
Suzumura Consistency

Walter Bossert

1 Introduction

Binary relations are at the heart of much of economic theory, both in the context of
individual choice and in multi-agent decision problems. A fundamental coherence
requirement imposed on a relation is the well-known transitivity axiom. If a rela-
tion is interpreted as a goodness relation, transitivity postulates that whenever one
alternative is at least as good as a second and the second alternative is, in turn, at
least as good as a third, then the first alternative is at least as good as the third. How-
ever, from an empirical as well as a conceptual perspective, transitivity is frequently
considered too demanding and weaker notions of coherence have been proposed in
the literature. Two alternatives that have received a considerable amount of attention
are quasi-transitivity and acyclicity. Quasi-transitivity demands that the asymmetric
factor of a relation (the betterness relation) is transitive, whereas acyclicity rules out
the presence of betterness cycles. Quasi-transitivity is implied by transitivity and
implies acyclicity. The reverse implications are not valid.

Suzumura (1976b) introduced an interesting alternative weakening of transi-
tivity and showed that it can be considered a more intuitive property than quasi-
transitivity. This notion of coherence, which Suzumura introduced under the name
consistency, rules out the presence of cycles with at least one instance of betterness.
Thus, the axiom is stronger than acyclicity and weaker than transitivity. It is equiv-
alent to transitivity in the presence of reflexivity and completeness but independent
of quasi-transitivity. Because the term consistency is used in various other contexts
in economic theory (see, for instance, Thomson (1990)), I propose to refer to the
axiom as Suzumura consistency.

Suzumura consistency is exactly what is needed to avoid the phenomenon of a
money pump. If Suzumura consistency is violated by an agent’s goodness relation,
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there exists a cycle with at least one instance of betterness. In this case, the agent
under consideration is willing to trade an alternative for another alternative (where
‘willing to trade’ is interpreted as being at least as well-off after the trade as before),
the second alternative for a third and so on, until an alternative is reached such that
getting back the original alternative is better than retaining possession of the last
alternative in the chain. Thus, at the end of such a chain of exchanges, the agent is
willing to give up the last alternative and, in addition, to pay a positive amount to
get back the original alternative.

An important property of Suzumura consistency is that it is necessary and suf-
ficient for the existence of an ordering extension of a relation. Szpilrajn (1930)
showed that, for any asymmetric and transitive relation, there exists an asymmet-
ric, transitive and complete relation that contains the original relation. An analo-
gous result applies if asymmetry is replaced with reflexivity. Suzumura (1976b) has
shown that the transitivity assumption can be weakened to Suzumura consistency
without changing the conclusion regarding the existence of an ordering extension.
Moreover, Suzumura consistency is the weakest possible property that guarantees
this existence result. Because extension theorems are of considerable importance
in many applications of set theory, this is a fundamental result and illustrates the
significance of the property.

The purpose of this paper is to review the uses of Suzumura consistency in a var-
iety of applications and to provide some new observations, with the objective of
further underlining the importance of this axiom. The first step is a statement of
Suzumura’s (1976b) extension theorem in the following section, followed by an ap-
plication in the theory of rational choice due to Bossert, Sprumont, and Suzumura
(2005a) in Sect. 3. The last two sections provide new observations. In Sect. 4, a
variant of the welfarism theorem that assumes Suzumura consistency instead of
transitivity is provided, and Sect. 5 illustrates how an impossibility result in pop-
ulation ethics can be turned into a possibility by weakening transitivity to Suzumura
consistency.

2 Relations and Extensions

Suppose X is a non-empty set of alternatives and R ⊆ X ×X is a (binary) relation
on X which is interpreted as a goodness relation, that is, (x,y) ∈ R means that x is
considered at least as good as y by the agent (or society) under consideration. The
diagonal relation ∆ on X is defined by

∆ = {(x,x) | x ∈ X}.

The asymmetric factor of a relation R is defined by

P(R) = {(x,y) | (x,y) ∈ R and (y,x) 
∈ R}
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and the symmetric factor of R is

I(R) = {(x,y) | (x,y) ∈ R and (y,x) ∈ R}.

Given the interpretation of R as a goodness relation, P(R) is the better-than relation
corresponding to R and I(R) is the equally-good relation associated with R.

The transitive closure tc(R) of a relation R is defined by

tc(R) = {(x,y) | there exist M ∈ N and x0, . . . ,xM ∈ X such that
x = x0,(xm−1,xm) ∈ R for all m ∈ {1, . . . ,M} and xM = y}.

As is straightforward to verify,

R ⊆ Q ⇒ tc(R) ⊆ tc(Q) (1)

for any two relations R and Q.
To illustrate the transitive closure, consider the following examples. First, let X =

{x,y,z} and R = {(x,x),(x,y),(y,y),(y,z),(z,x),(z,z)}. We obtain tc(R) = X ×X . In
addition to the pairs in R, the pair (x,z) must be in the transitive closure of R because
we have (x,y) ∈ R and (y,z) ∈ R. Analogously, (y,x) must be an element of tc(R)
because (y,z) ∈ R and (z,x) ∈ R, and (z,y) must be in tc(R) because (z,x) ∈ R and
(x,y) ∈ R. Now let X = {x,y,z} and R = {(x,y),(y,z)}. As it is straightforward to
verify, we have tc(R) = {(x,y),(y,z),(x,z)}.

A relation R is reflexive if, for all x ∈ X ,

(x,x) ∈ R

and R is asymmetric if
R = P(R).

Furthermore, R is complete if, for all x,y ∈ X ,

x 
= y ⇒ (x,y) ∈ R or (y,x) ∈ R

and R is transitive if, for all x,y,z ∈ X ,

(x,y) ∈ R and (y,z) ∈ R ⇒ (x,z) ∈ R.

R is Suzumura consistent if, for all x,y ∈ X ,

(x,y) ∈ tc(R) ⇒ (y,x) 
∈ P(R).

A quasi-ordering is a reflexive and transitive relation and an ordering is a complete
quasi-ordering.

The notion of Suzumura consistency is due to Suzumura (1976b) and it is equiv-
alent to the requirement that any cycle must be such that all relations involved in
this cycle are instances of equal goodness – betterness cannot occur. Clearly, this
requirement implies (but is not implied by) the well-known acyclicity axiom which
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Transitivity

↓ ↓
Suzumura consistency Quasi-transitivity

↓ ↓
Acyclicity

Fig. 1 Logical relationships

rules out the existence of betterness cycles (cycles where all relations involve the
asymmetric factor of the relation). Suzumura consistency and quasi-transitivity,
which requires that P(R) is transitive, are independent. Transitivity implies Suzu-
mura consistency but the reverse implication is not true in general. However, if R is
reflexive and complete, Suzumura consistency and transitivity are equivalent. Fig-
ure 1 illustrates the relationships among transitivity and the above-mentioned weak-
enings of this property. Each arrow represents a direct implication, and these impli-
cations together with those resulting from chains of arrows are the only ones that
are valid in the absence of further properties imposed on R.

