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1 Introduction

In the literature of intergenerational equity, Rawlsian maximin principle is one of
the most well-known criteria for distributive justice among generations.1 Since this
principle has an intuitive appeal to egalitarian writers, several attempts to charac-
terize the principle have been made in welfare economics. Arrow (1973), Dasgupta
(1974a, b), and Riley (1976) scrutinized the performance thereof in the context of
optimal growth. Arrow shows that the utility path as well as the consumption path
generated by the maximin principle has a saw-tooth shape. Dasgupta shows that it
gives rise to a logical deficit such as time-inconsistency. The other line of researches
has been stimulated by the axiomatic approaches of Hammond (1976, 1979) and
Sen (1970, 1977). In this line, researchers extended axiomatizations of the max-
imin principle and applied them to intergenerational equity. The maximin path is
characterized by a constant path, which emphasizes its egalitarian perspective.2

In a previous discussion on this topic, Suga and Udagawa (2004) addressed the
question of how to characterize the maximin principle axiomatically in a simple
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dynamic economy, called Arrow–Dasgupta economy, where each generation has a
paternalistic concern to the descendants. In Suga and Udagawa (2004), the axioms
are imposed on intergenerational preference relations over the set of consumption
paths. They supposed that there exists a hypothetical social planner who judges the
consumption paths, and characterized the maximin principle by some axioms on the
planner’s intergenerational preference relation.

In this chapter, on the other hand, we examine the same question of axiomatic
characterization of the maximin principle by applying axioms in a choice function
framework. That is, we consider a choice-theoretic model of infinite horizon econ-
omy in which a choice function selects a consumption path from the set of feasible
paths from the viewpoint of a social planner. We suppose that the social planner
adopts the maximin principle as a criterion to construct an intertemporal choice
function. We focus our attention to a simple dynamic economy with linear technol-
ogy à la Arrow (1973) and Dasgupta (1974a,b) to characterize the maximin choice
function on the set of consumption paths. We employ this choice-theoretic approach
to give another look at characteristics of consumption paths derived by the maximin
principle under the feasibility conditions.

With a similar motivation, Asheim, Bossert, Sprumont, and Suzumura (2006)
propose a choice-theoretic model for intergenerational equity. They provide char-
acterizations of all infinite-horizon choice functions satisfying either efficiency or
time-consistency, and identify all choice functions with both properties. Their
results show that the choice-theoretic approach to intergenerational resource
allocation provides an interesting and viable alternative to the models based on
establishing intergenerational preference relations of utility paths.

Our purpose in this chapter is to characterize the maximin principle in an infinite
horizon economy. Axioms are imposed not on intergenerational preference relations
but on choice functions themselves. Some of the axioms are similar to those in
characterization of the maximin principle in intra-generational equity, that is, Pareto
principle and extended Hammond equity. Others are conditions α and β , which are
often used in choice theory to describe consistent choices.

The chapter is organized as follows. Section 2 is the description of the economy,
which provides a canvas for our analysis. Axioms are stated in Sect. 3. The main
theorem, the lemmas, and their proofs are contained in Sect. 4. Section 5 provides
related examples. We conclude the chapter with some final remarks in Sect. 6.

2 Simple Dynamic Economy

Let Z+ be the set of all nonnegative integers, each element of which is used to
represent a generation or time period. For simplicity, we assume that each time
period consists of one generation, and each generation consists of one representative
individual. There is a private good, which can either be consumed or invested to be
capital that bears a return. kt denotes the accumulated capital at the beginning of time
period t ∈ Z+. In that period a fraction xt is consumed and the remainder kt − xt is
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used in production. The production technology is assumed to be linear. Then each
unit used in production brings γ units of the good at the end of the period, and are
transferred to the next period t +1. Hence

kt+1 = γ(kt − xt). (1)

We assume that the economy is productive, so that

γ > 1. (2)

The following feasibility condition for production is assumed. For all t ∈ Z+

kt ≥ 0. (3)

A feasibility condition for consumption is also assumed. That is, any individual
cannot survive without consumption. Hence, for all t ∈ Z+

xt ≥ 0.3 (4)

Now we describe our problem to find a consumption path that is selected by
Rawlsian maximin principle for intergenerational justice. For the convenience of
description, we adopt the following notation: let L∞

