges of a graph, and paths between any vertices as the set of transitive
closure, then the specifications in Datalog would be the following:

Doubly recursive: edge(x,y) → path(x,y).
path(x,z), path(z,y) → path(x,y).

(1)

Right recursive: edge(x,y) → path(x,y).
edge(x,z), path(z,y) → path(x,y).

(2)

Left recursive: edge(x,y) → path(x,y).
path(x,z), edge(z,y) → path(x,y).

(3)

These three programs can be proven by induction to infer the same path facts.
The right- and left-recursive versions of the transitive closure concatenate edges
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from the vertex on the left, respectively right, with paths to the vertex on the
right, respectively left. They are linear programs, i.e., there is at most one hy-
pothesis in each rule that is recursive with its conclusion, however the doubly
recursive program is not.

For these programs, there are 4 possible queries: path(x,y)? returns all pairs
of vertices that have a path between them. path(a,y)? returns all vertices
that are reachable from a. path(x,b)? returns all vertices that can reach b.
path(a,b)? returns whether b is reachable from a.

Cost model. We use the cost model that resulted from the method in [19],
which states the following: For any Datalog rule, the evaluation takes time pro-
portional to the number of combinations of facts that make all hypotheses true.
All input facts have to be read in, so the number of input facts must be added to
the complexity. For example, for transitive closure, this is the number of edges.
We use the following notation for complexity analysis. For queries regarding
transitive closure, if the first argument is bound, it is denoted by a, and if the
second argument is bound, it is denoted by b.

– V : number of vertices, P : number of paths, E: number of edges.
– E(a): number of edges that are on any path from a to any vertex.
IE(a): number of edges that are on any path from any vertex to a.

– o(a): outdegree of a, o: maximum outdegree of vertices.
i(a): indegree of a, i: maximum indegree of vertices.

– R(a): number of vertices reachable from a, R: maximum number of vertices
reachable from any vertex.
IR(a): number of vertices that reach a.

As an example, consider the program in (2). The evaluation of the first rule takes
time O(E), since all edges make the single hypothesis true. The second rule has
two hypotheses, say we take all edges for the first hypothesis, then z becomes
bound for the path predicate and the number of values that y can take is the
maximum number of vertices reachable from any node. Therefore, a bound on
the running time for this program is O(E ×R).

3 Specialization and Complexity of Specialized Programs

Constants in the arguments of a query are called static inputs. For example, in the
query path(a,x)?, a is a static input. Specialization uses static inputs to restrict
the number of inferred facts by transforming the rules. Program specialization
is also known as partial evaluation, and has been studied in logic programming
[17], where it is sometimes called partial deduction.

Specialization for a set of Datalog rules S, and a query Q is obtaining another
set of rules S′ and a query Q′ that satisfy the following: Every fact inferred as an
answer to Q′ during the evaluation of S′ is a projection of a fact inferred as an
answer to Q during the evaluation of S, where a projection of a fact is a selection
of zero or more arguments from that fact up to a renaming of the predicate.
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As an example, consider S being (3), and path(a,y)? being Q. Let S′ be:

edge(a,y) → path1a(y).
path1a(z), edge(z,y) → path1a(y).

(4)

and Q′ be path1a(y)?. The original query finds all vertices that are reachable
from a by selecting the path facts whose first argument is a. Q′ and S′ do
exactly that, and the answers to Q′ are the vertices that are reachable from a. By
inserting a as the first argument in the answers of Q′, one trivially reconstructs
the answers of Q.

To describe specialization, we need to define substitution. For a set of rules S,
we denote the set of hypotheses of all rules by h(S). We denote the conclusion
of a rule r by c(r). A substitution is a map from variables to constants. A
substitution θ applied to a rule r, denoted rθ, replaces the variables in r with
constants according to θ. We say that an atom a′ is an instance of an atom a if
there is a substitution θ such that aθ = a′; in case such a substitution exists, it
is denoted subst(a, a′).

We specialize a set of Datalog rules with respect to a query via the fixpoint
of a function f , which takes a set S of rules and a set A of atoms, and returns
both of them with new elements added. At each step of computation, if there is
an atom a in A, and a rule r in S for which a is an instance of the conclusion
of r, then a new rule r′, which is r updated with the substitution that makes
a and the conclusion of r identical, is added to S and all hypotheses of r′ are
added to A. That is:

f(〈S, A〉)= 〈S∪S′, A∪h(S′)〉 where S′ ={rθ|a ∈ A, r ∈ R, θ= subst(c(r), a) �= undef}.

Given a set of rules S, and a query Q, specialization computes the fixpoint of
f(S,Q) and returns the first component of the output pair as the desired set
of specialized rules. The output of the function also has the original rules in
the specialized set, therefore we need to remove them if they are not needed for
the evaluation of the specialized query. An original rule r in the output is not
needed, unless a hypothesis of a specialized rule is identical to the conclusion of
r up to variable renaming. Once these rules are removed, we rewrite all atoms
that have constant arguments to remove constants, and assign names based on
the original predicate names and the places and values of bound arguments. We
only rewrite the atoms whose predicates appear in the conclusion of some rule.

Specialization of (3) with respect to the query path(a,y)? yields:

edge(a,y) → path1a(y).
path1a(z), edge(z,y) → path1a(y).

(5)

and the query path1a(y)?. Given the same query, if one applies specialization
to (1), the original unspecialized rules remain since the path(z,y) hypothesis of
the second rule is identical to the conclusion of the original rules up to variable
renaming. The original rules of (2) also remain after specialization for the same
reason.

To make specialization independent of the values of the static input, we per-
form the following: For any query Q with n distinct static inputs, we generate n
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fresh constants: say c1, ... ,cn, and replace the constants in Q with these fresh
constants in order (i.e. the first distinct constant by c1, the second by c2, and so
on). Next, we do specialization as described above for the given rules and rewrit-
ten Q. Note that, at this point, constants occur in the specialized rules only in
the atoms for which no facts are derived by the rules. For any rule in the given
set of rules, if a constant ci occurs in the rule, we replace it with a variable, say
x, that does not occur in the rule, add ci(x) as a new hypothesis, where ci is
a fresh predicate name to be used with ci, and add the fact ci(oci) to the set
of rules, where oci is the ith original constant in the query. With this result, if
another query Q′ whose bound arguments are in the same places as Q is given,
and Q′’s ith constant is different than Q’s, we retract the fact related to ci, and
add a fact of ci that represents the new constant. For example, specialization
of (3) with respect to the query path(a,x)? yields:

c(a).
c(x), edge(x,y) → path1c(y).
path1c(z), edge(z,y) → path1c(y).

(6)

and the query path1c(y)?. If one wants to change the original query to
path(b,x)?, it is not necessary to re-perform specialization, but just replace
the fact c(a), with c(b).

Note that, for any set of rules, specialization does not result in different time
complexities of the generated rules when the rule order within the set or the
hypothesis order inside the rules is changed.

We have shown that specialization may result in a set with more specialized
rules, however it may include unspecialized rules as well. Evaluating a purely
specialized set of rules should be more advantageous. The purely specialized
rules derived from (3), and the query path(a,x)? can be evaluated in linear
time in the number of edges. Since the time is proportional to the combination
of facts that make the hypotheses true, and z can only be assigned the vertices
that can be reached from a as values, the evaluation takes time proportional to
E(a). Specialization of the programs (1) and (2) with respect to the same query
is evaluated in asymptotically worse time since they include the original rules.
Therefore, programs with the same semantics might have different execution
times with respect to the same queries, even after specialization.

Differences in time complexity of the specialized programs can only result from
the combination of the bound arguments in the query and the version of program
that is being specialized, so we show such cases. If the left-recursive version is
given and the left argument of the query is bound, or symmetrically if the right-
recursive version is given and the right argument of the query is bound, the
specialized versions have cost O(E). For the doubly recursive version, no matter
which arguments are bound, the complexity is O(R× P ). The following are the
complexities of evaluating programs with respect to queries with different bound
arguments:
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Bound argument
Time complexity

Left-rec. Right-rec. Doubly-rec.
None O(R × E) O(R × E) O(R × P )
First O(E(a)) O(R × E) O(R × P )

Second O(R × E) O(IE(b)) O(R × P )
Both O(E(a)) O(IE(b)) O(R × P )

4 Extension by Recursion Conversion

In the previous section, we showed that specialization might not obtain a more
specialized set of rules for a given query. In general, for any set of unspecializable
rules, another set of rules that infers the same set of facts may be specializable.
For transitive closure, one needs to convert a particular form of recursion into
another for the specialization to work. We give a general transformation which
is applicable to transitive closure. Given the following set of rules:

p1(x1), .. , pn(xn) → r(x).
r(y), r(z) → r(x).

where x, xn, y, z each denote one or more variables, y and z have common
variables t, the uncommon ones are in different places in y than in z, and at the
same place in x as in y or z, and the variables in t do not appear in x. Also
pi is not mutually recursive with r. Then the above rules are equivalent to both
sets of rules below:

p1(x1),..,pn(xn)→r(x). p1(x1),..,pn(xn)→r(x).
p1(y1),..,pn(yn),r(z)→r(x). r(y),p1(z1),..,pn(zn)→r(x).

where each yi (and zi) is obtained by substituting the variables of xi with the
substitution that makes x and y (respectively z) identical.

All versions of transitive closure are instances of one of these schemas. Since
they are all shown to be equivalent and there is a transformation method to
transform from one to another, we exploit this fact before specialization.

We give a detailed complexity analysis of specialization extended with recur-
sion conversion for transitive closure. Recursion conversion is also insensitive to
hypothesis order or rule order. We just need to consider the main three versions
of the transitive closure.

After applying the described transformations to any version of transitive clo-
sure, if any of the arguments is bound in the query, the program can be evaluated
in O(E) time, and if both arguments are free then the program can be evaluated
in O(R × E) time. One can revise the O(E) bound by more precise bounds as
follows:

Bound argument Time complexity for all three programs
None O(R × E)
First O(E(a))

Second O(IE(b))
Both O(min(E(a), IE(b)))
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Recursion conversion as described is possible only for the given schema, i.e.,
doubly-recursive or linear Datalog programs, so it is of significance to convert a
Datalog program into a linear one if possible. The question whether it is possible
to perform such a transformation has been answered negatively in general, and a
subset of Datalog programs have been shown to be convertible to linear ones [1].

For our purposes, any linearization procedure for a subset of Datalog is use-
ful. If we obtain a program which obeys the schema for recursion conversion, we
apply the recursion conversion to obtain different versions of the same program.
We then apply our specialization algorithm to these different versions. After
these steps, we can generate the program as in [19] and automatically analyze
the time complexity of the bottom-up evaluation of each resulting program and
choose the best one. In any of the steps if the transformation is not possible,
we skip that step. The whole method can be summarized as: linearize (if pos-
sible), apply recursion conversion (if possible), specialize all versions, generate
program, calculate complexity and choose the best. The algorithm is presented in
Figure 1.

Algorithm Demand-driven analysis
Input: A set of Datalog rules S and a query Q
Output: A sequential program for the generation of answers to Q, with time complex-

ity guarantees
1. if any rule in S is linearizable
2. then S = Linearize(S)
3. RS ← {S}
4. for each predicate p in S that fits the recursion conversion schema
5. do S′ = p’s recursion type converted in S
6. RS ← RS ∪ {S′}
7. RSC = {} : to keep rule sets with complexities
8. for each set R of rules in RS
9. do R′ ← R specialized for Q
10. C ← Time complexity of evaluating R′

11. RSC ← RSC ∪ {(R′, C)}
12. Among all pairs in RSC, remove the ones that are provably worse in complexity

than at least one pair.
13. for each pair (R, C) in RSC
14. do generate program from R
15. output C as the time complexity associated with it

Fig. 1. Algorithm for demand-driven analysis

The time complexity of the method is dominated by the specialization step,
which has a super-exponential upper bound in the maximum arity of the pred-
icates. In practice, the arity of the predicates is relatively small, 2-3 in many
realistic Datalog programs and almost never exceeds 10. Thus, assuming a small
constant for the maximum arity of predicates, the transformation takes linear
time in the size of the set of rules, since for each rule, there is a constant number



354 K.T. Tekle, K. Hristova, and Y.A. Liu

of different atoms that can unify with its conclusion, and specialization of a rule
with respect to an atom takes time proportional to its size.

There are Datalog programs for which recursion conversion is not possible;
and specialization cannot succeed in obtaining better running time. In this case,
a transformation method such as magic sets may obtain asymptotic speedup
with tighter complexity bounds, but the worst-case running times of programs
transformed by both our method and magic sets are the same.

5 Comparison

This section discusses the power and limitations of our method in contrast to
other work. We consider 12 versions of the transitive closure: the left, right and
doubly-recursive programs, and for each program, different order of the two rules,
and different order of hypotheses in the recursive rule. We denote the versions
by three fields, the first being the recursion type (right, left, or doubly), the
second being the order of rules (base-first or recursion-first), the third being the
order of hypotheses (regular or inverse). Then for each version, we ask 4 different
kind of queries: both arguments bound, only the first argument bound, only the
second argument bound, and both arguments free. All results are summarized
in Figure 2.

In this figure, we omit the order of rules, because the complexities and in-
ferred facts remain the same for static filtering and magic sets, since they are
bottom-up methods. For tabling, since termination is guaranteed, the complex-
ities and inferred facts also remain the same. However, for Prolog evaluation, if
the program does not terminate, there will be no inferred facts if the recursive
rule is first, otherwise the evaluation will infer some facts, before it gets stuck in
an infinite loop.

Method
Bound Time complexity

argument Left-rec. Right-rec. Doubly-rec.
Regular Inverse Regular Inverse Reg. Inv.

Prolog, Any Infinite
cyclic gr
Prolog, Any Infinite Exponential Exponential Infinite Infinite

acyclic gr

Tabling None O(V 3) O(V × E) O(V 3) O(V × E) O(V 3)
First O(E) O(V × E) O(V 2) O(V × E) O(V 3)

Second O(V 3) O(V 2) O(V 3) O(E) O(V 3)
Both O(E) O(V 2) O(V 2) O(E) O(V 3)

Static None O(V × E) O(V × E) O(R × P )
filtering First O(R(a) × o) O(R × E) O(R × P )

Second O(R × E) O(IR(b) × i) O(R × P )
Both O(R(a) × o) O(IR(b) × i) O(R × P )

Magic None O(V × E) O(V × E) O(V 3)
set First O(R(a) × o) O(E) O(V × R(a) × o) O(V × E) O(V 3)

Second O(V × E) O(V × IR(b) × i) O(E) O(IR(b) × i) O(V 3)
Both O(R(a) × o) O(E) O(E) O(IR(b) × i) O(V 3)

Fig. 2. A comparison of time complexities of computation using existing methods
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Prolog. Prolog evaluation resolves subgoals in a top-down fashion. It has the
general vulnerability that for any version of the transitive closure, for cyclic
graphs, it will not terminate once it enters a cycle, because it will be doomed
to resolve the same subgoals infinitely many times. Even when the input is
restricted to acyclic graphs, it may still not terminate or it may terminate in
exponential time. Prolog does not keep track of discovered vertices and discovers
a vertex through all possible paths, which is exponential in the worst case. For
versions whose first hypothesis is recursive in the recursive rule, the evaluation
will be infinite with respect to all queries regardless of the graph structure. The
doubly-recursive versions are always infinite; what differs is the generated facts
due to the order of rules and hypotheses.

Tabling. Tabling adds memoization to Prolog evaluation to avoid repeating
subgoals. It is guaranteed to be finite and be bounded by O(V 3) for any version
and query. If during tabled execution, one ever encounters a path call with both
arguments free, the time complexity bound will be either O(V × E) or O(V 3).
If one encounters calls to path with both or one of the arguments bound, but
bound to different values during the execution, then the time is O(V × E) or
O(V 3). If one only encounters calls to path with one of the arguments bound to
the same value and the other argument free, then the time is O(E) or O(V 2).
The criterion on obtaining the bounds in Figure 2 is the amount of data kept
for each tabled predicate.

Static filtering and off-line partial evaluation. These are bottom-up
procedures, and are not affected by the order of rules and hypotheses. Static
filtering and partial evaluation work in essence as the specialization procedure
described. Static filtering restricts, i.e. filters, the facts used during the evaluation
using constants in the query. It is vulnerable to changes of the recursion type
in the definition. For example, the method will be able to impose filters on the
first argument for the rules in case the left-recursive version is used and the first
argument is bound in the query, but will not be able to impose any filters on
rules if such a query is asked to the right-recursive version. The doubly-recursive
version is not filterable.

If static filtering yields linear time evaluation, it does so using less than all
edges (except the time to read in all facts); more precisely speaking it only looks
at edges reachable from a, which is bound by R(a)× o. Symmetrically, using the
right-recursive program with the second argument bound, the evaluation only
considers edges that can reach b, which is bound by IR(b)× i.

Dynamic filtering. Dynamic filtering is a version of filtering where the filters
are set according to the underlying database during the evaluation. It is not easy
to analyze, because the complexity measure may drastically change from one
data set to another. As a simplistic overview, we can say that for dense graphs,
dynamic filtering behaves exactly the same as static filtering; in contrast, for
sparse graphs the filters imposed may remain fairly strict and the evaluation
may be better than static filtering, although even for sparse graphs, the filters
may reduce to those imposed by static filtering.
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Magic set transformation. Generalized supplementary magic set transfor-
mation is a transformational method that is used to pass information from one
hypothesis to another to mimick top-down evaluation. The resulting time com-
plexity is not affected by the order of rules, but it is asymptotically affected
by the version of recursion, and the order of hypotheses in the recursive rule.
Another drawback of magic-set variants is that they produce programs that are
significantly larger, containining new predicates, new rules and transformed rules
with new hypotheses. The time complexity of the evaluation of the transformed
programs are O(E) or O(V ×E) depending on how the transformation infers tu-
ples of the given rules using supplementary predicates. For the transitive closure
facts inferred, if the supplementary predicates can restrict one of the arguments
to a specific value, then it is O(E), otherwise it is O(V × E) for the left and
right-recursive versions, and it is always O(V 3) for the doubly-recursive versions
regardless of the queries because no restrictions are possible for at least one of
the two recursive hypotheses.

Our method. We have shown that, if any argument is bound in the query, we
always obtain O(E) time, which is not possible using other methods. We also
present tighter bounds for our method in Figure 2. We believe that our method
is strong because it is at least as efficient as other methods and better most of
the time, when other methods fail to evaluate these rules efficiently with respect
to a query. Also the rules that we generate are simpler, each rule becoming a
specialized version of an original rule with respect to the bound arguments, and
thus can be understood with respect to the original rules. Therefore, combining
all the methods described, i.e., recursion conversion, specialization and program
generation, prove to be a powerful method for efficient on-demand analysis.

A drawback of our method is that the context-free reachability queries [22]
are not effectively specializable using our method, however we believe that this
is not a major drawback since a solution to this problem would be a solution to
the famous open problem for proving lower bounds on such problems.

6 Implementation and Applications

We have implemented the method and applied it to many problems including
program analysis problems. Two examples are described below.

Implementation. The implementation consists of approximately 600 lines of
Python code. Even though the running-time is super-exponential in the arity of
predicates, since this number is generally small, in all the examples discussed
below, the transformations are completed in under 1 second.

Application: strongly connected vertices. A small and illustrative exam-
ple is computing pairs of vertices in the same strongly connected component.
Suppose we use any version of transitive closure and we have the following ad-
ditional rule: path(x,y), path(y,x) → sameSCC(x,y).

Given any argument bound, all prior methods discussed take cubic time in
the number of vertices, since there are two subgoals where one has one argument
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bound, and the other has the other argument bound, therefore resulting in worst
case for at least one of them. Our method generates a program that takes linear
time in the number of edges.

Another interesting predicate is notSameSCC, whose facts are pairs of vertices
that are not in the same strongly connected component, which can be obtained
by negating either one of the hypotheses in the rule defining notSameSCC. First,
if the negated predicate is the first one, then top-down evaluation methods will
not be able to return correct answers due to negation as failure; and in case
this program is rewritten using magic sets, the program does not even remain
stratified, so the evaluation of the resulting program is inefficient.

Application: graph query examples. Graph query languages [8,20,18] ex-
press graph analysis problems as queries on graphs. We take the examples from
[18] for program analysis and model checking problems. For example, given a
start point, to find the program points y such that an uninitialized variable x
is used for the first time, one may write the following expression: y: [start]
(¬(def(x)|use(x)))* use(x)[y].

Intuitively, this says that there is a path from start to y, such that the path
consists of operations that are neither definitions nor uses of x, and the path
ends with a use of x. This is transformed to the following set of rules [20]:

def(x1,x2,x) → deforuse(x1,x2,x).
use(x1,x2,x) → deforuse(x1,x2,x).
¬ deforuse(x1,x2,x) → notdef(x1,x2,x).
notdefs(x1,x2,x), notdef(x2,x3,x) → notdefs(x1,x3,x).
notdefs(start,x2,x), use(x2,y,x) → notdefsuse(start,y,x).

and a query notdefsuse(start,y,x)?would retrieve the answers. For the query
notdefsuse(s,y,x)?, our method produces the following set of rules:

def(x1,x2,x) → deforuse(x1,x2,x).
use(x1,x2,x) → deforuse(x1,x2,x).
¬ deforuse(x1,x2,x) → notdef(x1,x2,x).
notdefs1s(x2,x), notdef(x2,x3,x) → notdefs1s(x3,x).
notdefs1s(x2,x), use(x2,y,x) → notdefsuse1s(y,x).

This program is much faster than the original program, since only the program
points reachable from a particular point s is considered.

Moreover, our method does not require any modification in the presence of
stratified negation and the complexity calculation remains the same since with
stratified negation, negated hypotheses are looked up in the facts. In case the
program is not stratified, we believe that our specialization method still keeps the
semantics of the original program with respect to semantics such as well-founded
semantics and stable model semantics.

Most graph query representations can automatically be translated into Dat-
alog. This has been shown explicitly for GraphLog in [8]. We take examples
from [18] and show the complexity results that our method yields for each of the
problems.

