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Abstract. In retrieval, indexing and classification of multimedia data
an efficient information fusion of the different modalities is essential for
the system’s overall performance. Since information fusion, its influence
factors and performance improvement boundaries have been lively dis-
cussed in the last years in different research communities, we will review
their latest findings. They most importantly point out that exploiting
the feature’s and modality’s dependencies will yield to maximal perfor-
mance. In data analysis and fusion tests with annotated image collections
this is undermined.

1 Introduction

The multi modal nature of multimedia data creates an essential need for infor-
mation fusion for its classification, indexing and retrieval. Fusion has also great
impact on other tasks such as object recognition, since all objects exist in multi
modal spaces. Information fusion has established itself as an independent re-
search area over the last decades, but a general formal theoretical framework to
describe information fusion systems is still missing [14].

One reason for this is the vast number of disparate research areas that utilize
and describe some form of information fusion in their context of theory. For ex-
ample, the concept of data or feature fusion, which forms together with classifier
and decision fusion the three main divisions of fusion levels, initially occurred in
multi-sensor processing. By now several other research fields found its applica-
tion useful. Besides the more classical data fusion approaches in robotics, image
processing and pattern recognition, the information retrieval community discov-
ered some years ago its power in combining multiple information sources [23].

The roots of classifier and decision fusion can be found in the neural network
literature, where the idea of combining neural network outputs was published as
early as 1965 [10]. Later its application expanded into other fields like economet-
rics as forecast combining, machine learning as evidence combination and also
information retrieval in page rank aggregation [23].

In opposite to the early application areas of data, classifier and decision fusion,
researchers were for a long time unclear about which level of information fusion
is to be preferred and more generally, how to design an optimal information
fusion strategy for multimedia processing systems.
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This can be seen in recently published approaches that solve similar tasks
and nevertheless use different information fusion levels. Examples using clas-
sifier fusion are multimedia retrieval [28], multi-modal object recognition [12],
multibiometrics [15] and video retrieval [29]. Concerning data fusion, the appli-
cations that can be named are multimedia summarization [1], text and image
categorization [7], multi-modal image retrieval [27] and web document retrieval
[19]. Other problems of interest are the determination of fusion performance
improvement compared to single source systems and the investigation of its sus-
pected influence factors like dependency and accuracy of classifiers and data.

Compared to other application fields of information fusion, there is in multi-
media a limited understanding of the relations between basic features and ab-
stract content description [26]. Many scientists have approached this problem in
the past empirically and also attempted to justify their findings in theoretical
frameworks. Lately the information fusion community did important progress in
fusion theory that have not yet been considered for multimedia retrieval tasks.

In this paper we give first (Section 2) a review on information fusion in a
generic context and what is important in practice for fusion system design. The
section includes a discussion on influence factors of fusion effectiveness and the
design of an optimal fusion system. In section 3, the task of semantic classification
of keyword annotated images is analyzed in order to suggest ways of future
research for an appropriate fusion strategy in accordance with the latest findings
in information fusion. The paper also confirms this with experimental results.

2 General Overview on Information Fusion

The JDL working group defined information fusion as ”an information process
that associates, correlates and combines data and information from single or
multiple sensors or sources to achieve refined estimates of parameters, character-
istics, events and behaviors” [13]. Several classification schemes for information
fusion systems have been proposed in literature, whereby the one from the JDL
group is probably the most established. This functional model represents compo-
nents of a fusion system in 4 core levels of fusion (L0-L3) and 2 extension levels
(L4,L5). Here L0-L3 are the data or feature association and there above the
object, situation, and impact refinement. The extension levels (L4, L5) consist
of the process and the user refinement.

