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1 Introduction

The envy test concept is an all-or-nothing notion, and this is problematic when there
is no achievable envy-free option. The idea of ranking the “unfair” social states on
the basis of how much envy they contain goes back at least to Feldman and Kirman
(1974) and Varian (1976), but it is in Suzumura (1981a, b, 1983) that one finds a
first systematic study of this issue. More recent contributions to this line of research
include Chauduri (1986), Diamantaras and Thomson (1990), Tadenuma (2002), and
Tadenuma and Thomson (1995).

One of the contexts where typically envy-free allocations are hard to achieve
is when, as noticed in Pazner and Schmeidler (1974) for the production case and
Fleurbaey (1994) for the distribution case, individuals have nontransferable personal
characteristics to which the no-envy test nonetheless applies. This is sometimes
called the “compensation problem,” where one tries to compensate inequalities in
personal characteristics by counteracting inequalities in transferable resources. This
problem is rather different from standard problems of resource allocation because
of the presence of nontransferable characteristics, which act as a constraint on re-
distribution. One typical example is when individuals have unequal levels of skills
which give them unequal earning possibilities. Certain other characteristics, such as
physical handicaps, may directly affect personal satisfaction and generate inequali-
ties which call for redressing transfers. When inequalities in personal characteristics
are huge, or when individuals disagree about the value of their respective character-
istics, it may be very hard, or even impossible, to find transfers that eliminate envy
between individuals. In Fleurbaey (1994) and Iturbe-Ormaetxe and Nieto (1996)
one finds several suggestions about how to weaken the no-envy requirement in or-
der to obtain nonempty solutions to the compensation problem. But most of these
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solutions fail to be nonempty on the whole domain, and a systematic use of rankings
seems not to have been attempted yet in this branch of the literature. This chapter
makes an attempt at filling this gap and examines several rankings, which may be of
some interest.

Section 2 makes a brief survey of the compensation literature, proposing a few
basic criteria for the evaluation of solutions. Section 3 examines rankings based on
the number of envy relations, Section 4 deals with rankings that make use of addi-
tional information about the population’s preferences, and Section 5 is devoted to
rankings that involve the degree of envy as measured by the quantity of transfers
that would be needed to suppress envy relations. It argues that such rankings are
preferable to the others, and also establishes a correspondence between one such
ranking and another based on the idea of rationalizing egalitarian competitive equi-
libria. Section 6 concludes the chapter.

2 A Brief Survey

The compensation problem can be described by the following simple model. The
population is N = {1, ...,n} and every individual i ∈ N is endowed with two kinds
of characteristics: yi, for which she is not responsible (circumstances), and zi, for
which she is. A profile of characteristics is (yN ,zN) = ((y1, . . . ,yn) ,(z1, . . . ,zn)) .
The sets from which yi and zi are drawn, denoted Y and Z, respectively, are assumed
to have at least two elements.

Individual i’s well-being is denoted ui and is determined by a function u, which
is the same for all individuals:

ui = u(xi,yi,zi) ,

where xi ∈ R is the quantity of money transfer to which the individual is submitted.
When xi < 0, the transfer is a tax. The real-valued function u, defined either on
R×Y ×Z or R+×Y ×Z depending on the cases (on which more below), is assumed
to be continuous and increasing in xi.

An allocation is denoted xN = (x1, . . . ,xn) . The set of feasible allocations is de-
noted X . The precise definition of X differs in different cases, but typically involves
a condition ∑i∈N xi ≤ Ω for some aggregate endowment Ω ∈ R. Given the fact that
u is increasing in xi, this means that allocations such that ∑i∈N xi = Ω are all Pareto
efficient. This considerably simplifies the analysis.

This is the simplest model in which the compensation problem can be studied, but
other models have been studied. In particular, Fleurbaey and Maniquet (1996) and
Pazner and Schmeidler (1974) have examined a production model in which agents
differ in their productivity. For a general survey on the compensation problem, see
Fleurbaey and Maniquet (2002).

Two general concepts of solutions will be useful here. Let D be the domain of
economies e = (yN ,zN) under consideration. An allocation rule is a correspondence
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S : D →→ X , such that for all e ∈ D, S (e) ⊂ X is the subset of allocations selected
by S. A social ordering function is a mapping R : D →RX , where RX is the set of
complete orderings over X . The expression xN R(e) x′N will mean that xN is weakly
preferred to x′N , and P(e) and I (e) will denote the corresponding strict preference
and indifference relations, respectively. An allocation rule derived from a social
ordering function is defined by selecting, for each economy, the maximal elements
in X for the social ordering defined by the social ordering function for this economy.

Two special cases will be of particular interest. The “distribution” case
(Fleurbaey, 1994) is when xi has to be nonnegative, and there is a fixed amount
Ω > 0 to be distributed, that is, when (assuming no waste)

X =

{
xN ∈ RN

+ | ∑
i∈N

xi = Ω

}
.

An interesting domain for this case is the domain D1 of economies satisfying, for
all i, j ∈ N,

u
(

Ω
|N|−1

,yi,zi

)
≥ u(0,y j,zi).

This domain is such that no individual considers his own yi to be a huge handicap
compared to other values of y j in the population.1

The “TU” (transferable utility) case (Bossert, 1995) is when the well-being func-
tion is quasi-linear in x,

ui = xi + v(yi,zi) ,

xi is not bounded below,2 and there is no external amount of money to be distributed,
that is, when

X =

{
xN ∈ RN | ∑

i∈N
xi = 0

}
.

The distribution case is relevant to situations in which the government has a fixed
budget that can be used in order to provide targeted help to particular categories
of people, such as disabled individuals, victims of a natural disaster, families with
different needs. The TU case is not limited, but is especially relevant, to situations
in which individual well-being is itself monetary. The most realistic applications of
the TU case are offered by the federalism problem of organizing budget transfers
between administrative units (local governments, sectorial administrations, social
security agencies, etc.), which are partly responsible for their budget situation.

For the most part we focus here on the TU case, and only briefly mention the
differences in results for the distribution case, when relevant.

1 Conditions of this kind are helpful in order to obtain the existence of envy-free allocations in the
model where y is an indivisible good that is transferable across agents. See, for example, Maskin
(1987).
2 More realistically, one could impose that xi + v(yi,zi) is bounded below (for instance by zero).
We will not study this variant.
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The compensation problem consists in neutralizing the impact of circumstances
y on well-being while not interfering with inequalities due to differences in respon-
sibility characteristics z. The no-envy condition, due to Foley (1967) and Kolm
(1972), is well suited to this purpose if it is applied as follows.

