

Lecture Notes in Computer Science 5018
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Martin Grohe Rolf Niedermeier (Eds.)

Parameterized and
Exact Computation

Third International Workshop, IWPEC 2008
Victoria, Canada, May 14-16, 2008
Proceedings

13

Volume Editors

Martin Grohe
Humbold Universität zu Berlin
Institut für Information
Unter den Linden 6, 10099 Berlin, Germany
E-mail: grohe@informatik.hu-berlin.de

Rolf Niedermeier
Friedrich-Schiller-Universität Jena
Institut für Informatik
Ernst-Abbe-Platz 2, 07743 Jena, Germany
E-mail: niedermr@minet.uni-jena.de

Library of Congress Control Number: 2008926222

CR Subject Classification (1998): F.2, F.1.3, F.1, E.1, I.3.5, G.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-79722-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79722-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12265862 06/3180 5 4 3 2 1 0

Preface

The Third International Workshop on Parameterized and Exact Computation
was held in Victoria, B.C. during May 14–16, 2008. The workshop was co-located
with the 40th ACM Symposium on Theory of Computing, which took place in
Victoria during May 17–20. Previous meetings of the IWPEC series were held in
Bergen, Norway 2004 and Zürich, Switzerland 2006, both as part of the ALGO
joint conference.

The International Workshop on Parameterized and Exact Computation covers
research in all aspects of parameterized and exact computation and complexity,
including but not limited to: new techniques for the design and analysis of pa-
rameterized and exact algorithms, parameterized complexity theory, relationship
between parameterized complexity and traditional complexity classifications, ap-
plications of parameterized computation, implementation and experiments, high-
performance computing and fixed-parameter tractability.

We received 32 submissions. Each submission was reviewed by at least 3, and
on the average 3.9, Program Committee (PC) members. We held an electronic
PC meeting using the EasyChair system. The committee decided to accept 17
papers. We would thoroughly like to thank the members of the PC:

Yijia Chen, Shanghai, China
Benny Chor, Tel Aviv, Israel
Fedor V. Fomin, Bergen, Norway
Jiong Guo, Jena, Germany
Gregory Gutin, London, UK
MohammadTaghi Hajiaghayi, AT&T, USA
Peter Jonsson, Linköping, Sweden
Iyad Kanj, Chicago, USA
Dieter Kratsch, Metz, France
Dániel Marx, Budapest, Hungary
Prabhakar Ragde, Waterloo, Canada
Kenneth W. Regan, Buffalo, USA
Ulrike Stege, Victoria, Canada
Stephan Szeider, Durham, UK
Todd Wareham, Newfoundland, Canada
Osamu Watanabe, Tokyo, Japan

and all external referees for the valuable work they put in the reviewing process.
We would like to thank the three invited speakers Jianer Chen (Texas A&M

University), Erik Demaine (MIT), and Stephan Kreutzer (Oxford University)
for their contribution to the program of the workshop and their contributions
for this proceedings volume.

Special thanks go to Jiong Guo and Johannes Uhlmann for preparing the
camera-ready version of the volume. We thank the members of the IWPEC

VI Preface

Steering Committee (Jianer Chen, Frank Dehne, Rodney G. Downey, Michael
R. Fellows, Michael A. Langston, Venkatesh Raman) for their continuous sup-
port. Last but not least we would like to thank Ulrike Stege for the local orga-
nization of the IWPEC workshop in Victoria.

March 2008 Martin Grohe
Rolf Niedermeier

Organization

External Reviewers

Isolde Adler
Mohammad H. Bateni
Hans L. Bodlaender
Ran Canetti
Peter Damaschke
Stefan Dantchev
Henning Fernau
Arik Friedman
Serge Gaspers
Jens Gramm
Fabrizio Grandoni
Sushmita Gupta
Ken-ichi Kawarabayashi
Christian Komusiewicz
Jan Kratochvil
Mathieu Liedloff
Barnaby Martin
Luke Mathieson
Egbert Mujuni
Michael Pelsmajer
Ljubomir Perkovic
Igor Razgon
Marko Samer
Saket Saurbah
Amin Sayedi
Marcus Schaefer
Allan Scott
Sagi Snir
Srinath Sridhar
Iain Stewart
Hisao Tamaki
Dimitrios Thilikos
Ioan Todinca
Yngve Villanger
Magnus Wahlström
Ge Xia
Takayuki Yato
Uri Zwick

Table of Contents

Randomized Disposal of Unknowns and Implicitly Enforced Bounds on
Parameters (Invited Talk) . 1

Jianer Chen

Algorithmic Graph Minors and Bidimensionality (Abstract of Invited
Talk) . 9

Erik D. Demaine

Algorithmic Meta-theorems (Invited Talk) . 10
Stephan Kreutzer

Parameterized Complexity of the Smallest Degree-Constrained
Subgraph Problem . 13

Omid Amini, Ignasi Sau, and Saket Saurabh

Fixed Structure Complexity . 30
Yonatan Aumann and Yair Dombb

An Improved Fixed-Parameter Algorithm for Minimum-Flip Consensus
Trees . 43

Sebastian Böcker, Quang Bao Anh Bui, and Anke Truss

An O∗(1.0977n) Exact Algorithm for max independent set in Sparse
Graphs . 55

Nicolas Bourgeois, Bruno Escoffier, and Vangelis Th. Paschos

New Fixed-Parameter Algorithms for the Minimum Quartet
Inconsistency Problem . 66

Maw-Shang Chang, Chuang-Chieh Lin, and Peter Rossmanith

Capacitated Domination and Covering: A Parameterized Perspective . . . 78
Michael Dom, Daniel Lokshtanov, Saket Saurabh, and
Yngve Villanger

Some Fixed-Parameter Tractable Classes of Hypergraph Duality and
Related Problems . 91

Khaled Elbassioni, Matthias Hagen, and Imran Rauf

A Purely Democratic Characterization of W[1] . 103
Michael Fellows, Danny Hermelin, Moritz Müller, and
Frances Rosamond

Parameterized Complexity and Approximability of the SLCS
Problem . 115

Sylvain Guillemot

X Table of Contents

FPT Algorithms for Path-Transversals and Cycle-Transversals
Problems in Graphs . 129

Sylvain Guillemot

Wheel-Free Deletion Is W [2]-Hard . 141
Daniel Lokshtanov

Parameterized Derandomization . 148
Moritz Müller

A Linear Kernel for Planar Feedback Vertex Set . 160
Hans L. Bodlaender and Eelko Penninkx

Parameterized Chess . 172
Allan Scott and Ulrike Stege

The Time Complexity of Constraint Satisfaction . 190
Patrick Traxler

A Tighter Bound for Counting Max-Weight Solutions to 2SAT
Instances . 202

Magnus Wahlström

Exact Algorithms for Edge Domination . 214
Johan M.M. van Rooij and Hans L. Bodlaender

Author Index . 227

Randomized Disposal of Unknowns and

Implicitly Enforced Bounds on Parameters�

Jianer Chen

Department of Computer Science
Texas A&M University

College Station, TX 77843-3112, USA
chen@cs.tamu.edu

Abstract. We study two algorithmic techniques that have turned out
to be useful in the recent development of parameterized algorithms: ran-
domized disposal of a small unknown subset of a given universal set, and
implicitly enforced bounds on parameters in a branch-and-search pro-
cess. These techniques are simple, effective, and have led to improved
algorithms for a number of well-known parameterized problems.

1 Introduction

Parameterized algorithms have witnessed a tremendous growth in the last decade
and have become increasingly important in dealing with NP-hard problems that
arise from the world of practical computation.

Different from general (i.e., un-parameterized) algorithms, whose complexity
is measured by a single parameter, the input length n, the complexity of param-
eterized algorithms is measured by multi-dimensional parameters, in particular
assuming a parameter k with small values, besides the input length n. This
assumption characterizes an important feature of many NP-hard problems of
practical significance. By taking the advantage of this parameter k of small val-
ues, many parameterized algorithms become practically efficient when applied to
NP-hard problems arisen from the real world of computing. On the other hand,
the multi-dimensional parametrization has proposed new challenges to algorith-
mic research. Traditional algorithmic techniques seem not sufficiently effective
and precise, and new design and analysis techniques have been in high demand
in the development of parameterized algorithms. In the past years, many new
algorithmic techniques for parameterized algorithms have been proposed and
studied, including kernelization, branch-and-search, graph branch/tree decom-
positions, graph minor theory, graph crown rules, greedy localization, iterative
compression, color coding, and many others [1,3,8,9,10,13,14].

In the current paper, we will investigate two more algorithmic techniques that
have turned out to be useful in the recent development of parameterized algo-
rithms: the randomized disposal of a small unknown subset of a given universal
� This work was supported in part by the National Science Foundation under the

Grant CCF-0430683.

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 1–8, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 J. Chen

set and the implicitly enforced bounds on parameters in a branch-and-search
process.

2 Disposal of a Small Unknown Subset

The following have been well-known and extensively studied techniques in gen-
eral algorithmic research:

– Sorting will significantly speedup later searching and ordering processes;
– Divide-and-Conquer is very useful in developing efficient recursive

algorithms;
– Dynamic Programming helps effectively avoiding unnecessary re-

computation.

These techniques, which dispose a given set, have proved to be very useful in
developing efficient algorithms. In the research of parameterized algorithms, we
are often seeking a small subset S of size k in a universal set U of size n, where
k � n. It will be nice that the above algorithmic techniques can be applied to the
unknown subset S and speedup the running time of parameterized algorithms.
However, the subset S is unknown and, how do we dispose an unknown subset?

By simple probability analysis, we note the following facts:

D1. A random permutation of the universal set U will give the subset S any
pre-specified order with probability 1/k!;

D2. A random partition of the university set U will split the subset S into any
pre-specified partition with probability 1/2k; and

D3. A random coloring of the university set U by k colors will not assign the
same color to any two elements in the subset S, with probability larger than
1/ek.

Therefore, although we do not know where is the subset S, by randomly
disposing the universal set U , which is known and under our control, we can
achieve a desired disposal of the unknown subset S, with a reasonable probability.

Observations D1 and D3 have allowed Alon, Yuster, and Zwick [1] to de-
velop the first group of randomized parameterized algorithms for the k-path
problem, with running time bounded by O∗(k!) and by O∗((2e)k) = O∗(5.5k),
respectively1. In the following, we show how Observation D2 can be used in
development of efficient parameterized algorithms.

Consider the k-path problem: given an undirected graph G and a parameter
k, decide whether the graph G contains a k-path (i.e., a simple path of k vertices).
Suppose that the graph G contains a k-path P . By randomly splitting the vertices
of G into two parts V1 and V2, with probability 1/2k, the k vertices on the path
P are partitioned in such a way that the first k/2 vertices on P are contained in
V1 and the last k/2 vertices on P are contained in V2. Therefore, if we recursively
look for (k/2)-paths in the induced subgraph G[V1] and for (k/2)-paths in the

1 We have followed the convention of using O∗(f(k)) to denote the bound f(k)nO(1).

Randomized Disposal of Unknowns and Implicitly Enforced Bounds 3

induced subgraph G[V2], and consider all possible concatenations of (k/2)-paths
in G[V1] with (k/2)-paths in G[V2], we will have a good chance to construct a
k-path in the original graph G. This has led to O∗(4k) time algorithms for the
k-path problem [6,11].

Next we consider the set splitting problem: given a collection C of subsets
of a universal set U , decide whether there is a partition (U1, U2) of the universal
set U , where U1 ∩ U2 = ∅ and U1 ∪ U2 = U , that splits at least k subsets in the
collection C (the partition (U1, U2) “splits” a subset S of U if S ∩ U1 �= ∅ and
S ∩ U2 �= ∅). Suppose that such a partition (U1, U2) of U exists, then there are
k subsets S1, . . ., Sk in the collection C and elements a1, . . ., ak, b1, . . ., bk in U
such that for each i, ai, bi ∈ Si, ai ∈ U1 and bi ∈ U2 (note that it is possible that
ai = aj or bi = bj for i �= j, but no ai can be bj for any i and j). Therefore, what
we are looking for is the subset P = {a1, . . . , ak, b1, . . . , bk} of no more than 2k
elements in the universal set U , and a partition ({a1, . . . , ak}, {b1, . . . , bk}) of the
subset P . By Observation D2, by a random partition of the universal set U , we
will achieve the desired partition of the unknown subset P with a probability
at least 1/22k. Note that with a partition of the universal set U , it is trivial to
verify if the partition splits at least k subsets in C. Therefore, by a straightforward
probability analysis, with O∗(4k) times of iterations of this random partition, we
will, with a high probability, “implement” the desired partition of the unknown
subset P that splits the k subsets in the collection C. This leads to a randomized
algorithm of running time O∗(4k) for the set splitting problem. A little bit
more careful analysis [5] shows that this randomized algorithm in fact solves the
set splitting problem in time O∗(2k).

We make two remarks on the above results. First, the above techniques can be
used to deal with weighted problem instances without any essential changes. In
consequence, we can construct in time O∗(4k) a k-path of the maximum weight
in a given graph whose vertices and/or edges are assigned weights, and construct
in time O∗(2k) a partition of a universal set U that splits k subsets of a given
collection C such that the sum of the weights of the k split subsets is maximized.

The second remark is that the above randomized techniques can be de-
randomized [1,5,6,12]. For example, the concept of universal (n, k)-set [12] has
been introduced that de-randomizes the random partition process. A universal
(n, k)-set F is a collection of partitions of the universal set U = {1, 2, . . . , n}
such that for every subset S of k elements in U and for any partition (S1, S2) of
S, there is a partition (U1, U2) of U in F that implements (S1, S2), i.e., S1 ⊆ U1

and S2 ⊆ U2. In other words, any partition of any subset of k elements in U is
implemented by at least one partition in F .

Theorem 1. ([12]) There is a universal (n, k)-set F that consists of O∗(2k+o(k))
partitions of the universal set U = {1, 2, . . . , n} and can be constructed in time
O∗(2k+o(k)).

Therefore, in order to achieve a specific partition of an unknown subset S of k
elements in the universal set U = {1, 2, . . . , n}, we can try each of the parti-
tions in the universal (n, k)-set F in Theorem 1 (there are only O∗(2k+o(k)) such

4 J. Chen

partitions), and are guaranteed that at least one of the partitions in F imple-
ments the desired partition of the unknown subset S.

3 Implicitly Enforced Bounds on Parameters

Branch-and-search has been a general approach in the development of parame-
terized algorithms. For example, to find a vertex cover of k vertices in a graph
G, a typical step is to pick a vertex v of degree d > 2, then branch on v, by
either including or excluding v in the objective vertex cover, then recursively
search in the resulting graph. In the branch of including v, we are looking for
a vertex cover of k − 1 vertices in the resulting graph; while in the branch of
excluding v, we must include all neighbors of v in the objective vertex cover,
thus are looking for a vertex cover of k − d vertices in the resulting graph. This
recursive process gives a recurrence relation T (k) = T (k − 1) + T (k − d) for
the size T (k) of the search tree for a vertex cover of k vertices, and leads to a
parameterized algorithm of running time O∗(ck) for a small constant c for the
problem.

The above branch-and-search process seems to fail in dealing with some other
parameterized problems. For example, suppose we are looking for an indepen-
dent set of k vertices in a given graph G. If we branch at a vertex v by either
including or excluding v in the objective independent set, then in the branch of
excluding v, we will not be able to directly include any vertex in the objective
independent set and decrease the parameter value. Thus, the branch-and-search
process does not lead to efficient parameterized algorithms for the independent
set problem. This difficulty seems essential, as the independent set problem
is W [1]-complete, and by the working hypothesis in parameterized complexity
theory, the independent set problem is not fixed-parameter tractable.

Similar difficulties have also arisen for other parameterized problems. Recall
that a feedback vertex set (FVS) F in a graph G is a vertex subset such that
G−F is an acyclic graph, and that the feedback vertex set problem is for a
given undirected graph G and a parameter k, to decide whether G has an FVS
of k vertices.

By the technique of iterative compression [14], it is know that the feedback
vertex set problem can be reduced to the following more restricted version of
the problem:

forest bipartition fvs: given an undirected graph G = (V, E), a
partition (V1, V2) of the vertices of G such that both induced subgraphs
G[V1] and G[V2] are acyclic, and a parameter h, decide whether G has
an FVS F of h vertices such that F ⊆ V1.

Consider the following branch-and-search process for the forest bipartition
fvs problem:

1. pick a vertex v in V1 that has at least two neighbors in V2;2

2 It can be shown [2] that such a vertex always exists unless the problem is trivially
solvable.

Randomized Disposal of Unknowns and Implicitly Enforced Bounds 5

2. if v has two neighbors in the same connected component in G[V2]
then include v in the objective FVS and recursively work on the instance
(G− v, V1 − v, V2, h− 1);

3. else branch at the vertex v:
(B1) include v in the objective FVS and recursively work on the instance
(G− v, V1 − v, V2, h− 1),
(B2) exclude v from the objective FVS and recursively work on the instance
(G, V1 − v, V2 + v, h).

The above branch-and-search process seems to encounter the same difficulty
as we had for the independent set problem: in the branch of excluding the
vertex v, we cannot directly decrease the parameter value h. However, in this
case, we have an implicitly enforced bound on the depth of the search tree.
Observe the following simple facts:

F1. If a vertex v in V1 has two neighbors in the same connected component in
G[V2], then v must be included in the objective FVS;

F2. If a vertex v in V1 has two neighbors that are in different connected compo-
nents in G[V2], then moving v from V1 to V2 makes the number of connected
components of G[V2 + v] strictly less than that of G[V2].

Therefore, if we start with a vertex subset V2 of l vertices, then the number of
connected components in the induced subgraph G[V2] is bounded by l. Thus,
each computational path in the search tree for the process passes through at
most l branches that exclude a vertex v from the objective FVS by moving
v from V1 to V2. In consequence, each computational path in the search tree
passes through at most h + l branches, of which h reduce the parameter value
and l reduce the number of connected components in G[V2]. This concludes that
the total running time of the above branch-and-search process is bounded by
O∗(2h+l).

It has been shown [2] that to determine whether a given graph G has a feed-
back vertex set of k vertices, we need to solve

(
k+1

j

)
instances (G′, V ′

1 , V ′
2 , k − j)

of the forest bipartition fvs problem, for all j, 0 ≤ j ≤ k + 1, where
|V ′

2 | = k − j + 1. By the above analysis, each of such instances can be solved in
time O∗(4k−j). Therefore, the feedback vertex set problem can be solved in
time O∗(5k) (see [2] for more details).

We give another more sophisticated example to further illustrate the power
of this technique. Let G be a graph and let T1, . . ., Tl be disjoint vertex subsets
in G (the vertex subsets T1, . . ., Tl will be called terminal sets in the following
discussion). A vertex subset S is a multi-way cut for the terminal sets T1, . . ., Tl

if there is no path in the graph G− S from any vertex in Ti to any vertex in Tj

for any i �= j. Consider the following problem:

multi-way cut problem: given a graph G, and terminal sets T1, . . .,
Tl, and a parameter k, decide whether there is a multi-way cut S of k
vertices for the terminal sets T1, . . ., Tl.

In the following discussion, we fix an instance (G; T1, . . . , Tl; k) of the multi-

way cut problem. A vertex u is a critical vertex if u �∈ ⋃l
i=1 Ti and u is adjacent

6 J. Chen

to a vertex in T1 but not adjacent to any vertex in any Ti for i �= 1. It can be
proved [4] that the instance (G; T1, . . . , Tl; k) can be trivially reduced without
branching if it contains no critical vertices.

Lemma 1. ([4]) Let u be a critical vertex, and let S be a vertex subset in the
graph G such that u �∈ S. Then S is a multi-way cut for T1, T2, . . ., Tl if and
only if S is a multi-way cut for T1 + u, T2, . . ., Tl.

Lemma 2. ([4]) Let u be a critical vertex. Let m1 be the size of a minimum cut
between the two sets T1 and

⋃l
i=2 Ti, and let m2 be the size of a minimum cut

between the two sets T1 +u and
⋃l

i=2 Ti. Then m1 ≤ m2. Moreover, if m1 = m2,
then there is a multi-way cut of k vertices for the terminal sets T1, . . ., Tl if and
only if there is a multi-way cut of k vertices for the terminal sets T1 +u, T2 . . .,
Tl.

We first explain how Lemmas 1 and 2 are used in our algorithm. If we decide to
exclude a critical vertex u in the objective multi-way cut for the terminal sets
T1, . . ., Tl, then we are looking for a multi-way cut of k vertices that does not
include u. By Lemma 1, this can be reduced to looking for a multi-way cut of
k vertices for the terminal sets T1 + u, T2, . . ., Tl. Similarly, if the conditions in
Lemma 2 hold true, then we can work, without branching, on a multi-way cut
of k vertices for the terminal sets T1 + u, T2, . . ., Tl.

Consider the the following branch-and-search process:

1. pick a critical vertex u;
2. compute the size m1 of a minimum cut between T1 and

⋃l
i=2 Ti and the size

m2 of a minimum cut between T1 + u and
⋃l

i=2 Ti;
3. if m1 = m2

then recursively work on the instance (G, {T1 + u, T2, . . . , Tl}, k);
4. else branch at u:

(B1) include u in the objective multi-way cut and recursively work on the
instance (G− u, T1, T2, . . . , Tl; k − 1);
(B2) exclude u from the objective multi-way cut and recursively work on the
instance (G, T1 + u, T2, . . . , Tl; k).

The correctness of step 3 follows from Lemma 2, while the correctness of the
branching (B2) follows from Lemma 1. Again, the branch at step 4 seems to
have the difficulty that in the branching (B2) of excluding the critical vertex
u, the parameter value k is not decreased. In this case, the implicitly enforced
bound on the parameter is the size of the minimum cut between the two sets
T1 and

⋃l
i=2 Ti. By Lemma 2, in step 4 we must have m1 < m2. Therefore, at

each branch, we will either decrease the parameter value k (branching (B1)),
or increase the size of a minimum cut between the two sets T1 and

⋃l
i=1 Ti

(branching (B2)). Note that the size of a minimum cut between T1 and
⋃l

i=1 Ti

must be bounded from above by k: by definition the size of a minimum cut
between T1 and

⋃l
i=1 Ti cannot be larger than that of a multi-way cut for the

terminal sets T1, . . ., Tl. Therefore, again, each computational path in the search

Randomized Disposal of Unknowns and Implicitly Enforced Bounds 7

tree of this process can pass through at most 2k branches, of which k decrease
the parameter value and k increase the size of a minimum cut between T1 and⋃l

i=1 Ti. In consequence, the search-tree for the above branch-and-search process
contains at most 22k leaves, and the process solves the multi-way cut problem
in time O∗(4k).

4 Conclusion

Parameterized algorithmic research is an exciting but still young research area
in which new techniques and methodology are being explored. In this paper,
we have studied two algorithmic techniques of general interest that have been
useful in the recent development of parameterized algorithms. The techniques
are simple and effective, and have led to improved algorithms for a number of
parameterized problems, including some well-known ones that have been exten-
sively studied in the past and are with an impressive list of gradually improved
algorithms.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42, 844–856
(1995)

2. Chen, J., Fomin, F., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for the
feedback vertex set problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS
2007. LNCS, vol. 4619, pp. 422–433. Springer, Heidelberg (2007); Journal version
is to appear in Journal of Computer and System Sciences

3. Chen, J., Friesen, D., Kanj, I., Jia, W.: Using nondeterminism to design efficient
deterministic algorithms. Algorithmica 40, 83–97 (2004)

4. Chen, J., Liu, Y., Lu, S.: An improved paraeterized algorithm for the minimum
node multiway cut problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007.
LNCS, vol. 4619, pp. 495–506. Springer, Heidelberg (2007); Journal version is to
appear in Algorithmica

5. Chen, J., Lu, S.: Improved algorithms for weighted and unweighted set splitting
problems. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 537–547. Springer,
Heidelberg (2007); Journal version is to appear in Algorithmica

6. Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching,
and packing problems. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2007), pp. 298–307 (2007)

7. Dehne, F., Fellows, M., Rosamond, F., Shaw, P.: Greedy localization, iterative
compression, modeled crown reductions: New FPT techniques, and improved al-
gorithm for set splitting, and a novel 2k kernelization of vertex cover. In: Downey,
R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 127–137.
Springer, Heidelberg (2004)

8. Dorn, F., Fomin, F., Thilikos, D.: Subexponential parameterized algorithms. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 15–27. Springer, Heidelberg (2007)

9. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)

8 J. Chen

10. Fellows, M.: Blow-ups, win/win’s, and crown rules: Some new directions in FPT. In:
Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidelberg
(2003)

11. Kneis, J., Molle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: Fomin, F.V.
(ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006)

12. Naor, M., Schulman, L., Srinivasan, A.: Splitters and near-optimal derandomiza-
tion. In: Proc. 36th IEEE Symp. on Foundations of Computer Science (FOCS
1995), pp. 182–190 (1995)

13. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

14. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32,
299–301 (2004)

Algorithmic Graph Minors and Bidimensionality

Erik D. Demaine

MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA

Abstract. Robertson and Seymour developed the seminal Graph Minor
Theory over the past two decades. This breakthrough in graph structure
theory tells us that a very wide family of graph classes (anything closed
under deletion and contraction) have a rich structure similar to planar
graphs. This structure has many algorithmic applications that have be-
come increasingly prominent over the past decade. For example, Fellows
and Langston showed in 1988 that it immediately leads to a wealth of
(nonconstructive) fixed-parameter algorithms.

One recent approach to algorithmic graph minor theory is “bidimen-
sionality theory”. This theory provides general tools for designing fast
(constructive, often subexponential) fixed-parameter algorithms, and ap-
proximation algorithms (often PTASs), for a wide variety of NP-hard
graph problems in graphs excluding a fixed minor. For example, some of
the most general algorithms for feedback vertex set and connected dom-
inating set are based on bidimensionality. Another approach is “deletion
and contraction decompositions”, which split any graph excluding a fixed
minor into a bounded number of small-treewidth graphs. For example,
this approach has led to some of the most general algorithms for graph
coloring and the Traveling Salesman Problem on graphs. I will describe
these and other approaches to efficient algorithms through graph minors.

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, p. 9, 2008.
c© Erik D. Demaine 2008

Algorithmic Meta-theorems

Stephan Kreutzer

Oxford University Computing Laboratory
stephan.kreutzer@comlab.ox.ac.uk

Algorithmic meta-theorems are algorithmic results that apply to a whole range of
problems, instead of addressing just one specific problem. This kind of theorems
are often stated relative to a certain class of graphs, so the general form of a
meta theorem reads “every problem in a certain class C of problems can be solved
efficiently on every graph satisfying a certain property P”. A particularly well
known example of a meta-theorem is Courcelle’s theorem that every decision
problem definable in monadic second-order logic (MSO) can be decided in linear
time on any class of graphs of bounded tree-width [1].

The class C of problems can be defined in a number of different ways. One
option is to state combinatorial or algorithmic criteria of problems in C. For
instance, Demaine, Hajiaghayi and Kawarabayashi [5] showed that every min-
imisation problem that can be solved efficiently on graph classes of bounded
tree-width and for which approximate solutions can be computed efficiently from
solutions of certain sub-instances, have a PTAS on any class of graphs excluding
a fixed minor. While this gives a strong unifying explanation for PTAS of many
problems on H-minor free graphs, the class of problems it defines is not very
natural. In particular, it may require some work to decide if a given problem
belongs to this class or not.

Another approach to define meta-theorems is therefore based on definability
in logical systems, e.g. to consider the class of problems that can be defined in
first-order logic. For instance, related to the above example, a result by Dawar,
Grohe, Kreutzer and Schweikardt [4] states that every minimisation problem
definable in first-order logic has an EPTAS on every class of graphs excluding a
minor. While the actual complexity bounds obtained in this way may not live up
to bounds derivable for each individual problem, the class of problems described
in this way is extremely natural and for many problems their mathematical
formulation already shows that they are first-order definable. Consider, e.g., the
definition of a dominating set.

Such meta-theorems based on definability in a given logic have received much
attention in the literature. For instance, for the case of decision problems, it is
has been shown that every problem definable in monadic second-order logic can
be decided in polynomial time on graph classes of bounded clique width (see
e.g. [2]). For first-order logic (FO), Seese [14] showed that every FO-definable
decision problem is solvable in linear time on graph classes of bounded degree.
This has then been extended to planar graphs and, more generally, graph classes

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 10–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Algorithmic Meta-theorems 11

of bounded local tree-width by Frick and Grohe [7] and to H-minor free graphs
by Flum and Grohe [6]. Finally, Dawar, Grohe, Kreutzer generalised these results
even further to classes of graphs locally excluding a minor [3].

For optimisation problems, well-known meta-theorems employing logic can
been found in the work on MaxSNP by Papadimitriou, Yannakakis and also
Kolaitis, Thakus (see e.g. [13,10,11]) or in other syntactical approaches to meta-
theorems as in, e.g., [9].

While meta-theorems based on logical definability give strong algorithmic
results for natural classes of problems, this often comes at the price of sacrificing
efficiency in the algorithms derived from them. For instance, while the linear
time bound O(n) of Courcelle’s theorem on MSO-properties of graph classes
of bounded tree-width is optimal, the constants hidden in the O-notation are
horrific and prevent any practical applications of the theorem. It is clear, thus,
that the benefit from algorithmic meta-theorems does not lie within immediate
applications or (practically) efficient algorithms. Instead they help understand
the algorithmic theory of certain graph classes and form an efficient tool for
establishing that a problem is tractable on a certain class of graphs or structures.

In this talk I will survey algorithmic meta-theorems with emphasis on mo-
tivation and future directions. While the focus will be on decision problems, I
will also discuss logical approaches to optimisation problems. Recent surveys on
meta-theorems can be found in [8] and also [12].

References

1. Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: van Leeuwen,
J. (ed.) Handbook of Theoretical Computer Science, pp. 194–242. Elsevier, Ams-
terdam (1990)

2. Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems
on graphs of bounded clique-width. Theory Comput. Systems 33, 125–150 (2000)

3. Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: Proc. of the
22nd IEEE Symp. on Logic in Computer Science, pp. 270–279 (2007)

4. Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, S.: Approximation schemes for
first-order definable optimisation problems. In: Proc. of the 21st IEEE Symp. on
Logic in Computer Science, pp. 411–420 (2006)

5. Demaine, E., Hajiaghayi, M., Kawarabayashi, K.: Algorithmic graph minor theory:
Decomposition, approximation, and coloring. In: Symposium on Foundations of
Computer Science (FOCS), pp. 637–646 (2005)

6. Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model checking.
SIAM Journal on Computing 31, 113–145 (2001)

7. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable
structures. Journal of the ACM 48, 1184–1206 (2001)

8. Grohe, M.: Logic, graphs, and algorithms. In: Wilke, T., Flum, J., Grädel, E. (eds.)
Logic and Automata History and Perspectives, Amsterdam University Press (2007)

9. Khanna, S., Motwani, R.: Towards a syntactic characterization of PTAS. In: Proc.
of STOC 1996, pp. 329–337 (1996)

10. Kolaitis, P.G., Thakur, M.N.: Logical definability of NP optimization problems.
Information and Computation 115(2), 321–353 (1994)

12 S. Kreutzer

11. Kolaitis, P.G., Thakur, M.N.: Approximation properties of NP minimization
classes. Journal of Computer and System Sciences 50, 391–411 (1995)

12. Kreutzer, S.: Finite model-theory of tree-like structures, http://web.comlab.

ox.ac.uk/oucl/work/stephan.kreutzer/publications.html

13. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. Journal of Computer and System Sciences 43, 425–440 (1991)

14. Seese, D.: Linear time computable problems and first-order descriptions. Mathe-
matical Structures in Computer Science 2, 505–526 (1996)

http://web.comlab.ox.ac.uk/oucl/work/stephan.kreutzer/publications.html
http://web.comlab.ox.ac.uk/oucl/work/stephan.kreutzer/publications.html

Parameterized Complexity of the Smallest

Degree-Constrained Subgraph Problem�

Omid Amini1, Ignasi Sau2,3, and Saket Saurabh4

1 Max-Planck-Institut für Informatik
Omid.Amini@mpi-inf.mpg.de

2 Mascotte join Project- INRIA/CNRS-I3S/UNSA- 2004
route des Lucioles - Sophia-Antipolis, France

Ignasi.Sau@sophia.inria.fr
3 Graph Theory and Combinatorics group at Applied Mathematics IV

Department of UPC - Barcelona, Spain
4 Department of Informatics, University of Bergen,

N-5020 Bergen, Norway
saket@ii.uib.no

Abstract. In this paper we study the problem of finding an induced sub-
graph of size at most k with minimum degree at least d for a given graph
G, from the parameterized complexity perspective. We call this problem
Minimum Subgraph of Minimum Degree ≥d (MSMDd). For d = 2 it
corresponds to finding a shortest cycle of the graph. Our main motiva-
tion to study this problem is its strong relation to Dense k-Subgraph
and Traffic Grooming problems.

First, we show that MSMSd is fixed-parameter intractable (provided
FPT �= W [1]) for d ≥ 3 in general graphs, by showing it to be W [1]-hard
using a reduction from Multi-Color Clique. In the second part of the
paper we provide explicit fixed-parameter tractable (FPT) algorithms
for the problem in graphs with bounded local tree-width and graphs
with excluded minors, faster than those coming from the meta-theorem
of Frick and Grohe [13] about problems definable in first order logic
over “locally tree-decomposable structures”. In particular, this implies
faster fixed-parameter tractable algorithms in planar graphs, graphs of
bounded genus, and graphs with bounded maximum degree.

1 Introduction

Problems of finding subgraphs with certain degree constraints are well studied
both algorithmically and combinatorially, and have a number of applications in
network design [10,12,15,16,17]. In this paper we initiate the study of one such

� This work has been partially supported by European project IST FET AEOLUS,
PACA region of France, Ministerio de Educación y Ciencia of Spain, European Re-
gional Development Fund under project TEC2005-03575, Catalan Research Council
under project 2005SGR00256, and COST action 293 GRAAL, and has been done in
the context of the crc Corso with France Telecom.

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 13–29, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

14 O. Amini, I. Sau, and S. Saurabh

problem, namely Minimum Subgraph of Minimum Degree ≥d (MSMDd),
in the realm of parameterized complexity. More precisely, the problem we study
is defined as follows:

Minimum Subgraph of Minimum Degree ≥d (MSMDd)
Input: A graph G = (V, E) and a positive integer k.
Parameter: k.
Question: Does there exist a subset S ⊆ V , with |S| ≤ k, such that
G[S] has minimum degree at least d?

For d = 2, MSMD2 corresponds to finding a shortest cycle in the graph, which
can be done in polynomial time. Hence for d ≥ 3, the MSMDd problem can also
be thought of as a generalization of the girth problem. Besides this, our moti-
vations for studying this problem are the following: (a) the problem is closely
related to the well studied Dense k-Subgraph problem and (b) it is moti-
vated from practical applications because of its close connection to the Traffic
Grooming problem. In the next two paragraphs we briefly explain these two
connections.

Connection to the Dense k-Subgraph problem: The density ρ(G) of a
graph G = (V, E) is defined as its edges-to-vertices ratio, that is ρ(G) := |E|

|V | .
More generally, for any subset S ⊆ V , we denote its density by ρG(S) or simply
ρ(S), and define it to be the density of the induced graph on S, i.e. ρ(S) :=
ρ(G[S]). The Dense k-Subgraph problem is formulated as follows:

Dense k-Subgraph (DkS)
Input: A graph G = (V, E).
Output: A subset S ⊆ V , with |S| = k, such that ρ(S) is maximized.

First of all, we remark that the NP-hardness of DkS easily follows from the
NP-hardness of Clique. On the other hand, if we do not fix the size of S,
then finding a densest subgraph of G reduces to an instance of the Max-Flow
Min-Cut problem, and hence it can be solved in polynomial time (see Chapter
4 of [18] for more details). The DkS problem has attracted a lot of attention,
primarily in approximation algorithms [3,7,10,15].

Now we show how MSMDd is related to DkS. Suppose we are looking for an
induced subgraph G[S] of size at most k and with density at least ρ. In addition,
assume that S is minimal, i.e. no subset of S has density greater than ρ(S).
This implies that every vertex of S has degree at least ρ/2 in G[S]. To see this,
observe that if there is a vertex v with degree strictly smaller than ρ/2, then
removing v from S results in a subgraph of density greater than ρ(S) and of
smaller size, contradicting the minimality of S. Secondly, if we have an induced
subgraph G[S] of minimum degree at least ρ, then S is a subset of density at
least ρ/2. These two observations together show that, modulo a constant factor,
looking for a densest subgraph of G of size at most k is equivalent to looking for
the largest possible value of ρ for which MSMDρ returns Yes for the parameter

Parameterized Complexity 15

k. As the degree conditions are more rigid than the global density of a subgraph,
it is easier to work directly with MSMDd. This is why we hope that a better
understanding of the MSMDd problem will provide an alternative way to attack
the outstanding open problem of the complexity of DkS.

Connection to the Traffic Grooming problem: Traffic grooming in opti-
cal networks refers to packing small traffic flows into larger units, which can then
be processed as single entities. For example, in a network using both time-division
and wavelength-division multiplexing, flows destined to a common node can be
aggregated into the same wavelength, allowing them to be dropped by a single
optical Add-Drop Multiplexer (ADM for short). The objectives of grooming are
to improve bandwidth utilization and to minimize the equipment cost of the
network. In WDM optical networks, the most accepted criterion is to minimize
the number of electronic terminations, namely the number of SONET ADMs.
See [8] for a general survey on grooming. It has been recently proved [2] that
the Traffic Grooming problem in optical networks can be reduced (modulo
polylogarithmic factors) to DkS, or equivalently to MSMDd. Indeed, in graph
theoretic terms, the problem can be translated to partitioning the edges of a
given request graph into subgraphs with a constraint on their number of edges.
The objective is to minimize the total number of vertices of the subgraphs of
the partition. Hence, in this context of partitioning a given set of edges while
minimizing the total number of vertices, is where DkS and MSMDd come into
play.

Our Results: We do a thorough study of the MSMDd problem in the realm
of parameterized complexity. Our results can be classified into two categories:

General Graphs: In the first part of this paper, we show in Section 2 that MSMDd

is not fixed-parameter tractable, provided FPT �= W [1], by proving it to be
W [1]-hard for d ≥ 3. In general, parameterized reductions are very stringent
because of parameter-preserving requirements of the reduction, and require a
lot of technical care. Our reduction is based on a new methodology emerging in
parameterized complexity, called multi-color clique edge representation. This has
proved to be useful in showing various problems to be W [1]-hard recently [4].
We first spell out step by step the procedure to use this methodology, which can
be used as a template for future purposes. Then we adapt this methodology to
the reduction for the MSMDd problem. Our reduction is robust, in the sense
that many similar problems can be shown to be W [1]-hard with just minor
modifications.

Graphs with Bounded Local Tree-width and Graphs with Excluded Minors:
MSMDd problem can be easily defined in first-order logic, where the formula
only depends on k and d, both being bounded by the parameter. Frick and
Grohe [13] have shown that first-order definable properties of graph classes of
bounded local tree-width can be decided in time n1+1/k for all k, in particular
in time n2, and first-order model checking is FPT on M -minor free graphs. This
immediately gives us the classification result that MSMDd for d ≥ 3 is FPT

16 O. Amini, I. Sau, and S. Saurabh

in graphs with bounded local tree-width and graphs excluding a fixed graph M
as a minor. These classification results can be generalized to a larger class of
graphs, namely graphs “locally excluding” a fixed graph M as a minor, due to a
recent result of Dawar et al. [5]. These results are very general and involve huge
coefficients (in other words, huge dependence on k). Because of this, a natural
problem arising in this context is the following: can we obtain an algorithm for
MSMDd for d ≥ 3 in these graph classes faster than the one coming from the
meta-theorem of Frick and Grohe, using some specific properties of the problem?

In Section 3, we answer this question in the affirmative by giving a faster
and explicit algorithm for MSMDd, d ≥ 3, in graphs with bounded local tree-
width and graphs excluding a fixed graph M as a minor. In particular, this
gives us faster FPT algorithms on planar graphs and graphs of bounded genus.
Though our algorithms use standard dynamic programming over graphs with
bounded tree-width, and a few results concerning the clique decomposition of
M -minor free graphs developed by Robertson and Seymour in their Graph Minor
Theory [19], we needed to make a few non-trivial observations to get significant
improvements in the time complexity of the algorithms. Finally, we would like
to stress that our dynamic programming over graphs with bounded tree-width is
very generic and can handle variations on degree-constrained subgraph problems
with simple changes.

Notations: We use standard graph terminology. Let G be a graph. We use
V (G) and E(G) to denote vertex and the edge set of G, respectively. We simply
write V and E if the graph is clear from the context. For V ′ ⊆ V , we denote the
induced subgraph on V ′ by G[V ′] = (V ′, E′), where E′ = {{u, v} ∈ E : u, v ∈
V ′}. For v ∈ V , we denote by N(v) (or NG(v)) the neighborhood of v, namely
N(v) = {u ∈ V : {u, v} ∈ E}. The closed neighborhood N [v] of v is N(v) ∪ {v}.
In the same way we define N [S] (or NG[S]) for S ⊆ V as N [S] = ∪v∈SN [v],
and N(S) = N [S] \ S. We define the degree of vertex v in G as the number of
vertices incident to v in G. Namely, d(v) = |{u ∈ V (G) : {u, v} ∈ E(G)}|.

2 Fixed-Parameter In-Tractability of MSMDd for d ≥ 3

In this section we give a W [1]-hardness reduction for MSMDd. We first define
parameterized reductions.

Definition 1. Let Π, Π ′ be two parameterized problems, with instances (x, k)
and (x′, k′), respectively. We say that Π is (uniformly many:1) reducible to Π ′

if there is a function Φ, called a parameterized reduction, which transforms (x, k)
into (x′, g(k)) in time f(k)|x|α, where f, g : N→ N are arbitrary functions and α
is a constant independent of k, so that (x, k) ∈ Π if and only if (x′, g(k)) ∈ Π ′.

Our reduction is from Multi-Color Clique, which is known to be W [1]-
complete by a simple reduction from the ordinary Clique [11], and is based on
the methodology known as multi-color edge representation. The Multi-Color
Clique problem is defined as follows:

Parameterized Complexity 17

Multi-color Clique
Input: An graph G = (V, E), a positive integer k, and a proper k-
coloring of V (G).
Parameter: k.
Question: Does there exist a clique of size k in G consisting of exactly
one vertex of each color?

Consider an instance G = (V, E) of Multi-color Clique with its vertices
colored with the set of colors {c1, · · · , ck}. Let V [ci] denote the set of vertices
of color ci. We first replace each edge e = {u, v} of G, with u ∈ V [ci], v ∈ V [cj]
and i < j, with two arcs ef = (u, v) and eb = (v, u). By abuse of notation, we
also call this digraph G. Let E[ci, cj] be the set of arcs e = (u, v), with u ∈ V [ci]
and v ∈ V [cj], for 1 ≤ i �= j ≤ k. An arc (u, v) ∈ E[ci, cj] is called forward (resp.
backward) if i < j (resp. i > j). We also assume that |V [ci]| = N for all i, and
that |E[ci, cj]| = M for all i �= j, i.e. we assume that the color classes of G, and
also the arc sets between them, have uniform sizes. For a simple justification
of this assumption, we can reduce Multi-color Clique to itself, taking the
union of k! disjoint copies of G, one for each permutation of the color sets.

In this methodology, the basic encoding bricks correspond to arcs of G, which
we call arc gadgets. We generally have three kinds of gadgets, which we call
selection, coherence and match gadgets. These are engineered together to
get an overall reduction gadget for the problem. In an optimal solution to the
problem (that is, a solution providing a Yes answer), the selection gadget en-
sures that exactly one arc gadget is selected among arc gadgets corresponding
to arcs going from a color class V [ci] to another color class V [cj]. For any color
class V [ci], the coherence gadget ensures that the out-going arcs from V [ci], cor-
responding to the selected arc gadgets, have a common vertex in V [ci]. That
is, all the arcs corresponding to these selected arc gadgets emanate from the
same vertex in V [ci]. Finally, the match gadget ensures that if we have selected
an arc gadget corresponding to an arc (u, v) from V [ci] to V [cj], then the arc
gadget selected from V [cj] to V [ci] corresponds to (v, u). That is, both of ef

and eb are selected together. In what follows, we show how to particularize this
general strategy to obtain a reduction from Multi-color Clique to MSMDd

for d ≥ 3. To simplify the presentation, we first describe our reduction for the
case d = 3 in Section 2.1 and then we describe the required modifications for
the case d ≥ 4 in Section 2.2.

2.1 W [1]-Hardness of MSMDd for d = 3

We now detail the construction of all the gadgets. Recall that an arc (u, v) ∈
E[ci, cj] is forward if i < j, and it is backward if i > j. We refer the reader to
Fig. 1 to get an idea of the construction.

Arc Gadgets: For each arc (u, v) ∈ E[ci, cj] with i < j (resp. i > j) we have a
cycle Cef (resp. Ceb) of length 3 + 2(k − 2) + 2, with vertex set:

– selection vertices: ef
s1, ef

s2, and ef
s3 (resp. eb

s1, eb
s2, and eb

s3);

18 O. Amini, I. Sau, and S. Saurabh

– coherence vertices: ef
ch1r, e

f
ch2r (resp. eb

ch1r, e
b
ch2r), for all r ∈ {1, . . . , k} and

r �= i, j; and
– match vertices: ef

m1 and ef
m2 (resp. eb

m1 and eb
m2).

Selection Gadgets: For each pair of indices i, j with 1 ≤ i �= j ≤ k, we add
a new vertex Aci,cj , and connect it to all the selection vertices of the cycles Cef

if i < j (resp. Ceb if i > j) for all e ∈ E[ci, cj]. This gadget is called forward
selection gadget (resp. backward selection gadget) if i < j (resp. i > j), and it is
denoted by Si,j .

That is, we have k(k − 1) clusters of gadgets: one gadget Si,j for each set
E[ci, cj], for 1 ≤ i �= j ≤ k.

Coherence Gadgets: For each i, 1 ≤ i ≤ k, let us consider all the selection
gadgets of the form Si,p, p ∈ {1, · · · , k} and p �= i. For any u ∈ V [ci], and any
two indices 1 ≤ p �= q ≤ k, p �= i, q �= i we add two new vertices upq and uqp, and
a new edge {upq, uqp}. For every arc e = (u, v) ∈ E[ci, cp], with u ∈ V [ci], we
pick the cycle Cex , x ∈ {f, b} depending on whether e is forward or backward,
and add two edges of the form {ech1q, upq} and {ech2q, upq}. Similarly, for an arc
e = (u, w) ∈ E[ci, cq], with u ∈ V [ci], we pick the cycle Cex , x ∈ {f, b}, and add
two edges {ech1p, uqp} and {ech2p, uqp}.
Match Gadgets: For any pair of arcs ef = (u, v) and eb = (v, u), we con-
sider the two cycles Cef and Ceb corresponding to ef and eb. Now, we add two
new vertices e∗ and e∗, a matching edge {e∗, e∗}, and all the edges of the form
{ef

m1, e
∗}, {ef

m2, e
∗}, {eb

m1, e∗} and {eb
m2, e∗} where ef

m1, ef
m2 are match vertices

on Cef , and eb
m1 , eb

m2 are match vertices on Ceb .

This completes the construction of the gadgets, and the union of all of them
defines the graph GG depicted in Fig. 1. Now, we prove that this construction
yields the reduction through a sequence of simple claims.

Claim 1. Let G be an instance of Multi-color Clique, and GG be the graph
we constructed above. If G has a multi-colored k-clique, then GG has a 3-regular
subgraph of size k′ = (3k + 1)k(k − 1).

Proof. Let ω be a multi-color clique of size k in G. For every edge e ∈ E(ω),
select the corresponding cycles Cef , Ceb in GG. Let us define S as follows:

S =
⋃

e∈ω,x∈{f,b}
NGG [V (Cex)] .

It is straightforward to check that GG[S] is a 3-regular subgraph of GG. To verify
the size of GG[S], note that we have 2 · (k

2

)
cycles in GG[S] and each of them

contribute (3k − 1) vertices (this includes vertices on the cycle themselves). 	

Claim 2. Any subgraph of GG of minimum degree at least three should contain
one of the cycles Cex , x ∈ {b, f}, corresponding to arc gadgets.

Parameterized Complexity 19

es1
f

ech2q
f

ech1kf
ech2k
f

em1
f

em2
f

es3
f

es2
f

e

e f

e*

ech11
f

ech21
f

ech1qf

es1
b

es2
b

es3
b

ech11
b
ech21
b

ech1kb
ech2k
b

em1
b
e bm2*

Aci cp, Acp ci,

C e bC

e' fC

e'' fC

e' bC

e'' bC

pqu
qpu

ech2pech1p

Aci cq,

ech2pech1p
_ _

^ ^

e xC e xC_
^

Si p, Sp i,

S i q,

Fig. 1. Gadgets used in the reduction of the proof of Theorem 1 (we suppose i < p)

Proof. Note that if such a subgraph of GG intersects a cycle Cex , then it must
contain all of its vertices. Further, if we remove all the vertices corresponding
to arc gadgets in GG, then the remaining graph is a forest. These two facts
together imply that any subgraph of G (G) of minimum degree at least three
should intersect at least one cycle Cex corresponding to an arc gadget, and hence
it must contain Cex . 	

Claim 3. If GG contains a subgraph of size k′ = (3k+1)k(k−1) and of minimum
degree at least three, then G has a multi-colored k-clique.

Proof. Let H = G[S] be a subgraph of size k′ of minimum degree at least three.
Now, by Claim 2, S must contain all the vertices of a cycle corresponding to
an arc gadget. Furthermore, notice that to ensure the degree condition in H ,
once we have a vertex of a cycle in S all the vertices of this cycle and their
neighbors also are in S. Without loss of generality, let Cef be this cycle, and
suppose that it belongs to the gadget Si,j , i.e., e ∈ E[ci, cj] and i < j. Notice
that, by construction, it forces some of the other vertices to belong to S. First,
its match vertices force the cycle Ceb of Sj,i to be in S. The coherence vertices
of Cef force S to contain at least one cycle in Si,l, for all l ∈ {1, · · · , k}, l �= i.

20 O. Amini, I. Sau, and S. Saurabh

They in turn force S to contain at least one cycle from the remaining gadgets
Sp,q for all p �= q ∈ {1, . . . , k}. The selection vertices of each such cycle in
Sp,q force S to contain Ap,q. But because of our condition on the size of S
(|S| = k′), we can select exactly one cycle gadget from each of the gadgets Sp,q,
p �= q ∈ {1, 2, · · · , k}. Let E′ be the set of edges in E(G) corresponding to arc
gadgets selected in S. We claim that G[V [E′]] is a multi-color clique of size k in
G. Here V [E′] is a subset of vertices of V (G) containing the end points of the
edges in E′. First of all, because of the match vertices, once ef ∈ E′, it forces
eb ∈ E′. To conclude the proof we only need to ensure that all the edges from
a particular color class emanate from the same vertex. But this is ensured by
the restriction on the size of S and the presence of coherence vertices on the
cycles selected in S from Sp,q, p �= q ∈ {1, 2, · · · , k}. To see this, let us take
two arcs e = (u, v) ∈ (E[ci, cp] ∩ E′) and e′ = (u′, w) ∈ (E[ci, cq] ∩ E′). Now
the 4 vertices upq, uqp, u′

pq and u′
qp belong to S. If u is different from u′ then

it would imply that S has at least 2 elements more than the expected size k′,
which would contradict the condition on the size of S. All these facts together
imply that G[V (E′)] forms a multi-colored k-clique in the original graph G. 	

Claims 1 and 3 together yield the following theorem:

Theorem 1. MSMD3 is W[1]-hard.

We shall see in the next section that the proof of the Theorem 1 can be gener-
alized for larger values of d, as well as for a few variants.

2.2 W [1]-Hardness of MSMDd for d ≥ 4

In this section we generalize the reduction given in Section 2 for d ≥ 4. The main
idea is to change the role of the cycles Cex , x ∈ {b, f}, by (d− 1)-regular graphs
of appropriate size. We show below all the necessary changes in the construction
of the gadgets to ensure that the proof for d = 3 works for d ≥ 4.

Arc gadgets for d ≥ 4: Let us take C to be a (d − 1)-regular graph of size
d + (d− 1)(k− 2) + (d− 1), if it exists (that is, if (d− 1) is even or k is odd). If
it does not exist, we take a graph of size (d + 1) + (d− 1)(k + 2) + (d− 1) and
with regular degree d − 1 on the set C of d + (d − 1)(k + 2) + (d − 1) vertices
and degree d on the last vertex v. As before, we replace each edge e by two arcs
ef and eb. For each arc ex ∈ E[ci, cj], we add a copy of C, that we call Cex , with
the following vertex set:

– selection vertices: ex
s1, ex

s2, · · · , ex
sd;

– coherence vertices: ex
ch1r, · · · , ex

ch(d−1)r, for all r ∈ {1, . . . , k}, r �= i, j; and
– match vertices: ex

m1, · · · , ex
m(d−1).

Selection gadgets for d ≥ 4: Without loss of generality suppose that x = f .
As before, we add a vertex Aci,cj , and for every arc ef ∈ E[ci, cj] we add all
the edges from Aci,cj to all the selection vertices of the graph Cef . We call this
gadget Si,j .

Parameterized Complexity 21

Coherence gadgets for d ≥ 4: Fix an i, 1 ≤ i ≤ k. Let us consider all the
selection gadgets of the form Si,p, p ∈ {1, · · · , k} and p �= i. For any u ∈ V [ci],
and any two indices p �= q ≤ k, p, q �= i, we add a new edge {upq, uqp}. For every
arc e = (u, v) ∈ E[ci, cp], with u ∈ V [ci], we pick the graph Cex , x ∈ {f, b},
depending on whether e is forward or backward, and add d−1 edges of the form
{ech1q, upq}, {ech2q, upq}, . . . , {ech(d−1)q, upq}. Similarly, for an edge e = (u, w) ∈
E[ci, cq], with u ∈ V [ci], we pick the graph Cex , x ∈ {f, b}, and add d− 1 edges
of the form {ech1p, uqp}, . . . , {ech(d−1)p, uqp}.

Match gadgets for d ≥ 4: For the two arcs ef = (u, v) and eb = (v, u), we con-
sider the two graphs Cef and Ceb corresponding to ef and eb. Now we add a match-
ing edge {e∗, e∗} and add all the edges of the form {ef

m1, e
∗}, . . . , {ef

m(d−1), e
∗}

and {eb
m1, e∗}, . . . , {eb

m1, e∗}, where ef
mi, eb

mi are match vertices of Cef and of Ceb ,
respectively.

This completes the construction of the gadgets, and the union of all of them
defines the graph GG. It is not hard to see that a proof similar to that of Theo-
rem 1 shows that G, an instance of multi-color clique, has a multi-colored clique
of size k if and only if GG has a subgraph of size k′ with minimum degree d.
Here k′ depends on the size of (d − 1)-regular graph chosen in the construction
of the arc gadget. For an example if we take a (d − 1)-regular graph of size
d+(d−1)(k−2)+(d−1), then k′ = k(k−1)[(2d−1)+(k−2)(d−1)+(k−1)].
The proof of the next theorem is along the lines of the proof of Theorem 1.

Theorem 2. MSMDd is W[1]-hard for all d ≥ 3.

If, instead of finding an induced subgraph of size at most k of degree at least d
in MSMDd, we would like to find a d-regular induced subgraph (or subgraph)
H of G of size at most k, we get MI-d-RSP and M-d-RSP problems respec-
tively. Notice that the minimum subgraph of degree at least d in the proofs of
Theorems 1 and 2 turns out to be an induced subgraph of regular degree d in
GG. As a consequence we obtain the following corollary:

Corollary 1. MI-d-RSP and M-d-RSP are W[1]-hard for all d ≥ 3.

3 Faster FPT Algorithms for Graphs with Bounded
Local Tree-Width and Graphs with Excluded Minors

In this section we give a fast and explicit algorithm for MSMDd, d ≥ 3, in
graphs with bounded local tree-width and graphs excluding a fixed graph M
as a minor. In Section 3.1 we describe our algorithm for graphs with bounded
local tree-width, and finally in Section 3.2 we give our parameterized algorithms
for MSMDd (for any d ≥ 3) for classes of graphs excluding a fixed minor M .
We need the definitions of local tree-width, clique-sum and h-nearly embeddable
graphs to handle these graph classes.

The definition of tree-width, which has become quite standard now, can been
generalized to take into account the local properties of G, and this is called local

22 O. Amini, I. Sau, and S. Saurabh

tree-width. To define it formally we first need to define the r-neighborhood of
vertices of G. The distance dG(u, v) between two vertices u and v of G is the
length of a shortest path in G from u to v. For r ≥ 1, a r-neighborhood of a
vertex v ∈ V is defined as N r

G(v) = {u | dG(v, u) ≤ r}.
Definition 2 (Local tree-width [14]). The local tree-width of a graph G is
a function ltwG : N → N which associates to every integer r ∈ N the maximum
tree-width of an r-neighborhood of vertices of G, i.e.

ltwG(r) = max
v∈V (G)

{tw(G[N r
G(v)])}.

A graph class G has bounded local tree-width if there exists a function f : N→ N

such that for each graph G ∈ G , and for each integer r ∈ N, we have ltwG(r) ≤
f(r). For a given function f : N → N, Gf is the class of all graphs G of local
tree-width at most f , i.e. such that ltwG(r) ≤ f(r) for every r ∈ N. See [9] and
[14] for more details.

Let us now provide the basics to understand the structure of the classes of
graphs excluding a fixed graphs as a minor.

Definition 3 (Clique-sum). Let G1 = (V1, E1) and G2 = (V2, E2) be two
disjoint graphs, and k ≥ 0 an integer. For i = 1, 2, let Wi ⊂ Vi form a clique
of size h and let G′

i be the graph obtained from Gi by removing a set of edges
(possibly empty) from the clique Gi[Wi]. Let F : W1 →W2 be a bijection between
W1 and W2. We define the h-clique-sum or the h-sum of G1 and G2, denoted
by G1⊕h,F G2, or simply G1⊕G2 if there is no confusion, as the graph obtained
by taking the union of G′

1 and G′
2 by identifying w ∈ W1 with F (w) ∈ W2, and

by removing all the multiple edges. The image of the vertices of W1 and W2 in
Gi ⊕G2 is called the join of the sum.

Note that ⊕ is not well defined; different choices of G′
i and the bijection F can

give different clique-sums. A sequence of h-sums, not necessarily unique, which
result in a graph G, is called a clique-sum decomposition or, simply, a clique-
decomposition of G.

Definition 4 (h-nearly embeddable graph). Let Σ be a surface with bound-
ary cycles C1, . . . , Ch. A graph G is h-nearly embeddable in Σ, if G has a subset
X of size at most h, called apices, such that there are (possibly empty) subgraphs
G0, . . . , Gh of G \X such that

1. G \X = G0 ∪ · · · ∪Gh;
2. G0 is embeddable in Σ (we fix an embedding of G0);
3. G1, . . . , Gh are pairwise disjoint;
4. for 1 ≤ · · · ≤ h, let Ui := {ui1 , . . . , uimi

} = V (G0) ∩ V (Gi), Gi has a path
decomposition (Bij), 1 ≤ j ≤ mi) of width at most h such that
(a) for 1 ≤ i ≤ h and for 1 ≤ j ≤ mi we have uj ∈ Bij

(b) for 1 ≤ i ≤ h, we have V (G0) ∩ Ci = {ui1 , . . . , uimi
} and the points

ui1 , . . . , uimi
appear on Ci in this order (either walking through the cycles

walk clockwise or counterclockwise).

Parameterized Complexity 23

3.1 Graphs with Bounded Local Tree-Width

In order to prove our results we need the following lemma, which gives the time
complexity of finding a smallest induced subgraph of degree at least d in graphs
with bounded tree-width.

Lemma 1. Let G be a graph on n vertices with a tree-decomposition of width
at most t, and let d be a positive integer. Then in time O((d + 1)t(t + 1)d2

n) we
can decide whether there exists an induced subgraph of degree at least d in G and
if yes find one of the smallest size.

As is usual in algorithms based on tree-decompositions, the proof uses the dy-
namic programming approach based on a given nice tree-decomposition, which
at the end either produces a connected subgraph of G of minimum degree at least
d and of size at most k, or decides that G does not have any such subgraph.
Given a tree-decomposition (T,X), first we suppose that the tree T is rooted
at a fixed vertex r. A {0, 1, 2, 3, . . . , d}-coloring of vertices in Xi is a function
ci : Xi → {0, 1, . . . , d− 1, d}. Let supp(c) = {v ∈ Xi| c(v) �= 0} be the support of
c. For any such {0, 1, . . . , d}-coloring c of vertices in Xi, we denote by a(i, c) the
minimum size of an induced subgraph H(i, c) of G[Xi ∪

⋃
j a child of i Xj], which

has degree c(v) for every v ∈ Xi with c(v) �= d, and degree at least d on its other
vertices. Note that H(i, c)∩Xi = supp(c). If such a subgraph does not exist, we
define a(i, c) = +∞. We can then develop recursive formulas for a(i, c), starting
from the leaves of T . Looking at the values of a(r, c) we can decide if such a
subgraph exists in G. The complete proof of this lemma can be found in [1].

Theorem 3. For any d ≥ 3 and any function f : N → N, MSMDd is fixed-
parameter tractable on Gf . Furthermore, the algorithm runs in time O((d +
1)f(2k)(f(2k) + 1)d2

n2).

Proof. Given the input graph G = (V, E) ∈ Gf , that is, G has a bounded local
tree-width and the bound is given by the function f . We first notice that if there
exists an induced subgraph H ⊆ G of size at most k and degree at least d, then
H can be supposed to be connected. Secondly, if we know a vertex v of H , then
H is contained in N r

G[v], which has diameter at most 2k. Hence there exists the
desired H if and only if there exists v ∈ V such that H is contained in N r

G[v]. So
to solve the problem we find in polynomial time a tree-decomposition of N r

G[v]
for all v ∈ V of width f(2k), and then run the algorithm of Lemma 1 to obtain
the desired result. 	

The function f(k) is known to be 3k, Cggk, and b(b − 1)k−1 for planar graphs,
graphs of genus g, and graphs of degree at most b, respectively [9,14]. Here Cg

is a constant depending only on the genus g of the graph. As an easy corollary
of Theorem 3 we have the following:

Corollary 2. MSMDd can be solved in O((d + 1)6k(6k + 1)d2
n2), O((d +

1)2Cggk(2Cggk + 1)d2
n2) and O((d + 1)2b(b−1)k−1

(2b(b − 1)k−1 + 1)d2
n2) time

in planar graphs, graphs of genus g, and graphs of degree at most b, respectively.

24 O. Amini, I. Sau, and S. Saurabh

Bt

Bp(t)

Bs Bs1 2

As1

At

As2

Xt

Bt

Bp(t)

Bs Bs1 2

^

vertices in
(apices)

^

^^

Fig. 2. Tree-decomposition of a minor free graph. The vertices in Xt (i.e. the apices)
are depicted by ©. Note that Bs1 and Bs2 could have non-empty intersection (in Bt).

3.2 M-Minor Free Graphs

In this section we give the results for the class of M -minor free graphs. To do so,
we need the following theorem which gives the structural result about the class
of graphs that are h-nearly embeddable in a fixed surface Σ. It says that they
have linear local tree-width after removing the set of apices. More specifically,
the result of Robertson and Seymour which was made algorithmic by Demaine
et al. in [7], states the following:

Theorem 4 ([19,7]). For every graph M there exists an integer h, depending
only on the size of M , such that every graph excluding M as a minor can be
obtained by clique sums of order at most h from graphs that can be h-nearly
embedded in a surface Σ in which M cannot be embedded. Furthermore, such a
clique-decomposition can be found in polynomial time.

Let G be a M -minor free graph, and (T,B = {Bt}) be a clique-decomposition
of G given by Theorem 4. Given this rooted tree T , we define At := Bt ∩Bp(t)

where p(t) is the unique parent of the vertex t in T , and Ar = ∅. Let B̂t be the
graph obtained from Bt by adding all possible edges between the vertices of At

and also between the vertices of As, for each child s of t, making At and the
As’s to induce cliques (see Fig. 2). In this way, G becomes an h-clique sum of
the graphs B̂t according to the above tree T , and can also be viewed as a tree-
decomposition given by (T,B = {Bt}), where each B̂t is h-nearly embeddable
in a surface Σ in which M cannot be embedded. Let Xt be the set of apices of
B̂t. Then |Xt| ≤ h, and B̂t \ Xt has linear local tree-width by Theorem 4. We
denote by Gt the subgraph induced by all the vertices of Bt ∪s Bs, s being a
descendant of t in T .

Parameterized Complexity 25

Again to simplify the presentation, we give the proof for the case d = 3. Recall
that we are looking for a subset of vertices S, of size at most k, which induces a
graph H = G[S] of minimum degree at least three.

Our algorithm consists of two levels of dynamic programming. The top level
of dynamic programming runs over the clique-decomposition, and within each
subproblem of this dynamic programming we focus on the induced subgraph of
the vertices in Bt. Our first level of dynamic programming computes the size of
a smallest subgraph of Gt, complying with degree constraints on the vertices of
At. These constraints, as before, represent the degree of each vertex of At in the
subgraph Ht := Gt[St], i.e. the trace of H in Gt, where St = S∩V (Gt). This two
level dynamic programming requires a combinatorial bound on the tree-width as
a function of the parameter k for each of the Bt’s, after removing the apices Xt

from Bt. This is done by making all possible choices in which they can interact
with the desired solution. The next two lemmas are used later to obtain this
combinatorial bound.

Lemma 2. Let H = G[S] be a connected induced subgraph of G. Then the
subgraph B̂t[S ∩Bt] is connected.

The proof of Lemma 2 easily follows from the properties of a tree-decomposition
and the fact that At and As’s are cliques in B̂t, s being a child of t in T .

Lemma 3. Let H = G[S] be a smallest connected subgraph of G of minimum
degree at least three. Then the subgraph B̂t[St ∩ Bt \ Xt] has at most 3h + 1
connected components, where h is the integer given by Theorem 5.