In [2], an overview of information fusion scenari in the context of multi modal
biometrics is given, which can be easily adapted to general tasks. Hence in infor-
mation fusion the settings that are possible are: (1) single modality and multiple
sensors, (2) single modality and multiple features, (3) single modality and multi-
ple classifiers and (4) multi modalities. Where in the latter case for each modality
one of the combinations (1)-(3) can be applied. The multi modal fusion can be
done serial, parallel or hierarchical. For completeness reasons, we add a scenario
found in [15]: single modality and multiple sample, which is of importance in
information retrieval approaches like bagging.
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The gain of information fusion is differentiated in [14]: ”By combining low
level features it is possible to achieve a more abstract or a more precise repre-
sentation of the world”. This difference in the fusion goal is also covered in the
Durrant-Whyte classification of information fusion strategies [13], which refers to
complementary, cooperative and competitive fusion. In the first case, the infor-
mation gain results from combining multiple complementary information sources
to generate a more complete representation of the world. Here, the overall goal
is to exploit the sources diversity or complementarity in the fusion process. The
cooperative and competitive fusion provide a reduced overall uncertainty and
hence also increased robustness in fusion systems by combining multiple infor-
mation sources or multiple features of a single source respectively. These latter
strategies utilize the redundancy in information sources. Since the sum of com-
plementarity and redundancy of a source equals a constant, it is only possible
to optimize a fusion system in favor of the one or the other [3].

In general the benefit of fusion, presuming a proper fusion method, is that
the influence of unreliable sources can be lowered compared to reliable ones [18].
This is of a high practical relevance, because during system design it is often
not clear how the different features and modalities will perform in real world
environments.

Further aspects of information fusion like the system architecture (distributed,
centralized) and utilization of certain mathematical tools (probability and ev-
idence theory, fuzzy set and possibility theory, neural networks, linear combi-
nation) can be found in an older review on information fusion [11], but their
detailed presentation is out of the scope of this paper.

2.1 Information Fusion System Design

Based on the theory presented before in the practice of system design the fol-
lowing points have to be considered: sensors or sources of information, choice of
features, level, strategy and architecture of fusion processing and if further back-
ground or domain knowledge can be comprised [14]. The choice of sensors and
information sources is normally limited by the application. The available sources
should be considered in regard to their inhered noise level, cost of computation,
diversity in between the set and its general ability to describe and distinguish
the aimed at patterns.

During feature selection, one must realize that feature values of different modal-
ities can encounter a spectrum of different feature types: continuous, discrete and
even symbolic. That is why modality fusion is more difficult and complex [30],
i.e. especially for joint fusion at data level, where a meaningful projection of the
data to the result space has to be defined. But also in the case of only continuous
features observed from different modalities the information fusion is not trivial,
because nonetheless an appropriate normalization has to be applied [2].

The most common location of fusion are at data/feature, classifier/score level
and decision level. Hence, a decision between low level or high level fusion must
be taken, but also hybrid algorithms that fuse on several levels are possible. An
exception is presented in [25], where the authors fuse kernel matrices. In [14] the
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authors proved, with the help of their category theory framework, that classifier
and decision fusion are just special cases of data fusion. Furthermore they stated
that a correct fusion system is always at least as effective as any of its parts,
because, due to fusion several sources, more information about the problem is
involved. The emphasize is here on ’correct’, so inappropriate fusion can lead to a
performance decrease. Attention should be payed to the difference between data
fusion and data concatenation. The latter is circumventing the data alignment
problem and thus is not having the power of data fusion. But it can be an easy
and sufficient solution for compatible feature sets.

Many publications so far treated the topic data versus decision fusion by in-
vestigating the pros and conc of each fusion type. Data fusion can, due to the
data processing inequality, achieve the best performance improvements [17], be-
cause at this early stage of processing the most information is available. Complex
relations in data can be exploited during fusion, provided that their way of de-
pendence is known. Drawbacks in data and feature fusion are problems due to
the ’curse of dimensionality’, its computationally expensiveness and that it needs
a lot of training data.

The opposite is true for decision fusion. It can be said to be throughout
faster because each modality is processed independently which is leading to a
dimensionality reduction. Decision fusion is however seen as a very rigid solution,
because at this level of processing only limited information is left.

The fusion strategy is mostly determined by the considered application. For
example, all sensor integration, image processing, multi modal tracking tasks
and the like execute cooperative fusion since they exploit temporal or spatial
co-occurrence of feature values.

