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Abstract. We consider a non-standard parametrization, where, for
problems consisting of a combinatorial structure and a number, we pa-
rameterize by the combinatorial structure, rather than by the number.
For example, in the Short-Nondeterministic-Halt problem, which is to
determine if a nondeterministic machine M accepts the empty string in
t steps, we parameterize by |M |, rather than t. We call such parametriza-
tion fixed structure parametrization. Fixed structure parametrization not
only provides a new set of parameterized problems, but also results in
problems that do not seem to fall within the classical parameterized
complexity classes. In this paper we take the first steps in understanding
these problems. We define fixed structure analogues of various classical
problems, including graph problems, and provide complexity, hardness
and equivalence results.

1 Introduction

Motivating Examples. Consider the classical Tiling problem. Given a set of tiles
T and integer t, decide whether it is possible to tile the t× t area with tiles from
T . The general problem is NP-complete. Parameterizing by t it is W[1]-complete.
But what if we parameterize by |T |, is the problem FPT? where does it fall in
the fixed parameter hierarchy? The naive algorithm takes O(|T |t2) steps which
does not even constitute an XP algorithm for the parameter |T |. Is the problem
in XP? (I.e. is there an O(tf(|T |)) algorithm?

Next, consider the following generalization of the Hamiltonian cycle problem.
Given a graph G (on n vertices) and integers m = (m1, . . . ,mn), determine if
there is a cycle that visits node vi exactly mi times. Clearly, this problem is
NP-complete. If parameterized by m it is para-NP complete. But what if we
parameterize by |G|? Does the problem then become FPT? Is it XP? Para-NP-
complete?

This paper aims at developing the theory and tools to answer questions such
as the above.

Fixed Structure Parametrization. In general, many problems can naturally be
viewed as composed of two parts: (i) a combinatorial structure (e.g. a set of tiles,
a graph), and (ii) a number(s) (size of area to be tiled, number of visits). The
standard parametrization most often takes the “number part” as the parame-
ter, and asks whether the problem is polynomial in the combinatorial structure.
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Here, we reverse the question, taking the combinatorial structure as the pa-
rameter, and asking whether the problem is polynomial in the “number part”.1
Accordingly, we call our parametrization fixed structure parametrization, pro-
ducing fixed structure problems. Interestingly, despite the extended literature on
parameterized complexity, fixed structure parameterizations have enjoyed little
consideration, and in no systematic way.

As it turns out, fixed structure problems not only provide a new set of param-
eterized problems, but also result in problems that do not seem to fall within
the classical parameterized complexity classes. Rather they seem to form com-
plexity classes of their own. In this paper we aim at taking the first steps in
understanding this fixed structure complexity.

Summary of Results. Some fixed structure problems, such as the generalized
Hamiltonian cycle problem mentioned above, we could show to be FPT. For
others, we identified three different equivalence classes of fixed structure prob-
lems, all of which seem to consist of problems that are not FPT. The first of these
classes is defined by the following fixed structure variant of short-NSTM-Halt:

Fixed-Structure-short-NTM-Exact-Halt (FS-Exact-Halt)
Instance: Non-deterministic Turing machine M ; integer t (in unary)

Parameter: |M |
Problem: Does M accept the empty string in exactly t steps?

The naive algorithm for this problems runs in time Θ(|M |t). Thus, the question
is not only if the problem is FPT, but also if it is altogether in XP. We prove:

Theorem 1. If FS-Exact-Halt ∈ XP then NEXP=EXP.

Accordingly, in this work we also consider XP reductions, not only FPT ones
(when the reductions are also FPT, we note so). We prove:

Theorem 2. The following are equivalent to FS-Exact-Halt:
• Fixed-structure tiling of the t× t torus (under FPT reductions).
• Fixed-structure clique, independent set and vertex-cover (under XP reduc-

tions).

The exact definitions of the fixed-structure versions of the graph problems are
provided in Section 3. We note that the classical reductions, used for proving
the NP-completeness of the above problems, often fail in our fixed structure
setting, as they “hardwire” the number part into combinatorial structure (for
more details see the proof of Theorem 2 in Section 4).

