
How to Use SIFT Vectors to Analyze an Image

with Database Templates

Adrien Auclair1, Laurent D. Cohen2, and Nicole Vincent1

1 CRIP5-SIP, University Paris-Descartes,
45 rue des Saint-Pères, 75006 Paris, France

{adrien.auclair,nicole.vincent}@math-info.univ-paris5.fr
2 CEREMADE, University Paris-Dauphine,

Place du Maréchal De Lattre De Tassigny 75775 PARIS, France
cohen@ceremade.dauphine.fr

Abstract. During last years, local image descriptors have received much
attention because of their efficiency for several computer vision tasks
such as image retrieval, image comparison, features matching for 3D re-
construction... Recent surveys have shown that Scale Invariant Features
Transform (SIFT) vectors are the most efficient for several criteria. In this
article, we use these descriptors to analyze how a large input image can
be decomposed by small template images contained in a database. Affine
transformations from database images onto the input image are found
as described in [16]. The large image is thus covered by small patches
like a jigsaw puzzle. We introduce a filtering step to ensure that found
images do not overlap themselves when warped on the input image. A
typical new application is to retrieve which products are proposed on a
supermarket shelf. This is achieved using only a large picture of the shelf
and a database of all products available in the supermarket. Because the
database can be large and the analysis should ideally be done in a few
seconds, we compare the performances of two state of the art algorithms
to search SIFT correspondences: Best-Bin-First algorithm on Kd-Tree
and Locality Sensitive Hashing. We also introduce a modification in the
LSH algorithm to adapt it to SIFT vectors.

1 Introduction

In this article, we are concerned about the problem of analyzing how a large
input image can be described by small template images contained in a database.
Our goal is to provide a working solution for this problem but we also want it
to be as fast as possible. The large input image is expected to be covered by
a set of small patches which are found in the database. Examples of images to
analyze are shown on figures 2.(a) and 2.(b). A typical application is to analyze
a picture of a supermarket shelf. The input is a large image of the shelf taken
in the supermarket. The database contains images of all the available products.
The output is a list of products contained in the image with their corresponding
positions. Products in database and products on the supermarket shelf can be
slightly different. For example, a price sticker or a discount sticker can be added.

N. Boujemaa, M. Detyniecki, and A. Nürnberger (Eds.): AMR 2007, LNCS 4918, pp. 224–236, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

{adrien.auclair,nicole.vincent}@math-info.univ-paris5.fr
cohen@ceremade.dauphine.fr

How to Use SIFT Vectors to Analyze an Image with Database Templates 225

Or the product can be partly hidden (e.g., by the shelf itself, by a discount or
any decorative item). For these reasons, local descriptors matching is a natural
method for this problem.

During last years, Scale Invariant Features Transform (SIFT) features [16]
have received much attention. It has been shown in a recent survey ([17]) that
it leads to the best results compared to other local descriptors. Several minor
modifications of the initial SIFT features have also been presented (PCA-SIFT
[12], or Gloh-SIFT [17]), but the gain is not obvious in all experiments. Thus,
we will only focus on the original SIFT descriptors in this article.

These SIFT features will be used to compute several affine transformations
between products in database and the input image. An important remark is
that some products in database can be very similar. For example, a brand icon
will appear on a large number of images in database. Thus, if the input image
contains a single product with this brand icon, all the database images having
this icon will be found by affine matching. We will thus need a filtering step
that will keep only a small subset among all found affine transformations. This
filter will use the fact that found templates images cannot overlap themselves
too much in the input image.

Because the database can be large and the analysis should ideally be done in a
few seconds, we compare two state of the art optimization methods to search for
SIFT correspondences. These algorithms are related to the problem of finding
approximate nearest neighbors in high dimensional space. The first one is based
on Kd-Tree: Best-Bin-First algorithm of [2]. The second one is using hash table:
Locality Sensitive Hashing of [9]. We also introduce a modification in the LSH
algorithm to adapt it to SIFT vectors.