+ = {(x0,x1, . . . ,xt , . . .)| ∀t ∈
Z+ : xt ≥ 0}. Denote a consumption path by the capital letter, for example, X =
(x0,x1, . . .). rep(x1, . . . ,xn) represents the path (x1, . . . ,xn, x1, . . . ,xn, . . .), which con-
sists of (x1, . . . ,xn) repeated infinitely many times. By the feasibility condition, con-
sumption paths ought to be chosen from the set X = {X ∈L∞

+| ∀t ∈Z+ : 0 ≤ kt+1 =
γ(kt − xt)} given k0 > 0.4 It is convenient, however, to use the following equivalent
form: for any given k0 and γ , the set of feasible consumption paths are given by

X =

{
X = (x0,x1, . . .) ∈ L∞

+

∣∣∣∣∣ ∞

∑
t=0

γ−t xt ≤ k0

}
.

We denote the utility function of generation t ∈ Z+, or often called individual t,
by Wt(X) when the consumption path X is attained. We assume that generation t
derives utility from her own consumption xt and also from her immediate n− 1
descendants’ satisfaction, where n ≥ 2, so that her utility function depends on the
consumption stream of n generations beginning with her own. We also assume that
the utility function Wt is the same for all generations t ∈Z+, that is, Wt =W for all t.
Following Arrow (1973) and Dasgupta (1974a, b), we assume that W is additively
separable as to generations for simplicity, that the felicity ascribed by individual t
to individual t + i is the same as that ascribed by individual t + i to herself, that the

3 Any path on which at least one generation survives is meaningful for the discussion of intergen-
erational equity. It is possible for a generation to exhaust the whole amount of the good inherited
from the past. Here we impose a mild requirement on the feasibility of the consumption.
4 X depends on the initial capital stock k0. But in the following discussion, k0 is given from the
outside at the outset so that we employ the notation X instead of X (k0).
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felicity function is the same for all t, and that the felicity of the future generations is
discounted in the utility of the present generation. That is,

Wt(X) = W (xt ,xt+1, . . . ,xt+n−1) =
n−1

∑
i=0

ρiU(xt+i), (5)

where ρ0 = 1 and ρi (1 ≤ i ≤ n− 1) are a parameters reflecting the weight each
generation attach to the future generations. We assume that the weight of a farther
future generation is smaller, that is, ρi ≥ ρi+1 (0≤ i≤ n−1). The felicity function U
is assumed to satisfy the following conditions: (a) U : ℜ+ →ℜ is twice continuously
differentiable; (b) U ′(x) > 0 and U ′′(x) < 0.

We focus our concern on the case in which the optimal consumption path for the
maximin principle has a saw-tooth shape.5 Therefore, we assume

γ iρi < γ jρ j (0 ≤ i < j ≤ n). (6)

This assumption requires that each generation obtains more utility if she bequeaths
capital to the next generation than that if she consumes it by herself. Although the
utility of the next generation is discounted by ρ , the total utility will go up if the
increase in production is included.

Then, the maximin principle of justice gives a solution to the problem

max
X∈S

min
t

Wt(X) ⇐⇒ max
X∈S

min
t

W (xt ,xt+1, · · · ,xt+n−1),

⇐⇒ max
X∈S

min
t

n−1

∑
i=0

ρiU(xt+i), (7)

where S is any subset of X .
Now we present Arrow’s theorem on the maximin path. Let x̂ be the consumption

level that allows to bequeath the same amount of capital as the initial level to the
next generation, that is,

x̂ =
γ −1

γ
k0. (8)

Clearly, the consumption path rep(x̂) satisfies the feasibility condition. In other
words, the constant consumption x̂ will cause kt to remain constant at the initial
level k0.

Let (xR
0 ,xR

1 , . . . ,xR
n ) be the solution to the problem

max
x0,x1,...,xn−1

n−1

∑
i=0

ρiU(xi), (9)

s.t.
n−1

∑
i=0

γ−ixi = x̂
n−1

∑
i=0

γ−i. (10)

5 The inequality (6) is a necessary condition for the case. See Arrow (1973).
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Equation (10) is equivalent to the condition kn = k0. Therefore, this problem can
be interpreted as the maximization problem of generation 0’s utility, subject to the
restriction that generation 0 must bequeath k0 to generation n.