We give a table of problems and associated complexities using our method
in Figure 3. Shorthands like undefvars, openfiles are generally self-explanatory
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Problem Complexity
Uninitialized variables E(start) × undefvars
Live variables E(end) × usedvars
Available expressions E(start) × expr
Constant folding E(start) × def
Files E(start) × files
Freed memory E(start) × freedvars
Interrupts E(start) × savedvar
Security E(start) × openfiles

Deadlock avoidance E(start) × locks2

Deadlocks states × outdegree(act) + E(start)
Livelocks action × states + E(start)

Fig. 3. Time complexities for solving analysis problems

Input Vertices Edges Deadlock Livelock
vasy0 1 289 1224 0.03s 0.01s
cwi1 2 1952 2387 0.09s 0.02s
vasy1 4 1183 4464 0.12s 0.03s
vasy5 9 5486 9676 0.30s 0.06s
cwi3 14 3996 14552 0.43s 0.13s
vasy8 24 8879 24411 0.71s 0.17s
vasy8 38 8921 38424 0.93s 0.25s
vasy10 56 10849 56156 1.35s 0.39s
vasy18 73 18746 73043 2.08s 0.65s

Fig. 4. Experimental results for model checking applications

abbreviations, denoting the number of undefined variables, and the number of
files that are opened, respectively.

All the complexities in Figure 3 are asymptotically better than the results
without specialization, which is O(E × V n) in the worst case, where V is the
number of vertices, and n is the number of variables in the query.

We conducted experiments for deadlock and livelock analysis using the VLTS
benchmark1. Figure 4 shows the results obtained using the specialized rules
automatically generated from the description of the problem using the graph
query language described above. The first two columns show the vertices and
edges in each input file, and the next two columns show the time taken by the
analyses in seconds. The experiments were conducted using the Python 2.4.1
interpreter, on a Core 2 Duo 2.8GHz with 2 GB of free memory, running SuSE
Linux.

The experiments verify the expected results from the time complexity analysis
as they grow linearly with the size of the graph. The unspecialized rules for these
analyses could only complete on the first input, and even an example as small as
the second one could not be completed in 30 minutes. These applications involve
computing reachable vertices from a given start node. We ran experiments on
XSB [24] to perform the same task using different versions of transitive closure,
and verified our bounds presented in Figure 2. For example, given (3) and a query
with the first argument bound, the running time ranged from 1 millisecond for
5000 edges, to 7 milliseconds for 30000 edges, behaving linearly as expected.

1 Available at: http://www.inrialpes.fr/vasy/cadp/resources
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Given the inverse version of (2) for the same data and query, we obtained 830
milliseconds for 5000 edges, and 34280 milliseconds for 30000 edges, reflecting
the O(V × E) bound.

The running times in Figure 4 parallel the results in [18], however they are
worse by a constant factor of about 2.5, because our generated program is in
Python and the results in [18] are obtained using programs in C++.

7 Related Work and Conclusion

Datalog has been extensively studied in the literature [6]. Bottom-up evaluation
strategies originated from näıve evaluation and extended semi-näıve evaluation.
Source-to-source transformations, such as magic set transformations [2,4] for
faster query evaluation, try to mimick the benefits of top-down evaluation.

Although these methods offer a way of possibly faster evaluation, they do not
have a succinct method for calculating the time complexity of the evaluation. A
method that generates imperative programs from Datalog rules was developed
by Liu and Stoller, and the time complexity bounds given by this method are
tighter than the former [19].

Top-down evaluation methods have also been considered for the evaluation
of Datalog programs. For recursive query processing, standard Prolog evalua-
tion [21] is not feasible. An extension for Prolog evaluation called tabling, i.e.,
memoization, has been developed. A particular system that implements tabling
is XSB and has been used for deductive databases [7,24]. One disadvantage for
the evaluation of Datalog programs in a top-down fashion is that, there is no
well-defined way for calculating the time complexity by only analyzing the rules.

Other methods for efficiently evaluating Datalog programs such as static fil-
tering [15] and dynamic filtering [14] have also been proposed. These methods
use special data structures for evaluating Datalog programs rather than using
traditional evaluation engines. For static filtering, the computational complexity
of the evaluation can be analyzed easily from the rules. For dynamic filtering,
however, the computational complexity depends on input data therefore cannot
be determined statically.

Using static filtering for the evaluation a Datalog program can be shown to
be the same as using partial evaluation combined with the program generation
method described. Partial evaluation for logic programming [17] is a general
framework for taking static inputs into account for general logic programs. The
specialization method that we describe in Section 3 is a simplified form of partial
evaluation for Datalog programs.

Borrowing ideas from the theory of grammars for logic programming is natural
since the evaluation of both involve similar components. We have incorporated
one such idea [5] for our conversion between left-recursive and right-recursive
programs. Grammar related ideas for Datalog programs can also be found in,
e.g., [10]. Forms of recursion conversion have been discussed in other contexts as
well. The conversion from doubly-recursive rules to rules with only one recursive
hypothesis is a specific instance of linearization [23,25].
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Our work distinguishes from the previous work in several aspects. Previous
work generally focus on one aspect, such as specialization or evaluation alone.
Our work combines several techniques: using recursion conversion to obtain dif-
ferent programs with the same semantics in order to specialize better, using
specialization for on-demand evaluation, and using automatic program genera-
tion with complexity calculations. These together produce efficient specialized
programs for demand-driven analysis and provide complexity guarantees spe-
cialized for each problem. We have extensively compared and contrasted our
method with previous work, and showed that it outperforms previous methods
in readability, efficiency, and usability: it generates specialized rules that are
simpler than the original rules and are more efficient than using other methods,
for a large class of Datalog programs such as the programs that are generated
from the query language in [20], and the user just provides the set of rules and
the query and our method produces specialized rules for efficient evaluation and
generates a program ready to be executed.

References

1. Afrati, F.N., Gergatsoulis, M., Toni, F.: Linearisability on datalog programs. The-
oretical Computer Science 308(1-3), 199–226 (2003)

2. Bancilhon, F., Ramakrishnan, R.: An amateur’s introduction to recursive query
processing strategies. In: Proc. of the 1986 ACM SIGMOD Intl. Conf. on Manage-
ment of Data, pp. 16–52 (1986)

3. Barker, S., Leuschel, M., Varea, M.: Efficient and flexible access control via logic
program specialisation. In: Proc. of the 2004 ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-based Program Manipulation, pp. 190–199 (2004)

4. Beeri, C., Ramakrishnan, R.: On the power of magic. J. Logic Program-
ming 10(1/2/3&4), 255–299 (1991)

5. Brough, D.R., Hogger, C.J.: Grammar-related transformations of logic programs.
New Generation Computing 9(2), 115–134 (1991)

6. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer,
Heidelberg (1990)

7. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic pro-
grams. J. ACM 43(1), 20–74 (1996)

8. Consens, M.P., Mendelzon, A.O.: GraphLog: a visual formalism for real life recur-
sion. In: Proc. of the 9th ACM SIGMOD-SIGACT-SIGART Symp. on Principles
of Database Systems, pp. 404–416 (1990)

9. Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages for
web information extraction. J. ACM 51(1), 74–113 (2004)
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Abstract. ε-bisimulation equivalence has been proposed in the litera-
ture as a technique to study the concept of behavioral distance between
probabilistic processes. In this paper we consider also two stronger equiv-
alences: action ε-bisimulation and global ε-bisimulation. For each of these
three equivalence notions we propose an SOS transition rule format en-
suring the property of non-expansiveness. Non-expansiveness means that
if the behavioral distance between si and ti is εi, then the behavioral dis-
tance between f(s1, . . . , sn) and f(t1, . . . , tn) is no more that ε1+· · ·+εn.
As expected, the stronger the ε-bisimulation considered, the (slightly)
weaker the constraints of the transition rule format.

1 Introduction

Many investigations on probabilistic concurrent processes are based on the clas-
sical notions of equivalence and congruence, and the underlying ideas of processes
having the same behavior and being inter-substitutable for each other [4,5,10,11,
14, 15,23,24,25,26,28,29,32, 38]. Several authors [1,2, 13,16,17, 19,21,33,34, 35]
argue that this approach is too fragile when numerical values of probabilities
are based on statistical sampling, or are subject to error estimates, or appear in
models obtained as approximations of other, more accurate but less manageable,
models. In these cases it does not seem correct to consider processes that differ
for “very small” probability values just as processes that perform completely
different actions. What is needed is a notion of distance between process behav-
iors, so that two processes are considered approximatively the same when such
a distance is below a suitable bound. Then, a notion is needed to formalize the
intuition that processes being approximatively the same should be approxima-
tively inter-substitutable each other. In [13, 17] a notion of behavioral distance
expressed in terms of numerical values is called non expansive iff, given an oper-
ation f with n arguments, and processes s1, t1, . . . , sn, tn such that the distance
between si and ti is εi, then the distance between f(s1, . . . , sn) and f(t1, . . . , tn)
is bounded by ε1 + · · ·+ εn.

Two approaches have been proposed to measure the behavioral distance be-
tween processes. The approach of [13, 16, 17, 33, 34, 35] is based on the notion
of metric, which, in the probabilistic processes setting, is defined as a function
that associates a numerical value called distance with each pair of processes.
The distance between two processes s and t depends on the distance between
the processes they can reach by performing the same action: The lower the prob-
ability to reach these processes, the smaller the contribution of their distance to
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determine the distance between s and t. The approach of [1,2, 19] considers the
behavioral distance between two processes as bounded by ε if they are equated
by an ε-bisimulation, namely an equivalence that relates two processes iff, for all
actions a and equivalence classes C, the probabilities they have to perform a and
to reach processes in C have difference ≤ ε. This notion of distance is “persis-
tent”, meaning that, since equivalent processes reach equivalent processes, the
equivalence persists during their execution. On the contrary, in the metric ap-
proach it may happen that processes having distance ε have probability < ε
to reach processes having distance greater than ε. The ε-bisimulation approach
seems more appropriate when dealing with persistent properties is of interest.
For instance, in [1,2] several security properties for probabilistic processes based
on ε-bisimulation have been studied, and in [20] it is argued that the persistency
of these properties is determinant to let the system keep its security level when it
is plugged into a dynamic untrusted context that can change the attack strategy
at runtime.

In this paper we pursue the ε-bisimulation approach by introducing two
stronger notions: action ε-bisimulation and global ε-bisimulation. These stronger
notions are motivated by the fact that they are more robust under the point
of view of compositionality, meaning that, as expected, the stronger the equiv-
alence considered, the greater the set of operations f for which the equivalence
is non expansive.

Since [18] a transition rule format is a set of syntactical constraints on the
form of the rules that are used to give the semantics of a process algebra in the
SOS style of [30]. Usually, these formats are used to ensure that an equivalence
relation defined over processes is a congruence. In this paper we propose a rule
format for each of the three notions of ε-bisimulation ensuring that all process
algebra operations are non expansive for the ε-bisimulation considered. We show
that some operations proposed in the literature respect the constraints of our
formats, and we show, by means of some counterexamples, that these constraints
cannot be relaxed in any trivial way. As expected, the stronger the ε-bisimulation
considered, the weaker the constraints of the format.

2 Main Definitions

In this paper we consider the generative (or full) model of probabilistic processes
[37], where a single probability distribution is ascribed to all moves of a process.

Let us use “{|” and “|}” as brackets for multisets.

Definition 1 (GPTS, [3, 4, 9, 37]). A generative probabilistic transition sys-
tem (GPTS) is a 4-tuple (S, Act, I, T ), where S is a set of states, Act is a set
of actions, I is a set of indexes, and T ⊆ S × Act × (0, 1] × I × S is a set of
transitions such that, for all states s ∈ S:∑

{| p | ∃a ∈ Act, γ ∈ I, s′ ∈ S : (s, a, p, γ, s′) ∈ T |} ∈ {0, 1}

Indexes of transitions permit us to distinguish transitions leaving from the same
state, reaching the same state, labeled with the same action and having the same
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probability [37]. Def. 1 requires that each state s ∈ S be probabilistic, namely
the sum of the probability of its outgoing transitions, if there are any, sum up
to 1. Some authors admit that such a sum is a value q such that 0 ≤ q ≤ 1, the
interpretation being that 1− q is the probability to have a deadlock.

Let s
a,p−−→γ s

′ denote that (s, a, p, γ, s′) ∈ T , s −→ s′ that s
a,p−−→γ s

′ for some
a, p and γ, s −→ that s −→ s′ for some s′, and s 
−→ that s −→ s′ holds for no s′.

Let us recall the cumulative probability distribution function [37] μG, which
computes the total probability by which from a state s a set of states S can be
reached through transitions labeled with an action a. Adopting the convention
that the empty sum of probability is 0, μG is defined as follows.

Definition 2 (μG, [37]). μG : S × Act × 2S → [0, 1] is the function given by:
∀s ∈ S, ∀a ∈ Act, ∀S ⊆ S:

μG(s, a, S) =
∑

{| p | s a,p−−→γ s
′ for some γ ∈ I and s′ ∈ S |}

As usual, we shall write μG(s, S) for
∑

a∈Act μG(s, a, S).
For a relation R ⊆ S × S, let R∗ denote the least equivalence relation con-

taining R. For an equivalence relation R ⊆ S × S, let S/R denote the set of its
equivalence classes. Let us recall the definition of bisimulation of [37].

Definition 3 (Bisimulation, [37]). An equivalence relation R ⊆ S × S is a
bisimulation if (s1, s2) ∈ R implies:

∀C ∈ S/R, ∀a ∈ Act : μG(s1, a, C) = μG(s2, a, C)

As in the classic nondeterministic case, bisimulations are closed w.r.t. union.
The following definition is obtained by rephrasing those given in [1,2, 19] for

the reactive model of probabilistic processes.

Definition 4 (ε-bisimulation, [1,2,19]). Given any 0 ≤ ε < 1, an equivalence
relation Rε ⊆ S × S is an ε-bisimulation if (s1, s2) ∈ Rε implies:

∀C ∈ S/Rε, ∀a ∈ Act : |μG(s1, a, C)− μG(s2, a, C)| ≤ ε

The idea in Def. 4 is that if two states are equated by some ε-bisimulation, then
their behavioral distance is ≤ ε. Since Def. 4 and Def. 3 coincide when ε = 0,
the distance between states equated by some bisimulation is 0. Notice that ε-
bisimulations are not closed w.r.t. union. Hence, we cannot give any notion of
“the greatest” ε-bisimulation.

Let us introduce now two stronger notions of ε-bisimulation.

Definition 5 (Action ε-bisimulation). Given any 0 ≤ ε < 1, an equivalence
relation Rε ⊆ S × S is an action ε-bisimulation if (s1, s2) ∈ Rε implies:

∀a ∈ Act :
∑

C∈S/Rε

|μG(s1, a, C)− μG(s2, a, C)| ≤ ε
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Def. 5 is strictly more demanding than Def. 4. For instance, the processes r and
s graphically represented in Fig. 1 (see Table 1 for the meaning of operations)
are equated by the ε-bisimulation R = {(r, s), (b · 0, b · 0), (c · 0, c · 0), (0, 0)}∗
(which is also an action 2ε-bisimulation), but by no action ε-bisimulation.

Definition 6 (Global ε-bisimulation). Given any 0 ≤ ε < 1, an equivalence
relation Rε ⊆ S × S is a global ε-bisimulation if (s1, s2) ∈ Rε implies:

∑
a∈Act,C∈S/Rε

|μG(s1, a, C)− μG(s2, a, C)| ≤ ε

Def. 6 is strictly more demanding than Def. 5. In fact, if we come back to Fig. 1
and to relation R = {(r, s), (b · 0, b · 0), (c · 0, c · 0), (0, 0)}∗, it turns out that R is
an action 2ε-bisimulation, but no global 2ε-bisimulation equating r and s exists
(note that R is a global 4ε-bisimulation).
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Fig. 1. Pairs of states with the same color form an ε-bisimulation, an action 2ε-
bisimulation, and a global 4ε-bisimulation

Intuitively, Def. 3 equates two processes if they have the same probabilistic
branching structure. Def. 4, 5 and 6 admit that their branching structures are
the same modulo an approximation (or error) ε. Def. 4 computes this value ε by
considering the approximations introduced by each pair (a, C) separately. Def. 5
computes ε by considering the several actions a separately, and by summing the
approximations introduced by a for all equivalence classes C. Finally, Def. 6
computes ε by summing the approximations introduced by all pairs (a, C).

2.1 Transition System Specifications

As usual, we assume a language whose abstract syntax is given by a signature,
namely a set Σ of operation symbols together with an arity mapping ar such
that ar(f) ∈ IN for each f ∈ Σ. If ar(f) = 0, then f is called a constant. For a
set of variables Var = {x, y, . . . }, the set of (open) terms over Σ and Var is the
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least set such that: 1) each variable x ∈ Var is a term; 2) f(t1, . . . , tar(f)) is a
term when f ∈ Σ and t1, . . . , tar(f) are terms. Terms without variables are called
closed terms, or processes . Let vars(t) denote the set of the variables of a term
t, defined inductively in the usual way. For a term t with vars(t) = {x1, . . . , xn}
and terms {t1, . . . , tn}, t[x1 → t1] . . . [xn → tn] is the term obtained by replacing
each xi in t with ti.

The semantic model is a GPTS, whose states are processes, and whose transi-
tions are inferred by a set of SOS rules [30] called transition system specification
(TSS). We assume the standard ways [8, 36] to infer transitions from a TSS.

Definition 7 (Non-expansiveness). An operation f is non-expansive (resp.:
action non-expansive, global non-expansive) iff whenever ri and si are equated
by an εi-bisimulation (resp.: action εi-bisimulation, global εi-bisimulation) for
each 1 ≤ i ≤ ar(f), then f(r1, . . . , rar(f)) and f(s1, . . . , sar(f)) are equated by
an ε-bisimulation (resp.: action ε-bisimulation, global ε-bisimulation), where ε =∑

1≤i≤ar(f) εi.

3 Rule Formats

For each ε-bisimulation introduced in the previous section, we present a transi-
tion rule format ensuring non-expansiveness. Let us begin with ε-bisimulation.
We give first the constraints on the rules and, then, the constraints on the set
of rules forming a TSS.

Given a set I ⊆ IN such that I = {i1, . . . , i|I|} and i1 < · · · < i|I|, and the set
of indexes {γi1 , . . . , γi|I|} ⊂ I, let [γi]i∈I denote the sequence γi1 , . . . , γi|I| .

Definition 8 (Safe transition rule). A transition rule ρ for operation f ∈ Σ
is safe iff it is of the form

{xi
ai,pi−−−→δi yi | i ∈ I} {xj 
−→ | j ∈ J}

f(x1, . . . , xar(f))
a,wρ·

∏
i∈I pi−−−−−−−−→(ρ,[δi]i∈I) t

where:

1. I and J are subsets of {1, . . . , ar(f)} such that I ∩ J = ∅;
2. for each i ∈ I, pi is a variable over (0, 1] and δi is a variable over I;
3. t is a term over Σ and {xi | i ∈ {1, . . . , ar(f)} \ I} ∪ {yi | i ∈ I} in which:

(a) each of the variables xi with i ∈ {1, . . . , ar(f)} \ I appears at most once;
(b) each of the variables yi with i ∈ I appears exactly once;

4. wρ is the weight of ρ and satisfies 0 < wρ ≤ 1.

Variables {xi | i ∈ I} are called active variables, transitions {xi
ai,pi−−−→δi yi | i ∈

I} are called active premises, transitions {xj 
−→ | j ∈ J} are called negative

premises, the transition f(x1, . . . , xar(f))
a,wρ·

∏
i∈I pi−−−−−−−−→(ρ,[δi]i∈I) t is called the

conclusion, the term f(x1, . . . , xar(f)) is called the source, the term t is called
the target, and a is called the action of ρ.
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In Def. 8 we assume that the set of indexes I contains an index (ρ) for each
rule ρ having a constant c as source. Moreover, given any rule ρ with active
variables {xi | i ∈ I}, and a set of indexes {γi | i ∈ I} ⊂ I, we assume that also
(ρ, [γi]i∈I) is an index in I.

First of all let us show by means of a counterexample why Def. 8 requires that
each variable yi with i ∈ I must appear in the target term t.

Example 1. Let f be the operation having the following rule ρfa for all a ∈ Act:

x
a,p−−→δ y

f(x)
a,p−−→(ρf

a,δ) 0

The processes r and s in Fig. 1 are equated by the ε-bisimulation {(r, s), (b ·0, b ·
0), (c · 0, c · 0), (0, 0)}∗, but f(r) and f(s) are not equated by any ε-bisimulation.
In fact, the probabilities they have to reach 0 through a differ by 2ε. Intuitively,
the distance between f(r) and f(s) caused by the a moves to 0 is the sum of the
distance between r and s caused by the a move to b ·0 and the distance between
r and s caused by the a move to c · 0. To prevent this, we should replace the
target 0 in each rule ρfa with a term t containing y such that t[y → b · 0] and
t[y → c · 0] are discriminated by all ε-bisimulations.

Let us show now why Def. 8 does not admit duplication of variables, namely,
it requires that each variable yi with i ∈ I cannot appear twice (or more) in
the target t. Similar counterexamples can be given to show why Def. 8 does not
admit that any variable xi with i ∈ {1, . . . , ar(f)}\I appears twice in the target
t, and that any variable xi with i ∈ I appears in t at all.

Example 2 (Duplication). Let f be the operation having the following rule ρfa
for each a ∈ Act:

x
a,p−−→δ y

f(x)
a,p−−→(ρf

a,δ) g(y, y)

Let g be the operation having the following rules ρga and ρga,b for all a, b ∈ Act
with a 
= b, where d ∈ Act:

x1
a,p1−−→δ1 y1 x2

a,p2−−→δ2 y2

g(x1, x2)
a,p1p2−−−−→(ρg

a,δ1,δ2) g(y1, y2)

x1
a,p1−−→δ1 y1 x2

b,p2−−→δ2 y2

g(x1, x2)
d,p1p2−−−−→(ρg

a,b,δ1,δ2) g(y1, y2)

All rules ρfa admit duplication. Let r ≡ a ·(b ·0+
2
3 c ·0) and s ≡ a ·(b ·0+

2
3+ε c ·0).