Used Databases. Our researches were motivated by applying the described
method to an actual private database. It contains 440 images of supermarket
products. These images are compressed in JPEG. The image size approximately
varies from 100x100 pixels to 500x500 pixels. Images of database lead to more
than 270.000 descriptors, each one being in �128. We call this database DB440.

We also tested our algorithm on the publicly available Amsterdam Library
of Object Images [8]. We picked the dataset where the illumination direction
changes, using the gray-value images of size 384x288 pixels. Within this dataset,
we used the 1000 pictures that were taken from light position number 4 and
camera number 3. This database generates 170.000 local descriptors. Figure 1
shows some images of this database, noted ALOI.

Fig. 1. Four images from the ALOI database

226 A. Auclair, L.D. Cohen, and N. Vincent

In the following section, we first recall the SIFT construction algorithm and
the classical method we used to robustly compute affine transformations from
SIFT correspondences. Then, in section 3 we introduce a filtering step to keep
only valid matchings. Eventually, in section 4 we compare two optimization
methods and introduce a modification in LSH algorithm.

2 Using SIFT for Affine Matching

In this part, we introduce the first building blocks of our method: SIFT descrip-
tors and robust affine matching. More details about these two steps can be found
in [16].

2.1 SIFT Descriptors

Like any local descriptor algorithm, it can be split in two distinct steps. The
first one is to detect points of interest where to compute the local descriptors.
The second one is to actually compute these local descriptors. The first stage is
achieved by finding scale-space extrema in the difference of Gaussian pyramid.
A point is said extremum if it is below or above its 8 neighbors at same scale
and the 9 neighbors at up and down scales. Thus, a point of interest is found
at a given scale. Its major orientation is computed as the major direction of a
patch of pixels around its position. Then, the descriptor vector is computed at
the feature scale. It is a vector of 16 histograms of gradient. Each histogram
contains 8 bins, leading to a 128 dimensional descriptor.

Due to their construction, SIFT vectors are invariant by scale change and rota-
tion. And experiences show that they are also robust to small viewpoint changes
or illumination variations. This is particularly adapted to our problem as our im-
ages (both input and database images) are taken from a frontal point of view and
templates from database can be rotated and scaled in the image to analyze.

2.2 Finding Affine Matchings

As a pre-process step, SIFT vectors are computed from the input image, and
noted SIFTIN . All the descriptors from the database images have also been
extracted offline and are noted SIFTDB. Features of the ith database image are
noted SIFT i

DB. The first step is to identify correspondences between SIFTIN

and SIFTDB.

Linear Search. Each feature from SIFTIN is compared to each feature from
SIFTDB and only correspondences whose L2 distance is lower than a threshold
ε are kept. For a query feature q of SIFTIN , this can be seen as finding the
ε − neighborhood of q in SIFTDB. Once we have obtained for each descriptor
of SIFTIN a list of its neighbors in SIFTDB, these correspondences are fitted
to affine transformations. The goal of this fitting step is twofold. First, it is
needed to remove outliers from the correspondences. Then, it gives the mapping
of database images onto the input image.

How to Use SIFT Vectors to Analyze an Image with Database Templates 227

Affine Fitting. In our experiments, database images and input images are
taken from a frontal point of view. The affine model is thus well adapted. An
affine matrix transforms a point p1 = (x1, y1) in the first image, to a point p2 in
the second image:

p2 =
[
a b tx
c d ty

]
.

⎡
⎣x1

y1

1

⎤
⎦

Fitting is achieved independently for each database image. For the ith im-
age in database, we consider correspondences between SIFTIN and SIFT i

DB.
These correspondences are fitted by several affine matrices corresponding to the
multiple occurrences of this database image within the input image.

As introduced in [16], all the correspondences are clusterized. Each correspon-
dence c between feature f1 in SIFTIN and feature f2 in SIFT i

DB can be seen
as a four dimensional point: c(θ, η, x, y) where θ is the rotation between the ori-
entations of f1 and f2, η is the scale ratio between f1 and f2, and (x, y) is the
coordinates of f1 in the input image. Each correspondence is projected in a 4D
grid. For being less sensitive to the grid tile sizes, each point is projected on its
two closest tiles on each dimension. Thus, a correspondence is projected in 16
tiles. Eventually, every cluster with at least 3 correspondences can be fitted by
an affine transformation and can be seen as a potential product match.