Proof. Let C1, . . . , Cr be the connected components of B̂t[St∩Bt \Xt] =: L. We
want to prove that r ≤ 3h + 1. Assume to the contrary that r > 3h+ 1. Now we
form another solution H ′ with size strictly smaller than H , which contradicts
the fact that H is of minimum size.

Let us now build the graph H ′. For each vertex v ∈ Xt ∩ St, let

bv := min{dHt(v), 3}
Then for each vertex v ∈ Xt ∩ St, we choose at most bv connected components
of L, covering at least bv neighbors of v in Ht. We also add the connected
component containing all the vertices of At \Xt (recall that At induces a clique
in B̂t). Let A be the union of all the vertices of these connected components.
Since |Xt| ≤ h, A has at most 3h + 1 connected components. Also, since As

induces a clique in B̂t, for each child s of t such that As ∩A �= ∅, we have that
As \Xt ⊂ A. We define H ′ as follows

H ′ := G

⎡

⎣

⎛

⎝
⋃

{s : As∩A �=∅}
Ss

⎞

⎠ ∪ ((Xt ∪A) ∩ St) ∪ (S \ St)

⎤

⎦ .

Clearly, H ′ ⊆ H . We have that |H ′| < |H | because, assuming that r > 3h + 1,
there are some vertices of Ht ⊂ H which are in some connected component Ci

which does not intersect H ′.

26 O. Amini, I. Sau, and S. Saurabh

Thus, it just remains to prove that H ′ is indeed a solution of MSMD3, i. e.,
H ′ has minimum degree at least 3. We prove it using a sequence of four simple
claims:

Claim 4. The degree of each vertex v ∈ (V (H ′) ∩Xt) is at least 3 in H ′.
Proof. This is because each such vertex v has degree at least bv in H ′

t. If dv < 3,
then v should be in At (if not, v has degree dv < 3 in H , which is impossible),
and hence v is connected to at least 3 − dv vertices in S \ St. But S \ St

is included in H ′, and so every vertex of Xt ∩ V (H ′) has degree at least 3
in H ′. 	

Claim 5. The degree of each vertex in (H \Ht) is at least 3 in H ′.
Proof. This follows because At ∩H ⊂ H ′. 	

Claim 6. The degree of each vertex in A is at least 3 in H ′.
Proof. Every vertex in A has the same degree in both H ′ and H . This is

because A is the union of some connected components, and no vertex of A
is connected to any other vertex in any other component. 	

Claim 7. Every other vertex of H ′ also has degree at least 3.
Proof. To prove the claim we prove that the vertices of H ′\(G[Xt]∪(H\Ht)∪A)

have degree at least 3 in H ′. Remember that all these vertices are in some
Ss, for some s such that As has a non-empty intersection with A. We claim
that all these vertices have the same degree in both H and H ′. To prove
this, note that H ′ ∩As = H ∩As for all such s. Indeed, (As \Xt) ⊂ A, and
so As ⊂ (A ∪ Xt). Let u be such a vertex. We can assume that u /∈ Xt. If
u ∈ As, then clearly u ∈ A, and so we are done. If u ∈ (Ss \A), then every
neighbor of u is in Hs. But Hs ⊂ H ′, hence we are also done in this case. 	

This concludes the proof of the lemma. 	

We define a coloring of At to be a function c : At ∩ S → {0, 1, 2, 3}. For i < 3,
c(v) = i means that the vertex v has degree i in the subgraph Ht of Gt that
we are looking for, and c(v) = 3 means that v has degree at least three in Ht.
By a(t, c) we denote the minimum size of a subgraph of Gt with the prescribed
degrees in At according to c. We describe in what follows the different steps of
our algorithm.

Recursively, starting from the leaves of T to the root, for each node t ∈ V (T)
and for every coloring c of At, we compute a(t, c) from the values of a(s, c), where
s is a child of t, or we store a(t, c) = +∞ if no such subgraph exists. The steps
involved in computing a(t, c) for a fixed coloring c are the following:

(i) We guess a subset Rt ⊆ Xt \ At such that Rt ⊆ St. We have at most 2h

choices for Rt.
(ii) For each vertex v in Rt, we guess whether v is adjacent to a vertex of

Bt \ (Rt ∪ At), i.e. we test all the 2-colorings γ : Rt → {0, 1} such that
γ(v) = 1 means that v is adjacent to a vertex of Bt\(Rt∪At). The number
of such colorings is at most 2h. For a fixed coloring γ, we guess one vertex

Parameterized Complexity 27

in Bt \ (Rt∪At), which we suppose to be in St, for each of the vertices v in
Rt such that γ(v) = 1. For each coloring γ, we have at most nh choices for
the new vertices which could be included in St. If a vertex has γ(v) = 0,
it is not allowed to be adjacent to any vertex of Bt besides the vertices in
At ∪Rt. Let Dγ

t be the chosen vertices at this level.
(iii) Now we remove all the vertices of Xt from Bt. Lemma 3 ensures that the

induced graph B̂t[St ∩Bt \Xt] has at most 3h + 1 connected components.
Now we guess these connected components of B̂t[St ∩Bt \Xt] by guessing
a vertex from these connected components in Bt \ Xt. Since we need to
choose at most 3h + 1 vertices this way, we have at most (3h + 1)n3h+1

new choices. Let these newly chosen vertices be F γ
t and

Rγ
t = Rt ∪Dγ

t ∪ F γ
t ∪ {v ∈ At \Xt | c(v) �= 0}.

Let G∗
t be the graph induced by the k-neighborhood (vertices at distance

at most k) of all vertices of Rγ
t in B̂t \Xt, i.e. G∗

t = (B̂t \Xt)[Nk(Rγ
t)].

(iv) Each connected component of G∗
t has diameter at most 2k in B̂t \Xt. As

B̂t \Xt has bounded local tree-width, this implies that G∗
t has tree-width

bounded by a function of k. By the result of Demaine and Hajiaghayi [6],
this function can be chosen to be linear.

(v) In this step we first find a tree-decomposition (Tγ , {Up}) of G∗
t . Since As ∩

G∗
t is a clique, it appears in a bag of this tree-decomposition. Let the node

representing this bag in this tree be p. Now we make a new bag containing
the vertices of As ∩G∗

t and make it a leaf of the tree Tγ by adding a node
and connecting this node to p. By abuse of notation, we denote by s this
distinguished leaf containing the bag As ∩G∗

t . We also add all the vertices
of At to all the bags of this tree-decomposition, increasing the bag size by
at most h. Now we apply a dynamic programming algorithm similar to the
one we used for the bounded local tree-width case. Remember that for each
child s of t, we have a leaf in this decomposition with the bag As ∩ G∗

s .
The aim is to find an induced subgraph which respects all the choices we
made at earlier steps above, and with the minimum size.

We start from the leaves of this decomposition Tγ and move towards its
root. At this point we have all the values of a(s, c′) for all possible colorings
c′ of As, where s is a child of t (because of the first level of dynamic program-
ming). To compute a(t, c) we apply the dynamic programming algorithm of
Lemma 1 with the restriction that for each distinguished leaf s of this decom-
position, we already have all the values a(s, c) for all colorings of As ∩ G∗

s

(we extend this coloring to all As by giving the zero values to the vertices of
As \G∗

s). Note that the only difference between this dynamic programming
and the one of Lemma 1 is the way we initialize the leaves of the tree.

(vi) Return the minimum size of a subgraph with the degree constraint c on At,
among all the subgraphs we found in this way. Let a(t, c) be this minimum.

(vii) If for some vertex t and a colouring c : At → {0, 3}, we have 1 ≤ a(t, c) ≤ k,
return Yes. If not, we conclude that such a subgraph does not exist.

This completes the description of the algorithm. Now we discuss its time com-
plexity. Let CM be the constant depending only on the linear local tree-width of

28 O. Amini, I. Sau, and S. Saurabh

the surfaces in which M cannot be embedded. For each fixed coloring c, we need
time 4CM k(CMk + 1)9n4h+1 to obtain a(t, c), where t ∈ T . Since the number of
colorings of each At is at most 4h, and the size of the clique-decomposition is
O(n), we get the following theorem:

Theorem 5. Let C be the class of graphs with excluded minor M . Then, for
any graph in this class, one can find an induced subgraph of size at most k with
degree at least 3 in C in time O(4O(k+h)(O(k))9nO(1)), where the constants in
the exponents depend only on M .

Theorem 5 can be generalized to larger values of d with slight modifications. We
state the following theorem without a proof:

Theorem 6. Let C be a class of graphs with an excluded minor M . Then, for
any graph in this class, one can find an induced subgraph of size at most k with
degree at least d in C in time O((d+1)O(k+h)(O(k))d2

nO(1)), where the constants
in the exponents depend only on M .

4 Conclusions

In this paper we have introduced the MSMDd problem, a generalization of
the problem of finding a shortest cycle in a graph, and we have studied its
parameterized complexity. We have shown that MSMDd for d ≥ 3 is W [1]-
hard in general undirected graphs, and we have given explicit fixed-parameter
tractable algorithms when the input graph is of bounded local tree-width or
excludes a fixed minor M . These algorithms are faster than those coming from
the meta-theorem of Frick and Grohe [13] about problems definable in first-
order logic over “locally tree-decomposable structures”. We believe that our
algorithmic initiations will trigger further research on the problem. This will
help us in understanding not only this problem, but also the closely related
problems of Dense k-Subgraph and Traffic Grooming. The parameterized
tractability of the Traffic Grooming problem still remains open.

Acknowledgement. The authors would like to thank M. Fellows , D. Lok-
shtanov and S. Pérennes for insightful discussions. We would especially like to
thank D. Lokshtanov for his help in proving the hardness result and N. Misra
for carefully reading the manuscript.

References

1. Amini, O., Sau, I., Saurabh, S.: Parameterized Complexity of the Smallest Degree-
Constrained Subgraph Problem, INRIA Technical Report 6237 (2007) (accessible
in first author’s homepage)

2. Amini, O., Pérennes, S., Sau, I.: Hardness and Approximation of Traffic Grooming.
In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 561–573. Springer,
Heidelberg (2007)

Parameterized Complexity 29

3. Andersen, R.: Finding large and small dense subgraphs (submitted, 2007),
http://arXiv:cs/0702032v1

4. Chor, B., Fellows, M., Ragan, M.A., Razgon, I., Rosamond, F., Snir, S.: Connected
coloring completion for general graphs: Algorithms and complexity. In: Lin, G. (ed.)
COCOON 2007. LNCS, vol. 4598, pp. 75–85. Springer, Heidelberg (2007)

5. Dawar, A., Grohe, M., Kreutzer, S.: Locally Excluding a Minor. In: LICS, pp.
270–279 (2007)

6. Demaine, E., Haijaghayi, M.T.: Equivalence of Local Treewidth and Linear Local
Treewidth and its Algorithmic Applications. In: SODA, pp. 840–849 (2004)

7. Demaine, E., Hajiaghayi, M.T., Kawarabayashi, K.C.: Algorithmic Graph Mi-
nor Theory: Decomposition, Approximation and Coloring. In: FOCS, pp. 637–646
(2005)

8. Dutta, R., Rouskas, N.: Traffic grooming in WDM networks: Past and future. IEEE
Network 16(6), 46–56 (2002)

9. Eppstein, D.: Diameter and Tree-width in Minor-closed Graph Families. Algorith-
mica 27(3–4), 275–291 (2000)

10. Feige, U., Kortsarz, G., Peleg, D.: The Dense k-Subgraph Problem. Algorith-
mica 29(3), 410–421 (2001)

11. Fellows, M., Hermelin, D., Rosamond, F.: On the fixed-parameter intractability
and tractability of multiple-interval graph properties. Manuscript (2007)

12. Goemans, M.X.: Minimum Bounded-Degree Spanning Trees. In: FOCS, pp. 273–
282 (2006)

13. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable
structures. J. ACM 48(6), 1184–1206 (2001)

14. Grohe, M.: Local Tree-width, Excluded Minors and Approximation Algorithms.
Combinatorica 23(4), 613–632 (2003)

15. Khot, S.: Ruling out PTAS for graph min-bisection, densest subgraph and bipartite
clique. In: FOCS, pp. 136–145 (2004)

16. Klein, P.N., Krishnan, R., Raghavachari, B., Ravi, R.: Approximation algorithms
for finding low-degree subgraphs. Networks 44(3), 203–215 (2004)

17. Könemann, J.: Approximation Algorithms for Minimum-Cost Low-Degree Sub-
graphs, PhD Thesis (2003)

18. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids, Holt, Rinehart
and Winston (1976)

19. Robertson, N., Seymour, P.: Graph minors XVI, Excluding a non-planar graph. J.
Comb. Theory, Series B 77, 1–27 (1999)

http://arXiv:cs/0702032v1

Fixed Structure Complexity

Yonatan Aumann and Yair Dombb

Department of Computer Science
Bar-Ilan University

Ramat Gan 52900, Israel
aumann@cs.bu.ac.il, yairbiu@gmail.com

Abstract. We consider a non-standard parametrization, where, for
problems consisting of a combinatorial structure and a number, we pa-
rameterize by the combinatorial structure, rather than by the number.
For example, in the Short-Nondeterministic-Halt problem, which is to
determine if a nondeterministic machine M accepts the empty string in
t steps, we parameterize by |M |, rather than t. We call such parametriza-
tion fixed structure parametrization. Fixed structure parametrization not
only provides a new set of parameterized problems, but also results in
problems that do not seem to fall within the classical parameterized
complexity classes. In this paper we take the first steps in understanding
these problems. We define fixed structure analogues of various classical
problems, including graph problems, and provide complexity, hardness
and equivalence results.

1 Introduction

Motivating Examples. Consider the classical Tiling problem. Given a set of tiles
T and integer t, decide whether it is possible to tile the t× t area with tiles from
T . The general problem is NP-complete. Parameterizing by t it is W[1]-complete.
But what if we parameterize by |T |, is the problem FPT? where does it fall in
the fixed parameter hierarchy? The naive algorithm takes O(|T |t2) steps which
does not even constitute an XP algorithm for the parameter |T |. Is the problem
in XP? (I.e. is there an O(tf(|T |)) algorithm?

Next, consider the following generalization of the Hamiltonian cycle problem.
Given a graph G (on n vertices) and integers m = (m1, . . . , mn), determine if
there is a cycle that visits node vi exactly mi times. Clearly, this problem is
NP-complete. If parameterized by m it is para-NP complete. But what if we
parameterize by |G|? Does the problem then become FPT? Is it XP? Para-NP-
complete?

This paper aims at developing the theory and tools to answer questions such
as the above.

Fixed Structure Parametrization. In general, many problems can naturally be
viewed as composed of two parts: (i) a combinatorial structure (e.g. a set of tiles,
a graph), and (ii) a number(s) (size of area to be tiled, number of visits). The
standard parametrization most often takes the “number part” as the parame-
ter, and asks whether the problem is polynomial in the combinatorial structure.

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 30–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fixed Structure Complexity 31

Here, we reverse the question, taking the combinatorial structure as the pa-
rameter, and asking whether the problem is polynomial in the “number part”.1
Accordingly, we call our parametrization fixed structure parametrization, pro-
ducing fixed structure problems. Interestingly, despite the extended literature on
parameterized complexity, fixed structure parameterizations have enjoyed little
consideration, and in no systematic way.

As it turns out, fixed structure problems not only provide a new set of param-
eterized problems, but also result in problems that do not seem to fall within
the classical parameterized complexity classes. Rather they seem to form com-
plexity classes of their own. In this paper we aim at taking the first steps in
understanding this fixed structure complexity.

Summary of Results. Some fixed structure problems, such as the generalized
Hamiltonian cycle problem mentioned above, we could show to be FPT. For
others, we identified three different equivalence classes of fixed structure prob-
lems, all of which seem to consist of problems that are not FPT. The first of these
classes is defined by the following fixed structure variant of short-NSTM-Halt:

Fixed-Structure-short-NTM-Exact-Halt (FS-Exact-Halt)
Instance: Non-deterministic Turing machine M ; integer t (in unary)

Parameter: |M |
Problem: Does M accept the empty string in exactly t steps?

The naive algorithm for this problems runs in time Θ(|M |t). Thus, the question
is not only if the problem is FPT, but also if it is altogether in XP. We prove:

Theorem 1. If FS-Exact-Halt ∈ XP then NEXP=EXP.

Accordingly, in this work we also consider XP reductions, not only FPT ones
(when the reductions are also FPT, we note so). We prove:

Theorem 2. The following are equivalent to FS-Exact-Halt:
• Fixed-structure tiling of the t× t torus (under FPT reductions).
• Fixed-structure clique, independent set and vertex-cover (under XP reduc-

tions).

The exact definitions of the fixed-structure versions of the graph problems are
provided in Section 3. We note that the classical reductions, used for proving
the NP-completeness of the above problems, often fail in our fixed structure
setting, as they “hardwire” the number part into combinatorial structure (for
more details see the proof of Theorem 2 in Section 4).

We define two additional fixed-structure equivalence classes, using similar ma-
chine characterizations:

1 Clearly, there is no formal distinction between the “number part” of a problem
and the “combinatorial structure”; both are strings over some alphabet. In practice,
however, the two elements are frequently clearly distinct.

32 Y. Aumann and Y. Dombb

Fixed-Structure-short-NTM-Halt (FS-Halt)
Instance: Non-deterministic Turing machine M ; integer t (in unary)

Parameter: |M |
Problem: Does M accept the empty string in at most t steps?

Fixed-Structure-short-NTM-Not-Halt (FS-Not-Halt)
Instance: Non-deterministic Turing machine M ; integer t (in unary)

Parameter: |M |
Problem: Does M have a computation on the empty string not halting

for at least t steps?

Note that in all three problems we did not specify the number of tapes. The
reason is that we prove that any of them is equivalent for any number of tapes,
even under FPT reductions (unlike the case for the classical parametrization [1]).

Under classical complexity, as well under the standard parametrization, the
three problems FS-Halt, FS-Not-Halt and FS-Exact-Halt are equivalent. Interest-
ingly, under the fixed-structure parametrization this is not the case, even under
XP reductions (hence clearly also under FPT reductions). We prove:

Theorem 3
1. FS-Halt ≤fpt FS-Exact-Halt and FS-Not-Halt ≤fpt FS-Exact-Halt, but
2. If FS-Halt ≡XP FS-Exact-Halt or FS-Not-Halt ≡XP FS-Exact-Halt then

NEXP=EXP.

Some problems we show are equivalent to FS-Halt or to FS-Not-Halt:

Theorem 4
• Fixed-Structure-Short-Post-Correspondence and Fixed-Structure-Short-

Grammar-Derivation are equivalent to FS-Halt (under FPT reductions).
• Fixed-Structure-Restricted-Tiling (i.e. tiling with a specified origin tile) of

the t× t plane is equivalent to FS-Not-Halt (under FPT reductions).

Thus, in the fixed structure setting, tiling of the plane and tiling of the torus
are not equivalent.

Related Work. To the best of our knowledge, there has been no systematic
analysis of fixed-structure parametrization. Of the 376 parameterized problems
described in the Compendium of Parameterized Problems [2], we identified few
problems that we would classify as fixed-structure, in the sense we consider here.
Notably, the following two: the parameterizations of Bounded-DFA-Intersection
by k, |Σ|, and q, which is reported open in [3], and the parametrization of the
Rush-Hour-Puzzle by C (the set of cars), which is shown to be FPT in [4], by
exhaustive search.

Related to fixed-structure problems are those problems where instances are
composed of two combinatorial structures, and one of the structures is taken as
the parameter. Many of the database query problems are of this type [5,6]. In
this case there are two combinatorial structures – the query Q and the database
d, and the parameter is either |Q| or the number of variables within. The full

Fixed Structure Complexity 33

characterization of the complexity of several of these problems is still open [5].
It is interesting to note that Vardi’s initial work [7] considers both parameter-
izations – both by |Q| and by |d| (though, naturally, without explicit use of
parameterized complexity terminology).

Other problems with two combinatorial structures are ordering problems on
graphs, lattices and the like, e.g. given graphs H and G decide whether H is
a minor of G (see [8,9]). Some of these problems have been resolved, but the
complexity of others is still open. While these problems are not strictly fixed-
structure in the sense we consider here, it would be interesting to see if the
theory developed here may be relevant to these problems as well.

Organization of the Paper. Unfortunately, the space limitations of this extended
abstract allow us to provide only a small fraction of the results and proofs. In
particular, all the positive results showing inclusion in FPT are omitted. Here, we
focus on hardness results alone. The full set of results and proofs will appear in
the full version. The rest of the paper is organized as follows. In the next section
we prove Theorems 1 and 3. Section 3 introduces the exact definition of the
fixed-structure versions of the graph problems. Section 4 provides the highlights
of the proof of Theorem 2. We conclude with open problems in Section 5.

2 Complexity and Hardness

We now prove Theorems 1 and 3, as well as an additional theorem.

Theorem 1 (repeated) If FS-Exact-Halt ∈ XP then EXP = NEXP.

Proof. Let L ∈ NEXP. Then there exists a nondeterministic Turing machine
ML, which for some constant c decides on every input x whether x ∈ L in time
2|x|

c

. We construct a new Turing machine M ′
L as follows. On the empty tape,

M ′
L first nondeterministically chooses some x ∈ Σ∗, and then runs ML on this

x. If ML accepts x, then M ′
L idles until exactly 2|x|

c

+x steps have elapsed since
the beginning of its run, and then accepts.2 Otherwise, M ′

L rejects.
Assume that FS-Exact-Halt ∈ XP . Then there exists an algorithm A and an

arbitrary function f(·), such that A(M, t) decides in |(M, t)|f(|M|)+f(|M |) steps
whether M has a computation that accepts the empty string in exactly t steps.
Given an input x, for which we want to decide whether x ∈ L, we simply run A
on the input (M ′

L, t), with t = 2|x|
c

+ x. Note that the function x ↪→ 2|x|
c

+ x is
a bijection, and therefore M ′

L accepts in exactly t steps iff x ∈ L. In addition,
A runs in time |(M ′

L, t)|f(|M ′
L|) + f(|M ′

L|) = O(2xc′
), for some c′ depending only

on M ′
L. Thus, L ∈ EXP and EXP = NEXP. ��

Next, we show an interesting, albeit easy, result, which will also serve us in our
next proof:

Theorem 5. FS-Halt and FS-Not-Halt are non-uniform FPT.

2 Note that it must be shown that this counting can be performed in the fixed structure
setting. The proof is omitted here and provided in the full version.

34 Y. Aumann and Y. Dombb

Proof. Consider the FS-Halt problem (the proof for FS-Not-Halt is analogous).
To prove that the problem is non-uniform FPT we need to construct, for every
size k, an algorithm Ak, such that for every M , with |M | = k, and every t,
decides whether (M, t) ∈ FS-Halt in time O(tα) for some constant α. We do so
by simply creating a table exhaustively listing, for each Turing machine M with
|M | = k, the minimum number of steps in which M can accept on the empty
string. Given an input (M, t) the algorithm consults this table, comparing t to
this minimum. Clearly, the algorithm is correct and runs in polynomial time.
Note, however, that constructing this table is, in general, undecidable. ��

Theorem 3 (repeated)

1. FS-Halt ≤fpt FS-Exact-Halt and FS-Not-Halt ≤fpt FS-Exact-Halt, but
2. If FS-Halt ≡XP FS-Exact-Halt or FS-Not-Halt ≡XP FS-Exact-Halt then

NEXP=EXP.

Proof. Due to lack of space, the proof of (1) is omitted. The proof of (2) combines
the techniques of Theorems 1 and 5. Suppose that R is an XP reduction from
FS-Exact-Halt to FS-Halt. Let L, ML and M ′

L be as defined in the proof of
Theorem 1. Then, for any x, x ∈ L iff M ′

L accepts the empty string in exactly
g(x) = 2|x|

c

+ x steps. Denote R(M ′
L, t) = (N, s). Then, since R is an XP

reduction, |N | must be bounded by a function of M ′
L alone. Thus, there is only

a finite number such N ’s (that are the result of applying R to M ′
L for some

t). Thus, after the reduction we need only consider a finite number of slices
of FS-Halt. By Theorem 5 there is a polynomial algorithm for each of these
slices. Hence, combining R with the union of these algorithms we obtain an
EXP algorithm for L. Note however, that this proof is non-constructive, as are
the algorithms provided by Theorem 5. ��

3 Defining Fixed-Structure Graph Problems

We are interested in defining fixed-structure versions of common graph problems.
This seems easy: many graph problems are naturally composed of a graph and
a number. Thus, to obtain a fixed structure version simply parameterize by the
graph structure. However, this approach results in non-interesting problems. The
reason is that the size of the graph necessarily bounds “the number” (e.g. the num-
ber of colors is at most the number of nodes), and the resulting problems are triv-
ially FPT. Thus, in order to obtain meaningful fixed structure graph problems, we
must be able to define families of graphs (of increasing sizes), all of which share
a common underlying structure. In a way, the grid is an example of such a graph
family; it comes in many sizes, but all share a common core structure. Cliques,
hypercubes and cycles are other examples of such graph families.

We now give a general definition of such graph families, which we call para-
metric graphs. The basic idea is to define the graphs using expressions that
accept parameters. The expression defines a graph by applying standard graph
operations to a set of base graphs and parameters. The base graphs can be any
explicitly represented graphs. The operations combine these graphs to obtain
larger and more complex ones. The operations we consider are:

Fixed Structure Complexity 35

• Union: for graphs G1 = (V1, E1) and G2 = (V2, E2), the union graph G =
G1 ∪G2 is the graph G = (V1 ∪ V2, E1 ∪E2).

• Multiplication (by a scalar): for a graph G and integer i, the i-multiplicity of
G, denoted by i ·G, is the union of i separate copies of G.

• Sum: defined on graphs over the same set of vertices, G1 = (V, E1) and
G2 = (V, E2). The sum graph G = G1 + G2 has the union of the edges from
both graphs, G = (V, E1 ∪ E2).

• Direct product (also known as tensor product): for graphs G1 = (V1, E1) and
G2 = (V2, E2), their direct product is the graph G = G1×G2 = (V1×V2, E)
such that ((v1, v2), (w1, w2)) ∈ E iff (v1, w1) ∈ E1 and (v2, w2) ∈ E2.

Using these operations it is possible to construct large and complex graphs from
smaller ones. For example, the cycle with 14 vertices can be constructed as:

C14 =
([

�

�
]
∪ 3 ·

[
�

�

�

�
])

+
(
3 ·

[
�

�

�

�
]
∪

[
�

�
])

=
[

�

�

�

�

�

�

�

�

�

�

�

�

�

�
]

Since the sum operation requires that both graphs share the same set of ver-
tices, w.l.o.g. we assume that the vertex set of any graph we consider is simply
the integers, {1, . . . , |V |}. Thus, following a union, multiplication or product
operation, the vertices must be renamed. We do so systematically “lexicograph-
ically”, as follows. For the the product and multiplication operations, the new
order is simply the lexicographic order on the new vertices. For G = G1 ∪ G2,
vertexes of each graphs retain their original order, and all those of G1 are come
before those of G2.

The multiplication operation allows us to define expressions that accept pa-
rameters. This way a single expression can define graphs of varying sizes, all
sharing a common, underlying combinatorial structure. Thus, we define a para-
metric graph as an expression of the above format that accepts parameters. Using
this notion we can define fixed-structure versions of classical graph problems. For
example, the fixed-structure version of Independent-Set is the following:

Fixed Structure Independent Set (∪, ·, +,×)
Instance: a parametric graph expression G (using the operations

∪, ·, +, and ×); a vector t of integer parameter values to
G (in unary); integer ψ.

Parameter: |G|
Problem: Does G(t) have an independent set of size ψ?

Note the complexity of the problem may depend on the set of operations used
in the graph expressions. Hence, the definition of the problem explicitly lists
these operations ((∪, ·, +,×) in our case). Also, note that the problem is not
necessarily in NP, as the size of the resultant graph is not polynomially bounded
in the input size.

Fixed-structure versions for other graph problems are defined similarly.

4 Problems Equivalent to FS-Exact-Halt

We now provide an outline for the proof of Theorem 2. Unfortunately, we cannot
provide all the details, but do hope that our exposition provides a flavor of the

36 Y. Aumann and Y. Dombb

problems one encounters in fixed structure reductions, and some of the methods
we use to overcome these problems.

Lemma 1. FS-Exact-Halt ≤fpt Fixed-structure-Torus-Tiling.

Proof. Let M be a Turing machine and t an integer. We construct a tile set
T = T (M) and an integer s = s(t), such that T has a valid tiling of the s×s torus
iff M accepts the empty string in exactly t steps. The core of the proof follows
the reduction used for proving the undecidability of tiling of the infinite first-
quadrant. The problem arises, however, when trying to convert this construction
to the bounded case, as discussed below.

The basic idea of the reduction from Turing machine computation to tiling
is to make each valid tiling represent a run of the Turing machine: every row in
the tiling corresponds to a configuration, and one row can be placed on top of
another only if the configuration corresponding to the bottom row yields the one
corresponding to the top row. Provided that the first row represents the initial
configuration of M , we obtain that the infinite first-quadrant can be tiled iff M
has a non-halting computation (see, for example, [10] for more details).

In order to use this reduction for proving hardness of torus-tiling, it is not
difficult to augment the construction, so that: (i) the row corresponding to the
initial configuration can only be placed directly above a row corresponding to
an accepting configuration, and (ii) the leftmost end of each row can be placed
directly to the right of the rightmost end. Thus, if M accepts in t steps then the
t× t torus can be tiled with T (M). Unfortunately, the converse is not necessarily
true. The problem is that the t× t torus can be split into smaller regions, each
corresponding to a shorter accepting computations. For example, the 10 × 10
torus can be tiled with four copies of a tiling of 5× 5 tori. Another subtle point
is guaranteeing that the first row indeed corresponds to the machine’s initial
configuration. For the unbounded case, this is provided by a careful and complex
construction, provided in [11]. Unfortunately, this construction does not seem to
carry over to the bounded case.

If we were to prove standard NP-completeness, the following simple and stan-
dard construction solves both of the above problems. Let T = T (M) be the
tile set obtained by the unbounded reduction. We create a new tile set T ′, such
that for each tile z ∈ T , we have (essentially) t2 copies, z(1,1), . . . , z(t,t), one for
each torus location. It is now easy to configure the tiles such that tile z(i,j) can
appear only at location (i, j) (for all z, i, j). In this way we have eliminated the
possibility to cover the torus by copies of smaller tori. In addition, we can force
the first row to whatever we wish, by eliminating all but the appropriate tiles
for this row. This construction fails, however, in the fixed structure setting. The
reason is that the reduction “hardwires” the number t into T ′. By doing so,
however, we have moved t into the “parameter” part of the instance, which is
forbidden in parameterized reductions.

Thus, we provide a solution that works independently of t, as follows. We
construct a set of “base tiles” upon which the original “machine simulation”
tiles are then superimposed. The “base tiles” are constructed such that they
only admit a specific tiling, which forces the tiling to “behave” as desired.

Fixed Structure Complexity 37

�� ��

�

�

(A)

�� ���

�
(B)

��

��� �

(C)
��

��
��

(D)

� �
�

�

(E)

� �
�

�
(F)

��

��
��

��

(G) (1) (2) (3)

Fig. 1. The base tiles

The Base Tiling. We start by creating the tiles (A)-(G) depicted in Figure 1.
One can observe that any torus can be tiled using this set of tiles, and that any
tiling of an odd sized torus can be decomposed into rectangular regions such that
(see Figure 2):

1. Tile (G) is placed at the bottom left corner of the region.
2. The rest of the bottom row is composed of tiles (A) and (B) only.
3. The rest of the leftmost column is composed of tiles (C) and (D) only.

We call such a region a core-region. Note that tile (G) can only be placed above
tiles (D) or (G), and to the right of tiles (B) or (G). Thus, we obtain that if a
core-region R is directly above another core-region S, then R and S have the
same width. Likewise, if R is directly to the right of S, then R and S have the
same height. Therefore, all core-regions must have the same size.

In order to force the core-regions to be square, we use the numbered tiles ((1)-
(3)) of Figure 1, which will be superimposed on the tiles (A)-(G). It is immediate
that tile (1) can only appear above tile (2), and that tile (2) can only appear
to the right to tile (1). Thus, tiles (1) and (2) necessarily form a diagonal. We
superimpose tile (1) on tiles (E) and (G); tile (2) on tiles (A), (D) and (F);
and tile (3) on tiles (A) though (F). This forces the core-regions to be square,
because the diagonal starting with the (G) on the bottom left corner must hit a
(G) tile at its other end. In all, we obtain that any tiling of an odd-sized torus
using this set of tiles, which we call the base tiles, can be decomposed into square
core-regions, all of identical sizes.

Machine Simulation Tiling. The original reduction’s “machine simulation” tiles
are superimposed onto the “base tiles” as follows:
• Onto tile (G) we superimpose the tile representing the beginning of the first

configuration (representing the machine’s head, its start-state and a blank
tape).
• Onto tiles (A) and (B) we superimpose the tiles representing the rest of the

first configuration (a blank tape).

38 Y. Aumann and Y. Dombb

��

��
��

��
�� ��

�

�

�� ���

�

�� ��

�

�
�� ���

�

��

��� � � �
�

� � �
�

�

� �
�

� � �
�

�

��

��
�� � �

�

�

� �
�

� � �
�

�

� �
�

�

��

��� � � �
�

� � �
�

�

� �
�

� � �
�

�

��

��
�� � �

�

�

� �
�

� � �
�

�

� �
�

�

Fig. 2. The base tiling of a 5 × 5 region

• The rest of the machine simulation tiles are superimposed on all of the
remaining base tiles.
• Tiles (A), (B) and (G) are configured such that only they can appear above

a tile representing an accepting state.

Using this set of superimposed tiles, every tiling of an i × i core-region must
correspond to a computation of M accepting in exactly i steps.
Guaranteeing a Single Core-Region. We now want to guarantee that the tiling of
the torus consists of a single core-region, providing that it corresponds to a single
computation of the full length (rather than copies of shorter computations). Note
that the tiling of a prime-sized torus necessarily consists of a single core-region -
covering the entire torus. This is because core-regions must be of the same size,
and hence this size must divide the size of the torus. For technical reasons we
cannot use prime numbers, but use their third-power instead. Given the Turing
machine M , we construct a new machine M ′ such that for every t, M ′ accepts in
exactly Pt

3 steps if and only if M accepts in exactly t steps (where Pt is the t-th
prime number). We do so using nondeterminism, by which M ′ first “guesses”
the number of steps t, and simulates M to see if it accepts in exactly t steps. In
parallel, M ′ computes P 3

t on a second tape, and counts the number of steps on
a third tape. If the simulation of M on the first tape accepts in exactly t steps,
then M ′ waits until exactly Pt

3 steps have elapsed and then accepts. We now
build the tile set T (M ′) corresponding to M ′. If M has a computation accepting
in t steps, then T (M ′) has a tiling of the Pt

3 × Pt
3 torus. Conversably, suppose

that T (M ′) has a tiling of the Pt
3×Pt

3 torus. Then, this tiling is either composed
of a single core-region, or core-regions of size Pt or Pt

2. However, core-regions of
sizes Pt or Pt

2 would correspond to computations of M ′ accepting in Pt or Pt
2

steps, respectively. But M ′ only accepts in a number of steps which is a cube of

Fixed Structure Complexity 39

a prime, which neither Pt nor Pt
2 are. Hence, the tiling of the Pt

3 × Pt
3 torus

necessarily consists of a single core-region, corresponding to a t-step accepting
computation of M . ��
Lemma 2. Fixed-structure-Torus-Tiling ≤fpt Fixed-structure-Independent-Set.

Proof. Given a tile set T and a number s, we construct a parametric graph
expression G, a vector t of parameter values, and integer ψ, such that G(t) has
an independent set of size ψ iff the s× s torus can be tiled using the tiles in T .
Here we provide the proof for directed graphs. The proof for undirected graphs
is considerably more complex and is provided in the full version.

The basic idea is to create a graph G = G(t) that “represents” the torus.
For each of the s2 locations of the torus we create a “super-node” that is a
|T |-clique. Each vertex in the super-node represents a different tile of T . The s2

super-nodes are organized in s rows and s columns (as in the torus). Note that
in each super-node at most one vertex can be chosen for the independent set.
This chosen vertex will represent the tile chosen for this location in the torus
tiling. Edges are placed between vertices in adjacent super-nodes (vertical and
horizontal), to correspond to the adjacency constraints of the tiling. Specifically,
let HT be the bipartite graph with |T | vertices at each side, such that there is
an edge i→ j iff tile ti cannot be placed to the left of tile tj . Similarly, let VT be
the bipartite graph with |T | vertices in each part (this time viewed as one part
above the other), such that there is an edge i→ j iff tile tj cannot be placed on
top of tile ti. Each super-node is connected with its right-neighbor with HT and
with its neighbor on top by VT . With this construction, G has an independent
set of size s2 iff the s×s torus can be tiled by T . We now show how to construct
the graph expression for G.

The Directed s-Cycle. The basic building block of our torus-graph is the directed
s-cycle. For s = 3 mod 4 the directed s-cycle (denoted C(s)) is created using the
following expression:

C(s) =
([

�

�

�
]
∪

((⌊s

4

⌋
− 1

)
·
[

�

�

�

��
�

])
∪

[
�

�

�

�

�

�
�

�����	
])

+
((⌊s

4

⌋
·
[

�

�

�

��
�

])
∪

(
�

�

�

))

For s = 0, 1, and 2 mod 4 the construction is similar (placing less nodes at the
right-end of the expression).

Using the s-cycle, we construct two graphs, the sum of which is the s × s
torus. The graphs, denoted TrH and TrV , consist of the horizontal and vertical
edges of the torus, respectively. Let e1 be the graph with a single vertex with a
self loop. Then, TrH and TrV are obtained by multiplying C(s) by s self-loops
from the left and from the right, respectively:

TrH(s) = (s · e1)× C(s) , TrV (s) = C(s)× (s · e1)

Next, we “blow-up” the graphs TrH and TrV , substituting each vertex with a
“super-node” consisting of |T | vertices, and connecting the “super-nodes” by HT

and VT , respectively:

GH(s) = TrH(s)×HT , GV (s) = TrV (s)× VT

40 Y. Aumann and Y. Dombb

(Note that this is where the directness of the graph comes to play, allowing to
keep the directions of HT and VT .) Together, these graphs have all the vertices
and most of the edges, except for the clique edges within each super-node. These
are obtained by adding s2 copies of the fixed clique K|T |. The complete graph
expression is:

G(s) = GH(s) + GV (s) + (s2 ·K|T |)

This concludes the construction of the expression G. The parameter for this
graph is s. By construction, G has an independent set of size ψ = s2 iff the s× s
torus can be tiled with T . ��
Lemma 3. Fixed-Structure-Independent-Set ≤XP FS-Exact-Halt.

Proof. Given a graph expression G, parameter vector t, and integer ψ, we con-
struct a Turing machine MG and integer r, such that MG accepts the empty
string in exactly r steps iff G(t) has an independent set of size ψ. Assume that t
has m entries, and denote t =

∑m
i=1 ti. First note that it is possible to construct

G(t) in at most (|G|+ t)3|G| steps. This is true since there are at most |G| oper-
ations, and the result graph of the i-th operation has at most (|G|+ t)i vertices
and (|G|+ t)2i edges. Once the graph G(t) is constructed, one can guess a subset
of the vertices, and check if they are an independent set of size ψ. The only
problem is that the machine MG operates on the empty input. Thus, we cannot
explicitly provide it with the parameters t and ψ. Rather, we let the machine
“guess” these values, and encode them into the number of steps. Specifically,

let code(ψ, t) =
(
P|G| · P 2

ψ ·
∏m

i=1 P i+2
ti

)3|G|
, where Pj is the j-th prime number.

Note that code(·, ·) is a bijection. Accordingly, given G we construct the Turing
machine MG to operate as follows:

1. Nondeterministically “guess” a vector t′ = (t′1, . . . , t
′
m) and integer ψ′.

2. Create the graph G = G(t′).
3. Nondeterministically “guess” a subset of the vertices of G and check if they

are an independent set of size ψ′. If not, reject.
4. In parallel to the above, compute code(ψ′, t′). Run for a total of code(ψ′, t′)

steps and accept.
It can be verified that code(ψ′, t′) steps suffice for steps (1)-(3). We obtain that
MG accepts in exactly r = code(ψ, t) steps iff G(t) has an independent set of size
ψ. Note that code(ψ, t) ≤ (|G| + ψ +

∑m
i=1 ti)4|G|, providing that the reduction

is an XP one. ��
The equivalence of Fixed-Structure-Clique and Fixed-Structure-Vertex-Cover
follows from the standard reductions between Independent-Set, Clique and
vertex-Cover.

5 Open Problems

This work takes the first steps in understanding fixed-structure problems. Many
important and interesting problems remain open. Here we list just a few:

Fixed Structure Complexity 41

• The results presented in this paper are hardness results. We were also able to
show that some other fixed-structure problems are FPT. These results are
omitted due to lack of space. However, we believe we are still lacking in tools
for the design of FPT algorithms for fixed structure problems.

• We identified three core fixed-parameter problems, which we believe define
three separate complexity classes. Are these “the right” complexity classes?
Are there other important/interesting classes? Is there a hierarchy? Are
FS-Halt and FS-Not-Halt indeed non-equivalent? Are they in FPT? What
other problems are equivalent to these problems?

• We showed an XP equivalence between Fixed-Structure-Independent-Set (FS-
IS) and FS-Exact-Halt. With our definition of FS-IS this is all but unavoid-
able, since the size of the graph may be exponential in its representation, and
hence FS-IS need not be in NP. If we add the size of the graph (in unary) to
the input, FS-IS becomes NP. Is this problem equivalent to FS-Exact-Halt
under FPT reductions?

• In this paper, we only covered few fixed structure problems. A whole line of
research is to analyze the complexity of the fixed-structure versions of the
numerous problems for which the classical parametrization has been studied.

• The notion of graph products provides the basis for many interesting fixed-
structure graph problems. For example, what is the fixed structure complex-
ity of Independent-Set on G×Kt graphs? Similarly, for other graph problems,
and other graph structures (e.g. tori, trees, butterflies, etc., instead of Kt).
In addition, one may consider other types of graph products, i.e. cartesian,
lexicographic and strong products (see [12]).

• We proved that fixed-structure tiling of the plane is equivalent to FS-Not-Halt
for the version of the problem in which the origin tile is specified (the proof
is not provided here). What is the complexity of the general problem when
the origin tile is not specified?

• We already noted that problems with two combinatorial-structures, such as
the database query problems and graph ordering problems, though different,
are somewhat related to fixed-structure problems. Some of these problems
are still open. It would be interesting to see if the directions developed here
can shed some light on these problems.

Acknowledgements. We are grateful to Mike Fellows for helpful comments on
an early version of this work.

References

1. Cesati, M., Di Ianni, M.: Computational models for parameterized complexity.
Mathematical Logic Quarterly 43, 179–202 (1997)

2. Cesati, M.: Compendium of parameterized problems (2006), http://bravo.ce.

uniroma2.it/home/cesati/research/compendium/compendium.pdf
3. Wareham, T.: The parameterized complexity of intersection and composition op-

erations on sets of finite-state automata. In: Yu, S., Păun, A. (eds.) CIAA 2000.
LNCS, vol. 2088, pp. 302–310. Springer, Heidelberg (2001)

4. Fernau, H., Hagerup, T., Nishimura, N., Ragde, P., Reinhardt, K.: On the param-
eterized complexity of a generalized rush hour puzzle. In: Proceedings of Canadian
Conference on Computational Geometry, CCCG, pp. 6–9 (2003)

http://bravo.ce.uniroma2.it/home/cesati/research/compendium/compendium.pdf
http://bravo.ce.uniroma2.it/home/cesati/research/compendium/compendium.pdf

42 Y. Aumann and Y. Dombb

5. Papadimitriou, C.H., Yannakakis, M.: On the complexity of database queries. In:
Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pp. 12–14 (1997)

6. Downey, R.G., Fellows, M.R., Taylor, U.: On the parameteric complexity of rela-
tional database queries and a sharper characterization of w[1]. In: Combinatorics,
Complexity and Logic, Proceedings of DMTCS 1996 (1996)

7. Vardi, M.: The complexity of relational query languages. In: Proceedings of the
14th ACM Symposium on Theory of Computing, pp. 137–146 (1982)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

9. Grohe, M., Schwentick, T., Segoufin, L.: When is the evaluation of conjunctive
queries tractable? In: Proceedings of 33rd annual ACM Symposium on Theory of
Computing, pp. 657–666 (2001)

10. Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation. Pren-
tice Hall, Englewood Cliffs (1981)

11. Berger, R.: The undecidability of the domino problem. Mem. AMS 66 (1966)
12. Imrich, W., Klavzer, S.: Product Graphs: Structure and Recognition. Wiley, Chich-

ester (2000)

An Improved Fixed-Parameter Algorithm for

Minimum-Flip Consensus Trees

Sebastian Böcker, Quang Bao Anh Bui, and Anke Truss

Lehrstuhl für Bioinformatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, 07743 Jena, Germany
{boecker,bui,truss}@minet.uni-jena.de

Abstract. In computational phylogenetics, the problem of constructing
a consensus tree for a given set of input trees has frequently been ad-
dressed. In this paper we study the Minimum-Flip Problem: the input
trees are transformed into a binary matrix, and we want to find a per-
fect phylogeny for this matrix using a minimum number of flips, that is,
corrections of single entries in the matrix. In its graph-theoretical formu-
lation, the problem is as follows: Given a bipartite graph G = (Vt∪Vc, E),
the problem is to find a minimum set of edge modifications such that the
resulting graph has no induced path with four edges which starts and
ends in Vt.

We present a fixed-parameter algorithm for the Minimum-Flip Prob-
lem with running time O(4.83k (m +n) + mn) for n taxa, m characters,
and k flips. Additionally, we discuss several heuristic improvements. We
also report computational results on phylogenetic data.

1 Introduction

When studying the relationship and ancestry of current organisms, discovered
relations are usually represented as phylogenetic trees, that is, rooted trees where
each leaf corresponds to a group of organisms, called taxon, and inner vertices
represent hypothetical last common ancestors of the organisms located at the
leaves of its subtree.

Supertree methods assemble phylogenetic trees with shared but overlapping
taxon sets into a larger supertree which contains all taxa of every input tree
and describes the evolutionary relationship of these taxa [2]. Constructing a
supertree is easy for compatible input trees [12, 3], that is, in case there is no
contradictory information encoded in the input trees. The major problem of
supertree methods is dealing with incompatible data in a reasonable way [14].
The most popular supertree method is matrix representation with parsimony
(MRP) [2]: MRP performs a maximum parsimony analysis on a binary matrix
representation of the set of input trees. Problem is NP-complete [8], and so is
MRP. The matrix representation with flipping (MRF) supertree method also
uses a binary matrix representation of the input trees [5]. Unlike MRP, MRF
seeks the minimum number of “flips” (corrections) in the binary matrix that
make the matrix representation consistent with a phylogenetic tree. Evaluations

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 43–54, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

44 S. Böcker, Q.B.A. Bui, and A. Truss

by Chen et al. [6] indicate that MRF is superior to MRP and other common
approaches for supertree construction, such as MinCut supertrees [14].

If all input trees share the same set of taxa, the supertree is called a consen-
sus tree [1, 11]. As in the case of supertrees, we can encode the input trees in a
binary matrix: Ideally, the input trees match nicely and a consensus tree can be
constructed without changing the relations between taxa. In this case, we can
construct the corresponding perfect phylogeny in O(mn) time for n taxa and m
characters [10]. Again, the more challenging problem is how to deal with incom-
patible input trees. Many methods for constructing consensus trees have been
established, such as majority consensus or Adams consensus [1]. One method
for constructing consensus trees is the Minimum-flip method [6]: Flip as few
entries as possible in the binary matrix representation of the input trees such
that the matrix admits a perfect phylogeny. Unfortunately, the Minimum-Flip
Problem of finding the minimum set of flips which make a matrix compatible,
is NP-hard [6, 7]. Based on a graph-theoretical interpretation of the problem
and the forbidden subgraph paradigm of Cai [4], Chen et al. introduce a simple
fixed-parameter algorithm with running time O(6k mn), where k is the minimum
number of flips [6, 7]. Furthermore, the problem can be approximated with ap-
proximation ratio 2d where d is the maximum number of ones in a column [6,7].

Our contributions. We introduce a refined fixed-parameter algorithm for the
Minimum-Flip Problem with O(4.83k (m+n)+mn) running time, and discuss
some heuristic improvements to reduce the practical running time of our algo-
rithm. To evaluate the performance and to compare it to the fixed-parameter
algorithm of Chen et al., we have implemented both algorithms and evaluate
them on perturbed matrix representations of phylogenetic trees. Our algorithm
turns out to be significantly faster than the O(6k mn) strategy, and also much
faster than worst-case running times suggest. We believe that our work is a first
step towards exact computation of minimum-flip supertrees.

2 Preliminaries

Throughout this paper, let n be the number of taxa characterized by m charac-
ters. Let M be an n×m binary matrix that represents the characteristics of our
taxa: Each cell M [i, j] takes a value of “1” if the taxon ti has character cj , and
“0” otherwise.

We say that M admits a perfect phylogeny if there is a rooted tree such that
each of the n leaves corresponds to one of the n taxa and, for each character cj ,
there is an inner vertex of the tree such that for all taxa ti, M [i, j] = 1 if and
only if ti is a leaf of the subtree below cj . The Perfect Phylogeny problem is
to recognize if a given binary matrix M admits a perfect phylogeny. Gusfield [10]
introduces an algorithm which checks if a matrix M admits a perfect phylogeny
and, if possible, constructs the corresponding phylogenetic tree in total running
time O(mn).

The Minimum-Flip Problem [6] asks for the minimum number of matrix
entries to be flipped from “0” to “1” or from “1” to “0” in order to transform

An Improved Fixed-Parameter Algorithm for Minimum-Flip Consensus Trees 45

Fig. 1. An M-graph. Grey vertices denote characters, white vertices denote taxa.

M into a matrix which admits a perfect phylogeny. The corresponding decision
problem is to check whether there exists a solution with at most k flips. Our
fixed-parameter algorithm requires a maximum number of flips k to be known
in advance: To find an optimal solution we call this algorithm repeatedly, in-
creasing k.

In this article we use a graph-theoretical model to analyze the Minimum-Flip
Problem. First, we define a graph model of the binary matrix representation.
The character graph G = (Vt∪Vc, E) of a n×m binary matrix M is an undirected
and unweighted bipartite graph with n + m vertices t1, . . . , tn, c1, . . . , cm where
{ci, tj} ∈ E if and only if M [i, j] = 1. The vertices in Vc represent characters
and those in Vt represent taxa. We call the vertices c- or t-vertices, respec-
tively.

An M-Graph is a path of length four where the end vertices and the center
vertex are t-vertices and the remaining two vertices are c-vertices, see Fig. 1.
We call a graph M-free if is does not have an M-graph as an induced subgraph.
The following theorem provides an essential characterization with regard to the
graph-theoretical modeling of the Minimum-Flip Problem.

Theorem 1 (Chen et al. [7]). A binary matrix M admits a perfect phylogeny
if and only if the corresponding character graph G does not contain an induced
M-graph.

With Theorem 1 the Minimum-Flip Problem is equivalent to the following
graph-theoretical problem: Find a minimum set of edge modifications, that is,
edge deletions and edge insertions, which transform the character graph of the
input matrix into an M-free bipartite graph. Using this characterization, Chen
et al. [6, 7] introduce a simple fixed-parameter algorithm with running time
O(6k mn) where k is the minimum number of flips. This algorithm follows a
search-tree technique from [4]: It identifies an M-graph in the character graph
and branches into all six possibilities of deleting or inserting one edge of the
character graph such that the M-graph is eliminated (four cases of deleting one
existing edge and two cases of adding a new edge).

The following notation will be used frequently throughout this article: Let
N(v) be the set of neighbors of a vertex v. For two c-vertices ci, cj ∈ Vc, let
X(ci, cj) := N(ci) \ N(cj), Y (ci, cj) := N(ci) ∩ N(cj), and Z(ci, cj) := N(cj) \
N(ci). We call ci and cj c-neighbors if and only if Y (ci, cj) is not empty.

46 S. Böcker, Q.B.A. Bui, and A. Truss

3 The Algorithm

We present a search tree algorithm largely based on observations on the structure
of intersecting M-graphs. First, we use a set of reduction rules to cut down the
size of G, see Sect. 3.1 below. As long as there are c-vertices of degree three or
higher in G, we use the branching strategy described in Sect. 3.2. If there are
no such vertices left, we can use a simplified branching strategy described in
Sect. 3.3. In the beginning of every recursion call of our search tree algorithm
we execute the data reduction described in the following section.

3.1 Data Reduction

When the algorithm receives a character graph G as input, it is reduced with
respect to the following simple reduction rules:

Rule 1. Delete all c-vertices v ∈ Vc of degree |Vt| from the graph.

Rule 2. Delete all c-vertices v ∈ Vc of degree one from the graph.

We verify the correctness of these reduction rules, starting with Rule 1. Let c
be a c-vertex of degree |Vt| in the input graph G. Then c is connected to all t-
vertices in G and there cannot be an M-graph containing c. Furthermore, it is not
possible to insert any new edge incident to c. Assume there is an optimal solution
for G which deletes edges incident to c in G. If we execute all edit operations of
the optimal solution except deletions of edges incident to c, we also obtain an
M-free graph, since every M-graph which does not contain c is destroyed by edit
operations of the optimal solution and there is no M-graph containing c. This is
a contradiction to the assumption that the solution is optimal, so edges incident
to c-vertices of degree |Vt| are never deleted in an optimal solution. Thus the
corresponding c-vertices need not be observed and can be removed safely.

The correctness of Rule 2 is obvious.
After computing and saving the degree of every vertex in G in time O(mn),

Rules 1 and 2 of the data reduction can be done in time O(m + n).

3.2 Solving Instances with c-Vertices of Degree at Least Three

In this section we describe the branching strategy we use as long as there are
c-vertices of degree three or higher. The efficiency of this branching is based on
the following observation:

Lemma 1. A character graph G reduced with respect to the abovementioned data
reduction rules has a c-vertex of degree at least three if and only if G contains
F1 or F2 (see Fig. 2) as induced subgraph.

Proof. Assume that there are c-vertices in G with degree at least three. Let ci

be a c-vertex with maximum degree in G. Then ci must have a c-neighbor cj

which has at least one neighbor tj outside N(ci) because otherwise ci would be

An Improved Fixed-Parameter Algorithm for Minimum-Flip Consensus Trees 47

.

ci cj

X(ci, cj) Y (ci, cj) Z(ci, cj)

F1 F2FM

Fig. 2. The big M-graph FM and its special cases F1 and F2

removed from G by the data reduction. Let tk be a common neighbor of ci and cj

which has to exist since ci and cj are c-neighbors. There also exists a neighbor ti
of ci which is not a neighbor of cj . If ti is the only one t-vertex, which is neighbor
of ti but not of tj , then ti and tj must share an another common neighbor t′k
besides tk (since ti has degree of at least three) and the M-graph ticitkcjtj and
edges {ci, t

′
k}, {cj, t

′
k} form an F2 graph. Otherwise let t′i be an another t-vertex,

which is neighbor of ti but not of tj , the M-graph ticitkcjtj and the edge {t′i, ci}
form an F1 graph. We conclude that if G has t-vertices with degree at least
three, then G contains F1 or F2 as induced subgraph.

If G contains F1 or F2 as induced subgraph, it is obvious that G has c-vertices
of degree at least three. ��
We now consider the following structure of intersecting M-graphs, called big
M-graph: this graph is a subgraph of the character graph and consists of two
c-vertices ci, cj and t-vertices in the nonempty sets X(ci, cj), Y (ci, cj), Z(ci, cj)
where at least one of these sets has to contain two or more t-vertices, see Fig. 2.
The graphs F1 and F2 are big M-graphs of minimum size. In view of Lemma 1,
any character graph with at least one c-vertex of degree three or higher has
to contain big M-graphs as induced subgraphs. Furthermore, it should be clear
that a big M-graph contains many M-graphs as induced subgraphs. Therefore,
if there are big M-graphs in the character graph, our algorithm first branches
into subcases to eliminate all M-graphs contained in those big M-graphs. The
branching strategy to eliminate all M-graphs contained in a big M-graph is based
on the following lemma:

Lemma 2. If a character graph G is M-free, then for every two distinct c-
vertices ci, cj of G it holds that at least one of the sets X(ci, cj), Y (ci, cj),
Z(ci, cj) must be empty.

Since there is at least one M-graph containing ci and cj if X(ci, cj), Y (ci, cj),
Z(ci, cj) are simultaneously non-empty, the correctness of Lemma 2 is obvious.

Lemma 2 leads us to the following branching strategy for big M-graphs. Given
a character graph G with at least one c-vertex of degree three or higher, our
algorithm chooses a big M-graph FM in G and branches into subcases to eliminate
all M-graphs in FM. Let ci, cj be the c-vertices of FM. According to Lemma 2,
one of the sets X(ci, cj), Y (ci, cj), Z(ci, cj) must be “emptied” in each subcase.
Let x, y, z denote the cardinalities of sets X(ci, cj), Y (ci, cj) and Z(ci, cj). We
now describe how to empty X(ci, cj), Y (ci, cj), and Z(ci, cj).

48 S. Böcker, Q.B.A. Bui, and A. Truss

For each t-vertex t in X(ci, cj) there are two possibilities to remove it from
X(ci, cj): we either disconnect t from the big M-graph by deleting the edge {ci, t},
or move t to Y (ci, cj) by inserting the edge {cj, t}. Therefore the algorithm has
to branch into 2x subcases to empty X(ci, cj) and in each subcase, it executes
x edit-operations. The set Z(ci, cj) is emptied analogously.

To empty the set Y (ci, cj) there are also two possibilities for each t-vertex t
in Y (ci, cj), namely moving it to X(ci, cj) by deleting the edge {cj, t} or moving
it to Z(ci, cj) by deleting the edge {ci, t}. This also leads to 2y subcases and in
each subcase, y edit operations are executed.

Altogether, the algorithm branches into 2x + 2y + 2z subcases when dealing
with a big M-graph FM. In view of Lemma 2, at least min{x, y, z} edit-operations
must be executed to eliminate all M-graphs in FM. Our branching strategy has
branching vector

(x, . . . , x
︸ ︷︷ ︸

2x

, y, . . . , y
︸ ︷︷ ︸

2y

, z, . . . , z
︸ ︷︷ ︸

2z

)

which leads to a branching number of 4.83 as shown in the following lemma
(see [13] for details on branching vectors and branching numbers).

Lemma 3. The worst-case branching number of the above branching strategy is
4.83.

Proof. The branching number b of the above branching strategy is the single
positive root of the equation

2x 1
bx

+ 2y 1
by

+ 2z 1
bz

= 1 ⇐⇒ 1
(b/2)x

+
1

(b/2)y
+

1
(b/2)z

= 1.

Considering b
2 a variable, the single positive root of the second equation is the

branching number corresponding to the branching vector (x, y, z). The smaller
values x, y, z take, the higher b

2 and, hence, b. Due to the definition of a big
M-graph, x, y, and z cannot equal one simultaneously, so b is maximal if one
of the variables x, y, z equals two and the other two equal one. Without loss of
generality, assume that x = 2 and y = z = 1. Then the single positive root of
the equation (2

b)2 + 2
b + 2

b = 1 is b
2 = 2.414214. Therefore, b is at most 4.83. ��

From Lemma 2 we infer an interesting property. When we take into consideration
that we need an edit operation for each vertex we remove from set X , Y , or Z,
the following corollary is a straightforward observation.

Corollary 1. There is no solution with at most k flips if there exist two c-
vertices ci, cj ∈ Vc satisfying min{|X(ci, cj)|, |Y (ci, cj)|, |Z(ci, cj)|} > k.

We use this property for pruning the search tree in the implementation of our
algorithm, see Sect. 4.

Corollary 1 implies that we can abort a program call whenever we find a big
M-graph where x, y, z simultaneously exceed k. Furthermore, if one or two of
the values x, y, z are greater than k, we do not branch into subcases deleting

An Improved Fixed-Parameter Algorithm for Minimum-Flip Consensus Trees 49

the respective sets. Anyway, the number of subroutine calls in this step of the
algorithm is fairly large, up to 3 · 2k. But large numbers of program calls at this
point are a result of large numbers of simultaneous edit operations which lower
k to a greater extent. Therefore the branching number of our strategy goes to
2 for large x, y, z, and this is confirmed by the growth of running times in our
computational experiments (see Sect. 5).

3.3 Solving Instances with c-Vertices of Degree at Most Two

In this section we assume that there is no big M-graph in the character graph.
As we proved in Lemma 1, if a character graph G reduced with respect to our
data reduction does not contain any big M-graph, every c-vertex in G has degree
two. In this case we use the branching strategy based on the following lemma to
transform G into an M-free character graph.

Lemma 4. If every c-vertex in a character graph has degree two, there is an
optimal solution for the Minimum-Flip Problem without inserting any edge
into the character graph.

Proof. Let G be a character graph where all c-vertices have degree two and G′

be the resulting graph of an optimal solution for G where we did add new edges
to G and {c, t} be such a new edge.

In the following we show that there is another optimal solution for G without
any edge insertion. Let ti, tj be the t-vertices connected with c. Since all M-
graphs eliminated by inserting {c, t} into G contain edges {c, ti} and {c, tj},
we can delete {c, ti} or {c, tj} from G to eliminate these M-graphs instead of
adding {c, t} to G. Deleting an edge can only cause new M-graphs containing
the c-vertex incident to this edge. But after removing one of the edges {c, ti} or
{c, tj}, vertex c has degree one and cannot be vertex of any M-graph. Therefore
the resulting graph is still M-free and the number of edit operations does not
increase since we swap an insertion for only one deletion. Hence, edge insertions
are not necessary for optimal solutions when all c-vertices of the character graph
have degree two. ��
Now that all c-vertices in our graph G have degree two, we define a weighted
graph Gw as follows: We adopt the set Vt of t-vertices in G as vertex set for Gw.
Two vertices t1, t2 are connected if and only if they possess a common neighbor
in G. The weight of an edge {t1, t2} is the number of common neighbors of t1, t2
in G, see Fig. 3.

On the weighted graph Gw and the number k of remaining edit operations,
the Minimum-flip problem turns out to be the problem of deleting a set of
edges with minimum total weight such that there are no paths of length two in
Gw, that is, the graph is split into connected components of size one or two.

Since it is unknown if the abovementioned problem can be solved in poly-
nomial time, we used the fixed-parameter algorithm described in the following
text to deal with this problem. Deleting a weighted edge in Gw corresponds to
deleting one of the edges incident to each of the respective c-vertices in G. That

50 S. Böcker, Q.B.A. Bui, and A. Truss

Fig. 3. Left: When all c-vertices (gray) have degree two, we can regard each c-vertex
with its incident edges as a single edge in a multigraph whose vertex set is the set
of t-vertices (white). Right: We merge all those “edges” between two t-vertices into
a single weighted edge whose weight equals the number of c-vertices adjacent to the
t-vertices and we obtain a simplified model of our graph.

is, whenever we delete an edge {ti, tj} of weight m from Gw, we include, for each
vertex c of the m original c-vertices which were used for e (see Fig. 3), one of
the edges {c, ti} and {c, tj} from G in our solution set and lower k by m.

Let us describe our branching strategy for the weighted problem in detail. If
we consider an edge e in Gw, we observe that either e has to be deleted or all
other edges which are incident to a vertex in e.

Now we pick an edge e which has weight greater than one, shares a vertex
with an edge of weight greater than one, or is incident to a vertex of degree three
or higher. Then we branch into two cases: Delete e or keep e but delete all edges
which share vertices with e. In each case, lower k by the weights of the deleted
edges. If the graph decomposes, we treat each connected component separately.
With this branching strategy we receive a branching vector of (1, 2) or better
which corresponds to a branching number of 1.62. We use this strategy as long
as there are degree-three vertices or edges of weight greater than one.

As soon as all edges have weight one and all vertices have degree at most two,
the remaining graph is either a path or a cycle. We solve each of these graphs
by alternately keeping and deleting edges such that solving a path with l edges
costs 	 l

2
 and solving a cycle of length l costs � l
2�. Clearly, this operation can

be done in linear time.
We prove in the following theorem that our algorithm solves the Minimum-

Flip Problem in time O(4.83k (m + n) + mn).

Theorem 2. The above algorithm solves the Minimum-Flip Problem for a
character graph with n t-vertices and m c-vertices in O(4.83k (m + n) + mn)
time.

Proof. At the beginning of the algorithm, the execution of the data reduction
takes O(mn) time. By saving the degree of each vertex in G, the algorithm needs
O(m + n) time to execute the data reduction in each recursion call.

The algorithm distinguishes two cases: there are c-vertices with degree at least
three, or every c-vertex has degree two. In the first case it uses the branching
strategy described in Sect. 3.2 with branching number 4.83, in the second case
it executes the branching strategy in Sect. 3.3 with branching number 1.62.
Therefore, the size of the search tree is O(4.83k). All in all, the running time of
the algorithm is O(4.83k (m + n) + mn). ��

An Improved Fixed-Parameter Algorithm for Minimum-Flip Consensus Trees 51

4 Algorithm Engineering

In the course of algorithm design, we found some improvements which do not
affect the theoretical worst-case running time or even increase the polynomial
factor but as they manage to prune the search tree, they are highly advisable in
practice. These are a few heuristic improvements we included in the course of
implementation.

Treat connected components separately. If a given character graph is not con-
nected or decomposes in the course of the algorithm, we compute the solutions
for each of its connected components separately because connecting different
connected components never deletes an M-graph.

Avoid futile program calls. If min{X(ci, cj), Y (ci, cj), Z(ci, cj)} > k holds for
two c-vertices ci, cj , we know that it is impossible to solve the current instance
(see Corollary 1). Therefore, whenever we find such an M-graph we abort the
current search tree branch and call the algorithm with an appropriately increased
parameter, thus skipping program runs which are doomed to failure.

Avoid redundant search tree branches. When executing an edit operation in a
big M-graph, we fix the outcome of the operation, that is, whenever we insert
an edge, this edge is set to “permanent” and when we delete an edge, it is set
to “forbidden”. With this technique we make sure that edit operations are not
undone later in the search tree.