The relation {(r, s), (b·0+
2
3 c·0, b·0+

2
3+εc·0), (0, 0)}∗ is an ε-bisimulation relating

r and s, but f(r) and f(s) are related by no ε-bisimulation. This follows by the
fact that, for instance, g(b ·0+

2
3 c ·0, b ·0+

2
3 c ·0) and g(b ·0+

2
3+ε c ·0, b ·0+

2
3+ε c ·0)

reach g(0, 0) through b with probability 4/9 and 4/9 + 4/3ε+ ε2, respectively.

Let us show why Def. 8 does not admit double testing, namely, two premises
xi

ai1 ,pi1−−−−→δi1
yi1 and xi

ai2 ,pi2−−−−→δi2
yi2 cannot have the same variable xi in the
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left side. Notice that, since events “xi performs ai1” and “xi performs ai2” are not
independent, their probabilities pi1 and pi2 should be summed when computing
the probability of the move of f(x1, . . . , xar(f)), as in [28]. However, since this
is not the reason for which double testing cannot be admitted, in the example
below we let pi1 and pi2 be composed with an arbitrary function h.

Example 3 (Double Testing). Let f be the operation having the following rules
ρfa,b, for a and b two actions in Act, and ρfc , for all c ∈ Act \ {a, b}.

x
a,p1−−→δ1 y1 x

b,p2−−→δ2 y2

f(x)
a,h(p1,p2)−−−−−−→(ρf

a,b,δ1,δ2) g(y1, y2)

x
c,p−−→δ y

f(x)
c,p−−→(ρf

c ,δ) y

where h : [0, 1]× [0, 1] → [0, 1] is a function. Let g be the operation having the
following rule ρga,b for all actions a, b ∈ Act:

x1
a,p1−−→δ1 y1 x2

b,p2−−→δ2 y2

g(x1, x2)
k(a,b),p1p2−−−−−−−→(ρg

a,b,δ1,δ2) g(y1, y2)

where k : Act × Act → Act is a function injective in {(b, b), (c, c), (b, c), (c, b)}.
Double testing appears in rule ρfa,b. Let r̂ ≡ b · 0 +

1
2 c · 0, ŝ ≡ b · 0 +

1
2+ε c · 0,

r ≡ a · r̂ +
1
2 b · r̂ and s ≡ a · ŝ +

1
2 b · ŝ. The relation {(r, s), (r̂, ŝ), (0, 0)}∗ is

an ε-bisimulation relating r and s, but no ε-bisimulation relates f(r) and f(s).
In fact, both f(r) and f(s) have only one move, taking to g(r̂, r̂) and g(ŝ, ŝ),
respectively. Now, g(r̂, r̂) performs k(b, b) with probability 1/4, whereas g(ŝ, ŝ)
performs k(b, b) with probability 1/4 + ε + ε2.

Notice that in the counterexample above the problem arises since both variables
y1 and y2 appear in the conclusion of rule ρfa,b. A partial form of double test-

ing can be allowed, meaning that premises {xi
ai,j ,pi,j−−−−−→δi,j yi,j |j ∈ J} can be

admitted, provided that only one of the variables yi,j appears in the conclusion.
Let us show why Def. 8 does not admit look ahead, namely active premises

viewing two consecutive moves xi
ai,pi−−−→δi yi and yi

bi,qi−−−→δ′
i
zi of any argument

of f .

Example 4 (Look Ahead). Let f be the operation having the following rules ρfa1,a2

for all a1, a2 ∈ Act:
x

a1,p−−→δ1 y y
a2,q−−→δ2 z

f(x)
g(a1,a2),pq−−−−−−−→(ρf

a1,a2 ,δ1,δ2)
z

where g : Act × Act → Act is a function injective in {(a, a), (a, b), (c, c)}. Let
r ≡ a · (a · 0 +

1
2 b · 0) +

1
2 c · c · 0 and s ≡ a · (a · 0 +

1
2+ε b · 0) +

1
2+ε c · c · 0. Relation

{(r, s), (a · 0 +
1
2 b · 0, a · 0 +

1
2+ε b · 0), (c · 0, c · 0), (0, 0)}∗ is an ε-bisimulation, but

f(r) and f(s) are equated by no ε-bisimulation. In fact, they perform g(a, a) and
reach 0 with probability 1/4 and 1/4 + ε + ε2, respectively.
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Let us show that Def. 8 cannot admit normalization of probability. Namely,
rules cannot admit premises of the form xh

Ah,qh−−−−→, meaning that the overall
probability of the moves in the set Ah ⊂ Act of the hth argument of f is qh,
where qh is used to normalize the probability of the moves of f(x1, . . . , xar(f))
by multiplying their probability per factor 1/(1− qh).

Example 5 (Normalization). Let A ⊂ Act and let \A be the restriction opera-
tion having the following rule ρAa for all actions a ∈ Act \A:

x
a,p−−→δ y x

A,q−−→

x \A
a, p

1−q−−−−→(ρA
a ,δ) y \A

Let r ≡ a · 0 +
2
3 (b · 0 +

1
2 c · 0) and s ≡ a · 0 +

2
3 (b · 0 +

1
2+3ε c · 0). Relation

{(r, s), (0, 0)}∗ is an ε-bisimulation, but no ε-bisimulation relates r \ {a} and
s \ {a}, since they perform b with probability 1/2 and 1/2 + 3ε, respectively.

We can give now the constraints on the TSS.

Definition 9 (Safe TSS). A safe TSS is formed by a set R of safe transition
rules such that, for each operation f ∈ Σ, the set Rf of the rules in R for f is
partitioned into (possibly infinite) sets Rf

1 , . . . ,Rf
n, . . . , such that:

1. Given two sets Rf
u 
= Rf

v , any rule ρu ∈ Rf
u, and any rule ρv ∈ Rf

v , there is
an index 1 ≤ i ≤ ar(f) such that ρu contains an active premise xi

ai,pi−−−→δi yi
for some ai ∈ Act and ρv contains the negative premise xi 
−→;

2. All rules in any Rf
u have the same active variables;

3. Given the set I ⊆ {1, . . . , ar(f)} such that {xi | i ∈ I} are the active vari-
ables of the rules in Rf

u, and a set of actions {ai | i ∈ I}, assume that
ρ1, . . . , ρm, . . . are the rules in Rf

u having as active premises {xi
ai,pi−−−→δi

yi | i ∈ I}. We require that wρ1 + · · ·+ wρm + · · · = 1;
4. For each action a ∈ Act, let Rf,a

u be the subset of the rules in Rf
u having a

as action; the sum of the weights of the rules in any set Rf,a
u is less than or

equal to 1.

The first item in Def. 9 ensures that all moves of a process f(t1, . . . , tar(f)) can
be derived by rules that are in the same set Rf

u. Items 2 and 3 ensure that from
a given set Rf

u we can infer either no move by f(t1, . . . , tar(f)), or moves by
f(t1, . . . , tar(f)) with overall probability 1. Summarizing, items 1–3 ensure that
the probability of the transitions of a process, if there are any, sum up to 1. This
result has been proved in [28], where it is also shown that items 1–3 ensure that
bisimulation is a congruence.

The last item has been introduced for ensuring non-expansiveness. We can
show that it is mandatory by means of a counterexample.

Example 6. Let Act = {a, b, c} and f be the operation having the following rules:

x
a,p−−→δ y

f(x)
a,p−−→(ρf

a,δ) y

x
b,p−−→δ y

f(x)
b,p−−→(ρf

b ,δ) y

x
c,p−−→δ y

f(x)
b,p−−→(ρf

c ,δ) y
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The rules ρfb and ρfc violate Def. 9.4. Let us take the processes r and s in Fig. 1.
They are related by the ε-bisimulation {(r, s), (b · 0, b · 0), (c · 0, c · 0), (0, 0)}∗,
whereas f(r) and f(s) cannot be related by any ε-bisimulation, since they reach
0 through b with probability 1/2− 2ε and 1/2, respectively. Intuitively, f maps
both b and c to b, so that the distance between f(r) and f(s) caused by b is the
sum of the distance between r and s caused by b and that caused by c.

Table 1. Some operations respecting Def. 8 and Def. 9

a
a,1−−→ρa 0 a · x a,1−−→ρa x

x1
a1,p1−−−→δ1 y1 x2

a2,p2−−−→δ2 y2 × injective

x1 | x2
a1×a2,p1·p2−−−−−−−−→

(ρ|
a1,a2 ,δ1,δ2)

y1 | y2

x1
a1,p1−−−→δ1 y1 f injective

x1[f ]
f(a1),p1−−−−−→

(ρ[f]
a1 ,δ1)

y1[f ]

x1
a1,p1−−−→δ1 y1

x1 · x2
a1,p1−−−→(ρ·1

a1 ,δ1) y1 · x2

x2
a2,p2−−−→δ2 y2 x1 �−→

x1 · x2
a2,p2−−−→(ρ·2

a2 ,δ2) y2

x1
a1,p1−−−→δ1 y1 x2

a2,p2−−−→δ2 y2

x1 +p x2
a1,p1·p2·p−−−−−−−→

(ρ+1
a1,a2 ,δ1,δ2)

y1

x1
a1,p1−−−→δ1 y1 x2 �−→

x1 +p x2
a1,p1−−−→

(ρ+3
a1 ,δ1)

y1

x1
a1,p1−−−→δ1 y1 x2

a2,p2−−−→δ2 y2

x1 +p x2
a2,p1·p2·(1−p)−−−−−−−−−→

(ρ+2
a1,a2 ,δ1,δ2)

y2

x2
a2,p2−−−→δ2 y2 x1 �−→

x1 +p x2
a2,p2−−−→

(ρ+4
a2 ,δ2)

y2

x1
a1,p1−−−→δ1 y1 x2

a2,p2−−−→δ2 y2

x1 ‖p x2
a1,p1·p2·p−−−−−−−→

(ρ‖1
a1,a2 ,δ1,δ2)

y1 ‖p x2

x1
a1,p1−−−→δ1 y1 x2 �−→

x1 ‖p x2
a1,p1−−−→

(ρ‖3
a1 ,δ1)

y1 ‖p x2

x1
a1,p1−−−→δ1 y1 x2

a2,p2−−−→δ2 y2

x1 ‖p x2
a2,p1·p2·(1−p)−−−−−−−−−→

(ρ‖2
a1,a2 ,δ1,δ2)

x1 ‖p y2

x2
a2,p2−−−→δ2 y2 x1 �−→

x1 ‖p x2
a2,p2−−−→

(ρ‖4
a2 ,δ2)

x1 ‖p y2

Let us note that the operations in Table 1 respect Def. 8 and Def. 9. In the first
row we have the constant a of [3] and the action-prefixing a · of [1, 9, 12, 37].
In the second row we have the relabeling [f ] of [12, 37], where f is a relabeling
function f : Act→ Act, and the synchronous product | of [21,37], where × is
a function × : Act×Act→ Act. Note that if f and × would not be injective, then
there would be at least two rules with the same action and weight 1 violating
Def. 9.4. In the third row we have the sequential composition of terms ·
of [3]. Then, we have the probabilistic sum +p of [1, 3, 9, 12, 37]. If both
arguments can move, then the first argument moves with probability p and the
second with probability 1 − p. If only one argument can move, then it moves
with probability 1. Rules for action a are partitioned in three sets, one without
negative premises having two rules with weight p and 1−p, one with the negative
premise for the first argument, and the other with the negative premise for the
second argument. Finally, we have the probabilistic interleaving ‖p of [3],
with a similar partitioning of rules into three sets.
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Def. 8 and 9 present a format ensuring non-expansiveness of ε-bisimulations.
Actually, these definitions present a format also for action ε-bisimulations and
global ε-bisimulations. However, we can give two more general formats.

Definition 10 (Action safe TSS). A transition rule ρ for operation f ∈ Σ is
action safe iff it is defined as in Def. 8, except that the constraint 3b is weakened
as follows:
– 3(b) each of the variables yi with i ∈ I appears at most once in t.

An action safe TSS is a set R of action safe transition rules respecting the same
constraints of Def. 9.

For instance, if we take the operation f in Example 1, which does not respect
Def. 8, we note that it respects Def. 10. Example 1 creates problems with ε-
bisimulations since the distance between processes r and s caused by the a-
moves to b · 0 and that caused by the a-moves to c · 0 are considered separately
when computing the distance between r and s, and are summed when computing
the distance between f(r) and f(s) caused by the a moves to 0. This does not
happen with action ε-bisimulation, since the distance between processes r and s
caused by the a-moves to b ·0 and that caused by the a-moves to c ·0 are already
summed when computing the distance between r and s caused by a.

Definition 11 (Global safe TSS). A global safe TSS is a set R of action safe
transition rules respecting the same constraints of Def. 9, except item 4 which is
removed.

For instance, if we take the relabeling operations [f ] in Table 1, we can remove
the constraint on the injectivity of the relabeling function f . A non-injective f
creates problems with action ε-bisimulations. For instance, let us assume that
f maps both a and b to a, and let us take processes r ≡ a · c · 0 +

1
2 b · d · 0

and s ≡ a · c · 0 +
1
2 +ε b · d · 0. We have that r and s are equated by the action

ε-bisimulation {(r, s), (s, r), (c · 0, c · 0), (d · 0, d · 0), (0, 0)}, but r[f ] and s[f ] are
equated by no action ε-bisimulation. The point is that the distance between
processes r and s caused by a and that caused by b are considered separately
when computing the distance between r and s, and are summed when computing
the distance between r[f ] and s[f ] caused by a. This does not happen with global
ε-bisimulation, since the distance between processes r and s caused by a and that
caused by b are already summed when computing the distance between r and s.

We are now ready to state correctness of our three formats.

Theorem 1. All operations in a safe (resp.: action safe, global safe) TSS are
non expansive (resp.: action non expansive, global non expansive).

4 Related and Future Work

In this paper we have studied the non-expansiveness of some notions of behav-
ioral distance between probabilistic processes. We have worked within the gen-
erative model of probabilistic processes of [37], and the ε-bisimulation approach
of [1,2, 19] to measure the distance between processes.
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Other notions of behavioral distance have been studied in the literature [13,16,
17,33,34,35] which are based on the notion of metrics and consider several models
of probabilistic processes. Van Breugel and Worrell consider the generative model
in [34] and the reactive model of [37] in [33, 35]. Desharnais et al. consider the
reactive model in [17] and the alternating model of [23] in [16]. Deng et al.
consider the non alternating model of [31], the reactive, and the generative model
in [13].

A function d : S×S → [0, 1] is called a pseudometric iff, for all s1, s2, s3 ∈ S, it
holds that: d(s1, s1) = 0, d(s1, s2) = d(s2, s1), and d(s1, s3) ≤ d(s1, s2)+d(s2, s3).
In [13] it is proved that, given a pseudometric d, also the function d′ : S × S →
[0, 1] such that d′(s1, s2) is defined as the solution of the following linear program
is a pseudometric:

– maximize
∑

(ai,si)∈Act×S
xi (μG(s1, ai, {si})− μG(s2, ai, {si}))

– subject to
• ∀i : 0 ≤ xi ≤ 1

• ∀i, j : xi − xj ≤
{

1 if ai 
= aj
d(si, sj) if ai = aj

Definition 12 (State metric, [13]). A pseudometric d is called a state-metric
iff, for all 0 ≤ ε ≤ 1, d(s1, s2) ≤ ε implies d′(s1, s2) ≤ ε.

In this approach, the behavioral distance between s1 and s2 is ≤ ε if there is
a state metric d such that d(s1, s2) = ε. In [13] it is proved that, if we take
any relation R ⊆ S × S and the pseudometric dR such that dR(s1, s2) = 0,
if s1Rs2, and dR(s1, s2) = 1, otherwise, then it holds that R is a bisimulation
iff dR is a state-metric. Hence, the distance between states equated by some
bisimulation is 0. This holds also in the ε-bisimulation approach. However, the
ε-bisimulation and the metric approach behave differently with respect to per-
sistency. ε-bisimulation is persistent, meaning that ε-bisimilar processes reach
processes being, in turn, ε-bisimilar. This implies that processes having distance
ε reach processes having the same distance ε. According to the metric approach,
the distance d(s1, s2) between s1 and s2 depends on the distance between the
states that are reached from s1 and s2, the idea being that the lower the prob-
ability to reach these states, the smaller the contribution of their distance to
determine d(s1, s2). This notion of distance is not persistent, in the sense that,
in general, states reached from s1 and s2 may have distance > d(s1, s2). For
instance, the processes r and r′ in Fig. 2 have distance 7

5ε, but the processes
c · 0 +

1
2+2ε d · 0 and c · 0 +

1
2 d · 0 they reach through a have distance 2ε.

In general, the notions of distance behind the metric and the ε-bisimulation
approaches are not comparable. For instance, let us consider once more the
processes r and r′ in Fig. 2. A metric assigning distance 7

5ε to the pair (r, r′)
can be given, whereas no 7

5ε-bisimulation relates r and r′, since the processes
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c · 0 +
1
2+2ε d · 0 and c · 0 +

1
2 d · 0 reached through a from r and r′, respectively,

are equated by a δ-bisimulation only if δ ≥ 2ε. On the other side, let us consider
the processes r, r′, s, s′, t, t′ in Fig. 3. A global 2ε-bisimulation equating r and r′

(and also the pair (s, s′), and the pair (t, t′)) can be given, whereas any metric
assigns to r and r′ a distance not less than ε+ 21

16ε (the distance between t and
t′ is at least ε, and the distance between s and s′ is at least 7

4ε).
The notions of metrics and approximate bisimulation have been already in-

vestigated in [22], but in the model of Metric Transition Systems, where approx-
imate bisimulation can be defined as a metric. We work in a different setting,
since in Metric Transition Systems states are equipped with observations and
both the state space and the observation space are equipped with metrics, but
transitions do not carry any quantitative information.

Rule formats for probabilistic calculi have been already studied in [6,7] for the
reactive case from a categorial perspective, and in [28] for both the generative
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and the reactive case. Formats of [6, 7, 28] ensure the congruence property of
bisimulation, and have constraints weaker than those of the present paper. The
reason is that several operations preserve bisimulation but are not non expansive
w.r.t. ε-bisimulations.

Our work can be extended in several directions. Notions of ε-bisimulations
can be given for the reactive, alternating and non-alternating model of prob-
abilistic processes, and formats guaranteeing non-expansiveness of operations
can be studied as well. In particular, the development for the reactive is very
close to that we have considered. Notice that, since the overall probability of the
transitions leaving from a state and labeled with a given action a, if there are
any, is 1, the problems that have been considered in Example 1 do not emerge,
thus implying that the format for ε-bisimulation can be slightly more general.
Formats for non-expansiveness could be proposed also for the metric approach
of [13, 16, 17, 33, 34, 35]. Moreover, the definition of non-expansiveness could be
replaced by a weaker one, by replacing ε = ε1 + · · · + εar(f) in Def. 7 with
ε = h(ε1, . . . , εar(f)), for a suitable function h. If h is polynomial, the definition
can be reasonable. In fact, if we assume that ε, being an approximation, is a value
reasonably near to 0, all polynomial terms with degree > 1 could be treated as
0, and the only relevant terms are constants and terms of degree 1. Most of op-
erations considered in counterexamples of the present paper that do not respect
Def. 7 would respect such a modified version of non-expansiveness. Finally, let
us note that in [27] a rule format for bisimulation in stochastic process calculi
has been recently proposed. One could investigate whether defining notions of
“error” and ε-bisimulation in such a setting is of interest, thus working on the
format for the ε-bisimulation.
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Abstract. In this paper, we present a novel approach that establishes
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errors in C code. We extend the standard C type system with effect,
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We define static memory checks to detect memory errors using these an-
notations. The statically undecidable checks are delegated to dynamic
code instrumentation to secure program executions. The static analysis
guides its dynamic counterpart by locating instrumentation points and
their execution paths. Our dynamic analysis instruments programs with
in-lined monitors that observe program executions and ensure safe-fail
when encountering memory errors. We prototype our approach by ex-
tending the GCC compiler with our type system, a dynamic monitoring
library, and code instrumentation capabilities.

1 Introduction

Security was not part of the design of the C language, thus programming with
C is error-prone. In fact, among the main objectives of C are performance and
portability. Therefore, it provides programmers with low-level control over mem-
ory allocation, deallocation, and layout. Unfortunately, this flexibility and wide
control given to programmers are an enormous source of several security flaws.

In this paper, we focus on memory errors in C code that may result in buffer
overflow, denial of service, code injection, memory leaks, etc. Both static analysis
techniques and runtime verification techniques can be used to detect memory
errors. Static analysis operates at compilation time and offers the advantage of
detecting errors at early stages of software development. However, the conserva-
tive nature of static analysis is prone to generate false alarms. Moreover, some of
the memory errors require runtime information in order to be discovered. On the
other hand, dynamic analysis detects runtime errors during program execution.
It yields precise analysis results but comes with a notable performance cost.
� This research is the result of a fruitful collaboration between CSL (Computer

Security Laboratory) of Concordia University, DRDC (Defense Research and De-
velopment Canada) Valcartier and Bell Canada under the NSERC DND Research
Partnership Program.
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Undecidability is a reality in static analysis that we face very often, especially
with imperative programming languages. For instance in C, pointer analysis
such as aliasing is statically undecidable. To remedy this issue, the solution is
to resort to dynamic analysis while leveraging the information gathered during
the static analysis. Therefore, there is a desideratum that consists in designing
and implementing hybrid approaches that establish a synergy between static and
dynamic analyses to detect safety and security violations.

Pioneering and interesting contributions have been made in [1,2,3]. They com-
bine static and dynamic analyses for detecting memory errors in C source code.
Most of these approaches require modifications to the source code and to the
data structures’ memory layout. These modifications result in binary compat-
ibility issues of the analyzed code. Moreover, these techniques define a static
analysis that relies heavily on the dynamic counterpart to decide on the safety
of memory operations. For instance, CCured [1] does not consider control flow
analysis and alias analysis that can help reducing the number of runtime checks.