A relation R′ is an extension of a relation R if

R ⊆ R′ and P(R) ⊆ P(R′).

If an extension R′ of R is an ordering, we refer to R′ as an ordering extension of R.
One of the most fundamental results on extensions of binary relations is due to
Szpilrajn (1930) who showed that any transitive and asymmetric relation has a tran-
sitive, asymmetric and complete extension. The result remains true if asymmetry
is replaced with reflexivity, that is, any quasi-ordering has an ordering extension.
Arrow (1963, p. 64) stated this generalization of Szpilrajn’s theorem without a proof
and Hansson (1968) provided a proof on the basis of Szpilrajn’s original theorem.

While the property of being a quasi-ordering is sufficient for the existence of
an ordering extension of a relation, this is not necessary. As shown by Suzumura
(1976b), Suzumura consistency is necessary and sufficient for the existence of an
ordering extension. This observation is stated formally in the following theorem, see
Suzumura (1976b, pp. 389–390) for a proof.

Theorem 1. A relation R has an ordering extension if and only if R is Suzumura
consistent.

Theorem 1 is an important result. It establishes that Suzumura consistency is
the weakest possible property of a relation that still guarantees the existence of an
ordering extension. Note that quasi-transitivity (which, as mentioned earlier, is log-
ically independent of Suzumura consistency) has nothing to do with the possibility
of extending a binary relation to an ordering.
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3 Rational Choice

Suzumura consistency has recently been examined in the context of rational choice.
Observed (or observable) choices are rationalizable if there exists a relation such
that, for any feasible set, the set of chosen alternatives coincides with the set of
greatest or maximal elements according to this relation.

Following the contributions of Hansson (1968), Richter (1966, 1971), Suzumura
(1976a, 1977, Chap. 2 in 1983) and others, the approach to rational choice analyzed
in this paper is capable of accommodating a wide variety of choice situations be-
cause no restrictions (other than non-emptiness) are imposed on the domain of a
choice function. Letting X denote the power set of X excluding the empty set, a
choice function is a mapping C : Σ → X such that C(S) ⊆ S for all S ∈ Σ , where
Σ ⊆X with Σ 
= /0 is the domain of C.

The direct revealed preference relation RC ⊆ X ×X of a choice function C with
an arbitrary domain Σ is defined as

RC = {(x,y) | there exists S ∈ Σ such that x ∈C(S) and y ∈ S}.

The (indirect) revealed preference relation of C is the transitive closure tc(RC) of
the direct revealed preference relation RC.

A choice function C is greatest-element rationalizable if there exists a relation R
on X such that

C(S) = {x ∈ S | (x,y) ∈ R for all y ∈ S}
for all S ∈ Σ . If such a relation R exists, it is called a rationalization of C. The
most common alternative to greatest-element rationalizability is maximal-element
rationalizability which requires the existence of a relation R such that, for all feasible
sets S, C(S) is equal to the set of maximal elements in S according to R, that is, no
element in S is better than any element in C(S). Bossert, Sprumont, and Suzumura
(2005b) provide a detailed analysis of maximal-element rationalizability. Logical
relationships between, and characterizations of, various notions of rationalizability,
both on arbitrary domains and under more specific domain assumptions, can be
found in Bossert, Sprumont, and Suzumura (2006).

To interpret a rationalization as a goodness relation, it is usually required that
it satisfy additional properties such as the richness axioms reflexivity and com-
pleteness, or one of the coherence properties acyclicity, quasi-transitivity, Suzu-
mura consistency and transitivity. The full set of rationalizability notions that can
be obtained by combining one or both (or none) of the richness properties with one
(or none) of the coherence properties is analyzed in Bossert and Suzumura (2008).
They show that, if all these combinations are available, it is sufficient to restrict
attention to greatest-element rationalizability: for each notion of maximal-element
rationalizability, there exists a notion of the greatest-element rationalizability (pos-
sibly involving different richness and coherence properties) that is equivalent. Thus,
restricting attention to greatest-element rationalizability does not involve any loss
of generality.
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Bossert, Sprumont, and Suzumura (2005a) have characterized all notions of ra-
tionalizability when the coherence property required is Suzumura consistency. As
mentioned earlier, Suzumura consistency and transitivity are equivalent in the pres-
ence of reflexivity and completeness. Thus, greatest-element rationalizability by
a reflexive, complete and Suzumura-consistent relation is equivalent to greatest-
element rationalizability by an ordering and Richter’s (1966, 1971) results ap-
ply; see Theorem 2. Moreover, greatest-element rationalizability by a complete
and Suzumura-consistent relation implies greatest-element rationalizability by a
reflexive, complete and Suzumura-consistent relation, and greatest-element ratio-
nalizability by a Suzumura-consistent relation implies greatest-element rational-
izability by a reflexive and Suzumura-consistent relation. Analogous observations
apply in the case of maximal-element rationalizability; see Bossert, Sprumont,
and Suzumura (2005a, Theorem 1). As pointed out in Bossert, Sprumont, and
Suzumura (2006), as soon as the coherence properties quasi-transitivity or acyclicity
are imposed, reflexivity no longer is guaranteed as an additional property of a ra-
tionalization. Thus, Suzumura consistency stands out from these alternative weak-
enings of transitivity in this regard: as is the case for transitive greatest-element
(or maximal-element) rationalizability, any notion of Suzumura-consistent greatest-
element (or maximal-element) rationalizability is equivalent to the definition that is
obtained if reflexivity is added as a property of a rationalization.

Richter (1971) showed that the following axiom is necessary and sufficient for
greatest-element rationalizability by a transitive relation and by an ordering. Thus,
the existence of a rationalizing relation that is not merely a quasi-ordering but an
ordering follows from greatest-element rationalizability by a transitive relation. This
observation sets transitive greatest-element rationalizability apart from other notions
of greatest-element rationalizability involving weaker coherence requirements.

Transitive-closure coherence. For all S ∈ Σ and for all x ∈ S,

(x,y) ∈ tc(RC) for all y ∈ S ⇒ x ∈C(S).