We define two additional fixed-structure equivalence classes, using similar ma-
chine characterizations:

1 Clearly, there is no formal distinction between the “number part” of a problem
and the “combinatorial structure”; both are strings over some alphabet. In practice,
however, the two elements are frequently clearly distinct.
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Fixed-Structure-short-NTM-Halt (FS-Halt)
Instance: Non-deterministic Turing machine M ; integer t (in unary)

Parameter: |M |
Problem: Does M accept the empty string in at most t steps?

Fixed-Structure-short-NTM-Not-Halt (FS-Not-Halt)
Instance: Non-deterministic Turing machine M ; integer t (in unary)

Parameter: |M |
Problem: Does M have a computation on the empty string not halting

for at least t steps?

Note that in all three problems we did not specify the number of tapes. The
reason is that we prove that any of them is equivalent for any number of tapes,
even under FPT reductions (unlike the case for the classical parametrization [1]).

Under classical complexity, as well under the standard parametrization, the
three problems FS-Halt, FS-Not-Halt and FS-Exact-Halt are equivalent. Interest-
ingly, under the fixed-structure parametrization this is not the case, even under
XP reductions (hence clearly also under FPT reductions). We prove:

Theorem 3
1. FS-Halt ≤fpt FS-Exact-Halt and FS-Not-Halt ≤fpt FS-Exact-Halt, but
2. If FS-Halt ≡XP FS-Exact-Halt or FS-Not-Halt ≡XP FS-Exact-Halt then

NEXP=EXP.

Some problems we show are equivalent to FS-Halt or to FS-Not-Halt:

Theorem 4
• Fixed-Structure-Short-Post-Correspondence and Fixed-Structure-Short-

Grammar-Derivation are equivalent to FS-Halt (under FPT reductions).
• Fixed-Structure-Restricted-Tiling (i.e. tiling with a specified origin tile) of

the t× t plane is equivalent to FS-Not-Halt (under FPT reductions).

Thus, in the fixed structure setting, tiling of the plane and tiling of the torus
are not equivalent.

Related Work. To the best of our knowledge, there has been no systematic
analysis of fixed-structure parametrization. Of the 376 parameterized problems
described in the Compendium of Parameterized Problems [2], we identified few
problems that we would classify as fixed-structure, in the sense we consider here.
Notably, the following two: the parameterizations of Bounded-DFA-Intersection
by k, |Σ|, and q, which is reported open in [3], and the parametrization of the
Rush-Hour-Puzzle by C (the set of cars), which is shown to be FPT in [4], by
exhaustive search.

Related to fixed-structure problems are those problems where instances are
composed of two combinatorial structures, and one of the structures is taken as
the parameter. Many of the database query problems are of this type [5,6]. In
this case there are two combinatorial structures – the query Q and the database
d, and the parameter is either |Q| or the number of variables within. The full
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characterization of the complexity of several of these problems is still open [5].
It is interesting to note that Vardi’s initial work [7] considers both parameter-
izations – both by |Q| and by |d| (though, naturally, without explicit use of
parameterized complexity terminology).

Other problems with two combinatorial structures are ordering problems on
graphs, lattices and the like, e.g. given graphs H and G decide whether H is
a minor of G (see [8,9]). Some of these problems have been resolved, but the
complexity of others is still open. While these problems are not strictly fixed-
structure in the sense we consider here, it would be interesting to see if the
theory developed here may be relevant to these problems as well.

Organization of the Paper. Unfortunately, the space limitations of this extended
abstract allow us to provide only a small fraction of the results and proofs. In
particular, all the positive results showing inclusion in FPT are omitted. Here, we
focus on hardness results alone. The full set of results and proofs will appear in
the full version. The rest of the paper is organized as follows. In the next section
we prove Theorems 1 and 3. Section 3 introduces the exact definition of the
fixed-structure versions of the graph problems. Section 4 provides the highlights
of the proof of Theorem 2. We conclude with open problems in Section 5.

2 Complexity and Hardness

We now prove Theorems 1 and 3, as well as an additional theorem.

Theorem 1 (repeated) If FS-Exact-Halt ∈ XP then EXP = NEXP.