Try promising search tree branches first. In the first part of our branching strat-
egy, branching on a big M-graph FM with c-vertices ci, cj leads to 2|X(ci,cj)| +
2|Y (ci,cj)| +2|Z(ci,cj)| branches. It is likely that a minimum solution destroys the
FM with as few edge modifications as possible. As we use depth-first search and
stop when we find a solution, we branch on the edges incident to the smallest of
sets X , Y , Z first.

Calculate branching numbers in advance. When dealing with big M-graphs, we
save, for each pair of c-vertices, the branching number corresponding to a branch-
ing at the FM associated with these vertices in a matrix. The minima of each row
are saved in an extra column in order to allow faster searching for the overall
minimum. We use a similar technique to deal with the weighted graph in the
second part of the algorithm.

The polynomial factor in the running time proved in Theorem 2 cannot be
hold when applying the abovementioned heuristic improvements, since initializ-
ing the matrix used to calculate the branching numbers takes time O(m2n) and
updating this matrix needs time O(mn) in each recursion call. While initializing
or updating this matrix, we also check if the data reduction rules can be applied.
Testing for futile program calls and redundant search tree branches can be exe-
cuted in the same time. Altogether the running time of our algorithm with the
abovementioned heuristic improvements is O(4.83k mn+m2n). Despite that, the
heuristic improvements lead to drastically reduced running times in practice.

52 S. Böcker, Q.B.A. Bui, and A. Truss

Table 1. Comparison of running times of our O(4.83k) algorithm and the O(6k) algo-
rithm. |Vt| and |Vc| denote the number of t- and c-vertices, respectively. # flips is the
number of perturbances in the matrix whereas k is the true number of flips needed to
solve the instance. Each row corresponds to ten datasets. ∗Six out of ten computations
were finished in under ten hours.

Dataset |Vt| |Vc| # flips avg. k time 4.83k time 6k

Marsupials 21 20 10 9.6 9.5 s 2 h
12 10.7 25.5 s > 10 h∗

14 13.2 3 min > 10 h
16 15.4 12 min > 10 h
18 17 47 min > 10 h
20 18.9 3.3 h > 10 h

Marsupials 51 50 10 10 17 s 19 h
12 10.5 30 s > 10 h
14 12.5 2.3 min > 10 h
16 15.5 50 min > 10 h
18 17.5 3 h > 10 h
20 19 8 h > 10 h

Tex (Bacteria) 97 96 10 9.7 17 s 59.3 h
12 11.9 12.5 min > 10 h
14 13.9 18 min > 10 h
16 15.4 1.1 h > 10 h
18 17.3 4 h > 10 h
20 19.7 10.3 h∗ > 10 h

5 Experiments

To evaluate in how far our improved branching strategy affects running times in
practice, we compared our algorithm against Chen et al.’s O(6k mn) algorithm
[6, 7]. Both algorithms were implemented in Java. Computations were done on
an AMD Opteron-275 2.2 GHz with 6 GB of memory running Solaris 10.

Each program receives a binary matrix as input and returns a minimum set
of flips needed to solve the instance. The parameter need not be given as the
program starts with calling the algorithm with k = 0 and repeatedly increases
k by one until a solution is found. As soon as it finds a solution with at most k
flips, the program call is aborted instantly and the solution is returned without
searching further branches. All data reduction rules and heuristic improvements
described in Sect. 3.1 and 4 were used for our algorithm and, if applicable, also
for the O(6k mn) algorithm. For our experiments we used matrix representa-
tions [9] of real phylogenetic trees, namely two phylogenetic trees of marsupials
with 21 and 51 taxa (data provided by Olaf Bininda-Emonds) and one tree
of 97 bacteria computed using Tex protein sequences (data provided by Lydia
Gramzow). Naturally, these matrices admit perfect phylogenies.

We perturbed each matrix by randomly flipping different numbers of en-
tries, thus creating instances where the number of flips needed for resolving
all M-graphs in the corresponding character graph is at most the number of

An Improved Fixed-Parameter Algorithm for Minimum-Flip Consensus Trees 53

perturbances. For each matrix representation and each number of perturbances
we created ten different instances and compared the running times of both al-
gorithms on all instances. In many datasets we created it was possible to solve
the instance with a smaller number of flips.

Each dataset was allowed ten hours of computation. Running times for the
O(6k mn) algorithm for ten flips on the two larger datasets were calculated
despite this restriction to show the order of magnitude. The results of the com-
putations are summed up in Table 1. When the average running time was below
ten hours, all instances were finished in less then ten hours. When the average
was more than ten hours, all ten instances took more than ten hours, except for
the small Marsupial datasets with k = 12 for the O(6k mn) algorithm and the
Tex datasets with k = 20 for our algorithm. In both cases, six of ten instances
were solved.

Our experiments show that our method is constantly significantly faster than
Chen et al.’s algorithm. In the course of computations we observed that, on
average, increasing k by one resulted in about 2.2-fold running time for a program
call of our algorithm and 5-fold running time for the O(6k) search tree algorithm.
The reason for the factor of 2.2 is probably that big M-graphs can be fairly large
in practice such that the real branching number is close to two as analyzed in
Sect. 3.2.

6 Conclusion

We have presented a new refined fixed-parameter algorithm for the Minimum-
Flip Problem. This method improves the worst-case running time for the ex-
act solution of this problem mainly by downsizing the search tree from O(6k)
to O(4.83k). The experiments show that in practice the difference in running
times is by far larger than one would expect from the worst-case analysis. Our
algorithm outperformed the O(6k) algorithm dramatically. We believe that this
a big step towards computing exact solutions efficiently.

Since the Minimum-Flip Problem is fixed-parameter tractable with respect
to the minimum number of flips, a problem kernel must exist [13]. Finding a
kernelization procedure is a natural next step in the theoretical analysis, and, to
our expectation, may also greatly improve running times. Even if our program
may never be fast enough to solve very large instances, it is certainly useful for
tuning and evaluating heuristic algorithms such as Chen et al.’s heuristic and
approximation algorithms [6, 7].

To create not only consensus trees but also arbitrary supertrees, we have to
consider a version of the Minimum-Flip Problem where, besides zeros and
ones, a considerable amount of matrix entries are ‘?’ (unknown) and we have to
create a matrix without question marks which admits a perfect phylogeny with
as few flips of zeros and ones as possible. It is an interesting open question if
this problem is fixed-parameter tractable with respect to the minimum number
of flips. An algorithm which can handle this problem would make an interesting
tool in computational biology.

54 S. Böcker, Q.B.A. Bui, and A. Truss

Acknowledgment

All programming and experiments were done by Patrick Seeber. We thank Olaf
Bininda-Emonds and Lydia Gramzow for providing the datasets.

References

1. Adams III, E.N.: Consensus techniques and the comparison of taxonomic trees.
Syst. Zool. 21(4), 390–397 (1972)

2. Bininda-Emonds, O.R.: Phylogenetic Supertrees: Combining Information to Reveal
the Tree of Life. Computational Biology Book Series, vol. 4. Kluwer Academic,
Dordrecht (2004)

3. Bryant, D., Steel, M.A.: Extension operations on sets of leaf-labelled trees. Adv.
Appl. Math. 16(4), 425–453 (1995)

4. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

5. Chen, D., Diao, L., Eulenstein, O., Fernández-Baca, D., Sanderson, M.: Flipping:
A supertree construction method. In: Bioconsensus. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 61, pp. 135–160. American
Mathematical Society, Providence, RI (2003)

6. Chen, D., Eulenstein, O., Fernández-Baca, D., Sanderson, M.: Supertrees by flip-
ping. In: H. Ibarra, O., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp.
391–400. Springer, Heidelberg (2002)

7. Chen, D., Eulenstein, O., Fernandez-Baca, D., Sanderson, M.: Minimum-flip su-
pertrees: Complexity and algorithms. IEEE/ACM Trans. Comput. Biol. Bioin-
form. 3(2), 165–173 (2006)

8. Day, W., Johnson, D., Sankoff, D.: The computational complexity of inferring
rooted phylogenies by parsimony. Math. Biosci. 81, 33–42 (1986)

9. Farris, J., Kluge, A., Eckhardt, M.: A numerical approach to phylogenetic sys-
temetics. Syst. Zool. 19, 172–189 (1970)

10. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21,
19–28 (1991)

11. Kannan, S., Warnow, T., Yooseph, S.: Computing the local consensus of trees. In:
Proc. of Symposium on Discrete Algorithms (SODA 1995) (1995)

12. Ng, M.P., Wormald, N.C.: Reconstruction of rooted trees from subtrees. Discrete
Appl. Math. 69(1–2), 19–31 (1996)

13. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

14. Semple, C., Steel, M.: A supertree method for rooted trees. Discrete Appl.
Math. 105(1–3), 147–158 (2000)

An O∗(1.0977n) Exact Algorithm for max
independent set in Sparse Graphs

N. Bourgeois, B. Escoffier, and V. Th. Paschos

LAMSADE, CNRS UMR 7024 and Université Paris-Dauphine
Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16, France

{bourgeois,escoffier,paschos}@lamsade.dauphine.fr

Abstract. We present an O∗(1.0977n) search-tree based exact algo-
rithm for max independent set in graphs with maximum degree 3.
It can be easily seen that this algorithm also works in graphs with aver-
age degree 3.

1 Introduction

Very active research has been recently conducted around the development of op-
timal algorithms for NP-hard problems with non-trivial worst-case complexity.
In this paper we handle max independent set-3, that is the max indepen-
dent set problem in graphs with maximum degree 3.

Given a graph G(V, E), max independent set consists of finding a maxi-
mum-size subset V ′ ⊆ V such that for any (vi, vj) ∈ V ′ × V ′, (vi, vj) /∈ E. max
independent set is a paradigmatic problem in theoretical computer science and
numerous studies carry either on its approximation or on its solution by exact
algorithms with non-trivial worst-case complexity. The best such complexity is,
to our knowledge, the O∗(1.1889n) algorithm claimed by [1].

One of the most studied versions of max independent set is its restriction in
graphs with maximum degree 3, denoted by max independent set-3 in what
follows. Dealing with exact computation of max independent set-3, several
algorithms have been devised successively improving worst case complexity of
its solution. Let us quote here the O∗(1.1259n) algorithm by [2], the O∗(1.1254)
algorithm by [3], the O∗(1.1225n) algorithm by [4], the O∗(1.1120) algorithm
by [5] and the O∗(1.1034n) algorithm by [6]. In this paper, based upon a refined
branching with respect to [5], we devise an exact algorithm for max indepen-
dent set-3 with worst-case running time of O∗(1.0977n). In fact, the main
difference of our analysis with respect to [5] lies in a more careful examination
of the cases where all the vertices have degree 3. Also, as it hopefully will be
understood from the analysis, our result remains valid also for graphs where the
maximum degree is higher but the average degree is bounded by 3.

Let T (·) be a super-polynomial and p(·) be a polynomial, both on integers. In
what follows, using notations in [7], for an integer n, we express running-time
bounds of the form p(n) · T (n) as O∗(T (n)), the star meaning that we ignore
polynomial factors. We denote by T (n) the worst-case time required to exactly

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 55–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

56 N. Bourgeois, B. Escoffier, and V.Th. Paschos

solve the considered combinatorial optimization problem on an instance of size n.
We recall (see, for instance, [8]) that, if it is possible to bound above T (n) by a
recurrence expression of the type T (n) ≤∑

T (n−ri)+O(p(n)), we have
∑

T (n−
ri) + O(p(n)) = O∗(α(r1, r2, . . .)n) where α(r1, r2, . . .) is the largest root of the
function f(x) = 1−∑

x−ri .
Consider a graph G(V, E). Denote by α(G) the size of an optimal solution

for max independent set on G. For convenience, if H ⊆ V , we will denote
by α(H) the cardinality of an optimal solution on the subgraph of G induced
by H . For any vertex v, we denote by Γ (v) the set of its neighbors and by
deg(v) = |Γ (v)| its degree. We denote by α(G|v) (resp., α(G|v̄)) the size of the
optimal solution if we include v (resp. if we do not include v).

2 Preprocessing

The max independent set-3-instance tackled is parameterized by d = m− n,
where n = |V | and m = |E|; T (d) will denote the maximum running time of our
algorithm on a graph whose parameter is smaller than or equal to d.

Before running the algorithm, we perform a preprocessing of the graph, in
order to first remove vertices of degree 1 and 2 as well as dominated vertices.
Some of the properties this preprocessing is based upon are easy and already
known, mainly from [5]. We keep them for legibility.

Lemma 1. Assume that there exists v ∈ V such that deg(v) = 1. Then, there
exists a maximum independent set S∗ such that v ∈ S∗.

Proof. Let w be the only neighbor of v. If v is not selected, then w must be
selected (else the solution would not even be maximal for inclusion). Then:

α(G|v) = α(V − {v, w}) + 1 ≥ α(V − {v, w} − Γ (w)) + 1 = α(G|v̄)

Lemma 2. Let v, w ∈ V be such that v ∈ Γ (w) and Γ (w)− {v} ⊆ Γ (v)− {w}.
Then, there exists a maximum independent set S∗ such that v /∈ S∗.

Proof. Since V −{v}−Γ (v) ⊆ V −{w}−Γ (w), α(G|v) ≤ α(G|w). We say that v
is dominated by w and we can remove it from our graph. If v both dominates
and is dominated by w, we choose at random the only one we keep.

Lemma 3. Let v, w1, w2 ∈ V be such that deg(v) = 2, Γ (v) = {w1, w2} and w1

is not a neighbor of w2. Then max independent set on G(V, E) is equivalent
to the following problem:

w1 2w w1

v

Fig. 1. Vertex folding

An O∗(1.0977n) Exact Algorithm for max independent set 57

1. form the subgraph G′(V ′, E′) induced by V − {v, w2}. For any x �= v such
that {x, w2} ∈ E, add {x, w1} to E′ (see Figure 1);

2. compute a solution, say S, for max independent set on G′(V ′, E′);
3. if w1 ∈ S, S∗ = S ∪ {w2}. Else S∗ = S ∪ {v}.

Proof. Notice at first that, according to Lemma 1:

α(G|v̄) = α(G|w1, w2) = α(G′|w1) + 1
α(G|v) = α(G|w̄1, w̄2) = α(G′|w̄1) + 1

From what it holds α(G) = α(G′) + 1.

This reduction is called vertex folding in [3].
Summing up the previous properties, we are now able to operate a reduction

as soon as the graph has a vertex of degree 1 or 2.

Proposition 1. Assume that there exists some vertex v such that 1 ≤ deg(v) ≤
2. Then, there exists a graph G′(V ′, E′) with |V ′| < |V | and d′ = |E′| − |V ′| ≤ d
such that it is equivalent to compute max independent set on G or on G′.

Proof. The following holds:

– if deg(v) = 1, according to Lemma 1 we may add it to the solution and
remove its neighbor w from the graph. d′ = d− deg(w) + 2 ≤ d;

– if deg(v) = 2 and its neighbors w1, w2 are adjacent to each other, then v
dominates them. According to Lemma 2 we may remove w1 from the graph;
then Lemma 1 allows us to add v to the solution and remove w2. d′ =
d− deg(w1)− deg(w2) + 4 ≤ d;

– finally, if deg(v) = 2 and its neighbors w1, w2 are not adjacent to each other,
the equivalent graph we built in Lemma 3 verifies d′ ≤ d.

In other terms, we can always consider any vertex from our graph has at least
degree 3.

We conclude this section by a remark that will be helpful later in the branching
analysis.

Remark 1. Note that in the last case of Proposition 1 (deg(v) = 2 and its neigh-
bors w1, w2 are not adjacent to each other) then (at least) one of the two following
cases occurs when reducing the graph: either (i) d′ ≤ d − 1 (if w1 and w2 are
both adjacent to a third vertex x �= v), or (ii) a vertex of degree at least 4 is
created in G′.

3 Branching

In this section, we consider that the whole preprocessing described in Section 2
has been computed as long as possible. That means no vertex has degree 2 or
less, and no vertex is dominated.

58 N. Bourgeois, B. Escoffier, and V.Th. Paschos

Lemma 4. Consider a graph that has no vertex of degree smaller than 2 and
no dominated vertex and fix some vertex v. Then, the number N of edges that
are incident to at least one of the neighbors of v is bounded below by:

deg(v) +
1
2

∑

w∈Γ (v)

deg(w)

Proof. Let I (resp. Ω) be the inner (resp. outer) edges of Γ (v), that means edges
linking two vertices from Γ (v) (resp. one vertex from Γ (v) and one vertex from
V − Γ (v)). Then:

N = |Ω|+ |I|
∑

w∈Γ (v)

deg(w) = |Ω|+ 2|I|

From what we get:
N =

∑

w∈Γ (v)

deg(w)/2 + |Ω|/2 (1)

Notice that any w ∈ Γ (v) has at least one neighbor in V − {v} − Γ (v); else w
would dominate v. Moreover, w is adjacent to v. Thus, |Ω| ≥ 2deg(v).

Proposition 2. Assume that there exists some vertex v whose degree is at
least 5. Then, T (d) ≤ T (d− 4) + T (d− 7).

Proof. We branch on v. If we choose not to add v to the solution, then we can
remove v and any vertex adjacent to it, that means d′ = d− deg(v) + 1 ≤ d− 4.
On the other hand, if v belongs to the optimal solution, we remove from our
graph v and all its neighbors, that means (according to Lemma 4):

n′ = n− 1− deg(v)

m′ ≤ m− deg(v)− 1
2

∑

w∈Γ (v)

deg(w)

d′ ≤ d + 1− 1
2

∑

w∈Γ (v)

deg(w)

Furthermore,
∑

w∈Γ (v) deg(w) ≥ 15. Since d′ has to be an integer, this leads to
the expected result.

Proposition 3. Assume that there exists some vertex v whose degree is 4. Then,
T (d) ≤ T (d − 3) + T (d − 5). Moreover, assume that one of the following cases
holds:

1. one neighbor of v has degree 4;
2. any neighbor has degree 3 but the subgraph induced by Γ (v) contains at most

one edge.

An O∗(1.0977n) Exact Algorithm for max independent set 59

Then, T (d) ≤ T (d− 3) + T (d− 6).

Proof. We branch on v. If we choose not to add v to the solution, then we can
remove v and any vertex adjacent to it, that means d′ = d− deg(v) + 1 ≤ d− 3.
On the other hand, if v belongs to the optimal solution, we remove from our
graph v and all its neighbors:

d′ ≤ d + 1− 1
2

∑

w∈Γ (v)

deg(w)

Dealing with the general case,
∑

w∈Γ (v) deg(w) ≥ 12. If 1. holds, then
∑

w∈Γ (v)

deg(w) ≥ 13

In case 2., we just have to notice that |I| ≤ 1 means |Ω| ≥ 10; replacing this
inequality in (1) we get d′ ≤ d− 6.

Proposition 4. Assume that the degree of any vertex in our graph is exactly 3.
Assume also that G contains some 3-clique {a, b, c}. Then, T (d) ≤ 2T (d− 4).

Proof. Let v be the third neighbor of a and u, w be the two other neighbors of v.
Note that u (and w) differs from b and c, otherwise a would dominate b or c. We
branch on v. If v does not belong to the optimal solution, it is removed, and so
are its incident edges. In the remaining graph, a is dominated by b and c (see
Figure 2). According to Lemma 2 we may add it to the optimal solution and
remove the whole clique. Eventually,

d′ = (m− 8)− (n− 4) = d− 4

On the other hand, if v has to be added to the solution, we may remove it and
its neighbors from the graph. That means, according to Lemma 4,

d′ ≤ (m− 3− 9/2)− (n− 4) = d− 7/2

Since d′ has to be an integer, that leads to the expected inequality.

Proposition 5. Assume that G is a 3-clique-free graph where any vertex has
degree exactly 3. Assume also that G contains the subgraph described in Figure 3
(two pentagons sharing two incident edges). Then, T (d) ≤ T (d− 3) + T (d− 5).

a

b c

v

u w

Fig. 2. Clique {a, b, c}

60 N. Bourgeois, B. Escoffier, and V.Th. Paschos

a1

a2

a3

b1

b2

b3

c

Fig. 3. Pentagons sharing two incident edges

Proof. Notice at first that in a 3-clique-free graph where any vertex has degree
exactly 3, each time we add a vertex to the solution and remove its neighbors,
we decrease d by 5. Indeed, the set of neighbors of a vertex contains no inner
edge, else it would form a clique. From what we get N =

∑
w∈Γ (v) deg(w) = 9

and finally
d′ = (m− 9)− (n− 4) = d− 5

We branch on c, and consider now the case it does not belong to our solution.
Once c and its incident edges have been removed, deg(a2) = deg(b2) = 2. We
reduce them in any case. In the remaining graph,

d′ = (m− 8)− (n− 5) = d− 3

Proposition 6. Assume that G is a 3-clique-free graph where any vertex has
degree exactly 3. Assume also that G does not contain the subgraph described in
Figure 3. Then, T (d) ≤ T (d− 5) + 2T (d− 8) + T (d− 10).

Proof. In this proposition, instead of branching on a single vertex as previously,
we successively branch on several vertices. First of all, consider any v ∈ V . As we
saw previously, since there is no 3-clique, if we add v to the solution, we decrease d
by 5, else we decrease d by 2. Thus, we can write T (d) ≤ T (d− 5) + Q(d − 2),
for some function Q ≤ T . If we had no further information about the remaining
graph, we would have no choice but to write T (d) ≤ T (d − 5) + T (d − 2). But
our graph is not any graph; in particular some higher than 3 degree vertices may
have been created during our first branching. From now on, the proof will focus
on refining analysis of Q thanks to our graph properties.

Let w1, w2, w3 be the neighbors of v. Once v and its incident edges have been
removed, they all have degree 2. Moreover, no couple of them can be adjacent,
else they would form a clique with v. According to Lemma 3, we now reduce our
graph. We distinguish some different cases.

Consider at first an easy case, where there exists a couple of vertices u1, u2

both adjacent to, say, w1 and w2 (see Figure 4). We can easily see that taking u1

and/or u2 is never interesting, it is never worse to take w1 and w2. So, we can add
{w1, w2} to the optimal solution and delete {u1, u2}. This operation decreases
d by 2: 4 vertices and 6 edges are removed. Indeed, u1 and u2 cannot be adjacent

An O∗(1.0977n) Exact Algorithm for max independent set 61

v

w1
w2

u1 u2

Fig. 4. u1, u2 both adjacent to w1 and w2

otherwise u1 would dominate u2 (and vice-versa) before branching on v. In other
words, Q(d) ≤ T (d− 2). Consequently,

T (d) ≤ T (d− 5) + T (d− 4)

Assume now that there exists one single vertex u that is adjacent to, say, w1

and w2. Let us denote s and t the third neighbor of respectively w1 and w2 (see
Figure 5). Notice that in this case u cannot be adjacent to w3, else it would
dominate v. When operating reductions of w1 and w2, s, u and t are merged
together in a single vertex. Two cases may occur (see Remark 1): either 2 of
them have another common neighbor and d decreases by at least one, or our
graph contains a vertex of degree 5. In the first case, we get Q(d) ≤ T (d − 1)
and finally T (d) ≤ T (d− 5)+ T (d− 3). In the latter case, we now branch on the
degree 5 vertex; according to Proposition 2, Q(d) ≤ T (d − 4) + T (d − 7), that
means:

T (d) ≤ T (d− 5) + T (d− 6) + T (d− 9)

Let us now focus on the main case, where Γ (wi)’s are disjoint. Let us denote
by u1

i and u2
i the two other neighbors of wi. When reducing vertex wi, going

back to Remark 1, either d decreases by at least one, or a vertex - say ui - of
degree 4 is created. If for at least one wi d decreases, then Q(d) ≤ T (d − 1)
and eventually T (d) ≤ T (d − 5) + T (d − 3). Otherwise, when reductions of
degree 2 vertices wi’s have been proceeded, the remaining graph contains exactly
three vertices whose degree is 4, namely u1, u2, u3. Since our graph is not fully

v

w1

w2

w3

u
s

t

Fig. 5. u adjacent to w1 and w2

62 N. Bourgeois, B. Escoffier, and V.Th. Paschos

reduced (branching may have disturbed it), it is possible that some neighbor
of some ui dominates it. In this case we can remove it and its incident edges
without branching; Q(d) ≤ T (d− 3), that means

T (d) ≤ 2T (d− 5)

Thus, we may now assume that no ui is dominated. We have to consider whether
they are adjacent or not.

If say u1 and u2 are adjacent, then we branch on u1. According to Proposition 3
(in the specific case the vertex we branch has at least one neighbor of degree 4),
either we add u1 to the solution and we decrease d by at least 6, or we remove u1

and the four edges incident to it and we decrease d by 3. Hence, Q(d) ≤ T (d−
6) + T (d− 3).

If no ui is adjacent to any other uj , this time if we use Proposition 3, we cannot
assert that two degree 4 vertices are adjacent, that would mean decreasing d only
by 5. Fortunately, it is possible to prove that Γ (u1) does not have more than one
inner edge. Indeed, assume that it has two inner edges; since, before branching
on v, we assumed that the graph does not contain any 3-clique, then the unique
possibility is described in Figure 6. It means that, before branching on v, our
graph contained two pentagons sharing two edges (edges (w1, u

1
1) and (w1, u

2
1)).

This is in contradiction with hypothesis of Proposition 6. Hence, in this case also
Q(d) ≤ T (d− 6) + T (d− 3).

At this step, we get T (d) ≤ T (d− 5) + Q(d− 2) ≤ 2T (d− 5) + T (d− 8). This
sums up to T (d) = O∗(1.2076d).

We make a final remark that further improves the running time. Indeed, we
will see that after performing the branching on u1, then there exists another
vertex of degree 4 in the remaining graph (or an even better case occurs). By
branching on it, we decrease d either by 3 or by 5 (Proposition 3). This leads to
Q(d) ≤ T (d−6)+T (d−3−3)+T (d−3−5) = 2T (d−6)+T (d−8), and finally
T (d) ≤ T (d− 5) + 2T (d− 8) + T (d− 10), as claimed in the proposition. To see
this, consider two cases. If say u1 and u2 are not adjacent, then when branching
along the branch “take u1”, u2 will still have degree at least 4 (or would have
been deleted by domination which is even better).

The difficult case occurs when u1, u2 and u3 form a clique. Let s and t be the
two neighbors of u1 with degree 3 (see Figure 7).

v

w1

u2
1u1

1

Fig. 6. Two pentagons sharing two consecutive edges

An O∗(1.0977n) Exact Algorithm for max independent set 63

u1

u2

u3

s t

Fig. 7. u1, u2 and u3 is a clique

– If s and t are adjacent, then in Γ (u1) there are only 2 edges (the other one
being (u2, u3)), otherwise s or t would dominate u1. Hence, when taking u1,
we delete 12 edges and 5 vertices, which means Q(d) ≤ T (d− 3) + T (d− 7),
i.e., T (d) ≤ 2T (d− 5) + T (d− 9).

– If s and t are not adjacent, Q(d) ≤ T (d− 3)+ T (d− 6) but when reducing s
and t (after taking u1), we are in one of the two cases of Remark 1, i.e.,
either d decreases and Q(d) ≤ T (d − 3) + T (d − 7), or a degree 4 vertex is
created.

The analysis of the solutions of the equations induced by the previous analysis
shows that the worst case running time corresponds to the case T (d) ≤ T (d −
5) + 2T (d− 8) + T (d− 10), which sums up to T (d) = O∗(1.2048d).

4 Dealing with Trees

As noticed in [5], we have to be careful with our previous analysis. Indeed, the
adopted measure d = m − n creates a somehow unexpected problematic situa-
tion, occurring when several connecting components are created when branch-
ing, one or several of them being tree(s). Indeed, applying preprocessing rules
immediately reduces a tree to a single vertex, which can be added to the solu-
tion. However, when removing this vertex (i.e., when dealing with the tree), the
measure m − n increases. In other words, when creating a tree, if the measure
globally decreases by say x, it decreases only by x − 1 in the remaining graph,
tree excepted.

To deal with this situation, we study the situations when one or several tree(s)
are created when branching. We show that in these particular cases the number
of edges deleted is sufficient to compensate the loss induced by the tree(s).

To obtain this, we use a property shown by Fürer [5] that handles the case
where there is a separator of size one or two in the graph. More precisely, if there
exists one vertex u or a couple of vertices (u1, u2) the deletion of which discon-
nects the graph, creating one connecting component of say constant size, then
this connected component can be eliminated before branching. This reduction,
not increasing d, can be added for instance to the preprocessing step.

64 N. Bourgeois, B. Escoffier, and V.Th. Paschos

Let us consider that we branch on a vertex v. As pointed out by Fürer [5],
if we don’t take v, then no tree can be created (since every vertex of the graph
has degree at least 3).

Let us now handle the case where we take v. Note that since each vertex in
the graph has degree 3, when a tree with r vertices is created, at least r+2 edges
link one vertex of the tree to one vertex of Γ (v). If v has degree 3 (the graph is
three regular), if a tree is created, this tree is a single vertex w linked to the 3
vertices in Γ (v). Indeed, each vertex in Γ (v) has at least one edge linking it to
the rest of the graph (else there would be a separator of size 2), hence at most
one edge linking it to the tree. In this case, the graph reduces (before branching
on v): we delete v and w and merge the vertices in Γ (v) in a single vertex. We
delete 6 edges and 4 vertices, hence d decreases.

Assume now that deg(v) ≥ 4.
Let us note by:

– |I| (as previously) the number of edges linking two vertices in Γ (v);
– l the number of trees created when branching on v (taking v);
– t the number of edges linking a vertex in Γ (v) to a vertex in one of the trees

created;
– e the number of edges linking one vertex of Γ (v) to the rest of the graph;
– D =

∑
deg(w) for w ∈ Γ (v).

When branching on v, either we don’t take v and d′ = d − deg(v) + 1 ≤ d − 3,
or we take v. In this latter case: we delete 1 + deg(v) vertices v and Γ (v),
deg(v) + |I| + t + e edges incident to vertices in Γ (v), and we loose 1 for each
tree created. Hence, after handling the tree(s), d has globally decreased by:
δ = |I|+ t + e− 1− l.

Note that t ≥ 3 (or we have a separator of size 2 or less) and e ≥ 3l (at least 3
edges for each tree). Hence: δ ≥ |I| + 3 + 3l − 1 − l ≥ 2 + 2l. In particular, if
l > 1 then δ ≥ 6.

If l = 1, then δ = |I|+t+e−2. D = 2|I|+t+e+4. Then δ = D/2+t/2+e/2−4.
Since e ≥ 3 and t ≥ 3, if D ≥ 13 then δ ≥ 13/2− 1. Since it is an integer, δ ≥ 6.

The only remaining case is D = 12 (hence deg(v) = 4 and each vertex in Γ (v)
has degree 3), t = 3 and e = 3 (see Figure 8). But in this case, the tree separated
has only one vertex w. Then, the only inner edge in Γ (v) is incident to the
vertex s in Γ (v) non adjacent to w (otherwise there would be a dominated
vertex), as depicted in Figure 8. Hence, it is never interesting to take s in the
solution (take either v or t instead), and we don’t need to branch.

Hence, in the cases where branching is needed, we decrease d either by 3
(not taking v in the solution) or by δ ≥ 6 (taking v in the solution). This is
in particular the recurrence relation T (d) ≤ T (d − 3) + T (d − 6) needed when
operating branching in the analysis of Section 3.

5 The Concluding Theorem

The analysis provided in Sections 2, 3 and 4 allows to state the following result.

An O∗(1.0977n) Exact Algorithm for max independent set 65

s

tv
w

Fig. 8. Taking s is never interesting

Theorem 1. On any graph, it is possible to solve max independent set with
running time O∗(1.2048m−n). In particular, a solution to max independent
set-3 may be computed with running time O∗(1.0977n).

As the result of Theorem 1 depends only on the difference m−n, the time-bound
claimed for max independent set-3 remains valid also if only the average
degree of the input-graph is bounded by 3 since, also in this case, m ≤ 3n/2.

References

1. Robson, J.M.: Finding a maximum independent set in time O(2n/4). Technical Re-
port 1251-01, LaBRI, Université de Bordeaux I (2001)

2. Beigel, R.: Finding maximum independent sets in sparse and general graphs. In:
Proc. Symposium on Discrete Algorithms, SODA 1999, pp. 856–857 (1999)

3. Chen, J., Kanj, I.A., Xia, G.: Labeled search trees and amortized analysis: improved
upper bounds for NP-hard problems. In: Ibaraki, T., Katoh, N., Ono, H. (eds.)
ISAAC 2003. LNCS, vol. 2906, pp. 148–157. Springer, Heidelberg (2003)

4. Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inform.
Process. Lett. 97, 191–196 (2006)

5. Fürer, M.: A faster algorithm for finding maximum independent sets in sparse
graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 491–501. Springer, Heidelberg (2006)

6. Razgon, I.: A faster solving of the maximum independent set problem for graphs
with maximal degree 3. In: Proc. Algorithms and Complexity in Durham, ACiD
2006, pp. 131–142 (2006)

7. Wœginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M.,
Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink!
LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

8. Eppstein, D.: Improved algorithms for 3-coloring, 3-edge-coloring, and constraint
satisfaction. In: Proc. Symposium on Discrete Algorithms, SODA 2001, pp. 329–
337 (2001)

New Fixed-Parameter Algorithms for the

Minimum Quartet Inconsistency Problem�

Maw-Shang Chang1, Chuang-Chieh Lin1, and Peter Rossmanith2

1 Department of Computer Science and Information Engineering,
National Chung Cheng University, Ming-Hsiung, Chiayi, Taiwan, R.O.C.

mschang@cs.ccu.edu.tw, lincc@cs.ccu.edu.tw
2 Department of Computer Science, RWTH Aachen University, Germany

rossmani@informatik.rwth-aachen.de

Abstract. Given a set of n taxa S, exactly one topology for every subset
of four taxa, and a positive integer k as the parameter, the parameterized
Minimum Quartet Inconsistency (MQI) problem is to decide whether we
can find an evolutionary tree inducing a set of quartet topologies that
differs from the given set in at most k quartet topologies. The best fixed-
parameter algorithm devised so far for the parameterized MQI problem
runs in time O(4kn+n4). In this paper, first we present an O(3.0446kn+
n4) algorithm and an O(2.0162kn3 + n5) algorithm. Finally, we give an
O∗((1 + ε)k) algorithm with an arbitrarily small constant ε > 0.

1 Introduction

Nowadays, to determine the evolutionary relationship of a set of taxa is very
important in biological research, especially in computational biology. For this
relationship, an evolutionary tree is a common model, which is widely considered.
Let S be a set of taxa and |S| = n. An evolutionary tree T on S is an unrooted ,
leaf-labeled tree such that the leaves of T are bijectively labeled by the taxa in
S, and each internal node of T has degree three. In the past decade, quartet
methods for building an evolutionary tree for a set of taxa have received much
attention [1,3,4,6,8,9,10,11,14].

A quartet is a set of four taxa {a, b, c, d} in the taxon set S. The quartet
topology for {a, b, c, d} induced by T is the path structure connecting a, b, c, and
d in T (see Fig. 1 for an illustration). A quartet {a, b, c, d} has three possible
topologies [ab|cd], [ac|bd], and [ad|bc], which are the bipartitions of {a, b, c, d}
(see Fig. 2 for an illustration).

A quintet is a set of five taxa in S, while a sextet is a set of six taxa in S.
The quintet topology of a quintet {a, b, c, d, e} induced by an evolutionary tree
T is the path structure connecting a, b, c, d, and e in T . Similarly, we have
the sextet topology of a sextet. Without loss of generality, assume that we have
� This research was supported by NSC-DAAD Sandwich Program and partially sup-

ported by the National Science Council of Taiwan under grant no. NSC 96-2221-E-
194-045-MY3, and was carried out at RWTH Aachen University, Germany.

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 66–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

New Fixed-Parameter Algorithms for the MQI Problem 67

[bc|de] induced by T and another taxon a, then there are five possible quintet
topologies since there are five positions for inserting a into the tree structure of
[bc|de] (see Fig. 3 for an illustration).

Fig. 1. The quartet topology of {a, b, c, d} in-
duced by evolutionary tree T

There are 15 possible quintet
topologies for a quintet {a, b, c,
d, e}. A quintet has five quartets,
and hence a quintet topology has
5 different induced quartet topolo-
gies. Two taxa a, b are siblings on
an evolutionary tree T if a and b
are both adjacent to the same in-
ternal vertex in T . Here we con-
sider sextet topologies of the sextet
{a, b, w, x, y, z} where a, b are sib-
lings. It is clear that there are 15 possible sextet topologies with siblings a, b
(refer to Fig. 4).

Fig. 2. Three topologies for the
quartet {a, b, c, d}

Given a set of quartet topologies Q over
the taxon set S, we say that a quintet
{a, b, c, d, e} ⊆ S is resolved if there exists
an evolutionary tree T ′, on which a, b, c, d, e
are leaves, such that all the quartet topolo-
gies induced by T ′ are in Q. Otherwise, we
say that {a, b, c, d, e} is unresolved. Similarly,
we say that a sextet {a, b, w, x, y, z} ⊆ S is
{a, b}-resolved if there exists an evolutionary

tree T ′′, on which a, b, w, x, y, z are leaves and a, b are siblings, such that all quar-
tet topologies induced by T ′′ are in Q. Otherwise, we say that {a, b, w, x, y, z} is
{a, b}-unresolved.

Fig. 3. Five possible topologies for the
quintet {a, b, c, d, e} when [ab|cd] is given

Let QT be the set of quartet topolo-
gies induced by T . If there exists an
evolutionary tree T such that Q ⊆ QT ,
we say that Q is tree-consistent [2]
(with T) or T satisfies Q. If there exists
a tree T such that Q = QT , we say that
Q is tree-like [2]. Q is called complete
if Q contains exactly one topology for
every quartet, otherwise, incomplete. For two complete sets of quartet topologies
Q and Q∗ where Q∗ is tree-like but Q is not, the quartet errors of Q with respect
to Q∗ are the quartet topologies in Q that differ from those in Q∗. We denote
the number of quartet errors of Q with respect to Q∗ by Δ(Q, Q∗). The number
of quartet errors of Q is defined to be min{Δ(Q, Q∗) : Q∗ is tree-like}.

1.1 Related Work

The Quartet Compatibility Problem (QCP) is to determine if there exists an evo-
lutionary tree T on S satisfying all quartet topologies Q. The QCP problem can

68 M.-S. Chang, C.-C. Lin, and P. Rossmanith

be solved in polynomial time if Q is complete [6], but it becomes NP-complete
when Q is not necessarily complete [11]. The optimization problem, called the
Maximum Quartet Consistency Problem (MQC), is to construct an evolution-
ary tree T on S to satisfy as many quartet topologies of Q as possible. The
Minimum Quartet Inconsistency Problem (MQI), which is a dual problem to the
MQC problem, is to construct an evolutionary tree T on S such that the number
of quartet errors of Q with respect to QT is minimized. The MQC problem is
NP-hard [3], yet it has a polynomial time approximation scheme (PTAS) [10].
The MQI problem is also NP-hard [3], while the best approximation ratio found
so far for the MQI problem is O(n2) [9]. For the case that the input set of quar-
tet topologies Q is not necessarily complete, Ben-Dor et al. gave an O(3nm)
algorithm to solve the MQI problem by dynamic programming [1], where m is
the number of quartet topologies. When the number of quartet errors is smaller
than (n−3)/2, Berry et al. [3] devised an O(n4) algorithm for the MQI problem.
If the number of quartet errors is at most cn for some positive constant c, Wu et
al. [15] compute the optimal solution for the MQI problem in O(n5 + 24cn12c+2)
time. While this is a polynomial time algorithm, the degree of the polynomial
in the runtime grows quickly. Therefore parameterized algorithms are faster for
practical values of k and n.

Fig. 4. The 15 possible sextet topologies
for sextet {a, b, w, x, y, z} with siblings a, b

Provided with a positive integer
k as an additional part of the in-
put, the parameterized MQI problem
is to determine whether there ex-
ists an evolutionary tree T such that
the number of quartet errors of Q is
at most k. Gramm and Niedermeier
proved that the parameterized MQI
problem is fixed parameter tractable in
time O(4kn + n4) [8]. In [14], Wu et
al. presented a lookahead branch-and-
bound algorithm for the MQC prob-
lem which runs in time O(4k′

n2k′ + n4), where k′ is an upper bound on the
number of quartet errors of Q.

1.2 Our Result

In this paper, we focus on the parameterized MQI problem as follows. Given a
complete set of quartet topologies Q and a parameter k as the input, determine
whether there is a tree-like quartet topology set that differs from Q in at most
k quartet topologies, that is, determine whether Q has at most k quartet errors.
Using the depth-bounded search tree strategy, we propose an O(3.0446kn + n4)
fixed-parameter algorithm for this problem. With slight refinement, we obtain an
O(2.0162kn3+n5) algorithm and an O∗((1+ε)k) time algorithm with arbitrarily
small ε > 0.

The paper is organized as follows. In Sect. 2, we will give additional theoretical
background for the MQI problem. In Sect. 3, we present an O(3.0446kn + n4)

New Fixed-Parameter Algorithms for the MQI Problem 69

fixed-parameter algorithm for the parameterized MQI problem. In Sect. 4, we will
introduce the two-siblings-determined minimum quartet inconsistency problem
(2SDMQI), then an O(2.0162kn+n4) fixed-parameter algorithm for this problem
will be given. At the end of this section, we will present an O(2.0162kn3 + n5)
fixed-parameter algorithm for the parameterized MQI problem by solving the
2SDMQI problem. Finally in Sect. 5, we will present an O∗((1 + ε)k) fixed-
parameter algorithm for the parameterized MQI problem, where ε > 0 is an
arbitrarily small constant. For the sake of brevity, many proofs are omitted in
this extended abstract, but can be found in the full paper.

2 Preliminaries

Recall that S is a set of taxa and |S| = n. Let Q denote the complete set
of quartet topologies over S. The set Q is of size

(
n
4

)
. We say that a set of

quartet topologies Q′ over S involves a taxon f if there exists at least one quartet
topology t = [v1v2|v3v4] ∈ Q′, where v1, v2, v3, v4 ∈ S, such that f = vi for some
i ∈ {1, 2, 3, 4}. If a set of quartet topologies is not tree-consistent, we say that
it has a conflict. We say that a set of three topologies has a local conflict if it is
not tree-consistent.

Lemma 1. [8] A set of three quartet topologies involving more than five taxa is
tree-consistent.

Theorem 1. [8] Given a set of taxa S and a complete set of quartet topologies
Q over S, and some taxon f ∈ S, then Q is tree-like if and only if every set of
three quartet topologies in Q that involves f has no local conflict.

Lemma 2. Assume that q ⊆ S is a quintet such that f ∈ q and let Qq ⊆ Q
denote the set of quartet topologies of quartets in q. Then q is resolved if and
only if every set of three quartet topologies in Qq has no local conflict.

Corollary 1. Given a set of taxa S, a complete set of quartet topologies Q
over S, and some taxon f ∈ S, then Q is tree-like if and only if every quintet
containing f is resolved.

There are ten sets of three quartets with respect to a quintet {a, b, c, d, e}. Check-
ing whether a set of three quartet topologies has a local conflict requires only
constant time [8]. It is then clear that checking whether a quintet is resolved
requires only constant time. Given a taxon f ∈ S which is fixed, there are

(
n−1

4

)

quintets containing f . Thus we have the following theorem.

Theorem 2. Given a set S of taxa, some taxon f ∈ S, and a complete set Q of
quartet topologies, then all unresolved quintets involving f can be found in O(n4)
time.

Let ≺ be some order (e.g. lexicographic order) on the taxon set S. For the three
possible topologies of a quartet, we denote them by type 0, 1, and 2 according to

70 M.-S. Chang, C.-C. Lin, and P. Rossmanith

this order. Consider a quartet {a, b, c, d} ⊂ S as an example. If a ≺ b ≺ c ≺ d, we
denote [ab|cd] by 0, [ac|bd] by 1, and [ad|bc] by 2. For a quintet {s1, s2, s3, s4, s5}
where s1 ≺ s2 ≺ s3 ≺ s4 ≺ s5, we define its topology vector to be an or-
dered sequence of types of the quartet topologies over the quintet. For example,
consider a quintet {a, b, c, d, e} ⊆ S with [ab|cd], [ae|bc], [ab|de], [ae|cd] and
[bd|ce] in Q, then the topology vector of {a, b, c, d, e} is (0, 2, 0, 2, 1). Recall that
there are 15 possible quintet topologies for a quintet {s1, s2, s3, s4, s5}. We de-
note by V the set of topology vectors of all the possible quintet topologies of a
quintet, then we have V = {(0, 0, 0, 0, 0), (1, 1, 0, 0, 0), (2, 2, 0, 0, 0), (2, 2, 1, 1, 0),
(2, 2, 2, 2, 0), (0, 0, 0, 1, 1), (2, 0, 1, 1, 1), (1, 0, 2, 1, 1), (1, 1, 2, 0, 1), (1, 2, 2, 2, 1),
(0, 0, 0, 2, 2), (0, 2, 2, 2, 2), (0, 1, 1, 2, 2), (1, 1, 1, 0, 2), (2, 1, 1, 1, 2)}.

Consider the sextet {s1, s2, s3, s4, s5, s6} ⊆ S where s1, s2 are siblings in
an evolutionary tree over S. There are six quartets in the sextet having fixed
quartet topologies (for example, the quartet topology of {s1, s2, s3, s4} must be
[s1s2|s3s4]). Given two siblings s1, s2, the {s1, s2}-reduced topology vector of sex-
tet {s1, s2, s3, s4, s5, s6} is an ordered sequence of types of the quartet topolo-
gies which are not fixed. For example, consider a sextet {a, b, w, x, y, z} ⊆ S
with siblings a, b such that [aw|xy], [ax|wz], [az|wy], [ay|xz], [bw|xy], [bx|wz],
[bz|wy], [by|xz], and [wx|yz] are in Q. The {a, b}-reduced topology vector of
{a, b, w, x, y, z} is (0, 1, 2, 1, 0, 1, 2, 1, 0). Let us denote by V2 the set of {a, b}-
reduced topology vectors of all possible sextet topologies of {a, b, w, x, y, z}. Then
we have V2 = {(0, 0, 0, 0, 0, 0, 0, 0, 0), (1, 1, 0, 0, 1, 1, 0, 0, 0), (2, 2, 0, 0, 2, 2, 0, 0, 0),
(2, 2, 1, 1, 2, 2, 1, 1, 0), (2, 2, 2, 2, 2, 2, 2, 2, 0), (0, 0, 0, 1, 0, 0, 0, 1, 1), (2, 0, 1, 1, 2, 0, 1,
1, 1), (1, 0, 2, 1, 1, 0, 2, 1, 1), (1, 1, 2, 0, 1, 1, 2, 0, 1), (1, 2, 2, 2, 1, 2, 2, 2, 1), (0, 0, 0, 2,
0, 0, 0, 2, 2), (0, 2, 2, 2, 0, 2, 2, 2, 2), (0, 1, 1, 2, 0, 1, 1, 2, 2), (1, 1, 1, 0, 1, 1, 1, 0, 2), (2,
1, 1, 1, 2, 1, 1, 1, 2)}.

3 An O(3.0446kn + n4) Algorithm

The Algorithm. Our first fixed-parameter algorithm is called FPA1-MQI, which
runs recursively. The concepts of the algorithm are as follows. We build a list of
unresolved quintets Cf containing some fixed taxon f and the list V of topologies
vectors of possible quintet topologies for a quintet as preprocessing steps. In each
recursion, the algorithm selects an unresolved quintet q = {a, b, c, d, e} ∈ Cf

arbitrarily and then tries to make q resolved by the procedure update according
to all the possible 15 quintet topologies of q.

Recall that each topology vector μ ∈ V represents a quintet topology of a quin-
tet. The procedure update changes quartet topologies according to the quartet
topologies which μ stands for, and updates the set Cf and the parameter k to be
C′

f and k′ respectively. For example, assume that we have [ab|cd], [ae|bc], [ab|de],
[ae|cd], and [bd|ce] in Q for the quintet {a, b, c, d, e} (the corresponding topol-
ogy vector is then (0, 2, 0, 2, 1)), and assume that μ = (2, 1, 1, 1, 2). According
to μ, the procedure update changes these quartet topologies to [ad|bc], [ac|be],
[ad|be], [ad|ce], and [be|cd] respectively, and these quartets are marked so that
their topologies will not be changed again. However, if there is a branch node

New Fixed-Parameter Algorithms for the MQI Problem 71

Algorithm 1: FPA1-MQI (a complete set of quartet topologies Q, an integer
parameter k, a list Cf of unresolved quintets)

1: if Cf is empty and k ≥ 0 then
2: return ACCEPT;
3: else if k ≤ 0 then
4: return;
5: end if
6: Extract an unresolved quintet q from Cf ;
7: for each μ ∈ V do
8: (Q′, C′

f , k′) ← update(Q, Cf ,q, μ, k);
9: FPA1-MQI (Q′, k′, C′

f);
10: end for

in the search tree such that some quartet, which has been marked, must be
changed in all the possible 15 branches to make an unresolved quintet resolved,
the algorithm stops branching here and just returns. Let Qμ be the set of quartet
topologies changed according to μ. The procedure update obtains the updated
set of unresolved quintets C′

f by removing the newly resolved quintets and adding
the newly unresolved quintets, and gets the updated parameter k′ = k − |Qμ|.

By Corollary 1, we know Cf is empty if and only if the set of quartet topologies
is tree-like. Algorithm FPA1-MQI branches in all possible ways to eliminate each
unresolved quintet in Cf and it changes at most k quartet topologies from the
root to each branch node in the search tree. Thus it is easy to see that the
algorithm is correct.

The Time Complexity. The algorithm works as a depth-bounded search tree.
Each tree node has 15 branches and each branch corresponds to a quintet
topology. Since there are 243 possible topology vectors of a quintet but 15 of
them are in V , we have 228 possible branching vectors and the correspond-
ing branching numbers as well. Consider the case that the algorithm selects a
quintet q = {a, b, c, d, e} which has induced quartet topologies [ab|cd], [ac|be],
[ae|bd], [ad|ce], and [bc|de] in Q. By comparing its corresponding topology vector
(0,1,2,1,0) with each topology vector μ ∈ V , we obtain the numbers of quartet
topologies changed by Algorithm FPA1-MQI, and then we have a branching vec-
tor (3, 3, 4, 3, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 3) hence a branching number between 2.3004
and 2.3005 is obtained. It can be derived that the branching number in the worst
case is between 3.0445 and 3.0446. Thus the size of the search tree is O(3.0446k).
Then we obtain the following theorem by careful analysis.

Theorem 3. There exists an O(3.0446kn + n4) fixed-parameter algorithm for
the parameterized minimum quartet inconsistency problem.

4 An O(2.0162kn3 + n5) Algorithm

We define the two-siblings-determined minimum quartet inconsistency problem
(2SDMQI) as follows. Given a complete quartet topology set Q over a taxon set

72 M.-S. Chang, C.-C. Lin, and P. Rossmanith

Algorithm 2: FPA-2SDMQI (a complete set of quartet topologies Q, an inte-
ger parameter k, a list Ca of unresolved quintets, two taxa a, b)

1: if Ca is empty and k ≥ 0 then
2: return ACCEPT;
3: else if k ≤ 0 then
4: return;
5: end if
6: for every two taxa u, v ∈ S \ {a, b} do
7: if k ≤ 0 then return;
8: else change the quartet topology of {a, b, u, v} to be [ab|uv] if [ab|uv] /∈ Q and

update Ca and k ← k − 1;
9: end for

10: Resolve(Q, k, Ca, a, b);

S, a parameter k and two taxa a, b ∈ S as the input, determine whether there
exists an evolutionary tree T on which a and b are siblings such that QT differs
from Q in at most k quartet topologies.

We present a fixed-parameter algorithm called FPA-2SDMQI for the 2SDMQI
problem as follows. First, for every u, v ∈ S \ {a, b} such that [ab|uv] /∈ Q, we
change the quartet topology of {a, b, u, v} to be [ab|uv] and decrease k by 1.
Second, we build two lists Ca and V2, where Ca is a list of unresolved quintets
containing a while V2 is a list of {a, b}-reduced topologies vectors of possible
sextet topologies on which a, b are siblings. Then the algorithm calls Algorithm
Resolve to resolve all {a, b}-unresolved sextets by changing at most k quartet
topologies. In each recursion of Algorithm Resolve, we arbitrarily select an un-
resolved quintet q and try to make q ∪ {b} be {a, b}-resolved by the procedure
update2 according to all possible 15 sextet topologies of q ∪ {b} having a, b as
siblings. Similar to the procedure update in Sec. 3, we mark the quartets whose
topologies are changed, and if there is a branch node in the search tree such
that some quartet, which has been marked, must be changed in all the possible
branches to make q ∪ {b} be {a, b}-resolved, the algorithm stops branching here
and just returns. The procedure update2 updates the set of unresolved quintets
Ca by removing the newly resolved quintets and adding the newly unresolved
quintets, and updates the parameter k. It is easy to see that Algorithm FPA-
2SDMQI is also valid.

Similar to the analysis in Sec. 3, we obtain that the size of the search tree is
O(2.0162k). Hence we have an O(2.0162kn + n4) fixed-parameter algorithm for
the 2SDMQI problem. Let us turn to consider the parameterized MQI problem.
It is easy to see that every evolutionary tree with |S| ≥ 4 leaves has at least two
pairs of taxa which are siblings. Thus by building the list of unresolved quintets
involving taxon s for every s ∈ S and running Algorithm FPA-2SDMQI for every
two taxa in S, we obtain an O(2.0162kn3 + n5) fixed-parameter algorithm for
the parameterized MQI problem.

Theorem 4. There exists an O(2.0162kn3 + n5) fixed-parameter algorithm for
the parameterized minimum quartet inconsistency problem.

New Fixed-Parameter Algorithms for the MQI Problem 73

Algorithm 3: Resolve (a complete set of quartet topologies Q, an integer
parameter k, a list Ca of unresolved quintets, two taxa a, b)

1: if Ca is empty and k ≥ 0 then
2: return ACCEPT;
3: else if k ≤ 0 then
4: return;
5: end if
6: Extract an unresolved quintet q from Ca;
7: if b ∈ q then q ← q ∪ {s}, for some arbitrary taxon s /∈ q; else q ← q ∪ {b};
8: for each ν ∈ V2 do
9: (Q′, C′

a, k′) ← update2(Q, Ca,q, ν, k);
10: Resolve(Q′, k′, C′

a, a, b);
11: end for

5 An O∗((1 + ε)k) Algorithm

The Algorithm. At the beginning of this section, let us consider some additional
preliminaries. Let T denote an evolutionary tree on S such that QT differs from
Q in at most k quartet topologies. For an integer m ≥ 2, we say that taxa
a1, . . . , am are adjacent if there exists an edge e = (w, v) on T such that cutting e
will produce a bipartition ({a1, . . . , am}, S \{a1, . . . , am}) of S. In Fig. 5, cutting
the edge e will derive four adjacent taxa a1, a2, a3, and a4. After e = (w, v) is
cut, two binary trees will be produced which are rooted at w and v respectively.
Note that two taxa on T are adjacent if and only if they are siblings on T .

Lemma 3. Given an evolutionary tree T and an integer 2 ≤ ω ≤ n/2, there
exists a set of m adjacent taxa as leaves on T , where ω ≤ m ≤ 2ω − 2.

By extending the idea of Algorithm FPA2-MQI to consider m ≥ 3 adjacent
taxa, we obtain another fixed-parameter algorithm, called FPA3-MQI, with two
subroutines Algorithm MAKE-ADJ and Algorithm ADJ-Resolve. Assume that
Am = {a1, . . . , am} is a set of adjacent taxa on T . We introduce the main
concepts of Algorithm FPA3-MQI as follows.

(2, 2)-cleaning: For every two taxa ai, aj ∈ Am and every two taxa u, v ∈
S \Am, we modify the topology of {ai, aj , u, v} to be [aiaj |uv]. We call this part
of the algorithm (2, 2)-cleaning.

(3, 1)-cleaning: Assume the parameter is k′. For ah, ai, aj ∈ Am and s ∈
S \ Am, without loss of generality we denote the type of quartet topology
[ahai|ajs] by 0, [ahaj |ais] by 1, and [ahs|aiaj] by 2. We construct a set of all
possible evolutionary trees Tm+1 on the taxa in Am ∪ {x}, where x is an arbi-
trary taxon in S \Am, such that each T ′ ∈ Tm+1 has at most k′ different induced
quartet topologies from Q. Afterwards, for each T ′ ∈ Tm+1, we change the type
of topology of every quartet {ah, ai, aj, s} into the same type of topology as
{ah, ai, aj, x} has on T ′. We call this part of the algorithm (3, 1)-cleaning.

(1, 3)-cleaning: Without loss of generality, we denote the type of quartet
topology [aiw|xy] by 0, [aix|wy] by 1, and [aiy|wx] by 2 for ai ∈ Am and

74 M.-S. Chang, C.-C. Lin, and P. Rossmanith

w, x, y ∈ S\ Am. We build a list Bm of sets of three taxa {w, x, y} ⊆ S\Am such
that the topologies of {ai, w, x, y} are not all the same for i = 1, . . . , m. Then we
make all these quartet topologies be the same type by Algorithm MAKE-ADJ,
which recursively branches on three possible types of these quartet topologies.
We call this part of the algorithm (1, 3)-cleaning.

Quintet cleaning: After (2, 2)-cleaning, (3, 1)-cleaning and (1, 3)-cleaning, as-
sume that the parameter is k′′ for the moment. We try to resolve all the unre-
solved quintets in Ca1 through Algorithm ADJ-Resolve, which changes at most
k′′ quartet topologies in Q. We call this part of the algorithm quintet cleaning.

Lemma 4. Assume that Am = {a1, . . . , am} and the list of unresolved quintet is
Ca1 , then after (2, 2)-cleaning, (3, 1)-cleaning and (1, 3)-cleaning, q∩Am = {a1}
for every q ∈ Ca1 .

Note that there does not always exist ω adjacent taxa in an evolutionary tree
for an arbitrary integer ω. By Lemma 3, we know there must be m taxa which
are adjacent in an evolutionary tree, where ω ≤ m ≤ 2ω − 2. Assume that we
are given an integer ω as an additional input. Then to solve the parameterized
MQI problem, first we build a list of unresolved quintet involving s for each
s ∈ S, then we run Algorithm FPA3-MQI for every m ∈ {ω, . . . , 2ω − 2}. The
procedure updatem is similar to the procedure update in Sect. 3. Yet if a quartet
topology of {a1, w, x, y}, where w, x, y ∈ q \ a1, is changed, the procedure not
only changes quartet topologies according to μ, but also changes the topologies
of {a2, w, x, y}, . . . , {am, w, x, y} together into the same type as {a1, w, x, y} has.
Then the procedure updates the set Ca1 and the parameter k.

Fig. 5. An evolutionary tree
with adjacent taxa a1, a2, a3, a4

Recall that we denote T to be an evolutionary
tree on S such that QT differs from Q in at most
k quartelarget topologies. Given an arbitrary in-
teger 2 ≤ ω ≤ n/2, there exists m adjacent taxa
in T , where ω ≤ m ≤ 2ω − 2. Assume that there
is a set of adjacent taxa Am = {a1, . . . , am} ⊆ S
on T . Since the taxa in Am are adjacent, the path
connecting every two taxa ai, aj ∈ Am and the
path connecting two taxa u, v ∈ S \ Am will be
disjoint and hence the topology of {ai, aj , u, v}
must be [aiaj|uv]. So (2, 2)-cleaning is valid. In
addition, once the topology of {ah, ai, aj , x} is
fixed for ah, ai, aj ∈ Am and some x ∈ S \ Am, the quartets {ah, ai, aj , s} must
have the same type of quartet topologies as {ah, ai, aj , x} has one T . Hence (3, 1)-
cleaning is valid. Besides, the path structure connecting ai, w, x, y on T must be
the same for all i ∈ {1, . . . , m} and every three taxa w, x, y ∈ S \ Am, so (1, 3)-
cleaning is valid. After (2, 2)-cleaning, (3, 1)-cleaning, and (1, 3)-cleaning, there
are only unresolved quintets involving a1 by Lemma 4. Thus quintet cleaning,
which is done by Algorithm ADJ-Resolve together with the procedure updatem,
is valid. The number of unresolved quintets in Ca1 can be always decreased until
Q is tree-like. Hence it is easy to see that the algorithm is correct.

New Fixed-Parameter Algorithms for the MQI Problem 75

Algorithm 4: FPA3-MQI (a complete set of quartet topologies Q, an integer
parameter k, a list of unresolved quintets Ca1 , an arbitrary integer m)

1: Q∗ ← Q; C∗
a1 ← Ca1 ; k∗ ← k;

2: for every set of m taxa Am = {a1, . . . , am} ⊆ S do
3: for every two taxa ai, aj ∈ Am and every two taxa u, v ∈ S \ Am do
4: if k ≤ 0 then return; else Change the quartet topology of {ai, aj , u, v} in Q∗

to be [aiaj |uv] if [aiaj |uv] /∈ Q∗, and then update C∗
a1 and k∗ ← k∗ − 1;

5: end for
6: Build a set of all possible evolutionary trees Tm+1 such that each T ′ ∈ Tm+1 is

an evolutionary tree on Am ∪ {x}, where x is an arbitrary taxon in S \ Am and
|QT ′ \ Q∗| ≤ k∗;

7: Build a list Bm of sets of three taxa w, x, y ∈ S \ Am such that topologies of
{ai, w, x, y} in Q∗ are not all the same for all 1 ≤ i ≤ m;

8: Q∗∗ ← Q∗; C∗∗
a1 ← C∗

a1 ; k∗∗ ← k∗;
9: if Tm+1 = ∅ then

10: return;
11: else
12: for each T ′ ∈ Tm+1 do
13: k∗∗ ← k∗∗ − |QT ′ \ Q∗∗|;
14: Change the quartet topologies in Q∗∗ over Am to those in QT ′ ;
15: For every taxon s ∈ S \ Am and every three taxa ah, ai, aj ∈ Am, change

the topology of {ah, ai, aj , s} to the one of the same type as {ah, ai, aj , x}
has; update C∗∗

a1 ;
16: if MAKE-ADJ(Q∗∗, C∗∗

a1 , k∗∗) returns ACCEPT then
17: return ACCEPT;
18: else
19: Restore (Q∗∗, C∗∗

a1) to (Q∗, C∗
a1), and k∗∗ ← k∗;

20: end if
21: end for
22: end if
23: Restore (Q∗, C∗

a1) to (Q,Ca1), delete Bm, and k∗ ← k;
24: end for

Algorithm 5: MAKE-ADJ (a complete set of quartet topologies Q, a list of
unresolved quintets Ca1 , an integer parameter k)

1: if Ca1 is empty and k ≥ 0 then
2: return ACCEPT;
3: else if k ≤ 0 then
4: return;
5: end if
6: while Bm 	= ∅ do
7: Extract {w, x, y} from Bm;
8: for each type i ∈ {0, 1, 2} do
9: Change all the topologies of {a1, w, x, y}, . . . , {am, w, x, y} to topologies of

type i; let Q′, C′
a1 , k′ be the changed Q, Ca1 , k respectively;

10: MAKE-ADJ(Q′, C′
a1 , k

′);
11: end for
12: end while
13: if ADJ-Resolve(Q,k, Ca1) returns ACCEPT then return ACCEPT;

76 M.-S. Chang, C.-C. Lin, and P. Rossmanith

Algorithm 6: ADJ-Resolve (a complete set of quartet topologies Q, an integer
parameter k, a list Ca1 of unresolved quintets)

1: if Ca1 is empty and k ≥ 0 then
2: return ACCEPT;
3: else if k ≤ 0 then
4: return;
5: end if
6: Extract an unresolved quintet q from Ca1 ;
7: for each μ ∈ V do
8: (Q′, C′

a1 , k′) ← updatem(Q, Ca1 ,q, μ, k);
9: ADJ-Resolve(Q′, k′, C′

a1);
10: end for

The Time Complexity. Let us consider the recursive structure of the algo-
rithm, i.e., (1, 3)-cleaning and quintet cleaning, as follows. Consider the quartets
{a1, w, x, y}, . . . , {am, w, x, y}, where w, x, y ∈ S \ Am. Without loss of general-
ity, we denote the quartet topologies [aiw|xy], [aix|wy], and [aiy|wx] to be type
0, 1, and 2 respectively, for all i = 1, . . . , m. Let mj be the number of quar-
tets in {{a1, w, x, y}, . . . , {am, w, x, y}} which have topologies of type j. (1, 3)-
cleaning branches on these three types to make every quartet {ai, w, x, y}, where
ai ∈ Am, have the same type of topology. It is clear that m0 + m1 + m2 = m.
Then the depth-bounded search tree for (1, 3)-cleaning has a branching vector
(m1 +m2, m0 +m2, m0 +m1). By careful analysis we can deduce that the size of
the depth-bounded search tree of (1, 3)-cleaning is O((1+2m−1/2)k) for m ≥ 19.

As to quintet cleaning, assume that the list of unresolved quintets is Ca1 . Let
q = {a1, w, x, y, z} be an unresolved quintet in Ca1 , and let vq = (vq(1),vq(2),
vq(3),vq(4),vq(5)) denote the topology vector of q, where vq(1),vq(2),vq(3),
vq(4), and vq(5) are the types of topologies of quartets of q with respect to Q.
Recall that V = {μ1, . . . , μ15} is a set of topology vectors of 15 possible quin-
tet topologies for a quintet, where μi = (μi(1), μi(2), μi(3), μi(4), μi(5)) stands
for the ith topology vector in V . For 1 ≤ j ≤ 5, we denote vq(j) ⊕ μi(j) = 1
if vq(j) �= μi(j), and vq(j) ⊕ μi(j) = 0 otherwise. For an unresolved quin-
tet q, let b(q) denote the branching vector of the recurrence of the quin-
tet cleaning for q. By the descriptions of quintet cleaning and the procedure
updatem of the algorithm, we derive that b(q) = (b1(q), . . . ,b15(q)), where
bi(q) = m

(∑4
j=1 vq(j) ⊕ μi(j)

)
+ vq(5) ⊕ μi(5). Then it can be derived that

the depth-bounded search tree of quintet cleaning has size of O((1 + 2m−1/2)k)
for m ≥ 17. Therefore by detailed analysis, we have the following concluding
theorem.