We now obtain the following result; see Bossert, Sprumont, and Suzumura (2005a).

Theorem 2. C is greatest-element rationalizable by a (reflexive.) complete and
Suzumura-consistent relation if and only if C satisfies transitive-closure coherence.

Proof. To prove the ‘only-if’ part, suppose C is greatest-element rationalizable by a
complete and Suzumura-consistent relation R. We prove that C is greatest-element
rationalizable by a reflexive, complete and Suzumura-consistent relation. Together
with the observation that Suzumura consistency and transitivity are equivalent in the
presence of reflexivity and completeness and Richter’s (1971) result, this establishes
that transitive-closure coherence is satisfied.

Let

R′ = [R∪∆ ∪{(y,x) | x 
∈C(Σ) and y ∈C(Σ)}]
\ {(x,y) | x 
∈C(Σ) and y ∈C(Σ)}.

Clearly, R′ is reflexive by definition.
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To show that R′ is complete, let x,y ∈ X be such that x 
= y and (x,y) 
∈ R′. By
definition of R′, this implies

(x,y) 
∈ R and [x 
∈C(Σ) or y ∈C(Σ)]

or
x 
∈C(Σ) and y ∈C(Σ).

If the former applies, the completeness of R implies (y,x) ∈ R and, by definition of
R′, we obtain (y,x) ∈ R′. If the latter is true, (y,x) ∈ R′ follows immediately from
the definition of R′.

Next, we show that R′ is Suzumura consistent. Let (x,y) ∈ tc(R′). By definition,
there exist M ∈ N and x0, . . . ,xM ∈ X be such that x = x0, (xm−1,xm) ∈ R′ for all
m ∈ {1, . . . ,M} and xM = y. Clearly, we can, without loss of generality, assume that
xm−1 
= xm for all m ∈ {1, . . . ,M}. We distinguish two cases.

(i) x0 
∈ C(Σ). In this case, it follows that x1 
∈ C(Σ); otherwise we would have
(x1,x0) ∈ P(R′) by definition of R′, contradicting our hypothesis. Successively ap-
plying this argument to all m ∈ {1, . . . ,M}, we obtain xm 
∈ C(Σ) for all m ∈
{1, . . . ,M}. By definition of R′, this implies (xm−1,xm) ∈ R for all m ∈ {1, . . . ,M}.
By the Suzumura consistency of R, we must have (xM,x0) 
∈ P(R). Because xM 
∈
C(Σ), this implies, according to the definition of R′, (xM,x0) 
∈ P(R′).
(ii) x0 ∈ C(Σ). If xM 
∈ C(Σ), (xM,x0) 
∈ P(R′) follows immediately from the de-
finition of R′. If xM ∈ C(Σ), it follows that xM−1 ∈ C(Σ); otherwise we would
have (xM−1,xM) 
∈ R′ by definition of R′, contradicting our hypothesis. Succes-
sively applying this argument to all m ∈ {1, . . . ,M}, we obtain xm ∈ C(Σ) for
all m ∈ {1, . . . ,M}. By definition of R′, this implies (xm−1,xm) ∈ R for all m ∈
{1, . . . ,M}. By the Suzumura consistency of R, we must have (xM,x0) 
∈ P(R). Be-
cause x0 ∈C(Σ), this implies, according to the definition of R′, (xM,x0) 
∈ P(R′).

Finally, we show that R′ is a rationalization of C. Let S ∈ Σ and x ∈ S.
Suppose first that (x,y)∈R′ for all y∈ S. If |S|= 1, x∈C(S) follows immediately

because C(S) is non-empty. If |S| ≥ 2, we obtain x ∈ C(Σ) by definition of R′. Be-
cause R is a rationalization of C, this implies (x,x)∈R. By definition of R′, (x,z)∈R
for all z ∈ C(S). Therefore, (x,z) ∈ R for all z ∈ C(S)∪{x}. Suppose, by way of
contradiction, that x 
∈ C(S). Because R is a rationalization of C, it follows that
there exists y ∈ S\ (C(S)∪{x}) such that (x,y) 
∈ R. The completeness of R implies
(y,x) ∈ P(R). Let z ∈C(S). It follows that (z,y) ∈ R because R is a rationalization of
C and, as established earlier, (x,z) ∈ R. This contradicts the Suzumura consistency
of R.

To prove the converse implication, suppose x ∈C(S). Because R is a rationaliza-
tion of C, we have (x,y) ∈ R for all y ∈ S. In particular, this implies (x,x) ∈ R and,
according to the definition of R′, we obtain (x,y) ∈ R′ for all y ∈ S.

The ‘if’ part of the theorem follows immediately from the equivalence of
transitive-closure coherence and greatest-element rationalizability by a reflex-
ive, complete and transitive rationalization established by Richter (1971) and the
observation that Suzumura consistency and transitivity coincide in the presence of
reflexivity and completeness. �
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If completeness is dropped as a requirement imposed on a rationalization,
a weaker notion of greatest-element rationalizability is obtained. In contrast to
greatest-element rationalizability by a quasi-transitive or an acyclical relation which
leads to much more complex necessary and sufficient conditions (see Bossert and
Suzumura (2008)), requiring a rationalization to be Suzumura consistent preserves
the intuitive and transparent nature of the characterization stated in Theorem 2.
There is a unique minimal Suzumura-consistent relation that has to be respected by
any Suzumura-consistent rationalization, namely, the Suzumura-consistent closure
of RC. The Suzumura-consistent closure sc(R) of a relation R is defined by

sc(R) = R∪{(x,y) | (x,y) ∈ tc(R) and (y,x) ∈ R}.

Clearly, R ⊆ sc(R)⊆ tc(R). Just as tc(R) is the unique smallest transitive relation
containing R, sc(R) is the unique smallest Suzumura-consistent relation containing
R; see Bossert, Sprumont, and Suzumura (2005a).

To see that this is the case, we first establish that sc(R) is Suzumura consistent.
Suppose M ∈ N and x0, . . . ,xM ∈ X are such that (xm−1,xm) ∈ sc(R) for all m ∈
{1, . . . ,M}. We show that (xM,x0) 
∈ P(sc(R)). Because sc(R)⊆ tc(R), (xm−1,xm) ∈
tc(R) for all m ∈ {1, . . . ,M}, and the transitivity of tc(R) implies

(x0,xM) ∈ tc(R). (2)

If (xM,x0) 
∈ sc(R), we immediately obtain (xM,x0) 
∈ P(sc(R)) and we are done.
Now suppose that (xM,x0) ∈ sc(R). By definition of sc(R), we must have

(xM,x0) ∈ R or [(xM,x0) ∈ tc(R) and (x0,xM) ∈ R].