Proof. Let L ∈ NEXP. Then there exists a nondeterministic Turing machine
ML, which for some constant c decides on every input x whether x ∈ L in time
2|x|

c

. We construct a new Turing machine M ′
L as follows. On the empty tape,

M ′
L first nondeterministically chooses some x ∈ Σ∗, and then runs ML on this

x. If ML accepts x, then M ′
L idles until exactly 2|x|

c

+x steps have elapsed since
the beginning of its run, and then accepts.2 Otherwise, M ′

L rejects.
Assume that FS-Exact-Halt ∈ XP . Then there exists an algorithm A and an

arbitrary function f(·), such that A(M, t) decides in |(M, t)|f(|M|)+f(|M |) steps
whether M has a computation that accepts the empty string in exactly t steps.
Given an input x, for which we want to decide whether x ∈ L, we simply run A
on the input (M ′

L, t), with t = 2|x|
c

+ x. Note that the function x ↪→ 2|x|
c

+ x is
a bijection, and therefore M ′

L accepts in exactly t steps iff x ∈ L. In addition,
A runs in time |(M ′

L, t)|f(|M ′
L|) + f(|M ′

L|) = O(2x
c′

), for some c′ depending only
on M ′

L. Thus, L ∈ EXP and EXP = NEXP. ��
Next, we show an interesting, albeit easy, result, which will also serve us in our
next proof:

Theorem 5. FS-Halt and FS-Not-Halt are non-uniform FPT.

2 Note that it must be shown that this counting can be performed in the fixed structure
setting. The proof is omitted here and provided in the full version.
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Proof. Consider the FS-Halt problem (the proof for FS-Not-Halt is analogous).
To prove that the problem is non-uniform FPT we need to construct, for every
size k, an algorithm Ak, such that for every M , with |M | = k, and every t,
decides whether (M, t) ∈ FS-Halt in time O(tα) for some constant α. We do so
by simply creating a table exhaustively listing, for each Turing machine M with
|M | = k, the minimum number of steps in which M can accept on the empty
string. Given an input (M, t) the algorithm consults this table, comparing t to
this minimum. Clearly, the algorithm is correct and runs in polynomial time.
Note, however, that constructing this table is, in general, undecidable. ��

Theorem 3 (repeated)

1. FS-Halt ≤fpt FS-Exact-Halt and FS-Not-Halt ≤fpt FS-Exact-Halt, but
2. If FS-Halt ≡XP FS-Exact-Halt or FS-Not-Halt ≡XP FS-Exact-Halt then

NEXP=EXP.

Proof. Due to lack of space, the proof of (1) is omitted. The proof of (2) combines
the techniques of Theorems 1 and 5. Suppose that R is an XP reduction from
FS-Exact-Halt to FS-Halt. Let L, ML and M ′

L be as defined in the proof of
Theorem 1. Then, for any x, x ∈ L iff M ′

L accepts the empty string in exactly
g(x) = 2|x|

c

+ x steps. Denote R(M ′
L, t) = (N, s). Then, since R is an XP

reduction, |N | must be bounded by a function of M ′
L alone. Thus, there is only

a finite number such N ’s (that are the result of applying R to M ′
L for some

t). Thus, after the reduction we need only consider a finite number of slices
of FS-Halt. By Theorem 5 there is a polynomial algorithm for each of these
slices. Hence, combining R with the union of these algorithms we obtain an
EXP algorithm for L. Note however, that this proof is non-constructive, as are
the algorithms provided by Theorem 5. ��

3 Defining Fixed-Structure Graph Problems

We are interested in defining fixed-structure versions of common graph problems.
This seems easy: many graph problems are naturally composed of a graph and
a number. Thus, to obtain a fixed structure version simply parameterize by the
graph structure. However, this approach results in non-interesting problems. The
reason is that the size of the graph necessarily bounds “the number” (e.g. the num-
ber of colors is at most the number of nodes), and the resulting problems are triv-
ially FPT. Thus, in order to obtain meaningful fixed structure graph problems, we
must be able to define families of graphs (of increasing sizes), all of which share
a common underlying structure. In a way, the grid is an example of such a graph
family; it comes in many sizes, but all share a common core structure. Cliques,
hypercubes and cycles are other examples of such graph families.

We now give a general definition of such graph families, which we call para-
metric graphs. The basic idea is to define the graphs using expressions that
accept parameters. The expression defines a graph by applying standard graph
operations to a set of base graphs and parameters. The base graphs can be any
explicitly represented graphs. The operations combine these graphs to obtain
larger and more complex ones. The operations we consider are:
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• Union: for graphs G1 = (V1, E1) and G2 = (V2, E2), the union graph G =
G1 ∪G2 is the graph G = (V1 ∪ V2, E1 ∪E2).