Theorem 5. There exists an O∗((1 + ε)k) time fixed-parameter algorithm for
the parameterized minimum quartet inconsistency problem, where ε > 0 is an
arbitrarily small constant.

New Fixed-Parameter Algorithms for the MQI Problem 77

Acknowledgments. We thank the anonymous referees for their helpful
comments.

References

1. Ben-Dor, A., Chor, B., Graur, D., Ophir, R., Pelleg, D.: From four-taxon trees to
phylogenies: The case of mammalian evolution. In: Proceedings of the RECOMB,
pp. 9–19 (1998)

2. Bandelt, H.J., Dress, A.: Reconstructing the shape of a tree from observed dissim-
ilarity date. Adv. Appl. Math. 7, 309–343 (1986)

3. Berry, V., Jiang, T., Kearney, P.E., Li, M., Wareham, H.T.: Quartet cleaning: Im-
proved algorithms and simulations. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643,
pp. 313–324. Springer, Heidelberg (1999)

4. Cho, B.: From quartets to phylogenetic trees. In: Rovan, B. (ed.) SOFSEM 1998.
LNCS, vol. 1521, pp. 36–53. Springer, Heidelberg (1998)

5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

6. Erdős, P., Steel, M., Székely, L., Warnow, T.: A few logs suffice to build (almost)
all trees (Part 1). Random Struct. Alg. 14, 153–184 (1999)

7. Greene, D.H., Knuth, D.E.: Mathematics for the Analysis of Algorithms, 2nd edn.
Progress in Computer Science. Birkhauser, Boston (1982)

8. Gramm, J., Niedermeier, R.: A fixed-parameter algorithm for minimum quartet
inconsistency. J. Comput. System Sci. 67, 723–741 (2003)

9. Jiang, T., Kearney, P.E., Li, M.: Some open problems in computational molecular
biology. J. Algorithms 34, 194–201 (2000)

10. Jiang, T., Kearney, P.E., Li, M.: A polynomial time approximation scheme for
inferring evolutionary tree from quartet topologies and its application. SIAM J.
Comput. 30, 1942–1961 (2001)

11. Steel, M.: The complexity of reconstructing trees from qualitative characters and
subtrees. J. Classification 9, 91–116 (1992)

12. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

13. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter
algorithms. Inform. Process. Lett. 73, 125–129 (2000)

14. Wu, G., You, J.-H., Lin, G.: A lookahead branch-and-bound algorithm for the
maximum quartet consistency problem. In: Casadio, R., Myers, G. (eds.) WABI
2005. LNCS (LNBI), vol. 3692, pp. 65–76. Springer, Heidelberg (2005)

15. Wu, G., You, J.-H., Lin, G.: A polynomial time algorithm for the minimum quartet
inconsistency problem with O(n) quartet errors. Inform. Process. Lett. 100, 167–
171 (2006)

Capacitated Domination and Covering: A

Parameterized Perspective

Michael Dom1, Daniel Lokshtanov2, Saket Saurabh2, and Yngve Villanger2

1 Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2,
D-07743 Jena, Germany
dom@minet.uni-jena.de

2 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{daniello,saket,yngvev}@ii.uib.no

Abstract. Capacitated versions of Vertex Cover and Dominat-
ing Set have been studied intensively in terms of polynomial time
approximation algorithms. Although the problems Dominating Set and
Vertex Cover have been subjected to considerable scrutiny in the
parameterized complexity world, this is not true for their capacitated
versions. Here we make an attempt to understand the behavior of the
problems Capacitated Dominating Set and Capacitated Vertex
Cover from the perspective of parameterized complexity.

The original, uncapacitated versions of these problems, Vertex
Cover and Dominating Set, are known to be fixed parameter tractable
when parameterized by a structure of the graph called the treewidth (tw).
In this paper we show that the capacitated versions of these problems
behave differently. Our results are:

– Capacitated Dominating Set is W[1]-hard when parameterized by
treewidth. In fact, Capacitated Dominating Set is W[1]-hard when
parameterized by both treewidth and solution size k of the capacitated
dominating set.
– Capacitated Vertex Cover is W[1]-hard when parameterized by
treewidth.
– Capacitated Vertex Cover can be solved in time 2O(tw log k)nO(1)

where tw is the treewidth of the input graph and k is the solution size.
As a corollary, we show that the weighted version of Capacitated Ver-
tex Cover in general graphs can be solved in time 2O(k log k)nO(1).
This improves the earlier algorithm of Guo et al. [15] running in

time O(1.2k2
+ n2). Capacitated Vertex Cover is, therefore, to our

knowledge the first known “subset problem” which has turned out to
be fixed parameter tractable when parameterized by solution size but
W[1]-hard when parameterized by treewidth.

1 Introduction

Dominating Set and Vertex Cover are problems representative for domi-
nation and covering, respectively. Given a graph G and an integer k, Vertex
Cover asks for a size-k set of vertices that cover all edges of the graph, while

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 78–90, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Capacitated Domination and Covering: A Parameterized Perspective 79

Dominating Set asks for a size-k set of vertices such that every vertex in the
graph either belongs to this set or has a neighbor which does. These fundamental
problems in algorithms and complexity have been studied extensively and find
applications in various domains [3,4,5,8,9,12,13,15,17,21].

Vertex Cover and Dominating Set have a special place in parameter-
ized complexity [7,10,20]. Vertex Cover was one of the earliest problems
that was shown to be fixed parameter tractable (FPT) [7]. On the other hand,
Dominating Set turned out to be intractable in the realm of parameterized
complexity—specifically, it was shown to be W[2]-complete [7]. Vertex Cover
has been put to intense scrutiny, and many papers have been written on the prob-
lem. After a long race, the currently best algorithm for Vertex Cover runs
in time O(1.2738k + kn) [4]. Vertex Cover has also been used as a testbed
for developing new techniques for showing that a problem is FPT [7,10,20].
Though Dominating Set is a fundamentally hard problem in the parame-
terized W-hierarchy, it has been used as a benchmark problem for developing
sub-exponential time parameterized algorithms [1,6,11] and also for obtaining a
linear kernels in planar graphs [2,14,10,20], and more generally, in graphs that
exclude a fixed graph H as a minor.

Different applications of Vertex Cover and Dominating Set have initi-
ated studies of different generalizations and variations of these problems. These
include Connected Vertex Cover, Connected Dominating Set, Par-
tial Vertex Cover, Partial Set Cover , Capacitated Vertex Cover
and Capacitated Dominating Set, to name a few. All these problems have
been investigated extensively and are well understood in the context of polyno-
mial time approximation [5,12,13]. However, these problems hold a lot of promise
and remain hitherto unexplored in the light of parameterized complexity; with
exceptions that are few and far between [3,15,18,21,22].

Problems Considered: Here we consider two problems, Capacitated Vertex
Cover (CVC) and Capacitated Dominating Set (CDS). To define these
problems, we need to introduce the notions of capacitated graphs, vertex covers,
and dominating sets. A capacitated graph is a graph G = (V, E) together with
a capacity function c : V → N such that 1 ≤ c(v) ≤ d(v), where d(v) is the
degree of the vertex v. Now let G = (V, E) be a capacitated graph, C be a vertex
cover of G and D be a dominating set of G.

Definition 1. We call C ⊆ V a capacitated vertex cover if there exists a map-
ping f : E → C which maps every edge in E to one of its two endpoints such
that the total number of edges mapped by f to any vertex v ∈ C does not exceed
c(v).

Definition 2. We call D ⊆ V a capacitated dominating set if there exists a
mapping f : (V \ D) → D which maps every vertex in (V \ D) to one of its
neighbors such that the total number of vertices mapped by f to any vertex v ∈ D
does not exceed c(v).

Now we are ready to define Capacitated Vertex Cover and Capacitated
Dominating Set.

80 M. Dom et al.

Capacitated Vertex Cover (CVC): Given a capacitated graph G = (V, E)
and a positive integer k, determine whether there exists a capacitated vertex
cover C for G containing at most k vertices.
Capacitated Dominating Set (CDS): Given a capacitated graph G = (V, E)
and a positive integer k, determine whether there exists a capacitated dominating
set D for G containing at most k vertices.

Our Results: To describe our results we first need to define the treewidth (tw) of
a graph. Let V (U) be the set of vertices of a graph U . A tree decomposition of an
(undirected) graph G = (V, E) is a pair (X, U) where U is a tree whose vertices
we will call nodes and X = {Xi | i ∈ V (U)} is a collection of subsets of V such
that (1)

⋃
i∈V (U) Xi = V , (2) for each edge {v, w} ∈ E, there is an i ∈ V (U)

such that v, w ∈ Xi, and (3) for each v ∈ V the set of nodes {i | v ∈ Xi} forms
a subtree of U . The width of a tree decomposition ({Xi|i ∈ V (U)}, U) equals
maxi∈V (U){|Xi| − 1}. The treewidth of a graph G is the minimum width over all
tree decompositions of G.

There is a tendency to think that most combinatorial problems, especially
“subset problems”, are tractable for graphs of bounded treewidth (tw) when
parameterized by tw. In fact, the non-capacitated versions of the problems con-
sidered here, namely Vertex Cover and Dominating Set, are known to
be fixed parameter tractable when parameterized by the treewidth of the in-
put graph. The algorithms for Vertex Cover and Dominating Set run in
time O(2twn) [20] and time O(4twn) [1], respectively. In contrast, the capaci-
tated versions of these problems behave differently. More precisely, we show the
following:

– Capacitated Dominating Set is W[1]-hard when parameterized by the
treewidth. In fact, CDS is W[1]-hard when parameterized by both treewidth
and solution size k of the capacitated dominating set.
– Capacitated Vertex Cover is W[1]-hard when parameterized by treewidth.
– Capacitated Vertex Cover can be solved in time 2O(tw log k)nO(1) where tw
is the treewidth of the input graph and k is the solution size. As a corollary
of the last result we obtain an improved algorithm for the weighted version of
Capacitated Vertex Cover in general graphs. Here, every vertex of the input
graph has, in addition to the capacity, a weight, and the question is if there is
a capacitated vertex cover whose weight is at most k. Our algorithm running in
time O(2O(k log k)nO(1)) improves the earlier algorithm of Guo et al. [15] running
in time O(1.2k2

+ n2).
The so-called “subset problems” are known to go either way, that is, FPT or

W[i]-hard (i ≥ 1) when parameterized by solution size. However, when param-
eterized by treewidth they have invariably been FPT. Examples favoring this
claim include, but are not limited to, Independent Set, Dominating Set,
Partial Vertex Cover. Contrary to these observed patterns, our hardness
result for CVC when parameterized by treewidth makes it possibly the first
known “subset problem” which has turned out to be FPT when parameterized
by solution size, but W[1]-hard when parameterized by treewidth.

Capacitated Domination and Covering: A Parameterized Perspective 81

2 Preliminaries

We assume that all our graphs are simple and undirected. Given a graph G =
(V, E), the number of its vertices is represented by n and the number of its edges
by m. For a subset V ′ ⊆ V , by G[V ′] we mean the subgraph of G induced by
V ′. With N(u) we denote all vertices that are adjacent to u, and with N [u], we
refer to N(u)∪ {u}. Similarly, for a subset D ⊆ V , we define N [D] = ∪v∈DN [v]
and N(D) = N [D] \ D. Let f be the function associated with a capacitated
dominating set D. Given u ∈ D and v ∈ V \ D, we say that u dominates v if
f(v) = u; moreover, every vertex u ∈ D dominates itself. Note that the capacity
of a vertex v only limits the number of neighbors that v can dominate, that is,
a vertex v ∈ D can dominate c(v) of its neighbors plus v itself.

Parameterized complexity is a two-dimensional framework for studying the
computational complexity of problems [7,10,20]. One dimension is the input
size n and the other one a parameter k. A problem is called fixed-parameter
tractable (FPT) if it can be solved in time f(k) ·nO(1), where f is a computable
function only depending on k. The basic complexity class for fixed-parameter
intractability is W[1]. To show that a problem is W[1]-hard, one needs to exhibit
a parameterized reduction from a known W[1]-hard problem: We say that a
parameterized problem A is (uniformly many:1) reducible to a parameterized
problem B if there is an algorithm Φ which transforms (x, k) into (x′, g(k)) in
time f(k) · |x|α, where f, g : N→ N are arbitrary functions and α is a constant
independent of |x| and k, so that (x, k) ∈ A if and only if (x′, g(k)) ∈ B.

3 Parameterized Intractability – Hardness Results

3.1 CDS Is W[1]-Hard Parameterized by Treewidth and Solution
Size

In this section we show that Capacitated Dominating Set is W[1]-hard when
parameterized by treewidth and solution size. We reduce from the W[1]-hard
problem Multicolor Clique, a restriction of the Clique problem:
Multicolor Clique: Given an integer k and a connected undirected graph
G = (V [1] ∪ V [2] · · · ∪ C[k], E) such that for every i the vertices of V [i] induce
an independent set, is there a k-clique C in G?

In fact, we will reduce to a slightly modified version of Capacitated Domi-
nating Set called Marked Capacitated Dominating Set where we mark
some vertices and demand that all marked vertices must be in the dominating set.
We can then reduce from Marked Capacitated Dominating Set to Capac-
itated Dominating Set by attaching k + 1 leaves to each marked vertex and
increasing the capacity of each marked vertex by k + 1. It is easy to see that the
new instance has a size-k capacitated dominating set if and only if the original
one had a size-k capacitated dominating set that contained all marked vertices,
and that this operation does not increase the treewidth of the graph. Thus,
to prove that Capacitated Dominating Set is W[1]-hard when parameterized

82 M. Dom et al.

(A,B)
u v

=
vu

1
2

A

2 B1

Fig. 1. Adding an (A,B)-arrow from u to v

by treewidth and solution size, it is sufficient to prove that Marked Capaci-
tated Dominating Set is.

We will now show how, given an instance (G, k) of Multicolor Clique, we
can build an instance (H, c, k′) of Marked Capacitated Dominating Set
such that

– k′ = 7k(k − 1) + 2k,
– G has a clique of size k if and only if H has a capacitated dominating set of

size k′, and
– the treewidth of H is O(k4).

For a pair of distinct integers i, j, let E[i, j] be the set of edges with one
endpoint in V [i] and the other in V [j]. Without loss of generality, we will assume
that |V [i]| = N and |E[i, j]| = M for all i, j, i �= j. To each vertex v we
assign a unique identification number vup between N + 1 and 2N , and we set
vdown = 2N − vup. For two vertices u and v, by adding an (A, B)-arrow from u
to v we will mean adding A subdivided edges between u and v and attaching B
leaves to v (see Fig. 1). Now we describe how to build the graph H for a given
instance (G = (V [1] ∪ V [2] · · · ∪ V [k], E), k) of Multicolor Clique.

For every integer i between 1 and k we add a marked vertex x̂i that has a
neighbor v for every vertex v in V [i]. For every j �= i, we add a marked vertex ŷij

and a marked vertex ẑij . Now, for every vertex v ∈ V [i] and every integer j �= i
we add a (vup, vdown)-arrow from v to ŷij and a (vdown, vup)-arrow from v to ẑij .
Finally we add a set Si of k′ + 1 vertices and make every vertex in Si adjacent
to every vertex v with v ∈ V [i]. See left part of Fig. 2 for an illustration.

Similarly, for every pair of integers i, j with i < j, we add a marked vertex x̂ij

with a neighbor e for every edge e in E[i, j]. Moreover, we add four new marked
vertices p̂ij , p̂ji, q̂ij , and q̂ji. For every edge e = {u, v} in E[i, j] with u ∈ V [i] and
v ∈ V [j], we add a (udown, uup)-arrow from e to p̂ij , a (uup, udown)-arrow from e
to q̂ij , a (vdown, vup)-arrow from e to p̂ji and a (vup, vdown)-arrow from e to p̂ji.
We also add a set Sij of k′ + 1 vertices and make every vertex in Sij adjacent
to every vertex e with e ∈ E[i, j]. See right part of Fig. 2 for an illustration.

Finally, we add a marked vertex r̂ij and a marked vertex ŝij for every i �= j.
For every i �= j, we add (2N, 0)-arrows from ŷij to r̂ij , from p̂ij to r̂ij , from
ẑij to ŝij , and from q̂ij to ŝij (see Fig. 3). This concludes the description of the
graph H .

We now describe the capacities of the vertices. For every i �= j, the vertex x̂i

has capacity N−1, the vertex x̂ij has capacity M−1, the vertices ŷij and ẑij both
have capacity 2N2, the vertices p̂ij and q̂ij have capacity 2NM , and both r̂ij

Capacitated Domination and Covering: A Parameterized Perspective 83

......

...

...
v (vup , v

down)

(vdown, vup)
(vup, v down)(v down

, v up)(v up
, v dow

n
)

(v dow
n
, v up)

x̂2

ŷ21

ẑ21

ŷ23
ẑ23

ŷ2k

ẑ2k

S2

q̂ji

p̂ji

q̂ij

p̂ij

......
...

x̂ij

e (udown, uup)
(uup, udown)

(v up
, v down)

(v down
, v up)

Sij

(e = u, v)

Fig. 2. Left part: Gadget constructed for the vertices in the color class V [2]. Right
part: Gadget constructed for the edges between V [i] and V [j].

and ŝij have capacity 2N . For all other vertices, their capacity is equal to their
degree in H .

Observation 1 The treewidth of H is O(k4).

Proof. If we remove all marked vertices (
⋃k

i=1 Si and
⋃

i�=j Sij), a total of O(k4)
vertices, from H , we obtain a forest. As deleting a vertex reduces the treewidth
by at most one, this concludes the proof. 	

Lemma 1. If G has a multicolor clique C = {v1, v2, . . . , vk} then H has a
capacitated dominating set D of size k′ containing all marked vertices.

Proof. For every i < j let eij be the edge from vi to vj in G. In addition
to all the marked vertices, let D contain vi and eij for every i < j. Clearly D
contains exactly k′ vertices, so it remains to prove that D is indeed a capacitated
dominating set.

For every i < j, let x̂i and x̂ij dominate all their neighbors except for vi and
eij respectively. The vertices vi and eij can dominate all their neighbors, since
their capacity is equal to their degree. Let r̂ij dominate vdown

i of the vertices in
the (2N, 0)-arrow from ŷij , and vup

i of the vertices of the (2N, 0)-arrow from p̂ij .
Similarly let ŝij dominate vup

i of the vertices in the (2N, 0)-arrow from ẑij , and
vdown

i of the vertices of the (2N, 0)-arrow from q̂ij . Finally, for every i �= j we let
ŷij , ẑij , p̂ij and q̂ij dominate all their neighbors that have not been dominated
yet. One can easily check that every vertex of H will either be a dominator or
dominated in this manner, and that no dominator dominates more vertices than
its capacity. 	

Lemma 2. If H has a capacitated dominating set D of size k′ containing all
marked vertices, then G has a multicolor clique of size k.

84 M. Dom et al.

ŷij r̂ij p̂ij

ẑij ŝij q̂ij

(2N, 0)

(2N, 0)

(2N, 0)

(2N, 0)

Fig. 3. Vertex-Edge incidence gadget

Proof. Observe that for every integer 1 ≤ i ≤ k, there must be a vi ∈ V [i] such
that vi ∈ D. Otherwise we have that Si ⊂ D and, since |Si| > k′, we obtain a
contradiction. Similarly, for every pair of integers i, j with i < j there must be
an edge eij ∈ E[i, j] such that eij ∈ D. We let eji = eij . Since |D| ≤ k′ it follows
that these are the only unmarked vertices in D. Since all the unmarked vertices
in D have capacity equal to their degree, we can assume that each such vertex
dominates all its neighbors. We now proceed with proving that for every pair
of integers i,j with i �= j, the edge eij = uv is incident to vi. We prove this by
showing that if u ∈ V [i] then vup

i + udown = 2N .
Suppose for a contradiction that vup

i +udown < 2N . Observe that each vertex
of T = (N(ŷij) ∪ N(r̂ij) ∪ N(p̂ij)) \ (N(vi) ∪ N(eij)) must be dominated by
either ŷij , r̂ij , or p̂ij . However, by our assumption that vup

i + udown < 2N , it
follows that |T | = 2N2 + 4N + 2MN − (vup

i + udown) > 2N2 + 2N + 2MN . The
sum of the capacities of ŷij , r̂ij , and p̂ij is exactly 2N2 + 2N + 2MN . Thus it
is impossible that every vertex of T is dominated by one of ŷij , r̂ij , and p̂ij , a
contradiction. If vup

i + udown > 2N then vdown
i + uup < 2N , and we can apply

an identical argument for ẑij , ŝij , and q̂ij .
Thus, it follows that for every i �= j there is an edge eij incident both to vi

and to vj . Thus {v1, v2, . . . , vk} forms a clique in G. As any k-clique in G is a
multicolor clique this completes the proof. 	

Theorem 1. CDS parameterized by treewidth and solution size is W[1]-hard.

3.2 CVC Parameterized by Treewidth Is W[1]-Hard

Usually vertex cover problems can be seen as restrictions of domination prob-
lems, and therefore it is natural to expect Capacitated Vertex Cover to be
somewhat easier than Capacitated Dominating Set. In this section, we give
a result similar to the hardness result for Capacitated Dominating Set, but
weaker in the sense that we only show that Capacitated Vertex Cover is
hard when parameterized by the treewidth, while we have seen in the previous
section that Capacitated Dominating Set is hard when parameterized by
the treewidth and the solution size.

To obtain our result we reduce from Multicolor Clique, as in the previous
section. Again, we reduce to a marked version of Capacitated Vertex Cover,
where we search for a size k′ capacitated vertex cover that contains all the
marked vertices. The reduction from Marked Capacitated Vertex Cover

Capacitated Domination and Covering: A Parameterized Perspective 85

to Capacitated Vertex Cover is almost identical to the reduction from
Marked Capacitated Dominating Set to Capacitated Dominating Set
described in the previous section. Notice also that in Marked Capacitated
Vertex Cover it makes sense to have marked vertices with capacity zero, as
they will get non-zero capacity after the reduction to Capacitated Vertex
Cover.

We reduce by building for an instance (G, k) of Multicolor Clique an
instance (H, c, k′) of Marked Capacitated Vertex Cover in almost the
same manner as in the reduction to Marked Capacitated Dominating Set.
The only differences are:

– We do not add the vertex sets Si and Sij for every i, j.
– When we add an (A, B)-arrow from u to v, the A vertices on the subdivided
edges are marked and have capacity 1, while the B leaves attached to v are also
marked but have capacity 0.
– We set k′ to k′ = 7k(k − 1) + 2k + (2k2N + (2M + 4) · k · (k − 1)) · 2N .

The new term in the value of k′ is simply a correction for all the extra marked
vertices in the (A, B)-arrows. Notice that in this case the value of k′ is not
a function of k alone, and that therefore this reduction does not imply that
Capacitated Vertex Cover is W[1]-hard parameterized by treewidth and
solution size. However, by applying arguments almost identical to the ones in
the previous section, we can prove the following claims; the details are omitted.

– The treewidth of H is O(k3).
– If G has a multicolor clique C = {v1, v2, . . . , vk} then H has a capacitated
vertex cover S of size k′ containing all marked vertices.
– If H has a capacitated vertex cover S of size k′ containing all marked vertices,
then G has a multicolor clique of size k.

Together, the claims imply the following theorem.

Theorem 2. CVC parameterized by treewidth is W[1]-hard.

4 FPT Algorithm for CVC on Graphs of Bounded
Treewidth

In the last sections we have shown that Capacitated Vertex Cover, when
parameterized only by the treewidth tw of the input graph, is W[1]-hard, while
Capacitated Dominating Set remains W[1]-hard even when parameterized
by both tw and the solution size k. We complement these hardness results by
giving a time 2O(tw log k)nO(1) algorithm for graphs of bounded treewidth, a re-
sult which was sketched independently by Hannes Moser [19]. Furthermore, us-
ing this algorithm, we give an improved algorithm for the weighted version of
Capacitated Vertex Cover in general graphs: Our algorithm, running in
time O(2O(k log k)nO(1)), improves the earlier algorithm of Guo et al. [15], which
runs in time O(1.2k2

+ n2).
To solve CVC on graphs of bounded treewidth, we give a dynamic program-

ming algorithm working on a so-called nice tree decomposition of the input

86 M. Dom et al.

graph G: A tree decomposition (X, U) is a nice tree decomposition if one can
root U in such a way that the root and every inner node of U is either an insert
node, a forget node, or a join node. Thereby, a node i of U is an insert node if i
has exactly one child j, and Xi consists of all vertices of Xj plus one additional
vertex; it is a forget node if i has exactly one child j, and Xi consists of all
but one vertices of Xj ; and it is a join node if i has exactly two children j1, j2,
and Xi = Xj1 = Xj2 . Given a tree decomposition of width tw, a nice tree de-
composition of the same width can be found in linear time [16]. In what follows,
we assume that the nice tree decomposition (X, U) that we are using has the
additional property that the bag associated with the root of U is empty (such
a decomposition can easily be constructed by taking an arbitrary nice tree de-
composition and adding some forget nodes “above” the original root). Similarly,
we assume that every bag associated with a leaf node different from the root
of U contains exactly one vertex. For a node i in the tree U of a tree decompo-
sition (X, U), let

Yi :=
⋃{v ∈ Xj | j is a node in the subtree of U whose root is i},

Zi := Yi \Xi, and Ei := {{v, w} ∈ E | v ∈ Zi ∨ w ∈ Zi}.
Starting at the leaf nodes of U that are different from the root, our dynamic

programming algorithm assigns to every node i of U a table Ai that has

– a column � with � ≤ k,
– for every vertex v ∈ Xi a column vc(v) with vc(v) ∈ {true, false}, and
– for every vertex v ∈ Xi a column s(v) with s(v) ∈ {null, 0, 1, . . . , k − 1}.

Every row of such a table Ai corresponds to a solution (f, C) for CVC on the
subgraph of G that consists of all vertices in Yi and all edges in E having at least
one endpoint in Zi. More exactly, for every row of a table Ai there is a vertex
set C ⊆ Yi and mapping f : Ei → C with the following properties:

– C is a capacitated vertex cover for Gi = (Yi, Ei).
– |C| ≤ �.
– C contains all vertices v ∈ Xi with vc(v) = true and no vertex v ∈ Xi

with vc(v) = false.
– For every vertex v ∈ Xi ∩C, we have |{{v, w} ∈ Ei | f({v, w} = w}| = s(v),

and for every vertex v ∈ Xi \ C, we have s(v) = null.

Intuitively speaking, for a vertex v ∈ C, the value s(v) contains the number
of edges incident to v that are covered by vertices in Zi and, therefore, do not
have to be covered by v. The simple observation that s(v) can be at most k − 1
(because C can contain at most k − 1 neighbors of v) is crucial for the running
time of the algorithm.

Clearly, if the table associated with the root of U is nonempty, the given
instance of CVC is a yes-instance.

We will now describe the computation of the table Ai for a node i in U ,
depending on if i is a leaf node different from the root, an insert node, a forget
node, or a join node. If necessary, we write �i, vci(v), and si(v) in order to make
clear that a value �, vc(v), and s(v), respectively, stems from a row of a table Ai.

Capacitated Domination and Covering: A Parameterized Perspective 87

The node i is a leaf node different from the root. Let Xi = {v}. Then
we add one row to the table Ai for the case that v is not part of C and one row
for the case that v is part of C, provided that k > 0. Because i has no child and,
hence, no neighbor of v belongs to Zi, the value s(v) is set to 0 in the case that v
is part of C:

1 if k > 0: {add a new row to Ai and set vc(v) := true; s(v) := 0; � := 1 in this row; }
2 add a new row to Ai and set vc(v) := false; s(v) := null; � := 0 in this row;

The node i is an insert node. Let j be the child of i in U , and let Xi =
Xj ∪ {v}. Here we extend the table Aj by adding the values vc(v) and s(v). For
every row of Aj , we add one row to the table Ai for the case that v is not part
of C and one row for the case that v is part of C, provided that �j < k. Because
no neighbor of v can belong to Zi, the value s(v) is set to 0 in the case that v is
part of C:

1 for every row r of Aj : {
2 if �j < k: {
3 copy the row r from Aj into Ai and set vc(v) := true; s(v) := 0; � := � + 1 in this row; }
4 copy the row r from Aj into Ai and set vc(v) := false; s(v) := null in this row; }

The node i is a forget node. Let j be the child of i in U , and let Xi =
Xj \ {v}. Clearly, all neighbors of v belong to Yj due to the definition of a tree
decomposition. What has to be done is to consider the edges {v, w} with w ∈ Xi,
to decide which of them shall be covered by v, and to set the value of sj(v)
accordingly. Note that this approach ensures that for all edges {v, w} with w ∈ Zj

we have already decided in a previous step which of these edges are covered by v.
More exactly, for every row of Aj , we perform the following steps. If vcj(v) =
true, then we try all possibilities for which edges between v and vertices w ∈ Xi

can be covered by v and add rows to Ai accordingly. If vcj(v) = false, then, of
course, no edge between v and vertices w ∈ Xj can be covered by v, and we
add one row to Ai. In both cases, we have to check that for every edge {v, w}
with w ∈ Xi that is not covered by v it holds that vcj(w) = true and the
remaining capacity of w, which can be computed from s(w) and the number
of w’s neighbors in Zj, is big enough to cover {v, w}:
1 N ′ := N(v) ∩ Xi;
2 for every row r of Aj : {
3 if vcj(v) = true: {
4 for every subset N ′′ of N ′ with |N ′′| = min{|N ′|, cap(v) − (|N(v) ∩ Zj | − sj(v))}: {
5 if ∀w ∈ N ′ \ N ′′ : vcj(w) = true∧ cap(w) > |N(w) ∩ Zj | − sj(w): {
6 copy the row r from Aj into Ai;
7 for every vertex w ∈ N ′′ with vc(w) = true: {
8 update the new row in Ai and set s(w) := s(w) + 1; }}}
9 else: { if ∀w ∈ N ′ : vc(w) = true∧ cap(w) > |N(w) ∩ Zj | − sj(w): {

10 copy the row r from Aj into Ai; }}}

The node i is a join node. Let j1 and j2 be the children of i in U . Here we
consider every pair r1, r2 of rows where r1 is from Aj1 and r2 is from Aj2 . We
say that two rows r1 and r2 are compatible if for every vertex v in Xi it holds
that vcj1(v) = vcj2(v). If two rows are compatible, then we check whether for
every vertex v ∈ Xi with vcj1(v) = vcj2(v) = true the number of edges {v, w}

88 M. Dom et al.

covered by v with w ∈ Zj1 plus the number of edges {v, w} covered by v with w ∈
Zj2 is at most cap(v). If this is the case, a new row is added to Ai:

1 for every compatible pair r1, r2 of rows where r1 is from Aj1 and r2 is from Aj2 : {
2 if ∀v ∈ Xi : vcj1 (v) = false∨ cap(v) ≥ |N(v) ∩ Zj1 | − sj1 (w) + |N(v) ∩ Zj2 | − sj2 (w): {
3 add a new row to Ai;
4 update the new row in Ai and set � := �j1 + �j2 − |{v ∈ Xi | vcj1 (v) = true}|;
5 for every vertex v ∈ Xi: {
6 update the new row in Ai and set vc(v) = vcj1 (v); s(v) = sj1 (v) + sj2 (v); }}}

In all four cases (i is a leaf node different from the root, an insert node, a
forget node, or a join node), after inserting a row to Ai, we delete dominated
rows from Ai. A row r1 is dominated by a row r2 if r1 and r2 are compatible,
the value of � in r1 is equal or greater than the value of � in r2, and for every
vertex v ∈ Xi with vc(v) = true the value of s(v) in r1 is equal or less than
the value of s(v) in r2. The correctness of this data reduction is obvious: If the
solution corresponding to r1 can be extended to a solution for the whole graph,
then this is also possible with the solution corresponding to r2 instead. Clearly,
due to this data reduction, the table can never contain more than ktw rows,
which leads to the following theorem.

Theorem 3. CVC on graphs of treewidth tw can be solved in k3·tw ·nO(1) time.

Proof. The correctness of the algorithm follows from the above description. The
running time for computing one table Ai associated with a tree node i is bounded
from above by k3·tw ·nO(1), due to the fact that every table contains at most ktw

rows and that the tree decomposition has O(n) tree nodes [16]. 	

We mention in passing that with usual backtracking techniques it is possible to
construct the mapping f and the set C after running the dynamic programming
algorithm.

CVC in General Undirected Graphs: The algorithm described above can
also be used for solving CVC on general graphs with the following two obser-
vations. Firstly, the treewidth of graphs that have a vertex cover of size k is
bounded above by k, and a corresponding tree decomposition of width k can be
found in O(1.2738k + kn) time [4]. (For a graph G = (V, E) that has a vertex
cover C with |C| = k, a tree decomposition of width k can be constructed as
follows: Let U be a path of length |V \ C|, and assign to every node i of U a
bag Xi that contains C and one vertex from V \ C. The vertex cover of size k
can be found in time O(1.2738k + kn) [4].) Secondly, Theorem 3 can easily be
adapted to the weighted version of CVC, where every vertex of the input graph
has, in addition to the capacity, a weight, and the question is if there is a capac-
itated vertex cover whose weight is at most k. With these observations, we get
the following corollary.

Corollary 1. The weighted version of CVC on general graphs can be solved in
k3k · nO(1) = 2O(k log k) · nO(1) time.

Capacitated Domination and Covering: A Parameterized Perspective 89

5 Conclusion

We conclude with an open question. It is easy to observe that if a planar graph
has a CDS of size at most k then the treewidth of the input graph is at most
O(
√

k) [1,6,11]. Hence, in order to show that CDS is FPT for planar graphs, it
is sufficient to obtain a dynamic programming algorithm for it on planar graphs
of bounded treewidth. The following question in this direction remains unan-
swered: Is CDS in planar graphs parameterized by solution size fixed parameter
tractable?

References

1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed param-
eter algorithms for DOMINATING SET and related problems on planar graphs.
Algorithmica 33(4), 461–493 (2002)

2. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating set. J. ACM 51(3), 363–384 (2004)

3. Bläser, M.: Computing small partial coverings. Inf. Process. Lett. 85(6), 327–331
(2003)

4. Chen, J., Kanj, I.A., Xia, G.: Improved parameterized upper bounds for Vertex
Cover. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
238–249. Springer, Heidelberg (2006)

5. Chuzhoy, J., Naor, J.: Covering problems with hard capacities. SIAM J. Com-
put. 36(2), 498–515 (2006)

6. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential
parameterized algorithms on bounded-genus graphs and H -minor-free graphs.
J. ACM 52(6), 866–893 (2005)

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

8. Duh, R., Fürer, M.: Approximation of k -Set Cover by semi-local optimization. In:
Proc. 29th STOC, pp. 256–264. ACM Press, New York (1997)

9. Feige, U.: A threshold of ln n for approximating Set Cover. J. ACM 45(4), 634–652
(1998)

10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

11. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: Branch-width and
exponential speed-up. SIAM J. Comput. 36(2), 281–309 (2006)

12. Gandhi, R., Halperin, E., Khuller, S., Kortsarz, G., Srinivasan, A.: An improved
approximation algorithm for Vertex Cover with hard capacities. J. Comput. System
Sci. 72(1), 16–33 (2006)

13. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering. J. Algo-
rithms 48(1), 257–270 (2003)

14. Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar
graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

15. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of Vertex Cover
variants. Theory Comput. Syst. 41(3), 501–520 (2007)

16. Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)

90 M. Dom et al.

17. Lovàsz, L.: On the ratio of optimal fractional and integral covers. Discrete Math. 13,
383–390 (1975)

18. Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: Improved algo-
rithms for Connected Vertex Cover and Tree Cover. In: Grigoriev, D., Harrison,
J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 270–280. Springer, Heidel-
berg (2006)

19. Moser, H.: Exact algorithms for generalizations of Vertex Cover. Diploma thesis,
Institut für Informatik, Friedrich-Schiller Universität Jena (2005)

20. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

21. Nishimura, N., Ragde, P., Thilikos, D.M.: Fast fixed-parameter tractable algo-
rithms for nontrivial generalizations of Vertex Cover. Discrete Appl. Math. 152(1–
3), 229–245 (2005)

22. Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms
for W-hard problems in graphs with no short cycles. Algorithmica (to appear, 2008)

Some Fixed-Parameter Tractable Classes of

Hypergraph Duality and Related Problems

Khaled Elbassioni1, Matthias Hagen2,3, and Imran Rauf1

1 Max-Planck-Institut für Informatik, D–66123 Saarbrücken
{elbassio,irauf}@mpi-inf.mpg.de

2 Friedrich-Schiller-Universität Jena, Institut für Informatik, D–07737 Jena
hagen@cs.uni-jena.de

3 University of Kassel, Research Group Programming Languages / Methodologies,
Wilhelmshöher Allee 73, D–34121 Kassel, Germany

hagen@uni-kassel.de

Abstract. In this paper we present fixed-parameter algorithms for the
problem Dual—given two hypergraphs, decide if one is the transversal
hypergraph of the other—and related problems. In the first part, we
consider the number of edges of the hypergraphs, the maximum degree
of a vertex, and a vertex complementary degree as our parameters.

In the second part, we use an Apriori approach to obtain FPT results
for generating all maximal independent sets of a hypergraph, all mini-
mal transversals of a hypergraph, and all maximal frequent sets where
parameters bound the intersections or unions of edges.

1 Introduction

In many situations, one might be interested in finding all objects or configura-
tions satisfying a certain monotone property. Consider, for instance, the prob-
lem of finding all (inclusion-wise) maximal/minimal collections of items that are
frequently/infrequently bought together by customers in a supermarket. More
precisely, let D ∈ {0, 1}m×n be a binary matrix whose rows represent the subsets
of items purchased by different customers in a supermarket. For a given integer
t ≥ 0, a subset of items is said to be t-frequent if at least t rows (transactions) of
D contain it, and otherwise is said to be t-infrequent. Finding frequent itemsets
is an essential problem in finding the so-called association rules in data mining
applications [AIS93]. By monotonicity, it is enough to find the border which is
defined by the minimal t-infrequent and maximal t-frequent sets. While it was
shown in [BGKM02] that finding maximal frequent sets is an NP-hard problem,
finding the minimal t-infrequent sets, as well as many other enumeration prob-
lems in different areas (see e.g. [BEGK03, EG95]), turn out to be polynomially
equivalent with the hypergraph transversal problem, defined as follows.

Let V be a finite set and H ⊆ 2V be a hypergraph on V . A transversal of
H is a subset of V that intersects every hyperedge of H. Let Hd ⊆ 2V be the
hypergraph of all inclusion-wise minimal transversals of H, also called the dual
of H. For hypergraphs F and G on vertex set V, the hypergraph transversal

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 91–102, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

92 K. Elbassioni, M. Hagen, and I. Rauf

problem, denoted Dual(F ,G), asks to decide whether they are dual to each
other, i. e., Fd = G. Equivalently, the problem is to check if two monotone
Boolean functions f, g : {0, 1}n �→ {0, 1} are dual to each other, i. e., f(x) = ḡ(x̄)
for all x ∈ {0, 1}n.

Let F ,G ⊆ 2V be Sperner hypergraphs (i.e. no hyperedge of which contains
another), and let (F ,G) be an instance of Dual. By definition of dual hyper-
graphs we may assume throughout that

F ∩G �= ∅ for all F ∈ F and G ∈ G. (1)

A witness for the non-duality of the pair (F ,G) satisfying (1) is a subset X ⊆ V ,
such that

X ∩ F �= ∅ for all F ∈ F , and X � G for all G ∈ G. (2)

We shall say that the hypergraphs F and G satisfying (1) are dual if no such
witness exists. Intuitively, a witness of non duality of (F ,G) is a transversal of
F (not necessarily minimal) that does not include any hyperedge of G. Also, by
definition, the pair (∅, {∅}) is dual. Note that the condition (2) is symmetric in
F and G: X ⊆ V satisfies (2) for the pair (F ,G) if and only if X̄ satisfies (2) for
(G,F).

In the following we present some fixed-parameter algorithms for this problem.
Briefly, a parameterized problem with parameter k is fixed-parameter tractable
if it can be solved by an algorithm running in time O(f(k) · poly(n)), where
f is a function depending on k only, n is the size of the input, and poly(n)
is any polynomial in n. The class FPT contains all fixed-parameter tractable
problems. For more general surveys on parameterized complexity and fixed-
parameter tractability we refer to the monographs of Downey and Fellows, and
Niedermeier [DF99, Nie06].

A related problem Dualization(F) is to generate Fd given F . Given an
algorithm for Dualization we can decide if F and G are dual by generating the
dual hypergraph of one explicitly and compare it with the other (actually, Dual
and Dualization are even equivalent in the sense of solvability in appropriate
terms of polynomial time [BI95]). Due to the fact that the size of Fd may be
exponentially larger than the the size of F , we consider output-sensitive fixed-
parameter algorithms for Dualization, i. e., which are polynomial in both the
input and output size |F|+ |Fd|. In this sense, the time required to produce each
new output is usually called the delay of the algorithm.

Both, Dual and Dualization have many applications in such different fields
like artificial intelligence and logic [EG95, EG02], database theory [MR92], data
mining and machine learning [GKM+03], computational biology [Dam06, Dam07],
mobile communication systems [SS98], distributed systems [GB85], and graph the-
ory [JPY88, LLK80]. The currently best known algorithms for Dual run in quasi-
polynomial time or use O(log2 n) nondeterministic bits [EGM03, FK96, KS03].
Thus, on the one hand, Dual is probably not coNP-complete, but on the other
hand a polynomial time algorithm is not yet known.

In this paper, we show that Dual(F ,G) is fixed parameter-tractable with
respect to the following parameters:

Some Fixed-Parameter Tractable Classes 93

– the numbers of edges m = |F| and m′ = |G| (cf. Section 2),
– the maximum degrees of vertices in F and G, i. e., p = maxv∈V |{F ∈ F : v ∈

F}|, p′ = maxv∈V |{G ∈ G : v ∈ G}| (cf. Section 3),
– the maximum complementary degrees q = maxv∈V |{F ∈ F : v /∈ F}| and

q′ = maxv∈V |{G ∈ G : v /∈ G}| (cf. Section 4), and
– the maximum c such that |F1 ∪F2 ∪ · · · ∪Fk| ≥ n− c, where F1, . . . , Fk ∈ F

and k is a constant—and the symmetric parameter c′ with respect to G (cf.
Section 5.2).

We shall prove the bounds with respect to the parameters m, p, q, c; the other
symmetric bounds follow by exchanging the roles of F and G. Our results for
the parameters m and q improve the respective results from [Hag07].

Other related FPT results were obtained by Damaschke who studied counting
and generating minimal transversals of size up to k and showed both problems
to be FPT if hyperedges have constantly bounded size [Dam06, Dam07].

In Section 5.3 we consider the related problem of finding all maximal frequent
sets, and show that it is fixed parameter-tractable with respect to the maximum
size of intersection of k rows of the database D for a constant k, thus generalizing
the well-known Apriori algorithm, which is fixed-parameter with respect to the
size of the largest transaction.

Let V be a finite set of size |V | = n. For a hypergraph F ⊆ 2V and a subset
S ⊆ V , we use the following notations: S̄ = V \ S, FS = {F ∈ F | F ⊆ S}
and FS = minimal ({F ∩ S | F ∈ F}), where for a hypergraph H, minimal(H)
denotes the Sperner hypergraph resulting from H by removing hyperedges that
contain any other hyperedge of H.

2 Number of Edges as Parameter

Let (F ,G) be an instance of Dual and let m = |F|. We show that the problem
is fixed-parameter tractable with parameter m and improve the running time
of [Hag07].

Given a subset S ⊆ V of vertices, [BGH98] gave a criterion to decide if S is
a sub-transversal of F , i. e., if there is a minimal transversal T ∈ Fd such that
T ⊇ S. In general, testing if S is a sub-transversal is an NP-hard problem even if
F is a graph (see [BEGK00]). However, if |S| is bounded by a constant, then such
a check can be done in polynomial time. This observation was used to solve the
hypergraph transversal problem in polynomial time for hypergraphs of bounded
edge size in [BEGK00], or more generally of bounded conformality [BEGK04].
To describe this criterion, we need a few more definitions. For a subset S ⊆ V ,
and a vertex v ∈ S, let Fv(S) = {H ∈ F | H ∩ S = {v}}. A selection of |S|
hyperedges {Hv ∈ Fv(S) | v ∈ S} is called covering if there exists a hyperedge
H ∈ FV \S such that H ⊆ ⋃

v∈S Hv.

Proposition 2.1 (cf. [BGH98]). A non-empty subset S ⊆ V is a sub-trans-
versal for F ⊆ 2V if and only if there exists a non-covering selection {Hv ∈
Fv(S) | v ∈ S} for S.

94 K. Elbassioni, M. Hagen, and I. Rauf

If the size of S is bounded we have the following.

Lemma 2.2. Given a hypergraph F ⊆ 2V of size |F| = m and a subset S ⊆ V ,
of size |S| = s, checking whether S is a sub-transversal of F can be done in time
O(nm(m/s)s).

Proof. For every possible selection F = {Hv ∈ Fv(S) | v ∈ S}, we can check if F
is non-covering in O(n|FS̄ |) time. Since the families Fv(S) are disjoint, we have∑

v∈S |Fv(S)| ≤ m, and thus the arithmetic-geometric mean inequality gives for
the total number of selections

∏

v∈S

|Fv(S)| ≤
(∑

v∈S |Fv(S)|
s

)s

≤
(m

s

)s

.

�
Procedure DUALIZE1(F , S, V):

Input: A hypergraph F ⊆ 2V , and a subset S ⊆ V

Output: The set {T ∈ Fd : T ⊇ S}

1. if S is not a sub-transversal for F then return

2. if S ∈ Fd then output S and return
3. Find e ∈ V \ S, such that S ∪ {e} is a sub-transversal for F
4. DUALIZE1(F , S ∪ {e}, V)

5. DUALIZE1(FV \{e}, S, V \ {e})
Fig. 1. The backtracking method for finding minimal transversals

The algorithm is given in Figure 1, and is based on the standard backtracking
technique for enumeration (see e.g. [RT75, Eit94]). The procedure is called ini-
tially with S = ∅. It is easy to verify that the algorithm outputs all elements of
the dual hypergraph Fd, without repetition, and in lexicographic ordering (as-
suming some order on the vertex set V). Since the algorithm essentially builds
a backtracking tree whose leaves are the minimal transversals of F , the time
required to produce each new minimal transversal is bounded by the depth of
the tree (at most min{n, m}) times the maximum time required at each node.
By Lemma 2.2, the latter time is at most n · O(nm) ·max{(m/s)s : 1 ≤ s ≤
m} = O(n2m · em/e).

Lemma 2.3. Let F ⊆ 2V be a hypergraph with |F| = m edges on |V | = n
vertices. Then all minimal transversals of F can be found with O(n2m2em/e)
delay.

Theorem 2.4. Let F ,G ⊆ 2V be two hypergraphs with |F| = m, |G| = m′ and
|V | = n. Then Fd = G can be decided in time O(n2m2e(m/e) ·m′).

Proof. We generate at most m′ members of Fd by calling DUALIZE1 (if there
are more then obviously Fd �= G). Assuming that hyperedges are represented by
bit vectors (defined by indicator functions), we can check whether G is identical
to Fd by lexicographically ordering the hyperedges of both and simply comparing

Some Fixed-Parameter Tractable Classes 95

the two sorted lists. The time to sort and compare m′ hyperedges each one of
size at most log n can be bounded by O(m′ log m′ log n).
�
As a side remark we note an interesting implication of Lemma 2.3. For a hyper-
graph F with |F| ≤ c log n for a constant c, the algorithm DUALIZE1 finds all
its minimal transversals with polynomial delay O(nc/e+2 log2 n) improving the
previous best bound of O(n2c+6) by Makino [Mak03]. Similarly, if the number
of minimal transversals is bounded by O(log n), then DUALIZE1 can be used to
find all these transversals in incremental polynomial time. Another implication
which we will need in Section 5 is the following.

Corollary 2.5. For a hypergraph F ⊆ 2V , we can generate the first k minimal
transversals in time O(n2k3e(k/e) ·m), where n = |V | and m = |F|.
Proof. We keep a partial list G of minimal transversals, initially empty. If |G| < k,
we call DUALIZE1 on G to generate at most m+1 elements of Gd. If it terminates
with Gd = F , then all elements of Fd have been generated. Otherwise, X ∈ Gd\F
is a witness for the non-duality of (G,F), and so by symmetry X̄ contains a new
minimal transversal of F that extends G.
�

3 Maximum Degree as Parameter

Let p be the maximum degree of a vertex in hypergraph F ⊆ 2V , i. e., p =
maxv∈V |{F ∈ F : v ∈ F}|. We show that Dual(F ,G) is fixed-parameter
tractable with parameter p (a result which follows by similar techniques, but
with weaker bounds, from [EGM03]).

For a labeling of vertices V = {v1, v2, . . . , vn}, let F1,F2, . . . ,Fn be a partition
of hypergraph F defined as Fi = {F ∈ F : F � vi, F ⊆ {v1, . . . , vi}}. By
definition the size of each set Fi in this partition is bounded by p. The algorithm
is given in Figure 2 and essentially combines the technique of the previous section
with the method of [LLK80] (see also [BEGK04]). We proceed inductively, for
i = 1, . . . , n, by finding (F1∪ . . .∪Fi−1)d. Then for each set X in this transversal
hypergraph we extend it to a minimal transversal to (F1 ∪ . . . ∪ Fi)d by finding
({F ∈ Fi : F ∩X = ∅})d, each set of which is combined with X , possibly also
deleting some elements from X , to obtain a minimal transversal to F1∪ . . .∪Fi.

For a hypergraph H and its transversal X (not necessarily minimal), let δ(X)
denote a minimal transversal of H contained in X .

The following proposition states that with the partition F1,F2, . . . ,Fn, the
size of intermediate hypergraphs in this incremental algorithm never gets too
large.

Proposition 3.1 (cf. [EGM03, LLK80]). (i) ∀S ⊆ V : |(FS)d| ≤ |Fd|, (ii)
|(F1 ∪ . . . ∪ Fi)d| ≤ |Fd|, (iii) For every X ∈ (F1 ∪ . . . ∪ Fi−1)d,

|({F ∈ Fi : F ∩X = ∅})d| ≤ |(F1 ∪ . . . ∪ Fi)d|.
Proof. All three follow from the fact that (FS)d is a truncation of Fd on S,
where S = {v1, . . . , vi} in (ii) and S = {v1, . . . , vi} \X in (iii).
�

96 K. Elbassioni, M. Hagen, and I. Rauf

Procedure DUALIZE2(F , V):
Input: A hypergraph F ⊆ 2V

Output: The set Fd

1. X0 = {∅}
2. for i = 1, . . . , n do
3. for each X ∈ Xi−1 do
4. Let A = {F ∈ Fi : F ∩ X = ∅}
5. Use DUALIZE1 to compute Ad if not already computed

6. Xi ← {δ(X ∪ Y) : Y ∈ Ad}
7. return Xn

Fig. 2. Sequential method for finding minimal transversals

Let f(p, i) be the running time of algorithm DUALIZE1 when given a hyper-
graph with p edges on i vertices. Consider the i-th iteration. From Proposition 3.1
we have |Xi−1| ≤ |Fd| and since we only compute Ad in step 5 if not already
computed, there are at most min{2p, |Fd|} calls to DUALIZE1. The size of Ad

can also be bounded by Proposition 3.1, which gives us |Ad| ≤ |Fd|. Further-
more it is easy to see that the minimal transversal in step 6 can be found in time
O(n|F|) by removing the extra vertices (at most n). Thus the time spent in the
i-th iteration can be bounded by O(min{2p, |Fd|} · f(p, n) + n|F| · |Fd|2).
Theorem 3.2. Let F ⊆ 2V be a hypergraph on |V | = n vertices in which the
degree of each vertex v ∈ V is bounded by p. Then all minimal transversals of F
can be found in time O (

n2mm′ · (min{2p, m′} · np2ep/e + m′)), where m = |F|
and m′ = |Fd|.

4 Vertex Complementary Degree as Parameter

For a hypergraph F ⊆ 2V and a vertex v ∈ V , consider the number of edges
in F not containing v for some vertex v ∈ V . Let q be maximum such number,
i. e., q = maxv∈V |{F ∈ F : v /∈ F}|. We show that Dual(F ,G) is fixed-
parameter tractable with parameter q and improve the running time of [Hag07].

The following proposition gives a decomposition rule originally due to [FK96]
which for a vertex v ∈ V divides the problem into two subproblems not contain-
ing v.

Proposition 4.1 (cf. [FK96]). Let F ,G ⊆ 2V be two hypergraphs satisfying
(1), and v ∈ V be a given vertex. Then F and G are dual if and only if the pairs
(FV \v,GV \v) and (FV \v,GV \v) are dual.

For a vertex v ∈ V , one of the subproblem (FV \v,GV \v) involves a hypergraph
FV \v with at most q edges. The algorithm solves it by calling DUALIZE1 re-
sulting in time O(n2q2e(q/e) · |(FV \v)d|). The other subproblem (FV \v,GV \v)
is solved recursively. Since at least one vertex is reduced at each step of the
algorithm, there are at most n = |V | recursive steps.

Some Fixed-Parameter Tractable Classes 97

Theorem 4.2. Let F ,G ⊆ 2V be two hypergraphs with |F| = m, |G| = m′ and
|V | = n. Let q = maxv∈V |{H ∈ F : v /∈ H}|. Then Fd = G can be decided in
time O(n3q2e(q/e) ·m′).

5 Results Based on the Apriori Technique

Gunopulos et al. [GKM+03] showed (Theorem 23, page 156) that generating
minimal transversals of hypergraphs F with edges of size at least n − c can be
done in time O(2cpoly(n, m, m′)), where n = |V |, m = |F| and m′ = |Fd|. This
is a fixed-parameter algorithm for c as parameter. Furthermore, this result shows
that the transversals can be generated in polynomial time for c ∈ O(log n). The
computation is done by an Apriori (level-wise) algorithm [AS94].

Using the same approach, we shall show below that we can compute all the
minimal transversals in time O(min{2c(m′)kpoly(n, m), ek/enc+1poly(m, m′)})
if the union of any k distinct minimal transversals has size at least n− c. Equiv-
alently, if any k distinct maximal independent sets of a hypergraph F intersect
in at most c vertices, then all maximal independent sets can be computed in the
same time bound. As usual, an independent set of a hypergraph F is a subset
of its vertices which does not contain any hyperedge of F .

And again using the same idea, we show that the maximal frequent sets of an
m× n database can be computed in O(2c(nm′)2

k−1+1poly(n, m)) time if any k
rows of it intersect in at most c items, where m′ is the number of such sets.

Note that for c ∈ O(log n) we have incremental polynomial-time algorithms
for all four problems.

5.1 The Generalized Apriori Algorithm

Let f : V �→ {0, 1} be a monotone Boolean function, that is, for which f(X) ≥
f(Y) whenever X ⊇ Y . We assume that f is given by a polynomial-time evalu-
ation oracle requiring maximum time Tf , given the input. The Apriori approach
for finding all maximal subsets X such that f(X) = 0 (maximal false sets of
f), works by traversing all subsets X of V , for which f(X) = 0, in increasing
size, until all maximal such sets have been identified. The procedure is given in
Figure 3.

Lemma 5.1. If any maximal false set of f contains at most c vertices, then
APRIORI finds all such sets in O(2cm′nTf) time, where n = |V | and m′ is the
number of maximal false sets.

Proof. The correctness of this Apriori style method can be shown straightfor-
wardly (cf. e. g. [AS94, GKM+03]). To see the time bound, note that for each
maximal false set we check at most 2c candidates (all the subsets) before adding
it to C. For each such candidate we check whether it is a false set and whether
it cannot be extended by adding more vertices.
�

98 K. Elbassioni, M. Hagen, and I. Rauf

Procedure APRIORI(f, V):
Input: a monotone Boolean function f : V 	→ {0, 1}
Output: the maximal sets X ⊆ V such that f(X) = 0

1. C ← ∅; C1 ← {{v} : v ∈ V }; i ← 1; Cj ← ∅ ∀j = 2, 3, . . .
2. while Ci �= ∅
3. for X, Y ∈ Ci, |X ∩ Y | = i − 1
4. Z ← X ∪ Y
5. if f(Z) = 0 then
6. if f(Z ∪ {v}) = 1, for all v ∈ V \ Z then
7. C ← C ∪ {Z}
8. else
9. Ci+1 ← Ci+1 ∪ {Z}
10. i ← i + 1
11. return C

Fig. 3. The generalized Apriori algorithm

5.2 Maximal Independent Sets

Let F ⊆ 2V be a hypergraph. An independent set of F is a subset of V which
does not contain any hyperedge of F . It is easy to see that the hypergraph of
maximal independent sets Fdc of F is the complementary hypergraph of the
dual Fd: Fdc = {V \ T : T ∈ Fd}.

Let k and c be two positive integers. We consider hypergraphs F ⊆ 2V satis-
fying the following condition:

(C1) Any k distinct maximal independent sets I1, . . . , Ik of F intersect in at
most c vertices, i. e., |I1 ∩ · · · ∩ Ik| ≤ c.

We shall derive below fixed-parameter algorithms with respect to either c or
k. We note that condition (C1) can be checked in polynomial time for c = O(1)
and k = O(log n). Indeed, (C1) holds if and only if every set X ⊆ V of size
|X | = c + 1 is contained in at most k − 1 maximal independent sets of F . The
latter condition can be checked in time nc+1 poly(n, m, k)ek/e as follows from
the following lemma.

Lemma 5.2. Given a hypergraph F with vertex set V and a subset S ⊆ V of
vertices, we can check in polynomial time whether S is contained in k different
maximal independent sets. Furthermore k such sets can be generated in time
O(poly(n, m, k)ek/e).

Proof. Clearly, this check is equivalent to checking if S does not contain an
edge of F and if the truncated hypergraph F S̄ has k maximal independent sets,
or equivalently k minimal transversals. By Corollary 2.5, this can be done in
O(poly(n, m, k)ek/e) time.
�
For a set S ⊆ V , denote by Fdc[S] the set of maximal independent sets of F
containing S.

Some Fixed-Parameter Tractable Classes 99

Theorem 5.3. If any k distinct maximal independent sets of a hypergraph F
intersect in at most c vertices, then all maximal independent sets can be computed
in time O(min{2c(m′)kpoly(n, m), ek/enc+1poly(m, m′)}), where n = |V |, m =
|F| and m′ = |Fdc|.
Proof. (i) c as a parameter: we first use APRIORI to find the set X of all
maximal subsets contained in at least k distinct maximal independent sets of F .
By (C1) the size of each such subset is at most c. To do this we use APRIORI
with the monotone Boolean function defined by f(X) = 0 if and only if X ⊆
I1 ∩ · · · ∩ Ik, for k distinct maximal independent sets I1, . . . , Ik. The procedure
is given in Figure 4. By Lemmas 5.1 and 5.2, all the intersections in X can
be found in time 2c poly(n, m, k)ek/e|X |. Thus the total running time can be
bounded by 2c poly(n, m, k)ek/e(m′)k since |X | ≤ (m′)k. It remains to argue
that any maximal independent set I ∈ Fdc is generated by the procedure. To
see this, let Y be a maximal subset such that Y = I ∩ I1 ∩ . . . ∩ Ir , where
I, I1, . . . , Ir, are distinct maximal independent sets of F with r ≥ k − 1, and let
v ∈ I \ (∩j∈[r]Ij). Note that such v exists since I �⊆ ∩j∈[r]Ij since I, I1, . . . , Ir

are distinct maximal independent sets. Then by maximality of Y , Y ∪ {v} is
contained in at most k − 1 maximal independent sets, one of which is I, and
hence will be considered by the procedure in Step 7.

(ii) k as a parameter: Let I1 = {I ∈ Fdc : |I| ≤ c} and I2 = Fdc \ I1.
Elements of I1 can be found using the APRIORI procedure with the monotone
Boolean function, defined as f(X) = 0 if and only if X ⊆ V is independent
and has size at most c (or by testing all subsets of size at most c for maximal
independence). Elements of I2 can be found by noting that each of them contains
a set of size c + 1, and that each such set is contained in at most k− 1 elements
of I2 by (C1). Thus for each set X of size c + 1, we can use Lemma 5.2 to find
all maximal independent sets containing X .
�

Corollary 5.4. Let F ⊆ 2V be a hypergraph on n = |V | vertices, and k, c be
positive integers.

Procedure MAX-INDP-GEN(F , V):
Input: a hypergraph F ⊆ 2V

Output: the set of maximal independent sets of F

1. C ← ∅
2. Use APRIORI to find the set of maximal k-independent set intersections X
3. for each X ∈ X do
4. for each Y ⊆ X do
5. for each v ∈ V \ Y do

6. if |Fdc[Y ∪ {v}]| ≤ k − 1

7. C ← C ∪ Fdc[Y ∪ {v}] (obtained using Corollary 2.5)
8. return C

Fig. 4. The fixed parameter algorithm for finding all maximal independent sets

100 K. Elbassioni, M. Hagen, and I. Rauf

(i) If any k distinct minimal transversals of F have a union of at least n− c
vertices, we can compute all minimal transversals in O(min{2c(m′)kpoly(n, m),
ek/enc+1poly(m, m′)}) time, where m = F and m′ = |Fd|.

(ii) If any k distinct hyperedges of F have a union of at least n − c ver-
tices, we can compute all minimal transversals in time O(min{2cmkpoly(n, m′),
ek/enc+1poly(m, m′)}), where m = F and m′ = |Fd|.
Proof. Both results are immediate from Theorem 5.3. (i) follows by noting that
each minimal transversal is the complement of a maximal independent set, and
hence any k maximal independent sets are guaranteed to intersect in at most c
vertices. (ii) follows by maintaining a partial list G ⊆ Fd, and switching the roles
of F and G in (i) to compute the minimal transversals of G using Theorem 5.4.
Since condition (i) is satisfied with respect to G, we can either verify duality of
F and G, or extend G by finding a witness for the non-duality (in a way similar
to Corollary 2.5).
�

5.3 Maximal Frequent Sets

Consider the problem of finding the maximal frequent item sets in a collection
of m transactions on n items, stated in the Introduction. Here, a transaction
simply is a set of items. An item set is maximal frequent for a frequency t if it
occurs in at least t of the transactions and none of its supersets does. As another
application of the approach of the previous subsection we obtain the following.

Theorem 5.5. If any k distinct maximal frequent sets intersect in at most c
items, we can compute all maximal frequent sets in O(2c(nm′)kpoly(n, m)) time,
where m′ is the number of maximal frequent sets.

Proof. The proof is analogous to that of Theorem 5.3. Just note that the set of
transactions forms a hypergraph and replace “independent” by “frequent”. To
complete the proof, we need the following procedure to find k maximal frequent
sets containing a given set. For 1 ≤ i ≤ k and frequent set X , let F1, . . . , Fi−1 be
the maximal frequent sets containing X and let Y be the set with the property
that X ∪ Y is frequent and ∀j < i,∃y ∈ Y : y /∈ Fj . Then any maximal frequent
set containing X∪Y is different from F1 . . . Fi−1 by construction and thus giving
us a new maximal frequent set. The running time of the above procudure can be
bounded by O(nkpoly(n, m)). Combining it with Lemma 5.1 gives us the stated
running time.
�
Corollary 5.6. If any k distinct transactions intersect in at most c items, then
all maximal frequent sets can be computed in time O(2c(nm′)2

k−1+1poly(n, m)),
where m′ is the number of maximal frequent sets.

Proof. Note that if t ≥ k then every maximal frequent set has size at most c
which in turn implies O(2cpoly(n, m) ·m′) time algorithm using straightforward
Apriori approach, so we may assume otherwise. Consider the intersection X of
l distinct maximal frequent sets and let |X | > c, we bound the maximum such
l. Since the intersection size is more then c, at most k − 1 transactions define
these l disticnt maximal frequent sets and so l ≤∑k−1

j=t

(
k−1

j

) ≤ 2k−1.
�

Some Fixed-Parameter Tractable Classes 101

6 Concluding Remarks

Giving an FPT algorithm for Dual with respect to the parameter size l of a
largest edge remains open. Nevertheless, proving that Dual is not FPT with
respect to l seems to be tough as this would imply that there is no polynomial
time algorithm for Dual assuming W[1] �= FPT. Furthermore, this would be a
strong argument for a separation of polynomial and quasi-polynomial time in
“classical” computational complexity.