If (xM,x0) ∈ R, (2) and the definition of sc(R) together imply (x0,xM) ∈ sc(R) and,
thus, (xM,x0) 
∈ P(sc(R)). If (xM,x0) ∈ tc(R) and (x0,xM) ∈ R, (x0,xM) ∈ sc(R) fol-
lows because R ⊆ sc(R). Again, this implies (xM,x0) 
∈ P(sc(R)) and the proof that
sc(R) is Suzumura consistent is complete.

To show that sc(R) is the smallest Suzumura-consistent relation containing R,
suppose that Q is an arbitrary Suzumura-consistent relation containing R. To com-
plete the proof, we establish that sc(R) ⊆ Q. Suppose that (x,y) ∈ sc(R). By defini-
tion of sc(R),

(x,y) ∈ R or [(x,y) ∈ tc(R) and (y,x) ∈ R].

If (x,y)∈R, (x,y)∈Q follows because R is contained in Q by assumption. If (x,y)∈
tc(R) and (y,x)∈ R, (1) and the assumption R ⊆ Q together imply that (x,y)∈ tc(Q)
and (y,x) ∈ Q. If (x,y) 
∈ Q, we obtain (y,x) ∈ P(Q) in view of (y,x) ∈ Q. Since
(x,y) ∈ tc(Q), this contradicts the Suzumura consistency of Q. Therefore, we must
have (x,y) ∈ Q.

Thepropertyof sc(R) just established iscrucial inobtainingaclear-cut and intuitive
rationalizability result evenwithout imposingcompleteness (inwhichcaseSuzumura-
consistent greatest-element rationalizability is not equivalent to transitive greatest-
element rationalizability). In contrast, there is no such thing as a quasi-transitive
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closure or an acyclical closure of a relation, which explains why rationalizability
results involving these coherence properties are much more complex.

The following examples illustrate the Suzumura-consistent closure and its rela-
tion to the transitive closure. First, let X = {x,y,z} and R = {(x,x),(x,y),(y,y),(y,z)
(z,x),(z,z)}. We obtain sc(R) = tc(R) = X × X . Now let X = {x,y,z} and R =
{(x,y),(y,z)}. We have sc(R) = R and tc(R) = {(x,y),(y,z),(x,z)}. In the first exam-
ple, the Suzumura-consistent closure coincides with the transitive closure, whereas
in the second, the Suzumura-consistent closure is a strict subset of the transitive
closure.

Greatest-element rationalizability by means of a Suzumura-consistent (and
reflexive but not necessarily complete) relation can now be characterized by em-
ploying a natural weakening of transitive-closure coherence: all that needs to be
done is replacing the transitive closure of the direct revealed preference relation by
its Suzumura-consistent closure.

Suzumura-consistent-closure coherence. For all S ∈ Σ and for all x ∈ S,

(x,y) ∈ sc(RC) for all y ∈ S ⇒ x ∈C(S).

The following characterization is also due to Bossert, Sprumont, and Suzumura
(2005a).

Theorem 3. C is greatest-element rationalizable by a (reflexive and) Suzumura-
consistent relation if and only if C satisfies Suzumura-consistent-closure coherence.

Proof. To prove the ‘only-if’ part of the theorem, suppose R is a Suzumura-
consistent rationalization of C and let S ∈ Σ and x ∈ S be such that (x,y) ∈ sc(RC)
for all y ∈ S. Consider any y ∈ S. By definition,

(x,y) ∈ RC or [(x,y) ∈ tc(RC) and (y,x) ∈ RC].

If (x,y) ∈ RC, there exists T ∈ Σ such that x ∈C(T ) and y ∈ T . Because R greatest-
element rationalizes C, this implies (x,y) ∈ R. If (x,y) ∈ tc(RC) and (y,x) ∈ RC,
there exist M ∈ N and x0, . . . ,xM ∈ X such that x = x0, (xm−1,xm) ∈ RC for all
m ∈ {1, . . . ,M} and xM = y. As in the argument just used, the assumption that R
greatest-element rationalizes C implies (xm−1,xm) ∈ R for all m ∈ {1, . . . ,M} and,
thus, (x,y) ∈ tc(R). Furthermore, (y,x) ∈ RC implies (y,x) ∈ R because R is a ra-
tionalization of R. If (x,y) 
∈ R, it follows that (y,x) ∈ P(R) in view of (y,x) ∈ R.
Because (x,y) ∈ tc(R), this contradicts the Suzumura consistency of R. Therefore,
(x,y) ∈ R. Because y ∈ S has been chosen arbitrarily, this is true for all y ∈ S and, as
a consequence of the assumption that R greatest-element rationalizes C, we obtain
x ∈C(S).

To prove the ‘if’ part, suppose C satisfies Suzumura-consistent-closure coher-
ence. We first show that sc(RC) is a Suzumura-consistent rationalization of C. That
sc(RC) is Suzumura consistent has already been established. To prove that sc(RC)
is a rationalization of C, suppose first that S ∈ Σ and x ∈ S. Suppose (x,y) ∈ sc(RC)
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for all y ∈ S. Suzumura-consistent-closure coherence implies x ∈C(S). Conversely,
suppose x ∈ C(S). By definition, this implies (x,y) ∈ RC for all y ∈ S and, because
RC ⊆ sc(RC), we obtain (x,y) ∈ sc(RC) for all y ∈ S. The proof is completed by
showing that

R′ = (sc(RC)∪∆)\{(x,y) | x 
∈C(Σ) and x 
= y}

is a reflexive and Suzumura-consistent rationalization of C.
That R′ is reflexive is obvious. To prove that R′ is Suzumura consistent, sup-

pose (x,y) ∈ tc(R′). Thus, there exist M ∈ N and x0, . . . ,xM ∈ X such that x = x0,
(xm−1,xm) ∈ R′ for all m ∈ {1, . . . ,M} and xM = y. Clearly, we can without loss
of generality assume that xm−1 
= xm for all m ∈ {1, . . . ,M}. By definition of R′,
x0 ∈ C(Σ). If xM 
∈ C(Σ), (xM,x0) 
∈ P(R′) follows immediately from the def-
inition of R′. If xM ∈ C(Σ), it follows that xM−1 ∈ C(Σ); otherwise we would
have (xM−1,xM) 
∈ R′ by definition of R′, contradicting our hypothesis. Succes-
sively applying this argument to all m ∈ {0, . . . ,M − 1}, we obtain xm ∈ C(Σ)
for all m ∈ {0, . . . ,M − 1}. By definition of R′, this implies (xm−1,xm) ∈ sc(RC)
for all m ∈ {1, . . . ,M}. By the Suzumura consistency of sc(RC), we must have
(xM,x0) 
∈ P(sc(RC)). Because x0 ∈ C(Σ), this implies, according to the definition
of R′, (xM,x0) 
∈ P(R′).