• Multiplication (by a scalar): for a graph G and integer i, the i-multiplicity of
G, denoted by i ·G, is the union of i separate copies of G.

• Sum: defined on graphs over the same set of vertices, G1 = (V,E1) and
G2 = (V,E2). The sum graph G = G1 +G2 has the union of the edges from
both graphs, G = (V,E1 ∪ E2).

• Direct product (also known as tensor product): for graphs G1 = (V1, E1) and
G2 = (V2, E2), their direct product is the graph G = G1×G2 = (V1×V2, E)
such that ((v1, v2), (w1, w2)) ∈ E iff (v1, w1) ∈ E1 and (v2, w2) ∈ E2.

Using these operations it is possible to construct large and complex graphs from
smaller ones. For example, the cycle with 14 vertices can be constructed as:

C14 =
([

�

�
]
∪ 3 ·

[
�

�

�

�
])

+
(
3 ·

[
�

�

�

�
]
∪

[
�

�
])

=
[

�

�

�

�

�

�

�

�

�

�

�

�

�

�
]

Since the sum operation requires that both graphs share the same set of ver-
tices, w.l.o.g. we assume that the vertex set of any graph we consider is simply
the integers, {1, . . . , |V |}. Thus, following a union, multiplication or product
operation, the vertices must be renamed. We do so systematically “lexicograph-
ically”, as follows. For the the product and multiplication operations, the new
order is simply the lexicographic order on the new vertices. For G = G1 ∪ G2,
vertexes of each graphs retain their original order, and all those of G1 are come
before those of G2.

The multiplication operation allows us to define expressions that accept pa-
rameters. This way a single expression can define graphs of varying sizes, all
sharing a common, underlying combinatorial structure. Thus, we define a para-
metric graph as an expression of the above format that accepts parameters. Using
this notion we can define fixed-structure versions of classical graph problems. For
example, the fixed-structure version of Independent-Set is the following:

Fixed Structure Independent Set (∪, ·,+,×)
Instance: a parametric graph expression G (using the operations

∪, ·,+, and ×); a vector t of integer parameter values to
G (in unary); integer ψ.

Parameter: |G|
Problem: Does G(t) have an independent set of size ψ?

Note the complexity of the problem may depend on the set of operations used
in the graph expressions. Hence, the definition of the problem explicitly lists
these operations ((∪, ·,+,×) in our case). Also, note that the problem is not
necessarily in NP, as the size of the resultant graph is not polynomially bounded
in the input size.

Fixed-structure versions for other graph problems are defined similarly.

4 Problems Equivalent to FS-Exact-Halt

We now provide an outline for the proof of Theorem 2. Unfortunately, we cannot
provide all the details, but do hope that our exposition provides a flavor of the
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problems one encounters in fixed structure reductions, and some of the methods
we use to overcome these problems.

Lemma 1. FS-Exact-Halt ≤fpt Fixed-structure-Torus-Tiling.

Proof. Let M be a Turing machine and t an integer. We construct a tile set
T = T (M) and an integer s = s(t), such that T has a valid tiling of the s×s torus
iff M accepts the empty string in exactly t steps. The core of the proof follows
the reduction used for proving the undecidability of tiling of the infinite first-
quadrant. The problem arises, however, when trying to convert this construction
to the bounded case, as discussed below.

The basic idea of the reduction from Turing machine computation to tiling
is to make each valid tiling represent a run of the Turing machine: every row in
the tiling corresponds to a configuration, and one row can be placed on top of
another only if the configuration corresponding to the bottom row yields the one
corresponding to the top row. Provided that the first row represents the initial
configuration of M , we obtain that the infinite first-quadrant can be tiled iff M
has a non-halting computation (see, for example, [10] for more details).

In order to use this reduction for proving hardness of torus-tiling, it is not
difficult to augment the construction, so that: (i) the row corresponding to the
initial configuration can only be placed directly above a row corresponding to
an accepting configuration, and (ii) the leftmost end of each row can be placed
directly to the right of the rightmost end. Thus, if M accepts in t steps then the
t× t torus can be tiled with T (M). Unfortunately, the converse is not necessarily
true. The problem is that the t× t torus can be split into smaller regions, each
corresponding to a shorter accepting computations. For example, the 10 × 10
torus can be tiled with four copies of a tiling of 5× 5 tori. Another subtle point
is guaranteeing that the first row indeed corresponds to the machine’s initial
configuration. For the unbounded case, this is provided by a careful and complex
construction, provided in [11]. Unfortunately, this construction does not seem to
carry over to the bounded case.