However, for information retrieval systems the situation is not as trivial. For
example, three different effects in rank aggregation tasks can be exploited with
fusion [4]:

(1) Skimming effect: the lists include diverse and relevant items
(2) Chorus effect: the lists contain similar and relevant items
(3) Dark Horse effect: unusually accurate result of one source

According to the theory presented in the last section, it is impossible to exploit
all effects within one approach because the required complementary (1) and
cooperative (2) strategy are contradictory.

The task of multi modal information retrieval and classification, e.g. joint pro-
cessing of images aligned with texts or annotated with keywords, was approached
in the past with success using cooperative strategies like LSI, which uses feature
co-occurence matrices, or mixture models, which exploit the feature’s joint prob-
abilities [19]. The same is true for complementary ensemble methods, that train
classifiers for each modality separately and fuse them afterwards [5].

2.2 Performance Improvement Boundaries

The lack of a formal theory framework for information fusion caused a vibrant
discussion in the last years about the influences on fusion results and especially
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on theoretical achievable performance improvement boundaries compared to sin-
gle source systems. Early fusion experiments have shown thorough performance
improvement. Later publications accumulated that reported about ambivalent
fusion results, mostly, where ensemble classifier were outperformed by the best
single classifier. So the information fusion community began to empirically in-
vestigate suspected influence factors such as diversity, dependency and accuracy
of information sources and classifiers. Based on the experiments explanations
for the fusion result ambiguity and mostly application specific upper and lower
bounds of performance improvements were found. This section will summarize
their findings.

First investigations of these problems were undertaken in competitive fusion
on behalf of decorrelated neural network ensembles [20], that outperformed in-
dependently trained ones. The overall reduced error is achieved due to negative
correlated errors1 in the neural networks, that average out in combination. [6]
confirmed that more diverse classifiers improve the ensemble performance.

The bias-variance decomposition of the mean square error of the fusion result
serves as theoretical explanation: more training lowers the bias, but gives rise to
variance of the fusion result. The bias-variance-covariance relation is an extension
of the former decomposition [16], that shows theoretically that dependencies
between classifiers increase the generalization error compared to independent
ones. So this strategy achieves a more precise expectation value in the result due
to averaging over the inputs.

A theoretical study on complementary fusion [15] applied to multibiometrics
found its lower bound of performance improvement for highly correlated modal-
ities and the upper bound for independent ones. This strategy works only for
truly complementary tasks, which means that it is aimed at independent pat-
terns in the data, as in a rank aggregation problem where the combined lists
contain a significant number of unique relevant documents [22]. Here, the oppo-
site of the bias-variance decomposition for averaging applies: more training rises
the bias (ambiguity) and lowers the variance of the result. But the influence
of the classifier’s bias, variance and their number, affects the fusion result not
as much as dependency [10]. For this fusion strategy high level or late fusion
is most efficient, since there are no dependencies that can be exploited at data
level.

In practice often independence between the fusion inputs is assumed for sim-
plicity reasons or in reference to the diversity of involved modalities. But this
is not true i.e. for modalities in multibiometrics [15] and most certainly also
not for modalities of other applications, even though it may contain only small
dependencies. Applying in this situations high level fusion will hence never yield
the maximum theoretical possible fusion performance improvement, because the
information reduction caused by processing makes it impossible to exploit data
dependencies completely in late fusion.

1 Negative correlated errors are here referred to as being signals with an opposite
developing of their values, not that only negative correlation coefficients are found
between the signals.
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On the other hand, data level fusion can have blatant disadvantages in practice
due to the ’curse-of-dimensionality’ [12] and perform badly towards generaliza-
tion, modeling complexity, computational intensity and need of training data.
A solution for the trade off data versus classifier fusion, can be a hybrid system
fusing on several levels.

Empirical tests that investigate optimal features in an approach to fuse visual
clues from different sources, hence cooperative fusion, showed that they should
be redundant in their values, but complementary in their errors [8]. In [17] fusion
performance is investigated on behalf of a multi modal binary hypothesis testing
problem as e.g. used in multibiometrics. Considering the error exponents for the
dependence and independence assumption for the modalities, it is found that
the dependent case gives the upper performance improvement bound, and the
case of independence the lower.