Then we have the following theorem by Arrow (1973), which is the most funda-
mental proposition in this field.

Theorem 1. [Arrow (1973); Theorem 3] Suppose that the utility of any generation
t is given by

Wt(X) =
n−1

∑
i=0

ρiU(xt+i),

γ iρi increases with i for i ≤ n− 1, and ρi is nonincreasing in i. Then the feasible
consumption path that maximizes mint Wt can be characterized as follows. Choose
x∗i (i = 0, . . . ,n−1) to maximize W (x0, . . . ,xn−1) subject to the constraint

n−1

∑
i=0

γ−ixi = x̂
n−1

∑
i=0

γ−i,

where x̂ is given in (8). Then at the optimum (i) xnl+i = x∗i (0 ≤ i ≤ n− 1) for any
l ∈Z+. For this path the following properties hold: (ii) x∗i < x∗i+1; (iii) Wt = mint Wt ,
if t is divisible by n; (iv) for all other t, Wt ≥ mint Wt , and (v) the inequality is strict
if ρi > ρi+1 for some i < n−1.

We define a choice function C that maps any nonempty set S ⊆ X of feasible
consumption paths to its subset, given a utility function W . Because W is given and
fixed throughout this chapter, a choice function is denoted by C(S). We define the
Rawlsian choice function CR, which maps any feasible set S of consumption paths
to the set of all maximin consumption paths XR in S, given a utility function W . It
is not generally true that CR(S) 
= ∅ for all S ⊆X and W , but Arrow (1973) showed
CR(X ) 
= ∅ under the above utility function W .

3 Axioms

In this section, we define several axioms for a characterization of the maximin prin-
ciple in this simple dynamic economy.6 First, we define two binary relations on X .
One is the strict Paretian relation, �P, which is given by: for any X1,X2 ∈ X ,

X1 �P X2 ⇐⇒ ∀t : Wt(X1) > Wt(X2).

Another is the Hammond equity relation, �H, which is defined as, for any
X1,X2 ∈ X
6 See Hammond (1976, 1979), Sen (1970), and Suzumura (1983) to understand the meanings of
the axioms in the classical environment. In the following definitions, we employ those in Suzumura
(1983).
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X1 �H X2 ⇐⇒ ∃t1, t2 ∈ Z+ : (i) Wt1(X1) ≤Wt2(X1),

(ii) Wt1(X1) ≥Wt1(X2),

(iii) Wt2(X1) ≤Wt2(X2),and

(iv) Wt(X1) = Wt(X2) ∀t 
= t1, t2.

By extending the Hammond equity principle, we introduce a new concept of
equity among groups of generations. It is called the extended Hammond equity
principle, which implies a fairness requirement that we should treat two groups
of generations equally if they are regarded equal in utility profiles. As an auxiliary
step, we follow Suzumura (1983) to introduce the lexicographic ordering RL on the
Euclidean n-space En. For every v ∈ En, let i(v) denote the ith smallest element, ties
being broken arbitrarily, so that we have

v1(v) ≤ v2(v) ≤ ·· · ≤ vn(v).

We may then define three binary relations PL, IL, and RL on En by

v1PLv2 ⇐⇒ ∃r ≤ n :

⎧⎪⎨⎪⎩
∀i ∈ {1,2, . . . ,r−1} : v1

i(v1) = v2
i(v2)

&
v1

r(v1) > v2
r(v2),

v1ILv2 ⇐⇒ ∀i ∈ {1,2, . . . ,r−1} : v1
i(v1) = v2

i(v2),

and
v1RLv2 ⇐⇒ v1PLv2 or v1ILv2 for all v1,v2 ∈ En.