No-Envy: ∀e ∈ D, ∀xN ∈ S(e), ∀i, j ∈ N, u(xi,yi,zi) ≥ u(x j,y j,zi) .

Its main drawback, however, is that it is too demanding and is satisfied only on a
very small domain. This is connected to the conflictual duality between two princi-
ples that it jointly encapsulates, namely, the compensation principle (“neutralize y”)
and the natural reward principle (“not interfere with z”) (Fleurbaey, 1995). Here we
focus on a small list of axioms embodying these principles. For the compensation
principle:

Equal Well-Being for Equal Responsibility: ∀e ∈ D, ∀xN ∈ S(e), ∀i, j ∈ N such
that zi = z j,

u(xi,yi,zi) = u(x j,y j,z j) .

Equal Well-Being for Uniform Responsibility: ∀e ∈ D, ∀xN ∈ S(e), if ∀i, j ∈ N,
zi = z j, then

∀i, j ∈ N, u(xi,yi,zi) = u(x j,y j,z j) .

In the distribution case one can reformulate these axioms in terms of application
of the leximin criterion, inequality being allowed when the better-off agent has a
zero x. In the above formulation, however, they are nonempty on D1 (see Lemma 1
in Fleurbaey (1994)).

The dual “natural reward” axioms are the following:

Equal Treatment for Equal Circumstances: ∀e ∈ D, ∀xN ∈ S(e), ∀i, j ∈ N such
that yi = y j,

xi = x j.

Equal Treatment for Uniform Circumstances: ∀e ∈ D, ∀xN ∈ S(e), if ∀i, j ∈ N,
yi = y j, then

∀i, j ∈ N, xi = x j.

These four axioms appear to be very basic conditions, and a reasonable require-
ment for an allocation rule is that it should satisfy at least the two weak axioms
(“uniform” case) and one of the strong axioms (“equal” case), knowing that the two
strong axioms are incompatible (Fleurbaey, 1994).

Three allocation rules, conceived in terms of weakening the no-envy requirement,
have been proposed in Fleurbaey (1994). One, inspired from Daniel (1975) and
Feldman and Kirman (1974), selects the allocations with the smallest number of
envy occurrences among the “balanced” allocations. A balanced allocation is such
that for all i ∈ N, the number of agents he envies equals the number who envy him:



To Envy or To Be Envied? 99∣∣{ j ∈ N | u(xi,yi,zi) < u(x j,y j,zi)
}∣∣= ∣∣{ j ∈ N | u(xi,yi,z j) > u(x j,y j,z j)

}∣∣ .
Let B(e) ⊆ X denote the subset of balanced allocations, and E(xN ,e) denote the
number of envy occurrences in xN :

E(xN ,e) =
∣∣{(i, j) ∈ N | u(xi,yi,zi) < u(x j,y j,zi)

}∣∣ .
Balanced and Minimal Envy (SBME): ∀e ∈ D, ∀xN ∈ X ,

xN ∈ SBME(e) ⇔ xN ∈ B(e) and
∀x′N ∈ B(e), E(x′N ,e) ≥ E(xN ,e).

A second allocation rule, inspired by Chauduri (1986) and Diamantaras and
Thomson (1990), tries to minimize the intensity of envy, this intensity being mea-
sured for every agent by the resource needed to make this agent non-envious:

Ii(xN ,e) = min{δ ∈ R | ∀ j ∈ N \{i} , u(xi +δ ,yi,zi) ≥ u(x j,y j,zi)}.

The allocation rule is then defined as follows.

Minimax Envy Intensity (SMEI): ∀e ∈ D, ∀xN ∈ X ,

xN ∈ SMEI(e) ⇔∀x′N ∈ F(e), max
i∈N

Ii(x′N ,e) ≥ max
i∈N

Ii(xN ,e).

The third allocation rule makes use of all agents’ opinions about the relative well-
being of two agents. It tries to minimize the size of subsets of agents thinking that
one agent is worse-off than another agent. It takes inspiration from “undominated
diversity” (Parijs, 1990, 1995), which seeks to avoid situations in which one agent
is deemed unanimously worse-off than another one, and is related to the family of
solutions put forth by Iturbe-Ormaetxe and Nieto (1996), which generalizes van
Parijs’ idea and seeks to avoid such a unanimity among a subgroup of a given size
and containing the worse-off agent. Let

Nm
i = {G ⊂ N | |G| = m, i ∈ G}.

Minimal Unanimous Domination (SMUD): ∀e ∈ D, ∀xN ∈ X ,

xN ∈ SMUD(e) ⇔∃m ∈ {1, ...,n},⎧⎪⎨⎪⎩
(i) ∀i, j ∈ N, ∀G ∈ Nm

i , ∃k ∈ G, u(xi,yi,zk) ≥ u(x j,y j,zk),
(ii) ∀p < m, ∀x′N ∈ F(e), ∃i, j ∈ N, ∃G ∈ N p

i ,

∀k ∈ G, u(x′i,yi,zk) < u(x′j,y j,zk).
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3 Ranking Envy Graphs

A difficulty with SBME is that there do not always exist balanced allocations, so
that the domain on which it is defined is restricted. Moreover, the various sufficient
conditions of existence specified by Daniel (1975) and Fleurbaey (1994) are not
very easy to interpret and apply. Necessary conditions have not been studied to the
best of my knowledge.

A more substantial criticism is that one does not see why a lexicographic priority
should be given to balancedness of allocations over the number of envy occurrences.
If the only balanced allocation has everybody envying everybody, it might be better
to prefer an unbalanced allocation with a much smaller number of envy relations.

In fact, the general idea underlying this allocation rule is to examine the graph
of envy relations, with a double concern for symmetry and for minimizing the num-
ber of relations. A general approach to the problem of ranking envy graphs would
probably be more suitable than a narrow focus on balanced allocations.

In Fig. 1, five graphs are represented for a population of four individuals. In case
(a), individual 1 is envied by all the others; in case (b), individual 1 envies all the
others; in case (c), a cycle of envy occurs; in case (d), an envy relation has been
reversed in comparison to case (c); in case (e), this envy relation has been deleted.
Although the number of envy relations is smaller in (a) and (b) than in (c), and the
same in (d) as in (c), one should probably prefer (c), out of a concern for symmetry.
Although (e) is not symmetric, it may not be worse than (c), because it has a strictly
smaller graph of envy relations.