In this paper, we define a hybrid approach that establishes a modular synergy
between static and dynamic analyses for detecting memory errors. By modular,
we mean that no tight coupling is needed between the two analyses in a sense that
each analysis can be applied separately to verify memory safety of programs. The
synergy is achieved through an effect-based interface in order to remedy static
undecidability and to reduce the number of runtime checks.

The core idea involves a two-phase analysis, in which the first phase performs
a flow-sensitive type analysis to ensure memory safety. We define a type system
for the C language that propagates lightweight region, effect, and host anno-
tations relevant for memory management. These annotations are used by our
defined static checks to detect memory errors. Statically undecidable checks are
considered by the dynamic analysis of the second phase.

The theoretical model underlying our dynamic analysis is inspired by the for-
malism of Team Edit Automata [4]. This is an extension of the well-established
model of edit automata [5]. The latter is an automata-based approach for mod-
eling monitors that enforce security properties for dynamic analysis. It gives the
possibility to insert and suppress actions in the program and to halt program ex-
ecution when facing a security violation. The Team Edit Automata model com-
bines the powerful enforcing capabilities of edit automata into a component-
interactive architecture. It allows us to specify correlative security properties in
software program more accurately. We adapt this model for ensuring memory
safety in C code. A team edit automaton is used to monitor the states and inter-
action of each dynamically allocated memory block and its referencing pointers.
The monitors report errors and safely halt programs at their runtime.

The effects [6] collected during type analysis provide an interface to interact
with our dynamic analysis. It guides code instrumentation by locating stati-
cally undecidable memory operations, so as to reduce the number of runtime
checks. We characterize these undecidable cases with dunno points that define
the needed runtime check, the pointer to check, the program point and the exe-
cution paths of the suspected operation. In fact, we do not use fat pointers that
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modify memory layouts of data structures and cause binary compatibility issues
such as in [1,2].

The main contributions of this paper are the following:

– A new type system based on lightweight region, effect, and host annotations
for detecting memory errors in C source code. We endow our type system
with static checks that use these annotations to verify and ensure the safety
of pointer usages.

– A new program monitoring technique for detecting memory errors in C pro-
grams based on the Team Edit Automata model [4].

– A synergy between static analysis and dynamic analysis where the generated
effect annotations are used to guide code instrumentation.

– A prototyped GCC extension that statically type-checks C programs for
memory errors and allows for general-purpose code instrumentation for the
sake of dynamic analysis.

This paper is organized as follows: Section 2 introduces the annotations of our
type system. Section 3 describes the typing rules. Section 4 outlines the static
memory checks performed during our type analysis. Section 5 presents the code
instrumentation for ensuring memory safety. Section 6 is dedicated to the synergy
between the static and the dynamic analyses through the effect-based interface.
Preliminary experiments and a case study are presented in Section 7. We discuss
the related work in Section 8 and conclude this paper in Section 9.

2 Security Annotations

We illustrate our analysis on an imperative language, presented in Figure 1,
that captures the essence of the C language. Expressions e comprise lvalues
and rvalues. The rvalues include integer scalar n, dereferencing expression ∗rv,
and pointer arithmetic e op e′. The lvalues lv are access paths to memory lo-
cations through variables and dereferenced pointers. The statements s include

Expressions e ::= lv | rv

Rvalues rv ::= n | ∗rv | e op e′

Lvalues lv ::= x | ∗lv
Statements s ::= s1; s2 |if b then s1 else s2 |while b do s

| free(lv) | lv = malloc(e) | lv = e
Declared Types κ ::= void | int | ref (κ)
Inferred Types τ ::= void | intη | ref ρ(κ)η | if 
(τ, τ ′)
Regions r ::= ∅ | � | ρ | {ρ1, . . . , ρn}
Hosts η ::= ∅ | [malloc] | [dangling ] | [wild ] | [&τ ]
Effects σ ::= ∅ | σ; σ′ | if 
(σ, σ′) | rec
(σ) | alloc(ρ, �) | dealloc(r, �)

| arith(r, �) | read(r, τ, �) | assign(r, τ, �)

Fig. 1. Type algebra for an imperative language
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the control flow constructs (sequencing, conditionals, and loops), the dealloca-
tion operation free(lv), the allocation operation lv= malloc(e), and assignment
operations. We extend the standard C type system with annotations relevant to
memory safety that we outline in the following paragraphs.

The domain of inferred types decorates the declared types with effect, region,
and host annotations inserted at the outermost level. Moreover, we define a
conditional type construct if �(τ, τ

′) to capture the types of an expression after
a branching condition at program point 
. The type τ is assigned on the true
branch, whereas the type τ ′ is assigned on the false branch. These types are
equal modulo region and host annotations.

The domain of regions, ranged over by r, is intended to abstract dynamic
memory locations and variables’ memory locations. Region variables with un-
known values are ranged over by &. Values drawn from this domain are ranged
over by ρ. We use the notation {ρ1, . . . , ρn} to represent the disjoint union of
regions a pointer may refer to at a given program point. A pointer type ref ρ(κ)η

is annotated with its memory location ρ.
The host annotation η indicates the content and the status of its correspond-

ing memory location. The element malloc denotes an allocated pointer to an
uninitialized value. The element dangling defines a freed memory location. The
element wild indicates unallocated pointer or uninitialized integer value. The
element &τ stands for a region holding a value of type τ .

The annotations are initially inferred at declaration time. We define the ”̂”
operator: given a declared type κ, it infers a type τ = κ̂ with a host annotation
set to [wild ] and an unknown region &. On the other hand, the ” ¯ ” operator
suppresses all the annotations of inferred types to recover their corresponding
declared types. For conditional types it yields the following: if �(τ, τ ′) = τ̄ = τ̄ ′.

The domain of effects captures the side effect of memory operations. We use
∅ to denote the absence of effects. The term σ;σ′ denotes the sequencing of σ
and σ′. Each effect records the program point 
 where it is produced. The effect
if �(σ, σ′) refers to a branching condition at program point 
, where the effects σ
and σ′ are produced at the true branch and the false branch, respectively. The
effect rec�(σ) stands for a recursive effect generated in a loop construct at pro-
gram point 
. The effects alloc(ρ, 
) and dealloc(r, 
) denote memory allocation
and deallocation, respectively. The effect arith(r, 
) captures pointer arithmetics.
The effects read(r, τ, 
) and assign(r, τ, 
) represent reading and assigning a value
of type τ , respectively. The collected effects define a tree-based model of the pro-
gram that abstracts memory operations with control-flow and alias information.
We use this model to establish a synergy with the dynamic analysis as defined
in Section 6.

3 Flow-Sensitive Type System

In this section, we present the typing rules of our imperative language. The main
intent of these rules is to apply static checks in order to ensure memory safety.
Some memory operations can not be statically guaranteed to be safe. As such,
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we resort to dynamic analysis to monitor the execution of these operations and
prevent runtime errors as detailed in Section 6. The typing judgements of our
type system are the following:

– The judgement for expressions E 0 
, e : τ, σ states that under typing en-
vironment E and at program point 
, the expression e has type τ and the
evaluation of e yields the effect σ.

– The judgement for statements is of the form E 0 
, s, E ′, σ which expresses
that under typing environment E and at program point 
, the execution of
statement s produces the effect σ and yields a new environment E ′.

The environment E is constructed at variable declaration, it maps variables to
inferred types with host annotation initialized to [wild ] and unknown region
variable &. These annotations are flow-sensitive and are allowed to change from
one program statement to another. Moreover, we resort to flow-sensitive alias
analysis to change the annotations of aliases that are indirectly modified at each
program statement. We define the recursive algorithm updEnv(), used in state-
ments typing rules, for updating the environment E with new type annotations
of a directly assigned variable and all its aliases. For space constraint, we do not
give the algorithm of the updEnv () function.

For precision sake, we consider control-flow statements so as to infer types for
each execution path of the program. We define hereafter, the rule (cond) that
derives types for each conditional branch:

(cond)
E � �, b : bool, ∅ E � �′ , s1, E ′, σ1 E � �′′, s2, E ′′, σ2

E � �, if b then s1 else s2, E ′ �
 E ′′, if 
(σ1, σ2)

The merge operator �� is as following:

(E �
 E ′)(x) =

⎧⎪⎨
⎪⎩
E(x) if x /∈ Dom(E ′),

E ′(x) if x /∈ Dom(E),
if 
(E(x),E ′(x)) if x ∈ E(x) ∩ E ′(x).

The if �(E(x), E ′(x)) construct states that x is of type E(x) at the true branch
and of type E ′(x) at the false branch. The loop statement is typed as a recursive
condition statement.

4 Static Memory Checks

We focus on the typing rules for pointer dereferencing, pointer deallocation, and
pointer assignment. A detailed description of our typing rules is given in [7].
To facilitate the understanding of the typing rules, we first define the following
auxiliary functions: (1) regionof (τ) that returns the region annotations of type
τ , (2) the function hostof (τ) that returns the host annotation of type τ , (3) and
the function storedType(τ) that extracts the actual type of a pointer from its
host annotation.
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4.1 Safe Dereferencing of Pointers

The rule (deref) returns the actual type referred to by a pointer as defined in
Figure 2. The dereference is guarded by the safeDeref () check that fails for void

(deref)

E � �, e : τ, σ safeDeref (e, τ, σ, �)
τ̄ = ref( ) r = regionof (τ ) τ ′′ = storedType(τ )

E � �, ∗e : τ ′′, (σ; read(r, τ ′′, �))

safeDeref (e, ref ρ(κ)η, σ, �) = (κ �= void) ∧ (η /∈ {wild , dangling}) ∧ (arith(ρ, �) /∈ σ)

safeDeref (e, if 
(τ, τ ′), σ, �) = safeDeref (e, τ, σ, �) ∧ safeDeref (e, τ ′, σ, �)

Fig. 2. Typing rule for safe pointer dereferencing

pointers, freed pointers, unallocated pointers, and null pointers. Since we do not
perform static bounds checking, it also fails for arithmetic pointers that have an
effect arith(r, 
) related to their regions. We issue a dunno point to indicate that
runtime bounds checking is required as described in Section 6.

4.2 Safe Assignment

The rule (assign) defined in Figure 3 assigns a value to a memory or a variable
lvalue. The assignment is guarded by the safeWrite() that fails if the declared

(assign)

E � �, lv : τ, σ E � �, e : τ ′, σ′ safeWrite(e, τ ′, τ, �)
r = regionof (τ ) E ′ = updEnv (E , lv = e, �)

E � �, lv = e, E ′, (σ; σ′; assign(r, τ ′, �))

safeWrite(e, τ ′, τ, �) = (hostof (τ ′) = [&τ ′′]) ∧ (τ̄ = τ̄ ′ = τ̄ ′′)

safeWrite(e, if 
(τ
′, τ ′′), τ, �) = safeWrite(e, τ ′, τ, �) ∧ safeWrite(e, τ ′′, τ, �)

Fig. 3. Typing rule for safe assignment

types of the right operand and the left operand are not the same. It also fails
for uninitialized right operands. The updEnv() propagates the type annotations
from the right operand to the left operand and updates the annotations of the
left operand aliases accordingly.

4.3 Safe Memory Deallocation

The (free) rule in Figure 4 conservatively deallocates all memory locations in
r pointer lv may refer to. The safeFree() check fails for unallocated, dangling
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(free)

E � �, lv : τ, σ safeFree(lv, τ, σ, �) τ̄ = ref ( )
r = regionof (τ ) E ′ = updateEnv (E , free(lv), �)

E � �, free(lv), E ′, (σ; dealloc(ρ, �))

safeFree(e, ref ρ(κ)η, σ, �) = (η �= {wild , dangling}) ∧ (alloc(ρ, ) ∈ σ)

safeFree(e, if 
(τ, τ ′), σ, �) = safeFree(e, τ, σ, �) ∧ safeFree(e, τ ′, σ, �)

Fig. 4. Typing rule for safe memory deallocation

and null pointers. It also fails for region ρ that is not dynamically allocated,
i.e, the effect alloc(ρ, ) is not present in the current effect model σ. The call to
updateEnv() yields a new environment E ′ where the host annotation of lv and
of all its aliases is set to [dangling ].

4.4 Static Analysis Limitations

As for all static analysis approaches, our type analysis faces undecidability issues
for the following cases:

– Undecidability occurs when the static security checks are performed on an
expression of type τ = if�(τ, τ ′). We conservatively entail that all types
defined in the conditional type τ must pass the security check. If one of
the types fails our analysis is undecidable and generates a dunno point to
indicate that a runtime check is needed to spot the potential vulnerable
paths.

– False positives occurs when the detected vulnerable paths are actually infea-
sible. In fact, our analysis is path-insensitive and does not prune infeasible
paths. As such, a failed check may result in a false positive alert. For pre-
cision sake, we generate dunno points to indicate that dynamic analysis is
needed to verify the feasibility of vulnerable paths spotted during the static
analysis.

5 Dynamic Analysis

This section introduces the details of our dynamic analysis techniques. It out-
lines respectively the definition of Team Edit Automata and its application for
detecting memory management errors in our dynamic analysis phase.

5.1 Automata-based Program Monitoring

We use program monitors based on the Team Edit Automata model introduced
in our previous publication [4]. In brief, a team edit automaton consists of one or
multiple component edit automata. Each component checks a security property
of a particular program element such as pointers. The capabilities of the compo-
nent edit automata include: (1) Error Report of a runtime error, (2) Suppression
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of illegal actions and halt of the program if necessary, and (3) Insertion of re-
medial actions in the monitored program.

5.2 Coping with Memory Errors

We define two types of component edit automata to specify the legal behavior
of pointers and dynamic allocated memory, respectively. At program execution,
each dynamically allocated memory block is monitored by a component edit
automaton, so is each pointer variable. We consider a dynamic memory block
and its referencing pointers as a unit by grouping their corresponding component
edit automata into a team edit automaton.

The nodes of an automaton represents its state. Each transition of an automa-
ton has a (I&C/O) label that denotes an input action I with a guard condition
C and an output action O. An input action can either be the execution of a
memory operation from the analyzed code or a communication action between
automata that form a team. The output action defines the monitoring capabili-
ties of the automata. It can either be halting harmful execution with an eventual
error reporting or a safe execution of the monitored action with an eventual com-
munication action to interact with the team automata. We use the notation Ai

to define the output communication action of an automaton.

5.3 Monitoring Dynamic Memory Blocks

The component edit automaton modeling dynamically allocated memory blocks
is illustrated in Figure 5. The automaton starts monitoring a dynamic memory
block when it’s allocated on heap. If the memory block is going to be deallocated
(input action a7), the automaton emits the deallocation action then inserts an
A2 = invalidatePtr communication action. The latter invalidates all pointers
referring to the freed block. Upon memory reading (input action a4), the memory
initialization guard c3 must hold true. Similarly, upon memory writing (input
action a3), communication action A1 = setInitialized(addr) is inserted into the
automaton output to update the initialization status of the written address. The
life cycle of the automaton stops when no more pointers reference the memory
block.

Fig. 5. Component edit automaton modeling dynamic memory blocks
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In order to detect illegal access to uninitialized and out-of-bounds memory
locations, we use a bitstream to bookkeep the initialization status of the dy-
namically allocated memory blocks. Each byte of allocated memory has a corre-
sponding bit to record its current initialization status. The four memory checks
applied by the monitors of the memory block automaton are the following: (1)
DblFree detects double-free error, (2) RUninitMem detects reading access to
uninitialized memory, (3) RWDeallocMem : detects access to freed memory, and
(4) MemLeak : detects memory leak.

5.4 Monitoring Pointers

The component edit automaton modeling pointers is illustrated in Figure 6. The
automaton starts monitoring a pointer variable once it is declared and stops
when the pointer variable exits its declaration scope. Whenever the pointer is
assigned to reference a memory block (input action a3), the automaton emits
this action and inserts communication action A1 = addRefPtr (addr) to inform
the corresponding dynamic memory block. Similarly, once the pointer is freed
(input action a4) or set to null pointer (input action a2), the automaton inserts
action A2 = delRefPtr to withdraw itself from the team edit automata of the
referenced memory block. The two memory checks applied by a pointer edit
automaton are: (1) DerefNullPtr : detects null pointer dereference error, and (2)
DerefWildPtr : detects wild (uninitialized or freed) pointer dereference error.

null

a = a2 | a4 / a
a = a1 / a

initialized

a = a3 / a;A3 a = a2 / a;A2

a = a6 | a7 / r
DerefWildPtr 

a = a3 / a;A1

wild

a = a3 / a;A2;A1

a = a6|a7 /
a;[a==a6?A4;A3]

a = a1 / a
a = a2

a = a2 | a4 / a;A2

dieOut

a = a5 / a;A2

a = a5 / a;A2

a = a5 / a;A2

error a = a6 | a7 / r
DerefNullPtr

a1 := assignWildPtr
a2 := assignNull
a3 := assignAddr(addr)
a4 := free
a5 := invalidatePtr
a6 := derefRead
a7 := derefWrite

A1 := addRefPtr(addr)
A2 := delRefPtr
A3 := write(addr)
A4 := read(addr)

Fig. 6. Component edit automata modeling pointers

6 Establishing a Synergy

This section illustrates the synergy between the static and the dynamic anal-
yses for detecting and preventing memory errors. We use the generated effect
model to locate program points and execution paths of statically undecidable
memory operations. The effect model defines the novelty of our hybrid approach
in a sense that it allows us to collect relevant information for dynamic analysis
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without using fat pointers as in CCured [1], SafeC [2], and Cyclone [3]. Hence,
our approach does not have binary compatibility issues encountered when using
fat pointers as in the aforementioned tools.

6.1 Locating Dunno Points

Statically undecidable cases defined in Section 4 are captured by dunno points
that we define as a four tuple 〈dynCheck , e, 
, T 〉: (1) the first element is a tag
that describes the needed runtime check, (2) the second element is the program
expression that needs to be monitored, (3) the third element indicates the pro-
gram point of the suspected operation, (4) the last element represents the set of
vulnerable execution paths.

The function runtimeVerif (), defined in Figure 7, takes as input the set of
failed static checks and the generated effect model Σ of the whole analyzed
program. It outputs a set of dunno points where code instrumentation is needed.
We define the function DfsPath() that takes as argument a region ρ, a program
point 
 and the effect model Σ. It performs a Depth-First-Search (DFS) traversal
of the tree-based model Σ to extract all execution paths to program point 
,
where region ρ is accessed. The function runtimeVerif () outputs the following
set of dunno points :

– 〈Wild , e, 
, T 〉: check if pointer e is referring to a valid memory location before
dereferencing at program point 
 for all execution paths in T .

– 〈Bounds , e, 
, T 〉: check if pointer e is not out-of-bounds before dereferencing
at program point 
 for all execution paths in T .

– 〈DblFree, e, 
, T 〉: check if pointer e has already been freed before freeing at
program point 
 for all execution paths in T .

– 〈StkFree, e, 
, T 〉: check if pointer e refers to a dynamic memory location
before freeing at program point 
 for all execution paths in T .

– 〈InitRv , e, 
, T 〉: check if right-hand-side operand e has an initialized value
at program point 
 for all execution paths in T .

Notice that we establish a modular synergy where the static analysis is not
coupled with a specific dynamic analysis. It defines an interface to communicate
dunno points that can be used by any code instrumentation approach to detect
more vulnerabilities in C source code. In what follows, we illustrate how our
dynamic analysis defined in Section 5 uses the dunno points to instrument the
analyzed source code with execution monitors.

6.2 Instrumenting with Dunno Points

In order to reduce the number of runtime checks in the analyzed code, our
dynamic analysis only considers statically undecidable memory operations. We
illustrate in Figure the dunno points produced by our static analysis and the
corresponding dynamic analysis strategies for each type of memory errors in C
source code. As we mentioned previously, the dunno points include a set T of
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Function runtimeVerif (check(e, τ, , �),Σ) =
case τ of
if 
(τ

′, τ ′′) ⇒ if check(e, τ ′, , �) then runtimeVerif (check(e, τ ′′, , �), Σ)
else runtimeVerif (check(e, τ ′, , �),Σ)

else ⇒ let ρ = regionof (τ ), T = DfsPath(ρ, �, Σ)
in

case check ( ) of
safeRead(e, τ, σ, �) ⇒ if (arith(ρ, �′) ∈ σ)

then 〈Bounds , e, �, T 〉
else 〈Wild, e, �, T 〉

safeFree(e, τ, σ, �) ⇒ if (alloc(ρ, �′) ∈ σ)
then 〈DblFree , e, �, T 〉
else 〈StkFree , e, �, T 〉

safeWrite(e, τ, τ ′, �) ⇒ 〈InitRv , e, �, T 〉
end

end

Fig. 7. The function runtimeVerif extracts the set of dunno points where code instru-
mentation is required

Interfacing Static and Dynamic Analyses
Memory Errors Dunno Points Dynamic Monitors

deref_unalloc 〈Wild , e, �, T 〉
instrument monitors along T :
detect with DerefWildPtr , RWDeallocMem,
and DerefNullPtr

deref_OOB 〈Bounds, e, �, T 〉 instrument monitors along T :
detect with RUninitMem

assign_uninit 〈InitRv , e, �, T 〉 instrument monitors along T :
detect with RUninitMem

double_free 〈DblFree, e, �, T 〉 instrument monitors along T :
detect with DblFree

free_unalloc 〈StkFree, e, �, T 〉
instrument monitors along T :
record all dynamic memory allocation
and detect with address hash failure

Fig. 8. Interface between static and dynamic analyses

program traces that lead to the suspected memory operations. We instrument
monitoring codes along the traces T to check program actions such as memory
allocation, deallocation, and pointer dereferencing, etc.

7 Preliminary Experiments

In this section we present the preliminary version of our tool used to conduct
small-scale experiments. We also illustrate our approach through a sample code.