A comparison of a complementary and cooperative classifier fusion applied to
multibiometrics [21] showed a slight performance advantage for the cooperative
fusion approach that exploits the modalities dependencies. Admittedly, this gain
over the complementary fusion is small, which is due to the little dependencies
between the modalities. Furthermore, it needs a lot of training data to estimate
the correlation matrix. So in practice there is a trade off between performance
improvement and computational cost, whereas the independence assumption
often will achieve sufficient results. The authors [21] show as well that class-
dependent training of classifiers can help to improve the system’s ability to
discriminate the classes and hence improve the over all performance.

After having reviewed the fundamentals of information fusion, the next section
will analyze first the data of a multi modal classification task, specifically of
keyword annotated images. Some simple fusion test undermine the presented
information fusion theory and should lead the way to develop an efficient solution
to the problem.

3 Data Analysis Towards Effective Multi-media
Information Retrieval

Due to the high interest in multimedia processing in the past many multi modal
collections have been made available to the research communities. Here 2 ex-
amples of them are investigated. The Washington database contains 21 image
classes of locations like Australia and Italy, but also semantic concepts like foot-
ball and cherry trees. Most of the images are manually annotated with a few
keywords ( 1-10). Classes with no annotation were left out of the tests. So we
experimented with 16 classes that contained in all 675 images, which are nearly
equally distributed over the classes.

The second collection is a subset of the Corel database, for which [9] created
keyword annotations. The final set contains 1159 images in 49 classes, where the
images are unequally distributed over the classes. They form similar concepts as
in the Washington collection. An important characteristic of this data collection
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is that the annotations also include complete nonsense keyword sets, which makes
it similar to what one would expect in real world data.

For preprocessing, GIFT features [24] (color and texture histograms) of all im-
ages and term-frequency vectors of their annotations were computed. Hence each
data sample in the Washington collection is described by 624 features (166 color,
120 texture and 338 text) and in the Corel collection by 2035 features (166 color,
120 texture and 1749 text), where, of course, the textual features are very sparse.

Figure 1 shows the absolute correlation matrices over the feature vectors of the
Washington and Corel collection respectively. Bright areas represent feature pairs
with high correlation (positive and negative) and darker areas low correlation and
hence independence. The significantly correlated feature pairs can be numbered
with 17% in the simpler Washington and only 3% in the Corel collection. This
tendency of decrease in correlation we expect to be enforced in even noisier real
world data.

Since in fusion inter modal dependencies are of a special interest, the average
correlation coefficients for both collections are given in table 1. Additionally, the
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Fig. 1. Absolute correlation matrices of features in Washington and Corel collection
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Fig. 2. Histograms of correlation matrices of Washington and Corel collection
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respective histograms are pictured in figure 2. The average decencies turn out
to be close to zero, since a nearly equal amount of positive and negative corre-
lation is contained. The maximum correlation coefficients can be found between
the histograms and textual features (Wash/Corel color-text: 0.85/0.99, texture-
text: 0.74/0.76), whereas between color and texture histogram itself smaller de-
pendencies appear (color-texture: 0.54/0.41). These dependencies between the
modalities should be exploited in order to develop an efficient multi modal in-
formation fusion system.

Another interesting and not yet explained process is the propagation of the
feature dependencies to the classifier outcome. Their dependencies are given in
the bottom line of table 1. One can say that there is found again the stronger
dependence between the histograms and the text modality. Even though here the
dependency between color and texture is not as much smaller as in the feature
set.

3.1 Information Fusion Experiments

For the fusion experiments we used a support vector machine (SVM) classifier
with rbf kernel as described in [5]. First we compared several simple fusion
approaches: (1) hierarchical SVM, which consists of one SVM classifier for each
modality and then as well a SVM classifier to fuse their results, (2) concatenated
data and SVM, which uses all modalities concatenated as classifier input, (3)
averaging the classifier outputs of the modalities, (4) weighted sum, which is the
same as (3), but weights the best modality (text) more than the others and (5)
majority vote of the classifier outcomes.