If we were to prove standard NP-completeness, the following simple and stan-
dard construction solves both of the above problems. Let T = T (M) be the
tile set obtained by the unbounded reduction. We create a new tile set T ′, such
that for each tile z ∈ T , we have (essentially) t2 copies, z(1,1), . . . , z(t,t), one for
each torus location. It is now easy to configure the tiles such that tile z(i,j) can
appear only at location (i, j) (for all z, i, j). In this way we have eliminated the
possibility to cover the torus by copies of smaller tori. In addition, we can force
the first row to whatever we wish, by eliminating all but the appropriate tiles
for this row. This construction fails, however, in the fixed structure setting. The
reason is that the reduction “hardwires” the number t into T ′. By doing so,
however, we have moved t into the “parameter” part of the instance, which is
forbidden in parameterized reductions.

Thus, we provide a solution that works independently of t, as follows. We
construct a set of “base tiles” upon which the original “machine simulation”
tiles are then superimposed. The “base tiles” are constructed such that they
only admit a specific tiling, which forces the tiling to “behave” as desired.
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Fig. 1. The base tiles

The Base Tiling. We start by creating the tiles (A)-(G) depicted in Figure 1.
One can observe that any torus can be tiled using this set of tiles, and that any
tiling of an odd sized torus can be decomposed into rectangular regions such that
(see Figure 2):

1. Tile (G) is placed at the bottom left corner of the region.
2. The rest of the bottom row is composed of tiles (A) and (B) only.
3. The rest of the leftmost column is composed of tiles (C) and (D) only.

We call such a region a core-region. Note that tile (G) can only be placed above
tiles (D) or (G), and to the right of tiles (B) or (G). Thus, we obtain that if a
core-region R is directly above another core-region S, then R and S have the
same width. Likewise, if R is directly to the right of S, then R and S have the
same height. Therefore, all core-regions must have the same size.

In order to force the core-regions to be square, we use the numbered tiles ((1)-
(3)) of Figure 1, which will be superimposed on the tiles (A)-(G). It is immediate
that tile (1) can only appear above tile (2), and that tile (2) can only appear
to the right to tile (1). Thus, tiles (1) and (2) necessarily form a diagonal. We
superimpose tile (1) on tiles (E) and (G); tile (2) on tiles (A), (D) and (F);
and tile (3) on tiles (A) though (F). This forces the core-regions to be square,
because the diagonal starting with the (G) on the bottom left corner must hit a
(G) tile at its other end. In all, we obtain that any tiling of an odd-sized torus
using this set of tiles, which we call the base tiles, can be decomposed into square
core-regions, all of identical sizes.

Machine Simulation Tiling. The original reduction’s “machine simulation” tiles
are superimposed onto the “base tiles” as follows:
• Onto tile (G) we superimpose the tile representing the beginning of the first

configuration (representing the machine’s head, its start-state and a blank
tape).

• Onto tiles (A) and (B) we superimpose the tiles representing the rest of the
first configuration (a blank tape).
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Fig. 2. The base tiling of a 5 × 5 region

• The rest of the machine simulation tiles are superimposed on all of the
remaining base tiles.

• Tiles (A), (B) and (G) are configured such that only they can appear above
a tile representing an accepting state.

Using this set of superimposed tiles, every tiling of an i × i core-region must
correspond to a computation of M accepting in exactly i steps.
Guaranteeing a Single Core-Region. We now want to guarantee that the tiling of
the torus consists of a single core-region, providing that it corresponds to a single
computation of the full length (rather than copies of shorter computations). Note
that the tiling of a prime-sized torus necessarily consists of a single core-region -
covering the entire torus. This is because core-regions must be of the same size,
and hence this size must divide the size of the torus. For technical reasons we
cannot use prime numbers, but use their third-power instead. Given the Turing
machine M , we construct a new machine M ′ such that for every t, M ′ accepts in
exactly Pt3 steps if and only if M accepts in exactly t steps (where Pt is the t-th
prime number). We do so using nondeterminism, by which M ′ first “guesses”
the number of steps t, and simulates M to see if it accepts in exactly t steps. In
parallel, M ′ computes P 3

t on a second tape, and counts the number of steps on
a third tape. If the simulation of M on the first tape accepts in exactly t steps,
then M ′ waits until exactly Pt