7.1 Extending the GCC Compiler

We prototyped the dynamic analysis of our approach as an extension to the GCC
compiler for the C programming language. Our implementation is based on the
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GCC core distribution version 4.2.0. The implementation of our dynamic analysis
consists of two parts. Firstly, the program monitors are written in C++ and built
into our shared library named SecgccInstrSharedLib.sowith C interfaces. Sec-
ondly, we added a code instrumentation pass to the GCC optimization phase. The
instrumentation is accomplished by injecting function calls to our analysis library
on the intermediate representation of the monitored programs. We defined a sim-
ple language to specify the instrumentation guide, that enables us to instrument
codes at function call, function exit, variable declaration, variable read, variable
write, end of variable life cycle, and pointer dereference. To enable our dynamic
analysis, we pass -ftree-security-instrument as a command-line option to the ex-
tended GCC compiler. We took the package gzip version 1.2.4. to conduct experi-
mental performance measurements of our dynamic analysis. The code instrumen-
tation is done by inserting function SecInstr_Allocatebefore all malloc function
calls to bookkeep allocated memory blocks, and inserting function SecInstr_-
Deallocate before all the free function calls. These two aforementioned instru-
mental functions belong to the shared library SecgccInstrSharedLib.so, which
is used to detect memory errors in C code.

We compressed the tar file of the linux kernel version 2.6.0 (linux-2.6.0.tar) of
size 178.7 MB using the gzip program and the gunzip program part of the gzip
package. The overhead induced by our instrumented code is presented in our
experiments results in Table 1. For now, we are prototyping our type analysis in
order to reduce the number of needed runtime checks and enhance the perfor-
mance of the instrumented code. We are able to conduct small case study with
our complete hybrid approach as illustrated later in this section. The static anal-
ysis is enabled with the -ftree-type-inference command-line option. It generates
warnings when memory errors are detected. Statically undecidable operations,
i.e. dunno points, are stored in external files as an instrumentation guide.

7.2 Case Study

We use the sample code of Figure 9 to illustrate our approach. The console
output (a) in Figure 10 is generated by our static analysis. The static phase also
generates the instrumentation guide given in part (b) of Figure 10.

All memory allocations are guarded by the Secinstr_Allocate monitors in
order to bookkeep the dynamically allocated memory blocks and detect out-of-
bounds access. The static dunno point at line 15 indicates that a bound check-
ing is required for the memory access via buf1. As such, the run-time monitor
Secinstr_PointerDeref is injected before buf1 dereference. The dereferences of

Table 1. Preliminary experiments results

Compression tool Compression time
original tool

Compression time
instrumented tool

Ratio

gzip 14000 ms 20000 ms 1.428

gunzip 4000 ms 5000 ms 1.25
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Fig. 9. Example to illustrate our approach

              

Fig. 10. Dunno points generated by the type analysis

buf4 at line 22 and line 27 are statically stated to be safe and do not require run-
time monitoring. For the free operations, only the deallocation of buf2 on line 30
should be checked for double free error. The free operation of buf3 is unsafe and
should be removed since buf3 is referring to the memory region of variable x.

8 Related Work

Detecting security property violations at runtime can be accomplished by
various means. For example, the Debug Malloc Library (Dmalloc) [8] is a drop-
in replacement for the system free and malloc family functions. The replac-
ing functions keep track of the program dynamic memory management actions
and detect illegal memory accesses. Purify [9] and Valgrind [10] monitor each
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memory access and detect memory leaks. Unlike our approach, these tools do not
interact with static analysis in order to decrease the number of runtime checks.
Moreover, they use a mark and sweep technique for detecting memory leaks that
make them unsuitable for usage during production time. Mprof [11] is a dynamic
tool for detecting memory leaks, however it does not perform any memory ac-
cess checks. The literature contains several proposals on hybrid approaches. The
approach defined in [12] is used to detect buffer overflows and does not provide
checks to detect the dereference of dangling pointers nor memory leaks. Other
approaches such as CCured [1] and SafeC [2] combine static and dynamic anal-
ysis for memory and type errors. CCured and SafeC use fat pointers to retain in
memory temporal and bounds information required for runtime checks. Chang-
ing the data representation in memory results in compatibility problems of these
tools with external libraries. Our approach does not have compatibility problems
since we do not modify memory layouts of objects. Both CCured and SafeC do
not provide execution paths that lead to runtime errors as we do. Therefore, our
analysis can be used to guide path coverage for testing purposes. Cyclone [3]
and Vault [13] are safe alternatives for the C language that prevent memory and
type errors.

9 Conclusion

In this paper, we presented a novel approach that combines static and dynamic
analysis for detecting memory errors in C source code. The static analysis ex-
tends the C type system with effect, region, and host annotations that are rele-
vant to secure memory management. We defined security checks based on these
annotations to detect illegal memory operations. The checks resort to dynamic
analysis when runtime information is required for accurate analysis. We used
program monitors to dynamically verify memory manipulation. Our approach
reduces the runtime overhead of the monitored programs, in that the monitoring
codes are instrumented only when static analysis is undecidable. The interface
between the static and dynamic analyses is an effect-based model. It provides a
modular synergy between the two analyses where each one enhances the other.
We prototyped our approach as extensions to GCC, the de facto standard C
compiler. In our future research work, we plan to augment the static phase with
interprocedural analysis in order to detect more vulnerabilities in large software.
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Abstract. We propose a formal specification framework for functional
aspects of services. We define services as operations which are specified
by means of pre- and postconditions, for the specification of which we
use extensions of description logic. The (extensions of) description logic
and the specification framework itself are defined as institutions. This
gives the framework a uniformity of definition and a solid algebraic and
logical foundation. The framework can be used for the specification of
service requests and service providers. Given a signature morphism from
request to provider, we define when a service request is matched by a
service provider, which can be used in service discovery. We provide a
model-theoretic definition of matching and show that matching can be
characterized by a semantic entailment relation which is formulated over
a particular standard description logic. Thus proofs of matching can be
reduced to standard reasoning in description logic for which one can use
description logic reasoners.

1 Introduction

Service-oriented computing is emerging as a new paradigm based on autonomous,
platform-independent computational entities, called services, that can be de-
scribed, published, and dynamically discovered and assembled. An important
part of a service is its public interface, which describes the service and should
be independent of the technique used for implementing it. A service’s interface
can describe various aspects of the service, such as the service’s location and
communication protocols that can be used for interacting with the service.

In this paper, we confine ourselves to the investigation of those parts of a ser-
vice’s interface that describe the functionality offered to a service requester. Not
all service specification approaches support this (see, e.g., WSDL [4]). Services
that are endowed with such functional descriptions are often called semantic web
services [17]. Semantic web services facilitate more effective (semi-)automatic
service discovery and assembly, since the services’ functional descriptions can be
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taken into account. In particular, such descriptions can be used for matchmaking,
i.e., for finding a matching service provider for a particular service request.

Various techniques have been proposed for specifying semantic web services
(see, e.g., [17,18,16,12,8,21]). What most approaches have in common is that
they suggest the use of logical knowledge representation languages for describing
both service providers and service requests. Also, most approaches ([8] is an
exception), including the approach we take in this paper, view semantic web
services as operations, i.e., they can be invoked with some input, perform some
computation and possibly return some output.

Where approaches for specifying semantic web services differ, is mostly the
kind of knowledge representation language proposed, and the level of formality.
In particular, in [12,21], a formal service specification approach using first-order
logic is presented, and in [17,18] the use of so-called semantic web markup lan-
guages for service specification is proposed, but no formal specification language
or semantics is defined. In this paper, we are interested in a formal approach to
service specification, based on semantic web markup languages.

Semantic web markup languages are languages for describing the meaning of
information on the web. The most widely used semantic web markup language
is the Web Ontology Language (OWL) [20]. OWL is a family of knowledge
representation languages that can be used for specifying and conceptualizing
domains, describing the classes and relations between concepts in these domains.
Such descriptions are generally called ontologies [9].

The formal underpinnings of the OWL language family are formed by descrip-
tion logics [1]. Description logics are formal ontology specification languages and
form decidable fragments of first-order logic. Research on description logics has
yielded sound and complete reasoners of increasing efficiency for various descrip-
tion logic variants (see [1] for more background). The fact that description logics
come with such reasoners is an important advantage of using description logic
for specifying services, since these reasoners can then be used for matchmaking.

In this paper, we propose a formal framework for specifying the functional-
ity of services. Services are viewed as operations and we specify them using a
particular description logic that corresponds to an expressive fragment of OWL,
called OWL DL. As it turns out, we need to define several extensions of this
description logic for its effective use in service specification. The formal tool
that we use for defining the description logic, its extensions, and also the service
specification framework itself, is institutions [7,22]. The notion of an institution
abstractly defines a logical system, viewed from a model-theoretic perspective.
Institutions allow to define the description logics and the specification framework
in a uniform and well-structured way.

In addition to defining a service specification framework, we also provide a
model-theoretic definition of when a service request is matched by a service
provider specification, and show that matching can be characterized by a se-
mantic entailment relation which is formulated over our basic description logic.
Proofs of matching can thus be reduced to standard reasoning in description
logic, for which one can use description logic reasoners.
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The organization of this paper is as follows. In Section 2, we define the descrip-
tion logic upon which we base our service specification framework. We informally
describe the approach we take in this paper in some more detail in Section 3.
Then, in Section 4, we define the extensions of the description logic of Section
2 that are needed for service specification, followed by the definition of the ser-
vice specification framework in Section 5. The definition and characterization of
matching are presented in Section 6, and we conclude the paper in Section 7.

2 The Description Logic SHOIN +

In this section, we present the description logic SHOIN+, on which we base our
service specification framework. The logic SHOIN+ is based on SHOIN+(D)
[11]. SHOIN+(D) is the logic SHOIN (D), extended with a particular con-
struct that was needed in [11] to show that OWL DL ontology entailment can
be reduced to knowledge base satisfiability in SHOIN (D). That construct also
turns out to be useful for service specification. In this paper, we will omit
datatypes and corresponding sentences from SHOIN+(D) since it does not
affect the essence of the presented ideas and would only complicate the presen-
tation. This leaves us with the logic SHOIN+.

We will define SHOIN+ as an institution. Loosely speaking, an institution is
a tuple Inst = 〈SigInst ,SenInst ,Mod Inst , |=Inst,Σ〉, where SigInst is a category of
signatures, SenInst is a functor that yields for each signature from SigInst a set of
sentences, Mod Inst is a functor yielding a category of models for each signature
from SigInst , and |=Inst,Σ for each signature Σ ∈ |SigInst | is a satisfaction rela-
tion specifying when a model of |Mod Inst (Σ)| satisfies a sentence of SenInst (Σ).
Moreover, for each signature morphism σ : Σ → Σ′, sentence φ ∈ SenInst (Σ),
and model M′ ∈ |Mod Inst (Σ′)|, the so-called satisfaction condition should hold:
M′ |=Inst,Σ′ σ(φ) ⇔ M′|σ |=Inst ,Σ′ φ, where M′|σ is the reduct of M′ with
respect to σ. For details, we refer to [7,22]. For all institutions defined in this pa-
per, the details, in particular model morphisms and the proof of the satisfaction
condition, are provided in [25].

We now define the institution SHOIN+ = 〈SigS+ ,SenS+ ,ModS+ ,
|=S+,Σ〉. The definition is similar to the way OWL DL, the semantic web markup
language corresponding to SHOIN (D), was defined as an institution in [14].
We illustrate our definitions using a running example of a service GA for mak-
ing garage appointments, which allows to make an appointment with a garage
within a given day interval. Such a service is part of the automotive case study
of the SENSORIA project1 on service-oriented computing.

The basic elements of SHOIN+ are concept names NC , role names NR, and
individual names Ni, which together form a SHOIN+ signature 〈NC , NR, Ni〉.
They are interpreted over a domain of elements called individuals. A concept
name is interpreted as a set of individuals, a role name as a set of pairs of
individuals, and an individual name as a single individual.

1 http://sensoria-ist.eu

http://sensoria-ist.eu
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Definition 1. (SHOIN+ signatures: SigS+) A SHOIN+ signature Σ is a
tuple 〈NC , NR, Ni〉, where NC is a set of concept names, NR = R∪R−, where R
is a set of (basic) role names and R− = {r− | r ∈ R}, is a set of role names, and
Ni is a set of individual names. The sets NC , NR, and Ni are pairwise disjoint.
A SHOIN+ signature morphism σS+ : Σ → Σ′ consists of a mapping of the
concept names of Σ to concept names of Σ′, and similarly for role names and
individual names.

A simplified signature ΣGA for our garage appointment service GA can be spec-
ified as follows: NC = {Appointment,Day,WDay,WEDay,Hour, String}, NR =
{after, before,hasDay, hasHour}, Ni = {1, 2, . . . , 24,mon, tue, . . . , sun}. The con-
cept names WDay and WEDay stand for weekday and weekend day, respectively.
The role names “after” and “before” will be used to express that a particular
(week or weekend) day or hour comes before or after another day or hour, and
“hasDay” and “hasHour” will be used to express that an appointment is made
for a particular day and hour, respectively.

The main building blocks of SHOIN+ sentences are (composed) concepts,
which can be constructed using concept names, individual names, and role
names. For example, the concept C1 � C2 can be formed from the concepts
C1 and C2, and is interpreted as the intersection of the interpretations of C1

and C2. Similarly, C1  C2 denotes the union of the interpretations of C1 and
C2. The concept ∃r.C denotes all the individuals that are related to an individ-
ual from concept C over the role r, and several other composed concepts can be
constructed.

Concepts, individual names, and role names are then used to construct sen-
tences. For example, C1 , C2 denotes that C1 is a subconcept of C2, and a : C
denotes that the individual represented by the individual name a belongs to
concept C. The construct that SHOIN is extended with to form SHOIN+ is
∃C, which means that the interpretation of concept C is not empty. Definition
2 only contains those concepts and sentences that are used in the example. For
a complete definition, we refer to [25].

Definition 2. (SHOIN+ sentences: SenS+) Let Σ = 〈NC , NR, Ni〉 ∈ |SigS+ |
be a SHOIN+ signature, and let A ∈ NC , r ∈ NR, and a, a1, a2 ∈ Ni. The
sentences SenS+(Σ) are then the axioms φ as defined below.

C ::= A | $ | ⊥ | ¬C | C1 �C2 | C1  C2 | {a} | ∃r.C | ∀r.C
φ ::= C1 , C2 | r1 , r2 | a : C | r(a1, a2) | ∃C

A SHOIN+ model or interpretation I is a pair 〈ΔI , ·I〉 where ΔI is a domain
of individuals, and ·I is an interpretation function interpreting concept names,
role names, and individual names over the domain.

Definition 3. (SHOIN+ models: ModS+) Let Σ = 〈NC , NR, Ni〉 ∈ |SigS+ |
be a SHOIN+ signature, where NR = R ∪ R− as specified in Definition 1.
A model (or interpretation) I for SHOIN+ is a pair (ΔI , ·I) consisting of a
non-empty domain ΔI of individuals and an interpretation function ·I which
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maps each concept name A ∈ NC to a subset AI ⊆ ΔI , each basic role name
r ∈ R to a binary relation rI ⊆ ΔI ×ΔI , and each individual name a ∈ Ni to
an element aI ∈ ΔI . The interpretation of an inverse role r− ∈ R− is (r−)I =
{(y, x) | (x, y) ∈ rI}.
The SHOIN+ satisfaction relation is defined by first defining the interpreta-
tion of composed concepts, and then defining when an interpretation satisfies a
sentence.

Definition 4. (SHOIN+ satisfaction relation: |=S+,Σ) Let Σ ∈ |SigS+ | be
a SHOIN+ signature and let I = (ΔI , ·I) ∈ |ModS+(Σ)| be a Σ-model. The
satisfaction relation |=S+,Σ is then defined as follows, and is lifted to sets of
sentences in the usual way.

$I = ΔI (C1 � C2)I = CI
1 ∩CI

2

⊥I = ∅ (C1  C2)I = CI
1 ∪CI

2

(¬C)I = ΔI \ CI ∃r.CI = {x ∈ ΔI | ∃y : (x, y) ∈ rI and y ∈ CI}
{a}I = {aI} ∀r.CI = {x ∈ ΔI | ∀y : (x, y) ∈ rI ⇒ y ∈ CI}

I |=S+,Σ C1 , C2 ⇔ CI
1 ⊆ CI

2 I |=S+,Σ r(a1, a2) ⇔ (aI1 , a
I
2 ) ∈ rI

I |=S+,Σ a : C ⇔ aI ∈ CI I |=S+,Σ ∃C ⇔ ∃x : x ∈ CI

A set of description logic sentences can be used to specify relationships between
concepts, and properties of individuals. Such a set of sentences is often called an
ontology. We define an ontology formally as a so-called SHOIN+ presentation.
Presentations over an arbitrary institution are defined as follows [22]. If Inst =
〈SigInst ,SenInst ,Mod Inst , |=Inst,Σ〉 is an institution where Σ ∈ |SigInst |, then
the pair 〈Σ,Φ〉 where Φ ⊆ SenInst (Σ) is called a presentation. A model of a
presentation 〈Σ,Φ〉 is a model M ∈ |Mod Inst (Σ)| such that M |=Inst,Σ Φ. Then
ModInst (〈Σ,Φ〉) ⊆ |Mod Inst (Σ)| is the class of all models of 〈Σ,Φ〉.
Definition 5. (SHOIN+ ontology) A SHOIN+ ontology is a presentation
〈Σ,Ω〉, where Σ ∈ |SigS+ | and Ω ⊆ SenS+(Σ). Its semantics is the class of
Σ-models satisfying the axioms in Ω, i.e., ModS+(〈Σ,Ω〉).
Part of the ontology ΩGA for our garage appointment service GA can be spec-
ified as follows, where the SHOIN+ signature is ΣGA as defined above (we
refer to [25] for the complete definition of the running example). The concept
“∃hasDay.Day” consists of all individuals that are related to some individual
of the concept “Day” over the role “hasDay”. The axiom “∃hasDay.Day ,
Appointment” specifies that these individuals should belong to the concept “Ap-
pointment”, i.e., only appointments can have a day associated to them. Here and
in the following we use C ≡ C′ as a shorthand notation for C , C′, C′ , C
where C and C′ are concepts.

{ ∃hasDay.Day , Appointment,∃hasHour.Hour , Appointment,∃¬Appointment,
WDay  WEDay ≡ Day, mon : WDay, . . . , fri : WDay, sat : WEDay,
sun : WEDay, 1 : Hour, . . . , 24 : Hour, after(mon, mon), after(mon, tue), . . . ,
after(1, 1), after(1, 2), after(2, 2), after(1, 3), after(2, 3) . . . ,
before(mon, mon), before(tue, mon), . . .}
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3 Overview of the Approach

The description logic SHOIN+ as defined in the previous section forms the basis
for the specification of services in our framework. In this section, we present the
general idea of how we propose to use SHOIN+ for the specification of services.

As in, e.g., [17,18,16,12,21], we see services as operations with input and out-
put parameters that may change the state of the service provider if the service
is called. In order to define the semantics of services, we thus need to represent
which state changes occur if the service is called with a given input, and which
output is returned. A semantic domain in which these aspects are conveniently
represented are so-called labeled transition systems with output (LTSO), which
are also used as a semantic domain for the interpretation of operations in [10,3].

An LTSO consists, roughly speaking, of a set of states and a set of transitions
between these states, labeled by the name of the operation (which is a service
in our case) by which the transition is made, and the actual input and output
parameters. In our setting, the states are SHOIN+ interpretations. That is, we
represent a service provider state as a SHOIN+ interpretation, and interpret
services as operating on these states. The actual inputs and outputs of services
are interpretations of variables (treated here as individuals).

It is important to note that using SHOIN+ for service specification does
not mean that the service provider needs to be implemented using SHOIN+.
Techniques for implementing services and for describing the relation of its im-
plementation with its specification are, however, outside the scope of this paper.

In our framework, states are thus SHOIN+ interpretations. The general idea
is then that the pre- and postconditions of a service are specified in SHOIN+.
However, in order to be able to express pre- and postconditions properly, we
do not use SHOIN+ as it is, but define several extensions. That is, in the
precondition one often wants to specify properties of the input of the service,
and in the postcondition properties of the input and output of the service. For
this, it should be possible to refer to the variables forming the formal input and
output parameters of the service. However, SHOIN+ does not facilitate the use
of variables. For this reason, we use an extension of SHOIN+ with variables,
called SHOIN+

Var , where variables refer to individuals.
Moreover, in the postcondition one typically wants to specify how the state

may change, i.e., to specify properties of a transition. Hence, we need to be able
to refer to the source and target states of a transition. For this purpose, we
define an extension of SHOIN+

Var called SHOIN+bi
Var which allows both the

use of variables and reference to the source and target states of a transition.
All necessary extensions of SHOIN+ are defined as institutions, and we de-

fine their semantics through a reduction to SHOIN+. This reduction allows
us to use description logic reasoners for computing matches between a service
request and service provider, which will be explained in more detail in Section
6. Although the extensions can be reduced to SHOIN+, we use the exten-
sions rather than (an encoding in) SHOIN+ to let our approach be closer to
the formalisms of [10,3], and to our intuitive understanding of the semantics of
services.
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4 Extensions of SHOIN +

In this section, we present the extensions of SHOIN+ that we use for the spec-
ification of pre- and postconditions. We do not provide the complete definitions.

The first extension is SHOIN+
Var , which extends SHOIN+ with variables.

A SHOIN+
Var signature is a pair 〈Σ,X〉 where Σ is a SHOIN+ signature and

X is a set of variables. Sentences of SHOIN+
Var are then defined in terms of

SHOIN+ sentences, by adding X to the individuals of Σ, which is a SHOIN+

signature denoted by ΣX .
Models of a SHOIN+

Var signature 〈Σ,X〉 are pairs (I, ρ), where I is a Σ-
interpretation, and ρ : X → ΔI is a valuation assigning individuals to the
variables. The semantics of SHOIN+

Var sentences is then defined in terms of
the semantics of SHOIN+ sentences by constructing a SHOIN+ interpreta-
tion Iρ from (I, ρ), in which variables are treated as individual names that are
interpreted corresponding to ρ. A similar construction, in which variables are
treated as part of the signature, can be found in the institution-independent
generalization of quantification [5].