References

[AIS93] Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules be-
tween sets of items in large databases. In: Proc. SIGMOD 1993, pp.
207–216 (1993)

[AS94] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in
large databases. In: Proc. VLDB 1994, pp. 487–499 (1994)

[BEGK00] Boros, E., Elbassioni, K.M., Gurvich, V., Khachiyan, L.: An efficient
incremental algorithm for generating all maximal independent sets in
hypergraphs of bounded dimension. Parallel Processing Letters 10(4),
253–266 (2000)

[BEGK03] Boros, E., Elbassioni, K.M., Gurvich, V., Khachiyan, L.: An inequality
for polymatroid functions and its applications. Discrete Applied Mathe-
matics 131(2), 255–281 (2003)

[BEGK04] Boros, E., Elbassioni, K.M., Gurvich, V., Khachiyan, L.: Generat-
ing maximal independent sets for hypergraphs with bounded edge-
intersections. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976,
pp. 488–498. Springer, Heidelberg (2004)

[BGH98] Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive
Boolean functions. Optimization Methods and Software 10(2), 147–156
(1998)

[BGKM02] Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: On the complexity
of generating maximal frequent and minimal infrequent sets. In: Alt, H.,
Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 133–141. Springer,
Heidelberg (2002)

[BI95] Bioch, J.C., Ibaraki, T.: Complexity of identification and dualization of
positive Boolean functions. Inf. Comput. 123(1), 50–63 (1995)

[Dam06] Damaschke, P.: Parameterized enumeration, transversals, and imperfect
phylogeny reconstruction. Theoret. Comput. Sci. 351(3), 337–350 (2006)

[Dam07] Damaschke, P.: The union of minimal hitting sets: Parameterized com-
binatorial bounds and counting. In: Thomas, W., Weil, P. (eds.) STACS
2007. LNCS, vol. 4393, pp. 332–343. Springer, Heidelberg (2007)

[DF99] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Hei-
delberg (1999)

[EG95] Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hyper-
graph and related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

[EG02] Eiter, T., Gottlob, G.: Hypergraph transversal computation and related
problems in logic and AI. In: Flesca, S., Greco, S., Leone, N., Ianni,
G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 549–564. Springer,
Heidelberg (2002)

102 K. Elbassioni, M. Hagen, and I. Rauf

[EGM03] Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization
and generating hypergraph transversals. SIAM J. Comput. 32(2), 514–
537 (2003)

[Eit94] Eiter, T.: Exact transversal hypergraphs and application to Boolean μ-
functions. J. Symb. Comput. 17(3), 215–225 (1994)

[FK96] Fredman, M.L., Khachiyan, L.: On the complexity of dualization of
monotone disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)

[GB85] Garcia-Molina, H., Barbará, D.: How to assign votes in a distributed
system. J. ACM 32(4), 841–860 (1985)

[GKM+03] Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H.,
Sharm, R.S.: Discovering all most specific sentences. ACM Trans.
Database Syst. 28(2), 140–174 (2003)

[Hag07] Hagen, M.: On the fixed-parameter tractability of the equivalence test
of monotone normal forms. Inf. Process. Lett. 103(4), 163–167 (2007)

[JPY88] Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all
maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

[KS03] Kavvadias, D.J., Stavropoulos, E.C.: Monotone Boolean dualization is
in coNP[log2 n]. Inf. Process. Lett. 85(1), 1–6 (2003)

[LLK80] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all max-
imal independent sets: NP-hardness and polynomial-time algorithms.
SIAM J. Comput. 9(3), 558–565 (1980)

[Mak03] Makino, K.: Efficient dualization of O(log n)-term monotone disjunctive
normal forms. Discrete Applied Mathematics 126(2–3), 305–312 (2003)

[MR92] Mannila, H., Räihä, K.-J.: On the complexity of inferring functional
dependencies. Discrete Applied Mathematics 40(2), 237–243 (1992)

[Nie06] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Uni-
versity Press, Oxford (2006)

[RT75] Read, R.C., Tarjan, R.E.: Bounds on backtrack algorithms for listing
cycles, paths, and spanning trees. Networks 5, 237–252 (1975)

[SS98] Sarkar, S., Sivarajan, K.N.: Hypergraph models for cellular mobile com-
munication systems. IEEE Transactions on Vehicular Technology 47(2),
460–471 (1998)

A Purely Democratic Characterization of W[1]

Michael Fellows1,�, Danny Hermelin2,��, Moritz Müller3,
and Frances Rosamond1,� � �

1 Parameterized Complexity Research Unit,
The University of Newcastle, Callaghan NSW 2308 - Australia
{michael.fellows,frances.rosamond}@newcastle.edu.au

2 Department of Computer Science, University of Haifa,
Mount Carmel, Haifa 31905 - Israel

danny@cri.haifa.ac.il
3 Mathematisches Institut, Albert Ludwigs Universität Freiburg,

Eckerstrasse 1, 79104 Freiburg - Germany
moritz.mueller@math.uni-freiburg.de

Abstract. We give a novel characterization of W[1], the most important
fixed-parameter intractability class in the W-hierarchy, using Boolean
circuits that consist solely of majority gates. Such gates have a Boolean
value of 1 if and only if more than half of their inputs have value 1. Us-
ing majority circuits, we define an analog of the W-hierarchy which we
call the W̃-hierarchy, and show that W[1] = W̃[1] and W[t] ⊆ W̃[t] for
all t. This gives the first characterization of W[1] based on the weighted
satisfiability problem for monotone Boolean circuits rather than anti-
monotone. Our results are part of a wider program aimed at exploring
the robustness of the notion of weft, showing that it remains a key param-
eter governing the combinatorial nondeterministic computing strength of
circuits, no matter what type of gates these circuits have.

1 Introduction

Arguably the most important class in the W-hierarchy is W[1]. From a the-
oretical point of view, it can be viewed as the parameterized analog of NP
since it contains many parameterized variants of classical NP-complete prob-
lems such as k-Independent Set, k, �-Longest Common Subsequence,
and, most importantly, because the k-Step Halting Problem for Tur-
ing Machines of Unlimited Nondeterminism is complete for W[1]. This
is a parameterized analog of the generic NP-complete problem used in Cook’s
theorem [DFKHW94, DFS99]. From a practical standpoint, W[1] is the most
important complexity class for showing fixed-parameter intractability results,
providing an easy accessible platform for showing such results [DF95]. Indeed,

� Research supported by the Australian Research Council, and by an Alexander von
Humboldt Foundation Research Award.

�� Partially supported by the Caesarea Rothschild Institute.
� � � Research supported by the Australian Research Council.

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 103–114, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

104 M. Fellows et al.

since the identification of the first complete problems for W[1], there has been
a slew of fixed-parameter intractability results, reminiscent in some sense of the
early days of NP-completeness.

The key combinatorial objects used to formulate W[1] and the W-hierarchy
are constant depth logic circuits that model Boolean functions in the natural
way. Their combinatorial nondeterministic computing strength is governed by
their weft, defined to be the maximum number of unbounded in-degree gates in
any path from the input gates to the output. The generic complete problem for
the W-hierarchy is the k-Weighted Weft-t Circuit Satisfiability prob-
lem, that takes as input a constant depth weft-t circuit C and a parameter k
and asks whether C has a weight k satisfying assignment (i.e. an assignment
setting exactly k input gates to 1). The class W[t] is then defined to be the class
of parameterized problems which are parameterized reducible to k-Weighted
Weft-t Circuit Satisfiability.

In this paper, we explore an alternative, purely monotone characterization of
W[1] and the W-hierarchy using a different type of Boolean circuit, namely, a
majority circuit. In this type of circuit, we replace the role of logical gates by
majority gates which have value 1 when more than half of their inputs have value
1. Using a majority circuit analog of k-Weighted Weft-t Circuit Satisfi-
ability, we obtain the W̃-hierarchy. Our main results are:

Theorem 1. W[1] = W̃[1].

Theorem 2. W[t] ⊆ W̃[t] for any positive integer t.

Note that in proving Theorem 2, we use Theorem 1 for the case of t = 1. This
is not uncommon, since most proofs involving the W-hierarchy require special
treatment of W[1] (see [DF99, FG06] for many examples).

The importance of these results are twofold. First, Theorem 1 gives an al-
ternative way of showing fixed-parameter intractability results. The complete
problems of W[1] are usually antimonotone by nature, where a parameterized
problem is antimonotone if when an instance with a given parameter is known
to be a “yes”-instance, then it is also known to be a “yes”-instance for smaller
parameter values (e.g. maximization problems). However, see [M06] for some
exceptions. In circuit terms, it is known that one could use an antimonotone
weft-1 circuit to show W[1]-hardness, but this is not known for monotone cir-
cuits. Majority circuits, however, are monotone circuits and so they might come
in handy in reductions for monotone problems. This is what makes the proof of
Theorem 1 so combinatorially challenging.

Second, our results suggest a robustness in the notion of weft. Indeed, there has
long been quite a bit of informal criticism against the naturality of this notion. This
work, alongwith anotherwork by almost the same set of authors [FFHMR07], aims
at showing that this is not necessarily so. We do so, by showing that if one replaces
the role of logical gates in circuits by nontrivial combinatorial gates, then the no-
tion of weft still generally remains the central property governing the nondeter-
ministic combinatorial computing power of circuits. It seems that no matter what

A Purely Democratic Characterization of W[1] 105

your favorite selection of combinatorial gates, the number of unbounded in-degree
gates from the input layer to the output will still determine the parameterized com-
plexity of finding weight k satisfying assignments to your circuit.

The paper is organized as follows. In the next section we briefly review basic
concepts of parameterized complexity, and formally introduce the notion of ma-
jority circuits. We then proceed in Sections 3 and 4 to prove Theorem 1, where
in Section 3 we prove that W[1] ⊆ W̃[1], and in Section 4 we prove W̃[1] ⊆W[1].
Section 5 is devoted to proving Theorem 2. In Section 6 we give a brief summary
of the paper, and discuss open problems.

2 Preliminaries

In the following we discuss notations and concepts that we use throughout the
paper. In particular, we briefly review basic concepts from parameterized com-
plexity, and define pure majority circuits, which play the leading role in this
paper, and the corresponding W̃-hierarchy. We will assume that the reader is
familiar with basic concepts from classical complexity and graph theory.

2.1 Parameterized Complexity

A parameterized problem (or parameterized language) is a subset L ⊆ Σ∗ × N,
where Σ is a fixed alphabet, Σ∗ is the set of all finite length strings over Σ, and
N is the set of natural numbers. In this way, an input (x, k) to a parameterized
language consists of two parts, where the second part k is the parameter. A
parameterized problem L is fixed-parameter tractable if there exists an algorithm
which on a given input (x, k) ∈ Σ∗×N, decides whether (x, k) ∈ L in f(k)poly(n)
time, where f is an arbitrary computable function solely in k, and poly(n) is a
polynomial in the total input length n = |(x, k)|. Such an algorithm is said to
run in FPT-time, and FPT is the class of all parameterized problems that can be
solved by an FPT-time algorithm (i.e. all problems which are fixed-parameter
tractable).

A framework for proving fixed-parameter intractability was developed over the
years, using the notion of parameterized reductions. A parameterized reduction
from a parameterized problem L to another parameterized problem L′ is an
FPT-time computable mapping that maps an instance (x, k) ∈ Σ∗ × N to an
instance (x′, k′) ∈ Σ∗ × N such that (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L. Furthermore
k′ is required to be bounded by some computable function in k.

2.2 Logical Circuits and the W-Hierarchy

A (logical) circuit C is a connected directed acyclic graph with labels on its
vertices, and a unique vertex with no outgoing edges. The vertices which are
of in-degree 0 are called the input gates and they are labeled with Boolean
variables x1, x2, All other vertices are called the logical gates and are labeled
with Boolean operators ∧, ∨, and ¬, where vertices which are labeled ¬ have in-
degree 1. The unique 0 out-degree vertex is the output gate. A monotone logical

106 M. Fellows et al.

circuit is a logical circuit with no ¬-gates. An antimonotone logical circuit is a
logical circuit where each input gate is connected to the the rest of the circuit
via a ¬-gate, and there are no other occurrences of ¬-gates in the circuit.

An assignment X for C is an assignment of 0 or 1 to each of the variables in
C. The weight of X is the number of variables that it assigns a 1. The value of a
logical gate in C under X is obtained straightforwardly according to the label of
the gate and the value of its inputs. The value C(X) of C under X is the value
of the output gate of C. We say that X satisfies a logical gate in C if the value
of this gate under X is 1, and if it satisfies the output gate of C (i.e. C(X) = 1),
we say that X satisfies C.

It is convenient to consider the vertices of C as organized into layers. The input
gates constitute the input layer, the logical gates which are directly connected
to them are the first layer, and more generally, a vertex is in the i’th layer of
C if the length of the maximum-length path from it to the input layer equals i.
The depth of a circuit is the length of the maximum-length path from the input
layer to the output gate.

There is an important distinction between two types of logical gates in C.
Small gates are gates which have in-degree bounded by a small constant (usually
we can take this constant to be 3). Large gates are vertices with unbounded in-
degree. The maximum number of large gates on a path between an input gate
and the output of C is the weft of C.

Constant depth logical circuits are used to define a hierarchy of fixed-parameter
intractability known as the W-hierarchy. The generic problem for this hierarchy is
k-Weighted Weft-t Circuit Satisfiability, where t is a problem-dependent
positive integer constant. This problem takes as input a constant depth weft-t
circuit C and a parameter k and asks to determine whether C has a weight k
satisfying assignment. The class W[t] is defined to be the class of parameterized
problems which are parameterized reducible to k-Weighted Weft-t Circuit
Satisfiability. The W-hierarchy is then the hierarchy of classes FPT ⊆W[1] ⊆
W[2] ⊆ · · · . It is well known that antimonotone logical circuits are sufficient to
define the odd levels of the W-hierarchy, while monotone logical circuits suffice
for defining the even levels of the hierarchy [DF99]. Hence, defining k-Weighted
Weft-t Antimonotone Circuit Satisfiability and k-Weighted Weft-t
Monotone Circuit Satisfiability in the natural manner, we get the former
is complete for all odd t and the latter for all even t.

2.3 Majority Circuits and the W̃-Hierarchy

A majority gate is a gate which has value 1 if and only if more than half of its
inputs are set to 1. They play the lead role in our novel characterization of W[1],
via what we call (purely) majority circuits. These circuits have majority gates
instead of logical gates, and thus have different expressive power in comparison
to the ordinary logical circuits of the W-hierarchy. When speaking of majority
circuits, we use the same terminology as for their logical counterparts, where
all definitions and notions (in particular, the notion of weft) carry through to

A Purely Democratic Characterization of W[1] 107

majority circuits. The only difference is that here we allow multiple edges,
whereas in logical circuits these are always redundant.

We now define a hierarchy of complexity classes where majority circuits play
an analogous role to the role played by logical circuits in the W-hierarchy. This is
done via the analogous generic problem k-Weighted Weft-t Majority Cir-
cuit Satisfiability, which asks whether a given constant depth weft-t majority
circuit C has a k weight satisfying assignment, for parameter k. The class W̃[t]
is defined to be the class of parameterized problems which are parameterized
reducible to k-Weighted Weft-t Majority Circuit Satisfiability.

Finally, before proceeding, we show that we can always assume that when
dealing with majority circuits, we have an additional input whose value is always
set to 1. The will prove handy later on in proving both Theorem 1 and Theorem 2.

Observation 1. Without loss of generality, we can assume a weft-t majority
circuit C, t ≥ 1, is provided with an input gate which is always assigned the
value 1.

The reason is the following. To simulate a 1 in C, we replace the output gate
of C with an in-degree 2 majority gate which is connected to the old output
gate and to a new input gate. Let C′ be C after this modification. Then C has
a weight k satisfying assignment if and only if C′ has a weight k + 1 satisfying
assignment where the new input gate is assigned a value of 1.

3 W[1] ⊆ W̃[1]

In this section we prove the first part of the main result of this paper, namely
that W[1] ⊆ W̃[1]. For this, we introduce an intermediate problem which we
feel might also be of independent interest, the k-Majority Vertex Cover
problem. After formally defining k-Majority Vertex Cover, we prove that
it is in W̃[1], and also W[1]-hard. From this, it will immediately imply that
W[1] ⊆ W̃[1]. We begin with a definition of k-Majority Vertex Cover.

Definition 1. Given a graph G and a parameter k, the k-Majority Vertex
Cover problem asks whether there exists a subset of k vertices in G which
covers a majority of the edges of G. That is, whether there exists a S ⊆ V (G)
with |S| = k and |{{u, v} ∈ E(G) | {u, v} ∩ S
= ∅}| > |E(G)|/2.

Recall that a problem is in W̃[1] if it can be parameterically reduced to k-
Weighted Weft-1 Majority Circuit Satisfiability, which is the problem
of determining whether a purely majority circuit of weft 1 (and constant depth)
has a weight k satisfying assignment. The above definition, gives a clue to why
k-Majority Vertex Cover is parametric reducible to k-Weighted Weft-1
Majority Circuit Satisfiability. This is established in the following lemma.

Lemma 1. k-Majority Vertex Cover is in W̃[1].

108 M. Fellows et al.

Proof. Let (G, k) be an instance of k-Majority Vertex Cover. We reduce
(G, k) to a weft-1 purely majority circuit C which has a k+1 weighted satisfying
assignment if and only if G has a subset of k vertices that cover a majority of
its edges.

The construction of C is as follows. Let n = |V (G)| and m = |E(G)|. The
input layer of C consists of n input gates – one input gate xv for each vertex
v ∈ V (G). In addition, we use the construction of Observation 1 to ensure that
the input layer has an additional input gate of value 1. The first layer of C
consists of m small in-degree 3 majority gates, one for each edge in G. The
gate associated with the edge {u, v} ∈ E(G), is connected to xu, xv, and the
constant 1. In this way, an assignment to the input layer corresponds to a subset
of vertices in G, and a gate in the first layer is satisfied if and only if the edge
associated with this gate is incident to a vertex selected by the assignment. The
second layer consists of the output gate which is large majority gate which is
connected to all the small majority gates of the first layer.

The above construction clearly runs in FPT-time, and the circuit constructed
is of weft 1 and depth 2. Furthermore, its correctness can easily be verified. To
see this, first assume that G has a subset S of k vertices that cover a majority of
its edges, and consider the assignment X which assigns xv = 1 to each gate xv

with v ∈ S. Then X is a weight k assignment which satisfies, by construction,
any gate in the first layer associated to an edge covered by S. Therefore, it
satisfies a majority of the gates in the first layer, and also the output gate. In
the other direction, if X is a weight k assignment which satisfies C, then X
satisfies more than half of the gates in the first layer, and so the subset of k
vertices S := {v ∈ V (G) | X assigns xv = 1} covers more than half of the edges
of G. �

The next step is to show that k-Majority Vertex Cover is W[1]-hard.
This might be a somewhat more surprising result than the previous lemma,
since k-Vertex Cover and other closely related variants are known to be in
FPT [GNW05]. Our proof follows along a similar line of proof used in [GNW05]
for showing that k-Partial Vertex Cover is W[1]-hard.

Lemma 2. k-Majority Vertex Cover is W[1]-hard.

Proof. We reduce the W[1]-complete parameterized independent set problem
k-Independent Set to k-Majority Vertex Cover.

Let (G, k) be an instance of k-Independent Set. We may assume that k +
1 < n/4, since otherwise the trivial brute-force algorithm runs in fpt-time. We
construct an equivalent instance (G′, k′) of k-Majority Vertex Cover as
follows. Let n = |V (G)| and for v ∈ V (G) let d(v) denote the number of vertices
adjacent to v in G.

The graph G′ = (V (G′), E(G′)) is constructed from G in two steps. First, for
every v ∈ V (G), we add n− 1− d(v) new vertices, which are connected only to
v and hence have degree one. This ensures that v has degree exactly n− 1. Let
m0 be the number of edges of the graph obtained so far. Clearly

A Purely Democratic Characterization of W[1] 109

m0 ≥ n · (n− 1)
2

. (1)

We choose the smallest s ∈ N such that

k · (n− 1) + s >
m0 + s

2
. (2)

In the second step we add a vertex v∗ and s further vertices to our graph and
make v∗ adjacent to the s many new vertices, which thus all have degree one.
This finishes the construction of the graph G′. Note that G′ has m0 + s many
edges. We set k′ := k + 1. We show that G contains an independent set of size
k if and only if G′ contains a set of size k′ covering a majority of its edges.

Assume first that S is an independent set of G of size k. Then S ∪{v∗} covers
k · (n− 1) + s edges in G′, which by (2) is more than half of the edges of G′.

Conversely, let S′ be a subset of k′ vertices in G′, which cover more than
(m0 + s)/2 edges in G′. Then v∗ ∈ S′, since all other vertices have degree at
most n−1 and therefore at most (k+1) · (n−1) edges can be covered otherwise.
However, as k + 1 < n/4 we get (k + 1) · (n− 1) < n · (n− 1)/4 ≤ m0/2 (the last
inequality holding by (1)); therefore, at most half of the edges would be covered.
We set S := S′ \ {v∗}. Thus |S| = k and by the choice of s the set S must cover
in G′ at least k · (n− 1) edges. As vertices in V (G) have degree n− 1 in G′ and
vertices in V (G′)\ (V ∪{v∗}) have degree one, we see that S ⊆ V (G). Moreover,
in order to cover k · (n− 1) edges, S must be an independent set of G. �

Corollary 1. W[1] ⊆ W̃[1].

4 W̃[1] ⊆ W[1]

We next prove that W̃[1] ⊆W[1], completing the proof of the main result of this
paper. In the interests of a clearer presentation, we prove this in two steps. In
the first step, we introduce for positive integers p, q ∈ N a new problem called
k-Majority (p, q)-DNF Satisfaction, and show that this problem reduces
to the generic W[1]-complete k-Step Halting problem. Following this, we ex-
plain how this construction can be altered to show that k-Weighted Weft-1
Majority Circuit Satisfiability also reduces to k-Step Halting, proving
that W̃[1] ⊆W[1].

We begin by introducing the k-Majority (p, q)-DNF Satisfaction prob-
lem. A monotone (p, q)-DNF formula is a Boolean formula of the form∨p

i=1

∧q
j=1 xi,j , where the xi,j ’s are Boolean variables which are not necessarily

distinct. A family of monotone (p, q)-DNF formulas is a tuple D = (D1, . . . , Dm)
of monotone (p, q)-DNF formulas, which are not necessarily distinct.

Definition 2. For a given family D = (D1, . . . , Dm) of monotone (p, q)-DNF
formulas, and a parameter k, the k-Majority (p, q)-DNF Satisfaction prob-
lem asks to determine whether there exists a weight k assignment to the variables
of the family such that for more than m/2 indices i the DNF Di is satisfied.

110 M. Fellows et al.

We now show that k-Majority (p, q)-DNF Satisfaction parameterically re-
duces to the k-Step Halting. Recall that the k-Step Halting problem, which
is the parameterized analog of the classical Halting Problem, asks for a given
non-deterministic single tape Turing machine (defined over an unbounded alpha-
bet) M , and a parameter k, whether M has a computation path on the empty
string which halts after at most k steps. The main idea of our proof for showing
W̃[1] ⊆W[1] is encapsulated in the following reduction.

Lemma 3. There is a parameterized reduction from k-Majority (p, q)-DNF
Satisfaction to k-Step Halting.

Proof. Let (D, k) be a given instance for k-Majority (p, q)-DNF Satisfac-
tion, with D = (D1, . . . , Dm) a family of monotone (p, q)-DNFs over variables
x1, . . . , xn, and k the parameter. We construct a Turing machine M such that
for some appropriate computable function f the machine M halts in at most
k′ := f(k) steps if and only if there exists a weight k assignment to the variables
x1, . . . , xn which satisfies more than half of the DNFs in D. Then main idea is
to encode in the state space of M all relevant information needed for determin-
ing the number of DNFs satisfied by a given weight k assignment. For ease of
notation, we will assume that no DNF contains a conjunct with identical literals.

Consider some DNF Di ∈ D. There are p possible choices of selecting q-
conjuncts of variables to assign a 1 to, so as Di would be satisfied. We say that
a subset of q variables X ⊂ {x1, . . . , xn} hits the index i if it is one of these
possible choices. Moreover, we define the neighborhood D(X) of X to be the set
of all indices 1 ≤ i ≤ m that it hits.

The information encoded in the state space of M is as follows: For every �
subsets of variables X1, . . . , X� ⊂ {x1, . . . , xn}, 1 ≤ � ≤ p and |X1| = · · · =
|X�| = q, we encode the size of the intersection of their neighborhoods. That
is, we encode |D(X1) ∩ · · · ∩D(X�)|, the number of indices hit by each of the �
subsets of variables. This requires O(npq) state space, which is polynomial in n.

We next describe the computation of M on the empty string in three different
phases :

1. First, M nondeterministically guesses a subset of k variables.
2. Next, M identifies all q-subsets of variables that are implicity selected by its

k variable guess in the previous step.
3. Finally, M calculates the total number of indices 1 ≤ i ≤ m hit by all the

q-subsets identified in the previous step. M halts, if this number is more
than m/2. Otherwise, M enters an infinite loop.

Due to its construction, M halts in at least one of its computation paths on the
empty string if and only if there is a weight k assignment that satisfies more
than half of the DNF occurrences in D. To complete the proof, we argue that
M halts after k′ = f(k) steps for some computable function f . The first phase
requires k nondeterministic steps since we can encode each variable by a single
letter in the alphabet of M . In the second step, M identifies X = X1, . . . , X|X |,
the set of all q-subsets of variables implicity selected by its k variable guess.

A Purely Democratic Characterization of W[1] 111

Since |X | = O(kq), this phase requires O(kq) steps. To compute the last phase,
M performs an exclusion\inclusion calculation using the information stored in
its state space. The crucial observation is

∣
∣
⋃

Xi∈X
D(Xi)

∣
∣ =

|X |∑

j=1

(−1)j+1 ·
∑

i1<···<ij

|D(Xi1) ∩ · · · ∩D(Xij)|

=
p∑

j=1

(−1)j+1 ·
∑

i1<···<ij

|D(Xi1) ∩ · · · ∩D(Xij)|.

The second equation is due to the fact that any family of neighborhoods of more
than p many q-subsets of variables has empty intersection. Thus the information
stored in the state space of M suffices for this computation. The last phase
therefore requires O(kpq) steps. �

We now turn to deal with weft-1 majority circuits, and our W̃[1]-complete k-
Weighted Weft-1 Majority Circuit Satisfiability problem. We show
that a similar construction used in the lemma above can be applied for reducing
k-Weighted Weft-1 Majority Circuit Satisfiability to k-Step Halt-
ing.

Let C be a weft-1 majority circuit. First, we normalize C so that its first
layer consists only of in-degree q ∨-gates, and its second layer consists only of
in-degree p ∧-gates for certain constants p and q. This can be done as follows.
Consider a large gate in C and the portion of C which is required to evaluate one
of its inputs. Since this portion involves only small gates and has constant depth,
it can be viewed as Boolean function over a constant number of variables. Also,
this function is necessarily monotone, since majority gates can only compute
monotone functions. We can therefore analyze its entire truth table, and convert
it into a DNF using a disjunction of satisfying lines in the truth table in the
straightforward manner. Since the function is monotone, any variable appearing
in negation in some conjunct of the DNF, also appears positively in another
conjunct with similar literals, and so both of these occurences can safely be
removed. From this it follows that any portion of C which is required to evaluate
one of the inputs of one of its large gates can be modeled by a monotone DNF of
constant size. Letting p and q be the largest disjunction and conjunct in all these
DNFs, by an appropriate padding we model each such portion by a (p, q)-DNF.

Let us say that a weft-1 majority circuit is simple if it has only one big majority
gate as its output gate. If C is simple then the construction above suffices, and
we can immediately apply the construction of M used in Lemma 3. Otherwise,
C is logically equivalent to a constant size Boolean combination of simple sub-
circuits. In this case, M guesses k variables, and computes the value of these
constantly many simple sub-circuits as described in Lemma 3. It then computes
in constant time the value of the Boolean combination under this assignment
given by the computed values of the simple sub-circuits.

Corollary 2. W̃[1] ⊆W[1].

Combining Corollaries 1 and 2, we complete our proof of Theorem 1.

112 M. Fellows et al.

5 Higher Levels of the Hierarchies

We now turn to consider higher levels of the W-and W̃-hierarchies. We prove in
this section that W[t] ⊆ W̃[t] for all positive integers t. For this, we will first show
that this statement holds for even values of t. Following this, we will consider
odd values greater or equal to 3, and thus by combining with Theorem 1 we will
obtain our desired result.

Recall that a circuit is monotone if it does not have any ¬-gates, and that
k-Weighted Weft-t Monotone Circuit Satisfiability is complete for all
even t ≥ 2. To show that W[t] ⊆ W̃[t] for even values of t, we prove the following
lemma.

Lemma 4. k-Weighted Weft-t Monotone Circuit Satisfiability pa-
rameterically reduces to k-Weighted Weft-t Majority Circuit Satisfia-
bility.

Proof. Let (C, k) be an instance of k-Weighted Weft-t Monotone Circuit
Satisfiability, with C a weft-t monotone logical circuit and k the parameter.
Let � be the maximum in-degree of any gate in C. We assume without loss of
generality that any small gate in C has in-degree at most 2.

We construct a majority circuit C′ of weft t as follows. First, we add � ·(k+1)−1
new input gates to C′ labeled with new pairwise distinct variables, and an addi-
tional new input gate labeled with the constant 1 (which we construct according
to Observation 1). C′ simulates the gates of C as follows. The simulation of a
large ∨-gate, say of in-degree �′ ≤ �, is straightforward: relabel so it becomes
a majority gate and add �′ − 1 new edges coming from the input gate labeled
1. Small ∨-gates can be handled similarly. Small ∧-gates are simply relabeled
to become small majority gates. The interesting case is what to do when g is a
large ∧-gate. Suppose g has edges coming from g1, . . . , g�′ (for some �′ ≤ �). We
relabel g to a majority gate. Then for all 1 ≤ i ≤ �′, we replace each edge from
gi to g by k + 1 parallel edges. Additionally we wire �′(k + 1) − 1 many new
inputs to g.

We show that for each gate g in C that an arbitrary weight k assignment for
the variables of C′ satisfies g in C′ if and only if its restriction to the variables in
C satisfies g in C. We proceed inductively on the layer g lives in (in C or C′). The
rest being easy look at the case that g is a large ∧-gate. Then an assignment
satisfying all g1, . . . , g�′ clearly satisfies the majority gate g. Conversely if a
weight k assignment does not satisfy all g1, . . . , g�′ then g receives at most (�′ −
1)(k + 1) times a 1 from these gates plus possibly some from the new variables,
but at most k. All together, g receives no more than (�′ − 1)(k + 1) + k values
1 and this is less than half the in-degree of g which is 2�′(k + 1) − 1. In total
we have that an assignment of weight k to the variables of C′ satisfies C′ if
and only if its restriction to the variables of C satisfies C. It follows that C
has a satisfying assignment to its variables of weight k if and only if C′ has a
satisfying assignment to its variables of weight k. Why? To see necessity extend
an assignment for the variables of C by setting all new variables to 0 and use the

A Purely Democratic Characterization of W[1] 113

above equivalence. For sufficiency, note that a satisfying weight k assignment for
C′ restricts to one of weight at most k which satisfies C by the above equivalence;
but C is monotone, so it has a satisfying assignment of weight k if and only if it
has a satisfying assignment of weight at most k. �

Corollary 3. W[t] ⊆ W̃[t] for any positive even integer t.

We next show that W[t] ⊆ W̃[t] for odd values of t. For this, due to Theorem 1,
it is enough to consider odd t ≥ 3. In this case, we can consider a restricted
type of antimonotone circuits which we call normalized antimonotone circuits.
A normalized antimonotone circuit is an antimonotone circuit with its first layer
containing only ¬-gates, its second layer containing only large ∧-gates, its third
only large ∨-gates, and so on, alternating between layers of large ∧-gates and
layers of large ∨-gates. Also, each gate is required to have incoming edges only
from gates in the previous layer. It is known that for odd t ≥ 3, k-Weighted
Weft-t Circuit Satisfiability restricted to normalized antimonotone cir-
cuits is complete for W[t] [FG06].

Lemma 5. k-Weighted Weft-t Antimonotone Circuit Satisfiability
restricted to normalized antimonotone circuits parameterically reduces to k-
Weighted Weft-t Majority Circuit Satisfiability.

Proof. Let (C, k) be an instance of k-Weighted Weft-t Antimonotone Cir-
cuit Satisfiability restricted to normalized antimonotone circuits. We trans-
form C to a majority circuit as follows: consider a large ∧-gate g of the second
layer, i.e. one wired only to negations of input gates, say ¬x1, . . . ,¬x�. Rela-
bel g to become a majority gate and wire it to all inputs except those labeled
x1, . . . , x�, say this yields �′ edges.

We shall need that �′ ≥ 2k. We can assure this by the following preprocessing
which is easily seen to run in FPT-time: that �′ < 2k means that g conjuncts
the negations of all but less than 2k many variables. We check for each weight
k assignment for these < 2k variables whether it satisfies C. The number of
these assignments is effectively bounded in terms of k. If we find a satisfying
assignment, then (C, k) is a “yes” instance. Otherwise we know that no weight k
assignment that satisfies C also satisfies g. We then delete g. It is not hard to see
that the resulting circuit is equivalent to C with respect to weight k assignments.

We add �′−2k+1 many parallel edges coming from a new input labeled with
the constant 1 – this is the smallest number s such that k + s is bigger than
half of �′ + s. This means that this gate is satisfied by a weight k assignment X
if and only if X chooses k variables whose negations are not wired into g in C,
i.e. X satisfies g in C. But if we replace all second layer gates in this manner,
we end up with a monotone circuit containing logical as well as majority gates
which is equivalent to the original circuit with respect to weight k assignments.
Hence, for the other gates we can proceed as in Lemma 4. �

Corollary 4. W[t] ⊆ W̃[t] for any positive odd integer t ≥ 3.

Combining Corollaries 1, 3, and 4, we complete our proof of Theorem 2.

114 M. Fellows et al.

6 Discussion

In this paper we presented an alternative characterization of W[1], using majority
circuits instead of logical circuits. We also showed that this characterization holds
in one direction for higher levels of the hierarchy. This gives the first monotone
characterization of W[1], and is perhaps a first step in establishing a monotone
characterization of the entire W-hierarchy. We believe our results may prove
useful in showing fixed-parameter intractability results for monotone problems,
as well as for other types of problems. Furthermore, our results exemplify the
naturality of the notion of weft, showing that it remains the parameter governing
the combinatorial nondeterministic computing strength of circuits, no matter
what (nontrivial) type of gates they have.

The major open problem left by this paper is showing the other direction of
Theorem 2, namely that W̃[t] ⊆ W[t] for all positive integers t. This, along with
the results in this paper will prove that W[t] = W̃[t], giving a completely monotone
characterization of the W-hierarchy. We conjecture that this is in fact the case.

Acknowledgements. Jörg Flum as well as some careful anonymous reviews
pointed out a mistake in an earlier argument for Lemma 2.

References

[DF99] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Hei-
delberg (1999)

[DF95] Downey, R., Fellows, M.: Fixed parameter tractability and completeness
II: Completeness for W [1]. Theoretical Computer Science A 141, 109–131
(1995)

[DFKHW94] Downey, R., Fellows, M., Kapron, B., Hallett, M., Wareham, H.T.: The
parameterized complexity of some problems in logic and linguistics. In:
Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp.
89–100. Springer, Heidelberg (1994)

[DFS99] Downey, R., Fellows, M., Stege, U.: Parameterized complexity: A frame-
work for systematically confronting computational intractability. In: Gra-
ham, R., Kratochvil, J., Nesetril, J., Roberts, F. (eds.) Proceedings of
the DIMACS-DIMATIA Workshop on the Future of Discrete Mathe-
matics, Prague. Contemporary Trends in Discrete Mathematics 1997,
AMS-DIMACS. Discrete Mathematics and Theoretical Computer Sci-
ence, vol. 49, pp. 49–99 (1999)

[FG06] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Hei-
delberg (2006)

[FFHMR07] Fellows, M., Flum, J., Hermelin, D., Müller, M., Rosamond, F.: Param-
eterized complexity via combinatorial circuits (manuscript, 2007)

[GNW05] Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of gen-
eralized vertex cover problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R.
(eds.)WADS2005.LNCS,vol. 3608,pp. 36–48.Springer,Heidelberg (2005)

[M06] Marx, D.: Parameterized complexity of independence and domination on
geometric graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC
2006. LNCS, vol. 4169, pp. 154–166. Springer, Heidelberg (2006)

Parameterized Complexity and Approximability

of the SLCS Problem

S. Guillemot

LIFL/CNRS/INRIA, Bât. M3 Cité Scientifique, 59655,
Villeneuve d’Ascq cedex, France
Sylvain.Guillemot@lifl.fr

Abstract. We introduce the Longest Compatible Sequence (Slcs)
problem. This problem deals with p-sequences, which are strings on a
given alphabet where each letter occurs at most once. The Slcs problem
takes as input a collection of k p-sequences on a common alphabet L
of size n, and seeks a p-sequence on L which respects the precedence
constraints induced by each input sequence, and is of maximal length
with this property. We investigate the parameterized complexity and the
approximability of the problem. As a by-product of our hardness results
for Slcs, we derive new hardness results for the Longest Common
Subsequence problem and other problems hard for the W-hierarchy.

1 Introduction

The comparison of several sequences is an important task in several fields such
as computational biology, pattern recognition, scheduling, data compression and
data mining. Starting with [17], the computational complexity of several con-
sensus problems on sequences has been investigated. As it was later realized,
a natural framework to conduct these studies is the theory of parameterized
complexity [7,19,13].

In this article, we initiate the study of a new consensus problem on collections
of sequences, motivated by applications to the comparison of gene orders, and
applications to the rank aggregation problem. The problem we introduce is called
Longest Compatible Sequence, and is abbreviated by Slcs. This problem
deals with p-sequences [12]: we call p-sequence on an alphabet L a string over
L where each letter occurs at most once. Given a collection C = {s1, ..., sk}
of p-sequences on a common alphabet L of size n, the Longest Compatible
Sequence problem seeks a longest compatible sequence for C, which is a p-
sequence s on L respecting the precedence constraints induced by each input
sequence. We also consider the complementary minimization problem, denoted
by CSlcs, where the goal is to minimize the number of labels missing from
a compatible sequence. In addition of studying the approximability of these
optimization problems, we also investigate the parameterized complexity of their
natural parameterizations. The corresponding parameters are denoted by q for
Slcs, and by p for CSlcs.

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 115–128, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

116 S. Guillemot

We now discuss two potential applications of the problem. The first application
is the comparison of gene orders. Identifying conservation among gene orders for
several organisms is an important issue in bioinformatics, since it helps for gene
prediction and can also be used in phylogenetic reconstruction as an alternative
to DNA sequence analysis (see [18] for a survey). Given a set of k organisms S for
which we have identified a set of n homologous genes G, each organism can be de-
scribed by its gene order, which is a p-sequence on G. Therefore, seeking a largest
gene order which is conserved among all organisms under study amounts to seek a
largest compatible sequence for the collection C = {s1, ..., sk} on the alphabet G.
The second application is the aggregation of incomplete rankings. This is a variant
of the well-studied problem of rank aggregation, which consists in merging k com-
plete rankings of a same set of n elements in a single ranking (see [16] for a survey).
Rank aggregation is useful in several situations, such as combining answers from
search engines [8,9] or searching similarities in databases [11]. This framework can
be extended to handle incomplete rankings, which are rankings defined only on a
subset of the elements. Here, the Slcs problem can be used to find a largest subset
of the elements on which all the rankings agree.

Our results are as follows. On the positive side, we give polynomial, approx-
imation, and FPT algorithms in Section 3. Among other results, we show that
Slcs can be solved in O(knk) time, and we give a k-approximation algorithm
and a O∗(kp) FPT algorithm for the CSlcs problem. On the negative side,
we describe parameterized intractability results in Section 4. We show W[1]-
completeness of Slcs parameterized in (q, k), and we show WNL-completeness
of Slcs parameterized in k. The latter result relies on the definition of a new
parameterized complexity class WNL, and turns out to have important conse-
quences for the parameterized complexity of other problems. Namely, we show
in Section 5 that this result implies WNL-hardness results for the Lcs problem
parameterized in the number of sequences, and for other problems previously
classified as ”hard for the W-hierarchy” [3,4,1,2]. Thus, the thesis of [3], which
proposes to consider hardness for the W-hierarchy as a new intractability mea-
sure, can be recast with the more natural notion of WNL-hardness.

2 Definitions

We begin with definitions related to sequences. After [12], we call p-sequence (or
simply sequence) on L a string s on L where each letter occurs at most once.
The letters are called labels, and the set of letters appearing in s is called the
label set of s, and is denoted by L(s). The ith letter of s is denoted by s[i], and
the length of s is denoted by |s|. Given two elements x, y ∈ L(s), x <s y means
that x precedes y in s. Given x ∈ L(s), we denote by preds(x), resp. succs(x),
the predecessor, resp. successor, of x in s, or ⊥ if no such label exists. Given a set
L′ ⊆ L, the restriction of s to L′, denoted by s|L′, is the subsequence obtained
from s by keeping labels in L′. Two sequences s, s′ agree iff s|L(s′) = s′|L(s).
Equivalently, they must verify: for each x, y ∈ L(s) ∩ L(s′), x <s y iff x <s′ y.

We now give definitions related to collections and compatible sequences. Given
a set L of n elements, a collection on L is a family C = {s1, ..., sk} of sequences

Parameterized Complexity and Approximability of the SLCS Problem 117

on L; in the following, we will assume that each label of L appears in at least
one sequence, i.e. L = ∪i∈[k]L(si). Given a set L′ ⊆ L, the restriction of C to
L′ is the collection C|L′ on L′ defined by: C|L′ = {s1|L′, ..., sk|L′}. A compatible
sequence for C is a sequence s s.t. L(s) ⊆ L and for each i ∈ [k] the sequences
s, si agree. Equivalently, s must verify: for each x, y ∈ L(s), for each i ∈ [k],
if x <s y and x, y ∈ L(si) then x <si y. A total compatible sequence for C is
a compatible sequence for C with label set L. C is said to be compatible iff it
admits a total compatible sequence. A conflict in C is a set L′ ⊆ L s.t. C|L′ is
not compatible.

We now introduce definitions related to the Slcs problem. The Slcs problem
asks: given a collection C on L, find a maximum cardinality subset L′ ⊆ L s.t.
C|L′ is compatible; observe that this is equivalent to seeking a longest compatible
sequence for C. We denote by Slcs(C) the size of such an optimal solution. The
complementary CSlcs problem asks: given a collection C on L, find a minimum
cardinality subset L′ ⊆ L s.t. C|(L\L′) is compatible. To simplify notations, we
also view these optimization problems as decision problems, i.e. we also denote by
Slcs the decision problem which takes a collection C and an integer q, and asks if
Slcs(C) ≥ q; similarly for CSlcs with the parameter p, asking if CSlcs(C) ≤ p.
We use a bracket notation to denote parameterizations of the problem, e.g.
Slcs[q, k] stands for Slcs parameterized by the pair of parameters (q, k).

The following definitions will be useful in Section 3. Consider a collection
C = {s1, ..., sk} on L. For each i, we define L�(si) = L(si) ∪ {	}, and we
extend <si to L�(si) s.t. x <si 	 for each x ∈ L(si). A position in C is a tuple
π = (x1, ..., xk), where xi ∈ L�(si). The initial position is π⊥ = (s1[1], ..., sk[1]).
The final position is π� = (, ...,). The index set of a position π is I(π) = {i ∈
[k] : π[i]
= 	}. The label set of π is S(π) = {π[i] : i ∈ I(π)}. Given a position
π in C and a label x ∈ L, we say that x is allowed at π iff for each i ∈ [k] s.t.
x ∈ L(si), we have: π[i] ≤si x. We denote by L(π) the set of labels allowed at π.
We define an order relation ≤C on positions in C as follows: given π, π′ positions
in C, π ≤C π′ iff π[i] ≤si π′[i] for each i ∈ [k]. We also define two notions of
successor positions. Let π be a position in C. Given i ∈ I(π), we define succi(π)
as the position π′ s.t. (i) π′[i] = succsi(π[i]), (ii) π′[j] = π[j] for each j
= i.
Given a ∈ S(π), we define succa(π) as the position π′ s.t. (i) π′[i] = succsi(π[i])
if π[i] = a, (ii) π′[i] = π[i] otherwise.

3 Algorithmic Results for Slcs

We present polynomial-time and approximation algorithms for the Slcs prob-
lem (Section 3.1), then we describe FPT and approximation algorithms for the
complementary CSlcs problem (Section 3.2).

3.1 Algorithms for Slcs

We first describe a polynomial-time solvable case. Given a collection C =
{s1, ..., sk} on L, say that C is complete iff each label of L occurs in every sequence;

118 S. Guillemot

say that C is precomplete iff each label of L occurs either in one sequence or in every
sequence. We show that Slcs is efficiently solvable for such collections.

Proposition 1. Slcs can be solved in O(kn2) time if the input is a complete
(or precomplete) collection.

Proof. If C = {s1, ..., sk} is a complete collection on L, consider the acyclic
digraph G with vertex set L, and which contains an arc (x, y) whenever x <si y
for each i ∈ [k]. Then Slcs(C) can be computed in O(kn2) time as the size of
a longest directed path of G. If C is a precomplete collection on L, let L′ be
the set of labels which occur in every sequence, and let L′′ be the other labels.
We have Slcs(C) = |L′′| + Slcs(C|L′): indeed, if s is a compatible sequence
for C|L′, then for each i ∈ [k] we can insert in s the labels of L′′ ∩ L(si), by
respecting their relative order in si, as well as their order w.r.t. those elements
of L′ which appear in s and si; we then obtain a compatible sequence for C of
length |s|+ |L′′|. Since C|L′ is complete, Slcs(C|L′) can be computed in O(kn2)
time, hence Slcs(C) can be computed in similar time bounds. ��
The previous result yields an approximation algorithm for the general Slcs
problem:

Proposition 2. Slcs can be 2k-approximated in O(kn2) time.

Proof. We use approximation via partitioning [14]. Let C = {s1, ..., sk} be a
collection on L. For each X ⊆ [k] we define LX as the set of labels x ∈ L which
occurs exactly in the sequences si for each i ∈ X . Clearly, the sets LX (X ⊆ [k])
form a partition of L. We define nX = |LX | and CX = C|LX . Then CX is a
complete collection, and by Proposition 1 we can solve Slcs on the instance CX
in O(|X |n2

X) time. Consider the algorithm which computes a longest compatible
sequence of CX for each X ⊆ [k], and returns the longest of these sequences.
This algorithm has running time

∑
X⊆[k] O(|X |n2

X) = O(kn2), and is easily seen
to be a 2k-approximation algorithm for Slcs. ��
Finally, we show that Slcs can be solved in polynomial time for fixed k, using
dynamic programming:

Proposition 3. Slcs can be solved in O(knk) time and O(nk) space.

Proof. Given π position in C, let Slcs(π) denote the size of a longest compatible
sequence of C|L(π). We denote by F (π) the set of full elements of S(π), i.e. the
elements a ∈ S(π) s.t. for each i ∈ [k], a ∈ L(si)⇒ a = π[i]. Given two positions
π, π′ and a ∈ L(C), π →a π′ holds if a ∈ F (π) and π′ ≥C succa(π). A π-chain
is a chain π1 →a1 π2 →a2 ... →am πm+1, with π1 ≥C π and πm+1 = π�. The
length of the chain is m. It can be shown that: Claim. Slcs(π) is the length of
a longest π-chain.

The above claim yields a dynamic-programming algorithm for solving Slcs
in O(knk) time. The algorithm computes, for each position π, the size Slcs(π)
of a longest π-chain, using the following recurrence relations:

Parameterized Complexity and Approximability of the SLCS Problem 119

– if π = π�, Slcs(π) = 0;
– if π
= π�, Slcs(π) = max(Slcs1(π), 1 + Slcs2(π)), where:

Slcs1(π) = max{Slcs(succi(π)) : i ∈ I(π)}
Slcs2(π) = max{Slcs(succx(π)) : x ∈ F (π)}

At the end of the algorithm, Slcs(C) is obtained as Slcs(π⊥). Since there are
O(nk) positions π, and since each value Slcs(π) can be computed in O(k) time
from the values Slcs(π′) (π′ >C π), the algorithm runs in the claimed time and
space bounds. ��

3.2 Algorithms for CSlcs

We first describe a simple characterization of compatible collections. Given a
collection C = {s1, ..., sk} on L, we define the digraph G(C) as follows: (i) its
vertex set is L, (ii) it contains an arc (x, y) whenever there exists i ∈ [k] s.t.
x, y ∈ L(si) and x <si y. The following proposition characterizes compatible
collections, and relates the Slcs and CSlcs problems to problems on digraphs.

Proposition 4. (i) C is compatible iff G(C) is acyclic; (ii) Slcs(C) is the size
of a maximum acyclic subgraph of G(C), and CSlcs(C) is the size of a minimum
directed feedback vertex set of G(C).
We thus have a reduction from the CSlcs problem to the Directed Feedback
Vertex Set (Dfvs) problem. Known FPT and approximation algorithms for
Dfvs [21,10,6] yield the following results for CSlcs:

Proposition 5. (i) CSlcs can be solved in O(2O(p log p)kn4) time; (ii) CSlcs
can be O(log n log log n)-approximated in polynomial time.

We now describe faster FPT and approximation algorithms for the problem
when k is bounded. Though the problem is solvable in O(knk) time in this case,
in practical applications it may be preferable to have algorithms with running
time linear in n. This is the case for the algorithms we present (Proposition 7).
They rely on the following result:

Proposition 6. Given a collection C, in O(kn) time we can decide if C is com-
patible, return a total compatible sequence in case of positive answer, or return
a conflict of size at most k in case of negative answer.

Proof. Before describing the algorithm, let us introduce the following notations.
Suppose that C = {s1, ..., sk} is a collection on L. Given π position in C, and
x ∈ L, let nπ(x) denote the number of indices i ∈ [k] s.t. (x ∈ L(si) and
π[i] <si x).

The algorithm maintains a position π in C, and for each x ∈ L a counter nx

equal to nπ(x). Additionally, it maintains a sequence s, which is the prefix of an
hypothetical compatible sequence for C. We start with s = ε, π = π⊥ and each
nx initialized to the number of i ∈ [k] s.t. x is a non-initial label of si. While

120 S. Guillemot

π
= π�, we seek x ∈ S(π) s.t. nx = 0. If no such x exists, then the algorithm
answers ”no” and returns S(π). Otherwise, we choose such an x, and: (i) for each
i ∈ [k] s.t. π[i] = x, let y be the successor of x in si (if it exists), we decrement
ny, (ii) we set π ← succx(π), (iii) we set s ← sx. When π = π� is reached, the
algorithm answers ”yes” and returns s.

The correctness of the algorithm follows from the fact that: (i) if it answers
negatively by returning S(π), then S(π) is a conflict of size ≤ k between C, (ii) if
it answers positively by returning s, then s is a total compatible sequence for C.
The running time is easily seen to be O(kn), since the initialization takes O(kn)
time, and since in each step finding an x ∈ S(π) s.t. nx = 0 and updating s, π
and the counters takes O(k) time. ��
As a consequence of Proposition 6, we obtain:

Proposition 7. (i) CSlcs can be solved in O(kp × kn) time; (ii) CSlcs can
be k-approximated in O(kn) time.

4 Hardness Results for Slcs

We present two parameterized intractability results for the Slcs problem. The
problem is shown W[1]-complete w.r.t. the parameters q, k (Section 4.2) and
WNL-complete w.r.t. the parameter k (Section 4.3).

4.1 The Clases W[1] and WNL

Let us consider the following problem:

Name: Nondeterministic Turing Machine Computation (NTMC)
Instance: a nondeterministic Turing machine M , integers q, k
Question: does M accept the empty string in q steps by examining at most k
cells?

Given two parameterized problems Π, Π ′, we recall that a parameterized re-
duction (or fpt-reduction) from Π to Π ′ is an algorithm which maps each in-
stance I = (x, k) of Π to an instance I ′ = (x′, k′) of Π ′, s.t. (i) the algorithm
runs in f(k)|x|c time for some function f and some constant c; (ii) there exists
a function g s.t. k′ ≤ g(k); (iii) I is a positive instance of Π iff I ′ is a positive
instance of Π ′. Given a parameterized problem Π , we denote by [Π]fpt the set
of problems Π ′ fpt-reducible to Π . We then define the classes W[1] and WNL as
follows.

Definition 1. W[1] = [NTMC[q]]fpt, WNL = [NTMC[k]]fpt.

Our definition of W[1] is consistent with the results of [5], and shows the parallel
between the classes W[1] and WNL, corresponding respectively to time-bounded
and space-bounded computations of a nondeterministic Turing machine.

Parameterized Complexity and Approximability of the SLCS Problem 121

4.2 Complexity w.r.t. q, k

We need the following notations. If s = a1...am is a sequence, its mirror image is
s̃ = am...a1. If (V, <V) is a total order and {sx : x ∈ V } is a family of sequences
with disjoint label sets, we denote by

∏
x∈(V,<V) their concatenation in the order

<V . If V is the interval of integers [p, q] and <V is the natural order on N, then∏
x∈(V,<V) sx is abbreviated as

∏q
i=p si.

Proposition 8. Slcs[q, k] is W[1]-complete.

Proof. Membership in W[1] can be shown by reduction to NTMC[q]. W[1]-
hardness is proved by a parameterized reduction from Partitioned Clique
[20]. Let I = (G, k) be an instance of Partitioned Clique, where G = (V, E)
is a k-partite graph with partition V1, ..., Vk. For i, j ∈ [k] (i < j), let Ei,j denote
the set of edges of G having one endpoint in Vi and one in Vj .

The corresponding instance I ′ = (C, k′, q′) of Slcs[q, k] is defined as follows.
We set k′ = 2k + 2, q′ = 2k + k(k − 1)/2. We define the following collection C:

– Label set: we introduce labels a[v], b[v] for each v ∈ V , and a label c[e] for
each e ∈ E.

– Sequences: we create two sequences s, s′ and 2k sequences t1, t
′
1, ..., tk, t′k. We

want to enforce that:

1. a compatible sequence of length q′ has the form

s =

(
k∏

i=1

a[vi]

) ⎛

⎝
k∏

i=1

k∏

j=i+1

c[ei,j]

⎞

⎠
(

k∏

i=1

b[v′i]

)

with vi, v
′
i ∈ Vi (for each i ∈ [k]), ei,j ∈ Ei,j (for each i, j ∈ [k], i < j);

2. in addition, we have vi = v′i for each i ∈ [k], and ei,j = {vi, vj} for each
i, j ∈ [k], i < j.

The sequences s, s′ will be control sequences, whose role is to enforce point 1.
The sequences ti, t

′
i will be selection sequences, whose role is to enforce

point 2.
These sequences are defined as follows. Let <V be an arbitrary total

order on V , and let <E be an arbitrary total order on E. We first define the
following sequences:

∀i ∈ [k], A[i] =
∏

v∈(Vi,<V)

a[v], B[i] =
∏

v∈(Vi,<V)

b[v],

∀i, j ∈ [k](i < j), C[i, j] =
∏

e∈(Ei,j ,<E)

c[e]

122 S. Guillemot

We then define s, s′ as follows:

s =

(
k∏

i=1

A[i]

) ⎛

⎝
k∏

i=1

k∏

j=i+1

C[i, j]

⎞

⎠
(

k∏

i=1

B[i]

)

s′ =

(
k∏

i=1

Ã[i]

) ⎛

⎝
k∏

i=1

k∏

j=i+1

C̃[i, j]

⎞

⎠

(
k∏

i=1

B̃[i]

)

Suppose that i, j ∈ [k], i < j. Given v ∈ Vi ∪ Vj , let Ei,j(v) denote the set of
edges of Ei,j incident to v. Now, for each i ∈ [k], we define ti, t

′
i as follows:

ti =
∏

v∈(Vi,<V)

a[v]

⎛

⎝
k∏

j=i+1

∏

e∈(Ei,j(v),<E)

c[e]

⎞

⎠ b[v]

t′i =
∏

v∈(Vi,>V)

a[v]

⎛

⎝
i−1∏

j=1

∏

e∈(Ei,j(v),<E)

c[e]

⎞

⎠ b[v]

The reduction is clearly computable in polynomial time, and its correctness is
ensured by the fact that: G has a partitioned clique iff C has a compatible
sequence of length q′. ��

4.3 Complexity w.r.t. k

While NTMC[k] is the canonical WNL-complete problem, we introduce other
complete problems for the purpose of this section. In the following, by a q × k-
grid we mean a directed grid with q lines and k columns, i.e. a digraph G =
(V, A) with vertex set V = {vi,j : 1 ≤ i ≤ q, 1 ≤ j ≤ k} and with arc set
A = {(vi,j , vi+1,j) : 1 ≤ i < q, 1 ≤ j ≤ k} ∪ {(vi,j , vi,j+1) : 1 ≤ i ≤ q, 1 ≤ j < k}.
For i ∈ {1, 2}, we define the following problems.

Name: Grid Labelling-i (GL-i)
Instance: a q × k-grid G = (V, A), a set S, a partition {Sv : v ∈ V } of S, for
each a = (u, v) ∈ A a function fa : Su ∪ Sv → N

∗.
Question: does there exist an i-admissible labelling of G?

A labelling of G is an assignment of a value lv ∈ Sv to each v ∈ V . The la-
belling is 1-admissible iff for each a = (u, v) ∈ A, fa(lu) = fa(lv). The labelling
is 2-admissible iff for each a = (u, v) ∈ A, fa(lu) ≤ fa(lv).

Proposition 9. (i) GL-1[k] is WNL-complete; (ii) GL-2[k] is WNL-complete.

Proof. Membership in WNL of these two problems can be shown by reduction to
NTMC[k]. The WNL-hardness proof for GL-1[k] involves a sequence of reduc-
tions, and is deferred to the full version of the paper. WNL-hardness of GL-2[k]

Parameterized Complexity and Approximability of the SLCS Problem 123

u1

Gu Gv

a'

a''

v1 v2

v3 v4

a1

a2 a3

a4

v

(A) (B)

u2

vau

u4 u3

v1 v2

v4 v3

Fig. 1. Figure (A): the gadget Gv associated to a vertex v of G. Figure (B): intercon-
necting two gadgets Gu, Gv corresponding to an horizontal arc a = (u, v).

is shown by reduction from GL-1[k]. Given an instance I of GL-1[k] involving a
q×k-grid G, we construct an instance I ′ of GL−2[k] involving a 2q×2k-grid G′.

For each vertex v of G, we introduce the gadget Gv depicted in Figure 1
(A). It consists of four vertices v1, v2, v3, v4 and four arcs a1 = (v1, v2), a2 =
(v1, v3), a3 = (v2, v4), a4 = (v3, v4). Given the set Sv associated to v in I, we
associate to v1, v2, v3, v4 disjoint copies S1, ..., S4 of these sets, where Si = {xi :
x ∈ Sv}. Let s = |Sv|, and let φ be a bijection of Sv into [s]. For odd i, we set
fai(xj) = φ(x); for even i we set fai(xj) = s + 1− φ(x). It can be checked that
in a 2-admissible labelling of Gv, the four vertices must be labelled by the four
copies of a same element.

We map each vertex v to a gadget Gv, and we interconnect these gadgets by
arcs to form a grid G′. For each horizontal arc a = (u, v) of G, we create two
horizontal arcs a′ = (u2, v1) and a′′ = (u3, v4), as depicted in Figure 1 (B). If
the image of fa is [na], we set fa′(xj) = fa(x) and fa′′(xj) = na + 1− fa(x). We
proceed similarly for the vertical arcs. Then G′ is a 2q × 2k-grid, and it can be
checked that G has a 1-admissible labelling iff G′ has a 2-admissible labelling.

��
Proposition 10. Slcs[k] is WNL-complete.

Proof. Membership in WNL follows from the claim given in the proof of Proposi-
tion 3. This claim yields a reduction to NTMC[k]: given an instance I = (C, q, k)
of Slcs[k], we construct a nondeterministic Turing machine M which proceeds
as follows. The first k cells of the tape store a position π in C. The machine starts
by nondeterministically choosing a position π. At each round, the machine seeks
a ∈ F (π), nondeterministically chooses a position π′, checks that π →a π′, and
overwrites π by π′. Then: Slcs(C) ≥ q iff M accepts using time q′ = O(kq) and
space ≤ 2k.

WNL-hardness is shown by a parameterized reduction from GL-2[k]. Let I
be an instance of GL-2[k], consisting of a q × k-grid G = (V, A), of a set S,
of a partition {Sv : v ∈ V } of S, and for each a = (u, v) ∈ A of a function
fa : Su ∪ Sv → N

∗. For each a ∈ A, suppose that the image of fa is [na]. For
each i ∈ [q], j ∈ [k], let vi,j be the vertex of G in line i, column j. For each
1 ≤ i ≤ q, 1 ≤ j ≤ k− 1, let ai,j denote the horizontal arc (vi,j , vi,j+1). For each
1 ≤ i ≤ q − 1, 1 ≤ j ≤ k, let a′

i,j denote the vertical arc (vi,j , vi+1,j).

124 S. Guillemot

We construct an instance I ′ = (C, q′, k′) of Slcs[k] in the following way. We
set q′ = 3kq − k − q and k′ = 2k + 4. We define C as follows.

– Label set: we introduce labels a[v, x] for each v ∈ V, x ∈ Sv, and b[a, i] for
each a ∈ A, i ∈ [na].

– Sequences: we define two sequences s, s′, two sequences t, t′, and 2k sequences
u1, u

′
1, ..., uk, u′

k. Let <S be a total order on S. We first define the following
sequences.

∀v ∈ V, A[v] =
∏

x∈(Sv,<S)

a[v, x], ∀a ∈ A, B[a] =
na∏

i=1

b[a, i]

∀a = (u, v) ∈ A, i ∈ [na], C[a, i] =
∏

x∈Su:fa(x)=i

a[u, x], C′[a, i] =
∏

x∈Sv:fa(x)=i

a[v, x]

The sequences of C are defined below.

• The sequences s, s′ are control sequences; they constrain the shape of a
compatible sequence for C.

si =

⎛

⎝
k−1∏

j=1

A[vi,j]B[ai,j]

⎞

⎠ A[vi,k], s′i =

⎛

⎝
k−1∏

j=1

Ã[vi,j]B̃[ai,j]

⎞

⎠ Ã[vi,k]

s =

⎛

⎝
q−1∏

i=1

si

⎛

⎝
k∏

j=1

B[a′
i,j]

⎞

⎠

⎞

⎠ sq, s
′ =

⎛

⎝
q−1∏

i=1

s′i

⎛

⎝
k∏

j=1

B̃[a′
i,j]

⎞

⎠

⎞

⎠ s′q

• The sequences t, t′ are selection sequences; they ensure that the con-
straints corresponding to the horizontal arcs ai,j are satisfied.

t =
q∏

i=1

k−1∏

j=1

nai,j∏

p=1

C[ai,j , p]b[ai,j , p], t′ =
q∏

i=1

k−1∏

j=1

nai,j∏

p=1

b[ai,j , p]C′[ai,j , p]

• For each j ∈ [k], the sequences uj, u
′
j are selection sequences; they ensure

that the constraints corresponding to the vertical arcs a′
i,j are satisfied.

uj =
q−1∏

i=1

na′
i,j∏

p=1

C[a′
i,j , p]b[a′

i,j , p], u′
j =

q−1∏

i=1

na′
i,j∏

p=1

b[a′
i,j , p]C′[a′

i,j , p]

The reduction is computable in polynomial time, and its correctness follows by
proving that G has a 2-admissible labelling iff C has a compatible sequence of
length q′. ��

Parameterized Complexity and Approximability of the SLCS Problem 125

5 Consequences for Problems of Bounded Width

As a by-product of our hardness results for Slcs, we obtain new hardness results
for problems of ”bounded width”: the Lcs problem (Section 5.1), and other
problems previously known to be ”hard for the W-hierarchy” (Section 5.2).

5.1 Consequences for Lcs

In this section, a sequence is a string allowing repetitions of letters, and we ex-
plicitly use the term p-sequence when considering strings with no repeated letter.
We recall the definition of the Longest Common Subsequence problem.

Name: Longest Common Subsequence (Lcs)
Instance: a collection of k sequences C = {s1, ..., sk} on an alphabet Σ of size
m, and an integer q
Question:, do the sequences admit a common subsequence of length ≥ q?

There is a straightforward reduction from Slcs to Lcs, which relies on a
padding argument (inserting extra symbols at the beginning, at the end, and
between each two consecutive labels of each input sequence).

Lemma 1. There is a polynomial-time parameter-preserving reduction from
Slcs[q, k] to Lcs[q, k].

Lemma 1, together with Propositions 8 and 10, implies the following for Lcs:

Proposition 11. (i) Lcs[q, k] is W[1]-complete; (ii) Lcs[k] is WNL-complete;
(iii) Lcs[k, m] is WNL-complete.

Proof. For Point (i), the hardness result follows from Proposition 8 and Lemma 1,
and the membership result is shown in [2]. ForPoint (ii), the hardness result follows
from Proposition 10 and Lemma 1. The membership result is shown by a parame-
terized reduction to NTMC[k]. Let I = (C, q, k) be an instance of Lcs[k] with C =
{s1, ..., sk}. We construct a nondeterministic Turing machine M whose first k cells
of the tape store a tuple (p1, ..., pk) with pi an integer between 0 and |si|. The ma-
chine starts with the tuple (0, ..., 0) on its tape. At each round i ≤ q, if the tuple on
the tape is t = (p1, ..., pk), the machine nondeterministically overwrites t by a tu-
ple t′ = (p′1, ..., p

′
k) s.t. p′j > pj for each j ∈ [k], and s1[p′1] = ... = sk[p′k]. If no such

tuple t′ exists, the machine rejects. Then M accepts the empty string in q′ = O(kq)
steps using space≤ 2k iff the sequences si have a common subsequence of length q.

For Point (iii), hardness follows from a parameterized reduction from Lcs[k] to
Lcs[k, m] described in [1], and membership follows from Point (ii). ��
Proposition 11 improves known hardness results in several ways. First, it gives
an alternative proof for the W[1]-hardness of Lcs[q, k], simpler than the original
proof of [2]. Second, it classifies precisely the complexity of Lcs[k]. The problem
was only known to be W[t]-hard for each t ≥ 1 [2], while we obtain a stronger
WNL-completeness result.

126 S. Guillemot

5.2 Consequences for Other Problems

In [3,4], the W[t]-hardness result for Lcs[k] shown in [2] was transferred to other
problems by parameterized reductions. Hence, our stronger WNL-hardness result
for Lcs[k] also holds for these problems.

Proposition 12. The problems Colored Cutwidth, Feasible Register
Assignment, Domino Treewidth, Triangulating Colored Graphs are
WNL-hard.

We now consider a problem on automata introduced in [22].

Name: Bounded Dfa Intersection (Bdfa)
Instance: a family of k dfa A = {A1, ..., Ak} on an alphabet Σ, an integer q
Question: does there exist a word in Σq that is accepted by every Ai?

The Bdfa2 problem is the restriction of Bdfa to instances with |Σ| = 2.

Proposition 13. (i) Bdfa[k] is WNL-complete; (ii) Bdfa2[k] is WNL-complete.

Proof. Let us show Point (i). To show WNL-hardness, we reduce from Lcs[k].
Given an instance I = (C, q, k) of Lcs[k], we create an instance I ′ = (A, q, k)
of Bdfa[k], where A = {A1, ..., Ak} is such that for each i, Ai is a dfa recog-
nizing the set of subwords of si. To show membership in WNL, we reduce to
NTMC[k]. Let I = (A, q, k) be an instance of Bdfa[k] with A = {A1, ..., Ak},
Ai = (Qi, Σ, δi, q

0
i , Fi). We construct a nondeterministic Turing machine M

whose first k cells of the tape represents a tuple t = (q1, ..., qk), with qi ∈ Qi. The
machine starts with the tuple t = (q0

1 , ..., q0
k) on its tape. At each round i ≤ q, if

the tuple on the tape is t = (q1, ..., qk), the machine nondeterministically chooses
a letter a ∈ Σ, and overwrites t by the new tuple t′ = (δ1(q1, a), ..., δk(qk, a)).
At the end of round q, the machine accepts iff the tuple written on the tape has
the form t = (q1, ..., qk) with qi ∈ Fi for each i.