This is a difficult case since balancedness in (c) makes it look more equal than (e),
but one must be careful to avoid the intuitive illusion that arrows from a transitive
“better-off than” relation. In (e), there is no-envy between agents 1 and 2, and this is
the relevant test of equality. The arrows from 2 to 1 via 3 and 4 do not mean that 2 is
worse-off than 1. It is true that between two agents, reciprocal envy appears better
than a one-way envy relation. But this does not necessarily extend to cycles of envy
among more agents. Therefore, it is not unreasonable to consider that removing a
nonreciprocal envy relation between two agents is always a good thing (given that
the only information is the envy graph, a limitation that will be discussed below).

Defining a more precise preference order on envy graphs is a complex matter.
Suzumura (1983) proposes a very natural ranking, which applies the reverse leximin
criterion to the vector of individual envy indices, where an individual envy index is
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simply the number of other agents this individual envies (i.e., the number of outgo-
ing arrows in the graph). The reverse leximin criterion prefers a vector to another if
its greatest component is smaller, or if the greatest components are equal in the two
vectors but the second greatest component is smaller, and so on. It corresponds to
the application of the standard leximin criterion to the opposite vectors.

The symbol ≥lex appearing in the definition below denotes the standard leximin
criterion applied to vectors of real numbers. Namely, x ≥lex x′ if the smallest com-
ponent of x is greater than the smallest component of x′, or they are equal and the
second smallest component of x is greater than the second smallest component of
x′, and so on.

Envious Count criterion (REsC): Let

ni(xN) =
∣∣{ j ∈ N | u(xi,yi,zi) < u(x j,y j,zi)

}∣∣ .
For all xN ,x′N ∈ X , xN REsC(e)x′N if and only if

−(ni(xN))i∈N ≥lex −
(
ni(x′N)

)
i∈N .

One can define a dual criterion to this one, that relies on the number of agents by
whom a given agent is envied.

Envied Count criterion (REdC): Let

n′i(xN) =
∣∣{ j ∈ N | u(xi,yi,z j) > u(x j,y j,z j)

}∣∣ .
For all xN ,x′N ∈ X , xN REdC(e)x′N if and only if

−(n′i(xN)
)

i∈N ≥lex −
(
n′i(x

′
N)
)

i∈N .

The envious count and envied count criteria appear to be dual with respect to
compensation and natural reward. One can indeed make the following observation.
When two agents have the same responsibility characteristics, the worse-off will
envy at least all the agents envied by the other plus the other agent himself, which
means that his ni index is greater and the reverse leximin will give absolute priority
to him. Similarly, when two agents have the same circumstances, those who envy
one of them will systematically envy the agent with the greater x, and the one with
the lower x will envy him as well, so that his n′i will be greater and absolute priority
will be put on him (i.e., absolute priority against him in this case, in order to reduce
the number of agents envying him). This provides the intuition for the following
result, which bears on the allocation rules derived from REsC and REdC.

Proposition 1. In the TU case, the allocation rule derived from the envious count
criterion satisfies equal well-Being for equal responsibility and the allocation rule
derived from the envied count criterion satisfies equal treatment for equal circum-
stances. This result does not extend to the distribution case.

Proof. (1) Consider two agents i, j ∈ N such that zi = z j and an allocation xN
such that ui > u j. Let x′N be such that x′i = xi − (ui −u j) and x′k = xk for all
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k 
= i. Then ni(x′N) = n j(x′N) = n j(xN)− 1, while nk(x′N) ≤ nk(xN) for all k 
= i, j.
Since n j(xN) > ni(xN), the vector (ni(x′N),n j(x′N)) is better for the reverse leximin
than (ni(xN),n j(xN)) , and since nk(x′N) ≤ nk(xN) for all k 
= i, j, the whole vector
(nk(x′N))k∈N is better than (nk(xN))k∈N . The allocation x′N does not belong to X , but
the allocation

x′′N = x′N − 1
|N| ∑

i∈N
x′i

does and is such that nk(x′′N) = nk(x′N) for all k ∈ N.
(2) The proof for the envied count criterion and equal treatment for uniform

circumstances is similar. Let yi = y j and xi > x j in allocation xN . Allocation x′N
is defined by x′j = xi and x′k = xk for all k 
= j. The rest is very similar as above.

(3) Impossibility to extend to the distribution case is a corollary of the next
proposition. �

However, these two criteria display no concern for balancedness. For instance, in
the examples of Fig. 1, the vectors of indices ni(xN) are, respectively, the following:
(a) (0,1,1,1)
(b) (3,0,0,0)
(c) (1,1,1,1)
(d) (0,2,1,1)
(e) (0,1,1,1)
As a consequence, the envious count criterion ranks the five graphs in the following
decreasing order:

a e
c
d
b

Indifference between (a) and (e) is due to the fact that this ranking is not sensitive
to the balancedness feature of graphs. It only counts the number of outgoing arrows
and is indifferent to the direction of these arrows. A similar difficulty is obtained
with the envied count criterion, which puts (a) at the bottom, but is indifferent be-
tween (b) and (e).3

A concern for balancedness can be incorporated by measuring individual situa-
tions with respect to envy in terms of an index that depends on ni and on n′i. Let

di(xN) = D(ni(xN),n′i(xN))

for a function D, the properties of which are discussed below. One can apply the
reverse leximin criterion to such indices. The properties of the criterion will then
depend on how D ranks various (ni,n′i) vectors. Figure 2 shows iso-curves for the D
function in the (ni,n′i) space.

Panels (1) and (2) illustrate the two extreme cases of the envious count and envied
count criteria:
3 The vectors of indices n′i(xN) are, respectively, (a) (3,0,0,0); (b) (0,1,1,1); (c) (1,1,1,1); (d)
(2,0,1,1); and (e) (1,0,1,1).
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Fig. 2 Iso-curves of D

(1) D(ni,n′i) = ni;
(2) D(ni,n′i) = n′i.

Panel (3) and (4) correspond to cases in which a concern for balancedness is intro-
duced:

(3) D(ni,n′i) = 2max{ni,n′i}+min{ni,n′i} .
(4) D(ni,n′i) = 2max{ni,n′i}−min{ni,n′i} = max{ni,n′i}+ |ni −n′i| .
As far as the examples of Fig. 1 are concerned, formula (3) puts (e) above (c)
whereas formula (4), displaying a greater concern for balancedness, puts (c) above
(e). Panel (5) depicts the extreme case in which only balancedness matters:
(5) D(ni,n′i) = |ni −n′i| .