It remains to be shown that R′ is a rationalization of C. Let S ∈ Σ and x ∈ S.
First, suppose (x,y) ∈ R′ for all y ∈ S. By definition of R′,

(x,y) ∈ sc(RC) (3)

for all y∈ S\{x} and x∈C(Σ). Because sc(RC) is a rationalization of C, this implies
(x,x) ∈ sc(RC). Suppose, by way of contradiction, that x 
∈C(S). Because sc(R) is a
rationalization of C, it follows that there exists y ∈ S\{x} such that (x,y) 
∈ sc(RC),
contradicting (3).

Finally, suppose x ∈ C(S). This implies (x,y) ∈ sc(RC) for all y ∈ S because
sc(RC) is a rationalization of C. Furthermore, because C(S) ⊆ C(Σ), we have x ∈
C(Σ). By definition of R′, this implies (x,y) ∈ R′ for all y ∈ S. �

4 Welfarism

Following Arrow’s (1951, 2nd ed. 1963) impossibility theorem, one route of escape
from its negative consequences that has been chosen in the subsequent literature is
to assume that a social ranking is established on the basis of a richer informational
framework. In Arrow’s setup, the individual goodness relations form the informa-
tional basis of collective choice. This approach rules out, in particular, interpersonal
comparisons of well-being. An informationally richer environment is obtained if a
social ranking is allowed to depend on utility profiles instead of profiles of goodness
relations, and these utilities can be assumed to carry more than just ordinally mea-
surable and interpersonally non-comparable information regarding the well-being
of the agents. Under an implicit regularity assumption that guarantees the existence
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of representations of the individual goodness relations, the Arrow framework is
included as a special case: it corresponds to the informational assumption of ordinal
measurability and interpersonal non-comparability.

The universal set of alternatives X is assumed to contain at least three elements.
There are a finite number n ≥ 2 of agents indexed by the first n positive integers, so
that the set of agents is N = {1, . . . ,n}. The set of all utility functions U : X → R is
denoted by U and its n-fold Cartesian product is Un. A utility profile is an n-tuple
U = (U1, . . . ,Un) ∈ Un.

A collective choice functional is a mapping F : D → B where D ⊆ Un is the
domain of this functional, assumed to be non-empty, and B is the set of all binary
relations on X . For each utility profile U ∈ D, F(U) is the social preference corre-
sponding to U. A reflexive and Suzumura-consistent collective choice functional is
a collective choice functional F such that F(U) is reflexive and Suzumura consis-
tent for all U ∈ D, and a social-evaluation functional is a collective choice func-
tional F such that F(U) is an ordering for all U ∈ D. Informational assumptions
regarding the measurability and interpersonal comparability of individual utilities
can be expressed by requiring the collective choice functional to be constant on
sets of utility profiles that contain the same information. For example, if utilities
are cardinally measurable and fully comparable, any utility profile U′ that is ob-
tained from a profile U by applying the same increasing affine transformation to
all individual utility functions carries the same information as U itself. Thus, the
collective choice functional must assign the same social ranking to both profiles.
See Blackorby, Donaldson, and Weymark (1984) or Bossert and Weymark (2004)
for discussions of information assumptions in social-choice theory.

A fundamental result in this setting is the welfarism theorem; see, for instance,
d’Aspremont and Gevers (1977) and Hammond (1979). A social-evaluation
functional F is welfarist if, for any utility profile U and for any two alternatives
x and y, the social ranking of x and y according to the social ordering assigned to
the profile U by F depends on the two utility vectors U(x) = (U1(x), . . . ,Un(x))
and U(y) = (U1(y), . . . ,Un(y)) only. Thus, a single ordering of utility vectors is
sufficient to rank the alternatives for any profile. The welfarism theorem states that,
provided that the domain of the social-evaluation functional consists of all possible
utility profiles, welfarism is equivalent to the conjunction of Pareto indifference and
independence of irrelevant alternatives.

In this section, it is illustrated that the welfarism theorem has an analogous for-
mulation for reflexive and Suzumura-consistent collective choice functionals: even
if every social ranking is merely required to be reflexive and Suzumura consistent
rather than an ordering, the conjunction of the two axioms is (under the unlimited-
domain assumption) equivalent to the existence of a single reflexive and Suzumura-
consistent relation R defined on utility vectors that is sufficient to obtain the social
ranking for any utility profile. This relation R ⊆ Rn ×Rn is referred to as a social-
evaluation relation. The requisite axioms are the following.

Unlimited domain. D = Un.

Pareto indifference. For all x,y ∈ X and for all U ∈ D,
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Ui(x) = Ui(y) for all i ∈ N ⇒ (x,y) ∈ I (F(U)) .

Independence of irrelevant alternatives. For all x,y ∈ X and for all U,U′ ∈ D such
that Ui(x) = U ′

i (x) and Ui(y) = U ′
i (y) for all i ∈ N,[

(x,y) ∈ F(U) ⇔ (x,y) ∈ F(U′)
]

and
[
(y,x) ∈ F(U) ⇔ (y,x) ∈ F(U′)

]
.

The following theorem generalizes the standard welfarism theorem by allow-
ing social relations to be intransitive and incomplete but imposing the Suzumura-
consistency requirement.