We are now in the position of defining an axiom for extended Hammond equity.
Take any two groups of generations G1, G2, which consist of finite number n of suc-
cessive generations. For any consumption path X1, X2, we have two n-dimensional
vectors (Wt(X1))t∈G1 and (Wt(X2))t∈G2 . With this notation we define an extension
of Hammond equity relations in the case of sympathy to n− 1 future generations.
The strict extended Hammond relation, �EH, is defined by: for any X1,X2 ∈ X ,
X1 �EH X2 if and only if there exist tr and t p such that

(i) Wt(X2) ≥Wt(X1) (t = tr − (n−1), . . . ,tr),
(ii) Wt(X1) ≥Wt(X2) (t = t p − (n−1), . . . ,t p),

(iii) Wt(X1) = Wt(X2) (otherwise), and
(iv) (Wt(X1))t=tr−(n−1),...,tr PL(Wt(X2))t=t p−(n−1),...,t p ,

where Wt(Xi) = W0(Xi) for t < 0, i = 1,2. The extended Hammond indiffer-
ence relation, ∼EH, is defined by: for any X1,X2 ∈ X , X1 ∼EH X2 if and only if
(Wt(X1))t∈G1IL(Wt(X2))t∈G2 holds. The extended Hammond equity relation, �EH,
is defined by: for any X1,X2 ∈ X

X1 �EH X2 ⇐⇒ X1 �EH X2 or X1 ∼EH X2.
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This relation represents a concept of equity between two groups of successive
generations, which is applied to the case where a change in the consumption of a
generation causes a change in the utilities of the whole group. The reason why we
need this type of requirement is that a change in the consumption of some generation
under the feasibility of the economy brings increase in utility to a group of succes-
sive generations and decrease to another group that does not satisfy the conditions
presupposed in the definition of the Hammond equity relation.

Now we provide five axioms. The first axiom simply requires non-emptiness of
the choice set from the set of all feasible paths.

Definition 1. A choice function C satisfies nonempty choice from X (NE) iff
C(X ) 
= ∅.

The second axiom is a requirement that if a consumption path in a feasible set
S is extended Hammond superior to a path in the choice set C(S), then it is also
included in C(S).

Definition 2. A choice function C satisfies inclusion of extended Hammond superior
paths (IEH) iff ∀X1,X2 ∈ X ∀S ⊆X :

[X1 �EH X2 & X1 ∈ S & X2 ∈C(S)] ⇒ X1 ∈C(S).

The third axiom is a requirement that a path which is Pareto inferior to another
path in a feasible set S is excluded from the choice set C(S).

Definition 3. A choice function C satisfies exclusion of Pareto inferior paths (EP)
iff ∀X1,X2 ∈ X ∀S ⊆X :

[X1 �P X2 & X1 ∈ S] ⇒ X2 
∈C(S).

The next two axioms are conditions of consistency for the choice sets. The fourth
axiom is a requirement that any path in the choice set for a larger feasible set is also
included in the choice set for a smaller feasible set if the path belongs to that set.

Definition 4. A choice function C satisfies condition α iff ∀S1,S2 ⊆ X ,S1 ⊆ S2 :
∀X1 ∈ S1:

X1 ∈C(S2) ⇒ X1 ∈C(S1).

The fifth axiom is a requirement that if a path in the choice set for a smaller
feasible set is included in the choice set for a larger feasible set, then any other path
in the choice set for the smaller feasible set is also included in the choice set for the
larger feasible set.

Definition 5. A choice function C satisfies condition β iff ∀S1,S2 ⊆ X ,S1 ⊆ S2 :
∀X1 ∈ S1,X2 ∈ S2 :

[X1 ∈C(S1)∩C(S2) & X2 ∈C(S1)] ⇒ X2 ∈C(S2).
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4 Main Theorem

We are in the position to provide our main theorem about the characterization of the
Rawlsian choice function.

Lemma 1. Suppose that the utility of any generation t is given by

Wt(X) =
n−1

∑
i=0

ρiU(xt+i),

γ iρi increases with i for i ≤ n−1, and ρi is non increasing in i. If a choice function
C satisfies NE, EP, IEH, conditions α and β , then,

C(X ) = CR(X ).

To prove this lemma we need Lemmas 2.–4..

Lemma 2. Suppose that the utility of any generation t is given by

Wt(X) =
n−1

∑
i=0

ρiU(xt+i),

γ iρi increases with i for i ≤ n−1, and ρi is nonincreasing in i. If a choice function
C satisfies NE, EP, IEH, α , and β , then W0(X) = mint Wt(X) for all X ∈C(X ).