It turns out that none of these criteria satisfies equal well-being for equal respon-
sibility or equal treatment for equal circumstances in the distribution case. The next
proposition shows that there is no hope to find better criteria along these lines. To
keep things simple, attention is restricted to “reasonable” criteria that prefer an allo-
cation with only one envy occurrence to any unbalanced allocation with more than
n envy occurrences, for n great enough. This restriction seems unquestionable when
dealing with criteria that rely only on envy graphs.

Proposition 2. In the distribution case, no reasonable criterion based on envy
graphs satisfies either equal well-being for equal responsibility or equal treatment
for equal circumstances.

Proof. In the distribution case, two agents i, j can be in a situation in which no one
envies the other when they have certain x∗i ,x∗j , whereas at all other allocations at
least one envies the other. In such a case, let us say that i and j are “locked” at(

x∗i ,x∗j
)

. Let us illustrate how this can happen. Let u(x,yi,zi) = u(x,y j,zi) for all x,

and u(x,y j,z j) < u(x,yi,z j) for all x 
= x∗, while u(x∗,y j,z j) = u(x∗,yi,z j). Then i
and j are locked at (x∗,x∗) , since there is no envy at (x∗,x∗) , whereas for (xi,x j)
(with at least one different from x∗), i envies j if xi < x j and j envies i if xi ≥ x j.

Consider an n-agent population {1, . . . ,n} where z1 = z2 and such that for all
pairs of agents i, j > 1, i and j are locked at (1,1). Assume that Ω = n, that agents
3, . . . ,n never envy agent 1 (whatever the allocation), that u1 > u2 at allocation
(1, . . . ,1) and that 1 is envied by 2 at this allocation. Necessarily this is the only
envy occurence in this allocation. At any other allocation in X , there will be at least
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n−2 envy occurrences, because at least one of the agents i > 1 will have a different
x and this will create at least one envy occurrence between him and each one of the
others.

Moreover, no allocation in which 1 and 2 do not envy each other is balanced.
First note that in such an allocation u(x1,y1,z1) = u(x2,y2,z2), since z1 = z2. If 2
envies another agent, then 1 envies this other agent as well, but 1 is not envied by 2
in such an allocation, and is never envied by 3, . . . ,n in all allocations. In this case
1’s situation is unbalanced. If 2 does not envy any other agent, he must be envied by
at least one agent 3, . . . ,n and his situation is unbalanced.

Therefore, for n great enough, a reasonable criterion will prefer (1, . . . ,1) to any
allocation in which 1 and 2 do not envy each other, and thereby violate equal well-
being for equal responsibility.

For equal treatment for equal circumstances, assume y1 = y2, and all pairs of
agents i, j > 1 are similarly locked together. Then, for certain preferences, the allo-
cation (0,1, . . . ,1) has only one envy occurrence, namely 1 envying 2. The rest of
the argument is as above. �

This last result clearly suggests that the information contained in an envy graph is
insufficient, and that can be interpreted as being due to the fact that this information
is typically insufficient to pinpoint agents with identical y or identical z.

4 Undominated Diversity and Beyond

In this section we turn to a setting with richer information. Recall the SMUD alloca-
tion rule, which seeks to minimize the size of the set of agents who unanimously
consider that i is worse-off than j (and i is among them), for all pairs (i, j). This
allocation rule refines van Parijs’ undominated diversity, which is too large in some
cases (in particular, it accepts allocations with envy when envy-free allocations ex-
ist). It shares with it the drawback that it may happen to be empty in the distribution
case. It is, however, nonempty in a rather wide class of situations.

Lemma 1. The SMUD is nonempty in the TU case. It is also nonempty in the distri-
bution case on D1.

Proof. Distribution case: Fleurbaey (1994, Prop. 10) proves that, if for all i, j ∈ N,
there is k ∈ N such that

u
( Ω
|N|−1

,yi,zk

)
≥ u(0,y j,zk),

then SMUD is nonempty. This assumption is satisfied on D1.
TU case: Consider first a modified version of the TU case in which the feasible

set is X∗ =
{

xN ∈ RN
+ | ∑i∈N xi = Ω

}
. Let

Ω = (|N|−1) max
i, j,k∈N

(v(yi,zk)− v(y j,zk)) .
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With this value of Ω , the above assumption is satisfied, so that there exists an allo-
cation xN ∈ X∗ such that for all i, j ∈ N, there is k ∈ N such that

ui(xi,yi,zk) ≥ u(x j,y j,zk).

Let µ = 1
|N| ∑i∈N xi, and define x′i = xi − µ for all i ∈ N. The allocation x′N is such

that ∑i∈N x′i = 0 and, by the quasi-linearity of u in the TU case, it still holds that for
all i, j ∈ N, there is k ∈ N such that

ui(xi,yi,zk) ≥ u(x j,y j,zk).

�
In fact, the underlying idea of SMUD is again to rank graphs of envy relations.

But, interestingly, instead of simply counting the arrows between individuals, the
idea is to assign a number to every envy relation, which is equal to the number of
individuals who share the envious’ preferences. For instance, suppose i envies j, and
there are three other individuals who, with their own responsibility characteristics,
would be better-off with j’s bundle of external resources and circumstances than
with i’s. Then the envy arrow from i to j is assigned a value of four. When i does
not envy j, no arrow is drawn even if there are some other individuals who would
be better-off with j’s bundle than with i’s. The absence of an arrow is equivalent to
a value of zero.

In summary, for every ordered pair (i, j) , this procedure gives us a number, equal
to zero if i does not envy j, and equal to a positive integer between one and the pop-
ulation size otherwise. “Undominated diversity” is simply the rather special require-
ment that no pair has a number with the maximal value (|N|). The SMUD allocation
rule applies the minimax criterion to the list of these numbers (i.e., it minimizes the
greatest number), retaining in addition the requirement that no pair has number |N|.

A drawback of the minimax criterion is that it neglects the situation of envy
relations with a less than maximal number and may therefore accept too much of
envy. It appears much more reasonable to apply the reverse leximin criterion to the
list of these numbers. Let us call this the “diversity” criterion, since it both extends
and refines van Parijs’ criterion, and takes account of the diversity of preferences in
the population.

Diversity criterion (RD): For any xN ∈ X , (i, j) ∈ N2, let

ni j(xN) =
{

0 if i does not envy j,∣∣{k ∈ N | u(x j,y j,zk) > u(xi,yi,zk)
}∣∣ otherwise.

For all xN ,x′N ∈ X , xN RD(e)x′N if and only if

−(ni j(xN))i, j∈N ≥lex −
(
ni j(x′N)

)
i, j∈N .