Point (ii) is easy to see: membership in WNL follows from Point (i), and WNL-
hardness follows by a simple reduction from Bdfa[k] described in [22]. ��

6 Concluding Remarks

Let us mention two directions for further research. The first direction would
consist in improving complexity results for Slcs and CSlcs.

1. What is the exact approximability threshold, as a function of k, for each
problem? It is conjectured to be 2Ω(k) for Slcs, but may be Ω(log k) for CSlcs.

2. Is the problem solvable in pO(k)nc time? An algorithm with this running
time would be preferable to the algorithm of Proposition 7, for small k.

Another direction for further work would be to settle the precise parame-
terized complexity of problems similar to Lcs. Example of such problems are
the Shortest Common Supersequence problem, and the Lcs problem on
bounded alphabets, parameterized by the number of sequences. These problems

Parameterized Complexity and Approximability of the SLCS Problem 127

are currently known to be W[t]-hard for each t ≥ 1 [15] and W[1]-hard [20],
respectively.

Acknowledgements

We are grateful to Vincent Berry and Eric Rivals for their careful proof-reading.

References

1. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hallett, M.T., Wareham, H.T.:
Parameterized complexity analysis in computational biology. Computer Applica-
tions in the Biosciences 11(1), 49–57 (1995)

2. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Wareham, H.T.: The parame-
terized complexity of sequence alignment and consensus. Theoretical Computer
Science 147(1–2), 31–54 (1994)

3. Bodlaender, H.L., Fellows, M.R., Hallett, M.T.: Beyond NP-completeness for prob-
lems of bounded width: Hardness for the W hierarchy (extended abstract). In: Proc.
STOC 1994, pp. 449–458. ACM, New York (1994)

4. Bodlaender, H.L., Fellows, M.R., Hallett, M.T.: The hardness of perfect phylogeny,
feasible register assignment and other problems on thin colored graphs. Theoretical
Computer Science 244(1), 167–188 (2000)

5. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: On the parameterized complexity
of short computation and factorization. Archive for Mathematical Logic 36(4–5),
321–337 (1997)

6. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A Fixed-Parameter Algorithm
for the Directed Feedback Vertex Set Problem. In: Proc. STOC 2008 (to appear,
2008)

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

8. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank Aggregation Methods for
the Web. In: WWW10 (2001)

9. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation revisited (2001)
10. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback

sets and multicuts in directed graphs. Algorithmica 20, 151–174 (1998)
11. Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification

via rank aggregation. In: Proc. ACM SIGMOD 2003, pp. 301–312 (2003)
12. Fellows, M.R., Hallett, M.T., Stege, U.: Analogs & duals of the MAST problem for

sequences & trees. Journal of Algorithms 49(1), 192–216 (2003)
13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg

(2006)
14. Halldórsson, M.M.: Approximation via Partitioning. Technical Report IS-RR-95-

0003F, School of Information Science, Japan Advanced Institute of Science and
Technology, Hokuriku (1995)

15. Hallett, M.T.: An integrated complexity analysis of problems from computational
biology. PhD thesis, Department of Computer Science, University of Victoria, Vic-
toria, B.C., Canada (1996)

16. Hodge, J., Klima, R.E.: The Mathematics of Voting and Elections: A Hands-On
Approach. In: Mathematical World, vol. 22. AMS (2000)

128 S. Guillemot

17. Maier, D.: The complexity of some problems on subsequences and supersequences.
J. ACM 25(2), 322–336 (1978)

18. Moret, B.M.E., Tang, J., Warnow, T.: Reconstructing phylogenies from gene-
content and gene-order data. In: Gascuel, O. (ed.) Mathematics of phylogeny and
evolution. Oxford University Press, Oxford (2004)

19. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

20. Pietrzak, K.: On the Parameterized Complexity of the fixed alphabet Shortest
Common Supersequence and Longest Common Subsequence Problems. Journal of
Computer and System Sciences 67(4), 757–771 (2003)

21. Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15, 281–288
(1995)

22. Wareham, H.T.: The parameterized complexity of intersection and composition
operations on sets of finite-state automata. In: Yu, S., Păun, A. (eds.) CIAA 2000.
LNCS, vol. 2088, pp. 302–310. Springer, Heidelberg (2001)

FPT Algorithms for Path-Transversals and

Cycle-Transversals Problems in Graphs

S. Guillemot

LIFL/CNRS/INRIA, Bât. M3 Cité Scientifique, 59655, Villeneuve d’Ascq cedex, France
Sylvain.Guillemot@lifl.fr

Abstract. In this article, we consider problems on graphs of the follow-
ing form: given a graph, remove p edges/vertices to achieve some prop-
erty. The first kind of problems are separation problems on undirected
graphs, where we aim at separating distinguished vertices in an graph.
The second kind of problems are feedback set problems on group-labelled
graphs, where we aim at breaking nonnull cycles in a group-labelled
graph. We obtain new FPT algorithms for these different problems. A
building stone for our algorithms is a general O∗(4p) algorithm for a class
of problems aiming at breaking a set of paths in a graph, provided that
the set of paths has a special property called homogeneity.

1 Introduction

It is well-known that the Node Multiway Cut problem has a half-integrality
property [5]. The proof of this result relies on a property that we generalize
under the name of homogeneity of a path system. We call path system a tuple
σ consisting of an undirected graph G = (V, E), of a set T ⊆ V of terminals, of
a set F ⊆ V of forbidden vertices, and of a set Pσ of paths between terminals.
The generic Path Cover problem aims at breaking each path P ∈ Pσ of a path
system σ by removing nonforbidden vertices.

We introduce the property of homogeneity of a path system, and show that
it has consequences not only for the approximability of the path-cover problem,
but also for its parameterized complexity [4,3]. Namely, we first show that for
a homogeneous path system, the Path Cover problem has a half-integrality
property, which implies that the problem is 2-approximable and generalizes the
result for Node Multiway Cut. We then devise a bounded-search algorithm
which solves the problem in O∗(4p) time, by relying on half-integral solutions of
the problem in order to guide the construction of a search tree.

As a first consequence of this general result, we obtain new algorithms for the
Multiway Cut and Multicut algorithms in their vertex-deletion and edge-
deletion versions. For the Multiway Cut problem, a O∗(4p3

) algorithm problem
was obtained by [8], then [1] presented an O∗(4p) algorithm, and we obtain
a different algorithm with the same O∗(4p) running time. For the Multicut
problem, where we aim at disconnecting k pairs of terminals by removing p
edges/vertices, [8] presented a O∗(2kppp4p3

) algorithm, while we obtain simple
FPT algorithms with running time O∗((8k)p).

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 129–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

130 S. Guillemot

As a second consequence of our general result, we obtain FPT algorithms
for feedback set problems on group-labelled graphs. Path covering and packing
problems on group-labelled graphs were for instance studied in [2], here we con-
sider the following cycle-covering problem: given a digraph G whose arcs are
labelled by a group Γ , break each nonnull cycle of G. These problems are called
Group Feedback Set, and we consider them in their vertex and edge version.
We show that both versions are solvable in O∗((4|Γ |+ 1)p) time. We also show
that the edge-deletion version of the problem is solvable in O∗((8p + 1)p) time,
independent of |Γ |. These results generalize the FPT algorithms for the Graph
Bipartization problem [9], which is a particular case of the Group Feedback
Set problem with Γ = Z2.

This article is organized as follows. Section 2 is devoted to our general re-
sult concerning homogeneous paths systems. Section 3 contains results for the
Multiway Cut and Multicut problems. Section 4 contains results for the
Group Feedback Set problems. Finally, in Section 5 we formulate some open
questions and possible generalizations of the results.

2 Homogeneous Path Systems

2.1 Preliminaries

Let G = (V, E) be an undirected graph. A path in G is a sequence of vertices
P = x1...xm s.t. xixi+1 ∈ E for each 1 ≤ i < m; we say that P is a path joining
x1 to xm. A cycle in G is a path C = x1x2...xm with x1, xm equal; we say that
C is a cycle at x1. Consider a path P = x1...xm. The vertices x1, ..., xm−1 are
the initial vertices of P . P is simple iff the vertices xi are distinct. The inverse
of P is the path P̃ = xm...x1. Given a weight function w on V , the length of P
is w(x1) + ... + w(xm), and the initial length of P is w(x1) + ... + w(xm−1).

A path system is a tuple σ = (G, T, F) which consists of: (i) an undirected
graph G = (V, E), (ii) a set T ⊆ V of terminals, (iii) a set F ⊆ V of forbidden
vertices, as well as a set Pσ of (not necessarily simple) paths in G joining elements
of T . A transversal of σ (or a solution for σ) is a set of vertices disjoint from F
and which meets each path of Pσ.

The generic problem Path Cover takes an instance I = (σ, p) consisting of
a path system σ, an integer p, and seeks a transversal of σ of size at most p. In
this section, we show that if σ has a special property called homogeneity, then
the Path Cover problem is solvable in O∗(4p) time (Theorem 1). This result
relies on a half-integrality property of an LP formulation of the problem.

We now define the property of homogeneity of a path system.

Definition 1. The path system σ = (G, T, F) is homogeneous iff the two fol-
lowing conditions hold:

1. for each path P ∈ Pσ, there exists a simple path P ′ ∈ Pσ included in P ;
2. for each path P ∈ Pσ joining u, v ∈ T , if P = P1xP2 then: for each path P ′

joining x to w ∈ T , one of P1P
′, P̃ ′P2 is in Pσ.

In the rest of the section, we consider an homogeneous path system σ = (G, T, F).

FPT Algorithms for Path-Transversals and Cycle-Transversals Problems 131

2.2 LP Formulation and Half-Integrality

We first describe the LP formulation of the problem. Clearly, the optimization
problem corresponding to Path Cover can be formulated as an integer linear
program. We consider the fractional relaxation of this program, denoted by Fσ,
as well as its dual LP, denoted by F ′

σ .

(Fσ)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize
∑

v∈V dv

subject to

∀P ∈ Pσ,
∑

v∈P dv ≥ 1

∀v ∈ V, dv ≥ 0, ∀v ∈ F, dv = 0

(F ′
σ)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

maximize
∑

P∈Pσ
fP

subject to

∀v ∈ V \F,
∑

P∈Pσ:v∈p fP ≤ 1

∀P ∈ Pσ, fP ≥ 0

By generalizing the results for Multiway Cut established in [5], we demon-
strate an half-integrality property of Fσ. Let d be an optimal solution of Fσ, and
let f be the corresponding optimal solution of F ′

σ. Consider the vertex-weighted
graph G′ obtained from G by weighting each v ∈ V by dv. Let M be the set of
v ∈ V s.t. dv > 0 and v is reachable from T by a path of initial length 0. Let
V1 = {v ∈M : dv = 1}, V1/2 = {v ∈M : 0 < dv < 1}, and V0 = V \(V1 ∪ V1/2).

Lemma 1. Let P ∈ Pσ s.t. fP > 0. Then P ∩M consists of: either an element
of V1, or two elements of V1/2.

Proof. Since fP > 0, dual complementary slackness implies that P has length 1.
Let u be the first vertex of P s.t. du > 0, and let v be the last vertex of P s.t.
dv > 0. Then u, v ∈ M . If u = v, since P has length one it follows that du = 1,
and P ∩M consists of an element of V1. Suppose now that u, v are distinct, then
they belong to V1/2. Suppose that there exists a third vertex w ∈ P ∩M . Then
P = P1wP2, where P1 contains u and P2 contains v. Since w ∈ M , there exists
a path P ′ of initial length 0 joining T to w. By Point 2 of Definition 1, one of
P1P

′, P̃ ′P2 is in Pσ. But these paths have length less than 1, contradicting the
assumption that d is a solution. ��
Let s be the solution of Fσ which assigns the value r to a vertex of Vr for
r ∈ {0, 1

2 , 1}.
Lemma 2. s is an optimal solution of Fσ.

Proof. Let us first show that s is a solution of Fσ. Consider P ∈ Pσ, then since
P has length ≥ 1 in G′, P contains at least one vertex of M . Then either P
contains a vertex of V1, or P contains two vertices of V1/2. In both cases, we
obtain that

∑
v∈P sv ≥ 1.

We now show that s is optimal by proving that f has the same cost as s. Let
P1 be the set of paths P s.t. fP > 0 and P ∩M consists of an element of V1,
and let P2 be the set of paths P s.t. fP > 0 and P ∩M consists of two elements
of V1/2. By primal complementary slackness and by the optimality of d, each
vertex of M is saturated. It follows that:

∑

P∈Pσ

fP =
∑

P∈P1

fP +
∑

P∈P2

fP = |V1|+ 1
2
|V1/2|

We conclude by observing that this is exacly the cost of s. ��

132 S. Guillemot

2.3 Some Technical Lemmas

The following lemma shows that an arbitrary optimal solution for σ can be
transformed into an optimal solution satisfying some additional properties. Let
U be the set of elements of V0 reachable from T by a path of length 0 in G′.

Lemma 3. There is an optimal solution for σ disjoint from U .

Proof. Let S be an optimal solution for σ. We define the set of bad vertices
B = S ∩U . Our goal is to construct a solution S′ from S by discarding the bad
vertices and replacing them by some vertices outside of U .

Let u ∈ V . Say that u is accessible iff it is reachable from T by a path of
initial length 0 going through an element of B. Say u is uniformly accessible if
each path of initial length 0 joining T to u goes through an element of B. We
define V ′

1 as the set of accessible elements of V1. We define V ′
1/2 as the set of

uniformly accessible elements of V1/2. We set V ′ = V ′
1 ∪ V ′

1/2.
Let S′ = S−B +V ′. We can show that S′ is an optimal solution for σ disjoint

from U . The proof of this result is technical, and is deferred to the full version
of the paper, due to length limitations. ��
Let us introduce the following notations: given a path system σ, we denote the
cost of an optimal solution of Fσ by opt∗σ, and we denote the cost of an optimal
solution for σ by optσ. By convention, these values are equal to ∞ when there
is no solution.

Let σ = (G, T, F) be a path system. A frontier vertex is a vertex u s.t. (i)
u /∈ F , (ii) u is reachable from T by a path whose initial vertices are in F .
Consider the new path system σ′ = (G, T, F ∪ {u}).

We first observe the following relations between solutions for σ and for σ′.

Lemma 4. 1. A solution for σ′ is also a solution for σ;
2. A solution for σ which does not contain u is also a solution for σ′;
3. A solution for Fσ′ is also a solution for Fσ.

The following Lemma shows that the instances σ and σ′ are equivalent whenever
their optimal fractional solutions have the same cost. Its proof relies crucially
on Lemma 3.

Lemma 5. If opt∗σ = opt∗σ′ then optσ = optσ′ .

Proof. By Point 1 of Lemma 4, we have optσ′ ≥ optσ. We now show that optσ′ ≤
optσ. Let s be an half-integral optimal solution of Fσ′ , and let V0, V1/2, V1 be
defined accordingly. By Point 3 of Lemma 4, s is a solution of Fσ. Moreover, it
is an optimal solution of Fσ since opt∗σ = opt∗σ′ .

Let G′ be the weighted graph obtained from G by assigning to each v ∈ V
the weight sv. Let U be the set of elements of V0 reachable from T by a path of
length 0 in G′. By Lemma 3, there exists S optimal solution for σ disjoint from
U . Since u is a frontier vertex, it is reachable from T by a path whose initial
vertices are in F (and thus have null weight in G′). Therefore, we have u ∈ U ,
hence u /∈ S. It follows that S is a solution for σ′ by Point 2 of Lemma 4. We
conclude that optσ′ ≤ |S| = optσ. ��

FPT Algorithms for Path-Transversals and Cycle-Transversals Problems 133

2.4 The Main Result

We now describe the algorithm for Path Cover, and justify its correctness and
running time in Theorem 1.

SolvePathCover(σ, p)

1: suppose that σ = (G, T, F)
2: x ← opt∗σ
3: if x ≤ p

2
then

4: return true
5: else if x > p then
6: return false
7: end if
8: choose u a frontier vertex
9: let σ′ = (G, T, F ∪ {u})

10: x′ ← opt∗σ′
11: if x′ = x then
12: return SolvePathCover(σ′, p)
13: else if x′ > x then
14: let σ′′ = (G\u, T, F)
15: return (SolvePathCover(σ′, p) or SolvePathCover(σ′′, p − 1))
16: end if

Theorem 1. The algorithm SolvePathCover solves the Path Cover prob-
lem in O∗(4p) time.

Proof. We first justify the correctness. The case where x ≤ p
2 or x > p is han-

dled correctly by the algorithm: indeed, we have opt∗σ ≤ optσ ≤ 2opt∗σ by half-
integrality; it follows that optσ ≤ p in the first case, and optσ > p in the second
case. Suppose now that p

2 < x ≤ p. Observe that there exists a frontier vertex:
otherwise, each path in Pσ would only contain nodes in F , and we would have
x = ∞. In Lines 11-12, the case x′ = x is handled correctly by the algorithm:
because of Lemma 5, the instances (σ, p) and (σ′, p) are equivalent. In Lines
13-16, the case x′ > x can be seen to be correct by Points 1 and 2 of Lemma 4.
It follows that the algorithm is correct.

We now justify the running time. We view the execution of the algorithm as
the construction of a search tree, where only recursive calls in Line 15 correspond
to branches in the search tree. A node of the search tree is labelled by an instance
(σ, p). Moreover, let P (n) denote the running time of the operations of Line 1-10,
then the processing time of a node is bounded by nP (n) and is thus polynomial.

Let Ts denote the search tree. Let u be a node of Ts. Suppose that u is labelled
by (σ, p), let p(u) = p and k(u) = 2p+1−2opt∗σ. Observe that if u is an internal
node of Ts, then p

2 < opt∗σ ≤ p, and thus 0 < k(u) ≤ p. Let S(u) denote the
number of leaves of the subtree of Ts rooted at u. Given p, k, let T (p, k) denote
the maximum value of S(u) for u node of Ts s.t. p(u) = p, k(u) ≤ k, or 0 if no
such node exists. We claim that T is such that:

134 S. Guillemot

{
T (p, k) ≤ 1 if p = 0 or k = 0
T (p, k) ≤ max(1, T (p, k − 1) + T (p− 1, k)) otherwise

(1)

Let u be a node labelled by (σ, p). We consider two cases. If p = 0 or k = 0,
observe that u must be a leaf: this is clear if p = 0, this results from the fact
that opt∗σ > p if k = 0. In this case, we thus have S(u) = 1. Consider now the
remaining cases. If u is a leaf then S(u) = 1. Suppose now that u is an internal
node with two children u′, u′′, with u′ labelled by (σ′, p) and u′′ labelled by
(σ′′, p− 1).

We first bound S(u′). Since opt∗σ′ > opt∗σ and since opt∗σ′ is half-integral, we
have k(u′) ≤ k(u)− 1 ≤ k − 1, hence S(u′) ≤ T (p, k − 1).

We now bound S(u′′). Observe that opt∗σ′′ ≥ opt∗σ−1: indeed, given a solution
s for Fσ′′ of cost c, we can extend this solution to V by setting su = 1, obtaining
a solution for Fσ of cost c + 1. It follows that k(u′′) = 2(p− 1) + 1 − 2opt∗σ′′ ≤
2(p−1)+1−2(opt∗σ−1) = 2p+1−2opt∗σ ≤ k. We obtain that S(u′′) ≤ T (p−1, k).

We thus conclude that S(u) = S(u′)+S(u′′) ≤ T (p, k−1)+T (p−1, k), which
completes the proof that T satisfies the relations (1).

A straightforward induction then shows that T (p, k) ≤ 2p+k. Since k(u) ≤ p
for an internal node u of Ts, it follows that the number of leaves of Ts is bounded
by T (p, p) ≤ 22p. We conclude that the algorithm has running time O∗(4p) as
claimed. ��

3 New Algorithms for the Multiway Cut and Multicut
Problems

3.1 The Multiway Cut Problems

We first introduce some notations and definitions. Let G = (V, E) be a graph
and let T ⊆ V be a set of terminals. Given two partitions P ,P ′ of T , P � P ′

means that P refines P ′. We denote by CT (G) the partition P of T whose classes
are the sets C ∩ T for C connected component of G. If F is a forest, we denote
by F |T the forest obtained from F by removing the leaves not belonging to T ,
and contracting the nodes of degree 2 not belonging to T .

We consider the Generalized Vertex Multiway Cut (GVMC) problem:
given a graph G = (V, E), a set T ⊆ V of terminals, a set F ⊆ V of forbidden
vertices, a partition P of T , an integer p, can we find a set S ⊆ V \F of cardinal
≤ p s.t. CT (G\S) � P? We also consider the edge-version of the problem called
Generalized Multiway Cut (GMC). While this was already shown in [1],
we obtain another proof of the following result:

Theorem 2. Generalized Vertex Multiway Cut and Generalized
Multiway Cut are solvable in O∗(4p) time.

Proof. We formulate the GVMC problem as a path cover problem for a ho-
mogeneous path system and apply Theorem 1. We consider the path system

FPT Algorithms for Path-Transversals and Cycle-Transversals Problems 135

σ = (G, T, F), where Pσ consists of the paths joining two vertices u, v ∈ T
belonging to different classes of P . It is straightforward to verify that: (i) σ is
homogeneous, (ii) there is a polynomial-time separation oracle for Fσ.

An algorithm for GMC is obtained by a simple reduction to GVMC. Given
I = (G, T, F,P , p) instance of GMC, we construct I ′ = (G′, T, F ′,P , p) instance
of GVMC as follows. For each edge e of G we introduce a new vertex xe. We
split each edge e = uv in two edges uxe, vxe. We set F ′ = V ∪ {xe : e ∈ F}. ��

3.2 The Multicut Problem

We now consider the Multicut problem: given a graph G = (V, E), a set T ⊆ V
of terminals, a set P ⊆ [T]2 of k pairs of terminals, a set F ⊆ E of forbidden
edges, an integer p, can we disconnect each pair of vertices in P by removing at
most p edges of E\F ?

Theorem 3. Multicut can be solved in O∗((8k)p) time.

Proof. Let I = (G, T, P, F, p) be an instance of Multicut. Say that a partition
P of T is realizable iff I ′ = (G, T, F,P , p) is a positive instance of Generalized
Multiway Cut. Say that a partition P is admissible iff it separates each pair uv
in P . We will describe an algorithm that enumerates a set S of good partitions
of T s.t. (i) S is a superset of the set of realizable partitions; (ii) S has size
≤ (2k)p.

Given the set S, we solve Multicut by seeking a partition P in S which is
admissible and realizable. Deciding if the partition is admissible takes polyno-
mial time, and deciding if the partition is realizable takes O∗(4p) time. Hence,
we obtain a O∗((8k)p) time algorithm for Multicut. We now describe the con-
struction of S. The set S is the set of partitions returned by computation paths
of the algorithm FindGoodPartition described below.

FindGoodPartition(G, T, p)

1: let F be a spanning forest of G, let F ′ = F |T
2: choose a set E of at most p edges of F ′

3: let P = CT (F ′), let P ′ = CT (F ′\E)
4: choose a partition P ′′ s.t. P ′ � P ′′ � P
5: return P ′′

The proof of Point (i) is deferred to the full paper. Consider Point (ii).
Let T1(p) denote the maximum number of computation paths of the algorithm
FindGoodPartition(G, T, p). We show that T1(p) ≤ (2k)p. Since F ′ is a forest
whose leaves and nodes of degree 2 are elements of T , the number of edges of
F ′ is at most 2k (in fact 2k − 3). It follows that the number of possible choices
in Line 2 is at most (2k)p

p! . Besides, it can be shown that the number of possible
choices in Line 4 is at most p!. We conclude that the total number of choices
made by the algorithm is at most (2k)p

p! × p! = (2k)p. ��

136 S. Guillemot

3.3 The Vertex Multicut Problem

We finally consider the vertex version of the Multicut problem, called Vertex
Multicut: given a graph G = (V, E), a set T ⊆ V of terminals, a set P ⊆ [T]2

of k pairs of terminals, a set F ⊆ V of forbidden vertices, can we disconnect
each pair of vertices in P by removing at most p vertices in V \F?

Theorem 4. Vertex Multicut can be solved in O∗((8k)p) time.

Proof. Let I = (G, T, P, F, p) be an instance of Vertex Multicut. We now
say that a partition P of T is realizable iff I ′ = (G, T, F,P , p) is a positive
instance of Generalized Vertex Multiway Cut. As before, we describe an
algorithm that enumerates a set S of good partitions of T s.t. (i) S is a superset
of the set of realizable partitions, (ii) S has size ≤ (p+1)(2k)p. Then, we use the
set S to solve Vertex Multicut in O∗((8k)p) time. The set S is obtained as
the results of the computation paths of the algorithm FindGoodPartition2
described below.

FindGoodPartition2(G, T, p)

1: let F be a spanning forest of G, let F ′ = F |T
2: let N be the set of nodes of F ′

3: choose i ∈ {1, 2}
4: if i = 1 or p = 0 then
5: return FindGoodPartition(G, T, p)
6: else
7: choose u ∈ N
8: return FindGoodPartition2(G\u, T, p − 1)
9: end if

The proof of Point (i) is deferred to the full paper. We show Point (ii).
Let T2(p) be the maximum number of computation paths of the algorithm
FindGoodPartition2(G, T, p). Since F ′ has at most 2k vertices, there are
at most 2k possible choices in Line 7; hence T2 satisfies the following relation:

{
T2(0) = 1
T2(p) ≤ T1(p) + (2k)T2(p− 1)

Since T1(p) ≤ (2k)p, a straightforward induction shows that T2(p) ≤ (p+1)(2k)p.
��

4 Feedback Set Problems on Group-Labelled Graphs

4.1 Preliminaries

Let Γ be a group, with unit element 1Γ . In the following we consider prob-
lems involving Γ ; though we fix Γ for the rest of the section, we will in fact

FPT Algorithms for Path-Transversals and Cycle-Transversals Problems 137

assume that the group is part of the input to the problem, being described by
its multiplication table.

A Γ -labelled graph is a digraph with a labelling of its arcs by elements of Γ .
Formally, this is a tuple G = (V, A, Λ), where V is a set of vertices, A ⊆ V 2 is a
set of arcs, and Λ : A→ Γ is a labelling of the arcs; G does never contain both
arcs (x, y) and (y, x). Given x, y ∈ V , we define Λ(x, y) by setting:

⎧
⎪⎨

⎪⎩

Λ(x, y) = Λ(a) if a = (x, y) ∈ A

Λ(x, y) = Λ(a)−1 if a = (y, x) ∈ A

Λ(x, y) =⊥ otherwise

The underlying graph of G is the undirected graph G = (V, E) obtained by for-
getting the orientations of the arcs. By a path (or cycle) in G, we will mean
a path (or cycle) in G. Let P = x1...xm be a path in G, we set Λ(P) =
Λ(x1, x2)...Λ(xm−1, xm). A cycle C in G is null if Λ(C) = 1Γ , nonnull otherwise.

Let λ : V → Γ . Let F be a spanning forest of G, we say that λ is a F -consistent
labelling of G iff for each path P in F joining u to v, Λ(P) = λ(u)−1λ(v). We
say that λ is a consistent labelling of G iff for each path P in G joining u to v,
Λ(P) = λ(u)−1λ(v).

Lemma 6. Let F be a spanning forest of G. Then there exists a F -consistent
labelling of G.

Lemma 7. G has no nonnull cycle iff G has a consistent labelling.

4.2 The Group Feedback Vertex Set Problem

Given a Γ -labelled graph G, a feedback vertex set of G is a set of vertices which
meets each nonnull cycle.

We consider the Group Feedback Vertex Set (GFVS) problem: given a
Γ -labelled graph G, a set F ⊆ V of forbidden vertices, and an integer p, can we
find a feedback vertex set of G disjoint from F and of size at most p?

Theorem 5. GFVS is solvable in O∗((4|Γ |+ 1)p) time.

The algorithm relies on iterative compression. We will consider the following
auxiliary problem. The problem GFVS Compression takes

– a Γ -labelled graph G = (V, A, Λ),
– a feedback vertex set S of G,
– a function φ : S → Γ ,
– a set F ⊆ V of forbidden vertices,

and an integer p, and seeks a set S′ of < p vertices disjoint from F and which
breaks each path P joining two vertices u, v ∈ S with Λ(P) �= φ(u)−1φ(v).

We justify that the GFVS Compression problem is solvable in O∗(4p) time
(Proposition 1), then we establish the relation with the GFVS problem (Propo-
sition 2), which leads to the proof of Theorem 5.

138 S. Guillemot

Proposition 1. GFVS Compression is solvable in O∗(4p) time.

Proof. We formulate GFVS Compression as a path cover problem for a ho-
mogeneous path system, and apply Theorem 1.

Let σ be the path system defined as follows: let G be the underlying graph
of G, then σ = (G, S, F), and Pσ consists of the paths P joining two vertices
u, v ∈ S with Λ(P) �= φ(u)−1φ(v). From the definitions, it is clear that GFVS-
Compression is equivalent to solving the path cover problem for σ.

It can be shown that: (i) σ is homogeneous, (ii) there is a polynomial-time
separation oracle for Fσ. ��
The following proposition establishes the relation between the GFVS and GFVS
Compression problems. Its proof relies on Lemma 7.

Proposition 2. Let G = (V, A, Λ), and let F ⊆ V . Let S be a feedback vertex
set of G. The following are equivalent:

– there exists a feedback vertex set S′ of G s.t. S′ is disjoint from F ∪ S and
|S′| < |S|;

– there exists φ : S → Γ s.t. Iφ = (G, S, φ, F ∪ S, |S|) is a positive instance of
GFVS Compression.

We are now ready to prove Theorem 5.

Proof of Theorem 5. We solve Group Feedback Vertex Set using iterative
compression. In the compression step, we are given a subset V ′ of V , a feedback
set S of G[V ′] disjoint from F and of size p, and we seek S′ feedback set of G[V ′]
disjoint from F and of size < p. We examine every possibility for S∩S′: for each
bipartition of S = S1∪S2, we seek S′ = S1∪S′

2 with S2∩S′
2 = ∅ and |S′

2| < |S2|.
Let i = |S2|, then finding S′

2 is done in O∗(|Γ |i × 4i) time: by Proposition 2,
we need to examine the |Γ |i functions φ : S2 → Γ , and for each such function
to solve GFVS Compression in O∗(4i) time. By summing on each possible
value of i, we obtain that the total time required by the compression step is∑p

i=0

(
p
i

)
O∗((4|Γ |)i) = O∗((4|Γ | + 1)p). Since there are at most n compression

steps, the running time of the algorithm is as claimed. ��

4.3 The Group Feedback Arc Set Problem

Given a Γ -labelled graph G, a feedback arc set of G is a set of arcs which meets
each nonnull cycle.

We consider the Group Feedback Arc Set (GFAS) problem: given a Γ -
labelled graph G = (V, A, Λ), a set F ⊆ A of forbidden arcs, and an integer p,
can we find a feedback arc set of G disjoint from F and of size at most p?

Theorem 6. GFAS is solvable in O∗((4|Γ | + 1)p) time, and in O∗((8p + 1)p)
time.

We rely on iterative compression in a similar fashion to the proof of Theorem 5.
We consider the problem GFAS Compression which takes

FPT Algorithms for Path-Transversals and Cycle-Transversals Problems 139

– a Γ -labelled graph G = (V, A, Λ),
– a feedback vertex set S of G,
– a function φ : S → Γ ,
– a set F ⊆ A of forbidden arcs,

and an integer p, and seeks a set S′ of < p arcs disjoint from F and which breaks
each path P joining two vertices u, v ∈ S with Λ(P) �= φ(u)−1φ(v).

Proposition 3. GFAS Compression is solvable in O∗(4p) time.

Proof. We describe a simple reduction to GFVS Compression, and conclude
using Proposition 1.

Let I = (G, S, φ, F, p) be an instance of GFAS Compression. We create an
instance I ′ = (G′, S′, φ′, F ′, p′) of GFVS Compression as follows. For each arc
a of G we introduce two new vertices xa, ya. We split each arc a = (u, v) of
label g in three arcs (u, xa), (xa, ya), (ya, v) of respective labels 1Γ , g, 1Γ . We set
F ′ = V ∪ {xa : a ∈ A} ∪ {ya : a ∈ F}. We set S′ = S, φ′ = φ and p′ = p.

We verify that: I if a positive instance of GFAS Compression iff I ′ is a
positive instance of GFVS Compression. ��
The following proposition is similar to Proposition 2, and establishes the relation
between the GFAS and GFAS Compression problems.

Proposition 4. Let G = (V, A, Λ) be a Γ -labelled graph, and let F ⊆ A. Let
S ⊆ A be a feedback arc set of G, and let K ⊆ V be a vertex cover of the arcs of
S. The following are equivalent:

– there exists a feedback arc set S′ of G s.t. S′ is disjoint from F ∪ S and
|S′| < |S|;

– there exists φ : K → Γ s.t. (G, K, φ, F ∪ S, |S|) is a positive instance of
GFAS Compression.

Given S feedback arc set of G of size p, we can choose a vertex cover K of size
≤ p, hence the above Lemma leads to consider |Γ |p functions φ. Clearly, this
leads to a O∗((4|Γ | + 1)p) algorithm for the problem. We now argue that the
number of functions φ to examine can be reduced from |Γ |p to (2p)p, which will
yield a O∗((8p + 1)p) algorithm. We first introduce the following definitions.

For each connected component C of G s.t. C ∩ K �= ∅, choose an element
vC ∈ C ∩ K. Let K1 be the set of chosen elements of K. Say that a function
φ : K → Γ is canonical iff φ(x) = 1Γ for each x ∈ K1. Say that a function
φ : K → Γ is realizable iff it is canonical and there exists a spanning forest F of
G and an F -consistent labelling λ of G s.t. φ = λ|K. Observe that Proposition 4
can be restated by requiring that φ is realizable.

The following Lemma gives an upper bound on the number of realizable
functions.

Lemma 8. The number of realizable functions is at most (2p)p.

The proof of Theorem 6 follows.

140 S. Guillemot

5 Concluding Remarks

The parameterized complexity of some problems considered in this article re-
mains unsettled. We have seen that the Vertex Multicut and Multicut
problems were FPT w.r.t. k, p, and that the Group Feedback Vertex Set
problem was FPT w.r.t. |Γ |, p. We conjecture that these problems are FPT for
the single parameter p. A first step may be to study these problems e.g. on
planar graphs.

We think that some variants of the problems on group-labelled graphs consid-
ered in Section 4 are also worth studying from the point of view of parameterized
complexity. An interesting generalization of the Group Feedback Arc Set
problem is the Unique Label Cover problem [7,6]. Other problems of in-
terest are satisfiability problems for system of linear equations / inequations,
parameterized by the maximum number of unsatisfied equations allowed. These
problems may be FPT when restricted to instances with at most two variables
per equation.

References

1. Chen, J., Liu, Y., Lu, S.: An Improved Parameterized Algorithm for the Minimum
Node Multiway Cut Problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007.
LNCS, vol. 4619, pp. 495–506. Springer, Heidelberg (2007)

2. Chudnovsky, M., Geelen, J., Gerards, B., Goddyn, L.A., Lohman, M., Seymour,
P.D.: Packing Non-Zero A-Paths In Group-Labelled Graphs. Combinatorica 5(26),
521–532 (2006)

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

4. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
5. Garg, N., Vazirani, V., Yannakakis, M.: Multiway Cuts in Directed and Node

Weighted Graphs. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820,
pp. 487–498. Springer, Heidelberg (1994)

6. Gupta, A., Talwar, K.: Approximating unique games. In: Proc. SODA 2006, pp.
99–106 (2006)

7. Khot, S.: On the power of unique 2-prover 1-round games. In: Proc. STOC 2002,
pp. 767–775 (2002)

8. Marx, D.: Parameterized graph separation problems. Theoretical Computer Sci-
ence (351), 394–406 (2006)

9. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research
Letters 32(4), 299–301 (2004)

Wheel-Free Deletion Is W [2]-Hard

Daniel Lokshtanov

Department of Informatics, University of Bergen N-5020 Bergen, Norway
daniello@ii.uib.no

Abstract. We show that the two problems of deciding whether k ver-
tices or k edges can be deleted from a graph to obtain a wheel-free graph
is W [2]-hard. This immediately implies that deciding whether k edges
can be added to obtain a graph that contains no complement of a wheel
as an induced subgraph is W [2]-hard, thereby resolving an open problem
of Heggernes et al. [7] (STOC07) who ask whether there is a polynomial
time recognizable hereditary graph class Π with the property that com-
puting the minimum Π-completion is W [t]-hard for some t.

1 Introduction

For a graph property Π and an input graph G, a Π-completion of G is a graph
H that has the property Π and contains G as a subgraph. We say that H is a
minimum Π-completion of G if H is a Π-completion of G that minimizes the
number of edges needed to add to G in order to obtain H , and that the minimum
Π-completion problem is the problem of obtaining such an H when given G as
input. The first completion problem to be studied was the chordal-completion
problem. This problem has been subjected to considerable scrutiny, due to a
wide range of applications, such as sparse matrix computations [16], database
management [17] [1], knowledge based systems [10], and computer vision [3]. The
computational complexity of finding minimum chordal-completions was settled
when Yannakakis in [18] showed that the problem is NP-complete. Subsequently,
it was shown that most interesting completion problems also are NP-complete
[12][6][5].

Completion problems fall naturally within the class of graph modification prob-
lems. In a graph modification problem you are given a graph G as input, and
asked to convert G into a graph with a property Π , modifying G as little as pos-
sible. Specifically, you are given the graph G together with three integers i, j, k
and asked whether G can be made into a graph with the proberty Π by deleting
at most i edges and j vertices, and adding at most k edges. When i = j = 0 it
is easy to see that the problem reduces to the minimum Π-completion problem,
whilst the cases where j = k = 0 and i = k = 0 are referred to as the minimum
Π-edge deletion and minimum Π-vertex deletion problems respectively.

Graph modification problems have been studied extensively from the perspec-
tive of parameterized complexity. From the graph minor theory of Robertson and

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 141–147, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 D. Lokshtanov

Seymour, it follows that the minimum Π-vertex deletion problem is fixed param-
eter tractable (FPT) if Π is minor closed [15][14]. Kaplan, Shamir and Tarjan
showed that the minimum chordal-completion, strongly chordal-completion, and
proper interval-completion problems all are FPT using a bounded search tree
approach [8]. The FPT algorithm for finding minimum chordal-completions was
later improved by Cai, who also showed that the graph modification problem
is fixed parameter tractable for all hereditary graph classes with a finite set of
forbidden subgraphs [2]. More recent results include FPT algorithms for min-
imum interval-completion [7], bipartite-vertex deletion [13] and chordal-vertex
and edge deletion [11]. One can also observe that two of the classical fixed param-
eter tractable problems in parameterized complexity, Vertex Cover and Feedback
Vertex Set, can be seen as independent-set-vertex deletion and forest-vertex dele-
tion respectively.

An interesting point about the above results, is that they are all positive.
That is, to the author’s best knowledge, all reasonable1 graph modification prob-
lems that have been studied to this date have turned out to be fixed parameter
tractable. This has given rise to speculation on whether it is possible that all
graph modification problems of a certain kind could turn out to be FPT. Specif-
ically, it was raised as an open problem by Heggernes et al. [7] whether it is
possible that the Π-completion problem is FPT for every polynomial time rec-
ognizable hereditary graph class Π . We resolve this open problem by showing
that this is not the case unless FPT = W [2], by showing that the wheel-free-
vertex deletion and wheel-free-edge deletion problems both are hard for W [2].

Our proof of hardness is fairly simple, but contains an idea of how charac-
terizations of the graph class Π through “special” vertices can be employed to
show that Π-modification problems are hard. The class of wheel-free graphs,
while being constructed so as to make our hardness proof go through, is not
so far fetched and therefore gives an indication that for other, more natural
graph classes their corresponding graph modification problems might well turn
out to be W [2]-hard. We hope that a refinement of our proof technique can
yield a way to prove W [2]-hardness of vertex or edge-deletion into other, more
“popular” graph classes, and potentially be a step towards a dichotomy of the
parameterized complexity of graph modification problems.

2 Notation, Terminology and Preliminaries

A vertex v in a graph G is said to be universal if v is adjacent to all other vertices
of G. Given a graph G = (V, E), the graph G[S] = (S, E∩{uv : u ∈ S∧v ∈ S}) is
the subgraph of G induced by S. For a graph H we say that G = (V, E) contains
H as an induced subgraph if there is a set S ⊂ V such that G[S] is isomorphic
to H . A graph family Π is hereditary if for every G ∈ Π all induced subgraphs
of G are in Π . For a graph family Π and positive integer k, we define the two
graph families Π + kv and Π + ke to be the families of all graphs that can be
1 By reasonable we mean that the graph class considered is polynomial time recogniz-

able and hereditary.

Wheel-Free Deletion Is W [2]-Hard 143

made into a graph in Π by deleting at most k vertices or edges respectively. Let
Π be the class of all graphs whose complement belongs to Π .

A wheel is a graph W that has a universal vertex v such that W \ v is a cycle.
We say that v is apex for this wheel, and that W \ v is the cycle of the wheel.
For a general graph G we say that a vertex v is apex if v is apex for an induced
wheel in G. The graph Wk for k ≥ 3 is the wheel such that the cycle of the
wheel has k vertices. We will refer to the family of graphs that do not contain
any wheel as an induced subgraph as W , the family of wheel-free graphs.

For a graph family Π and positive integer k, we define the two graph families
Π +kv and Π +ke to be the families of all graphs that can be made into a graph
in Π by deleting at most k vertices or edges respectively. Let Π be the class of
all graphs whose complement belongs to Π .

Before we turn to the main section of this paper, we observe that the class of
wheel-free graphs is hereditary by definition. The graph class is also polynomial
time recognizable, because of the following observation.

Observation 1 A graph G is wheel-free if and only if no vertex of G is apex.

Using Observation 1 we can test whether a graph G is wheel-free simply by
iterating through every vertex v and verifying that N(v) induces a forest in G.

3 Wheel-Free Deletion Is W [2] Hard

In this section we show that recognizing W + kv and W + ke graphs is hard
for W [2] when parameterized by k. We reduce from Hitting Set, and in fact,
we reduce simultaneously to Wheel-free Vertex Deletion and to Wheel-free Edge
Deletion. That is, given an instance of Hitting Set we will build a graph G such
that G belongs to W + ke if and only if the instance to Hitting Set is a “yes”
instance, and so that G belongs to W + ke if and only if G belongs to W + kv.
We proceed to formally define the problem we reduce from.

Hitting Set
Instance: A tuple (U,F , k) where F is a collection of subsets of the
finite universe U , and a positive integer k
Parameter: k
Question: Is there a subset X of U of cardinality at most k such that
for every Z ∈ F , Z ∩X is nonempty?

Lemma 2. [4] Hitting Set is W [2]-complete.

If the answer to an instance of Hitting Set is yes, we say that X is a k-Hitting Set,
and that (U,F , k) has a k-Hitting Set. For an instance (U,F , k) of Hitting Set,
let n = |U | and m = |F|. We build a graph G′ = (V ′, E′) as follows. For every
element e in U we make two vertices e1 and e2 and connect them by an edge. We
say that the vertices e1 and e2 correspond to the element e of U . Furthermore,
for every set S in F we make a W3n and distinguish an induced matching of

144 D. Lokshtanov

Sets

Elements

1

2

4

6

5

3

C

B

A

Sets
Elements

C

B

A

1

6

5

4

3

2

C

B

A

Fig. 1. On the left hand side we see an instance of Hitting Set. In the middle we have
the element-set incidence graph of the instance, and on the right hand side the graph
G′ as computed from the instance. On the left in G′ we see the vertices corresponding
to the elements and on the right the wheels corresponding to sets. The special edges are
the edges going from the element vertices to the wheels. We construct G by contracting
the special edges. In fact, the figure is not entirely accurate, as each wheel should have
had 18 vertices in the cycle according to the construction. These omitted vertices are
not drawn in order to to keep the size of the figure down, and they do not have any
effect.

size n in the cycle of new wheel. To each edge uv of the distinguished induced
matching we assign an element of U , say e. If S contains e, we also add special
edges between u and e1 and between v and e2. We say that the constructed
wheel corresponds to the set S. This concludes the construction of G′. We are
not done, however. To finalize the reduction we obtain the graph G = (V, E)
from G′ by contracting all the special edges. For a vertex v in G′ we say that
α(v) is the image of v in G, that is the vertex of G that v gets contracted into.
If a vertex v is not incident to any special edges α(v) = v and v is a vertex both
in G′ and G. Finally, observe that if x and y are vertices of G′ that correspond
to distinct elements of U , the images of x and y are nonadjacent in G.

Lemma 3. The following are equivalent: (1) (U,F , k) has a k-Hitting Set, (2)
G is in W + ke and (3) G is in W + kv.

Proof. We prove the equivalences by providing a circle of implications, namely
that (1) implies (2), (2) implies (3) and that (3) implies (1).

Wheel-Free Deletion Is W [2]-Hard 145

Claim. If (U,F , k) has a k-Hitting Set then G is in W + ke.

Proof. Suppose (U,F , k) has a k-Hitting Set X . For every element e ∈ X we
remove the edge between the image of e1 and the image of e2 in G to obtain a
graph H . It remains to prove that H is wheelfree. We do this by proving that no
vertex is apex. Let ED be E(G) \E(H). Consider a vertex v in H that was the
apex vertex of a W3n in G′. In G the neighbourhood of v induces a cycle, and
since X is a Hitting Set, ED contains at least one of the edges of this cycle. Hence
v is not apex in H . Consider now a vertex v in H that was in the cycle of some
W3n in G′ and that had no special edges incident to it. In G′ the neighbourhood
of v induces a P3 and since the image of vertices that correspond to different
elements of U is nonadjacent in G, the neighbourhood of v induces a P3 also in
G. As H ⊆ G, it follows that v is not apex in H . Finally, consider a vertex v in
H that is the image of a vertex of G′ that was adjacent to a special edge. In this
case v must be the image of a vertex of G′ that corresponded to an element e of
U . Without loss of generality we can assume that v = α(e1). The neighbourhood
of v is the union of the neighbourhoods of v in all the W3n’s. If α(e1)α(e2) /∈ ED

the neighbourhood of v in each W3n induces a P3 with α(e2) being one of the
endpoints. Thus, if α(e1)α(e2) /∈ ED the neighbourhood of v in H induces a
tree, and if α(e1)α(e2) ∈ ED the neighbourhood of v in H induces a matching.
In both cases v is not apex, and we are done.

Claim. If G is in W + ke then G is in W + kv.

Proof. Observe that if |ED| = k and H = G \ ED is a wheel-free graph, there
is a set VD of cardinality at most k such that every edge in ED is incident to
some edge in VD. Thus, as G \ VD = G \ED[V \ VD] and the class of wheel-free
graphs is hereditary, G \ VD is wheel-free.

Claim. If G is in W + kv then (U,F , k) has a k-Hitting Set.

Proof. For a given set S in F , let V ′
S be the vertex set in G′ of the wheel

corresponding to S. Let VS be the image of V ′
S . Clearly, VS induces a wheel in

G. Without loss of generality, we can assume that every element of U is contained
in some set of F and that every set in F is nonempty. From this it follows that⋃

S∈F VS = V (G). Furthermore, from the construction of G, it follows that any
vertex v that is contained in VS ∩ VS′ for a pair of distinct sets S and S′ in
F must correspond to an element e ∈ U . Having this in mind, we construct a
mapping f : V (G) → U as follows: if v corresponds to an element e of U , then
f(v) = e. Otherwise we let f map v to an arbitrary element of the unique set
S ∈ F such that v ∈ VS .

Now, suppose there is a set of vertices VD of cardinality at most k such that
G \ VD is wheel-free. We prove that X = {f(v) : v ∈ VD} is a k-hitting set.
First, observe that by construction |X | ≤ k. Finally, for any set S ∈ F we have
that VS ∩ VD
= ∅. Let v be a vertex in VS ∩ VD. From the construction of the
mapping f it follows that f(v) ∈ S, and that f(v) ∈ X . Thus X∩S is nonempty
for every set S ∈ F so X must be a k-hitting set.

146 D. Lokshtanov

Together, the three claims complete the proof of Lemma 3.

Theorem 1. Recognizing W+ke and W+kv graphs is W [2] hard when param-
eterized by k.

Proof. The proof follows directly from the construction of G and Lemma 3.

From the above theorem it immediately follows that completing into the class of
graphs that do not contain the complement of a wheel as an induced subgraph is
W [2] hard. Thus we get a corollary that answers the question posed by Heggernes
et al. by providing the first polynomial time recognizable hereditary graph class
Π such that completing into Π , that is recognizing Π − ke is W [t]-hard for
some t.

Corollary 1. Recognizing W−ke graphs is W [2] hard when parameterized by k.

4 Conclusions

In this paper we have shown that graph modification problems indeed can be
hard from a parameterized point of view. Hopefully, this result is a step towards
understanding the parameterized complexity of completion and deletion prob-
lems for polynomial time recognizable, hereditary graph classes. While obtaining
a dichotomy for these problems might turn out to be a daunting task, it might
also be that general results are achievable through clever use of combinatorics
or algorithmical tricks. For instance, Khot and Raman gave a dichotomy for the
parameterized complexity of (n − k)-vertex-deletion problems [9], the paramet-
ric duals of minimum vertex-deletion problems by using Ramsey numbers in a
smart way. If general results turn out to be too difficult to obtain, it would be
interesting to see whether all of the “popular” graph classes, such as permuta-
tion graphs, AT-free graphs and perfect graphs turn out to have fixed parameter
tractable graph modification problems, or if some of these graph modificatoion
problems turn out to be hard for W [t] for some t.

References

1. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic
database systems. J. Assoc. Comput. Mach. 30, 479–513 (1983)

2. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

3. Chung, F.R.K., Mumford, D.: Chordal completions of planar graphs. J. Comb.
Theory 31, 96–106 (1994)

4. Downey, R.G., Fellows, M.R.: Parameterized Complexity (Monographs in Com-
puter Science). Springer, Heidelberg (1998)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

6. Hakimi, S.L., Schmeichel, E.F., Young, N.E.: Orienting graphs to optimize reach-
ability. Information Processing Letters 63(5), 229–235 (1997)

Wheel-Free Deletion Is W [2]-Hard 147

7. Heggernes, P., Paul, C., Telle, J.A., Villanger, Y.: Interval completion with few
edges. In: STOC 2007: Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pp. 374–381. ACM Press, New York (2007)

8. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion
problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Com-
put. 28(5), 1906–1922 (1999)

9. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with heredi-
tary properties. Theor. Comput. Sci. 289(2), 997–1008 (2002)

10. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their applications to expert systems. J. Royal Statist.
Soc., ser. B 50, 157–224 (1988)

11. Marx, D.: Chordal deletion is fixed-parameter tractable (manuscript, 2007)
12. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge mod-

ification problems. Discrete Applied Mathematics 113(1), 109–128 (1999)
13. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res.

Lett. 32(4), 299–301 (2004)
14. Robertson, N., Seymour, P.D.: Graph minors. xiii. the disjoint paths problem. J.

Combin. Theory Ser. B. 63, 65–110 (1995)
15. Robertson, N., Seymour, P.D.: Graph minors. xx. wagners conjecture. J. Combin.

Theory Ser. B. 92, 325–357 (2004)
16. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive

definite systems of linear equations. Graph Theory and Computing, 183–217 (1972)
17. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of

graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13, 566–579 (1984)

18. Yannakakis, M.: Computing the minimum fill-in is np-complete. SIAM Journal on
Algebraic and Discrete Methods 2, 77–79 (1981)

Parameterized Derandomization

Moritz Müller

Mathematisches Institut, Albert-Ludwigs-Universität Freiburg,
Eckerstrasse 1, 79104 Freiburg - Germany
moritz.mueller@math.uni-freiburg.de

Abstract. The class W[P] is a parameterized analogue of NP. Chen et
al. [4] have given a machine characterization of W[P]. The corresponding
machine model gives rise to a parameterized analogue of BPP. What is
the connection between parameterized and classical derandomization?

1 Introduction

Parameterized complexity: In the parameterized setting instances of problems
come along with a parameter, a natural number k. The parameter is expected to
be small compared to the instance in typical situations. It is intended to encode
some knowledge we have about typical instances – e.g. that a certain part of
it is small compared to the rest or that it has a simple structure. To allow full
exploitation of this knowledge the notion of tractability is adjusted accordingly.
A parameterized problem is fixed-parameter tractable if and only if it is solvable
in time f(k) · nO(1) for some computable function f . Here n denotes the length
of the input and k its associated parameter.

While this tractability notion led to a host of algorithmic techniques (see [13]
for a survey), also a big variety of seemingly intractable classes have been found.
On the positive turnside these classes allow for a fine-grained intractability anal-
ysis and only a handful of them play a dominant role. Important are the classes
W[1], W[P] and paraNP as they can be seen as parameterized analogues of NP.

Randomization: In classical complexity theory a randomized polynomial time
algorithm can be viewed as a binary “NP-machine”, where a run on some input
is determined by a sequence in {0, 1}. This sequence can be interpreted as the
outcome of independent “coin tosses”. The amount of randomness, classically
that is, the number of coins, is a computational resource we want to spare.

The machine characterizations of parameterized intractable classes [4], specif-
ically those of the mentioned NP analogues, motivate different modes of parame-
terized randomization [10]. E.g. we get a notion of W[P]-randomized
computations by replacing “NP-machine” in the classical definition by “W[P]-
machine”. This amounts to Turing machines using at most f(k) · log n coins.
Implemented on a nondeterministic Random Access Machine we may say that
the algorithm uses few, f(k) many, but large, nO(1)-sided, dice. We denote the
corresponding analogue of BPP by W[P]-BPFPT.

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 148–159, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Parameterized Derandomization 149

This way, parameterized complexity theory provides us with a genuine view
on randomization – a direction shown up by Downey et al. in [5].

Randomness in parameterized complexity: Downey et.al. [5] have introduced a
parameterized analogue of the classical BP operator. Within this frame Montoya
originated the theoretical investigation of W[P]-randomized computations. In
particular he proved some strong form of probability amplification [9] for the
class W[P]-BPFPT.

Examples of parameterized randomized algorithms as the approximate count-
ing algorithm of Arvind and Raman [2] or the reduction giving an analogue of the
Valiant-Vazirani Lemma in [5] use paraNP-randomized computations. Assump-
tions that certain hard parameterized problems are also intractable in the one or
the other randomized sense have been employed by Alekhnovich and Razborov
[1] to show that short resolution refutations are hard to find, or by Chen and
Flum [3] to disprove #W[1]-hardness of certain counting problems.

Concerning these examples the quest for derandomization has led to some
positive results. W[P]-randomized approximate counting is considered in [10].
The Valiant-Vazirani Lemma [5] has been derandomized to W[1]-randomized
reductions [11] and applied in [3]. And recently Eickmeyer et al. [6] derandomized
Alekhnovich’s and Razborov’s result.

However, up to now little work has been done on a theoretical frame for
randomness in the parameterized world.

This paper: It is widely believed that P = BPP. In this case all parameter-
ized modes of randomization are derandomizable. In this situation one should
know what derandomization of the more restricted modes of parameterized ran-
domized computation means in terms of classical complexity theory. This is the
question considered in this paper. Specifically we ask how difficult it is to deran-
domize W[P]-BPFPT. Our main result reads

Theorem 1. The following statements are equivalent.

1. W[P]-BPFPT has a weakly uniform derandomization.
2. There is a polynomial time computable, nondecreasing, unbounded function

c : N→ N such that BPP[c] = P.

Here BPP[c] is BPP restricted to at most c(n) · log n many random bits. Ob-
serve that for bounded c we trivially have BPP[c] = P. Thus nontrivial classical
derandomization would mean to show BPP[c] = P for some unbounded c. Weak
uniformity is some extra condition on W[P]-BPFPT = FPT which is mathemat-
ically strong, but, as we will argue, philosophically weak.

Informally Theorem 1 states that (weakly uniform) derandomization of W[P]-
randomized computations means the same as any nontrivial classical derandom-
ization. Note that c can grow extremly slow.

The mentioned statements form the content of Section 4. In fact we show more
than Theorem 1 (see Theorem 15 in Section 4). First we define parameterized
randomized classes in Section 2. Section 3 contains a technical lemma stating

150 M. Müller

how to transform a given W[P]-randomized program to one using larger dice. The
lemma turns out to be very useful. We examplify this by giving two applications,
first how to get programs using small dice and second how to characterize W[P]-
randomized computations by Turing machines.

2 Parameterized Randomization

Parameterized problems: Fix a finite alphabet Σ containing at least two let-
ters. Parameterized problems are pairs (Q, κ) of classical problems Q ⊆ Σ∗ and
polynomial time computable parameterizations κ : Σ∗ → N. A parameterized
problem (Q, κ) is fixed-parameter tractable if and only if it can be solved by an
algorithm with fpt running time (with respect to κ), i.e. time f(κ(x)) · |x|O(1)

for some computable f : N → N. The class of parameterized problems (Q, κ)
solvable in time f(κ(x)) · |x|O(1) is denoted by O∗(f).

Machines for intractable classes: We define W[1] and W[P] by their machine
characterizations [4]. The machine model is that of a nondeterministic RAM.
These are usual RAMs [12] using registers 0, 1, . . ., whose contents are natural
numbers r0, r1, Additionally to the usual instructions they can GUESS:

“guess a natural number < r0 and store it in register 0.”

A program is a finite sequence of instructions. Runs and acceptance are defined
as usual. An execution of GUESS is a nondeterministic step. We use the uniform
cost measure.

Let κ be a parameterization. A program P is κ-restricted if and only if there are
computable functions f, g and a polynomial p such that for all x ∈ Σ∗ and each
run of P on x the program P performs at most g(κ(x)) many nondeterministic
steps and the number f(κ(x)) · p(|x|) upper bounds the number of steps, the
registers used and the numbers stored in any register at any time. If additionally
for some computable h : N→ N all nondeterministic steps occur within the last
h(κ(x)) many steps, we call the program tail-nondeterministic.

Definition 2 – W[1] is the class of all parameterized problems (Q, κ) decid-
able by some κ-restricted tail-nondeterministic program.

– W[P] is the class of all parameterized problems (Q, κ) decidable by some
κ-restricted program.

– paraNP is the class of all parameterized problems (Q, κ) decidable by some
nondeterministic Turing machine with fpt running time (with respect to κ).

Modes of parameterized randomization: Instead of flipping coins our programs
“roll dice” (execute GUESS). In order to get these rolls induce the uniform
measure on runs, the program should besides being exact “always use the same
die”.

Definition 3 – A program P has uniform guess bounds if and only if for all
x ∈ Σ∗ the content r0 of register 0 is the same for any two nondeterministic
steps in (possibly distinct) runs of P on x.

Parameterized Derandomization 151

– A program or a Turing machine is exact if and only if for every x it performs
the same number of nondeterministic steps in every run on x.

This parellels in the classical frame the restriction to exact binary machines.

Definition 4. Let κ be a parameterization.

– An exact binary nondeterministic Turing machine with fpt running time
with respect to κ is paraNP-randomized (with respect to κ).

– An exact κ-restricted program with uniform guess bounds is W[P]-rando-
mized (with respect to κ).

– An exact κ-restricted tail-nondeterministic program with uniform guess
bounds is W[1]-randomized (with respect to κ).

Given a (with respect to κ) W[P]- or W[1]-randomized program P, assume that
for some computable g it performs on input x ∈ Σ∗ exactly g(κ(x)) many non-
deterministic steps1, say, each with r0 = nx. Then we say, that P on x uses
g(κ(x)) many nx-sided dice.

Notation: By P(x) we denote the output of P on x, that is the function map-
ping a random seed (outcome of dice rolls) for P on x to the output of P on
x of the run determined by the random seed. P(x) is a random variable on the
Laplace space of random seeds {0, . . . , nx−1}g(κ(x)). As usual we sloppily denote
various probability measures always by Pr and let the context determine what
is meant. E.g. when talking about P(x), by Pr we refer to the uniform measure
on {0, . . . , nx − 1}g(κ(x)).

We get a parameterized randomized class by selecting a mode of randomiza-
tion, choosing one- or two-sided error and choosing a bound on the error. For
notational simplicity we always choose the error bound 1/|x|. In this work, our
arguments are not sensible to this choice, e.g. 1/4 would be equally good.

Definition 5. A parameterized problem (Q, κ) is in W[P]-BPFPT if and only if
there is a W[P]-randomized program P with respect to κ such that for all x ∈ Σ∗

Pr [P(x) �= χQ(x)] < 1/|x|.

Here χQ is the characteristic function of Q. We then say that P decides Q (with
two-sided error 1/|x|). We apply a similar mode of speech for Turing machines.
W[1]-BPFPT and paraNP-BPFPT are similarly defined.

Remark 6. It is not hard to see that W[P]-BPFPT is contained in XP, because
the number of random seeds of a W[P]-randomized program on an input x can
be bounded by |x|f(κ(x)) for some computable f : N→ N.

1 It is not hard to see that for each P there is a P
′ with this property and identically

distributed outputs.

152 M. Müller

3 The Dice Lemma

Large dice for W[P]-BPFPT: Say we run a W[1]-randomized algorithm with
larger dice having a desired number of sides by interpreting in some way each
outcome of a roll with a large die as an outcome of a roll with a small die. The new
program can be seen as the old one using a defective random source, i.e. a biased
die. We need to estimate the loss of the success probability. First, intuitively, the
larger the new die (compared with the old one) the better. Secondly the more
dice the worse. This is made precise by the “Dice Lemma”.

Recall that the distance in variation of random variables X, Y both with
range, say, E is

dV (X, Y) := sup
A⊆E

∣
∣Pr[X ∈ A]− Pr[Y ∈ A]

∣
∣.2

As usual we write X ∼ Y if dV (X, Y) = 0, i.e. if X and Y are identically
distributed.

Lemma 7 (Dice Lemma). Let κ be a parameterization and let g : N → N be
computable. Let P be a W[P]-randomized program which on x ∈ Σ∗ uses g(κ(x))
many nx-sided dice. Let (qx)x∈Σ∗ : Σ∗ → N be computable in fpt time with
respect to κ (output coded in unary) such that nx ≤ qx for all x ∈ Σ∗.

Then there is a W[P]-randomized program P
′ which on x ∈ Σ∗ uses g(κ(x))

many qx-sided dice such that for all x ∈ Σ∗

dV (P′(x), P(x)) ≤
{

0 if nx divides qx

g(κ(x)) · nx/qx else .

We omit the technical proof (see the Appendix) and give two applications.

Small dice for W[P]-BPFPT:

Corollary 8. Let (Q, κ) be a parameterized problem that can be decided by a
W[P]-randomized program which on x ∈ Σ∗ uses g(κ(x)) many dice. Then (Q, κ)
can be decided by a W[P]-randomized program which on x ∈ Σ∗ uses O(g(κ(x)))
many |x|-sided dice.

Proof. Choose a program P deciding (Q, κ) according to the assumption. Say,
P on x uses g(κ(x)) many nx-sided dice. By κ-restrictedness we have nx ≤
h(κ(x)) · |x|c for some computable h and some c ∈ N.

We want a program P
′ which on x uses |x|-sided dice and decides Q with two-

sided error at most 2/|x|. We get an error below 1/|x| by running our program
some constant number of times and taking a majority vote.

Furthermore it is enough if P
′ works as desired on inputs x with |x| ≥ h(κ(x))·

g(κ(x)), because on shorter inputs a deterministic XP algorithm for (Q, κ) needs
time which can be effectively bounded in terms of the parameter.
2 By the usual sloppy convention the two occurences of Pr refer respectively to the

possibly different measures underlying the spaces of X respectively Y .

Parameterized Derandomization 153

Apply the Dice Lemma to get a program P
′′ which on x uses g(κ(x)) many

|x|c+1-sided dice. Then on inputs x with |x| ≥ h(κ(x)) · g(κ(x)) the program P
′′

answers incorrectly with probability at most

1/|x|+ g(κ(x)) · h(κ(x)) · |x|c/|x|c+1 ≤ 2/|x|.
Let B : {0, . . . , |x| − 1}c+1 → {0, . . . , |x|c+1 − 1} be some polynomial time com-
putable bijection. Whenever P

′′ rolls one of its |x|c+1-sided die P
′ rolls (c + 1)

many |x|-sided dice, say with outcome (a1, . . . , ac+1), and continues the sim-
ulation with B(a1, . . . , ac+1). It is clear that P

′(x) ∼ P
′′(x) and that P

′ is a
W[P]-randomized program using (c + 1) · g(κ(x)) many |x|-sided dice. �

In the following sense improving the above lower bound on the size of dice
amounts to derandomization. This may serve as a derandomization lemma.

Recall that f ∈ oeff(g) if and only if there is a computable, nondecreasing,
unbounded ι : N→ N such that for all sufficiently large n ∈ N

f(n) ≤ g(n)/ι(n).

Lemma 9. Let (Q, κ) be a parameterized problem. If (Q, κ) can be decided by
a W[P]-randomized program which on x ∈ Σ∗ uses |x|oeff(1)-sided dice, then
(Q, κ) ∈ FPT.

Proof. Choose an algorithm A according to the assumption. Choose a com-
putable g : N → N and a computable, nondecreasing and unbounded ι : N→ N

such that A on input x ∈ Σ∗ uses g(κ(x)) many dice with at most |x|1/ι(|x|)

sides. Let h : N → N be some computable, nondecreasing function such that
h(ι(n)) ≥ n for all n ∈ N (see e.g. Lemma 16 for how to find such an h).

Let A
′ on x ∈ Σ∗ simulate A on x exhaustively on all its random seeds. We

show that A
′ runs in fpt time. This is the case if the number of random seeds of

A on x obeys an fpt bound. Write n := |x| and k := κ(x). We distinguish two
cases:

– if g(k) < ι(n), then there are at most (n1/ι(n))g(k) < n many random seeds.
– if g(k) ≥ ι(n), then h(g(k)) ≥ h(ι(n)) ≥ n, and hence there are at most

h(g(k))g(k) many random seeds. �

Turing machines for W[P]-BPFPT: As a second application of the Dice Lemma
we characterize W[P]-BPFPT by Turing machines. This shows a certain robust-
ness of the class and provides a link to classical classes which are usually defined
in terms of Turing machines.