Theorem 4. Suppose that a reflexive and Suzumura-consistent collective choice
functional F satisfies unlimited domain. F satisfies Pareto indifference and indepen-
dence of irrelevant alternatives if and only if there exists a reflexive and Suzumura-
consistent social-evaluation relation R ⊆ Rn ×Rn such that, for all x,y ∈ X and for
all U ∈ Un,

(x,y) ∈ F(U) ⇔ (U(x),U(y)) ∈ R. (4)

Proof. The ‘if’ part of the theorem is straightforward to verify. To prove the con-
verse implication, suppose that F is a reflexive and Suzumura-consistent collective
choice functional satisfying unlimited domain, Pareto indifference and indepen-
dence of irrelevant alternatives. Define the relation R ⊆ Rn ×Rn as follows. For all
u,v ∈Rn, (u,v)∈ R if and only if there exist x,y ∈ X and U ∈Un such that U(x) = u,
U(y) = v and (x,y) ∈ F(U). That R is well-defined follows as in the standard wel-
farism theorem; see, for instance, Blackorby, Donaldson, and Weymark (1984) or
Bossert and Weymark (2004). Once R is well defined, (4) is immediate and, fur-
thermore, R is reflexive because F(U) is reflexive for all U ∈ Un. The proof is
completed by showing that R is Suzumura consistent. Let u,v ∈ Rn be such that
(u,v) ∈ tc(R). By definition of the transitive closure of a relation, there exist M ∈ N

and u0, . . . ,uM ∈ Rn such that u = u0, (um−1,um) ∈ R for all m ∈ {1, . . . ,M} and
uM = v. By definition of R, there exist x0, . . . ,xM ∈ X and U1, . . . ,UM ∈ Un such
that Um−1(xm−1) = um−1, Um−1(xm) = um and (xm−1,xm) ∈ F(Um−1) for all m ∈
{1, . . . ,M}. By unlimited domain, there exists V ∈ Un such that V(xm) = um for all
m ∈ {0, . . . ,M}. Using (4), it follows that (xm−1,xm) ∈ F(V) for all m ∈ {1, . . . ,M}.
Because F(V) is Suzumura consistent, it follows that (xM,x0) 
∈ P(F(V)). Thus, by
(4), (v,u) =

(
V(xM),V(x0)

) 
∈ P(R) and R is Suzumura consistent. �

5 Population Ethics

The traditional social-choice framework with a fixed population is unable to capture
important aspects of many public-policy choices. For example, decisions on funds
devoted to prenatal care, the intergenerational allocation of resources and the design
of aid packages to developing countries involve endogenous populations: depend-
ing on the selected alternative, some individuals may or may not be brought into
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existence. To address this issue, a social ranking must be capable of comparing al-
ternatives with different population sizes.

The possibility of extending the welfarist approach to a variable-population en-
vironment has been examined in a variety of contributions, most notably in applied
ethics; see, for instance, Parfit (1976, 1982, 1984). Impossibility results arise fre-
quently in this area, and it is therefore of interest to examine the possibilities of
escaping these negative conclusions. The purpose of this section is to illustrate that
weakening transitivity to Suzumura consistency turns some of these impossibilities
into possibilities. Of course, to ensure that Suzumura consistency is indeed weaker
than transitivity, we cannot impose reflexivity, completeness and Suzumura consis-
tency – as mentioned earlier, Suzumura consistency and transitivity coincide in the
presence of the two richness conditions. Therefore, the question arises whether re-
flexivity and completeness rather than transitivity are, to a large extent, responsible
for the impossibilities. This is not the case: although most of the impossibility re-
sults in this area have been established for orderings, they remain true if reflexivity
and completeness are dropped.

A variable-population version of a social-evaluation relation is defined on the set
of utility vectors of any dimension, that is, it is a relation R ⊆ Ω ×Ω , where Ω =
∪n∈NRn. The components of a utility vector u ∈ Ω are interpreted as the lifetime
utilities of those alive in the requisite alternative. For an individual who is alive,
a neutral life is one which is as good as one without experiences. A life above
neutrality is worth living, a life below neutrality is not. Following standard practice
in population ethics, a lifetime-utility level of zero is assigned to neutrality.

In Blackorby, Bossert, and Donaldson (2006), it is shown that there exists no
variable-population social-evaluation ordering satisfying four axioms that are com-
mon in the literature. This result can be generalized by noting that it does not make
use of reflexivity or completeness – all that is needed is the transitivity of R.

The first axiom is minimal increasingness. It requires that, for any fixed popula-
tion size, if all individuals have the same utility in two utility vectors, then the vector
where everyone’s utility is higher is better according to R. We use 1n to denote the
vector of n ∈ N ones.

Minimal increasingness. For all n ∈ N and for all β ,γ ∈ R,

β > γ ⇒ (β1n,γ1n) ∈ P(R).

Minimal increasingness is a weak unanimity property: it only applies if everyone
has the same utility in both alternatives to be compared.

Another fixed-population axiom is weak inequality aversion. This axiom de-
mands that, for any fixed population size, perfect equality is at least as good as
any distribution of the same total utility.

Weak inequality aversion. For all n ∈ N and for all u ∈ Rn,((
1
n

n

∑
i=1

ui

)
1n,u

)
∈ R.
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Sikora (1978) suggests a variable-population version of the Pareto principle. The
axiom usually is defined as the conjunction of the strong Pareto principle and the
requirement that the addition of an individual above neutrality to a utility-unaffected
population is a social improvement. Because strong Pareto will be introduced as a
separate axiom later on and is not needed for the impossibility result, we use the
second part of the property only.

Pareto plus. For all n ∈ N, for all u ∈ Rn and for all a ∈ R++,

((u,a),u) ∈ P(R).

In the axiom statement, the population common to u and (u,a) is unaffected and,
thus, to defend the axiom on individual-goodness grounds, it must be argued that
a level of well-being above neutrality is better than non-existence. Thus, the axiom
applies the Pareto condition to situations where a person is not alive in all alter-
natives to be compared. While it is possible to compare alternatives with different
populations from a social point of view (which is the issue addressed in population
ethics), it is not clear that such a comparison can be made from the viewpoint of an
individual if the person is not alive in one of the alternatives. It is therefore difficult
to interpret this axiom as a Pareto condition because it appears to be based on the
idea that people who do not exist have interests that should be respected. There is,
therefore, an important asymmetry in the assessment of alternatives with different
populations. It is perfectly reasonable to say that an individual considers life worth
living if the person is alive with a positive level of lifetime well-being, but that does
not justify the claim that a person who does not exist gains from being brought into
existence with a lifetime utility above neutrality.

As is the case for Pareto plus, the final axiom used in our impossibility re-
sult applies to comparisons across population sizes. A variable-population social-
evaluation relation leads to the repugnant conclusion if population size can always
be substituted for well-being, no matter how close to neutrality the utilities of a
large population are. That is, mass poverty may be considered superior to some al-
ternatives in which fewer people lead very good lives. This property has been used
by Parfit (1976, 1982, 1984) to argue against classical utilitarianism, the variable-
population social-evaluation ordering that ranks utility vectors on the basis of their
total utilities. If Parfit’s view is accepted, R should be required to avoid the repug-
nant conclusion.