An envy-free allocation corresponds to a list containing only zeros, and will
be selected whenever it exists. Similarly, if there exist allocations satisfying the
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undominated diversity criterion, the selected allocations will be drawn from this
subset. An interesting feature of the diversity criterion (already present in undomi-
nated diversity) is that it satisfies equal treatment for equal circumstances.

Proposition 3. The allocation rule derived from the diversity criterion exactly se-
lects the set of envy-free allocations whenever it is nonempty. The allocation rule
derived from it satisfies equal well-being for uniform responsibility (on D1 for the
distribution case) and equal treatment for equal circumstances (on D1 for the dis-
tribution case).

Proof. (1) An envy-free allocation is such that (ni j(xN))i, j∈N = 0, and this domi-
nates any −(ni j(x′N))i, j∈N < 0 for the leximin criterion. Therefore, the set of envy-
free allocations is selected whenever it is nonempty.

(2) When zi = z j for all i, j ∈N, the allocation that equalizes well-being across all
agents is the only envy-free efficient allocation and is therefore selected whenever it
is feasible, which is always true in the TU case, and on D1 in the distribution case.
This proves the satisfaction of equal well-being for uniform responsibility.

(3) That it satisfies equal treatment for equal circumstances is a consequence of
the fact that ni j(xN) = |N| if xi < x j while yi = y j and that, in the TU case as well
as in the distribution case on D1, by Lemma 1 there always exist (undominated
diversity) allocations with max(ni j(xN))i, j∈N < |N| . In the distribution case, out of
D1, an allocation satisfying equal treatment for equal circumstances is not always
selected. Consider a situation with uniform z and y1 = y2 in which the leximin-utility
allocation is xN = (3,3,0, . . . ,0), while u(4,y2,z) = u(0,yi,z) for all i 
= 1. Then the
allocation x′N = (2,4,0, . . . ,0) is preferred when |N| > 3, because it has

(
ni j(x′N)

)
i, j∈N =

⎛⎜⎜⎜⎜⎜⎝
0 |N| |N| · · · |N|
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠
compared to

(ni j(xN))i, j∈N =

⎛⎜⎜⎜⎜⎜⎝
0 0 |N| · · · |N|
0 0 |N| · · · |N|
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ .

�
The allocation rule associated with RD is more satisfactory than those of the

previous section, and this can be linked to the richer information used by RD.
The diversity criterion is clearly on the side of the natural reward principle, and

one may wonder if a dual criterion can be defined that would embrace the compen-
sation principle instead. The dual criterion does exist, and refers to all the values of
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yk instead of the values of zk. For a given yk, it evaluates the situation of an individ-
ual i by computing the value of x that would give him, with circumstances yk, the
same utility as in the contemplated allocation. Now consider two individuals i and
j. This computation amounts to imagining a situation that is equivalent in terms of
well-being but with equal circumstances (yk) for both individuals. The ideal alloca-
tion should then be egalitarian between them, and any inequality observed in x for
this imaginary situation does reflect a problem. Now, different computations made
with different yk may yield different answers and this criterion takes account of this
possible diversity.

Formally, for any xN ∈ X , i,k ∈ N, let xik(xN) be defined by

u(xi,yi,zi) = u(xik(xN),yk,zi).

In the distribution case, it may happen that u(xi,yi,zi) > u(x,yk,zi) for all x ≥ 0, or
that u(xi,yi,zi) < u(x,yk,zi) for all x ≥ 0. We focus here, for this case, on the domain
D2 such that for all i, j ∈ N, one has u(0,yi,zi) = u(0,y j,zi) and there exists x ≥ 0
such that u(Ω ,yi,zi) < u(x,y j,zi). On this domain, xik(xN) is always well defined.

Compensation Diversity criterion (RCD): For any xN ∈ X , (i, j) ∈ N, let

mi j(xN) =
{

0 if i does not envy j,∣∣{k ∈ N | x jk(xN) > xik(xN)
}∣∣ otherwise.

For all xN ,x′N ∈ X , xN RCD(e)x′N if and only if

−(mi j(xN))i, j∈N ≥lex −
(
mi j(x′N)

)
i, j∈N .

The following statement establishes the connection between this criterion and the
compensation principle.

Proposition 4. The allocation rule derived from the compensation diversity crite-
rion exactly selects the set of envy-free allocations whenever it is nonempty (on D2
for the distribution case). The allocation rule derived from it satisfies equal well-
being for equal responsibility (on D2 for the distribution case) and equal treatment
for uniform circumstances.

Proof. (1) Notice that xii(xN) ≡ xi. When i envies j, one has

u(xi,yi,zi) < u(x j,y j,zi),

implying that if
ui = u(xi j(xN),y j,zi),

as is always obtained in the TU case and on D2 in the distribution case, then
xi j(xN) < x j = x j j(xN) and therefore mi j(xN) > 0. An envy-free allocation is such
that (mi j(xN))i, j∈N = 0, and this dominates any −(mi j(x′N))i, j∈N < 0 for the lex-
imin criterion. Therefore, the set of envy-free allocations is selected whenever it is
nonempty.
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(2) When yi = y j for all i, j ∈ N, the allocation xN = 0 is the only envy-free
efficient allocation and is therefore selected. This proves the satisfaction of equal
treatment for uniform circumstances.

(3) That it satisfies equal well-being for equal responsibility is a consequence of
the fact that mi j(xN) = |N| if ui < u j while zi = z j and that, in the TU case as well as
in the distribution case on D2, by a dual to Lemma 1, there always exist allocations
with max(mi j(xN))i, j∈N < |N| . �

An interesting difference between diversity and compensation diversity is worth
noting. When i envies j, this is recorded by the diversity criterion on the basis of zi,
that is, the preferences of the envious agent:

u(xi,yi,zk) < u(x j,y j,zk) for k = i,

whereas with compensation diversity, this is recorded with y j, that is, the circum-
stances of the envied agent:

u(xi,yi,zi) = u(xik(xN),yk,zi) < u(x j,y j,zi) = u(x jk(xN),yk,zi) for k = j.

As in the previous section with the envious count and envied count criteria, whether
one focuses on the envious or on the envied may contribute to determining whether
the criterion falls on the compensation side or on the natural reward side. A similar
configuration will again be obtained in the next section.