The second extension is SHOIN+bi
Var , which is an extension of SHOIN+

Var
and allows both variables and references to source and target states of a transi-
tion. The SHOIN+bi

Var signatures are the SHOIN+
Var signatures, but sentences

of a signature 〈Σ,X〉 are defined in terms of the sentences of SHOIN+ by
adding for each concept name A of Σ a concept name A@pre, and similarly for
role names.

Models are triples (I1, I2, ρ), where I1 and I2 are SHOIN+ interpretations
and ρ is a valuation. We require that the domains and the interpretations of
individual names are the same in I1 and I2, i.e., individual names are constants.
These restrictions are also typical for temporal description logics [15]. The idea
of the semantics is then that a concept name A@pre in a SHOIN+bi

Var sentence
refers to A in I1, and a concept name A refers to A in I2, and similarly for
role names. On this basis we define the satisfaction relation by a reduction to
SHOIN+.

Definition 6. (SHOIN+bi
Var institution) The institution SHOIN+bi

Var =
〈SigS+bi

Var
,SenS+bi

Var
,ModS+bi

Var
, |=S+bi

Var ,Σ〉 is defined as follows:

– The SHOIN+bi
Var signatures are the SHOIN+

Var signatures, 〈Σ,X〉, i.e.,
SigS+bi

Var
= SigS+

Var
.

– Let 〈Σ,X〉 be a SHOIN+bi
Var signature. The SHOIN+bi

Var sentences are then
defined as SenS+bi

Var
(〈Σ,X〉) � Sen+

S (Σbi
X ) where Σbi

X is a SHOIN+ signature
extending ΣX (see above) by concepts names A@pre for all concept names
A in Σ and by role names r@pre for all role names r in Σ.

– A SHOIN+bi
Var model is a triple (I1, I2, ρ) where I1, I2 ∈ |ModS+(Σ)|, I1 =

(ΔI1 , ·I1), I2 = (ΔI2 , ·I2), ΔI1 = ΔI2 , and aI1 = aI2 for all a ∈ Ni, and
ρ : X → Δ is a valuation where Δ � ΔI1(= ΔI2).

– For each SHOIN+bi
Var signature 〈Σ,X〉 ∈ |SigS+bi

Var
|, the satisfaction relation

|=S+bi
Var ,〈Σ,X〉 is defined as follows by means of a reduction to |=S+,Σbi

X
. Let
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(I1, I2, ρ) ∈ ModS+bi
Var

(〈Σ,X〉) and let
�
Iρ∈ ModS+(Σbi

X ) be defined as follows:

Δ
�
Iρ = ΔI1(= ΔI2), ·

�
Iρ = ·(I2)ρ for concept names A, role names r, and

individual names a of Σ, and ·
�
Iρ = ·(I1)ρ for concept names A@pre and

role names r@pre, where (I1)ρ and (I2)ρ are the extension of I1 and I2,
respectively, to variables as defined above.

We now define (I1, I2, ρ) |=S+bi
Var ,〈Σ,X〉 φ �

�
Iρ |=S+,Σbi

X
φ for φ ∈

SenS+bi
Var

(〈Σ,X〉) and thus by definition also φ ∈ SenS+(Σbi
X ).

5 Service Specification Using Description Logic

Having defined suitable extensions of SHOIN+, we continue to define our ser-
vice specification framework. The definitions are inspired by approaches for the
formal specification of operations in the area of object-oriented specification
[10,3], although these approaches are not based on institutions.

In the context of semantic web services specified using description logics,
services are generally assumed to operate within the context of an ontology
(see, e.g., [8]). The ontology defines the domain in which the services operate by
defining the relevant concepts and relations between them. Moreover, a service
provider will often provide multiple services, which all operate in the context of
the same ontology. We call a bundling of services together with an ontology a
service package. We define a service as an operation that has a name and that
may have input and output variables as follows.

Definition 7. (service) A service serv = servName([Xin ]) : [Xout ] consists of
a service name servName, and sequences of input and output variables [Xin ]
and [Xout ], respectively, such that all x in [Xin ] and [Xout ] are distinct. We use
var in(serv ) and varout(serv ) to denote the sets of input and output variables of
serv , respectively.

A garage appointment service can be represented by makeAppointment(name,
from , to) : app. This service takes a name of a client and two days in between
which the appointment should be made, and returns the appointment that it
has made.

Now, we formally define service packages as an institution, for which we need
the following general preliminaries [22]. Let Inst = 〈SigInst ,SenInst ,Mod Inst ,
|=Inst,Σ〉 be an institution where Σ ∈ |SigInst |. For any class M⊆ |Mod Inst (Σ)|
of Σ-models, the theory of M, ThΣ(M), is the set of all Σ-sentences satisfied
by all Σ-models in M, i.e., ThΣ(M) = {φ ∈ SenInst (Σ) | M |=Inst,Σ φ}. The
closure of a set Φ of Σ-sentences is the set ClΣ(Φ) = ThΣ(ModInst (Φ)). A
theory morphism σ : 〈Σ,Φ〉 → 〈Σ′, Φ′〉 is a signature morphism σ : Σ → Σ′

such that σ(φ) ∈ Φ′ for each φ ∈ Φ.
A service package signature ΣSP is a pair (〈Σ,Ω〉,Servs) where 〈Σ,Ω〉 is a

SHOIN+ ontology and Servs is a set of services. An SP signature morphism
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σSP from an SP signature ΣSP to SP signature Σ′
SP then defines that there is

a theory morphism from the ontology sentences of ΣSP to those of Σ′
SP .

The sentences of an SP institution are used to specify the services and are of
the form 〈serv , pre, post〉. Here, serv is the service that is being specified, and pre
and post are the pre- and postconditions of the service, respectively. We now use
the extensions of SHOIN+ as defined in Section 4 for the definition of pre and
post. That is, the precondition is specified by means of SHOIN+

Var sentences,
where the variables that may be used are the variables of the input of serv . The
postcondition is specified by means of SHOIN+bi

Var sentences, which means that
the postcondition can refer to the source and target states of a transition, and
the variables that may be used are the variables of the input and output of serv .

The models of service packages are non-deterministic total labeled transition
systems with output (see also Section 3). A transition system in our framework
is a pair T = (Q, δ). Q is the set of states, which are in our case SHOIN+

interpretations that satisfy the ontology of the service specification, i.e., the
ontology is treated as an invariant that the specified service always fulfills. The
set δ is the transitions between states. Each transition t ∈ δ has a source and
a target state from Q. Furthermore, t is labeled with the service through which
the transition is made, together with a valuation of the input variables of the
service, expressing which are the actual input parameters of the service call.
Any transition t is equipped with a valuation of the output variables, expressing
which are the actual output parameters of the service call. Loosely speaking,
a transition system T = (Q, δ) satisfies a sentence 〈serv , pre, post〉, if in all
interpretations I ∈ Q in which pre holds, all transitions from I to some I ′ ∈ Q
through service serv satisfy post.

Definition 8. (service package (SP) institution) The institution SP = 〈SigSP ,
SenSP ,ModSP , |=SP,(〈Σ,Ω〉,Servs)〉 is defined as follows:

– An SP signature is a pair (〈Σ,Ω〉,Servs) where 〈Σ,Ω〉 is a SHOIN+ on-
tology (see Definition 5), and Servs is a set of services. An SP signature
morphism σSP : (〈Σ,Ω〉,Servs) → (〈Σ′, Ω′〉,Servs ′) consists of a theory
morphism σΩ : 〈Σ,ClΣ(Ω)〉 → 〈Σ′,ClΣ′(Ω′)〉, and a mapping of each ser-
vice serv ∈ Servs to a service serv ′ ∈ Servs ′, such that for each mapping
from serv to serv ′ it holds that serv and serv ′ have the same number of
input variables and the same number of output variables.

– An SP sentence is a triple 〈serv , pre, post〉, where serv is a service, and
pre ⊆ SenS+

Var
(〈Σ,Xin〉), post ⊆ SenSHOIN+bi

Var
(〈Σ,Xin,out〉), where here and

in the following Xin = var in(serv ), Xout = varout(serv ), and Xin,out =
var in(serv) ∪ varout (serv).

– An SP model for this signature is a non-deterministic total labeled transition
system with outputs T = (Q, δ), where Q ⊆ ModS+(〈Σ,Ω〉) is a set of
states and δ is a set of transitions between states, defined as follows. Let
Label = {(serv , ρin) | serv ∈ Servs , ρin : var in(serv ) → Δ}, where Δ =⋃
{ΔI | I ∈ Q} and let Output be the set of valuations ρout : X → Δ where
X is an arbitrary set of variables. Then δ ⊆ Q× Label × (Q×Output) such
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that for all (I, (serv , ρin), (I ′, ρout )) ∈ δ we have ρin : var in(serv ) → ΔI and
ρout : varout (serv) → ΔI′

, and T is total, i.e., for all I ∈ Q it holds that for
all l ∈ Label there is an I ′, ρout such that (I, (serv , ρin), (I ′, ρout)) ∈ δ.
The reduct T ′|σSP where T ′ = (Q′, δ′) is (Q′|σOnt , δ

′|σSP ), where Q′|σOnt =
{I ′|σOnt | I ′ ∈ Q′}, and δ′|σSP are all transitions
(I1|σOnt , (serv , ρin |σS+

Var

), I2|σOnt , ρout |σS+
Var

) such that there is a transition

(I1, (σSP (serv), ρin ), I2, ρout) ∈ δ′.
– Let ΣSP = (〈Σ,Ω〉,Servs) be an SP signature, and let T = (Q, δ) ∈

ModSP ((〈Σ,Ω〉,Servs)). We define T |=SP ,ΣSP 〈serv , pre, post〉 iff for all
(I, (serv , ρin), I ′, ρout) ∈ δ the following holds, where Xin = var in(serv)
and Xin,out = var in(serv ) ∪ varout(serv ): If (I, ρin) |=S+

Var ,〈Σ,Xin〉 pre then
(I, I ′, ρin,out) |=S+bi

Var ,〈Σ,Xin,out 〉 post. We use ρin,out to denote the merging of
the two valuations ρin and ρout to one valuation in the obvious way.

We now define a service package specification as an SP presentation, i.e., it
consists of an SP signature and a set of SP sentences, and its semantics is the
class of all its models.

Definition 9. (service package specification) A service package specification
is a presentation 〈ΣSP , ΨSP 〉 where ΣSP ∈ |SigSP | and ΨSP ⊆ SenSP (ΣSP )
such that for each serv ∈ Servs where ΣSP = 〈Ont ,Servs〉 there is exactly
one sentence of the form 〈serv , pre, post〉 in ΨSP . Its semantics is the class of
ΣSP -models satisfying the axioms in ΨSP , i.e., ModSP (〈ΣSP , ΨSP 〉).

A service package specification where the only service is the service
makeAppointment considered above, then consists of the signature ΣGA and
ontology ΩGA as defined in Section 2, and the following specification ΨGA

SP for the
garage appointment service. We use “String name” instead of only the variable
“name” as input, which is an abbreviation for adding “name: String” to the
precondition, and similarly for the other inputs and for the output (in which
case it abbreviates part of the postcondition).

The specification says that the only appointment made through calling the
service is the appointment app which is returned, the (week)day on which the
appointment should take place is in between from and to which have been passed
as parameters, and the time of day of the appointment is between 8 and 16.

makeAppointment(String name,WDay from ,WDay to) : Appointment app
pre after(from , to)
post Appointment � ¬(Appointment@pre) ≡ {app},

app : ∃hasDay.(∃after.{from}), app : ∃hasDay.(∃before.{to}),
app : ∃hasHour.(∃after.{8}), app : ∃hasHour.(∃before.{16})

6 Matching Service Requests and Service Providers

Service package specifications can be used for specifying service providers. These
service provider specifications can then be used by service requesters to deter-
mine whether a particular service provider matches their request, which can also
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be formulated as a service package specification. In this section, we make this
matching precise by providing a model-theoretic definition of when a service re-
quest specification is matched by a service provider specification. Moreover, we
provide a characterization of matching by semantic entailment over SHOIN+,
which can be proven using standard description logic reasoners.

Our definition of matching is based on the idea that the service provider should
be a refinement of the service request. That is, the service request specifies
the behavior that the service provider is allowed to exhibit, and the specified
behavior of the service provider should be within these boundaries. The idea is
thus to define matching model-theoretically as inclusion of the model class of
the provider specification in the model class of the request specification.

However, we cannot define this model class inclusion directly in this way, since
we want to allow the request and the provider to be specified over different sig-
natures. This is naturally facilitated through the use of institutions, by defining
matching on the basis of a signature morphism from request to provider. In the
semantic web community, techniques are being developed for aligning different
ontologies [6], which could be applied in our setting for obtaining a signature
morphism. Given a signature morphism from request to provider specification,
we define matching as the inclusion of the reduct of the model class of the
provider specification in the model class of the request specification.

Definition 10. (matching) Let 〈ΣR
SP , Ψ

R
SP 〉 and 〈ΣP

SP , Ψ
P
SP 〉 be service package

specifications of request and provider, respectively, where σSP : ΣR
SP → ΣP

SP is
an SP signature morphism. Then, the request is matched by the provider under
σSP iff

ModSP (〈ΣP
SP , Ψ

P
SP 〉)|σSP ⊆ ModSP (〈ΣR

SP , Ψ
R
SP 〉).

Now that we have defined matching model-theoretically, our aim is to be able
to prove matching by proving particular logical relations between the ontologies
and pre- and postconditions of the provider and request specifications.

The general idea is that for a particular service specification, the precondition
of the provider should be weaker than the precondition of the request if the
specification matches, since it should be possible to call the service at least in
those cases required by the request. For the postcondition it is the other way
around. The provider should at least guarantee what the request requires, i.e.,
the postcondition of the provider should be stronger than that of the request.
These conditions are frequently used in the context of behavioral subtyping in
object-oriented specification [13]. Moreover, we may assume that the provider
ontology holds, because it is the provider’s service which is actually executed.
Also, in order to prove entailment of the request postcondition by the provider
postcondition, we can assume additionally that the request precondition holds.
Intuitively, this is allowed since we can assume that the requester will guarantee
that he satisfies his precondition, if he calls the service. These considerations
lead to the following theorem.

Theorem 1. (characterization of matching by semantic entailment) Let
〈ΣR

SP , Ψ
R
SP 〉 and 〈ΣP

SP , Ψ
P
SP 〉 be service package specifications of request and
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provider, respectively, where 〈ΣP
SP , Ψ

P
SP 〉 is consistent, i.e.,

ModSP (〈ΣP
SP , Ψ

P
SP 〉) 
= ∅, and where σSP : ΣR

SP → ΣP
SP is an SP signature

morphism. Then, the request is matched by the provider under σSP according
to Definition 10, iff the following holds.

Let ΣR
SP = (〈ΣR, ΩR〉,ServsR) and ΣP

SP = (〈ΣP , ΩP 〉,ServsP ). Then for all
〈servR, preR, postR〉 ∈ ΨR

SP two conditions hold for 〈servP , preP ,
postP 〉 ∈ ΨP

SP , where servP = σSP (servR), σS+ : ΣR → ΣP ,Xin = var in(servP )
and Xin,out = var in(servP ) ∪ varout (servP ):2

1. σS+(preR) ∪ΩP |=S+,ΣP
Xin

preP

2. σS+(preR)@pre ∪ΩP @pre ∪ postP ∪ΩP |=S+,ΣP bi
Xin,out

σS+(postR)

The sentences ΩP @pre are obtained from ΩP by adding @pre to all concept
names and role names, and similarly for σS+(preR)@pre.

The proof can be found in [25]. Note that we do not use the request ontology
ΩR in this characterization since it is the provider’s service which is actually ex-
ecuted. However, as mentioned above, ΩR is plays a key role in proving a match,
since a theory morphism from ΩR to the provider ontology ΩP is required for
a signature morphism from request to provider. This theory morphism can be
proven by showing that ΩP |=S+,Σ σS+(ΩR), where Σ is the SHOIN+ signa-
ture of ΩP . Also, we require that the provider specification is consistent, since
otherwise it would match with any request specification according to Definition
10, but the relation between invariants and pre- and postconditions might be
such that no match can be derived according to Theorem 1.

It is also important to note that, while the pre- and postconditions are speci-
fied over the signatures SHOIN+

Var and SHOIN+bi
Var , respectively, we interpret

them here as SHOIN+ sentences over the signatures ΣP
Xin

and ΣP bi
Xin,out

, respec-
tively. This is possible since the sentences and semantics of SHOIN+

Var and
SHOIN+bi

Var have been defined by a reduction to SHOIN+ over the respective
SHOIN+ signatures. SHOIN+(D) entailment can further be reduced to sat-
isfiability in SHOIN (D) [11], for which a sound and complete reasoner with
acceptable to very good performance exists [19].

To illustrate matching, we take the garage appointment service package spec-
ification of Section 5 as a service provider specification. We define a service
request specification CA, representing a car requesting a garage appointment,
as follows. The signature ΣCA is defined by NC = {Termin,Tag,Zeichenkette},
NR = {nach, vor, hatTag}, Ni = {1, 2, . . . , 24,montag, dienstag, . . . , sonntag}.
These are the notions also occurring in ΣCA in German. Part of the sentences of
the ontology, ΩCA, are the following:

{ ∃hatTag.Tag , Termin,montag : Tag, dienstag : Tag, . . . , sonntag : Tag,
nach(montag,montag), after(montag, dienstag), . . . ,
nach(1, 1), nach(1, 2), nach(2, 2), nach(1, 3), nach(2, 3) . . . ,
vor(montag,montag), vor(dienstag,montag), . . .}

2 We use σS+(Ω) as a shorthand notation for SenS+(σS+)(Ω).
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The requester is looking for a service terminV ereinbaren(name, von, bis) : ter,
specified as follows:

terminVereinbaren(Zeichenkette name,Tag von,Tag bis) : Termin ter
pre nach(dienstag, von), nach(bis , dienstag)
post hatTag(ter , dienstag)

In order to determine whether the service request CA is matched by the service
provider GA, we need to define a signature morphism σ : ΣCA

SP → ΣGA
SP . Using

an appropriate signature morphism from the German notions of ΣCA to the
corresponding English ones of ΣGA,3 it can be shown that the request is matched
by the service provider (see [25]). The request specifies a service that makes an
appointment on Tuesday if from and to are set to Tuesday, but it does not matter
at what time.

7 Related Work and Concluding Remarks

Regarding related work, we mention that in [2], an approach to service specifi-
cation using description logic is presented that is also based on a specification
of pre- and postconditions using description logic. That paper, however, consid-
ers services for which the input parameters have already been instantiated by
individual names, it does not consider output of services, and it requires strong
restrictions on the kind of description logic formulas used in pre- and postcondi-
tions. Moreover, it does not provide a (model-theoretic) definition of matching
with accompanying characterization. Rather, it investigates several reasoning
tasks that are indispensable subtasks of matching, and focuses on solving the
frame problem in this context.

In this paper, we have proposed a formal specification framework for specify-
ing the functionality of services using description logic, based on institutions. We
have defined extensions of description logic and the service specification frame-
work itself as institutions. Using this framework, we have provided a model-
theoretic definition of when a service request specification is matched by a
service provider specification, allowing the request and provider specification
to be defined over different signatures. We have shown that matching can be
characterized by a semantic entailment relation which is formulated over a par-
ticular standard description logic. Therefore, proofs of matching can be reduced
to standard reasoning in description logic for which one can use efficient, sound
and complete description logic reasoners.

In future work, we would like to investigate adding a more abstract layer for
facilitating service discovery, where not all details with respect to input and out-
put of the service are specified. Such more abstract specifications could be used
in the first phase of a two-phase approach to service discovery (see also [21]),
and the approach presented in this paper would be used in the second phase.
Another topic for future research is investigating an institution-independent gen-
eralization of this approach, which allows the service specification framework to
3 And using the complete ontologies.
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be based on arbitrary institutions, rather than on description logic. Also, the
integration of our approach with specifications of dynamic interaction protocols
of services can be investigated (cf. e.g. [23,24]).

Moreover, more extensive experimentation with the framework will have to
show what kind of services are effectively specifiable using description logic.
In particular, we aim to relate our approach to the well-known OWL-S [16]
ontology for service specification, which is defined in the OWL language. As in
this work, OWL-S views services as operations and proposes the use of pre- and
postconditions for their specification. However, OWL-S does not specify how
and in what language to define pre- and postconditions, it does not come with
a model-theoretic interpretation of service specifications, and matching is not
formally defined and characterized.
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Abstract. We demonstrate Spiral, a domain-specific library generation system.
Spiral generates high performance source code for linear transforms (such as
the discrete Fourier transform and many others) directly from a problem spec-
ification. The key idea underlying Spiral is to perform automatic reasoning and
optimizations at a high abstraction level using the mathematical, declarative
domain-specific languages SPL and

∑
-SPL and a rigorous rewriting framework.

Optimization includes various forms of parallelization. Even though Spiral pro-
vides complete automation, its generated libraries often run faster than any exist-
ing hand-written code.

Keywords: Linear transform, discrete Fourier transform, FFT, domain-specific
language, program generation, rewriting, matrix algebra, automatic performance
tuni, multithreading, SIMD vector instructions.

1 Introduction

The advent of mainstream parallel platforms has made the development of high per-
formance numerical libraries extremely difficult. Practically every off-the-shelf com-
puter has multiple processor cores, SIMD vector instruction sets, and a deep memory
hierarchy. Compilers cannot optimize numerical code efficiently, since the necessary
code transformations often require domain knowledge that the compiler does not have.
Consequently, the library developer is forced to write multithreaded code, use vector
instructions through C language extensions or assembly code, and tune the algorithm to
the memory hierarchy. Often, this process is repeated once a new platform is released.
Automating high performance library development is a goal at the core of computer
science.

Some advances have been made towards this goal, in particular in two performance-
critical domains: linear algebra and linear transforms. One example is FFTW [1], a
widely used library for the discrete Fourier transform (DFT). FFTW partially auto-
mates the development process, by using a special “codelet generator” [2] to generate
code for small fixed size transform functions, called “codelets”. However, all top-level
recursive routines are still hand-developed and vectorization and parallelization are also
performed manually.