Proof. By NE, C(X ) 
= ∅. Suppose that X∗ ∈C(X ) and that W0(X∗) 
= mint Wt(X∗).
There are two cases to be considered: (i) there exists mint Wt(X∗) and mint Wt(X∗) <
W0(X∗); or (ii) there does not exist mint Wt(X∗). In both cases, we can find some
generation enjoying less welfare than generation 0. Let tm be such generation. For
any q ∈ (0,1), we can construct a feasible consumption path X1 defined as follows:⎧⎨⎩

x1
0 = x∗0 − ε

x1
tm+n−1 = x∗tm+n−1 +qεγ tm+n−1

x1
t = x∗t (t 
= 0, tm +n−1).

For sufficiently small ε > 0, we have the following:⎧⎪⎪⎪⎨⎪⎪⎪⎩
W0(X1) < W0(X∗),
Wt(X1) > Wt(X∗), (tm ≤ t ≤ tm +n−1),
W0(X1) > Wtm(X1),
Wt(X1) = Wt(X∗), (0 < t < tm or tm +n−1 < t).

Then, by the definition of the extended Hammond relation,

X1 �EH X∗. (11)

In making the path X1 from X∗ there remains an amount of the consumption good
(1−q)ε . If we increase the consumption by δ > 0 for each generation by dividing
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the amount (1−q)ε , the equality

δ (1+ γ−1 + γ−2 + · · ·) = δ
∞

∑
t=0

γ−t = (1−q)ε

must hold. Hence, we can construct a feasible consumption path X2 defined as
follows:

x2
t = x1

t +(1−q)
ε

∞

∑
t=0

γ−t

for all t ≥ 0. Then
X2 �P X1. (12)

By (12) and condition EP,

X1 
∈C({X∗,X1,X2}). (13)

Now we show X∗ 
∈ C({X∗,X1,X2}). Suppose on the contrary that X∗ ∈
C({X∗,X1,X2}). Then we obtain X1 ∈ C({X∗,X1,X2}) by (11) and condition
IEH. Applying condition α to this relation,

X1 ∈C({X∗,X1}). (14)

Since X∗ ∈C(X ), we have
X∗ ∈C({X∗,X1}), (15)

with the help of {X∗,X1} ⊆ X and condition α . Equations (14) and (15) together
imply

{X∗,X1} = C({X∗,X1}). (16)

Under the assumption X∗ ∈C({X∗,X1,X2}), (16) with condition β implies

X1 ∈C({X∗,X1,X2}),

which contradicts (13). Therefore

X∗ 
∈C({X∗,X1,X2}) (17)

must hold.
On the other hand, X∗ ∈ C(X ) implies that X∗ ∈ C({X∗,X1,X2}) with the

help of condition α . This contradicts (17). Hence W0(X) = mint Wt(X) for any
X∈C(X ). �
Lemma 3. Suppose that the utility of any generation t is given by

Wt(X) =
n−1

∑
i=0

ρiU(xt+i),
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γ iρi increases with i for i ≤ n−1, and ρi is nonincreasing in i. If a choice function
C satisfies NE, EP, IEH, conditions α , and β , then generation 0 in X∗ ∈ C(X ) has
the largest welfare among all feasible consumption paths where generation 0 has
the least welfare among all the generations. That is,

W0(X∗) = max
X∈D0

W0(X)

for any X∗ ∈C(X ), where D0 = {X ∈ X |W0(X) = mint Wt(X)}.

Proof. By NE, C(X ) 
= ∅. Suppose, on the contrary, that X∗ ∈ C(X ) and that
there is X∗∗ ∈ D0 such that W0(X∗) < W0(X∗∗). Let X∗∗∗ = arg maxX∈D0 W0(X).
Then W0(X∗) < W0(X∗∗)≤W0(X∗∗∗). Hence, without loss of generality, we assume
X∗∗∗ = X∗∗. By the feasibility condition and assumptions of U , (x∗∗0 , . . . ,x∗∗n−1) is the
unique solution of the problem:

max
x0,...,xn−1

n−1

∑
t=0

ρtU(xt)

s.t.
n−1

∑
t=0

γ−t xt = x̂
n−1

∑
t=0

γ−t .

Therefore, (x∗∗0 , . . . ,x∗∗n−1) is characterized by

MRS(x∗∗i ,x∗∗j ) =
ρiU ′(x∗∗i )
ρ jU ′(x∗∗j )

= γ j−i,

for any 0 ≤ i < j ≤ n−1.
Two cases should be distinguished.