5 From Envy Intensity to Walras

Although the diversity criteria improve on the envy count criteria of Section 3, they
may still be criticized for the restricted information they rely upon. They rank alloca-
tions on the basis of a rather poor information, namely, the graphs of envy relations
(and of similar preference relations for the diversity criteria). Allocations are made
of distributions of resources, which provide a much finer scale for the measurement
of envy situations. It is quite unjustifiable to ignore this information and simply
focus on zero-one markers of presence or absence of envy relations. In particular,
the envy count and diversity criteria are indifferent between any pair of allocations
with the same graph, even if one allocation may have much less inequality, that is,
a smaller degree of envy, than the other. They may also prefer an allocation with
fewer relations of envy but with a very high degree of envy in these relations to
another allocation with more envy occurrences but which is in fact much closer to
an envy-free situation. In conclusion, looking at the graphs of envy relations, even
augmented by ni j numbers, is probably not a very good idea.

The SMEI allocation is based on a finer information and indeed suggests an alter-
native approach. For every allocation and for every pair of individuals (i, j) , com-
pute the number ti j as the smallest amount of external resources such that giving
this to i in addition to what he receives in this allocation would prevent him from
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envying j. If i already does not envy j, this number is typically negative, meaning
that one can diminish i’s resources without making him envy j. And one always has
tii = 0. Let ti j be called the degree of i’s envy toward j. The SMEI allocation rule as
defined above amounts to retaining the greatest ti j for every i (ignoring tii) as a mea-
sure of his greatest degree of envy (or smallest degree of non-envy if it is negative),
and to apply the minimax criterion to the vector of these numbers.4 This is a rather
natural solution, but Fleurbaey (1994, Prop. 9) notices that it satisfies neither equal
well-being for equal responsibility nor equal treatment for equal circumstances. This
suggests looking for another way to rank distributions (ti j)i, j∈N .

We examine two other, a priori less intuitive, options which may ultimately be
more satisfactory. The first is similar to the above but incorporates tii in the com-
putation of the greatest degree of envy, so that this number is always nonnegative,
and applies the summation operation rather than the minimax. The second solution
computes, for every individual, the greatest degree of envy among those who might
envy him, and then applies the summation operator. In both cases, the social objec-
tive is to minimize the value of these sums. The first is focused on the degree of
envy from the standpoint of the envious (the transmitters), while the second takes
the viewpoint of those who are envied (the receivers).

For any allocation xN ∈ X , any pair of agents i, j ∈ N, let ti j(xN) be the smallest
value of t such that

u(xi + t,yi,zi) ≥ u(x j,y j,zi)

and di j(xN) be the smallest value of d such that

u(xi,yi,zi) ≥ u(x j −d,y j,zi).

Tadenuma and Thomson (1995), in the context of transferable indivisibles, have
considered the two notions of ti j and di j. The definition of di j(xN) should be slightly
modified in the distribution case when

u(xi,yi,zi) < u(0,y j,zi),

in which case one can propose to compute di j(xN) as the smallest value of x j +d for
d such that

u(xi +d,yi,zi) ≥ u(0,y j,zi).

In the TU case, one simply has

ti j(xN) = di j(xN) = x j + v(y j,zi)− xi − v(yi,zi).

In the distribution case, one may have ti j(xN) or di j(xN) undefined if

lim
x→+∞

u(x,yi,zi) < u(x j,y j,zi) or u(xi,yi,zi) > lim
x→+∞

u(x,y j,zi).

4 In fact, the presentation of SMEI in Sect. 2 was a little simplistic since Fleurbaey (1994) already
introduces the ti j and applies the reverse leximin criterion to the vector (max j 
=i ti j)i∈N , instead of
the minimax.
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To avoid this problem, we may restrict our attention to the domain D0 such that for
all i, j ∈ N, there exists x ≥ 0 such that

u(x,yi,zi) ≥ u(Ω ,y j,zi) and u(x,y j,zi) ≥ u(Ω ,yi,zi).

In all cases, the following three statements are equivalent: (1) ti j(xN) > 0; (2)
di j(xN) > 0; and (3) i envies j. One always has tii(xN) ≡ dii(xN) ≡ 0.

The two social ordering functions are formally defined as follows.

Envious Intensity (REsI): For all xN ,x′N ∈ X , xN REsI(e)x′N if and only if

∑
i∈N

max
j∈N

ti j(xN) ≤ ∑
i∈N

max
j∈N

ti j(x′N).

Envied Intensity (REdI): For all xN ,x′N ∈ X , xN REdI(e)x′N if and only if

∑
j∈N

max
i∈N

di j(xN) ≤ ∑
j∈N

max
i∈N

di j(x′N).

The quantity max j∈N ti j(xN) measures how much must be added to xi for envious
i to get rid of envy, while maxi∈N di j(xN) measures how much must be deducted
from x j for envied j not to be envied any more.

The allocation rules derived from these rankings appear to have more interesting
properties than SMEI.

Proposition 5. The allocation rules derived from the envious and envied intensity
criteria both exactly select the set of envy-free allocations whenever it is nonempty
(on D0 for the distribution case). The allocation rule derived from envious intensity
satisfies equal well-being for uniform responsibility (on D1 for the distribution case)
and equal treatment for equal circumstances (on D0 for the distribution case). The
allocation rule derived from envied intensity satisfies equal well-being for equal
responsibility (on D2 for the distribution case) and equal treatment for uniform
circumstances.

Proof. (1) For all xN ∈ X , all i ∈ N,

max
j∈N

ti j(xN) ≥ tii(xN) ≡ 0,

and max j∈N ti j(xN) > 0 if and only if i is envious, so that one has

∑
i∈N

max
j∈N

ti j(xN) = 0

if and only if xN is envy-free. The same can be said about ∑ j∈N maxi∈N di j(xN).
Therefore, the set of envy-free allocations is selected by either allocation rule when-
ever it is nonempty.

(2) By the same argument as in Proposition 3, step 2 (respectively, Proposition 4,
step 2), this implies that the allocation rule derived from envious intensity
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(respectively, envied intensity) satisfies equal well-being for uniform responsibility
(respectively, equal treatment for uniform circumstances).

(3) Now let us turn to envious intensity and equal treatment for equal circum-
stances. Consider two agents i, j such that yi = y j, and suppose, by way of contra-
diction, that there is an allocation xN minimizing ∑k∈N maxl∈N tkl(xN), with xi > x j.
The fact that xi > x j implies that t ji(xN) > 0 and that, for all k 
= j,

max
l∈N

tkl(xN) ≥ tki(xN) > tk j(xN).