3 steps have elapsed and then accepts. We now
build the tile set T (M ′) corresponding to M ′. If M has a computation accepting
in t steps, then T (M ′) has a tiling of the Pt3 × Pt

3 torus. Conversably, suppose
that T (M ′) has a tiling of the Pt3×Pt3 torus. Then, this tiling is either composed
of a single core-region, or core-regions of size Pt or Pt2. However, core-regions of
sizes Pt or Pt2 would correspond to computations of M ′ accepting in Pt or Pt2

steps, respectively. But M ′ only accepts in a number of steps which is a cube of
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a prime, which neither Pt nor Pt2 are. Hence, the tiling of the Pt3 × Pt
3 torus

necessarily consists of a single core-region, corresponding to a t-step accepting
computation of M . ��
Lemma 2. Fixed-structure-Torus-Tiling ≤fpt Fixed-structure-Independent-Set.

Proof. Given a tile set T and a number s, we construct a parametric graph
expression G, a vector t of parameter values, and integer ψ, such that G(t) has
an independent set of size ψ iff the s× s torus can be tiled using the tiles in T .
Here we provide the proof for directed graphs. The proof for undirected graphs
is considerably more complex and is provided in the full version.

The basic idea is to create a graph G = G(t) that “represents” the torus.
For each of the s2 locations of the torus we create a “super-node” that is a
|T |-clique. Each vertex in the super-node represents a different tile of T . The s2
super-nodes are organized in s rows and s columns (as in the torus). Note that
in each super-node at most one vertex can be chosen for the independent set.
This chosen vertex will represent the tile chosen for this location in the torus
tiling. Edges are placed between vertices in adjacent super-nodes (vertical and
horizontal), to correspond to the adjacency constraints of the tiling. Specifically,
let HT be the bipartite graph with |T | vertices at each side, such that there is
an edge i→ j iff tile ti cannot be placed to the left of tile tj . Similarly, let VT be
the bipartite graph with |T | vertices in each part (this time viewed as one part
above the other), such that there is an edge i→ j iff tile tj cannot be placed on
top of tile ti. Each super-node is connected with its right-neighbor with HT and
with its neighbor on top by VT . With this construction, G has an independent
set of size s2 iff the s×s torus can be tiled by T . We now show how to construct
the graph expression for G.

The Directed s-Cycle. The basic building block of our torus-graph is the directed
s-cycle. For s = 3 mod 4 the directed s-cycle (denoted C(s)) is created using the
following expression:

C(s) =
([

�

�

�
]
∪

((⌊s
4

⌋
− 1

)
·
[

�

�

�

��
�

])
∪

[
�

�

�

�

�

�
�

�����	
])

+
((⌊s

4

⌋
·
[

�

�

�

��
�

])
∪

(
�

�

�

))

For s = 0, 1, and 2 mod 4 the construction is similar (placing less nodes at the
right-end of the expression).

Using the s-cycle, we construct two graphs, the sum of which is the s × s
torus. The graphs, denoted TrH and TrV , consist of the horizontal and vertical
edges of the torus, respectively. Let e1 be the graph with a single vertex with a
self loop. Then, TrH and TrV are obtained by multiplying C(s) by s self-loops
from the left and from the right, respectively:

TrH(s) = (s · e1) × C(s) , TrV (s) = C(s) × (s · e1)

Next, we “blow-up” the graphs TrH and TrV , substituting each vertex with a
“super-node” consisting of |T | vertices, and connecting the “super-nodes” by HT

and VT , respectively:

GH(s) = TrH(s) ×HT , GV (s) = TrV (s) × VT
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(Note that this is where the directness of the graph comes to play, allowing to
keep the directions of HT and VT .) Together, these graphs have all the vertices
and most of the edges, except for the clique edges within each super-node. These
are obtained by adding s2 copies of the fixed clique K|T |. The complete graph
expression is:

G(s) = GH(s) +GV (s) + (s2 ·K|T |)

This concludes the construction of the expression G. The parameter for this
graph is s. By construction, G has an independent set of size ψ = s2 iff the s× s
torus can be tiled with T . ��
Lemma 3. Fixed-Structure-Independent-Set ≤XP FS-Exact-Halt.