� This work was supported by NSF through awards 0325687, 0702386, by DARPA through the
DOI grant NBCH1050009 and the ARO grant W911NF0710416, and by an Intel grant.
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We demonstrate Spiral, a system which takes domain-specific source code genera-
tion to the next level, by completely automating the library development process. Spiral
enables the generation of the entire library, similar to FFTW, including the necessary
codelet generator, given only a specification (in a domain-specific language) of the re-
cursive algorithms that the library should use. Further, the library is vectorized and
parallelized for highest performance. These capabilities extend our earlier work [3].

Even though Spiral achieves complete automation, the runtime performance of its
generated libraries is often faster than any existing human-written code.

The framework underlying Spiral is built on two mathematical domain-specific lan-
guages, called SPL [4] (Signal Processing Language) and

∑
-SPL [5]. These languages

are derived from matrix algebra and used to represent and manipulate algorithms using
rewriting systems. The rewriting is used to generate algorithm variants, to automatically
parallelize [6] and vectorize [7] algorithms, and to discover and generate the library
structure [8]. The latter includes the set of mutually recursive functions that comprise
the library, and the set of required codelets.

2 Background

A linear transform is a matrix-vector multiplication y = Mx, where x, y are the input
and output vectors, respectively, andM is the fixed transform matrix. For example, the
DFT is given by the matrixM = DFTn =

[
ωk�

n

]
0≤k,�<n

, with complexωn = e−2πi/n.

SPL. Many fast Fourier transform algorithms (FFTs) exist, and can be represented as
factorizations of DFTn into products of structured sparse matrices [9]. This represen-
tation forms the core of Spiral’s domain-specific mathematical language SPL [4]. For
example, the Cooley-Tukey FFT is a divide-and-conquer algorithm that for n = km
can be written as

DFTn = (DFTk ⊗Im)Dn,m(Ik ⊗DFTm)Ln
k . (1)

Evaluating y = DFTn x by successively multiplying x with factors of (1) reduces
the overall arithmetic cost. Above, In is the n × n identity matrix, Dn,m is a diagonal
matrix, and Ln

k is a stride permutation matrix, which precise form is irrelevant here.
Most important in this formalism is the tensor (or Kronecker) product ⊗ of matrices,
defined as

A⊗B = [ak� · B]k,� , A = [ak�]k,�.

Tensor products of the formA⊗I and I⊗A are special, because they naturally express
loops with independent iterations and special data layouts.

(1) is called a breakdown rule in Spiral [3], it is best understood by visualizing the
nonzero pattern of the factor matrices, done here for k = m = 4. In the leftmost
factor, all the 1st, 2nd, . . . , mth, entries of the small diagonals constitute one DFTk,
respectively.

DFTn DFTk ⊗Im Dn,m Ik⊗DFTm Ln
k

stride k

stride 1
to= (2)
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Recursive application of (1) for a two-power n = 2t yields an O(n log(n)) algorithm,
terminated by DFT2, which is computed by definition. For prime sizes other FFT
algorithms are needed. Note that SPL is declarative: only the structure of the algorithm
is described; not how exactly it is computed.∑

-SPL . In order to generate looped code, we developed a lower-level representa-
tion, called

∑
-SPL [5].

∑
-SPL like SPL is a structured sparse matrix factorization,

however, it breaks down tensor products into iterative sums of products of smaller, rect-
angular matrices. Iterative sums serve as explicit representation of loops.

For example, if A is n× n:

Ik ⊗A =
[

A
.. .

A

]
=

[
A

]
+ · · ·+

[
A

]

= S0AG0 + · · ·+ Sk−1AGk−1 =
k−1∑
j=0

Sj AGj ,

Gj = [ In ] (In in jth block), Sj = G�
j .

∑
-SPL admits several optimizations not possible with SPL, in particular it enables

the merging of tensor products (loops) with permutations, which converts them into a
readdressing of the input data.

3 Library Generation

The library generation process in Spiral is shown in Fig. 1. The input to the system
is a set of transforms and associated breakdown rules. For example, it could be just
DFTn and (1). The process has two stages, library structure and library target, which
we explain next. The output is the library implemented in C++.

Library structure. One main goal of the library structure stage is to determine the
minimum set of mutually recursive functions that computes the given transforms. We
call this set the recursion step closure, and each function is called a recursion step.
Each recursion step is represented by a

∑
-SPL formula. The transform specification,

e.g., DFTn, is also a (trivial)
∑

-SPL formula and a recursion step.
This stage generates formulas and optimizes them using rewrite rules, which among

other things perform loop merging, vectorization and parallelization.
When a breakdown rule is applied to a transform it decomposes the transform into

smaller transforms. Even if the smaller transforms are still DFTs (as in (1)), the
∑

-SPL
optimizations will merge these DFTs with additional operations (e.g. strided data loads
and stores, scaling, etc.) thus changing the interface and creating new types of recursion
steps. Breakdown rules applied to these new steps may spawn others. This process is
continued until we find a finite set of mutually recursive recursion steps. This set is the
recursion step closure.

As an example, Fig. 2 shows the recursion step closure generated for the DFT with
breakdown rule (1). Four recursion steps are needed and the arrows capture the associ-
ated call graph.
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Fig. 1. Library generation process in Spiral

1: DFT∗

2: S(h∗→∗
∗,1 )DFT∗ G(h∗→∗

∗,∗ )

3: S(h∗→∗
∗,∗ )DFT∗ diag

(
pre(∗∗→C)

)
G(h∗→∗

∗,∗ )

4: S(h∗→∗
∗,1 )DFT∗ diag

(
pre(∗∗→C)

)
G(h∗→∗

∗,∗ )

Fig. 2. Recursion step closure for DFTn, generated from (1), represented as a call graph. For
readability, we replace all parameters of

∑
-SPL formulas by “*”.

In addition to the general size recursive implementations of recursion steps (which
call other recursion steps), the library structure stage also generates fixed size base
case implementations. Each such base case is equivalent to a codelet in FFTW. The
number of recursion step types with base cases is equivalent to the number of codelet
types in FFTW. As Spiral discovers the codelet types automatically, it readily obtains
the codelet generator, which becomes a call to the

∑
-SPL compiler on the appropriate∑

-SPL formula with the known transform size inserted.

Library target. In this stage, the recursion step closure and
∑

-SPL implementations
are mapped to the target language C++. This stage must take care of generating auxil-
iary initialization code, which allocates temporary buffers, precomputes the necessary
constants, and more.
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The system can be used to generate code which extends an existing library. In this
case, the auxiliary code must follow the specific library conventions, for example, for
memory management.

After the initial code is generated, it is also optimized using a combination of rewrite
rules and traditional compiler optimizations, such as constant propagation, common
subexpression elimination, and loop unrolling.

Performance.Theperformanceoftwoexample libraries,generatedusingSpiral, isshown
in Fig. 3 and compared to FFTW and Intel IPP (Integrated Performance Primitives) on a
dual-coreworkstation.All compared librariesare2-wayvectorizedandsupport threading,
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Fig. 3. Performance of automatically generated libraries compared to hand-written libraries
(FFTW uses generated code for small fixed size transforms). Double precision, using SSE2 and
up to 2 threads. Platform: dual-core 3 GHz Intel Xeon 5160 with 4 MB of L2 cache running
Linux. Generated libraries are in C++ and are compiled with Intel C/C++ Compiler 10.1.
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and theplots showmaximum performancebetween 1and 2threads.Whileboth FFTWand
IPP achieve excellent performance for the DFT, they are less optimized for the less widely
used DCT-2. Library generation, on the other hand, automates the tedious implementation
and optimization process, and thus achieves uniform performance across a wide variety
of transforms. The generated DFT library achieves a speedup over IPP and FFTW, due
to using a specialized variant of (1) which reduces the number of vector shuffles. The
generated DCT-2 library uses a “native” DCT-2 algorithm, instead of the suboptimal, but
easy to implement, conversion to the DFT, used in FFTW and probably in IPP.

4 Demonstration

We will demonstrate several key components of Spiral, including a live run of generat-
ing a fully vectorized and parallelized DCT-2 library. In detail, we will show:

– An example of formula generation and formula rewriting;
– Generation of straightline and looped code from a sample

∑
-SPL formula;

– An example of code rewriting;
– Generation of the recursion step closure;
– Compilation of the recursion step closure into a library implementation.

5 Conclusions

Automating high performance library development is a problem at the core of computer
science. We demonstrate a system that achieves this goal for the domain of linear trans-
forms. The system is based on a set of techniques from different disciplines including
linear algebra, algorithms, programming languages, generative programming, rewriting
systems, and compilers. Properly applied, these techniques makes high-performance
library generation feasible, efficient, and rigorous.
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Abstract. This paper gives a correctness proof for the on-chip COMA
cache coherence protocol that supports the Microgrid of microthreaded
architecture, a multi-core architecture capable of integrating hundreds
to hundreds of thousands of processors on single silicon chip. We use
the Abstract State Machine (ASM) as a theoretical framework for the
specification of the on-chip COMA cache coherence protocol. We show
that the protocol obeys the Location Consistency model proposed by
Gao and Sakar.

Keywords: on-chip COMA cache coherence protocol, verification, lo-
cation consistency, Abstract State Machine.

1 Introduction

A number of computer system architecture and implementation issues as long
wire delay, heat dissipation, memory synchronization, etc., have driven the com-
puter architecture to an inevitable transition from single-core to multicore
processor design. The Microgrid of microthreaded [13,3,4,12] architecture is de-
signed to possess thousands of on-chip simple processing cores , while providing
the scalable throughput both on and off chip. The microthreaded architecture
could perform explicit context switch during long latency operations as memory
accesses without wasting the processor time.

The shift from off-chip to on-chip multiprocessing allows the cache coher-
ence to operate at a higher clock rate. In addition, the capability of tolerating
long memory access latency in the microthreaded architecture helps us revive a
paradigm used in earlier parallel computers, such as the Kendal Square KSR1
[5]. We introduce a Cache Only Memory Architecture (COMA) [8] for the on-
chip cache system. In COMA, all the memory modules can be considered as large
caches, called Attraction Memory (AM). Data is stored by cacheline but the line
has no fixed location to find. Similar to COMA, in on-chip COMA, a certain
piece of data can be replicated and migrated dynamically between caches. A
main difference between the on-chip COMA and traditional COMA is that the
traditional COMA system will hold all data in the system without a backing
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store, while the on-chip COMA has a backing store for data off chip, where an
interface is provided for storing incoming data. The readers are referred to [16]
for more detail.

Although the on-chip COMA has some similar property and structure as
the traditional COMA, the underlying consistency models and supporting cache
coherence protocol are largely different. To balance the programming complexity
and execution efficiency, a number of memory consistency models [11] had been
proposed before. The most commonly used memory consistency model is the
sequential consistency (SC) model given by Lamport [15]. In this model, memory
operations performed by the processors are serialized. Since SC requires all the
processors to observe the write requests in some unique order, thus the atomic
broadcast communication is generally required for implementing SC, which may
severely impair the cache throughput and execution efficiency. Furthermore, the
assumption of the universal order poses fundamental obstacles to defining a
scalable and efficient view of the memory consistency in computer system. A
number of more relaxed consistency models of the SC model such as release
consistency, lazy release consistency, entry consistency and dag consistency have
been proposed in [8,14,1,2]. Location Consistency (LC) proposed by Gao and
Sakar in [6,7], is considered the weakest memory model to date. In the LC
model, memory operations performed by processors need not be seen in the same
order by all processors, and therefore, there can be many multiple legal values
for a memory location at the same time. The on-chip COMA cache coherence
protocol is designed to obey this consistency model. In its cache system, multiple
legal values of a memory location are stored in different caches. This reduces
the consistency-related traffic in the network of the cache coherence protocol
significantly, since a read operation can read a legal value from a local cache or
from the main memory (in the case that there are no legal values available in
the caches).

In this paper, we give a correctness proof for the design of the on-chip COMA
cache coherence protocol. We show that our protocol does not rely on the mem-
ory coherence assumption, and therefore, it does not satisfy the SC and SC-
derived models. However, it obeys the LC model of Gao and Sakar. Indeed,
our protocol is strictly stronger than the LC model. We will use the Abstract
State Machine (ASM) [9,10] as a theoretical framework for the specification and
verification of our protocol.

2 Location Consistency

In this section, we follow Gao and Sakar [6,7] to define the location consistency
with respect to the microthreaded architecture.

2.1 Programming Model

Our programming model consists of two memory operations and two synchro-
nization operations whose descriptions are as follows:
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Memory read: If thread Ti needs to read a value from memory location L, it
performs a read(Ti, L) operation, which is also represented by the notation
readL in thread Ti’s instruction sequence.

Memory write: If thread Ti needs to write the value v on location L then it
must wait for all read operations issued by Ti and its subthreads on location
L to be complete and then performs a write(Ti, v, L) operation, which is
also represented by the notation L := v in thread Ti’s instruction sequence.

Thread creation: If thread Ti needs to create a family of threads then it must
wait for all write operations issued by Ti and its subthreads to be com-
plete and then performs a create(Ti,F) operation where F is a sequence
of threads. This operation is represented by the notation create(F) in Ti’s
instruction sequence. We note that every thread Tj of F is a subthread of Ti,
and all subthreads of Tj are also subthreads of Ti.

Barrier synchronization: If thread Ti needs to identify the termination of a
specified family of threads, it performs a sync(Ti,F) operation where F is
the specified family. This operation is represented by the notation sync(F) in
thread Ti’s instruction sequence. The subsequent instructions after sync(F)
in thread Ti must wait until all write operations of the threads in F and
their subthreads are complete.

2.2 State Update for a Memory Location

In the LC model, the state of a memory location is a partial ordered set of
memory and synchronization operations. Given a memory location L, the state
of L is a partially ordered multiset (pomset) state(L) = (S,≺), where S is a
multiset and ≺ is a partial order on S. Each element of S is a memory operation
or a synchronization involving location L. Two elements in multiset S can have
the same value, however, they can be distinguished by the partial order. For two
operations e1, e2 ∈ S such that (e1, e2) ∈≺, we say that e1 is a predecessor of e2.
Initially, the state of a memory location is the empty set. For an operation e,
we denote thread(e) as the thread involved in operation e, i.e. thread(e) = Ti

where e ∈ {write(Ti, v, L), read(Ti, v, L), create(Ti,F), sync(Ti,F)}.
The state of a memory location L is updated when a memory operation on the

location L or a synchronization operation is performed. This new operation is
inserted to the current multiset of the state. The precedence relation (the partial
order ≺) is updated by the following rules:

1. All operations in the multiset from the same thread with the new operation
are considered as the predecessors of that new operation.

2. The thread creation operation creating the thread containing the new oper-
ation is a predecessor of that new operation.

3. If this new operation is a barrier synchronization operation then all opera-
tions issued by the threads involved in the barrier synchronization operation
are predecessors of that new operation.
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Let L be a memory location with the current state (S,≺). The state update
of L with operation e is defined as follows. S:=S ∪ {e}; and moreover:

≺:= trans( ≺ ∪ {(e′, e) | e′ ∈ S ∧ e′ 
= e : thread(e′) = thread(e)}
∪ {(e′, e) | e′ ∈ S : e′ = create(Ti,F ′) ∧ thread(e) ∈ F ′}
∪ {(e′, e) |e = sync(Tj ,F) ∧ e′ ∈ S : thread(e′) ∈ F})

The function trans is to maintain the transitive property of the precedence
relation ≺: trans(≺) =≺ ∪{(e1, e2) | ∃e1, e2, e′ ∈ S : (e1, e′) ∈≺ ∧(e′, e2) ∈≺}.

2.3 State Observability for a Memory Location

The state of a memory location in the LC model can be observed via read
operations. Let L be a memory location with state(L) = (S,≺), and r ∈ S a
read operation on L. The most recent predecessor write with respect to r
is a write operation w ≺ r such that there is no other write operation w′ ∈ S
satisfying w ≺ w′ ≺ r. The read operation r reads a legal value v if there is a
write operation w such that w = write(T, v, L), and

1. w is the most recent predecessor write with respect to r, or
2. r and w are unordered, i.e. (w, r) /∈≺.

The set V (r) is the set of all legal values returned by r.
We now recall the definition of the Location Consistency from [7] as follows:

A multiprocessor system is location consistent if, for any execution of a pro-
gram on the system, the operations of the execution are the same as those for
some location consistent execution of the program; and moreover, for any read
operation R with target location L of any execution of a program on the system,
R always returns a legal value.

3 The On-Chip COMA Cache Coherence Protocol

This section briefly introduces the on-chip COMA cache coherence protocol that
supports our programming model. Threads are distributed to processors for their
execution. One or more threads can be executed on a processor. Each processor
may cache values for many memory locations in a cache consisting of a number
of cachelines. The value of a memory location is cached in a cacheline. Note that
the values of a memory location stored in different caches can be different, since
they are not updated at the same time. For simplicity, we assume that a cache
is connected to one processor, and a cacheline stores the value of one memory
location only.

Thus in our protocol, caches are connected in a directed ring network which
has a directory to hold the information about all the data available on the
ring. The design of the ring networks is based on the properties of the mi-
crothreaded architecture. Due to its capability of tolerating long latency oper-
ations, the microgrid has less requirement on latency and higher requirement
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Fig. 1. The on-chip COMA cache coherence protocol

on bandwidth. The low cost ring structure, which can easily broadcast data
and invalidation requests, meets both the requirement of COMA and the mi-
crogrid CMP. Details can be found in [16]. Only the directory has the access to
the main memory. Hence, any loading data from or writing back to the main
memory must be handled through this node. The on-chip COMA cache co-
herence protocol is based on MOSI variations in which a cacheline have four
main states MODIFIED, OWNER, SHARED and INVALID, and three temporary states
READ PENDING, READ PENDING I and WRITE PENDING (see Fig. 1) whose descrip-
tions are given below:

– INVALID: If a cacheline is in an INVALID state then it has no valid data;
– MODIFIED: If a cacheline is in a MODIFIED state, it has the exclusiveness of

the data.
– OWNER: If a cacheline is in an OWNER state, it has the ownership of the data,

and there can be another cacheline in the system that has a valid data;
– SHARED: If a cacheline is in a SHARED state, it has a valid data but no own-

ership of the data.
– READ PENDING: If a cacheline is in a READ PENDING state, it is waiting for a

valid data to be loaded;
– READ PENDING I: If a cacheline is in a READ PENDING I state, it has received

an invalidation request while waiting for a valid data to be loaded. When it
gets a valid data, its state will become INVALID;

– WRITE PENDING: If a cacheline is in a WRITE PENDING state, it is waiting for
the exclusiveness of the data.

A cache can handle two kinds of requests: local requests and network requests.
Local requests are memory operations issued by processors, while network re-
quests (or messages) occur during the communication between caches, and have
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a higher priority to be considered than local ones. When a cache receives a local
request to read or write a data, it will check whether all cache entries are occu-
pied or not. If yes, it has to eject a cacheline for loading or writing a new data.
We note that since caches are connected in a directed ring, network requests can
only be sent or passed to the next cache on the ring. The types of requests of
the on-chip COMA cache coherence protocol are:

– LR (Local Read): the type of a read operation issued by a processor;
– LW (Local Write): the type of a write operation issued by a processor;
– RS (Remote Read to SHARED state): issued by a cache to ask for a valid data

when it receives a LR request but it has no valid data;
– SR (to SHARED state) Read Reply: issued by a cache when it receives a RS

request and has a valid data;
– IV (InValidation): issued by a cache when it receives a LW request. It wants

to become the ownership of the data, and therefore, tries to invalidate all
other data on the ring network;

– WB (Write Back to main memory): issued by a cache to write back a dirty
data (whose cacheline is in a MODIFIED or OWNER state) to the main memory
before the ejection of the cacheline;

– eject: issued by a cache to notice the directory that one of its cachelines in
a SHARED state has been ejected.

The next section will describe the on-chip COMA cache coherence protocol in
more detail.

4 The Specification of the Protocol

This section specifies the on-chip COMA cache coherence protocol in the Ab-
stract State Machine (ASM) framework [9,10]. The protocol is considered as an
ASM whose transition rules represent the behavior of the protocol.

4.1 Vocabulary

We assume the existence of a fixed set Thread of threads, a fixed set Processor
of processors, a fixed set Location of memory locations, a fixed set Operation of
operations, a fixed set Message of messages, and a fixed set Data of data values.
The undefined value or attribute of an object is specified as undef.

For a thread T , there is an attribute proc ∈ Processor to characterize the
processor where T is distributed to. Let Type = {LR, LW, CRE, SYNC, RS, SR, IV,
WB, eject}. An operation e ∈ Operation has four attributes type ∈ Type,
thread ∈ Thread, val ∈ Data and loc ∈ Location to characterize the type,
the thread, the data and the memory location involved in the operation. For
instance, for a write operation e = write(T, v, L), e.type = LW, e.thread = T ,
e.val = v and e.loc = L.

By the assumption, for a processor there is only one cache, and vice versa.
We can assume that messages are issued by processors as well. Hence, a message
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m ∈ Message has three attributes type ∈ Type, val ∈ Data and loc ∈ Location
to characterize the type, the data and the memory location involved in the
message. Moreover, it has an attribute source ∈ Processor to characterize the
processor who originally sends out the request. We denote the empty message
as noMess. For each processor P and for each location l ∈ Location, the pair
(P, l) represents a unique cacheline whose description is given by the following
functions:

– state(P, l) ∈ {undef, INVALID, MODIFIED, OWNER, READ PENDING,
READ PENDING I, WRITE PENDING} to indicate the current state of the cache-
line (P, l). Initially, state(P, l) = undef;

– cacheValid?(P, l) to indicate whether the cacheline (P, l) has a valid or not.
Initially, cacheValid?(P, l) = false;

– cacheVal(P, l) to indicate the value stored in the cacheline (P, l). Initially,
cacheVal(P, l) = undef;

– cacheDirty?(P, l) to indicate whether the cacheline (P, l) holds a dirty data
or not. Initially, cacheDirty?(P, l) = false;

– Eject(P, l) = {state(P, l) := undef, cacheDirty?(P, l) := false,
cacheValid?(P, l) := false, cacheVal(P, l) :
= undef, state(P, P.curOp.loc) := INVALID} to evict the cacheline (P, l)
from the cache of P ;

– Invalidate(P, l) = {state(P, l) := INVALID, cacheDirty?(P, l) := false,
cacheValid?(P, l) := false, cacheVal(P, l) := undef} to invalidate the
cacheline (P, l).