Estimating an affine matrix from a cluster of correspondences requires robust
method as outliers are common. We used a RANSAC [6] for this task. The affine
matrix needs only 3 samples (i.e., correspondences) to be estimated. Once the
matrix with the major consensus is obtained, it is optimized by least square.

3 Filtering Potential Images Occurrences

Eventually, we obtain a list of potential template images occurrences. Each one
can be seen as a triplet:

〈i, A, n〉
where i is the index of the database image, A is the found affine matrix and n
is the number of SIFT correspondences that agree with this matrix.

Because several products of the database are very close (e.g., same brand
icons), some potential occurrences are incorrect. Some of them are also overlap-
ping and a few ones are completely wrong. These wrong product matchings are
mostly due to affine matrices which were fitted with only 3 or 4 correspondences.
Our solution to filter these results is to set up a spatial checking. Product matches
are sorted according to the number of points supporting their affine transforma-
tion, in decreasing order. Then, they are iteratively pasted in this order on the
large image only if their underlying pixels have not already been reached by
other products. Using this method, correct product matchings with many SIFT
correspondences are pasted first and are accepted while wrong ones with few

228 A. Auclair, L.D. Cohen, and N. Vincent

Table 1. Computation time for linear search of SIFT correspondences

number of products in database time to compute correspondences

10 30 seconds

100 5 minutes

450 22 minutes

correspondences cannot be pasted and are discarded. The final result is a list of
the product matchings that do not overlap themselves too much when warped
on the input image. In practice, a product is accepted if it does not recover more
than a certain percentage of the surface of an already accepted product (20% in
our tests).

The figure 2 shows the result of the previous algorithm on two input images.
Image 2.(a) contains twelve templates of 3 distinct products. Some of them are
partially hidden by their corresponding price stickers. The database contains 440
products. Image 2.(b) is made up manually from images of the ALOI database.
Some templates were pasted on a flower background, and partially occluded by
painting on it. Then a gaussian blur was applied. Found images are shown in
figures 2.(c) and 2.(d). In figures 2.(e) and 2.(f), these found products are warped
at their found positions on the input image. In both examples, database images
are retrieved and their positions are correct.

The problem of this approach is it slowness. In the example of the figure 2.a,
the input image contains 6475 descriptors and the DB440 database contains
274.587 descriptors thus there are more than one milliard of euclidean distances
to compute. The table 1 shows the running time on our machine (Pentium
1.7GHz) for the linear search. The time is of course linear in the number of
SIFT vectors in the database. For convenience, table 1 uses the number of prod-
ucts in database (using an average value of 600 descriptors per database image).
It clearly shows that running times are far from acceptable for any interactive ap-
plication as soon as the database contains more than 10 products. The two other
steps of robustly computing affine transformations and checking the spatial co-
herence are insignificant in time compared to the search of SIFT neighbors. This
is why in the next section, we present and compare two optimization methods
for searching nearest neighbors in high dimensional space.

4 Optimization Methods

The previous algorithm is very slow because of the time needed to search for SIFT
correspondences. This is due to the large amount of 128 dimensional euclidean
distances to be computed. An idea explored in [12] was to reduce the dimension
of local descriptors using PCA. Changing from a 128 dimensional vector to
a 36 dimensional vector is an interesting gain but still not enough to get to
interactive applications. Moreover, PCA-SIFT is a little less efficient in term of
quality (see [17]), thus we will not use this method. In [7], the authors prune
a large amount of the descriptors for each database image. But they say this

How to Use SIFT Vectors to Analyze an Image with Database Templates 229

(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a): A supermarket shelf image to analyze, using DB440. (b): A test image
made up manually from images of the ALOI database. Green painting added by us is
for being more challenging. (c): The three database images found on image (a). (d):
The five database images found on image (b). (e) and (f): Found database images are
warped on their found locations on input image. Backgrounds of these result images
are input images with lowered intensity.

approach is only efficient for near-duplicate image detection. In our case, input
image and database images can have different lighting for example because of a

230 A. Auclair, L.D. Cohen, and N. Vincent

photographer using a flash on reflective surface. Images can be blurred because
of a bad focus. Thus, pruning many descriptors would lead to miss database
images with low quality. This is confirmed by our results as the number of SIFT
descriptors is sometime less than 10 for a correct affine matrix. Thus, pruning a
large amount of SIFT vectors would lead to miss some products.