The tests were run as one-against-all classifications, where 7 positive and 7
negative samples for the Washington collection and 5 positive and 7 negative
samples for the Corel collection were used to train the classifiers. Thereafter
their performance is evaluated by applying the classifiers to the remaining data
samples. The classification error, false alarm rate (false negative) and miss rate
(false positive) are given in percent and are averaged over all classes of each
collection.

The experimental results for the Washington and Corel collection are given in
table 2 and 3 respectively. For both collections the hierarchical fusion, a learning
based approach, performs superior to all other approaches considering the overall
classification error, but the classification results in the positive class (false alarm)
are throughout better with the simpler fusion strategies. Here, majority vote is

Table 1. Average inter modal dependencies of Washington and Corel collection and
dependency found between the classifier outcomes calculated on each modality

Washington Corel

color-texture color-text texture-text color-texture color-text texture-text

av 0.026 0.002 0.0008 0.003 6.0e − 05 0.001
class 0.284 0.528 0.244 0.111 0.179 0.163
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Table 2. Fusion experiments on Washington collection

in % color texture text hier SVM concat SVM averaging weight sum major
vote

classification
error

39.8 41.1 33.2 9.9 44.9 37.9 36.5 35.2

false alarm 9.4 32.8 1.5 23.9 14.6 4.6 3.4 5.6
miss 41.4 41.5 34.9 9.1 46.1 39.6 38.3 36.7

Table 3. Fusion experiments on Corel collection

in % color texture text hier SVM concat SVM averaging weight sum major
vote

classification
error

46.5 47.3 44.5 10.3 56.4 46.5 46.1 45.0

false alarm 34.0 35.3 19.0 58.9 26.9 20.9 18.5 24.5
miss 46.7 47.4 44.9 9.4 56.8 46.9 46.5 45.3

best in the overall classification, whereas weighted sum fusion performs best
considering the false alarm rate. The experiment shows as well that the feature
concatenation is really a weak fusion strategy and hence performs worst.

The observed results can be said to be ambiguous between the preference of
learning and simple fusion approaches. Because the better performance of the
simple fusion in discriminating the positive classes is in favor of information
retrieval, where it would lead to more relevant documents in the result list.
But this better performance compared to the learning approach is more than
compensated by the performance in distinguishing the negative class. Here, more
tests with improved classifier performance of the modalities should show, if this
decreases the miss rate. Then simple fusion methods would be a very interesting
approach for large scale problems, because of its low computational complexity.

In the overall performance the simple fusion strategies have unsurprisingly
trouble to cope with the badly performing classifier results of the modalities.
Text and color based classification work better than the texture based one, but
in general they achieve only unreliable results especially for the negative class
(miss). Up till now there is no over all successful strategy of fusing dependent,
weak classifiers, even though more sophisticated score function approaches like
bagging and boosting have been developed and applied with a certain success.

In the second experiment, we investigated how the usage of dependent, by
means of correlation, and de-correlated features influences the performance.
Since we did not want to search for more or less correlated input features, we
created feature subsets for each modality with especially correlated or uncorre-
lated features. In order to find the correlated ones, we chose features, that have
at least once a correlation coefficient with another feature larger than C > β.
As uncorrelated features were chosen that have a maximum absolute correlation
coefficient with another feature smaller than the threshold |C| < γ.
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Table 4. Fusion of dependent and independent modalities on Washington collection

in % color texture text full dependent de-correlated

dep: C > 0.85 (8/166,58/120,80/338), de-cor: |C| < 0.5 (16/166, 1/120, 77/330)

classification
error

40.2 43.8 34.8 12.1 20.5 25.2

false alarm 10.4 35.1 5.3 22.5 29.1 36.5
miss 41.7 44.3 36.4 11.5 20.1 24.6

dep: C > 0.75 (58/166,71/120,186/338), de-cor: |C| < 0.7 (38/166, 26/120, 131/330)