Proof. Given a graph expression G, parameter vector t, and integer ψ, we con-
struct a Turing machine MG and integer r, such that MG accepts the empty
string in exactly r steps iff G(t) has an independent set of size ψ. Assume that t
has m entries, and denote t =

∑m
i=1 ti. First note that it is possible to construct

G(t) in at most (|G|+ t)3|G| steps. This is true since there are at most |G| oper-
ations, and the result graph of the i-th operation has at most (|G|+ t)i vertices
and (|G|+ t)2i edges. Once the graph G(t) is constructed, one can guess a subset
of the vertices, and check if they are an independent set of size ψ. The only
problem is that the machine MG operates on the empty input. Thus, we cannot
explicitly provide it with the parameters t and ψ. Rather, we let the machine
“guess” these values, and encode them into the number of steps. Specifically,

let code(ψ, t) =
(
P|G| · P 2

ψ · ∏m
i=1 P

i+2
ti

)3|G|
, where Pj is the j-th prime number.

Note that code(·, ·) is a bijection. Accordingly, given G we construct the Turing
machine MG to operate as follows:

1. Nondeterministically “guess” a vector t′ = (t′1, . . . , t
′
m) and integer ψ′.

2. Create the graph G = G(t′).
3. Nondeterministically “guess” a subset of the vertices of G and check if they

are an independent set of size ψ′. If not, reject.
4. In parallel to the above, compute code(ψ′, t′). Run for a total of code(ψ′, t′)

steps and accept.
It can be verified that code(ψ′, t′) steps suffice for steps (1)-(3). We obtain that
MG accepts in exactly r = code(ψ, t) steps iff G(t) has an independent set of size
ψ. Note that code(ψ, t) ≤ (|G| + ψ +

∑m
i=1 ti)

4|G|, providing that the reduction
is an XP one. ��
The equivalence of Fixed-Structure-Clique and Fixed-Structure-Vertex-Cover
follows from the standard reductions between Independent-Set, Clique and
vertex-Cover.

5 Open Problems

This work takes the first steps in understanding fixed-structure problems. Many
important and interesting problems remain open. Here we list just a few:



Fixed Structure Complexity 41

• The results presented in this paper are hardness results. We were also able to
show that some other fixed-structure problems are FPT. These results are
omitted due to lack of space. However, we believe we are still lacking in tools
for the design of FPT algorithms for fixed structure problems.

• We identified three core fixed-parameter problems, which we believe define
three separate complexity classes. Are these “the right” complexity classes?
Are there other important/interesting classes? Is there a hierarchy? Are
FS-Halt and FS-Not-Halt indeed non-equivalent? Are they in FPT? What
other problems are equivalent to these problems?

• We showed an XP equivalence between Fixed-Structure-Independent-Set (FS-
IS) and FS-Exact-Halt. With our definition of FS-IS this is all but unavoid-
able, since the size of the graph may be exponential in its representation, and
hence FS-IS need not be in NP. If we add the size of the graph (in unary) to
the input, FS-IS becomes NP. Is this problem equivalent to FS-Exact-Halt
under FPT reductions?

• In this paper, we only covered few fixed structure problems. A whole line of
research is to analyze the complexity of the fixed-structure versions of the
numerous problems for which the classical parametrization has been studied.

• The notion of graph products provides the basis for many interesting fixed-
structure graph problems. For example, what is the fixed structure complex-
ity of Independent-Set onG×Kt graphs? Similarly, for other graph problems,
and other graph structures (e.g. tori, trees, butterflies, etc., instead of Kt).
In addition, one may consider other types of graph products, i.e. cartesian,
lexicographic and strong products (see [12]).

• We proved that fixed-structure tiling of the plane is equivalent to FS-Not-Halt
for the version of the problem in which the origin tile is specified (the proof
is not provided here). What is the complexity of the general problem when
the origin tile is not specified?

• We already noted that problems with two combinatorial-structures, such as
the database query problems and graph ordering problems, though different,
are somewhat related to fixed-structure problems. Some of these problems
are still open. It would be interesting to see if the directions developed here
can shed some light on these problems.

Acknowledgements. We are grateful to Mike Fellows for helpful comments on
an early version of this work.
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