Instead, we concentrate more on optimization algorithm for searching neigh-
bors in high dimensional spaces. Methods have been proposed in the literature
for exact nearest neighbors computation (one can find a review of this problem in
[4]). Tree based methods include Kd-Trees [3], Metric-Trees [18] or SR-Trees [11].
Kd-Tree hierarchically divide the space along one dimension at a time, choosing
the median value along this dimension as the pivot. Metric Trees use the same
concept but hyperplanes are not aligned with axis. SR-Trees merge the concepts
of rectangles trees (R*-Trees [1]) and similarity search trees that uses englobing
spheres (SS-Tree [19]).

In [15], the authors compare these tree-based exact nearest neighbors algo-
rithms. The metric-Tree method gives the best results. But even this algorithm
has a little gain compared to an exhaustive search. The results obtained in [15]
are not better than one order of magnitude in dimension 64. In fact, if the prob-
lem is to look for exact neighbors, there is no method that can optimize much
the linear one presented in 2.2. This is especially true in high dimensional space
(i.e., with more than 20 dimensions). This particularity is known as the ’curse
of dimensionality’. Thus, we will focus on another class of algorithms which are
looking for approximate nearest neighbors (so called ANN problem).

4.1 Approximate Nearest Neighbors Problem

We restrict ourselves to two classes of algorithm: tree-based methods (hierarchi-
cal split of the space) and hashing methods. In the next sections, we will test
two state of the art algorithms, one of each class. The first one uses a Kd-Tree
coupled with the Best-Bin-First algorithm presented in [2]. The second one is the
Locality Sensitive Hashing method of [9]. Another method not presented here
uses Hilbert Curve to map the high dimensional space to a one-dimensional data
space. The search is then achieved in this space ([14]). One can then restrict the
search on some portions of the curve to find neighbors as done in [10] in a video
retrieval system.

Before presenting the tested methods, we need to define how accuracy will
be measured. The goal of these algorithms is to find for each query feature
q its ε − neighborhood(q) (i.e., all database features whose distance from q is
below a threshold ε). The ground truth is found by a linear search. Then, for
a given epsilon and for a query feature q, the optimized algorithm will give
its ε − neighborhoodapprox(q). Points further than ε from the query point are
removed to have no false neighbor and thus we have:

ε − neighborhoodapprox(q) ⊆ ε − neighborhood(q).

How to Use SIFT Vectors to Analyze an Image with Database Templates 231

The quality of an algorithm will be function of its time of execution and of
its ability to retrieve most of the correct neighborhoods of query points. This
second property is measured by the recall:

recall =
number of points found

number of points to be found
=

∑
q # {ε − neighborhoodapprox(q)}∑

q # {ε − neighborhood(q)} .

In our tests, some products are detected with only a few correspondences.
This is why it is important to keep a high recall on this step of the algorithm.

4.2 Using Best-Bin-First with Kd-Trees

Kd-Trees have been introduced in [3]. They are successful for searching exact
nearest neighbors when the dimensionality is small. In higher dimensional spaces,
this is not anymore true. In our case (i.e., dimension 128), it can only be used
for approximate nearest neighbors using the Best-Bin-First algorithm ([2]).

A Kd-Tree is constructed with all the features from the whole database. Each
node splits its point cloud into two parts according to a split plane. Each split
plane is perpendicular to a single axis and positioned at the median value along
this axis. Eventually, each leaf node contains one point. For exact search, a
depth first search is used to initialize the closest neighbor. Backtracking is then
achieved on a limited number of sub-branches that can have a point closer than
the current closest one.