A processor P ∈ Processor has the following attributes:

– cacheOccupied? ∈ {true, false} to determine whether all cache entries of
P are occupied or not, monitored by the execution environment;

– id ∈ N to indicate the index of P ;
– neighbor ∈ Processor∪ {dir} to indicate the next node of P on the ring

network;
– ejectee ∈ Location to indicate the location to be ejected when all cache

entries of P are occupied, monitored by the execution environment satisfying
the condition that state(P, P.ejectee) 
= undef;

– Return ∈ Data× Location to return a read value asked by a LR request;
– curMess ∈ Message to indicate the current network request of P ;
– curOp ∈ Operation to indicate the current operation performed by P , mon-

itored by the execution environment;
– nextOp ∈ Operation to indicate the next operation performed by P , moni-

tored by the execution environment.

The notation dir denotes the directory which has the following attributes:

– MMVal : Location→ Data to determine the value of a location stored in the
main memory;

– neighbor ∈ Processor to indicate the next node of dir on the ring network;
– curMess ∈ Message to indicate the current network request of dir;
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– cacheCounter : Location → N to determine the numbers of valid caches
for a memory location on the ring network. Initially, for all l ∈ Location,
dir.cacheCounter(l) = 0. This counter is updated as follows. When the
directory receives an IV request, meaning that someone wants to become the
ownership of the data, the counter is set to 1. When the directory receives
a RS (or SR) request from (or for) a processor whose cacheline is not in
READ PENDING I state, meaning that someone wants to have a valid data,
the counter is increased by 1. When the directory receives a WB (or eject)
request, meaning that someone who has a valid data has been ejected, the
counter is decreased by 1.

There are also two auxiliary functions needed for the specification of the protocol:

– SendMess(P, messType, val, l) = {if messType = SR then
mess.source := P.curMess.source else mess.source = proc,
mess.type := messType, mess.val := val, mess.loc := l,
P.neighbor.curMess := mess, P.curMess := noMess}
to send a message from node P to its next node (P.neighbor) on the ring;

– PassMess(P ) = {P.neighbor.curMess = P.curMess, P.curMess := noMess}
to pass the current message of node P to its next node (P.neighbor).

4.2 Transition Rules

The behavior of the on-chip COMA protocol is represented as an ASM module
whose transition rules are given in Table 1, Table 2, Table 3, Table 4, Table 5,
Table 6 and Table 8. We will sometimes shorten macros such as self.curMess|
cacheOccupied?|ejectee|neighbor|curOp|nextOp|id|MMVal|cacheCounter by
curMess, cacheOccupied?, ejectee, neighbor, curOp, nextOp, id, MMVal and
cacheCounter.

Table 1. Transition rule responding LR requests

if curMess = noMess & curOp.type = LR then
if state(self, curOp.loc) = undef then

if cacheOccupied? then
if cacheDirty?(self, ejectee) and neighbor.curMess = noMess then

SendMess(self, WB, cacheVal(self, ejectee), ejectee)
Eject(self, ejectee)

if state(self, ejectee) = SHARED and neighbor.curMess = noMess then
SendMess(self, eject, cacheVal(self, ejectee), ejectee)
Eject(self, ejectee)

if state(self, ejectee) = INVALID then
Eject(self, ejectee)

else state(self, curOp.loc) := INVALID
else

if cacheValid?(self, curOp.loc) then Return(cacheVal(self, curOp.loc), curOp.loc)
if state(self, curOp.loc) = INVALID then

if neighbor.curMess = noMess then
SendMess(self, RS, , curOp.loc)
state(self, curOp.loc) := READ PENDING
curOp := nextOp

else curOp := nextOp
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Table 2. Transition rule responding LW requests

if curMess = noMess & curOp.type = LW then
if state(self, curOp.loc) = undef then

if cacheOccupied? then
if cacheDirty?(self, ejectee) and neighbor.curMess = noMess then

SendMess(self, WB, cacheVal(self, ejectee), ejectee)
Eject(self, ejectee)

if state(self, ejectee) = SHARED and neighbor.curMess = noMess then
SendMess(self, eject, cacheVal(self, ejectee), ejectee)
Eject(self, ejectee)

if state(self, ejectee) = INVALID then
Eject(self, ejectee)

else state(self, curOp.loc) := INVALID
else

cacheVal(self, curOp.loc) := opVal
cacheValid?(self, curOp.loc) := true
if state(self, curOp.loc) = WRITE PENDING then curOp := nextOp
else if neighbor.curMess = noMess then

SendMess(self, IV, , curOp.loc)
state(self, curOp.loc) := WRITE PENDING
curOp := nextOp

With reference to Table 1, we first explain how a processor P reacts when it
receives a LR (Local Read) request. As mentioned earlier, network requests have
higher priority to be considered than the local ones. Thus, this local read request
is only considered in the case that there is no network request available for P , i.e.
P.curMess = noMess. If there is no cache entry set up for the memory location
involved in the request yet (state(P, P.curOp.loc) = undef), then P first checks
whether all cache entries are occupied or not. If yes (P.cacheOccupied? = true),
P has to eject a cacheline determined by the execution environment (P.ejectee
with state(P, P.ejectee) 
= undef). If the ejectee has a dirty data then this
data is written back to the main memory by sending a WB (Write Back) message
to the directory. If the ejectee has a valid (but not dirty) data then P also sends
out a eject message to notice the directory. If the ejectee is in a pending state
then the removal is also pending. P then removes the ejectee, and sets up an-
other cacheline for the location concerned (state(P, P.curOp.loc) = INVALID).
If this cacheline has a valid data, then P just sends back the value stored in the
cacheline. The read operation is considered complete. If it has no valid data and
its state is INVALID, then P sends a RS request to other processors to ask for a
valid data.

In Table 2, we now explain how a processor P reacts when it receives a LW
(Local Write) request. Similar to the previous case, this request is only considered
by the processor and when no network request is available. Moreover, P also has
to set up a cacheline for writing the new data as in Table 1 in the case that
there is no place for that yet. If there is already an available cacheline, P just
overwrites the data. If the cacheline is not waiting for the exclusiveness of the
data (i.e. it is not in a WRITE PENDING state), P then sends out a IV request
to other processors to ask for the exclusiveness of the data. The state of the
cacheline becomes WRITE PENDING. We impose the following condition on all
write operations to avoid useless reads for a thread:
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Table 3. Transition rule responding RS requests

if curMess.type = RS then
if curMess.source = self and cacheValid?(self, curMess.loc) then

Return(cacheVal(self, curMess.loc), curMess.loc)
if state(self, curMess.loc) = READ PENDING then state(self, curMess.loc) := SHARED
if state(self, curMess.loc) = READ PENDING I then Invalidate(self, curMess.loc)
curMess := noMess

else if neighbor.curMess = noMess then
if self = dir then

if cacheCounter(curMess.loc) = 0 then
SendMess(self, SR, MMVal(curMess.loc), curMess.loc)

else PassMess(curMess)
if state(curMess.source, curMess.loc) = READ PENDING then

cacheCounter(curMess.loc) := cacheCounter(curMess.loc) + 1
else if cacheValid?(self, curMess.loc) then

SendMess(self, SR, curMess.val, curMess.loc)
if state(self, curMess.loc) = MODIFIED then state(self, curMess.loc) := OWNER

else PassMess(curMess)

Table 4. Transition rule responding SR requests

if curMess.type = SR then
if curMess.source = self then Return(curMess.val, curMess.loc)

if state(self, curMess.loc) = READ PENDING then
state(self, curMess.loc) := SHARED
cacheVal(self, curMess.loc) := curMess.val
cacheValid?(self, curMess.loc) := true

if state(self, curMess.loc) = READ PENDING I then Invalidate(self, curMess.loc)
curMess := noMess

else if neighbor.curMess = noMess then
if self = dir and state(curMess.source, curMess.loc) = READ PENDING then

cacheCounter(curMess.loc) := cacheCounter(curMess.loc) + 1
else if state(self, curMess.loc) ∈ {READ PENDING, READ PENDING I} then

cacheVal(self, curMess.loc) := curMess.val
cacheValid?(self, curMess.loc) := true

PassMess(curMess)

Condition 1. For every processor P , if the current operation of P is a write
operation (P.curOp = w) then all the read operations performed by w.thread
and its subthreads on the same location (w.loc) must be complete.

Table 3 presents the transition rules for a node P on the ring network when
it receives a RS (Remote Read to Shared state) request. If P originally sent
out the request and has a valid data then P just sends back the value stored
in its cache. If the cacheline concerned is currently in a READ PENDING state
then its state becomes SHARED; otherwise it will be invalidated. All the read
operations performed by P on the same location are considered complete. If P
is the directory and there are no caches on the ring network having a valid data
(P.cacheCounter(curMess.loc) = 0) then it sends out the value stored in the
main memory together with the read reply SR. The counter of valid caches for the
location involved in the message is increased by 1 if the cacheline who requested
the data is in a READ PENDING state. If P is a processor who has a valid data
then it sends out the data together with the reply SR. The state of the cacheline
concerned is set to OWNER if it is MODIFIED in the current step. In the remaining
cases, it just passes the message to the next node on the ring.
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Table 5. Transition rule responding IV requests

if curMess.type = IV then
if curMess.source = self then

if state(self, curMess.loc) = WRITE PENDING then
state(self, curMess.loc) := MODIFIED
cacheDirty?(self, curMess.loc) := true

curMess := noMess
else if neighbor.curMess = noMess then

if state(self, curMess.loc) = WRITE PENDING and id < curMess.source.id then
Invalidate(self, curMess.loc)

else if state(self, curMess.loc) = READ PENDING then
state(self, curMess.loc) = READ PENDING I

else if state(self, curMess.loc) /∈ {undef, READ PENDING I} then
Invalidate(self, curMess.loc)

else if self = dir then cacheCounter(curMess.loc) := 1
PassMess(curMess)

Table 6. Transition rule responding WB requests

if curMess.type = WB then
if self = dir then

MMVal(curMess.loc) := curMess.val
cacheCounter(curMess.loc) := cacheCounter(curMess.loc) − 1
curMess := noMess

else if neighbor.curMess = noMess then
if state(self, curMess.loc) ∈ {READ PENDING, READ PENDING I} then

cacheVal(self, curMess.loc) := curMess.val
cacheValid?(self, curMess.loc) := true

PassMess(curMess)

In Table 4, transition rules reacting SR (to Shared state Read Reply) requests
for a node P are given. If P is waiting for this reply then it just sends back the
data involved in the reply. The state of the cacheline concerned becomes SHARED
if it was READ PENDING, and becomes INVALID otherwise. All the read operations
performed by P on the same location are considered complete. If P is waiting for
a valid data (state(self, curMess.loc) ∈ {READ PENDING, READ PENDING I}),
then P just overwrites the data. If P is the directory and the cacheline requested
this reply is in a READ PENDING state, then the counter of valid caches for the
memory location involved in the message is increased by 1. P then passes the
message to the next node on the ring network.

Table 5 presents transition rules reacting IV (Invalidation) requests for a node
P . If P originally sent out the request and is waiting for the exclusiveness of the
data then it has the exclusiveness of the data. The state of the cacheline concerned
becomes MODIFIED. All the write operations performed by P on the same location
are considered complete. If P did not sent out the request but it is also waiting
for the exclusiveness of the data then a racing situation occurs. In this case, we
compare the indexes of P and the processor who originally sent out the request. If
P has a smaller index then it has to give up the exclusiveness of the data. The state
of the cacheline concerned becomes INVALID. If P is waiting for a valid data, then
the state of the cacheline concerned becomes READ PENDING I. In the remaining
defined states, the state is reset to INVALID. Finally, if P is the directory then the
counter of valid caches for the location involved in the message is reset to 1.
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Table 7. Transition rule responding Eject messages

if curMess.type = eject then
if self = dir then

cacheCounter(curMess.loc) := cacheCounter(curMess.loc) − 1
curMess := noMess

else if neighbor.curMess = noMess then
if state(self, curMess.loc) ∈ {READ PENDING, READ PENDING I} then

cacheVal(self, curMess.loc) := curMess.val
cacheValid?(self, curMess.loc) := true

PassMess(curMess)

Table 8. Transition rules responding create and sync operations

if curMess = noMess & curOp = create(F) then curOp := nextOp
if curMess = noMess & curOp = sync(F) then curOp := nextOp

With reference to Table 6, we explain how a node P reacts when it receives
a WB (Write Back to the main memory) request. If P is the directory, then P
updates the memory value with the data involved in the message. The counter of
valid caches for the location concerned is decreased by 1. If P is waiting for a valid
data, then P also updates the cached value with the data value involved in the WB
message. The state of the cacheline concerned remains the same. P then passes
the message to the next node on the ring. Similarly, Table 7 presents transition
rules for a node P when it receives a eject message. The only difference between
the two tables is that in Table 7, P does not update the value stored in the main
memory.

In Table 8, we provide transition rules for a processor P in the case that its
current operation is a thread creation or a synchronization operation. We impose
the following conditions to ensure that these operations are treated in the right
order.

Condition 2. 1. For every processor P , if the current operation of P is a
creation operation (P.curOp = c) then all the write operations performed by
the creating thread c.thread and its subthreads must be complete.

2. For every processor P , if the current operation of P is a synchronization
operation (P.curOp = sync(F)) then all the write operations performed by
the threads in F and their subthreads must be complete.

5 The On-Chip COMA Cache Coherence Protocol Obeys
LC

In this section, we show that the on-chip COMA cache coherence protocol obeys
the LC model, i.e. a read operation r always returns a value belonging to the set
V (r) defined as in Section 2.

By the ASM Lipari Guide [10], we lose no generality by proving correctness
of an arbitrary linearization of a run of a distributed ASM. Hence, let ρ be a
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linearization of an arbitrary distributed run of the on-chip COMA cache coher-
ence protocol, and let ≺m be the linear order on the moves of ρ. We adapt the
definition of state update for a memory location in Section 2.2 as follows. When
the current operation of a processor P concerning with a memory location L is
updated by a move P.curOp := P.nextOp in ρ, the state of memory location L
is updated as S := S ∪ {P.curOp}. We say that:

1. A processor P performs a read r at a move Pr if P.curOp = r;
2. A processor P completes a read r and reads value v for r at a move Cr if

cacheValid?(P, r.loc) at Pr, Cr = Pr and v = cacheVal(P, r.loc), or Cr is
the first move after Pr at which P.curMess.source = P , P.curMess.loc =
r.loc, P.curMess.type = RS and v = cacheVal(P, r.loc); or P.curMess.
type = SR and v = P.curMess.val;

3. A processor P performs a write w at a move Pw if P.curOp = w;
4. A processor P completes any write w at a move Cw if it is the first move

after Pw at which P.curMess.source = P , P.curMess.loc = w.loc and
P.curMess.type = IV;

5. A processor P performs a thread creation c at a move Pc if P.curOp = c;
6. A processor P performs a synchronization s at a move Ps if P.curOp = s.

Lemma 1. Let w be a write operation, and o a memory operation on a location
L satisfying that w ≺ o, and w and o are not issued by the same thread. Then
w must be complete before the execution of o, i.e. Cw ≺m Po.

Proof. Since w ≺ o, w.thread 
= o.thread and by the definition of state update
for a memory location in Section 2.2, we consider two possibilities:

1. There is an operation c = create(T,F) such that w.thread = T and w ≺
c ≺ o. Let Pw, Pc and Po be the moves at which w, c and o are performed
in ρ, respectively. Then Pw ≺m Pc ≺m Po. It follows from Transition rule in
Table 8 and Condition 2 that w must be complete before the next operation
of c is performed. Hence, w must be complete before the move O.

2. There is an operation s = sync(T,F) such that w.thread ∈ F and w ≺ s ≺
o. Again, it follows from Transition rule in Table 8 and Condition 2 that w
must be complete before the execution of o.

Lemma 2. In ρ, let Cr be a move at which a processor P completes a read r
and reads value v for r. Then v is defined.

Proof. We prove only for the case that P.curMess.type = RS at Cr. The other
cases are obvious. In this case, P had no valid data at Pr, and then it sent out
a RS request for a valid data (by Transition rules in Table 1). Later, this re-
quest comes back to P at move Cr. We show that cacheValid?(P, r.loc) at
Cr. It follows from Transition rules in Table 3 that there was no processor
from P to dir, and there was at least one processor from dir to P having
a valid data when the RS request arrived at dir. Since the RS request comes
back to P , the processors having a valid data had been ejected when the RS re-
quest arrived to them. By Transition rules in Table 1 and Table 2, they had
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to send a WB or a eject message to notice the directory before their ejec-
tion. These messages can update the data stored in the cacheline (P, r.loc),
according to Transition rules in Table 6 and Table 7. Hence there exists a move
M such that Pr ≺m M ≺m Cr and cacheValid?(P, r.loc) at M . It follows
from Transition rules in Table 2, Table 3 and Table 5 that state(P, r.loc) ∈
{READ PENDING, READ PENDING I, WRITE PENDING} between moves Pr and Cr.
This implies that cacheValid?(P, r.loc) at Cr.

Finally, we prove our main theorem as follows.

Theorem 1. In ρ, let Cr be a move at which a processor P reads value v for a
read operation r. Then v is a legal value returned by r.

Proof. Let w be the write operation that writes the value v (v = w.val). There
are two cases:

1. w and r are unordered, i.e. (w, r) /∈≺. Then v ∈ V (r).
2. w and r are ordered. It follows from Condition 1 that w ≺ r. We show that
w is the most recent predecessor write with respect to r, i.e. there does not
exist a write operation w′ such that w ≺ w′ ≺ r. We prove by contradiction.
Assume that there is a write operation w′ satisfying w ≺ w′ ≺ r. If w′ and r
are performed by the same thread, and therefore, by the same processor then
Cw′ ≺m Pr, otherwise v would be written by w′, not w. If w′ and r are per-
formed by different threads then by Lemma 1, we also get that Cw′ ≺m Pr.
With the transition rules in Table 1, Table 3 and Table 4, we consider the
following subcases:

(a) P reads the value v from a cache. Since after the completion of w′, there
is still processor P that has a valid data written by w, Cw′ ≺m Cw. This
is a contradiction, since w must be complete before the move Pw′ in the
case that w and w′ are performed by different threads (by Lemma 1),
or w must be complete before or at the same time as the completion
of w′ in the case that w and w′ are performed by the same thread (by
Transition rules in Table 5).

(b) P reads the value v from the main memory, i.e. w was written back
to the main memory. Since Cw′ ≺ Pr, w′ was also written back to the
main memory when the RS request for the value v from P arrived at the
directory dir. Otherwise, dir.cacheCounter(r.loc) ≥ 1 (by Transition
rules in Table 5), and therefore, P would not read the value stored in
the main memory. Since w ≺ w′, v is written by w′. This contradicts the
assumption that v is written by w.

Hence, there does not exist a write operation w′ satisfying w ≺ w′ ≺ r, or
w is the most recent predecessor write with respect to r. Thus, v ∈ V (r).
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6 Relation with the Standard Consistency Models

6.1 Our Consistency Model Is Weaker Than SC Model

Sequential consistency requires all memory operations to be executed in some
sequential order, and the operations with in a process to be executed in program
order. In the context of microthreaded architecture, adapting location consis-
tency model, memory accesses to different locations do not conform to any order.
To illustrate the model’s discontentment of SC, we recall the standard example
from [6] as follows.

Example 1. Let threads T1 and T2 be distributed to two different processors. T1

first writes 1 to the shared variable x and then reads the value of the shared
variable y. Symmetrically, T2 writes 1 to the shared variable y and then read the
value of x. Note that initially, x = y = 0.

X:=0; Y:=0; /* initial values */
T1: T2:
w1: x := 1; w2: y := 1;
r1: read Y; r2: read x;

Under the SC and SC-derived models, the operations from T1 and T2 are seen in
the same order by both processors. Hence, the case that both read operations r1
and r2 return 0 is prohibited by the SC and SC-derived models. However, this
can happen according to the on-chip COMA cache coherence protocol. Here, r1
and r2 can just return the initialized values of x and y which are 0.

6.2 Our Model Is Stronger Than the Strong LC Model

After proving our on-chip COMA system complies with LC model, in this section,
we show that our system is not strongly LC consistent [6]. Here, we consider the
following example.

Example 2. Thread T0 creates two separate thread families consisting of T1, T2

and T3, T4 accordingly. Threads T1 and T2 perform write operations on location
L, and T3 and T4 perform read operations of L. We assume threads T1, T2, T3

and T4 are running on different processors.

T0: T1: T2: T3: T4:
create(T1,T2); L:=1; L:=2; r0: read L; r1: read L;
sync(T1,T2);
create(T3,T4);
sync(T3,T4);

Under the strong location consistency definition, r0 and r1 can return different
values from any of the two indeterministic writes in T1 and T2. However, in
our system, after the synchronization on T1 and T2, only one of the two values
written by T1 and T2 will be alive. Thus, the r0 and r1 cannot observe different
values left by the two write operations. Hence, we conclude that our memory
system implementing location consistency is not strongly location consistent.
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7 Concluding Remarks

In this paper, the on-chip COMA cache coherence protocol has been formally
specified in the ASM framework. We gave a correctness proof for the coher-
ence protocol. Furthermore, we showed that our memory system is weaker than
the SC and SC-derived models. It complies with location consistency but it is
not strongly location consistent. Our work is a part of a project investigating
microthreading in a collaboration between the Computer Systems Architecture
group and Sectie Software Engineering at the University of Amsterdam1.
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