Corollary 10. Let (Q, κ) be a parameterized problem. The following statements
are equivalent.

1. (Q, κ) ∈W[P]-BPFPT.
2. There are c ∈ N, computable f, h : N → N and an exact randomized Turing

machine A such that for all x ∈ Σ∗ and every run of A on x the machine A

performs at most f(κ(x)) · |x|c many steps, tosses at most h(κ(x)) · 	log |x|

many coins and decides Q with two-sided error at most 1/|x|.

154 M. Müller

Proof. To show that (1) implies (2) let (Q, κ) ∈ W[P]-BPFPT and choose a
program P witnessing this. By Corollary 8 we can assume that P on x uses, say,
g(κ(x)) many |x|-sided dice for some computable g : N → N. Apply the Dice
Lemma to get a program P

′ which on x uses qx-sided dice for qx :=
(
2·�log |x|�)3 ≥

|x|3. Then P
′ on x errs with probability at most

1/|x|+ g(κ(x)) · |x|/qx.

If |x| ≥ g(κ(x)) this is at most 2/|x|. As in the proof of Corollary 8 we get a
program P

′′ with error at most 1/|x| and O(g(κ(x))) many qx-sided dice.
The Turing machine A on x simply simulates P

′′ on x, thereby tossing log qx =
3 · 	log |x|
 many coins whenever P

′′ rolls one of its dice. Since this happens at
most O(g(κ(x))) many times, it follows that A’s number of coins obeys the
claimed bound. Clearly A is exact and A(x) ∼ P

′′(x).
The converse is seen by standard simulation: Given a Turing machine A as

in (2) a program P on x simply simulates A using as random bits the binary
expansions of h(κ(x)) many rolls with 2�log x�-sided dice. P may produce more
random bits than actually needed by A. But because A is exact, this surplus is
the same in any run on x. Thus P(x) ∼ A(x). �

An interesting subclass of W[P]-BPFPT is formed by the parameterized versions
of problems in BPP. Using Corollary 10 it is not hard to give the following
characterization of this part:

Corollary 11. Let (Q, κ) be a parameterized problem. The following statements
are equivalent.
1. (Q, κ) ∈W[P]-BPFPT and Q ∈ BPP.
2. There is a computable h : N → N and an exact, randomized, polynomially

time bounded Turing machine A such that for all x ∈ Σ∗ and every run of A

on x the machine A tosses at most h(κ(x)) · 	log |x|
 many coins and decides
Q with two-sided error at most 1/|x|.

Proof. That (2) implies (1) follows by Corollary 10. Conversely let P witness
that (Q, κ) ∈ W[P]-BPFPT and let AQ witness that Q ∈ BPP. By classical
probability amplification we can assume that AQ has two-sided error at most
1/|x|. Choose for P according to Corollary 10 (2) a Turing machine A, a constant
c ∈ N and functions f, h. We can assume f to be time constructible.

Let A
′ be the following Turing machine: on x it checks if f(κ(x)) ≤ |x|. This

can be done in polynomial time because f is time constructible. If this is the
case A

′ simulates A and otherwise AQ. Then A
′ is an exact randomized Turing

machine deciding Q in polynomial time with two-sided error 1/|x|. A on x uses
at most h(κ(x)) · 	log |x|
 many coins if |x| ≥ f(κ(x)) and at most f(κ(x))O(1)

many coins otherwise. �

4 Derandomization

Derandomization of paraNP-BPFPT: The following has first been observed by
Grohe [8]:

Parameterized Derandomization 155

Proposition 12. The following statements are equivalent.

1. paraNP-BPFPT = FPT.
2. BPP = P.
3. paraNP-BPFPT = W[P]-BPFPT

Scetch of proof: Clearly (1) implies (3). That (2) implies (1) follows by standard
arguments (as e.g. in [7, Proposition 3.7]). We show that (3) implies (2).

Let Q ∈ BPP. Then (Q, 1), i.e. Q with the parameterization which is constantly
one, is in paraNP-BPFPT. By assumption (Q, 1) ∈ W[P]-BPFPT.
Choose a Turing machine A according to Corollary 10 (2). Then A on an input
x ∈ Σ∗ runs in polynomial time and tosses O(log |x|) many coins. Thus simulat-
ing A on all |x|O(1) many random seeds requires only polynomial time. So Q ∈ P.

�
Uniform derandomization of W[P]-BPFPT: Derandomization of W[P]-BPFPT
means that each parameterized problem with a W[P]-randomized algorithm can
be solved in time f(κ(x)) · |x|O(1) for some computable function f . In general
this function f may depend on the problem.

In the classical setting, derandomizing a BPP algorithm is done by running it
on pseudorandom strings which it is not able to distinguish from truly random
seeds. So, intuitively, if we prove derandomization by providing a method for
simulating dice, then we may expect f to be determined by the number and
the size of the dice we simulate, i.e. that f depends only on the size of the
sample space used by the algorithm. But the size of dice can be assumed to be
|x| by Corollary 8. This may make one expect that successful derandomization
is “strongly uniform”: f depends only on the number of dice we simulate.

However, while in the classical setting the length of the random seed can be
assumed to be polynomially related to the running time, in the parameterized
setting we are asked to produce short pseudorandom sequences of length, say,
g(k) · log n which fool algorithms running in time, say, g(k) · nd. It may be
conceivable that the running time of a suitable pseudorandom generator increases
with this running time, say, it depends on d - e.g. we find determinizations

running in time O∗(f) for f(k) = 222...2k

a tower of height d.
So instead of a single f we may only expect a successful derandomization to

produce a family (fd)d of functions such that randomized algorithms running in
time g(k) · nd have determinizations running in time O∗(fd). This relaxes the
assumption of “strong uniformity” to “weak uniformity”.

As usual we call a family (fd)d = (fd)d∈N of functions fd : N→ N computable
if and only if (d, k) �→ fd(k) is computable.

Definition 13. Let t, c : Σ∗ → N. We say that a classical or parameterized
problem has a (t, c)-machine if and only if it can be decided with two-sided
error 1/|x| by an exact randomized Turing machine which on x runs for at most
t(x) many steps and tosses at most c(x) · log |x| many coins. For t, c : N→ N by
a (t, c)-machine we mean a (t ◦ | · |, c ◦ | · |)-machine.

For c : N→ N we let BPP[c] denote the class of all classical problems with a
(t, c)-machine for some polynomial t.

156 M. Müller

Definition 14 – W[P]-BPFPT has a weakly uniform derandomization if and
only if for all computable g : N→ N there is a computable family of functions
(fd)d such that for all d ∈ N and all parameterized problems (Q, κ):

if (Q, κ) has a
(
g(κ(x))·|x|d, g(κ(x))

)
-machine, then (Q, κ) ∈ O∗(fd).

– If we weaken the last condition to:
if (Q, κ) has a

(|x|d, g(κ(x))
)
-machine, then (Q, κ) ∈ O∗(fd).

we say that the BPP part of W[P]-BPFPT has a weakly uniform derandom-
ization.3

– If the family is constant (i.e. there is a f such that fd = f for all d) we say
that W[P]-BPFPT has a strongly uniform derandomization.

Theorem 15. The following statements are equivalent.

1. W[P]-BPFPT has a strongly uniform derandomization.
2. W[P]-BPFPT has a weakly uniform derandomization.
3. The BPP part of W[P]-BPFPT has a weakly uniform derandomization.
4. There is a polynomial time computable, increasing, time-constructible func-

tion g : N→ N and there is a computable family of functions (fd)d such that
for all d ∈ N and all parameterized problems (Q, κ):

if (Q, κ) has a
(|x|d, g(κ(x))

)
-machine, then (Q, κ) ∈ O∗(fd).

5. There is a polynomial time computable, nondecreasing, unbounded function
c : N→ N such that BPP[c] = P.

For nondecreasing, unbounded f : N → N we define the inverse of f to be the
function ιf : N→ N given by

ιf (n) := max
({i ∈ N | f(i) ≤ n} ∪ {1}).

Further we set ι+f := ιf + 1. We need the following simple lemma, more or less
the same as [7, Lemma 3.23].

Lemma 16. ιf and ι+f are nondecreasing, unbounded and ιf ◦f = id, f ◦ ιf ≤ id
and f ◦ ι+f ≥ id for any nondecreasing, unbounded f . Furthermore ιf and ι+f are
computable in polynomial time for any increasing and time constructible f .

Proof of Theorem 15: The rest being trivial it suffices to show that (4) implies (5)
and that (5) implies (1). First we show that (4) implies (5). So assume (4) and
choose a polynomial time computable, increasing, time-constructible g : N→ N

and a computable family of functions (fd)d accordingly. We can assume that for
all d ∈ N the function fd : N→ N is increasing and time constructible.

Because the family (fd)d is computable there is a time constructible increasing
f̃ : N→ N such that for all n ∈ N

f̃(n) ≥ max
{
f1(n), . . . , fn(n)

}
.

By lemma 16 the inverse ιf̃ is polynomial time computable, nondecreasing and

unbounded. Because for all d ∈ N and for all n ≥ d we have f̃(n) ≥ fd(n), it
follows that
3 These modes of speech rely on Corollaries 10 and 11.

Parameterized Derandomization 157

for all d ∈ N for all n ≥ f̃(d) : ιf̃ (n) ≤ ιfd
(n). (1)

We denote subtraction of 1 by s, that is s(n) := max{n− 1, 0}. Set

c := g ◦ s ◦ ιf̃ .

c is polynomial time computable, nondecreasing and unbounded, because it is a
composition of such functions.

Let Q∈BPP[c]. Then there is a constant d ∈ N such that Q has a
(|x|d, c(|x|))-

machine A. We aim to show Q ∈ P. For κc(x) := c(|x|) define

κ := ι+g ◦ κc.

Then κ is polynomial time computable by Lemma 16. Thus (Q, κ) is a parame-
terized problem. Because

c(|x|) ≤ g ◦ ι+g ◦ κc(x) ≤ g(κ(x)),

A is also a
(|x|d, g(κ(x))

)
-machine. By assumption (3) we get (Q, κ) ∈ O∗(fd).

Thus to show Q ∈ P it suffices to show that fd(κ(x)) ≤ |x| for all sufficiently
long x. To see this, first note that for all n > 0

ι+g ◦ g ◦ s(n) = ιg(g(s(n)) + 1 = s(n) + 1 = n, (2)

so ι+g ◦ g ◦ s is the identity on positive numbers. Then for all x with |x| ≥ f̃(d)

fd(κ(x)) = fd ◦ ι+g ◦ g ◦ s ◦ ιf̃ (|x|) = fd ◦ ιf̃ (|x|) ≤ fd ◦ ιfd
(|x|) ≤ |x|.

The first equality holds by definition of κ, the second equality follows with (2)
from ιf̃ > 0 and the first inequality follows with (1) from fd being increasing.

We now show that (5) implies (1). Assume (5) and choose a polynomial time
computable, nondecreasing, unbounded c : N → N, such that BPP[c] = P. For
(1) we have to show for all computable g : N→ N how to decide deterministically
problems with a (g(κ(x)) · |x|O(1), g(κ(x)))-machine. Clearly it suffices to do so
for all computable nondecreasing g. So let such a g : N→ N be given.

First note:

Claim I: There is a computable r : N → N such that any problem (Q, κ)
with a (g(κ(x)) · |x|O(1), g(κ(x)))-machine can be solved in (deterministic) time
r(|x|) · |x|O(1).

Proof of Claim I: Simulating a (g(κ(x)) · |x|O(1), g(κ(x)))-machine on all possible
random seeds and taking a majority vote, decides Q in time

|x|g(κ(x)) · g(κ(x)) · q(|x|).
for some polynomial q. Because κ is polynomial time computable, there is a
constant dκ ∈ N (depending on κ) such that κ(x) ≤ 2|x|

dκ and hence κ(x) ≤ 22|x|

158 M. Müller

for all but finitely (depending on κ) many x. Since g is nondecreasing, we can
hence decide Q in time

|x|g(22|x|
) · g(22|x|

) · p(|x|)

for some polynomial p (depending on (Q, κ)). �

Clearly ι+c is computable. Choose some time constructible f : N→ N with

f ≥ max
{
ι+c ◦ g, g

}
. (3)

Choose r according to Claim I. Without loss of generality we assume r to be
nondecreasing. Let (Q, κ) have a (g(κ(x)) · |x|O(1), g(κ(x)))-machine A. We aim
to show

(Q, κ) ∈ O∗(r ◦ f).

Claim II: Q≥f := {x ∈ Q | |x| ≥ f(κ(x))} ∈ BPP[c].

Proof of Claim II: Define the machine A
′ as follows. On x it first checks if

f(κ(x)) > |x|. This can be done in polynomial time since f is time constructible.
If this is the case, it rejects. If f(κ(x)) ≤ |x| it simulates A. But then A needs
time at most

g(κ(x)) · |x|O(1) ≤ f(κ(x)) · |x|O(1) ≤ |x| · |x|O(1),

where the first inequality follows from g ≤ f by (3). Thus A
′ runs in polynomial

time. Clearly A
′ decides Q≥f with two-sided error at most 1/|x|. If f(κ(x)) > |x|,

then A
′ uses no coins at all. If f(κ(x)) ≤ |x|, then A

′ uses at most g(κ(x)) ·
	log |x|
 many coins. But then

g(κ(x)) ≤ c ◦ ι+c ◦ g ◦ κ(x) ≤ c ◦ f ◦ κ(x) ≤ c(|x|).

Here the second inequality holds because c is nondecreasing and f ≥ ι+c ◦ g by
(3). The third inequality holds because c is nondecreasing and f(κ(x)) ≤ |x|. �

By Claim II and our assumption we get Q≥f ∈ P. We get the following algorithm
solving Q: on x it first checks in polynomial time if f(κ(x)) > |x|. If this is the
case it simulates a decision procedure for Q running in time (recall that r is
nondecreasing)

r(|x|) · |x|O(1) ≤ r(f(κ(x))) · |x|O(1).

Otherwise it runs a polynomial time procedure deciding Q≥f . This shows that
(Q, κ) ∈ O∗(r ◦ f). �

5 Questions

We characterized “uniform” derandomization of W[P]-BPFPT in terms of classi-
cal complexity theory. An obvious question is: Can you get rid of the uniformity

Parameterized Derandomization 159

assumption? Another: Can you similarly characterize derandomization of W[1]-
BPFPT in terms of classical complexity theory?

For W[1]-BPFPT no strong probability amplification is known, that is, it is
not known if it is possible to amplify a success probability of 1/2+1/|x| to 3/4 or
of 3/4 to 1−1/|x|. Classical arguments using Chernoff bounds allow to amplify a
success probability of 3/4 to, say, 1−22−k

. This question is related to the struggle
for parameterized analogues of Todas Theorem [14] like Wt] ⊆ FPT#W[1] or
A[t] ⊆ FPT#W[P], as has been asked for in [5,7].

. . . to mention some of the yet unresolved theoretical questions. On the prac-
tical side we hope to have provided definitions sufficiently handy for designing
randomized solutions for parameterized problems.

Acknowledgements. I thank Martin Grohe for proposing the concept of weak-
ness for uniformity and I thank Jörg Flum for his comments on an earlier draft
of this paper.

References

1. Alekhnovich, M., Razborov, A.A.: Resolution is Not Automatizable Unless W[P]
is Tractable. In: Proceedings of the 41th IEEE Symposium on Foundations of
Computer Science, pp. 210–219 (2001)

2. Arvind, V., Raman, V.: Approximation Algorithms for Some Parameterized Count-
ing Problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp.
453–464. Springer, Heidelberg (2002)

3. Chen, Y., Flum, J.: The Parameterized Complexity of Maximality and Minimality
Problems. Annals of Pure and Applied Logic 151(1), 22–61 (2008); In: Bodlaender,
H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 22–61. Springer,
Heidelberg (2006)

4. Chen, Y., Flum, J., Grohe, M.: Machine-based methods in parameterized complex-
ity theory. Theoretical Computer Science 339, 167–199 (2005)

5. Downey, R.G., Fellows, M.R., Regan, K.W.: Parameterized Circuit Complexity and
the W Hierarchy. Theoretical Computer Science 191(1–2), 97–115 (1998)

6. Eickmeyer, K., Grohe, M., Grübner, M.: Approximisation of W[P]-complete min-
imisation problems is hard. In: 23rd CCC (2008)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

8. Grohe, M.: Communication
9. Montoya, J.A.: Communication

10. Müller, M.: Randomized Approximations of Parameterized Counting Problems.
In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
50–59. Springer, Heidelberg (2006)

11. Müller, M.: Valiant-Vazirani Lemmata for Various Logics (manuscript)
12. Papadimitriou, C.H.: Computational Complexity. Addison Wesley, Reading (1994)
13. Sloper, C., Telle, J.A.: Towards a Taxonomy of Techniques for Designing Param-

eterized Algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006.
LNCS, vol. 4169, pp. 251–263. Springer, Heidelberg (2006)

14. Toda, S.: PP is as Hard as the Polynomial Hierarchy. SIAM Journal on Comput-
ing 20(5), 865–877 (1991)

A Linear Kernel for Planar Feedback Vertex Set

Hans L. Bodlaender and Eelko Penninkx

Department of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

hansb@cs.uu.nl, penninkx@cs.uu.nl

Abstract. In this paper we show that Feedback Vertex Set on pla-
nar graphs has a kernel of size at most 112k∗. We give a polynomial
time algorithm, that given a planar graph G finds a equivalent planar
graph G′ with at most 112k∗ vertices, where k∗ is the size of the min-
imum Feedback Vertex Set of G. The kernelization algorithm is based
on a number of reduction rules. The correctness of most of these rules
is shown using a new notion: bases of induced subgraphs. We also show
how to use this new notion to automatically prove safeness of reduction
rules and obtain tighter bounds for the size of the kernel.

1 Introduction

The Feedback Vertex Set problem is one of the classic graph optimization
problems, with several applications [18]. In this paper, we focus on kernelization
algorithms for this problem, when restricted to planar undirected graphs. We
assume the reader to be familiar with standard terminology of fixed parameter
complexity, see e.g., [17, 30, 19].

Much research has been done on FPT algorithms for Feedback Vertex
Set. The problem was first shown to be in FPT by Downey and Fellows [16].
Recently Chen et al. [10] showed that the problem on directed graphs is also in
FPT, solving a long standing open problem.

Several papers gave different and increasingly faster FPT algorithms for the
Feedback Vertex Set problem on undirected graphs [6, 17, 4, 31, 27, 32, 24,
12]. The currently fastest algorithms are a probabilistic algorithm using O(4kkn)
time [4] and a deterministic algorithm using O(5kkn2) time [9].

Work has also done on exact algorithms for Feedback Vertex Set [33, 20];
the current fastest algorithm by Fomin et al. [20] uses O(1.7548n) time.

Several papers have been written on approximating the Feedback Vertex
Set problem. Bar-Yehuda et al. [3] gave an algorithm with a ratio O(log n).
Independently, Becker and Geiger [5] and Bafna et al. [2] gave polynomial time
approximation algorithms with ratio two. Chudak et al. [11] gave an interest-
ing interpretation of these two algorithms with the primal-dual method, and
obtained a simpler version of the algorithm from [2].

The Feedback Vertex Set problem is still NP-complete when restricted to
planar graphs [22]. Demaine and Hajiaghayi [13] give, amongst others, a PTAS

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 160–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Linear Kernel for Planar Feedback Vertex Set 161

for planar Feedback Vertex Set. Some work has been done on the directed
variant of on planar graphs, see [26, 23, 34].

In this paper, we derive a kernelization algorithm for Feedback Vertex
Set on planar graphs that gives a linear kernel. We present an algorithm, that
given a planar graph G and an integer k, finds a planar graph G′ with at most
112k∗ vertices and an integer k′ ≤ k, such that G has a feedback vertex set of
size k, if and only if G′ has a feedback vertex set of size k′. Here k∗ denotes the
size of some minimum FVS for G. This is an improvement of the cubic kernel on
planar graphs given by [28]. For general graphs, it is known that there exists a
polynomial kernel [8, 7]. A cubic kernel for Feedback Vertex Set on general
graphs was derived in [7]. For a good overview paper on kernelization, see [25].

Recently, Van Dijk [35] has experimentally evaluated the kernelization algo-
rithm from [7]. It appears that in a practical setting, this algorithm runs very
fast and often gives substantial size reductions of input graphs.

Once a kernel has been found, some exact algorithm for Feedback Vertex
Set on planar graphs can be used to solve the problem on the kernel. See [15,
14, 21].

In many cases, one would expect that kernels for problems on planar graphs
are small. In some cases this is trivial (e.g., the four colour theorem directly
implies that Independent Set on planar graphs has a kernel of size at most
4k); in other cases, involved analysis appears to be necessary. An interesting
result is for instance the kernel for Dominating Set on planar graphs of size
at most 335k, see [1].

This paper is organized as follows. Section 2 gives some preliminary defini-
tions. In Section 3, we present some notions that are useful for proving correct-
ness of reduction rules for the Feedback Vertex Set problem. In Section 4,
we present a number of reduction rules. In Section 5 we show how to use an au-
tomated procedure to prove reduction rules. In Section 6 we prove a first linear
size bound and in Section 7 we prove the 112k∗ size bound. Some final comments
are made in Section 8.

2 Preliminaries

All graphs in this paper are undirected, planar, and can have parallel edges and
self-loops. Consider a graph G = (V, E). A path is a sequence of vertices and
edges v0e1v1e2 . . . envn such that ei = {vi−1, vi} and vi �= vj for all 1 ≤ i < j ≤ n.
A cycle is a path where v0 = vn and all other vertices are different. The length
of a path or cycle is the number of edges used. By G[W] we denote the graph
induced by W ⊆ V , defined as G[W] = (W, E ∩W ×W). The neighbourhood
N(v) = {u ∈ V \ v : {u, v} ∈ E} of a vertex v ∈ V is the set of vertices adjacent
to v. The neighbourhood of a set U ⊆ V is defined as N(U) = (∪u∈UN(u)) \U .
The border β(U) of a set U ⊆ V is defined as β(U) = {u ∈ U : N(u) \ U �= ∅}.

The degree d(v, W) = |{e ∈ E : e = {v, u}, u ∈W}| of a vertex v with respect
to W ⊆ V is defined as the number of edges between v and vertices from W . We
use d(v) as a shorthand for d(v, V). We sometimes use single vertices v instead

162 H.L. Bodlaender and E. Penninkx

u1 u2 u3

v

(a) One-twig

u2 u3 u4 u5u1

w

v

(b) Two-twig

Fig. 1. Twigs, grey vertices are connected to the rest of the graph

of the singleton set {v} for readability. E.g., d(v, w) = 2 implies that there are
exactly two parallel edges {v, w}.

A forest is a graph without cycles, and a tree is a connected forest. A feedback
vertex set (FVS) of G = (V, E) is a subset of vertices F ⊆ V such that G[V \F]
is a forest. The Feedback Vertex Set problem asks for a FVS of minimum
size.

Let A be some FVS of G. The graph G[V \A] is a forest consisting of t trees.
By Ti ⊆ V, 1 ≤ i ≤ t we denote all trees in this forest. A tree Ti is called a
singleton tree if |Ti| = 1.

A twig of size n consists of vertices U = {u1, . . . , un} such that G[U] is a
path, and a minimal non-empty set of observers W ⊂ V \U of size at most two
such that the following three rules hold: (i) d(ui, ui+1) = 1 if 1 ≤ i ≤ n− 1 and
d(ui, uj) = 0 if |i− j| �= 1, (ii) d(ui, W) > 0, (iii) N(ui) ⊆ W ∪ {ui−1, ui+1} for
i = 2 . . . n−1. We use the terms one-twig and two-twig to denote twigs where
|W | = 1 and |W | = 2 respectively. See Figure 1 for examples. Grey colored
vertices can be connected to other vertices in the graph.

3 Domination

Consider a graph G = (V, E), vertex set U ⊆ V and the induced graph G[U].
Now consider a cycle C such that C ∩U �= ∅ and C \U �= ∅. Each component of
the cycle in G[U] either touches G[U] in one vertex on the border, or it passes
through G[U] by following a path between two different vertices in β(U). Given
some subset X ⊆ U we define the sets A1(X) and A2(X) that contain all possible
ways a cycle C can interact with G[U \X]:

– A1(X) = {u ∈ U : d(u, V \ U) ≥ 2} \X contains all vertices in G[U] that
are on the border, have at least two edges to the outside of G[U], and are
not in X .

– A2(X) = {{u, v} ∈ 2β(U)\X : u �= v and there is a path in G[U \X] between
u and v} contains all unordered pairs {u, v} of vertices on the border that
are not in X having a path between u and v in G[U \X].

A Linear Kernel for Planar Feedback Vertex Set 163

Note that if A1(X) = A2(X) = ∅ and X is a FVS in G[U] then all cycles in G
that use a vertex in U are blocked by some vertex in X ⊆ U . We define that X
dominates Y in G[U], denoted as X |= Y , if X, Y ⊆ U , X is a FVS in G[U] and:

– Y is not a FVS in G[U], or
– |X | ≤ |Y |, A1(X) ⊆ A1(Y) and A2(X) ⊆ A2(Y).

It is easy to see that our definition of domination is intuitive: if X |= Y in some
G[U] then every cycle that is broken by Y is also broken by X , or Y is not even
a FVS in G[U].

A basis B ⊆ 2U of G[U] is a subset of the powerset of U such that every Y ⊆ U
is dominated by some X ∈ B. A trivial basis can be constructed by taking every
FVS F of G[U]. A basis B is minimal if there are no X, Y ∈ B with X �= Y such
that X |= Y . Note that {F ∗} is a minimal basis for G = G[V] (in which case
A1 ≡ A2 ≡ ∅) if and only if F ∗ is a minimum FVS of G. We have the following
lemma:

Lemma 1. Every minimal basis B for G[U] contains exactly one X ∈ B such
that |X | > |Y | for all Y ∈ B where Y �= X, and A1(X) = A2(X) = ∅.
Proof. For every basis B for G[U] at least one element X ∈ B has the property
A1(X) = A2(X) = ∅. If B is minimal then no Y ∈ B, Y �= X exists such that
X |= Y , so |Y | < |X | for all Y ∈ B, Y �= X . Also note that there is no Y ⊆ U
such that Y |= X because the basis is minimal. Thus, X is a minimum subset
of U such that A1(X) = A2(X) = ∅. �

Lemma 2. Consider a basis B of G[U]. Let C =

⋂
X∈B X. Then there exists an

optimal FVS F ∗ of G such that C ⊆ F ∗.

Proof. Take an optimal FVS F . Consider the set Y = F ∩ U of vertices that
are inside G[U]. By definition of a basis there must be some X ∈ B such that
X |= Y . Replace Y by X to obtain an optimal FVS F ∗ such that C ⊆ F ∗. �

4 Rules

In this section we present reduction rules. A safe reduction rule transforms an
instance of FVS (G, k) to another instance (G′, k′) such that G has a FVS of
size at most k if and only if G′ has a FVS of size k′. Safeness of most rules is
trivial.

Rules transform G, mostly by selecting vertices that are included in some
optimal FVS. Selection of a vertex v ∈ V results in a new instance (G[V \v], k−1).
Multiple selected vertices may be processed in any order.

For vertices U observed in a reduction rule we assume without loss of general-
ity that for all vertices u ∈ β(U) on the border of G[U] we have d(u, V \U) ≥ 2,
meaning that cycles can touch G[U] in all vertices on the border. This generaliza-
tion is allowed because every basis B also forms a basis if we lower the out-degree
of the vertices u ∈ β(U). This can be seen by definition of dominance. When
testing for rule i we assume that rules j < i do not apply.

164 H.L. Bodlaender and E. Penninkx

4.1 Simple Rules

We present the first six rules. Correctness of Rules 1–5 is trivial.

Rule 1 (Self Loop Rule). If there is an edge {v, v} ∈ E then select v.

Rule 2 (Triple Edge Rule). If there are more than two parallel edges {v, w}
in G then remove all but two.

Rule 3 (Degree Zero Rule). If there is a vertex v ∈ V such that d(v) = 0
then remove v.

Rule 4 (Degree One Rule). If there is a vertex v ∈ V such that d(v) = 1
then remove v.

Rule 5 (Degree Two Rule). Suppose there is a vertex v such that d(v) = 2
with incident edges {v, w} and {v, x}. Then remove v and add an edge {w, x}.
Note that if w = x a self-loop is added.

Rule 6 (Degree Three Rule). Suppose there is a vertex v such that d(v) = 3
having only two neighbours w and x where d(v, w) = 2. Then select w.

This rule is safe because B = {{w}} is a basis for {v, w, x}. We can select w
because of Lemma 2.

The following two lemmas are necessary to prove safeness of the other rules.
We use the short term tree for a set of vertices that induces a subtree of G.

Lemma 3. Suppose Rules 1–6 do not apply in a planar graph G. Consider a
tree T ⊆ V with leafs L. Then |N(l) \T | ≥ 2 for all l ∈ L, meaning that leaf has
at least two neighbours outside of T .

Proof. We have d(l, T) = 1 and d(l, N(T)) ≥ 2 because the Degree Two Rule
does not apply. If |N(l)| = 2 then the Degree Three Rule would apply, so |N(l)| ≥
3 proving the lemma. �

Lemma 4. Suppose Rules 1–6 do not apply in graph G. Consider a tree T ⊆ V
with leafs L. If |N(T)| = 2 then |L| ≤ 2.

Proof. Suppose |L| = 3 and consider the set M = N(T) ∪ {v} where v ∈ T is
the unique node in T with d(v, T) = 3. We have a disjoint path between every
node in L and M , which implies a K3,3 minor in G contradicting the planarity
of G. If |L| > 3, the case |L| = 3 is contained as a minor. �

Lemma 5. Consider a singleton tree T (i.e., a single vertex) in graph G where
Rules 1–6 do not apply. If |N(T)| = 2 then d(T, N(T)) = 4 and T is connected
with double edges to both its neighbours.

Proof. Because the Degree Three Rule does not apply we have d(T) > 3. As
|N(T)| = 2 we directly get d(T) = 4. �

A Linear Kernel for Planar Feedback Vertex Set 165

4.2 Less Simple Rules

Rule 7 (Small Tree Rule I). Consider two nodes v, w ∈ V and a tree T such
that N(T) = {v, w} and |T | ≥ 3. Then select v and w.

Because of Lemma 4 we know that T has exactly two leafs l1, l2. Because of
Lemma 3 we know that l1, l2 are connected to both v and w. The Degree Two
Rule does not apply, so every t ∈ T \ {l1, l2} is connected to at least one of v, w.
Observe that there is no FVS of size 1 in G[T ∪N(T)], and that A1({v, w}) =
A2({v, w}) = ∅. So B = {{v, w}} is a basis for G[T ∪ N(T)] by Lemma 1, and
we can select both because of Lemma 2.

Rule 8 (Small Tree Rule II). Consider two nodes v, w ∈ V and a tree T =
{t1, t2} such that N(T) = {v, w} and d(t1) ≥ d(t2). If d(t2) = 3 and d(v, w) = 0
then contract edge {t1, t2} and add an edge {v, w}, otherwise select v and w.

If d(t2) = 3 and d(v, w) = 0 then B = {{t1}, {v, w}} is a basis for G[T ∪
N(T)]. For the new subgraph we have a basis B′ = {{t}, {v, w}} where t is
the vertex created by contracting {t1, t2}. As A1(t1) = A1(t) = {v, w} and
A2(t1) = A2(t) = {{v, w}} we see that this transformation is safe. Note that
this leads to the creation of a singleton tree T with |N(T)| = 2. In the other
case B = {{v, w}} is a basis so we can select v and w.

Rule 9 (Parallel Singleton Trees Rule). If there are four different vertices
v1, v2, w1, w2 such that d(vi, wj) = 2 and d(wi) = 4 then select v1 and v2.

This rule is safe because B = {{v1, v2}} is a basis for G[{v1, v2, w1, w2}]. This
rule prevents an arbitrary number of singleton trees with |N(T)| = 2 to emerge.

Rule 10 (One-Twig Rule). If there is a one-twig of size 6 with path U =
{u1, . . . , u6} and observer v then select v.

If v is not selected we have to select at least 3 vertices from U because d(v, U) ≥ 6,
but this choice is dominated by {v, u1, u6}. This implies that there is a basis
where v is always included, so we select v by Lemma 2.

Rule 11 (Two-Twig Rule). If there is a two-twig of size 15 with path U =
{u1, . . . , u15} and observers v, w with d(v, U) ≥ d(w, U) then select v.

If v is not selected we have to select at least 4 vertices from U because d(v, U) ≥ 8,
but this choice is dominated by {v, w, u1, u15}. This implies that there is a basis
where v is always included, so we select v by Lemma 2.

With Rules 7–11 we can prove another result.

Lemma 6. Consider a graph G where Rules 1-11 do not apply. Consider two
vertices v, w ∈ V . Then at most one maximal tree T exists in G such that
N(T) = {v, w} and |T | = 1.

Proof. If |N(T)| = 2 and |T | ≥ 2 then one of the Small Tree Rules applies, so
|T | = 1. Because of the Degree Three Rule we have d(T, v) = d(T, w) = 2, so T
is a singleton tree with |N(T)| = 2. Because of the Parallel Singleton Tree Rule
we know that there is only one such T , proving the lemma. �

166 H.L. Bodlaender and E. Penninkx

4.3 The Algorithm

The algorithm to kernelize a given instance of Planar FVS (G, k) is to apply all
rules in order until no rule applies. It is clear that all rules use time polynomial
in |V |. Applying a rule results in either a decrease in the number of vertices,
edges or k, so the complete kernelization algorithm also uses time and memory
polynomial in |V |. We are only interested in the size of the remaining kernel, so
we omit a more detailed analysis of the complexity of the algorithm.

5 Automated Proofs

In this section we will explain how to use the concept of a basis to automatically
find or test reduction rules that select some vertex for a given subgraph. Consider
some graph G = (V, E) and vertex set U ⊆ V . Note that B = {F ⊆ V :
F is a FVS for G[U]} is a basis for G[U]. We first shrink B by removing every
Y ∈ B for which there is some X ∈ B such that X |= Y and Y |=� X . Next
we partition the basis B in different groups B1, . . . ,Bn such that if X |= Y and
Y |= X then X, Y ∈ Bi. Note that every minimal basis can be constructed by
taking exactly one item from every Bi, which implies that every minimal basis
has equal cardinality.

Once the basis is partitioned in groups it is straightforward to check if we can
construct a minimal basis such that some v ∈ V is included in every item of this
basis such that Lemma 2 applies.

Correctness of this algorithm trivial. Time and memory complexity of this
algorithm are O(c|U|), with c > 1. In our implementation c = 2 because we just
generate every possible subset of U for step 1. In Section 7 we use this method
to find improved versions of the Twig-Rules.

6 A Linear Bound on the Size of the Kernel

In this section we will prove the first result of this paper. Note that there is a
simple polynomial time algorithm that executes all rules until none is possible.

Theorem 1. Consider a planar graph G = (V, E) where none of the reduction
rules can be applied. Let A ⊆ V be a minimum FVS of size k∗. Then |V | = O(k∗).

Consider some embedding of G on the plane, and a maximal tree T in the
graph G[V \ A]. We order the edges between T and A as we would encounter
them in a clockwise walk around the tree at an infinitesimally distance, ignoring
parallel edges. We start right before the last edge of T outward from some leaf.
From this sequence of edges we construct a sequence S = s1s2 . . . sm of vertices
that are the endpoint of the edges in A. See Figure 2(a) for an example, where
s1 = s2 = s3 = v1, s2 = v2 and sm = vn. We define that s0 = sm and sm+1 = s1.
A switch occurs when si �= si+1. We claim the following:

Lemma 7. The number of switches s(T) of a tree T is at most 2|N(T)| − 2.

A Linear Kernel for Planar Feedback Vertex Set 167

v1

v1

v1

v2

v3

v3

vn−2

vn−2

vn−1

vn−1

vn

v3

v2

(a) Vertices

v1

v1

v1

v2

v3

v3

vn−2

vn−2

vn−1

vn−1

vn

v3

v2

(b) Decomposition

Fig. 2. An example tree (leafs are dark grey, internal vertices light gray)

Proof. Because the graph is planar there are no 1 ≤ i < j < k < l ≤ m such
that si = sk and sj = sl. This implies that if si �= si+1 then (i) there is no j > i
such that sj = si, or (ii) there is no j < i such that sj = si+1, or (iii) both.
This implies that we have at most 2|N(T)| − c values of i such that si �= si+1

for 1 ≤ i ≤ m. Because s(T) = 0 for |N(T)| = 1 we have c = 2 proving the
lemma. �

Lemma 8. The number of leafs |L| of a tree T is at most s(T).

Proof. Because of Lemma 3, every leaf contains at least one switch. �

We will now show how to decompose a tree T in internal vertices and twigs. A
vertex v ∈ T is an internal vertex if d(v, T) ≥ 3. When these vertices are removed
from T we obtain a collection of paths, which we will break apart in maximal
subpaths that form the path of some twig. Consider some path P = p1p2 . . . pn.
Note that for every vertex pi ∈ P we have d(pi, T) ≤ 2 and d(pi) ≥ 3 because
of the Degree Two Rule, so pi is connected to at least one vertex in A. We now
find the maximum j such that p1 . . . pj is the path of some twig. Note that j ≥ 2
if n ≥ 2. If j < n then a switch occurs between pj and pj+1 by definition of a
twig. In this case we remove p1 . . . pj from P to obtain P ′, and the procedure
is repeated. After all paths are processed we have decomposed T in twigs and
internal vertices. See Figure 2(b) for an example.

Lemma 9. Consider a maximal tree T in the graph G[V \A] with s(T) switches.
The number of twigs in this tree is at most 2s(T)−3, and this bound is obtained
by placing exactly one switch at every leaf.

Proof. First note that it is suboptimal to place more than one switch at a leaf.
To maximize the number of twigs we either place a switch at a leaf, or at some
internal path. We call the number of switches at a leaf x, and at an internal
path y. Hence we have x leafs, at most x− 2 internal vertices U , and the graph
G[T \U] contains at most 2x− 3 paths. We have y switches left to create extra

168 H.L. Bodlaender and E. Penninkx

twigs from these paths, yielding a total of 2x + y − 3 paths, with x + y = s(T).
This is of course maximized by taking x = s(T). �

Lemma 10. Consider a maximal tree T in the graph G[V \ A]. Then |T | ≤
58|N(T)| − 102.

Proof. The number of switches s(T) is at most 2|N(T)| − 2 by Lemma 7, the
number of twigs is at most 2s(T)−3 by Lemma 9, and the number of leafs |L| of
T is at most s(T) by Lemma 8. A twig has size at most 14 because of the Two
Twig Rule, and we have at most |L| − 2 internal vertices. Combining all these
ingredients yields the claimed result. �

We now only need a bound on the sum of |N(T)| over all trees T . We will use a
simple geometric argument. Consider the planar graph H with vertex set A, no
double edges, and a face for every tree Ti in G[V \ A] having incident vertices
N(Ti). We claim the following:

Lemma 11.
∑n

i=1 |N(Ti)| ≤ 2|E(H)|.
Proof. Let fi be the face in H that corresponds to Ti, and let |fi| be the number
of vertices incident to fi. Then |N(Ti)| = |fi|. But fi is also equal to the num-
ber of incident edges to fi. Hence

∑n
i=1 |N(Ti)| counts every edge of the faces

corresponding to Ti twice, which proves the lemma. �

Lemma 12.

∑n
i=1 |N(Ti)| ≤ 6k − 12

Proof. Because H is planar we can use Euler’s formula to obtain |E(H)| ≤
3|V (H)| − 6. Using |V (H)| = |A| = k and Lemma 11 we prove the result. �

Combining Lemmas 10 and 12 almost proves Theorem 1, we only have to add the
possible singleton trees with |N(T)| = 2. Because of Lemma 6 there can be at
most one between every pair of nodes in A. Because G is planar we know that the
number of these nodes is at most the number of edges in a planar graph contain-
ing |A| = k nodes. This adds at most 3k−6, bringing the exact constant in Theo-
rem 1 to 352. In the following section we will show how to prove a lower constant.

7 Improving the Bound on the Size of the Kernel

We can improve the result from the previous section by using improved rules
for the one- and two-twigs. Due to space limitations we only state the new rules
and the final result. Both rules were found using the algorithm from Section 5.
We ran the algorithm on a computer with a 2GHz AMD Athlon processor and
it took 406 seconds for all 262144 cases necessary for Z(2+, 1). Implementation
was done in C++ using the LEDA graph library [29].

Rule 12 (Improved One-Twig Rule). If there is a one-twig of size 3 with
path-nodes u1, u2, u3 and observer v then remove u2 and add edges {v, u1}, {v, u3}
and {u1, u3}.

A Linear Kernel for Planar Feedback Vertex Set 169

Rule 13 (Improved Two-Twig Rule). Consider a twig with path U = u1 . . .
un and observers W = {v, w}. Let qi = d(ui, T)− d(ui, W ∪ U). By Z(a, b) we
denote the maximum path length such that we have no reduction rule if qi = a
and qn = b. If n > Z(q1, qn) then we have a reduction rule. We have found
the following values for Z(a, b): Z(0, 0) = 1, Z(1, 0) = Z(0, 1) = 3, Z(2+, 0) =
Z(0, 2+) = 4, Z(1, 1) = Z(2+, 1) = Z(1, 2+) = 5, Z(2+, 2+) = 6.

Theorem 2. Consider a planar graph G = (V, E) where none of the reduction
rules can be applied. Let A ⊆ V be a minimum FVS of size k∗. Then |V | ≤ 112k∗.

8 Conclusions

In this paper, we gave a polynomial time algorithm for kernelization of planar
graphs. Such algorithms are also useful as a preprocessing step, i.e., the algo-
rithm can be applied in a setting where k is not a priory bounded, and then
functions as a preprocessing heuristic. Van Dijk [35] has experimentally evalu-
ated the kernelization algorithm for general graphs from [7]. These results are
very promising: on several graphs taken from applications, the kernelization gives
a significant size reduction, and the kernelization algorithm appears to be very
fast.

All rules in this paper are local, and operate on specific subgraphs contain-
ing at most 9 nodes if we use the improved Twig-Rules. This implies that one
automated rule that checks every connected subgraph of size at most 9 can re-
place them all. The algorithm on general graphs for the cubic kernel [7] uses two
rules that are not local. It would be interesting to see if a cubic kernel could
be obtained using just local rules. Also, safeness of the rules does not rely on
planarity; only the proof of the bound does. It would be interesting to see if the
result can be generalized to larger classes of graphs, e.g., graphs embeddable on
a fixed surface or graphs avoiding a minor.

Another interesting result would be linear kernel for Feedback Vertex Set
on general graphs. Also a smaller constant for the linear kernel presented in this
paper would be of interest.

References

[1] Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for
dominating sets. J. ACM 51, 363–384 (2004)

[2] Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Disc. Math. 12, 289–297 (1999)

[3] Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for
the vertex feedback set problem with applications to constraint satisfaction and
Bayesian inference. In: Proceedings of the 5th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 1994, pp. 344–354 (1994)

[4] Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset
problem. J. Artificial Intelligence Research 12, 219–234 (2000)

170 H.L. Bodlaender and E. Penninkx

[5] Becker, A., Geiger, D.: Optimization of Pearl’s method of conditioning and greedy-
like approximation algorithms for the vertex feedback set problem. Artificial In-
telligence 83, 167–188 (1996)

[6] Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Computer Science 5(1), 59–68
(1994)

[7] Bodlaender, H.L.: A cubic kernel for feedback vertex set. In: Thomas, W., Weil,
P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 320–331. Springer, Heidelberg (2007)

[8] Burrage, K., Estivill-Castro, V., Fellows, M.R., Langston, M.A., Mac, S., Rosa-
mond, F.A.: The undirected feedback vertex set problem has a poly(k) kernel.
In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
192–202. Springer, Heidelberg (2006)

[9] Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for the
feedback vertex set problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS
2007. LNCS, vol. 4619, pp. 422–433. Springer, Heidelberg (2007)

[10] Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. In: Proceedings STOC 2008 (to
appear, 2008)

[11] Chudak, F., Goemans, M., Hochbaum, D., Williamson, D.: A primal–dual inter-
pretation of two 2-approximation algorithms for the feedback vertex set problem
in undirected graphs. Operations Research Letters 22, 111–118 (1998)

[12] Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.:
An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set problem.
In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Hei-
delberg (2005)

[13] Demaine, E.D., Hajiaghayi, M.: Bidimensionality: New connections between FPT
algorithms and PTASs. In: Proceedings of the 16th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2005, pp. 590–601 (2005)

[14] Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y.,
Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg
(2006)

[15] Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms
on planar graphs: Exploiting sphere cut branch decompositions. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg
(2005)

[16] Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness.
Congressus Numerantium 87, 161–178 (1992)

[17] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1998)

[18] Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Handbook
of Combinatorial Optimization, Amsterdam, The Netherlands, vol. A, pp. 209–
258. Kluwer, Dordrecht (1999)

[19] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

[20] Fomin, F.V., Gaspers, S., Knauer, C.: Finding a minimum feedback vertex set
in time O(1.7548n). In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006.
LNCS, vol. 4169, pp. 183–191. Springer, Heidelberg (2006)

[21] Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar
graphs. J. Graph Theory 51, 53–81 (2006)

[22] Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

A Linear Kernel for Planar Feedback Vertex Set 171

[23] Goemans, M.X., Williamson, D.P.: Primal-dual approximation algorithms for
feedback problems in planar graphs. Combinatorica 17, 1–23 (1997)

[24] Guo, J., Gramm, J., Hffner, F., Niedermeier, R., Wernicke, S.: Compression-based
fixed-parameter algorithms for feedback vertex set and edge bipartization. Journal
of Computer and System Sciences 72(8), 1386–1396 (2006)

[25] Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
ACM SIGACT News 38, 31–45 (2007)

[26] Hackbusch, W.: On the feedback vertex set problem for a planar graph. Comput-
ing 58, 129–155 (1997)

[27] Kanj, I.A., Pelsmajer, M.J., Schaefer, M.: Parameterized algorithms for feedback
vertex set. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS,
vol. 3162, pp. 235–248. Springer, Heidelberg (2004)

[28] Kloks, T., Lee, C.M., Liu, J.: New algorithms for k-face cover, k-feedback vertex
set, and k-disjoint cycles on plane and planar graphs. In: Kučera, L. (ed.) WG
2002. LNCS, vol. 2573, pp. 282–295. Springer, Heidelberg (2002)

[29] Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge (1995)

[30] Niedermeier, R.: Invitation to fixed-parameter algorithms. Universität Tübingen,
Habilitation Thesis (2002)

[31] Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable
algorithms for undirected feedback vertex set. In: Bose, P., Morin, P. (eds.) ISAAC
2002. LNCS, vol. 2518, pp. 241–248. Springer, Heidelberg (2002)

[32] Raman, V., Saurabh, S., Subramanian, C.R.: Faster algorithms for feedback ver-
tex set. In: Proceedings 2nd Brazilian Symposium on Graphs, Algorithms, and
Combinatorics, GRACO 2005. Electronic Notes in Discrete Mathematics, vol. 19,
pp. 273–279 (2005)

[33] Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds,
R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)

[34] Stamm, H.: On feedback problems in planar digraphs. In: Möhring, R.H. (ed.)
WG 1990. LNCS, vol. 484, pp. 79–89. Springer, Heidelberg (1991)

[35] van Dijk, T.: Fixed parameter complexity of feedback problems. Master’s thesis,
Utrecht University (2007)

Parameterized Chess

Allan Scott and Ulrike Stege

Department of Computer Science, University of Victoria

Abstract. It has been suggested that the parameterized complexity
class AW[*] is the natural home of k-move games, but to date the number
of problems known to be in this class has remained small. We investigate
the complexity of Short Generalized Chess—the problem of decid-
ing whether a chess player can force checkmate in the next k moves. We
show that this problem is complete for AW[*].

1 Games as Combinatorial Problems

When considering games as cominatorial problems, we ask whether the next
player to move has a winning strategy—a strategy which is guaranteed to win
the game for him regardless of his opponent’s moves. Parameterized complexity
approaches games by considering k-move or short games [1], which ask whether
the game has a winning strategy that takes at most k moves. To date there
are three AW[*]-completeness results for short games: Short Node Kayles
[1], Short Generalized Geography [1], and Short Pursuit [6]. All proofs
used reductions from Quantified Boolean t-Normalized Formula Satis-
fiability or its unitary variant. One short game, Restricted Alternating
Hitting Set, has been shown to be in FPT when using an additional parameter
[1]. The games Pebble Game, Peg Game and Cat and Mouse are known to
be XP-complete when parameterized by the number of movable pieces available
to the players [2,5]. Here, we investigate the complexity of Short Generalized
Chess. Generalized Chess, is known to be EXPTIME-complete [4]. These
forms of chess are generalized in that they are played on a n × n board.1 For-
mally, a position is a tuple containing all information pertinent to a move in the
game. A move is a transition from one position to another. Each game consists
of a discrete sequence of turns. On each turn, one player makes a move. Since
the concepts of move and turn are closely related in chess, we use the two terms
interchangably.

The remainder of this article is organized as follows. In Section 2, we discuss
the class AW[*]. In Section 3 we formally define Short Generalized Chess.
In sections 4–5 we prove the parameterized membership and hardness of Short
Generalized Chess.
1 If we consider how to find a winning strategy for chess exactly as played–namely on

an (8 × 8)-chessboard–the number of possible positions is bounded by a constant,
i.e. (6 · 2 + 1)64. This is since every space can either be occupied by one of 6 kinds
of pieces in either black or white, or remain empty. Thus we can evaluate the game
in constant time.

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 172–189, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Parameterized Chess 173

2 The Class AW[*]

Although many short generalized games can easily be shown to be in PSPACE
and XP, in their monograph [3], Downey and Fellows suggest that the “natural
home” of k-move games is the class AW[*]. In support of this conjecture, we
prove that Short Generalized Chess is in AW[*] by reducing it to Quanti-
fied Boolean t-Normalized Formula Satisfiability (which is complete
for AW[*] [3]).

Quantified Boolean t-Normalized Formula Satisfiability
(QBTNFSAT)
Instance: Positive integers r, k1, . . . , kr; a sequence s1, . . . , sr of pairwise
disjoint sets of boolean variables; a boolean formula F over the variables
s1 ∪ . . . ∪ sr. F consists of t alternating layers of conjunctions and dis-
junctions with negations applied only to variables (t is a fixed constant).
Parameters: r, k1, . . . , kr.
Question: Does there exists a size-k1 subset t1 of s1 such that for every
size-k2 subset t2 of s2, there exists a size-k3 subset t3 of s3 such that . . .
(quantifiers continue to alternate between universal and existential for
all r quantifiers) . . . such that, when the variables in t1, . . . , tr are all set
to true and all other variables are set to false, formula F is true?

We use a shorthand to describe these subset weights, where the subscript of the
quantifier gives the associated Hamming weight. The following example uses the
variables given in the definition above.

∃
k1

s1 ∀
k2

s2 ∃
k3

s3 . . . ∀
kr

sr : F

QBTNFSAT places requirements on the formatting of the formula. In particular,
there are restrictions with an impact on the reductions below. First, only literals
may be negated. Further, the formula must be z-normalized for some constant
z regardless of the input.2

3 The Game of Short Generalized Chess

Generalized chess is played by two players (players I and II) who alternate taking
turns moving pieces on a chessboard, an (n× n)-grid of squares.

Short Generalized Chess
Input : An (n× n)-chessboard position3, a positive integer k.
Parameter : k

2 That is, there are at most z alternating layers of and and or-operators.
3 A chessboard position includes the position of every piece (including captured pieces),

the turn number, and a flag for each king and rook indicating whether that piece
has moved yet (essential information to castling, Rule 6).

174 A. Scott and U. Stege

Question: Starting from the given position, does player I have a strategy
to force a win within the next k moves?4

The following provides a basic outline of the rules of chess, though we assume
familiarity with the basic movement rules for each piece. For complete rules, see
[7].

1. Short Generalized Chess is played with six types of pieces: pawns, rooks,
knights, bishops, queens, and kings. Each piece belongs to one of the two play-
ers. To distinguish which pieces belong to which player, player I and II’s pieces
are coloured white and black respectively. Each player starts the game with n
pawns, two rooks, two knights, n−6 bishops, one queen, and one king, though
pawns may be promoted to other captured pieces later in the game.

2. A chess piece occupies exactly one square at a time, and a square may only
be occupied by one piece at a time. The exception is auxiliary square S0

which holds all pieces captured during the game.
3. On her turn, a player must move exactly one of her pieces (except in the case

of castling, Rule 6) from the square it currently occupies to another square
(which must be empty or occupied by an opposing piece), in a manner legal
for the piece being moved . If the square entered is occupied by an opposing
piece, then that piece is captured and moved to S0.

4. A player is said to be in check if her king could be captured by an opposing
piece with a single legal5 move. A player cannot make a move that would
leave her in check. If, on her turn, a player is in check and every legal move
available leaves her in check, then she is in checkmate and loses the game.

5. If a pawn reaches the opponent’s end of the board (row 1 or n) it may be
promoted; the pawn may be replaced with any captured piece (other than a
pawn). The pawn itself is moved to S0.

6. On her turn, instead of moving a single one of his pieces, a player may choose
to castle her king with one of her rooks provided that she has not yet moved
either piece that game, all the squares between them are empty, the move
does not put her king in check, and no square the king would pass through
is in check. When castling, the king moves two squares towards the rook and
then the rook is advanced to the first square in which it is on the other side
of the king.

4 Parameterized Membership of Short Generalized
Chess

We show that Short Generalized Chess is in AW[*] by reducing it to QBT-
NFSAT: we create a QBTNFSAT-formula that captures the rules of chess and
applies them to the initial position of the given input instance. To simulate
4 A move in chess usually consists of a player moving one of his pieces, except in the

case of a capture, castling (cf. Rule 3 and Rule 6), or promotion, when two pieces
are moved.

5 A legal move is a move not breaking any of the rules, while any other move is illegal.

Parameterized Chess 175

the alternating turn-structure of chess, we utilize the alternating quantifiers of
the QBTNFSAT-instance. There is a natural correspondence between a
QBTNFSAT-formula and a winning strategy for player I, since there exists a
winning strategy for player I iff there exists a move for I such that for every
move II makes there exists a move for I such that for every move II makes . . .
there exists a move that results in a win for I. As such, the existential quantifiers
in the QBTNFSAT-formula correspond to player I’s moves, and the universal
quantifiers correspond to player II’s moves. Enforcing the rules of chess, testing
the winning condition, and setting the initial position is done by formula F of
the QBTNFSAT-instance that we construct. For our purposes, a player can win
either by achieving checkmate against the opponent, or because the opponent
breaks one of the rules of chess. We remark that, to enforce checkmate rules, the
formula used for our reduction actually simulates k + 2 moves rather than just
k. Any test if a rule has been broken or the game has been won has to handle
the possibility that the game has already ended.

4.1 Encoding Positions

Let Sx,y correspond to the square on the chessboard at row x and column y,
where x and y are positive integers between 1 and n. If a = Si,j , then we denote
(i, j) also with (ar, ac). Further, board← {S1,1, . . . , Sn,n}, white and black are the
sets of pieces belonging to player I and II respectively, and pieces← white∪black.
Note that S0 /∈ board. We next consider encoding the positions with the following
set of variables:

vp,a,t ←
{

true : p ∈ pieces is on a ∈ board ∪ {S0} on turn t
false : p ∈ pieces is not on a ∈ board ∪ {S0} on turn t

Unfortunately, this natural approach to encoding positions is not parameter-
ized.The number of chess pieces in a game is polynomial in n (i.e., ≤ 4n), and
this encoding scheme sets exactly one variable true for each piece on each turn.
As each turn corresponds to a single quantifier, this requires that we introduce
n into the Hamming weights on those quantifiers. These weights are all parame-
ters; introducing n into any one of them prevents the reduction from preserving
the parameter.

To avoid this problem we record only the changes from turn to turn rather
than the positions themselves. Given an existing position, a chess move is de-
scribed using at most four changes to that position. Two changes always occur
because a piece leaves one square (a) and enters another (b). If the move entails
a capture then another two changes occur; the captured piece leaves b and en-
ters S0. These two observations are sufficient to describe every chess move but
two: castling and pawn promotion. However, both these actions entail exactly
two pieces moving. In castling (Rule 6) a rook and a king move simultaneously,
while we encode pawn promotion by moving the pawn off the board and another
piece from S0 into what would be the pawn’s destination square (Rule 5). As
such, these moves are described with exactly four changes each. We define the
variables for this change-of-position encoding scheme.

176 A. Scott and U. Stege

xp,a,t ←
{

true : vp,a,t �= vp,a,t−1

false : vp,a,t = vp,a,t−1

Using xp,a,t, we derive the values of the original vp,a,t-variables using the formulas

vp,a,t =
∨

S∈Y

⎛

⎝
∧

i∈S

xp,a,i∧
∧

i∈{1,2,...,t}−S

¬xp,a,i

⎞

⎠ , where Y is the set of all even-sized

subsets of {1,2,. . . ,t} if vp,a,0 is true and the set of all odd-sized subsets of
{1, 2, . . . , t} otherwise. The position on turn 0 corresponds to the initial position
given as input to our Short Generalized Chess-instance. Thus, in using these
formulas we have implicitly encoded the initial position into the QBTNFSAT-
instance.

This formula is a brute-force test of all possible move sequences that result in
vp,a,t = true. Each true variable in xp,a,u, u ∈ {1, . . . , t}, implies that the value
of vp,a,u has been inverted w.r.t. the previous turn; an even number of inversions
preserves the initial value, while an odd number flips it.6 For both these formulas,
the number of clauses is bounded by 2k (the number of all possible bit sequences)
and thus is in FPT.

If at some point we need to negate one of the vp,a,t-values, we simply use
DeMorgan’s rule to receive its negation vp,a,t. This enables us to encode the
board itself. However, just looking at the board does not tell us whether a
piece has been moved at some time in the past—information which is nec-
essary to enforce the rules of castling (Rule 6, App. A). We introduce flags
to aid the enforcement of these rules. For each t, we define a set CFt ←
{cW�

t , cW�
t , cWr

t , cWr
t , cB�

t , cB�
t , cBr

t , cBr
t } where flag cab

x is true iff on turn x castling
is allowed on the left (b = �) or right (b = r) side for I (a = W) or II (a = B).
The overlined flags carry the opposite true/false value of the corresponding non-
overlined ones, so that exactly four of the variables in this set are always true.
This means that each quantifier of our QBTNFSAT-instance has a Hamming
weight of 8—4 bits for the pieces and another 4 for the castling flags.

We now define Jt ← {xp,a,t : p ∈ pieces, a ∈ board ∪ {S0}} ∪ {yt,0, yt,1}. yt,0

and yt,1 are “sink” variables which are set to true if only two changes to the
board positions occur on a turn. They have no other purpose. With this we
can define the quantifier sets for our QBTNFSAT-instance, which are pair-wise
disjoint because each uses a different turn t.

∃
8
(J1 ∪CF1)∀

8
(J2 ∪CF2) . . . ∀

8
(Jt ∪ CFt)

4.2 The Winning Condition

Before we define player I’s winning condition W, we define several sets that we
refer to throughout the reduction. We first define the sets current and opponent.
6 Hence why we look for an even number when the value was initially true and an odd

number when false.

Parameterized Chess 177

For odd t, let current← white and opponent ← black. For even t, let current←
black and let opponent ← white. We also use the set pawns of all pawns. Other
pieces that we refer to individually are: WK, the white king, BK, the black king,
WR�, the left white rook, WRr, the right white rook, BR�, the left black rook,
and BRr, the right black rook.

W ←
∨

0≤t≤k

(vBK,0,t ∧ vWK,0,t)

Rather than testing whether a position is checkmate for either player, we test
whether a king has been captured on the following turn. This simple test has
the advantage that it also handles the rules regarding check, as shown below.
Player I’s winning condition as presented in W is simply to capture BK before
WK is captured, as WK being captured previously would imply that black had
already won.

Lemma 1. The rules regarding check and checkmate over the next t turns re-
solve under optimal play to the winning condition of capturing the opponent’s
king within the next t + 2 turns.

4.3 Formula F

We use F—the formula for the QBTNFSAT-instance produced by the redu-
ction—to enforce the rules of chess, including winning condition W . Intuitively,
F is true in exactly two cases: if no rules were broken and I won, or if II broke a
rule. F is false otherwise. To handle the rules of chess, we define Rall and Rblack.
Rall tests that all the rules were followed, Rblack tests for each of II’s turns that
either II followed the rules or the game is over.7 Both formulas use formula Lt.
Intuitively, Lt is true iff the change in position from turn t− 1 to t describes a
legal move. The formal definition of Lt appears in the next subsection.

Rall ←
∧

1≤t≤k

(Lt ∨ vBK,0,t−1 ∨ vWK,0,t−1)

Rblack ←
∧

1≤t≤ k
2

⎛

⎝L2t ∨ vBK,0,2t−1 ∨ vWK,0,2t−1 ∨
∨

1≤s≤t

L2s−1

⎞

⎠

We now combine these formulas resulting in formula F ← (Rall ∧W) ∨ Rblack.
F is satisfied if both players play a legal game that ends with I as the winner,
or if II moves illegally before the game ends.

4.4 Testing for Broken Rules

We define Lt ←Mt∧Pt∧Ct∧Et∧Dt∧Kt, where Mt tests for illegal movements,
Pt tests whether the path of moving pieces is clear, Ct tests that the capture
7 Here, the game is over because either king was captured or because I moved illegally

on a previous turn.

178 A. Scott and U. Stege

rules have been followed, Et tests that every piece exists exactly once this turn,
Dt tests if two pieces were moved simultaneously, and Kt maintains flags for
handling castling moves. We elaborate on each of these sub-formulas.

Range of Movement (Mt). Mt tests for illegal movements. To handle move-
ment rules we introduce:

Δ(p, a, b)←
{

true : square b is within p’s range of movement from square a
false : square b is not within p’s range of movement from squarea

A piece’s range of movement is considered to be its available moves under ideal
conditions (e.g. there are no pieces in the way). A pawn’s range of movement
includes the diagonal movements that a pawn can make only if the move captures
an opposing piece.

Mt ←
∨

p∈current
a,b∈board

Δ(p,a,b)=false

(vp,a,t−1 ∧ vp,b,t) ∨
∨

p∈opponent
a,b∈board

(vp,a,t−1 ∧ vp,b,t)

∨ ∨

p∈current∩pawns
a,b∈board,ac �=bc

Δ(p,a,b)=true

(

vp,a,t−1 ∧ vp,b,t ∧
∧

q∈opponent

vq,b,t−1

)

Lemma 2. Mt is true iff on turn t a piece is moved illegally.

Path of Movement (Pt). Pt tests whether the path of every moving piece,
except the knight’s, is clear. We define a path path(a, b) on the chessboard using
two squares a, b ∈ board with a and b belonging to the same column, row, or
diagonal of the chessboard. The squares visited by moving from a to b along the
associated row, column, or diagonal are on the path between a and b.

Pt ← ∧

p∈current
a,b∈board

⎛

⎜
⎜
⎝vp,a,t−1 ∨ vp,b,t ∨ Qa,b,t ∧

∧

q∈pieces
q �=p

vq,b,t

⎞

⎟
⎟
⎠

∧ ∧

p∈current∩pawns
a,b∈board,ac=bc

⎛

⎝vp,a,t−1 ∨ vp,b,t ∨
∧

q∈opponent

vq,b,t−1

⎞

⎠ with

Qa,b,t ←
∧

p∈pieces
d∈path(a,b)

vp,d,t if a and b share a row, column, or diagonal.

Otherwise Qa,b,t is true.

Lemma 3. If squares a and b are the same row, column, or diagonal, then Qa,b,t

is true iff all the squares between (but not including) a and b along the associated
row, column, or diagonal are unoccupied on turn t.

Parameterized Chess 179

If a and b do not share a row, column, or diagonal, then either the movement
is illegal and rejected by Mt, or the piece moved is a knight and can legally
jump over other pieces. In either case, Qa,b,t being empty and trivially true is
correct. Mt tests for illegal piece movements, and Dt ensures that only one piece
is moved on the board at once. Thus, it is sufficient for Pt to ensure that pieces
move through empty squares.

Lemma 4. Pt is true iff all pieces legally moved on turn t are moved through
empty squares and end their move in a square that is not occupied by a same-
colored piece on turn t− 1.

Capturing (Ct). Ct tests that if piece p arrived this turn in square a, occupied
by a opposing piece q last turn, then q is moved to S0. Similiarly, if an opposing
piece q arrived in S0 this turn, then whichever square q occupied last turn is
now occupied by a piece controlled by the current player.

Ct ←
∧

p∈current
q∈opponent

a∈board

(vp,a,t ∨ vq,a,t−1 ∨ vq,0,t) ∧
∧

q∈opponent

⎛

⎜
⎝xq,0,t ∨

∨

p∈current
a∈board

(vp,a,t ∧ vq,a,t−1)

⎞

⎟
⎠

∧ ∧

p∈opponent
(vp,0,t−1 ∨ vp,0,t) ∧

∧

p∈current

⎛

⎜
⎜
⎝vp,0,t−1 ∨ vp,0,t ∨

∨

i∈{1,...,n}
q∈pawns∩current

Up,q,t,i

⎞

⎟
⎟
⎠ ∧

∧

p∈current ∩pawns

⎛

⎜
⎜
⎝vp,0,t−1 ∨ vp,0,t ∨

∨

i∈{1,...,n}
q∈current −pawns∩current

Uq,p,t,i

⎞

⎟
⎟
⎠ ∧

∧

p∈current −pawns
(vp,0,t−1 ∨ vp,0,t) with

Up,q,t,i ←

⎛

⎜⎜
⎝vq,Si,n−1,t−1 ∧ vq,0,t ∧ vp,Si,n,t ∧

∧

r∈pieces
r �=p

vr,Si,n,t

⎞

⎟⎟
⎠

Ct does not deal with the move that caused the capture, as that is handled by
Mt and Pt.