The Best-Bin-First algorithm does not achieve a complete backtracking. To
limit its search, it keeps a list of nodes where search has already been done. This
list is sorted according to the distance between the query point and the split
plane of the given node. Then, instead of full backtracking from the initial leaf
found by the depth first search, backtracking is done on a limited number of
branches. The next branch to visit is the one at the head of the sorted list of
nodes. The user can then decide the number of branches to visit. We will call
this parameter Emax. When reducing its value, the user increases speed but more
neighbors are missed by the algorithm. Results are presented in section 4.5.

4.3 Using Locality Sensitive Hashing

This hashing has been introduced in [9]. It has been successfully used on image
retrieval in very large database [13]. The idea is that if two points are close,
they will be hashed with high probability in the same bucket of an hash table.
And if they are far, they will be hashed with low probability in the same bucket.
Because of the uncertainty of this method, points are hashed in several hash
tables using several hash functions.

More formally, points are hashed by l different hash functions gi, leading
to store points in l different hash tables. The hash functions are parametrized
by the number of hashed dimensions k. Each gi function is parametrized by
two vectors: Di =

〈
Di

0, D
i
1 . . . Di

k−1

〉
and Ti =

〈
ti0, t

i
1 . . . tik−1

〉
. Values of Di are

232 A. Auclair, L.D. Cohen, and N. Vincent

randomly drawn with replacement in [0...127]. Thresholds of Ti are drawn in
[0...C], where C is the maximum value of the vectors along one dimension. Each
gi maps �128 to [0...2k − 1]. gi(p) is computed as a k − bits string bi

0, b
i
1 . . . bi

k−1

such that:
bi
j = 0 if

(
p(Di

j) < tij
)

else 1.

This k − bits string is the hash index for the point p in the ith hash table. To
search for neighbors of a query point q, it is hashed by the l functions. Then,
the corresponding l buckets are linearly tested for points closer than the given
threshold ε. Modifying both l and k allows to tune the algorithm for speed or
accuracy. Because k can be chosen high (e.g., above 32), the destination space of
the hash functions can be too large. This is why a second hash function is added
to project the result of gi functions to an actual bucket index whose domain
is smaller. Because this will add collisions in the table, a third hash function
computes a checksum from the bit string. When going through the linked list of
a bucket, only points with the same checksum than the query point are tested.
After tuning, we choose to use l = 20 hash tables and to adjust k to choose
performance or efficiency. The algorithm is benchmarked in section 4.5.

4.4 Adapting LSH to the SIFT Vectors

In the literature, some authors adapted nearest neighbor algorithms for non
uniform data distribution. BOND algorithm of [5] is a natural method for such
data. But the exact search method proposed in this article leads to a gain below
one order of magnitude that are not enough for our application. In [20], the
authors claim that LSH is not adapted for non uniform distribution and thus
create a hierarchical version of LSH.

Figure 3 shows the distribution of the coordinates of SIFT vectors on three
chosen directions. These figures were obtained from the 170.000 SIFT descrip-
tors from the ALOI database. But we obtained similar histograms using the
DB440. Histograms of figures 3.a and 3.b are almost representative of all the 128
histograms. Just a few ones are different (e.g., 3.c). These different distribution
are a consequence of the SIFT vectors construction. As explained in 2.1, each di-
mension is a bin where local gradients of a given direction are accumulated. This
direction is measured relatively to the major direction of the SIFT descriptor.
Thus, local bins which represent gradient of the same direction as the major one

(a) (b) (c)

Fig. 3. Histograms of SIFT vectors values along several dimensions: (a) SIFT coordi-
nate 0 (b) SIFT coordinate 10 (c) SIFT coordinate 48

How to Use SIFT Vectors to Analyze an Image with Database Templates 233

Table 2. LSH probabilities of collisions

range to draw LSH thresholds Pclose→same Pfar→same

[0...C] 0.001 0.0002

[60...120] 0.008 0.0005

are naturally the largest. Histogram of 3.c corresponds to dimension 48 which
accumulated gradient in a direction equal to the major one. But excepted a few
dimensions with this type of distribution, most of the histograms looks like 3.a
or 3.b.