Case 1: x∗i < x∗∗i .
The assumptions of U assure that

MRS(x∗i ,x
∗
j) =

ρiU ′(x∗i )
ρ jU ′(x∗j)

> γ j−i.

Consider X1 and X2 defined as follows:⎧⎨⎩
x1

i = x∗i +qε,
x1

j = x∗j − γ j−iε,

x1
t = x∗t (t 
= i, j),

and for all t ≥ 0

x2
t = x1

t +(1−q)
ε

∞

∑
t=0

γ−t
,
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where 0 < q < 1, ε > 0. Then
X2 �P X1. (18)

By (18) and condition EP,

X1 
∈C({X∗,X1,X2}). (19)

For sufficiently small ε ,⎧⎪⎨⎪⎩
Wt(X1) > Wt(X∗), (t = i− (n−1), . . . , i),
Wt(X1) < Wt(X∗), (t = j− (n−1), . . . , j),
Wt(X1) = Wt(X∗), (otherwise)

hold so that (Wt(X1))t= j−(n−1),..., jPL(Wt(X1))t=i−(n−1),...,i by the continuity of W .
Hence we have X1 �EH X∗ by the extended Hammond equity.

Now we show X∗ 
∈ C({X∗,X1,X2}). Suppose on the contrary that X∗ ∈
C({X∗,X1,X2}). Then we obtain X1 ∈ C({X∗,X1,X2}) by (11) and condition
IEH. Applying condition α to this relation,

X1 ∈C({X∗,X1}). (20)

Since X∗ ∈C(X ), we have
X∗ ∈C({X∗,X1}) (21)

with the help of {X∗,X1} ⊆ X and condition α . Equations (20) and (21) together
imply

{X∗,X1} = C({X∗,X1}). (22)

Under the assumption X∗ ∈C({X∗,X1,X2}), (16) with condition β implies

X1 ∈C({X∗,X1,X2}),

which contradicts (19). Therefore

X∗ 
∈C({X∗,X1,X2}) (23)

must hold.
On the other hand, X∗ ∈ C(X ) implies that X∗ ∈ C({X∗,X1,X2}) with the help

of condition α . This contradicts (23). Hence this case cannot be true.

Case 2: x∗i > x∗∗i .
The assumptions of U assure that

MRS(x∗i ,x
∗
j) =

ρiU ′(x∗i )
ρ jU ′(x∗j)

< γ j−i.
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Define X1 and X2 as follows:⎧⎨⎩
x1

i = x∗i − ε,
x1

j = x∗j +qγ j−iε,

x1
t = x∗t (t 
= i, j),

and for all t ≥ 0

x2
t = x1

t +(1−q)
ε

∞

∑
t=0

γ−t
,

where 0 < q < 1, ε > 0. Then, by the same reasoning as Case 1, we come to the
contradiction that X∗ ∈C({X∗,X1,X2}) and X∗ 
∈C({X∗,X1,X2}). Hence this case
cannot be true either.

By Cases 1 and 2, we have a contradiction for any 0 ≤ i < j ≤ n − 1 if
MRS(x∗i ,x∗j) 
= γ j−i. Therefore, generation 0 in X∗ ∈ C(X ) has the largest wel-
fare among all feasible consumption paths where generation 0 has the least welfare
among all the generations. �

The next lemma shows a sufficient condition for a consumption path to be infea-
sible. The idea of the proof is due to Lemma 1 in Arrow (1973).

Lemma 4. Suppose that the utility of any generation t is given by

Wt(X) =
n−1

∑
i=0

ρiU(xt+i),

γ iρi increases with i for i≤ n−1, and ρi is nonincreasing in i. If a consumption path

X satisfies that
n−1

∑
s=0

γ−sxs+ln ≥
n−1

∑
s=0

γ−sxR
s for all l ∈ Z+ and

n−1

∑
s=0

γ−sxs+ln >
n−1

∑
s=0

γ−sxR
s

for some l′ ∈ Z+, then X is infeasible.