Take δ such that

0 < δ <
1
|N| min

k∈N

(
max
l∈N

tkl(xN)− tk j(xN)
)

and δ < (xi − x j)/ |N| . Construct a new allocation such that x′k = xk−δ for all k 
= j,
and x′j = x j +(|N|−1)δ . Notice that one still has x′i > x′j and therefore, for all k 
= j,

max
l∈N

tkl(x′N) > tk j(x′N).

Consider k, l 
= j. One has

u(xk + tkl(xN),yk,zk) ≥ u(xl ,yl ,zk).

One also has either

u(xk −δ + tkl(x′N),yk,zk) = u(xl −δ ,yl ,zk) < u(xl ,yl ,zk),

implying tkl(xN) > −δ + tkl(x′N), or tkl(x′N) = −(xk −δ ), implying tkl(xN) ≥−δ +
tkl(x′N) since one always has tkl(xN) ≥−xk. One therefore has

max
l∈N

tkl(x′N) ≤ max
l∈N

tkl(xN)+δ

for all k 
= j.
Now consider j and k 
= j envied by j in x′N (at least i is envied by j). One has

u(x j +(|N|−1)δ + t jk(x′N),y j,z j) = u(xk −δ ,yk,z j) < u(xk,yk,z j)

and
u(xk,yk,z j) ≤ u(x j + t jk(xN),y j,z j),

implying
(|N|−1)δ + t jk(x′N) < t jk(xN).

For any k 
= j that is not envied by j in x′N , one has

t jk(x′N) ≤ 0 < xi − x j −|N|δ ≤ max
l∈N

t jl(xN)−|N|δ .
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Therefore,
max
l∈N

t jl(x′N) < max
l∈N

t jl(xN)− (|N|−1)δ .

Summing up over all agents, one obtains

∑
k∈N

max
l∈N

tkl(x′N) < ∑
k∈N

max
l∈N

tkl(xN)+(|N|−1)δ − (|N|−1)δ ,

contradicting the assumption that xN minimizes ∑i∈N max j∈N ti j(xN).
(4) Finally, envied intensity and equal well-being for equal responsibility. Con-

sider two agents i, j such that zi = z j, and suppose, by way of contradiction, that
there is an allocation xN minimizing ∑k∈N maxl∈N dlk(xN), with ui > u j. The fact
that ui > u j implies that d ji(xN) > 0 and that, for all k ∈ N,

max
l∈N

dlk(xN) ≥ d jk(xN) > dik(xN).

Take δ > 0 such that

u(xi − (|N|−1)δ ,yi,zi) > u(x j +δ ,y j,z j).

Construct a new allocation such that x′i = xi − (|N|−1)δ and for all k 
= i, x′k =
xk +δ . One still has u′i > u′j and therefore, for all k ∈ N,

max
l∈N

dlk(x′N) > dik(x′N).

Consider k, l 
= i. One has (in the TU case as well as in the distribution case for
the domain D2)

u(xl ,yl ,zl) = u(xk −dlk(xN),yk,zl),

and
u(xl +δ ,yl ,zl) = u(xk +δ −dlk(x′N),yk,zl) > u(xl ,yl ,zl),

implying δ −dlk(x′N) > −dlk(xN), that is, dlk(x′N) < dlk(xN)+δ . One therefore has

max
l∈N

dlk(x′N) ≤ max
l∈N

dlk(xN)+δ

for all k 
= i.
Now consider i and k 
= i. One has

u(xk +δ ,yk,zk) = u(xi − (|N|−1)δ −dki(x′N),yi,zk) > u(xk,yk,zk)

and
u(xk,yk,zk) = u(xi −dki(xN),yi,zk),

implying
dki(x′N) < dki(xN)− (|N|−1)δ .
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Therefore,
max
l∈N

dli(x′N) < max
l∈N

dli(xN)− (|N|−1)δ .

Summing up over all agents, one obtains

∑
k∈N

max
l∈N

dlk(x′N) < ∑
k∈N

max
l∈N

dlk(xN)+(|N|−1)δ − (|N|−1)δ ,

contradicting the assumption that xN minimizes ∑k∈N maxl∈N dlk(xN). �
The envied intensity criterion is a little mysterious because it is not written in

terms of indices of personal situations (being envied is not a characteristic of one’s
situation but rather a token of the others’ situations), contrary to the envious intensity
that transparently measures how envious every agent is and constructs a synthetic
measure of this. The envied intensity criterion, however, can be related to a more
orthodox social ordering function. Let (qi)i∈N ∈ RN be a vector of prices for yN , in
a virtual market in which agents could buy bundles (x,y). The budget constraint for
i ∈ N on this market is such that a bundle (x,y j) is affordable if

x+q j = Ii,

where Ii denotes i’s personal wealth. Let ei denote i’s expenditure function:

ei(ui,qN) = min
{

x+q j | (x, j) ∈ R×N and u(x,y j,zi) ≥ ui
}

.

We now define the Egalitarian Walras social ordering function. Let Q be the
subset of qN such that ∑i∈N qi = 0.

Egalitarian Walras (REW): For all xN ,x′N ∈ X , xN REW(e)x′N if and only if

max
qN∈Q

min
i∈N

ei(u(xi,yi,zi),qN) ≥ max
qN∈Q

min
i∈N

ei(u(x′i,yi,zi),qN).

This social ordering function is an adaptation to this model of a function intro-
duced in Fleurbaey and Maniquet (2008) for the fair division context in order to
rationalize the egalitarian competitive equilibrium. Notice that this social ordering
function can be used to rank all allocations, not just the feasible ones.

Consider the virtual market in which circumstances y are tradable. This is just
the model of allocation of large indivisibles as studied, for example, in Svensson
(1983), with a number of indivisible goods equal to the number of agents. One can
easily extend the definition of the above social ordering function in order to consider
possibilities of permutations in yN : (xN ,yN) REW(e) (x′N ,y′N) if and only if

max
qN∈Q

min
i∈N

ei(u(xi,yi,zi),qN) ≥ max
qN∈Q

min
i∈N

ei(u(x′i,y
′
i,zi),qN).