The consequence is that coordinates of the 128 dimensional descriptors which
are very low are much more common than those with high values. Thus, when
the LSH threshold on one dimension is low, a large amount of points will be
projected in different buckets even if they are close. Accepting low thresholds
will thus lead to bad hash functions. For this reason, we tried to choose the
thresholds vectors Ti of the LSH hash functions in the range [min, max] where
min is much higher than zero. Experimentally, we tuned this range and found
that [60, 120] gives the best results.

We can analyze this modification by measuring the probability of collisions for
close points. We say two points are close if their distance is below the threshold
ε = 260. The probability of two close points to be projected by a hash function
in the same bucket is noted Pclose→same. The probability of two points which
are not close to arrive in the same bucket is noted Pfar→same. A family of hash
function is efficient if Pclose→same is relatively high and Pfar→same is relatively
low. These probabilities are experimentally measured, averaging the obtained
values over the 20 used hash functions. Results are shown in table 2.

Using the range [60...120] multiplies Pclose→same by 8 while only multiplying
Pfar→same by 2.5. This confirms the fact that restricting the interval of hashing
thresholds leads to better hash functions. In the next paragraph, we will call this
method adaptedLSH and compare its performance to standard LSH.

4.5 Results

We benchmarked the three presented algorithms: BBF on Kd-Tree, LSH and
adaptedLSH. Tests were achieved on the two presented databases to ensure being
independent of the images. These databases contain respectively 270.000 and
170.000 SIFT vectors.

Figure 4 shows the speed gain of each optimized method, according to the
obtained accuracy. BBF algorithm on Kd-Tree is outperformed by both meth-
ods based upon LSH. Obtaining a ratio of 70% (i.e.: recall of 0.7) with this
algorithm on the DB440 database is almost no faster than using a linear search.
If the requirement is to be 100 times faster than linear search on the ALOI
database, the LSH algorithm still finds 70% of the neighborhoods, while the
adaptedLSH method finds 90% of the points. If the need is to find 80% of the
points, adaptedLSH is twice faster than LSH.

234 A. Auclair, L.D. Cohen, and N. Vincent

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

percentage of neighborhood found

tim
e

co
m

pa
re

d
to

 li
ne

ar
 s

ea
rc

h

LSH
BBF on Kd−Tree
adaptedLSH

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

percentage of neighborhood found

tim
e

co
m

pa
re

d
to

 li
ne

ar
 s

ea
rc

h

LSH
BBF on Kd−Tree
adaptedLSH

(a) (b)

Fig. 4. Results for Kd-Tree, LSH and adaptedLSH, using ε = 260 on (a): DB440 and
(b): ALOI

With the first input image, linear search time is around 21 minutes on our
machine. A gain of two orders of magnitude means the same computation is
achieved in 13 seconds, while finding around 80% of the points. This quality is
good enough so that all the products found by the exact linear search are also
found by this approximate method. For an application that would require only
20% of the correspondences, the required time for a query could be divided by
a factor 500 relatively to the linear search.

5 Conclusion

The contributions of this article are twofold. First we proposed a complete algo-
rithm to analyze an input image using database template images. This work uses
the initial SIFT matching algorithm of [16]. It adds a filtering step to ensure that
found images do not overlap themselves when warped on the input image. Our
second contribution concerns speed limitations. We compared two optimization
algorithm for the approximate nearest neighbors problem. In these tests, LSH
outperforms the BBF-Kd-Tree algorithm. We also introduce a modification in
the LSH algorithm to adapt it to the SIFT distributions. If the quality require-
ment is to find 80% of the correspondences, this modified LSH is at least twice
faster than standard LSH. Comparatively to a linear search, the gain is of two
orders of magnitude. Being able to keep a high percentage of the correspon-
dences is a major advantage for our application as it can be sensitive to missing
points because some templates matchings are based only on a few points. In the
tested images, result are encouraging as we exactly find all the database images
at their correct location. For these experiments, we tuned the parameters of the
optimization algorithm to find 80% of the SIFT correspondences. We plan to in-
vestigate performances of the overall algorithm in terms of recall-precision when
modifying the parameters of the LSH algorithm. Moreover, we believe that the
criteria we used to filter the matchings (i.e., the number of points validating the
found affine transformation) is not optimal.