classification
error

41.8 45.9 32.8 10.4 15.9 16.5

false alarm 10.3 30.4 4.8 24.3 27.1 30.1
miss 43.5 46.8 34.3 9.5 15.3 15.3

Table 5. Fusion of dependent and independent modalities on Corel collection

in % color texture text full dependent de-correlated

dep: C > 0.75 (11/166,65/120,176/1749), de-cor: |C| < 0.5 (16/166, 1/120, 232/1749)

classification
error

45.8 45.9 45.9 9.0 19.7 19.1

false alarm 32.9 40.6 22.2 60.9 59.3 60.1
miss 46.0 46.1 46.4 8.2 19.1 18.5

The tables 4 and 5 show the results for the Washington and Corel collection
respectively, where the number of features selected for each modality (color,
texture, text) is given in brackets. To make the results of the correlated and
uncorrelated feature subset comparable, a near equality of the over all number of
features was tried to achieve, since their number in determining the performance
heavily.

The experiments above show a performance advantage for the correlated fea-
tures in the experiments for the Washington collection. This can also be caused
by the different number of features involved in each of the correlated and un-
correlated case. To investigate this further experiments are necessary. But in
general both approaches are able to perform a strong dimensionality reduction
using a different subset of features (subsets intersect in only up to 10 features).
The result of experiment for the Corel collection is not this clear. Here both
cases work equally good with a slight advantage for the uncorrelated features.

Concerning the Corel collection another point is interesting to see: the fusion
based on the correlated and independent subsets performs in the false alarm rate
better than the normal hierarchical SVM. This phenomenon was never observed
for the Washington collection. For now we have not a satisfying explanation for
this, but we will investigate this further in future.

More extensive tests with e.g. truly differently correlated input features or
even artificially created data sets have to be done to prove the influence of
correlation and independence to performance improvement of information fusion
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Table 6. Correlation class dependent and uncorrelated fusion

in % color texture text full dependent uncorrelated

corel dep: C > 0.75, de-cor: |C| < 0.5 per cur class

classification
error

41.2 44.1 33.9 11.4 14.1 15.5

false alarm 14.7 33.1 3.7 26.5 38.5 40.8
miss 42.5 44.6 35.6 10.4 12.8 14.2

systems. Furthermore other measures of dependency such as mutual information
and its influence on the fusion system result should be investigated. Finally
fusion approaches that exploit more explicit the features dependencies like LSA
and those that consider the accuracy of modalities will be interesting to compare
when applied to this problem.

In the last experiment we changed the feature selection rule to chose the fea-
ture subsets not according to the correlation coefficients of the whole collection,
but according to the correlation found in the currently to distinguish class. With
this dynamic, class-dependent selection the feature subsets should contain those
features, that are especially helpful in discriminating this class from the negative
samples. The results for the Washington collection are presented in table 6.

As it can be seen the class-dependent features selection is not achieving a
significant performance improvement, even though the theory presented in sec-
tion 2 suggests this. We will still investigate this approach further by searching
for more efficient and robust ways to adapt the features to the classes, since it
is from the sound of theory an appealing approach.

4 Conclusions and Future Work

In retrieval, indexing and classification of multimedia data an efficient infor-
mation fusion of the different modalities is essential for the system’s overall
performance. Since information fusion, its influence factors and performance im-
provement boundaries have been lively discussed in the last years in different
research communities, our summarization of their findings will be helpful for all
fusion system designers in future.

In our experiments we compared the utilization of correlated and uncorrelated
features, because new findings in information theory advises that the better fu-
sion performance can be achieved only with correlated feature. We were able
to show that a correlated feature subset for this problem perform slightly bet-
ter than explicitly de-correlated features. More extensive tests are necessary to
underpin these preliminary results and the theoretical findings.

Another promising way to achieve better information fusion performance is
to utilize class-dependent classifier settings. This helps in discriminating the
positive from the negative classes. Our experiments for now have shown no real
improvement in performance.
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In general we like to experiment with artificial data where the correlation,
diversity and accuracy of each modality as well of their contained features can
be set. In this framework a better understanding of the influence factors to the
fusion result could be obtained.
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