In this market a competitive equilibrium is an allocation (xN ,yN) associated to a
price vector q such that for all i ∈ N, (xi,yi) maximizes u(x,y j,zi) over the set of
bundles (x,y j) satisfying the budget constraint x +q j = Ii. It is egalitarian if Ii = I j
for all i, j ∈ N.
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Let Π(yN) denote the set of permutations of yN and let (xN ,yN ,qN) ∈ X ×
Π(yN)×Q be any allocation and price vector. If for all i ∈ N,

xi +qi = ei(u(xi,yi,zi),qN),

then this is a competitive equilibrium. More generally, one always has

ei(u(xi,yi,zi),qN) ≤ xi +qi

for all i∈N, with at least one strict inequality if this is not a competitive equilibrium.
By construction one has

∑
i∈N

(xi +qi) = Ω ,

implying that one always has

max
qN∈Q

min
i∈N

ei(u(xi,yi,zi),qN) ≤ Ω
|N| ,

with equality if and only if (xN ,yN ,qN) is an egalitarian competitive equilibrium.
This shows that the Egalitarian Walras social ordering function rationalizes the
egalitarian competitive equilibrium (in the sense that it exactly selects the set of
egalitarian equilibria whenever it is non-empty), which, in the particular context of
indivisibles, coincides with the set of envy-free and efficient allocations (Svensson,
1983).

Let us now focus on the distribution case for the domain D2 and on the TU case.
In these two cases one can simply define di j(xN) by the equation

u(x j −di j(xN),y j,zi) = ui.

One then computes

ei(u(xi,yi,zi),qN) = min
j∈N

(x j −di j(xN)+q j) .

One therefore has

min
i∈N

ei(u(xi,yi,zi),qN) = min
i, j∈N

(x j −di j(xN)+q j)

= min
j∈N

(
x j +q j −max

i∈N
di j(xN)

)
,

implying that for all xN ∈ X , qN ∈ Q,

min
i∈N

ei(u(xi,yi,zi),qN) ≤ 1
|N| ∑

j∈N

(
x j +q j −max

i∈N
di j(xN)

)
.

Since ∑ j∈N (x j +q j) = Ω , this can be simplified into
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min
i∈N

ei(u(xi,yi,zi),qN) ≤ Ω
|N| −

1
|N| ∑

j∈N
max
i∈N

di j(xN).

Now let, for all j ∈ N,

q j = −
(

x j −max
i∈N

di j(xN)
)

+
Ω
|N| −

1
|N| ∑

k∈N
max
i∈N

dik(xN).

By construction qN ∈ Q. Moreover, for all j ∈ N,

x j +q j −max
i∈N

di j(xN) =
Ω
|N| −

1
|N| ∑

k∈N
max
i∈N

dik(xN),

implying that

min
i∈N

ei(u(xi,yi,zi),qN) = min
j∈N

(
x j +q j −max

i∈N
di j(xN)

)
=

Ω
|N| −

1
|N| ∑

k∈N
max
i∈N

dik(xN).

Since we have seen above that this is an upper bound for mini∈N ei(u(xi,yi,zi),qN)
when qN varies, one actually has

max
qN∈Q

min
i∈N

ei(u(xi,yi,zi),qN) =
Ω
|N| −

1
|N| ∑

j∈N
max
i∈N

di j(xN),

which establishes an exact equivalence (for a fixed value of Ω ) between the egali-
tarian Walras and the envied intensity criteria in the TU case and on the domain D2
for the distribution case. It is somewhat surprising that a maximin social ordering
function can be equivalent to a purely additive criterion. But one observes in the
above computations that the maximin criterion of the egalitarian Walras function
is what triggers the focus on the maximal intensity retained in the computation of
maxi∈N di j(xN) for the envied intensity criterion.

Proposition 6. The egalitarian Walras and the envied intensity criteria are equiv-
alent in the TU case. In the distribution case, they are equivalent on the domain
D2.

Regarding envious intensity, one can similarly establish an equivalence with the
social ordering function that evaluates an allocation xN by computing

max
q∈Q

min
i∈N

(xi +qi −max
j∈N

ti j(xN)).

This amounts to measuring the agents’ wealth xi + qi and deducting from it their
maximal degree of envy. One notices here that the duality between compensation
and natural reward appears to be related to the duality of consumer theory. Applied
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to the market for (transferable) indivisibles, this social ordering function also ratio-
nalizes the equal competitive equilibrium. Contrary to egalitarian Walras, it does not
satisfy the Pareto principle in that context and therefore appears less interesting.

6 Conclusion

Six main no-envy rankings have been examined in this chapter, in the context of the
compensation problem. Apart from the intrinsic interest of these solutions, which
still deserves further assessment, the main conceptual insight obtained here may be
that the well-know duality in the compensation problem between the compensation
principle and the natural reward principle is related to a duality between focussing
on the envied and focussing on the envious. But this connection is not simple since,
for instance, the compensation principle is satisfied by the envious count criterion
and the envied intensity criterion, that is, two criteria focussing on a different side
of the envy relation. The key observation underlying these two facts is that when
zi = z j and ui > u j, agent j envies all the agents envied by i with greater intensity
than i, implying that, for all k 
= i, i is never such that dik = maxl∈N dlk, and that,
since j also envies i in top of the others envied by i, one has n j > ni.

A gap that this chapter may highlight is that there is a lack of axiomatic frame-
work for the study of social ordering functions in the compensation problem. The
evaluation of rankings that has been performed here was concerned with satisfy-
ing axioms of allocation rules and therefore focused on the subsets selected by the
contemplated rankings. It is not very difficult to formulate axioms for rankings that
bear a close relation to the axioms presented here. For instance, one can think of the
following variants of the above axioms, applying to a social ordering function R:

Transfer for Equal Responsibility: ∀e ∈ D, ∀xN ,x′N ∈ X , ∀i, j ∈ N such that zi =
z j, if x′i − xi = x j − x′j and

u
(
x′i,yi,zi

)
> u(xi,yi,zi) ≥ u(x j,y j,z j) > u

(
x′j,y j,z j

)
while x′k = xk for all k 
= i, j, then xN P(e)x′N .
Transfer for Equal Circumstances: ∀e ∈ D, ∀xN ,x′N ∈ X , ∀i, j ∈ N such that yi =

y j, if x′i − xi = x j − x′j and
x′i > xi ≥ x j > x′j

while x′k = xk for all k 
= i, j, then xN P(e)x′N .

Of all the social ordering functions studied in this chapter, only envious inten-
sity and envied intensity come close to satisfying such axioms – and this illustrates
again the usefulness of a fine measure of the degree of envy – but they satisfy only
weak versions of the axioms, involving a weak preference xN R(e)x′N . Some lex-
imin version of these two rankings should be invented in order to cope with this
problem. This is rather easy for the envied intensity criterion, for which a maximin
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interpretation (egalitarian Walras) has already been provided. For envious intensity,
the solution is less obvious, and in particular the maximin ranking underlying SMEI
appears to be of no help in this matter. A more systematic study of these issues is
left for another occasion.
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