Avoidance of the repugnant conclusion. There exist n ∈N, ξ ∈R++ and ε ∈ (0,ξ )
such that, for all m > n,

(ε1m,ξ 1n) 
∈ P(R).

Blackorby, Bossert, and Donaldson (2006, Theorem 2) show that there exists no
variable-population social-evaluation ordering satisfying the above four axioms; see
Blackorby, Bossert, and Donaldson (2005), Blackorby, Bossert, Donaldson, and
Fleurbaey (1998), Blackorby and Donaldson (1991), Carlson (1998), McMahan
(1981), Parfit (1976, 1982, 1984) and Shinotsuka (2008) for similar observations.
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The following theorem shows that reflexivity and completeness are not required –
transitivity of R is sufficient to generate the impossibility.

Theorem 5. There exists no transitive variable-population social-evaluation rela-
tion satisfying minimal increasingness, weak inequality aversion, Pareto plus and
avoidance of the repugnant conclusion.

Proof. Suppose R satisfies minimal increasingness, weak inequality aversion and
Pareto plus. The proof is completed by showing that R leads to the repugnant con-
clusion. For any population size n∈N, let ξ ,ε,δ ∈R++ be such that 0 < δ < ε < ξ .
Choose any integer r such that

r > n
(ξ − ε)
(ε −δ )

. (5)

Because both the numerator and denominator on the right-hand side of the inequality
are positive, r is positive. By Pareto plus,

((ξ 1n,δ1r),ξ 1n) ∈ P(R). (6)

Average utility in (ξ 1n,δ1r) is (nξ +rδ )/(n+r) so, by minimal inequality aversion,((
nξ + rδ

n+ r

)
1n+r,(ξ 1n,δ1r)

)
∈ R. (7)

By (5),
ε >

nξ + rδ
n+ r

and, by minimal increasingness,(
ε1n+r,

(
nξ + rδ

n+ r

)
1n+r

)
∈ P(R). (8)

Combining (6)–(8) and using transitivity, it follows that (ε1n+r,ξ 1n) ∈ P(R) and
avoidance of the repugnant conclusion is violated. �

If transitivity is weakened to Suzumura consistency, the axioms in the theorem
statement are compatible. Moreover, three of them can be strengthened and other
properties that are commonly imposed in population ethics can be added without
obtaining an impossibility.

Expressed in the current setting, the strong Pareto principle is another fixed-
population axiom. If everyone alive in two fixed-population alternatives with utility
vectors u and v has a utility in u that is at least as high as the utility of this person
in v with at least one strict inequality, u is better than v. Clearly, this axiom is a
strengthening of minimal increasingness.

Strong Pareto. For all n ∈ N and for all u,v ∈ Rn,

ui ≥ vi for all i ∈ {1, . . . ,n} and u 
= y ⇒ (u,v) ∈ P(R).
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Continuity is a condition that prevents the social-evaluation relation R from ex-
hibiting ‘large’ changes in response to ‘small’ changes in a utility vector. Again, the
axiom imposes restrictions on fixed-population comparisons only.

Continuity. For all n ∈ N and for all u ∈ Rn, the sets {v ∈ Rn | (v,u) ∈ R} and
{v ∈ Rn | (u,v) ∈ R} are closed in Rn.

Weak inequality aversion can be strengthened by requiring the restriction of R to
Rn ×Rn to be strictly S-concave for any population size n ∈ N; see, for instance,
Marshall and Olkin (1979). Strict S-concavity is equivalent to the conjunction of
the strict transfer principle familiar from the theory of inequality measurement and
anonymity. The strict transfer principle requires that a progressive transfer increases
goodness, provided the relative rank of the individuals involved in the transfer is un-
changed; see Dalton (1920) and Pigou (1912). A social-evaluation relation is anony-
mous if the individuals in a fixed population are treated impartially, without paying
attention to their identities; see Sen (1973) for a detailed discussion. A bistochastic
n× n matrix is a matrix whose entries are in the closed interval [0,1] and all row
sums and column sums are equal to one.

Strict S-concavity. For all n ∈ N, for all u ∈ Rn and for all bistochastic n × n
matrices B,

(i) (Bu,u) ∈ R.
(ii) Bu is not a permutation of u ⇒ (Bu,u) ∈ P(R).

Independence of the utilities of unconcerned individuals is a fixed-population
separability property introduced by d’Aspremont and Gevers (1977). It requires that
only the utilities of those who can possibly be affected by a choice between two
fixed-population alternatives should determine their ranking.

Independence of the utilities of unconcerned individuals. For all n,m ∈ N, for all
u,v ∈ Rn and for all w,s ∈ Rm,

((u,w),(v,w)) ∈ R ⇔ ((u,s),(v,s)) ∈ R.

We now turn to further variable-population axioms. The negative expansion prin-
ciple is dual to Pareto plus. It requires any utility distribution to be ranked as better
than one with the ceteris-paribus addition of an individual whose life is not worth
living – that is, with a lifetime utility below neutrality.

Negative expansion principle. For all n ∈ N, for all u ∈ Rn and for all a ∈ R−−,

(u,(u,a)) ∈ P(R).

Expansion continuity applies the notion of continuity to pairs of utility vectors of
different dimension, particularly pairs of vectors whose dimensions differ by one.
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Expansion continuity. For all n ∈ N and for all u ∈ Rn, the sets {t ∈ R | ((u, t),u) ∈
R} and {t ∈ R | (u,(u, t)) ∈ R} are closed in R.

Note that, in the presence of Pareto plus and the negative expansion principle,
expansion continuity implies existence of critical levels, requiring that non-trivial
trade-offs between population size and well-being are possible in the sense that, for
any utility vector u ∈ Ω , there exists a utility level c ∈ R (which may depend on
u) such that the ceteris-paribus addition of an individual with utility level c to an
existing population with utilities u is a matter of indifference according to R.

Finally, a strengthening of avoidance of the repugnant conclusion is defined. It is
obtained by replacing the existential quantifiers in the original axiom with universal
quantifiers and replacing the negation of betterness in the conclusion with the nega-
tion of the at-least-as-good-as relation. This is a strong property and one might not
want to endorse it; the reason why it is used to replace the weaker condition is that
it makes the possibility result logically stronger.

Strong avoidance of the repugnant conclusion. For all n ∈ N, for all ξ ∈ R++, for
all ε ∈ (0,ξ ) and for all m > n,

(ε1m,ξ 1n) 
∈ R.

We do not impose avoidance of the sadistic conclusion or any of its variants (see
Arrhenius (2000)) because it is implied by some of the properties already defined.