How to Use SIFT Vectors to Analyze an Image with Database Templates 235

References

1. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: an efficient and
robust access method for points and rectangles. In: SIGMOD 1990: Proceedings
of the 1990 ACM SIGMOD international conference on Management of data, pp.
322–331. ACM Press, New York (1990)

2. Beis, J.S., Lowe, D.G.: Shape indexing using approximate nearest-neighbour search
in high-dimensional spaces. In: CVPR 1997: Proceedings of the 1997 Conference on
Computer Vision and Pattern Recognition (CVPR 1997), p. 1000. IEEE Computer
Society Press, Washington, DC, USA (1997)

3. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

4. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index
structures for improving the performance of multimedia databases. ACM Comput.
Surv. 33(3), 322–373 (2001)

5. de Vries, A.P., Mamoulis, N., Nes, N., Kersten, M.: Efficient k-nn search on verti-
cally decomposed data. In: SIGMOD 2002: Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pp. 322–333. ACM Press, New
York (2002)

6. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM 24(6), 381–395 (1981)

7. Foo, J.J., Sinha, R.: Pruning sift for scalable near-duplicate image matching. In:
Bailey, J., Fekete, A. (eds.) Eighteenth Australasian Database Conference (ADC
2007), Ballarat, Australia. CRPIT, vol. 63, pp. 63–71. ACS (2007)

8. Geusebroek, J.-M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library
of object images. Int. J. Comput. Vision 61(1), 103–112 (2005)

9. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. The VLDB Journal, 518–529 (1999)

10. Joly, A., Frélicot, C., Buisson, O.: Feature statistical retrieval applied to content-
based copy identification. In: ICIP, pp. 681–684 (2004)

11. Katayama, N., Satoh, S.: The sr-tree: an index structure for high-dimensional near-
est neighbor queries. In: SIGMOD 1997: Proceedings of the 1997 ACM SIGMOD
international conference on Management of data, pp. 369–380. ACM Press, New
York (1997)

12. Ke, Y., Sukthankar, R.: Pca-sift: A more distinctive representation for local image
descriptors. In: CVPR (2), pp. 506–513 (2004)

13. Ke, Y., Sukthankar, R., Huston, L.: An efficient parts-based near-duplicate and
sub-image retrieval system. In: MULTIMEDIA 2004: Proceedings of the 12th an-
nual ACM international conference on Multimedia, pp. 869–876. ACM Press, New
York (2004)

14. Lawder, J.K., King, P.J.H.: Querying multi-dimensional data indexed using the
hilbert space-filling curve. SIGMOD Record 30(1), 19–24 (2001)

15. Liu, T., Moore, A.W., Gray, A.G., Yang, K.: An investigation of practical approx-
imate nearest neighbor algorithms. In: NIPS (2004)

16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision 20, 91–110 (2004)

17. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

236 A. Auclair, L.D. Cohen, and N. Vincent

18. Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees.
Inf. Process. Lett. 40(4), 175–179 (1991)

19. White, D.A., Jain, R.: Similarity indexing with the ss-tree. In: ICDE 1996: Proceed-
ings of the Twelfth International Conference on Data Engineering, pp. 516–523.
IEEE Computer Society, Los Alamitos (1996)

20. Yang, Z., Ooi, W.T., Sun, Q.: Hierarchical, non-uniform locality sensitive hashing
and its application to video identification. In: ICME, pp. 743–746 (2004)

	How to Use SIFT Vectors to Analyze an Image with Database Templates
	Introduction
	Using SIFT for Affine Matching
	SIFT Descriptors
	Finding Affine Matchings

	Filtering Potential Images Occurrences
	Optimization Methods
	Approximate Nearest Neighbors Problem
	Using Best-Bin-First with Kd-Trees
	Using Locality Sensitive Hashing
	Adapting LSH to the SIFT Vectors
	Results

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