Proof. By the feasibility condition, the relation between kln and k(l+1)n can be writ-
ten as

k(l+1)n = γn

(
kln −

n−1

∑
s=0

γ−sxs+ln

)
. (24)

On the other hand, a Rawlsian maximal consumption path satisfies the condition
that kn = k0. Hence

k0 = γn

(
k0 −

n−1

∑
s=0

γ−sxR
s+ln

)
. (25)

By (24) and (25),

k(l+1)n − k0 = γn

[
(kln − k0)−

(
n−1

∑
s=0

γ−sxs+ln −
n−1

∑
s=0

γ−sxR
s+ln

)]
.
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For simplicity of description, define hl and al as follows:

hl =
n−1

∑
s=0

γ−sxs+ln −
n−1

∑
s=0

γ−sxR
s+ln,

al = γ−ln(kln − k0).

Then, γ(l+1)nal+1 = γn(γ lnal −hl) iff al+1 = al −γ−lnhl . Since a0 = 0 by definition,
al = ∑l−1

u=0 γ−nuhu is true. Now, by the assumptions of lemma and definitions of hl
and al , the following inequality holds:

limsup
l→∞

l−1

∑
u=0

γ−nuhu > 0.

Then, for some ε > 0, there is sufficiently large l̄ such that al < −ε for l ≥ l̄.
Since γ−lnk0 < ε for any sufficiently large l, there exists some l′ ∈ Z+ such that
al′ < −γ l′nk0 . Hence kl′n < 0, and X is infeasible. �

Now we provide the proof of lemma 1. with these lemmas.

Proof of lemma 1.:
By NE, C(X ) 
= ∅. Let X∗ be any consumption path in C(X ). By Lemma

3. and Theorem 1, W0(X∗) ≥ W0(XR). Suppose that W0(X∗) > W0(XR). Then
Wln(X∗)>W0(XR) for all l ∈ Z+ by Lemma 2.. Since (xR

0 , . . . ,xR
n−1) is the unique

solution of the maximization problem (9) and (10) and the consumption path XR is
an infinite repetition of (xR

0 , . . . ,xR
n−1) by Theorem 1,

n−1

∑
s=0

γ−sx∗s+ln >
n−1

∑
s=0

γ−sxR
s

holds for all l ∈ Z+. Hence, X∗ is infeasible by Lemma 4., which is a contradiction.
Therefore, we have W0(X∗) = W0(XR).

Since, for all l ∈ Z+,

Wln(X∗) ≥ minWt(X∗) = W0(X∗) = W0(XR)

holds,
n−1

∑
s=0

γ−sx∗s+ln ≥
n−1

∑
s=0

γ−sxR
s , (26)

for all l ∈ Z+. By Theorem, 1 (xR
0 , . . . ,xR

n−1) is the unique maximum of the
problem (9) and (10). Hence equality (26) holds only when (x∗ln, . . . ,x

∗
(l+1)n−1) =

(xR
0 , . . . ,xR

n−1). Therefore, X∗ = rep(xR
0 , . . . ,xR

n−1) = XR. �
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We provide the converse of Lemma 1..

Lemma 5. Suppose that the utility of any generation t is given by

Wt(X) =
n−1

∑
i=0

ρiU(xt+i),

γ iρi increases with i for i ≤ n−1, and ρi is nonincreasing in i. The Rawlsian choice
function CR satisfies NE, IEH, EP, α , and β .

Proof. NE: As noted in Sect. 2, Arrow (1973) showed CR(X ) 
= ∅.
IEH: Suppose that (i) S ⊆X , (ii) X1 ∈ S, (iii) X2 ∈CR(S), and (iv) X1 �EH X2.

By (iv), mint Wt(X1) ≥ mint Wt(X2). Then X1 ∈CR(S), so that IEH holds.
EP: Suppose that (i) S ⊆ X , (ii) X1 ∈ S, and (iii) X1 �P X2. Then, by (iii),

mint Wt(X1) > mint Wt(X2). So X2 
∈CR(S) and EP holds.
Condition α: Suppose that (i) S1 ⊆ S2 ⊆ X , (ii) X1 ∈CR(S2), and (iii) X1∈S1.

By (i) and (ii), mint Wt(X1) ≥ mint Wt(X) for all X ∈ S1. Hence, we obtain
X1∈CR(S1), and condition α holds.

Condition β : Suppose that (i) S1⊆S2⊆X , (ii) X1,X2 ∈ CR(S1). By (ii),
mint Wt(X1)= mint Wt(X2). Therefore, we have X1∈CR(S2) ⇐⇒ X2∈CR(S2). �

With Lemmas 1. and 5., we finally come to the following characterization theo-
rem.