Theorem 6. There exists a reflexive and Suzumura-consistent variable-population
social-evaluation relation satisfying strong Pareto, continuity, strict S-concavity,
independence of the utilities of unconcerned individuals, Pareto plus, the negative
expansion principle, expansion continuity and strong avoidance of the repugnant
conclusion.

Proof. An example is sufficient to establish the theorem. Let g : R → R be a con-
tinuous, increasing and strictly concave function such that g(0) = 0 and define the
relation R∗ by letting, for all n,m ∈ N, for all u ∈ Rn and for all v ∈ Rm,

(u,v) ∈ R∗ ⇔
[
n = m and

n

∑
i=1

g(ui) ≥
m

∑
i=1

g(vi)
]

or
[
m = n+1 and ∃α ∈ R− such that v = (u,α)

]
or
[
n = m+1 and ∃β ∈ R+ such that u = (v,β )

]
.

Strong Pareto is satisfied because g is increasing, continuity is satisfied because g
is continuous, strict S-concavity follows from the strict concavity of g and indepen-
dence of the utilities of unconcerned individuals is satisfied because of the addi-
tively separable structure of the criterion for fixed-population comparisons. Pareto
plus and the negative expansion principle follow immediately from the definition
of R∗. Expansion continuity is satisfied because the comparisons involving vectors
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of dimensions n and n + 1 for any n ∈ N clearly are performed in accordance with
this requirement. Strong avoidance of the repugnant conclusion is satisfied because
(ε1m,ξ 1n) 
∈ R∗ for all n ∈ N, for all ξ ∈ R++, for all ε ∈ (0,ξ ) and for all m > n.
That R∗ is reflexive is immediate.

It remains to show that R∗ is Suzumura consistent. The first step is to prove that,
for all n,m ∈ N, for all u ∈ Rn and for all v ∈ Rm,

(u,v) ∈ R∗ ⇒
n

∑
i=1

g(ui) ≥
m

∑
i=1

g(vi) (9)

and

(u,v) ∈ P(R∗) ⇒
n

∑
i=1

g(ui) >
m

∑
i=1

g(vi). (10)

To prove (9), suppose that n,m ∈ N, u ∈ Rn, v ∈ Rm and (u,v) ∈ R∗. According to
the definition of R∗, there are three possible cases.

Case 1. n = m and ∑n
i=1 g(ui) ≥ ∑m

i=1 g(vi). The conclusion is immediate in this
case.

Case 2. m = n+1 and ∃α ∈ R− such that v = (u,α). Thus,

m

∑
i=1

g(vi) =
n

∑
i=1

g(ui)+g(α) ≤
n

∑
i=1

g(ui),

where the inequality follows because α ≤ 0 and, by the increasingness of g and the
property g(0) = 0, g(α) ≤ 0.

Case 3. n = m+1 and ∃β ∈ R+ such that u = (v,β ). This implies

n

∑
i=1

g(ui) =
m

∑
i=1

g(vi)+g(β ) ≥
m

∑
i=1

g(vi),

where the inequality follows because β ≥ 0 and thus g(β ) ≥ 0.
To prove (10), suppose n,m ∈ N, u ∈ Rn and v ∈ Rm are such that (u,v) ∈ P(R∗).

Again, there are three cases.
Case 1. n = m and ∑n

i=1 g(ui) ≥ ∑m
i=1 g(vi). If ∑m

i=1 g(vi) ≥ ∑n
i=1 g(ui), we obtain

(v,u) ∈ R∗ and thus a contradiction to our hypothesis (u,v) ∈ P(R∗). Therefore,
∑n

i=1 g(ui) > ∑m
i=1 g(vi).

Case 2. m = n+1 and ∃α ∈ R− such that v = (u,α). Thus,

m

∑
i=1

g(vi) =
n

∑
i=1

g(ui)+g(α) ≤
n

∑
i=1

g(ui) (11)

as established in the proof of (9). If α = 0, it follows that v = (u,0) which leads to
(v,u) ∈ R∗, contradicting our hypothesis (u,v) ∈ P(R∗). Thus, α < 0 and g(α) < 0
because g(0) = 0 and g is increasing. Therefore, the inequality in (11) is strict.
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Case 3. n = m+1 and ∃β ∈ R+ such that u = (v,β ). This implies

n

∑
i=1

g(ui) =
m

∑
i=1

g(vi)+g(β ) ≥
m

∑
i=1

g(vi) (12)

as established in the proof of (9). If β = 0, it follows that u = (v,0) which leads to
(v,u) ∈ R∗, again contradicting the hypothesis (u,v) ∈ P(R∗). Thus, β > 0 and the
inequality in (12) is strict.

To complete the proof, suppose n,m ∈ N, u ∈ Rn and v ∈ Rm are such that
(u,v) ∈ tc(R∗). By repeated application of (9) and the transitivity of ≥, it follows
that ∑n

i=1 g(ui) ≥ ∑m
i=1 g(vi). If (v,u) ∈ P(R∗), (10) implies ∑m

i=1 g(vi) > ∑n
i=1 g(ui),

a contradiction. Thus, (v,u) 
∈ P(R∗) and R∗ is Suzumura consistent. �
Another impossibility result in population ethics is due to Broome (2004,

Chap. 10). Broome suggests that existence is in itself neutral and, thus, the ceteris-
paribus addition of an individual to a utility-unaffected population should lead
to an equally-good alternative, at least as long as the utility of the added person
(if brought into being) is within a non-degenerate interval. This intuition, which
Broome calls the principle of equal existence, is incompatible with strong Pareto,
provided that the social-evaluation relation R is transitive. The impossibility persists
if transitivity is weakened to Suzumura consistency. The following axiom is a weak
form of the principle of equal existence.

Principle of equal existence. There exist u ∈ Ω and distinct α,β ∈ R such that

((u,α),u) ∈ I(R) and ((u,β ),u) ∈ I(R). (13)

We obtain the following impossibility result.

Theorem 7. There exists no Suzumura-consistent variable-population social-
evaluation relation satisfying strong Pareto and the principle of equal existence.

Proof. Suppose R satisfies strong Pareto and the principle of equal existence. The
proof is completed by showing that R cannot be Suzumura consistent. By the prin-
ciple of equal existence, there exist u ∈ Ω and distinct utility levels α and β such
that (13) is satisfied. Without loss of generality, suppose α > β . By strong Pareto,
((u,α),(u,β )) ∈ P(R) which, together with (13), leads to a violation of Suzumura
consistency. �
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