Theorem 1. Suppose that the utility of any generation t is given by

Wt =
n−1

∑
i=0

ρiU(xt+i),

that γ iρi increases with i for i ≤ n−1, and that ρi is nonincreasing in i. Then, (i) the
Rawlsian choice function CR satisfies NE, EP, IEH, α , and β ; and (ii) if a choice
function C satisfies NE, EP, IEH, α , and β , then C(X ) = CR(X ).

5 Related Examples

As for independence of the axioms we must examine in five cases whether there
exists a choice function that satisfies all but one axiom. In the following, we show
only three examples. Examination of other cases is an important task in our future
research. The next three examples are related to NE, IEH, and EP, respectively. The
first example is trivial.

Example 1. The empty choice function, C0(S) = ∅, satisfies EP, IEH, α , and β , but
it violates NE.

We show that a myopic choice function satisfies the other axioms than IEH.
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Example 2. A myopic choice function, CM(S) = argmaxX∈S W0(X), satisfies NE,
EP, α , and β , but it violates IEH.

First, we show that CM satisfies EP. Suppose that for any X1, X2, and any S,
[X1 �P X2 and X1 ∈ S] hold. Then W0(X1) > W0(X2). By the definition of CM, if X1

is feasible, CM(S) does not contain X2. Therefore, CM satisfies EP.
Second, suppose that CM satisfies the hypothesis of condition α . Then, by the

definition of CM, generation 0 has the maximal welfare on X1 in S2. Hence, clearly
it does so in S1 (⊆ S2).

Third, suppose that CM satisfies the hypothesis of β . Then by the definition of
CM, generation 0 has the same welfare on both X1 and X2 and therefore the conclu-
sion of β holds.

Now, consider two consumption paths, X1 and X2, such that W (X1) =
(2,0,0,0,0, ...) and W (X2) = (1,1,0,0,0, ...). IEH requires X2 ∈ C({X1,X2}),
but {X1} = C({X1,X2}) by definition. Therefore, IEH does not hold.

A trivial choice function satisfies the other axioms than EP.

Example 3. A trivial choice function, CT(S) = S, satisfies NE, IEH, α , and β , but it
violates EP.

CT always contains all feasible consumption paths. So the conclusions of IEH,
α , and β hold for any feasible set and any utility function, respectively. Therefore,
CT satisfies IEH, α , and β .

On the other hand, CT violates EP.

6 Concluding Remarks

This chapter has provided an axiomatic characterization of the Rawlsian choice
function in the Arrow–Dasgupta economy. Properties of the maximin consumption
path have been examined by Arrow (1973) and Dasgupta (1974a, b), and it was
shown that the maximin principle generates a saw-tooth shaped path. We make use
of the axioms of non-emptiness, the Pareto principle, extended Hammond equity,
conditions α and β to characterize the Rawlsian choice function. Pareto principle
and Hammond equity are familiar to the characterization of the maximin princi-
ple in an intragenerational economy. Extended Hammond equity is an extension
thereof in a dynamic economy with sympathetic preferences to future generations.
Our versions of these conditions are exclusion of Pareto inferior paths and inclusion
of extended Hammond superior paths. Conditions α and β are also familiar to the
characterization of consistent choice functions.

Our characterization of the Rawlsian choice function is partial, in that Theorem 2
does not provide a complete axiomatization. We have shown that the Rawlsian
choice function satisfies the above five axioms, and that the choice function sat-
isfying these axioms generates the same choice set as that by the Rawlsian choice
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function when the opportunity set is the whole set of feasible paths. A full charac-
terization of the Rawlsian choice function is a good research agenda in the field of
intergenerational equity, which is left for future study.

The other remaining problems to be solved along this line of research are as
follows. First, we must classify the family of choice functions that satisfies NE, IEH,
α , β , and a weaker axiom of Pareto principle than EP. Since this family contains
the Rawlsian choice function, we should explore whether there exists any other
eligible one than the trivial choice function. Second, we must verify whether any
other choice function than the myopic one that satisfies NE, EP, α , and β . Third, we
should scrutinize the possibility whether other consistency axioms characterize the
Rawlsian choice function.
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