Lemma 5. Ct = true iff all pieces that were captured on turn t moved to S0, no
opponent’s pieces moved to S0 on turn t that were not captured on turn t, and
no pieces left S0 on turn t except by pawn promotion.

180 A. Scott and U. Stege

Every Piece Exists Exactly Once (Et). Et ← Ot ∧ Tt tests that every piece
is in exactly one position on turn t, but not in two positions.

Ot ←
∧

p∈pieces

⎛

⎝
∨

a∈board∪{0}
vp,a,t

⎞

⎠ , Tt ←
∨

p∈pieces
a,b∈board∪{0}

a�=b

(vp,a,t ∧ vp,b,t)

Lemma 6. Et is true iff on turn t, for every p ∈ pieces there is exactly one
a ∈ board ∪ {0}: vp,a,t true.

Pieces Moving Simultaneously (Dt). Dt tests if two pieces were moved si-
multaneously on the board. Each quantifier has Hamming weight 8. Exactly four
elements in the quantified sets are used up by the castling flags–four remain. The
four bits available allow two pieces to move in the event of capture, castling, or
promotion. Otherwise, we restrict the players from moving two board pieces
simultaneously.

Dt ←
∨

p,q∈pieces
a,b,c,d∈board
a�=b,c �=d,p�=q

(
xp,a,t ∧ xp,b,t ∧ xq,c,t ∧ xq,d,t ∧ ¬Y W

t ∧ ¬Y B
t

)
with

Y W
t ← (c = WK ∧ d = WR� ∧ vWK,S1, n

2
,t−1 ∧ vWK,S1, n

2 −2,t ∧ vWR�,S1,1,t ∧ vWR�,S n
2 −1,1,t ∧ cW�

t−1 ∧ cW�
t

∧ cWr
t ∧AS1, n

2
,t ∧AS

1, n−1
2

,t) ∨ (c = WK ∧ d = WRr ∧ vWK,S1, n
2

,t−1 ∧ vWK,S1, n
2 +2,t ∧ vWRr,S1,1,t

∧ vWRr ,S n
2 +1,1,t ∧ cWr

t−1 ∧ cW�
t ∧ cWr

t ∧AS1, n
2

,t ∧AS
1,

n+1
2

,t) and

As,t ←
∧

p∈opponent

⎛

⎜
⎜
⎝

∧

a∈board:Δ(p,a,s)
a�=s

(vp,a,t ∨Qa,s,t)

⎞

⎟
⎟
⎠ .

Y B
t is identical to Y W

t , except B is substituted for W and the squares are
adjusted appropriately. Tests c = WK∧d = WR� ensure we consider the correct
pieces. The next four tests involving v ensure the pieces are engaged in a castling
motion. The next three tests (involving c) ensure that the castling flags are
maintained. The last two tests (involving A) handle the rule that a castling must
not pass through a square in check. As,t is true iff square s is not threatened on
turn t by a piece in opponent. This explains the first clause; the other is identical,
except that � is replaced with r and squares are on the right instead of left.

Lemma 7. Dt is true iff there exist two pieces p, q which both moved on turn t
without starting or ending their moves in S0, and the move is not a legal castling.

Parameterized Chess 181

Castling Maintenance (Kt). Kt ← KW
t ∧KB

t tracks castling flags. Remember
that a chessboard position includes whether any given king or rook had been
moved from its starting square. Kt tracks this information.

KW
t ← (cW�

t ∨ cW�
t) ∧ (cWr

t ∨ cWr
t) ∧ (¬cW�

t ∨ ¬cW�
t) ∧ (¬cWr

t ∨ ¬cWr
t) ∧ (¬cW�

t−1 ∨ cW�
t) ∧ (¬cWr

t−1 ∨ cWr
t)

∧ (xWR�,S1,1,t ∨ cW�
t) ∧ (xWRr,S1,n,t ∨ cWr

t) ∧ (¬xWK,S1, n
2

,t ∨ (cW�
t ∧ cWr

t))

∧ (cW�
t−1 ∨ cW�

t ∨ t is odd) ∧ (cWr
t−1 ∨ cWr

t ∨ t is odd)

KB
t is defined as KW

t , except B is substituted for W , the starting positions are
updated accordingly, and t must be even instead of odd.

Lemma 8. Kt is true iff the states of the castling flags have been maintained
properly.

4.5 Correctness of the Reduction

Theorem 1. Lt is true iff the differences between position {p ∈ pieces, a ∈ board∪
{0} : vp,a,t} on turn t − 1 and position {p ∈ pieces, a ∈ board ∪ {0} : vp,a,t−1} on
turn t describe a legal chess move.

Proof. Et ensures that there is exactly one of each piece, preventing pieces from
spontaneously appearing or disappearing. Consequently, pieces can only move
from one position to another. Mt ensures that any pieces moved on the board
are moved legally, and Pt ensures that the paths of those moves are clear. Ct

ensures that any piece which should be captured is indeed moved to S0, that no
pieces are moved to S0 without being captured, and that any pieces which are
captured do not return to the board. Dt ensures that only one piece moves on
the board (excluding captures and castling), and Kt ensures that the castling
flags are maintained properly. Finally, the hamming weight of 4 (8 total – 4 for
castling flags), combined with the fact that we have only two “sink” variables
means that at least one move must take place.

Lemma 9. Formula F is 10-normalized.

Theorem 2. F is true iff I has a winning strategy that takes at most t turns to
execute.

Proof. If I has a winning strategy and plays legally, then either II plays legally
(RALL is true) and I wins the game (W is true) or II makes an illegal move (Reven

is false). In either case, F is satisfied. If I does not have a winning strategy, then
in all instances where II plays legally (Reven is true), either I does not win (W
is false) or else I makes an illegal move (RALL is false).

182 A. Scott and U. Stege

5 Hardness of Short Generalized Chess

We show that Short Generalized Chess is AW[*]-hard by a reduction from
Unitary Quantified Boolean t-Normalized Formula Satisfiability.
Using this unitary version of QBTNFSAT allows us to set the state of the vari-
ables for an entire quantifier with the position of a single chess piece.

Unitary Quantified Boolean t-Normalized Formula Satisfia-
bility (U-QBTNFSAT)
Instance: A positive integer r; a sequence s1, . . . , sr of pairwise dis-
joint sets of boolean variables; a boolean formula X , involving variables
s1 ∪ . . .∪ sr, that consists of t alternating layers of conjunctions and dis-
junctions with negations applied only to variables (t is a fixed constant).
Parameter: r
Question: Does there exist a variable t1 of s1 such that for every vari-
able t2 of s2, there exists a variable t3 of s3 such that . . . (alternating
qualifiers) such that, when the variables t1, . . . , tr are made true and all
other variables are made false, formula X is true?

This problem is complete for AW[t] (= AW[*]) [3]. We choose t = 2, putting F in
conjunctive normal form. In our reduction, we create a chess-instance that uses
a large block of pawns arranged in a checkerboard pattern at the center of the
board (walls of pawns). We carve out paths from the inside of this checkerboard,
through which the white queen, several black bishops, and two black rooks are
able to move. The white queen then guarantees capture of BK within k turns iff
the U-QBTNFSAT-instance is not satisfiable.

We use a set of variable diagonals for our chess-instance to represent the vari-
able assignment. Each U-QBTNFSAT-variable has one corresponding diagonal,
and the game simulates setting values for these variables by moving black bishops
into the diagonals that are “true”. Due to the unitary nature of U-QBFTNFSAT,
each diagonal represents every other variable in its subset as false; if a variable
t ∈ S is true, then for u ∈ S, u �= t, u is false because the Hamming weight of S
is 1.

The variable diagonals are crossed by a set of vertical paths (clauseways). The
intersections between variable diagonals and clauseways are constructed s.t. if
variable t = true implies that clause C is satisfied, then a black bishop pa-
trolling the corresponding diagonal blocks the white queen’s progress through
the clauseway corresponding to C. If otherwise assigning t = true does not sat-
isfy C, then the white queen captures a black bishop by blocking the associated
clauseway without any repercussions. Thus, player I has only enough turns to
capture BK if all k bishops in the chosen clauseway can be captured. Any bishop
that cannot be captured forces I to spend extra turns moving the queen along
an alternate route.8

Before we present the detailed gadgets of the reduction, we note important
properties of the position that we maintain: The only white piece free to move

8 This makes it impossible to reach the king in the number of turns allotted.

Parameterized Chess 183

is the queen. Other pieces are able to move only if player II does not move as
intended and attacks a white pawn. Consequently, player I is unable to win the
game if her queen is captured. If the white queen moves as the reduction intends,
then on every turn player II is forced to move in reply9; failing to react to I’s
move10 results in player I being able to capture BK. Thus, we can guarantee
certain constructs of black pieces to be unassailable. That is, if player I attacks
these pieces with her queen, player II can capture the queen and prevent I from
winning the game. For example, consider a black pawn with a bishop in the
diagonally adjacent square below and to the right of it. If player I’s queen takes
the black bishop, then the black pawn can capture I’s queen, and vice versa.
Because these two pieces protect each other the white queen cannot capture ei-
ther. Furthermore, this protection can be extended to any other black piece in a
square that either of these first two pieces could attack; the white queen cannot
capture these other protected pieces without first capturing the piece that pro-
tects themselves, but we know that these pieces are unassailable. The protection
can be extended recursively; this allows us to eliminate the possibility that the
white queen attempts to tunnel through the pawn walls.

Walls of Pawns. Pawns have unique properties: they can be blocked from
moving forward by an opposing piece, and they cannot move diagonally unless
attacking a piece. With these two properties, we can create a situation where
no moves are possible simply by placing a single white pawn one square above
a single black pawn on an otherwise-empty chessboard (Fig. 1).

We extend this observation by arranging an infinite number of pawns in a
checkerboard pattern. No pawn can move to the next square up or down be-
cause that square is occupied by a pawn of the opposite color. No pawn can
move diagonally because those squares are occupied by pawns of the same color
(Fig. 1).

Given such a checkerboard pattern, we are able to remove pawns while still
preserving the property that no moves or captures are possible. The most basic
way to do so is by removing an adjacent pair of pawns consisting of a white
pawn one square above a black pawn. Then the pawns above and below along
the same column are still blocked, and the pawns on either side cannot move
diagonally because there are no pieces in the newly-emptied squares to capture.
We can further carve out paths by using repeated deletions. Fig. 2 demonstrates
how we can cut vertically, diagonally, and horizontally so long as the topmost
deleted pawn in any column in black and the bottommost is white.

Assignment (Crooked Path) Gadget. This gadget enables the two players
to alternate setting values for the variables of the U-QBTNFSAT-instance. It
does this by having the queen start at the top of a crooked path (as can be seen
in Fig. 1, l). This path alternates between vertical and diagonal segments (see

9 That is, player I will win unless player II chooses a move (from a very limited set)
that can alleviate the threat.

10 That is, moving an unrelated piece elsewhere on the board.

184 A. Scott and U. Stege

clauseways

King’s diagonal

Queen’s diagonal

capture column

alternate
capture
column

= PAWN

Fig. 1. (l) An overview of the chessboard as built by the reduction. () Deadlocked
pawns. () Pawns laid out in a checkerboard arrangement are also deadlocked.

Fig. 2. (l) Pawns in a checkerboard arrangement with a column segment removed. (m)
A diagonal removed. The pawns are still deadlocked. (r) An example of battlement
cuts.

Fig. 3 (l)). In each segment, exactly one quantifier is handled. The game simulates
setting the values for the variables in the same order as the U-QBTNFSAT
instance.

r
b

Parameterized Chess 185

Universal variables are set by player I. Each segment of the crooked path in-
tersects with all the assignments diagonals corresponding to variables handled by
the universal quantifier corresponding to that segment. When the queen moves
to the end of a variable diagonal, the available black bishop must move to block
the queen from moving down the diagonal into the capture column. A second
black bishop protects the first (Fig. 3 (r)).

Existential variables are set by II. At the end of each segment is a horizontal
path leading to a diagonal which intersects the perpendicular variable diagonals
(as above for universal variables). A black bishop is placed in this diagonal such
that the queen can attack it using the horizontal path. When the queen reaches
the end of a segment, it can attack this bishop and gain entry to the capture
column unless II moves the bishop. Since the bishop is forced to move, II can
protect one of the variable diagonals (Fig. 4 (l)).

Q

Fig. 3. (l)The layout of the assignment gadget. This shows only two segments. Ad-
ditional segments are added to the end as necessary. (r) Interaction in the variable
assignment gadget. Player II has responded to I’s attack on the column. Arrows indi-
cate possible moves by II to capture the queen if I attacks the gadget.

Lemma 10. Player II must react to player I in the assignment gadget.

Lemma 11. Player II cannot make a move in the assignment gadget to prevent
I from using the capture column.

Lemma 12. Player I cannot win by circumventing the assignment gadget.

Capture Column. The capture column is to the right of the assignment gad-
get, and intersects every variable diagonal. The top of the column connects to
the king’s diagonal through a short diagonal. The bottom of the capture column
intersects with the queen’s diagonal in the one-way gadget, explained below.

Alternate Capture Column. There exists a second, alternate capture column
on the left side of the assignment gadget. This column intersects only the king’s

186 A. Scott and U. Stege

Q
R

Fig. 4. (l) Player II has moved the bishop out of the queen’s path and set the value of
an existential variable in the process. (r) A gadget to allow II to block the alternate
capture column. Once the rook is moved next to the two black pawns, the diagonal is
blocked and all the black pieces blocking it are protected.

diagonal at the top, and the queen’s diagonal at the bottom. A small gadget
(Fig. 4) located in the queen’s diagonal allows II to prevent the queen from
entering the alternate capture column. In fact, II must do this when the queen
enters the queen’s diagonal because otherwise I wins. Once this route is blocked,
the only route available to the queen is through the one-way gadget and towards
the clauseways.

One-Way Gadget. This gadget is placed between the white queen’s exit point
from the crooked path and the entry points of the clauseways. It enables II to
protect the capture column after I has passed through. This is accomplished by
placing a black pawn at the bottom of the capture column in the queen’s path,
with a white one beneath it. When the queen captures the black pawn, the black
rook takes the white pawn. If the queen now enters the capture column the rook
can capture it.

Lemma 13. Player II must react to player I in the one-way gadget.

Lemma 14. Player II cannot prevent I from using the capture column while
the queen is in the assignment gadget.

Lemma 15. Player I cannot circumvent the one-way gadget.

Clauseways. A clauseway is a narrow vertical path that crosses every vari-
able diagonal. For each variable and each clause, if setting the given variable
to true would satisfy that clause then a black bishop can safely protect the in-
tersection between the given variable diagonal and clauseway. That is, a queen
moving up this clauseway would be forced to move around the bishop rather than
capture it.

To create this property, we use a wall construct that is slightly different
from the checkered pawn configuration. The intersections between the vertical
clauseways and variable diagonals produce parallellogram-shaped walls. We use a

Parameterized Chess 187

Fig. 5. (l) Interaction in the one-way gadget. The queen is about to move in and take
the black pawn. II responds by taking the white pawn below with the rook, guarding
the capture column. (r) The parallelogram gadget.

different construct for these specific walls, illustrated in Fig. 5. The advantage of
these is that their height can be adjusted arbitrarily by extending the segment
within the dotted lines. Thus, we can protect or not protect the bishop simply
by moving the bottom of the parallelogram sitting above and to the right of the
intersection (Fig. 6).

Lemma 16. Player II must react to I in the clauseways.

Lemma 17. Once the queen enters the clauseways, player I cannot circumvent
the clauseways.

King’s Diagonal. BK is located in a diagonal that runs parallel to the vari-
able diagonals. It is intersected by every clauseway, the capture column, and
the alternate capture column. Fig. 6 shows the king in the diagonal. The king
itself cannot move because any move would put it in check. If the white queen
is placed on the specific diagonal occupied by the king the result is checkmate.
The king cannot move out of check, and none of the black pieces can attack the
queen in the king’s diagonal.11

Correctness of the Reduction

Theorem 3. Player I has a winning strategy iff X is not satisfiable.

Proof. If X is not satisfiable, then for any variable assignment II chooses, there
is a variable assignment available for I that results in at least one unsatisfied
clause. Once this has been achieved, I can move her queen to the clauseway
representing the unsatisfied clause and have enough turns to capture all the
bishops and checkmate the king. II cannot prevent this: we know how II must

11 Ignoring the possibility of I purposely placing the queen so that a pawn could capture
it.

188 A. Scott and U. Stege

K

Fig. 6. Parallelograms to (l) leave the bishop vulnerable to the queen and () protect
the bishop. () The king’s position in the king’s diagonal. Note that a white piece can
attack any square the king can move to.

respond within each gadget, and that failing to respond appropriately results in
a victory for I. If X is satisfiable, then I loses if it plays the game as expected12

because II can ensure that every clause has at least one satisfied literal and thus
every clauseway will have at least one bishop that can block the white queen
for more than one turn. However, we have already proved that I cannot win
by attempting to circumvent any of the gadgets, and I cannot attack the pawn
walls to escape these gadgets. Thus if II plays optimally, I cannot win within k
turns.

Board Size. The size of the board needed by the reduction is tied to the number
of pawns used. We can bound the number of pawns needed by estimating the size
of the parallelogram produced by the reduction. The height is n+c+2 diagonals,
where n is the number of variables and c is the number of clauses in the input
instance. Each diagonal is 12 squares high. The width of the board is c clauseways
(7 squares), 2 additional vertical paths (5 squares), and the assignment gadget,
which cannot be wider than parallelogram is high otherwise it would exceed the
bounds of the parallelogram. Thus, the parallelogram is 12(n+c+2)+8 squares
high and 19c + 12n + 42 squares wide. The product gives us a bound on the
number of pawns.

12 E.g. setting variables and then looking for a clear clauseway.

r
b

Parameterized Chess 189

References

1. Abrahamson, K., Downey, R., Fellows, M.: Fixed-parameter tractability and com-
pleteness IV: On completeness for W[P] and PSPACE analogues. A. of Pure and
Applied Logic 73, 235–276 (1995)

2. Adachi, A., Iwata, S., Kasai, T.: Some combinatorial game problems require ω(nk)
time. J. ACM 31(2), 361–376 (1984)

3. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
4. Fraenkel, A., Lichtenstein, D.: Computing a perfect strategy for n×n chess requires

time exponential in n. LNCS 115, 278–293 (1981)
5. Kasai, T., Adachi, A., Iwata, S.: Classes of pebble games and complete problems.

SIAM J. Comput. 8(4), 574–586 (1979)
6. Scott, A.: Short pursuit-evasion. Texts in Algorithmics 7: Algorithms and Com-

plexity in Durham 2006, 141–152 (2006)
7. FIDE Handbook (Online Version): Chess rules,

http://www.fide.com/official/handbook.asp?level=EE101

http://www.fide.com/official/handbook.asp?level=EE101

The Time Complexity of Constraint Satisfaction

Patrick Traxler�

Institute of Theoretical Computer Science, ETH Zürich, Switzerland
patrick.traxler@inf.ethz.ch

Abstract. We study the time complexity of (d, k)-CSP, the problem of
deciding satisfiability of a constraint system C with n variables, domain
size d, and at most k variables per constraint. We are interested in the
question how the domain size d influences the complexity of deciding
satisfiability. We show, assuming the Exponential Time Hypothesis, that
two special cases, namely (d, 2)-CSP with bounded variable frequency
and d-UNIQUE-CSP, already require exponential time Ω(dc·n) for some
c > 0 independent of d. UNIQUE-CSP is the special case for which it is
guaranteed that every input constraint system has at most 1 satisfying
assignment.

1 Introduction

In this work we study the time complexity of the NP-complete Constraint Satis-
faction Problem (CSP). We are interested in the following question: What makes
CSP hard to solve? Besides being NP-hard – already (3, 2)-CSP and (2, 3)-CSP
are NP-hard – many algorithms and heuristics for CSP slow down with increas-
ing domain size d. It is however not clear that CSP effectively becomes harder
with increasing d.

A promising result [10,1] is that we can solve d-COL, the d-Graph Colorability
Problem, in time 2ñ · poly(input-size), where ñ is the number of vertices of the
input graph. Such a result is however not known for (d, k)-CSP or the special
cases (d, 2, 3d2)-FREQ-CSP and d-UNIQUE-CSP.

– (d, k, f)-FREQ-CSP is the (d, k)-CSP for which every input constraint sys-
tem has maximum variable frequency f .

– (d, k)-UNIQUE-CSP is the (d, k)-CSP for which every input constraint sys-
tem is guaranteed to have at most 1 satisfying assignment. Without any
restriction on the constraint size we have d-UNIQUE-CSP.

We provide precise definitions in Section 2. We now introduce some definitions
to state our results. We call an algorithm a 2c·n-randomized algorithm iff its
running time is bounded by 2c·n · poly(input-size) and its error probability is at
most 1/3. Let

cd,k := inf{c : ∃2c·n-randomized algorithm for (d, k)-CSP}.
� This work was supported by the Swiss National Science Foundation SNF under

project 200021-118001/1.

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 190–201, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Time Complexity of Constraint Satisfaction 191

Define cFQ
d,k,f and cUQ

d,k analogously for (d, k, f)-FREQ-CSP and (d, k)-UNIQUE-
CSP. Let cd,∞ := limk→∞ cd,k.

The variant of the Exponential Time Hypothesis (ETH) we assume here states
that c2,3 > 0, i.e., 3-SAT is exponentially hard. It is straight forward to apply
the results from [7] to show that c3,2 > 0 iff c2,3 > 0. In this work we improve
on the lower bound cd,2 > 0, assuming ETH.

Theorem 1. If ETH holds, there exists c > 0 such that for all d ≥ 3

c · log(d) ≤ cFQ
d,2,3d2

(where c depends on c3,2.)

Theorem 1 strongly contrasts the time complexity of d-COL for which we know a
2ñ-algorithm [10,1]. Such an algorithm is however unlikely to exist for (d, 2, 3d2)-
FREQ-CSP because its existence implies that ETH fails.

The second special case of (d, k)-CSP we study is d-UNIQUE-CSP.

Theorem 2. For all d ≥ 2, it holds that

c2,∞ · �log(d)� ≤ cUQ
d,∞.

Theorem 2 roughly says that the unique case is already the hardest one. Note
that the currently best upper bound for c2,∞ is 1.

Motivation. The motivation for our results comes from the design and analysis
of exponential time algorithms. We usually fix some natural parameter like the
number of variables n and try to find some small c such that we can solve CSP in
time O(cn). The best known upper bound (d(1−1/k)+ε)n ·poly(input-size), ε >
0, for (d, k)-CSP [12] is achieved by Schöning’s algorithm and it was improved to,
omitting the polynomial factor, d!n/d for (d, 2)-CSP [4], to 1.8072n for (4, 2)-CSP
[3], and to 1.3645n for (3, 2)-CSP [3]. The problem of maximizing the number
of satisfied constraints of a (d, 2)-constraint system is considered in [15]. Our
results say that the dependency on d of these algorithms comes close to the best
possible.

Studying the special case (d, 2, 3d2)-FREQ-CSP is motivated by the observa-
tion that algorithms for CSP are also analyzed w.r.t. to the number of constraints
m instead of n. This is in particular the case if optimization variants of CSP
are considered. See [13] for such an algorithm and also for further references. A
(d, 2)-constraint system in which every variable has maximum frequency 3d2 has
at most 3d2n constraints. Our results imply therefore limitations of algorithms
which are analyzed w.r.t. m (Corollary 2).

The second special case we study, d-UNIQUE-CSP, is motivated by the use
of randomness. The expected running for finding a satisfying assignment of a
constraint system with s > 0 satisfying assignments is roughly dn/s. A con-
siderable improvement, namely (2n/s)1−1/k, exists for k-SAT [2]. It also seems
likely that the algorithms in [12,4] become faster if many satisfying assignments

192 P. Traxler

are present. Our results say that d-UNIQUE-CSP still has increasing complex-
ity w.r.t. to d and that CSP can only become easier if s is large enough. The
observed dependency of randomized algorithms on d and s seem therefore to be
unavoidable.

Related Work. This work builds upon a series of papers [6,7,2] which mainly
deal with SAT and special cases of SAT like k-SAT. A central question is: What
makes SAT hard to solve? This question is motivated by the observation that
many algorithms and heuristics for SAT work better on instances with special
properties. For example, there exists a 1.324n-randomized algorithm for 3-SAT
[8], whereas the best algorithms for SAT still take 2n steps in the worst case.
In [6] it was shown, assuming ETH, that for every k there exists k′ > k such
that c2,k < c2,k′ . In other words, k-SAT becomes harder with increasing k. Our
results, Theorem 1 and 2, are of the same kind. It is however not clear how to
adapt the techniques in [6] to our problem. In particular, Impagliazzo & Paturi
[6] ask if a similar result as theirs holds for d-COL. Our approach is indeed
different from theirs. They use the concept of a forced variable whereas we work
with a different technique of partitioning variables (see Lemma 1).

In [9] the exponentially hard instances of the Maximum Independent Set
(MIS) problem with respect to the maximum degree were identified. It was shown
that if there exists a subexponential time algorithm for MIS with maximum
degree 3, then there exists one for MIS (which would contradict ETH). One part
of the proof of this theorem is a sparsification lemma for MIS. In the proof of our
Lemma 2, a sparsification lemma for (d, 2)-CSP, we apply the same technique as
there. We prove a new sparsification lemma for (d, 2)-constraint systems because
we want good bounds. The sparsification lemma in [7] could also be used. But
it gives much worse bounds.

Calabro et al. [2] proved that c2,k ≤ cUQ
2,k +O(log2(k)/k) (Lemma 5 of [2]). We

generalize and improve this to cd,k ≤ cUQ
d,k +O(log(dk)/k) (see Section 4). Calabro

et al. [2] concluded cUQ
2,∞ = c2,∞ from their result. This theorem generalizes to

cUQ
d,∞ = cd,∞ by the previous relation. We remark that our proof is different

from theirs although the dependency on k is similar. Calabro et al. adapt the
isolation lemma from [14] whereas we build upon the isolation lemma from [11].
In particular, we need a new idea to apply a generalization of the isolation lemma
from [11] in our situation (see Lemma 4).

Overview of Work. In Section 2 we introduce the constraint satisfaction problem
we study in this work. In Section 3 we prove Theorem 1 and in Section 4 we
prove Theorem 2.

2 Preliminaries

A (d, k)-constraint system C consists of a set of values Σ with |Σ| = d, called
the domain of C, and a set of constraints of the form

C := {x1 �= s1, x2 �= s2, ...}

The Time Complexity of Constraint Satisfaction 193

with |C| ≤ k, xi being some variable and si ∈ Σ. We often identify C with the
set of constraints and denote by Dom(C) the associated domain Σ. Let Var(C)
denote the set of variables occurring in C. Unless stated otherwise n := |Var(C)|.
We call a mapping a : Var(C) → Dom(C) an assignment. A constraint C ∈ C is
satisfied by an assignment a iff there exists some (x �= s) ∈ C such that a(x) �= s.
A constraint system C is satisfied iff every C ∈ C is satisfied. We denote by
Sat(C) the set of all satisfying assignments of C. The Constraint Satisfaction
Problem (d, k)-CSP is the problem of deciding if a satisfying assignment for a
given (d, k)-constraint system exists. The (d, k, f)-FREQ-CSP is the special case
of (d, k)-CSP with maximum variable frequency f , that is, we require that every
variable occurs at most f times in an input (d, k)-constraint system, and (d, k)-
UNIQUE-CSP is the special case for which an input (d, k)-constraint system is
guaranteed to have at most 1 satisfying assignment.

The (2, k)-CSP is the k-Boolean Satisfiability Problem (k-SAT). The (d, 2)-
CSP is a generalization of the d-Graph Colorability Problem (d-COL). For seeing
this, consider the following example.

Example 1. Let G = (U, E) be a graph. For {u, v} ∈ E the constraints

{u �= 1, v �= 1}, {u �= 2, v �= 2}, ..., {u �= d, v �= d}
are in C. Set Dom(C) := {1, ..., d}. Then C is satisfiable iff G is d-colorable.
�

3 Binary Sparse CSP (Proof of Theorem 1)

The proof of Theorem 1 consists of three steps. We show first how to reduce
the number of variables by increasing the domain size (Lemma 1). We need this
lemma to provide a relation between (d, k)-CSP and (d′, k)-CSP for d′ larger
than d. This is the core of our result that CSP has increasing complexity w.r.t.
d. Then, we show in the second step how to transform a (d, 2)-constraint system
into a sparse (d, 2)-constraint system, i.e., we prove a sparsification lemma for
(d, 2)-constraint systems (Lemma 2). Our transformation can be carried out
in subexponential time. Combining both lemmas we are finally able to prove
Theorem 1.

At the end of this section we point out how our result relates to algorithms
which are analyzed w.r.t. the number of constraints.

Lemma 1. Let r ∈ N, r > 0. For every (d, k)-constraint system C over n
variables there exists a satisfiability equivalent (dr , k)-constraint system C′ over
n′ := �n

r
 variables which is computable in time drk · poly(|C|).
Proof. The idea of our algorithm is to group the variables in groups of size r
and replace every group of variables by a new variable. We need the following
definition. Let U ⊆ Var(C) and D be a constraint. Define NonsatU (D) to be the
set of all assignments a : U → Dom(C) which do not satisfy D. Our algorithm
gets as input a (d, k)-constraint system C and outputs a (dr, k)-constraint system
C′. It works as follows.

194 P. Traxler

Compute a partition of pairwise disjoint subsets P1, ..., Pt of Var(C) such that
|Pi| = r for 1 ≤ i < t and 1 < |Pt| ≤ r. Extend Pt with new variables such that
|Pt| = r. Find new variables y1, ..., yt, i.e., variables which are not in Var(C).
Set C′ ← C and Dom(C′) ← Dom(C)r, i.e., Dom(C′) is the set of all strings of
length r with symbols from Dom(C). For every C ∈ C′ and every 1 ≤ i ≤ t: if
Var(C)∩Pi �= {} then replace all the variables of Var(C)∩Pi in C in the following
way. Let D ⊆ C be the set of all inequalities with variables from Var(C) ∩ Pi.
Add the constraint C′ ← (C \ D) ∪ {yi �= b} to C′ for every b ∈ NonsatPi(D).
Remove C from C′.

We claim that C is satisfiable iff C′ is satisfiable. Let a ∈ Sat(C). For yi

we define a′(yi) := a(x′
1) · ... · a(x′

r) with {x′
1, ..., x

′
r} = Pi, i.e., a′(yi) is the

concatenation of the values of variables in Pi. Let C′ ∈ C′ and C ∈ C be the
corresponding constraint C′ emerged from. Since a satisfies C there exists some
inequality x �= s ∈ C satisfied by a, i.e., a(x) �= s. Assume x ∈ Pi. Then
x �= s ∈ D, D as in the algorithm. This implies that yi �= b ∈ C′ for some
b ∈ NonsatPi(D). Since a′(yi) �= b for all b ∈ NonsatPi(D) (because of a(x) �= s)
it follows that C′ is satisfied by a′ and therefore a′ ∈ Sat(C′).

For the other direction, assume that a �∈ Sat(C) for all assignments a of C. We
have to show that a′ �∈ Sat(C′) for all assignments a′ of C′. For x ∈ Var(C) and
x ∈ Pi, 1 ≤ i ≤ t, we define a(x) := (a′(yi))(x). The assignment a is well defined
because P1, ..., Pt is a partition of Var(C). Also note that we consider a′(yi) here
as an assignment of the form Pi → Dom(C). We know that there exists some
C ∈ C which is not satisfied by a. This implies that there exists some C′ ∈ C′
which is not satisfied by a′ and which emerged from C. For seeing this, choose
in the construction of C′ the partial assignment b ∈ NonsatPi(D) according to
a, i.e., choose b such that b(x) = a(x) for all x ∈ Pi.

It holds that n′ = t = �n
r
. Note that the length of some assignment in

NonsatPi(D) is r and we introduce therefore dr new values. The old values are
not used any longer. The running time is polynomial in the input size with the
exception of enumerating NonsatPi(D) which takes time O(dr · |C|) and we may
have to do this for every variable in a constraint of size at most k. This yields
O(drk · |C|).
�

The following result is a direct implication of this lemma.

Corollary 1. For constant d, d′ and k with d′ ≥ d. It holds that cd′,k ≥
�logd(d′)� · cd,k.

To prove Lemma 2 we will use algorithm SPARSIFYε defined in Figure 1.
The idea of our algorithm is similar to one of the many backtracking algo-
rithms for the Maximum Independent Set Problem (MIS), namely, branching
on vertices with large degree first. Johnson & Szegedy [9] applied the same
technique to prove a sparsification lemma for MIS. Let ε > 0 and Kε,d :=

d
ε·log(d) · log(d(ε/d)/(d(ε/d)− 1)). SPARSIFYε uses the procedure SUBS(C) which
searches in C for constraints of the form {x �= s} and removes all C ∈ C with
|C| ≥ 2 and (x �= s) ∈ C. It also uses the operation C[x �→f] by which all

The Time Complexity of Constraint Satisfaction 195

constraints C ∈ C with (x �= f ′) ∈ C, f ′ �= f , and all inequalities x �= f
get removed from C. Let freq(C, x, s) be the number of times x �= s occurs in C.

Input: a (d, 2)-constraint system C.
Output: a list L of (d, 2)-constraint systems.
1. if there exists x ∈ Var(C) and s ∈ Dom(C) s.t. freq(C, x, s) > �Kε,d�, then
2. call SPARSIFYε(SUBS(C[x �→s]));
3. call SPARSIFYε(SUBS(C ∪ {{x �= s}}));
4. else output C;

Fig. 1. Algorithm SPARSIFYε

Lemma 2. Let C be a (d, 2)-constraint system and ε > 0. SPARSIFYε enumer-
ates with polynomial delay a list L of (d, 2)-constraint systems which has the
following properties:

1. (Correctness) it holds that C is satisfiable iff there exists some satisfiable
C′ ∈ L,

2. (Bounded frequency) for all D ∈ L, x ∈ Var(D), and s ∈ Dom(D):

freq(D, x, s) ≤ �Kε,d
,

3. (Size) |L| ≤ dε·n.

Proof. To see the correctness of algorithm SPARSIFYε note that C is satisfiable
iff SUBS(C[x �→s]) or SUBS(C ∪ {{x �= s}}) is satisfiable. The bounded frequency
property holds because of the branching rule. It remains to prove the last prop-
erty. SPARSIFYε branches on pairs (x, s) with freq(C, x, s) > �Kε,d
. There are
at most d · n such pairs. Let n′ be the number of these pairs in C and t(n′)
be the size of the search tree induced by SPARSIFYε. If we can show that
t(n′) ≤ d(ε/d)·n′

, then |L| ≤ dε·n. For n′ ≤ �Kε,d
 we can assume that t(n′) ≤
d(ε/d)·n′

holds. Now assume that the induction hypothesis t(i) ≤ d(ε/d)·i holds for
i ≤ n′− 1. SPARSIFYε removes either at least 1 or at least �Kε,d
 pairs accord-
ing to the two cases of the branching rule. In the first case, SUBS(C ∪{{x �= s}})
yields a constraint system in which {x �= s} occurs once. No superset of {x �= s}
occurs in SUBS(C ∪{{x �= s}}). In the second case, the constraint system C[x �→s]

contains freq(C, x, s) new constraints of size 1 with no superset in SUBS(C[x �→s]).
Hence t(n′) ≤ t(n′ − 1) + t(n′ − �Kε,d
) which is by the induction hypothesis at
most d(ε/d)·n′−(ε/d) +d(ε/d)·n′−(ε/d)·�Kε,d� ≤ d(ε/d)·n′ · (d−(ε/d) +d−(ε/d)·Kε,d). By
the definition of Kε,d: d−(ε/d) + d−(ε/d)·Kε,d = 1.
�
Proof (of Theorem 1). We apply Lemma 2 to a (d, 2)-constraint system C with
fixed ε = γ := c3,2/(4 log(3)) and get a list L of constraint systems. Every
C′ ∈ L has maximum frequency Kγ,d · d. Let Kγ := �γ−2
. Then, Kγ,d ≤ Kγ · d.
Kγ,d ≤ γ−2d simplifies to y − ln(d)2

d
1
y ≤ ln(ey − 1) with y := γ ln(d)

d . Note that

196 P. Traxler

0 < γ ≤ 1/4 by the definition of γ and therefore we can assume 0 < y ≤ ln(d)
4d .

The function f(y) := ln(ey − 1) − y + ln(d)2

d
1
y takes the minimum in y = ln(d)

4d .

The claim follows from f(ln(d)
4d) ≥ 0 for all d ≥ 3. To reduce the maximum

frequency to 3d2, we introduce for every variable x new variables x(1), ..., x(Kγ).
We can express that x(i) has exactly the same value as x(i+1) with at most d2

constraints, namely, with all constraints {x(i) �= s1, x
(i+1) �= s2}, s1 �= s2. We

add all constraints for 1 ≤ i ≤ Kγ − 1 to C′ and replace every occurrence of
x in such a way that for all x ∈ Var(C′), s ∈ Dom(C′): freq(C′, x, s) ≤ 3d. The
number of variables is at most Kγ · n. Using Corollary 1 we get the relation
cd,2 ≥ �log3(d)� · c3,2. Thus

cFQ
d,2,3d2 ·Kγ + γ · log(d) ≥ cd,2 ≥ �log3(d)� · c3,2,

and cFQ
d,2,3d2 ≥ �log3(d)� · c3,2/(2Kγ). This completes the proof of Theorem 1.
�

As a direct consequence we get a lower bound for

ed,k := inf{c : ∃2c·m-randomized algorithm for (d, k)-CSP}
where m is the number of constraints.

Corollary 2. If ETH holds, there exists c > 0 such that for all d ≥ 3: ed,2 ≥
c · log(d)/d2.

Note that ed,2 ≤ 2 · log(d)/d since we can remove every variable x which occurs
less than d times (because then there is a remaining value we can assign to x
to satisfy every constraint x occurs in). Hence, we may assume |C| ≥ d/2 · n.
Enumerating all possible assignments of the n variables yields the claimed upper
bound.

Lemma 2 and the transformation afterwards give an upper bound of 3d2 on
the variable frequency and actually the bound freq(C, x, s) ≤ 3d. Let px be the
number of possible values of x, that is, d minus the number of constraints of
size 1 in which x occurs. Since we expect in the worst case that px = Ω(d) for
x ∈ V the following result suggests that this upper bound comes close to the
best possible. For example, an improvement of freq(C, x, s) ≤ √d seems to be
questionable.

Proposition 1 ([5]). Let C be a (d, 2)-constraint system and define pmin :=
minx∈Var(C) px. Then C is satisfiable, if for all x ∈ Var(C) and s ∈ Dom(C):
freq(C, x, s) ≤ pmin

2 .

4 Unique CSP (Theorem 2)

The proof of Theorem 2 consists of four steps. Our goal is to prove the relation

c2,k · �log(d)� ≤ cd,k ≤ cUQ
d,k + O

(
log(dk)

k

)
(Corollary 3).

The Time Complexity of Constraint Satisfaction 197

Taking the limit k → ∞ proves Theorem 2. In this section we prove the upper
bound on cd,k. The lower bound follows from Corollary 1, Section 3. The first
step in our proof of the upper bound is a generalization of the isolation lemma
from [11]. We generalize this lemma from the boolean to the non-boolean case
(Lemma 3). We can however not apply this lemma directly to prove our upper
bound. In a second step, we therefore show how to use it to get an isolation
lemma (Lemma 4) which fits our needs. The crucial difference between the iso-
lation lemma from [11] and Lemma 4 is that we can encode the random linear
equations from Lemma 4 by a (d, k)-constraint system. This is done in the third
step (Lemma 5). Finally, we can put it all together (Corollary 3) and prove
Theorem 2.

We conclude this section with a remark on our main technical contribution,
Lemma 4.

We start with a generalization of Lemma 1 from [11]. The lemma there states
that if S ⊆ {0, 1}n is non-empty, then the probability that S has a unique
minimum w.r.t. a random weight function is at least 1/2. Our result works for
non-empty S ⊆ {0, ..., d− 1}n.

Lemma 3. Let n, c ∈ N and S ⊆ {0, ..., d− 1}n, S �= {}. Choose wi, 1 ≤ i ≤ n,
independently and uniformly from {1, ..., c}. Define a random weight function
w : {0, ..., d− 1}n → N as w : a �→∑n

i=1 wi · ai. It holds that

Pr
w

(S has a unique minimum w.r.t. w) ≥ 1− n ·
(
d
2

)

c
.

Proof. Let 1 ≤ i ≤ n and 0 ≤ l ≤ d− 1. Define Si,l := {a ∈ S : ai = l} and

Mi,l :=

{
mina∈Si,l

w(a)− l · wi if Si,j �= {}
0

.

Denote by Ei the event that ∃0 ≤ j < k ≤ d − 1 : Mi,j + j · wi = Mi,k + k · wi.
For any i it holds that

Pr
w

(Ei) = Pr
w

(∃0 ≤ j < k ≤ d− 1 : (Mi,j −Mi,k)/(k − j) = wi) ≤
(

d

2

)
Pr
w

((Mi,j −Mi,k)/(k − j) = wi) ≤
(

d

2

)
/c.

Here, we used the union bound and the fact that

Pr
w

((Mi,j −Mi,k)/(k − j) = wi) =

{
1
c if (Mi,j −Mi,k)/(k − j) ∈ {1, ..., c}
0

(wi is chosen independently of w1, ..., wi−1, wi+1, ..., wn). Applying the union
bound we get (*)

Pr
w

(∃0 ≤ i ≤ n : Ei) ≤ n ·
(
d
2

)

c
.

198 P. Traxler

Finally, assume that there exist a �= b ∈ S which take the minimum value w.r.t.
w. Since a �= b there exists 1 ≤ i ≤ n such that ai �= bi and Mi,ai + ai · wi =
Mi,bi + bi · wi. This can happen with probability at most n · (d

2

)
/c because of

(*). Hence, the probability that S has a unique minimum w.r.t. w is at least
1− n · (d

2

)
/c.
�

The random weight function w depends on n variables. This makes it at the first
sight useless for our needs since we can not encode it as a constraint system in
subexponential time. We can however apply it iteratively as we will see in the
proof of the following lemma.

Lemma 4. Let d ≥ 2, k ≥ 1, and S ⊆ {0, ..., d − 1}n be non-empty. There
exists a polynomial time computable set L of �n

k
 random linear equations, each
depending on at most k variables, such that

Pr
L

(|S ∩ Sold(L)| = 1) ≥ 2−O(n log(dk)
k),

where Sold(L) is the set of solutions of L in {0, ..., d− 1}n.

Proof. We employ Lemma 3. Let c := 2 · (d
2

) · k. Independently and uniformly
choose wi from {1, ..., c} for all i. We define L to be the set of linear equations

(1+j)·k∑

i=1+j·k
wi · xi = rj

for 0 ≤ j ≤ t− 1 and
∑n

i=1+t·k wi · xi = rt, where r0, ..., rt are chosen uniformly
at random from {0, ..., c · (d− 1) · k}.

For simplicity we assume that n is a multiple of k, i.e., there exists i such
that n = ik. We prove by induction over i that the i equations in L have a
unique solution in S with probability at least (2c(d − 1)k + 2)−i. If i = 1,
then the probability that S has a unique minimum w.r.t. w1, ..., wk is at least
1/2 by Lemma 3 and the probability of guessing the right value r1 is at least
1/(c(d−1)k+1); together at least 1/(2c(d−1)k+2). Now, assume the induction
hypothesis holds for i − 1. Let S′ := {an−k+1...an : a ∈ S}. The probability
that the corresponding equation in the variables xn−k+1, ..., xn has a unique
solution in S′ is at least 1/(2c(d − 1)k + 2). Let an−k+1...an be this solution
and S′′ := {b ∈ S : bn−k+1 = an−k+1, ..., bn = an}. By the induction hypothesis
the probability that the first i− 1 equations have a unique solution in S′′ is at
least (2c(d− 1)k + 2)−i−1. Since w1, ..., wn and r0, ..., ri−1 are chosen uniformly
and independently the overall success probability is at least (2c(d− 1)k + 2)−i.
Hence, PrL(|S ∩ Sold(L)| = 1) is greater or equal than

(2c(d− 1)k + 2)−n/k−1 ≥ (4d3k2)−n/k−1 ≥ 2−O(n
log(dk)

k).
�

The next lemma states the simple but important fact that we can encode the
random linear equations from the previous lemma as a (d, k)-constraint system.

The Time Complexity of Constraint Satisfaction 199

Lemma 5. Let C be a constraint system with domain size d over n variables.
There exists a (d, k)-constraint system C′ over n variables computable in time
dk · poly(|C|) such that if C is satisfiable, then C ∪ C′ has exactly one satisfying
assignment with probability at least 2−O(n· log(dk)

k). Moreover, |C′| ≤ dk ·(n/k+1).

Proof. Let L be as in Lemma 4. For every equation in L we can enumerate all
assignments of the k variables in dk steps. Thus, we can encode a single equation
as a (d, k)-constraint system in polynomial time. We define C′ to be the set of
these at most dk ·(n/k+1) constraints. Now, let S := Sat(C). If C is unsatisfiable,
then C ∪ C′ is unsatisfiable. Otherwise, S �= {}. The probability that C ∪ C′ has
exactly one satisfying assignment is as in Lemma 4.
�
We are now at a point where we can prove Theorem 2. It follows from the
following corollary by taking the the limit k →∞.

Corollary 3. For all d ≥ 2 and k ≥ 2, it holds that c2,k · �log(d)� ≤ cd,k ≤
cUQ
d,k + O(log(dk)

k).

Proof. The relation c2,k ·�log(d)� ≤ cd,k follows from Corollary 1. To prove cd,k ≤
cUQ
d,k + O(log(dk)/k) we apply Lemma 5 2O(n·(log(dk)/k)) times and test every

time if C ∪ C′ is satisfiable using an algorithm A of time complexity 2(cd,k+δ)·n,
δ ≥ 0, for (d, k)-UNIQUE-CSP. If A once accepts, C gets accepted, otherwise
rejected.

�
In the proof of Lemma 5 we used the fact that we can encode the solutions
of a random linear equation as a constraint system without changing the num-
ber of variables. The opposite is however not true. Therefore we may say that
Lemma 4 is stronger than Lemma 5. In particular, if we want to obtain similar
relations as in Corollary 3 for other problems, Lemma 4 is appropriate if the
problem at hand allows a compact encoding of the solutions of a random linear
equation. This is for example the case for Binary Integer Programming. We also
remark here that for the proof of Theorem 1 it is not necessary that C′ has
constant constraint size k. For example, k =

√
n suffices. To give an example of

a situation where it is necessary that C′ has constant constraint size k we prove
Corollary 4.

Corollary 4. ETH holds iff cUQ
3,2 > 0.

Proof. Let C be a (3, 2)-constraint system over n variables and ε > 0. Make
k = k(ε) large enough such that O(log(dk)/k) < ε. Applying Lemma 5 we get a
constraint system C ∪C′. The constraints in C′ have size at most k and |C′| ≤ n ·
(3k+k)/k. By introducing K ≤ n·(3k+k) new variables we can transform C′ into
a (3, 2)-constraint system C′′ with the same number of satisfying assignments. Set
C′′ to C′. Replace every {x1 �= s1, ..., xl �= sl} ∈ C′′ with l > 2 by {x1 �= s1, y �= 1},
{x2 �= s2, y �= 2}, {x3 �= s3, ..., xl �= sl, y �= 3}. Here, y is a new variable not used
before. We add constraints to C′′ which say that x1 �= s1 implies y �= 2 and that

200 P. Traxler

x1 �= s1 implies y �= 3. Hence, if the inequality x1 �= s1 is satisfied y is forced to
be 1. The constraints are {x1 �= s1

1, y �= 2}, {x1 �= s2
1, y �= 2}, {x1 �= s1

1, y �= 3}
and {x1 �= s2

1, y �= 3} where {s1, s
1
1, s

2
1} = Dom(C). Next we add constraints

to C′′ which say that x2 �= s2 implies y �= 3. In the case that the inequality
x1 �= s1 is not satisfied but x2 �= s2 is y is forced to be 2. The constraints are
{x2 �= s1

2, y �= 3}, and {x2 �= s2
2, y �= 3} where {s2, s

1
2, s

2
2} = Dom(C). In the last

case that x1 �= s1 and x2 �= s2 are not satisfied y is forced to be 3. We repeat
this step until every constraint has size at most 2. In every step the size of one
constraint is reduced by one and exactly one variable is used. Hence, we need
K ≤ n · (3k + k) new variables. We conclude that c3,2 ≤ (3k(ε) + k(ε)) · cUQ

3,2 + ε

for every ε > 0. If cUQ
3,2 = 0, then c3,2 ≤ ε for every ε > 0. A contradiction to

ETH.
�

Acknowledgments

Thanks to Robert Berke for pointing out [5].

References

1. Björklund, A., Husfeldt, T.: Inclusion–exclusion algorithms for counting set parti-
tions. In: Proc. of the 47th Annual IEEE Symposium on Foundations of Computer
Science, pp. 575–582 (2006)

2. Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The complexity of unique
k-SAT: An isolation lemma for k-CNFs. In: Proc. of the 18th Annual IEEE Con-
ference on Computational Complexity, pp. 135–141 (2003)

3. Eppstein, D.: Improved algorithms for 3-coloring, 3-edge-coloring, and constraint
satisfaction. In: Proc. of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 329–337 (2001)

4. Feder, T., Motwani, R.: Worst-case time bounds for coloring and satisfiability prob-
lems. J. Algorithms 45(2), 192–201 (2002)

5. Haxell, P.E.: A condition for matchability in hypergraphs. Graphs and Combina-
torics 11, 245–248 (1995)

6. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Computer and System
Sciences 62(2), 367–375 (2001)

7. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Computer and System Sciences 63(4), 512–530 (2001)

8. Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proc. of the 15th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 328–329 (2004)

9. Johnson, D.S., Szegedy, M.: What are the least tractable instances of max inde-
pendent set? In: Proc. of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 927–928 (1999)

10. Koivisto, M.: An O(2n) algorithm for graph coloring and other partitioning prob-
lems via inclusion–exclusion. In: Proc. of the 47th Annual IEEE Symposium on
Foundations of Computer Science, pp. 583–590 (2006)

11. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inver-
sion. Combinatorica 7(1), 105–113 (1987)

The Time Complexity of Constraint Satisfaction 201

12. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In: Proc. of the 40th Annual Symposium on Foundations of Computer Sci-
ence, pp. 410–414 (1999)

13. Scott, A.D., Sorkin, G.B.: An LP-Designed Algorithm for Constraint Satisfaction.
In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 588–599. Springer,
Heidelberg (2006)

14. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theo-
retical Computer Science 47(1), 85–93 (1986)

15. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theoretical Computer Science 348(2–3), 357–365 (2005)

A Tighter Bound for Counting Max-Weight

Solutions to 2SAT Instances

Magnus Wahlström

Max-Planck-Institut für Informatik, Saarbrücken, Germany
wahl@mpi-inf.mpg.de

Abstract. We give an algorithm for counting the number of max-weight
solutions to a 2SAT formula, and improve the bound on its running time
to O (1.2377n). The main source of the improvement is a refinement of
the method of analysis, where we extend the concept of compound (piece-
wise linear) measures to multivariate measures, also allowing the optimal
parameters for the measure to be found automatically. This method ex-
tension should be of independent interest.

1 Introduction

From a computational complexity point of view, the problem class #P of prob-
lems where you want to know the number of solutions to some problem in NP
is a very difficult one. The class was proposed by Valiant in the 1970’s [14], and
it was later proved that the so-called polynomial hierarchy is contained in P#P

[12] (i.e. that a polynomial-time algorithm for any #P-complete problem would
allow us to solve any problem in the polynomial hierarchy in polynomial time;
in fact, a single query to the algorithm would suffice). #P-complete problems
include the counting counterparts of both NP-complete problems such as 3SAT
(counting counterpart #3SAT) and problems that are in P. The problem con-
sidered in this paper, #2SAT, is an example of the latter: the “decision variant”
2SAT is a well-known polynomial problem, while the counting version #2SAT
is #P-complete [9, 13]. However, despite the apparent difficulty of the class, in-
dividual #P-complete problems can be solved in reasonable exponential time;
for instance, the bound O∗ (1.2377n)1 for #2SAT is significantly faster than any
bound for solving 3SAT (for which the best bounds are a probabilistic algorithm
with a bound of O∗ (1.3238n) by Iwama and Tamaki [8], and a deterministic
algorithm with a bound of O∗ (1.473n) by Brueggemann and Kern [1]).

One of the first algorithms for a counting problem came in the early 1960’s
with Ryser’s [11] O(n22n) time algorithm for counting the number of perfect
matchings in a bipartite graph (also known as computing the permanent of a
0/1 matrix). Previous work on the #2SAT problem with better bounds than
O∗ (2n) includes results by Dubois [4], Zhang [17], Littman et al. [10], Dahllöf,
Jonsson and Wahlström [2, 3], and Fürer and Kasiviswanathan [7]. In terms

1 O∗ (·), Θ∗(·), etc, signify that polynomial factors are ignored.

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 202–213, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances 203

of the actual bounds, the bound O∗ (1.3247n) appeared in [2]; later, a complete
rewrite of the algorithm for the journal version produced the bound O∗ (1.2561n)
[3], where the method of compound measures was introduced (under the name
of piecewise linear measures); and the previously best bound O∗ (1.2461n) [7]
was produced by a more detailed version of the analysis in [3].

The bound O∗ (1.2377n) produced in this paper is the result of a further
improvement of the analysis through compound measures, this time introduc-
ing multi-variate compound measures, which are a combination of compound
measures with the multi-variate recurrences of Eppstein [5]. Analysis through
compound measures allows us to model that the behaviour of the algorithm
varies depending on certain parameters on the instance, in this case the average
degree, i.e. that the behaviour of the algorithm is non-uniform. Apart from ear-
lier #2SATw publications, this type of analysis has been applied to the problem
of finding a solution to SAT instances F with a bounded �(F)/n(F) value [15].
Combining the method with Eppstein’s method for solving multi-variate recur-
rence improves the quality of the bound, and allows us to automate the bound
calculations.

The paper is structured into Sect. 2 on preliminaries, Sect. 3 describing the
improved compound measures, Sect. 4 defining the problem precisely and giving
the algorithm, Sect. 5 providing the analysis of upper bounds for maximum
degree four, and finally Sect. 6 containing the general upper bound.

Major portions of this paper appeared as Chapt. 7 in the author’s thesis
[16], but the material has not been published in any referreed publication. Some
proofs have been omitted due to lack of space; these can usually be found in [16].

2 Preliminaries

A variable, in this paper, can take the values true or false, referred to as 1 resp. 0;
a literal of a variable is either the unnegated literal v, having the same truth value
as the variable, or the negated literal v̄, with the opposite truth value; a clause is
a disjunction of (a ∨ b) of literals, referred to as a k-clause if it is a disjunction on
k literals; and a 2SAT formula F = (a∨b)∧(ā∨c)∧ . . . is a conjunction of clauses
where every clause contains at most two literals. A model for a 2SAT formula F is
an assignment to all its variables that satisfies the formula (i.e. at least one literal
in every clause is true). When we write ṽ, this refers to either literal v or v̄.

We talk of the graph of a 2SAT formula F . This is mainly an analogous term:
we consider a graph where we have one vertex for every variable in F , and one
edge (a, b) for every 2-clause (ã, b̃) in F , where ṽ is v or v̄, and let terms such
as connected component and subgraph hold the meaning they would have in this
graph. Therefore, the degree d(x) of a variable x is the number of clauses where
it occurs, and d(F) is the maximum degree of any variable in F . V ar(F) is
the set of variables occurring in F , n(F) = |V ar(F)| is the number of variables,
and ni(F) is the number of variables of degree i. A variable of degree i is called an

204 M. Wahlström

i-variable; a 1-variable is rather called a singleton. A heavy variable has degree
at least three. We also use �(F) for the total length of F , i.e. �(F) =

∑
i ini(F).

Other graph terms used in the paper include the concept of a neighbourhood:
for a variable v, the (open) neighbourhood N(v) of v is the set of all variables
w such that there exists a 2-clause (ṽ ∨ w̃) in E (i.e. the definition is identical
to the neighbourhood of the vertex v in the graph of the formula). The closed
neighbourhood N [v] is defined as N(v) ∪ {v}.

3 On Analysis by Compound Measure

A complexity measure μ(F) is a function assigning a non-negative complexity
value to any possible instance F of some problem. They are used for estimating
upper bounds on the running times of branching algorithms; see e.g. the survey
by Fomin et al. [6].

For a branching algorithm and a complexity measure μ(F), the branching
number of a particular branching from an instance F to subinstances F1, . . . , Fk,
with μ(F) − μ(Fi) = δi, is τ(δ1, . . . , δk), defined as the unique positive root of∑

i x−δi = 1.
We say that μ(F) is a well-behaved measure for the algorithm if the following

hold:

1. μ(F) ≥ 0 for all possible F ;
2. μ(F) = 0 only for cases the algorithm solves in a given polynomial time;
3. μ(F ′) ≤ μ(F) if the algorithm, when applied to F , may apply a reduction

replacing F by F ′; and
4. μ(F ′) < μ(F) if the algorithm, when applied to F , may perform a branching

where F ′ is one of the branches.

If this is the case, then the running time of the algorithm will be in O∗ (
cμ(F)

)
,

where c is the largest possible branching number that can occur in the algorithm.
A hard case is a case with a branching number identical to the maximum.

Under a model of an algorithm as a set of possible branchings, of which any
branching can be applied at any time, and of an instance as a point in Z

d (i.e.
a set of integer attributes, e.g. ni(F) for i ≤ d), Eppstein [5] gives a method for
finding a weight-based measure μ(I) = w · I (e.g. μ(F) =

∑
i wini) such that

the resulting bound for the worst-case behaviour is tight to within a polynomial
factor (under a further restriction that the instance agrees with a certain target
vector t; see the paper for details).

However, for the algorithm in this paper (and for other algorithms as well),
the basic assumption of the model is false: not all branchings can be used in
all cases. In this paper, we use a model where along with every branching B
that could possibly be a hard case in the above sense, we associate a highest
average degree pB, such that if �(F)/n(F) ≥ pB, then the branching B will
not be used (since better cases are found). We analyse this using compound
measures. Compound measures were used in previous publications for #2SATw

[3, 7], but here, we introduce multi-variate compound measures, and show how
to use Eppstein’s method to find the optimal weights for them.

A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances 205

Our compound measures in this paper follow the pattern

μ(F) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ0(F) If �(F)/n(F) ≤ p0

μ1(F) If p0 < �(F)/n(F) ≤ p1

· · ·
μt(F) If �(F)/n(F) > pt−1

where pi is an increasing sequence selected from the pB, referred to as the
pivot points, and each μi(F) is a weight-based measure, specifically μi(F) =∑

j wi,jnj(F); our measure μ(F) is piecewise linear. The region from pi to pi+1

is referred to as section pi to pi+1. Two additional things must hold for μ:

μi(F) ≥ μ(F) for every possible F, i (1)
μi(F) = μi+1(F) when �(F)/n(F) = pi (2)

(i.e. the measure is concave and continuous). Note that by (1), μ(F)− μ(F ′) ≥
μ(F)− μi(F ′) for any i, so we do not need to know the value of �(F ′)/n(F ′) to
find Δμ(F). By this, we can derive

μi+1(F) = μi(F)− αi(�(F)− pin(F))

for αi ≥ 0; αi is the pivot amount at pivot point i.
Note that for the worst-case behaviour, μi(F) for i < t is of only secondary

interest, since �(F)/n(F) ≤ pi(F) must hold, limiting the possible number of
highest-degree variables. What we are interested in is μt(F), and the values of
αi that show that our bound is correct. The values of wi,j can be derived from
this:

wt−k,j = wt,j +
t−1∑

i=t−k

(j − pi)αi.

Now, for every branching B, we have one case for every measure μi as long as
pB ≥ pi, and this case can be expressed in terms of wt,j and αi using the previous
formula. Finally, select the target vector to be the situation nd(F) = n(F) for
the maximum considered degree d.

Lemma 1. The adaption to Eppstein’s method that is described above will pro-
duce the best possible compound measure for a given set of degree-bounded branch-
ings (B, pB) and preselected pivot points pi.

Proof. There is a one-to-one correspondence between values of wt,j and αi on
the one hand, and all values wi,j on the other, so the optimality guarantee of
Eppstein is enough. ��
Finally, we point at two things that are missing. First, we have not described
how to select pivot points. In general, we have no answer, but for the branchings
in this paper, where (Δ�(F))/(Δn(F)) ≥ pB for every branch of every branching
B, it can be shown that only the values pB need to be used. Second, there is

206 M. Wahlström

no lower bound guaranteeing optimality of the resulting bound relative to the
model we have described.

4 Problem Definition and Algorithm

In its basic form, the problem #2SAT consists of a 2SAT instance F , and the
question is how many solutions F has. Here, we extend the problem with weights,
and ask for the number of solutions with maximum solution weight (i.e. the
number of solutions with weights identical to the maximum possible weight of
any solution to F)2: each instance consists of a 2SAT formula F along with
a weight vector w and a cardinality vector c, assigning a weight w(ṽ) resp. a
cardinality c(ṽ) to each literal ṽ of each variable v occurring in F . The weight
of a model M of F is

W(M) =
∑

l is true in M

w(l);

that is, the sum of w(v) for every variable that is true in M and w(v̄) for every
variable that is false in M . In the same manner, let the cardinality of a model
M be

C(M) =
∏

l is true in M

c(l).

Again, l ranges over literals, not over variables. The solution to the instance is
the maximum weight of any model M for F , and the sum of the cardinalities of
all true models M of F .

We use cardinality vectors in order to enable the use of multiplier reduction
(described below); the most natural instances to the problem may be where
the cardinality of every literal is 1, so that we ask simply for the number of
max-weight models.

Because of the weight and cardinality vectors, there is some bookkeeping
involved in performing an assignment to a formula and propagating its direct
implications (e.g. from a 2-clause (a ∨ b) and an assignment a = 0, a further
assignment b = 1 is derived). We will understand the term recursively branch on
x to include handling all details of weight, cardinality, and propagation; thus,
we will also always assume that the formula we are dealing with contains only
2-clauses. A precise description, if required, can be found in earlier publications
[3, 16].

Our main algorithm C(F, c,w), taking a formula F , a cardinality vector c, and
a weight vector w, is defined as Algorithm 1 later in this section. All references
to C(· · ·) in the following definitions are references to this algorithm. First, we
give a definition that is used when selecting a variable to branch on.
2 The most immediate uses of the algorithm are probably to either find the number

of solutions in total, or the maximum possible weight of a solution (both of which
being problems for which this algorithm is the fastest known), but note that the
max-weight requirement can be used to implement non-2SAT constraints, e.g. the
gadget (x̄ ∨ ū), (y ∨ ū), (x̄ ∨ v̄), (ȳ ∨ v̄), (z ∨ v̄) with w(l) = 1 iff l ∈ {x, u, v}, where u
and v only occur in these clauses, implements (x ∨ y ∨ z).

A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances 207

Definition 1. In a formula F with average degree �(F)/n(F) = k, the associ-
ated average degree of a variable x in F is α(x)/β(x), where:

α(x) = d(x) + |{y ∈ N(x) | d(y) < k}| (3)

β(x) = 1 +
∑

{y∈N(x) | d(y)<k}
1/d(y) (4)

The following lemma shows the use of this definition in the algorithm.

Lemma 2 (Lemma 6 of [3]). Let F be a non-empty formula such that
�(F)/n(F) = k. There exists some variable x ∈ V ar(F) with d(x) ≥ k with
associated average degree at least k.

We also use a reduction called multiplier reduction. When a formula F consists
of two parts F1 and F2, with |V ar(F1)∩V ar(F2)| = 1 (say, the variable v), then
multiplier reduction applies. We then need only two pieces of information from
F2: the number and weight of max-weight solutions when v = 1 resp. v = 0.
We can find these numbers through calls to C(F2[v = 1]) and C(F2[v = 0]) and
incorporate them into w(ṽ), c(ṽ), to then proceed to calculate C(F1) with the
modified values. This will be referred to as removing F2 by multiplier reduction.

Finally, we provide the algorithm. Note that though the analysis is split into
several parts, using different measures, these parts are only different ways of
analysing this same algorithm.

Algorithm 1 C(F, c,w)

1. If F = ∅, then return (1, 0). If ∅ ∈ F , then return (0, 0).
2. If F is not connected, then return (c, w) where c =

∏j
i=0 ci, w =

∑j
i=0 wi,

and (ci, wi) = C(Fi, c,w) for the connected components F0, . . . , Fj .
3. If multiplier reduction applies, then apply it, removing the lightest part (as

measured by the complexity measure).
4. If d(F) ∈ {3, 4}, then let x be a variable of maximum degree, secondarily

maximising the associated average degree α(x)/β(x).
(a) If there exists a set of two heavy variables {y, z}, y, z �∈ N [x], whose

removal leaves F disconnected and leaves N(x) in a non-heaviest com-
ponent, then recursively branch on y.

(b) Otherwise, recursively branch on x.
5. Let x be a variable of maximum degree, which if possible does not have only

neighbours of degree d(x), and recursively branch on x.

5 Analysis: Maximum Degree 4

In this section, we will give upper bounds for the running time of the algorithm
in cases where d(F) ≤ 4. The bounds of this section are given using the method
described in Sect. 3. We begin with an observation for the case d(F) = 2.

208 M. Wahlström

Table 1. Possible cases when branching on a 3-variable

Degrees of Highest average Branching
neighbours degree (case 4b)

(2, 2, 2) 6/2.5 = 2.4 τ (12wl + 4wn, 12wl + 4wn)
(2, 2, 3) 5/2 = 2.5 τ (10wl + 3wn, 18wl + 6wn)
(2, 3, 3) 4/1.5 ≈ 2.67 τ (8wl + 2wn, 16wl + 5wn)
(3, 3, 3) 3/1 = 3 τ (6wl + wn, 16wl + 4wn)

Lemma 3. The algorithm C applied to a formula F with d(F) ≤ 2 runs in
polynomial time.

We will now give the bound for the case d(F) = 3. For reference, and to illus-
trate the process, the possible neighbourhoods of a heavy variable, with their
respective average degree guarantees, are given in Table 1. The measure is based
on the attributes �(F) and n(F), rather than n2(F) and n3(F), since they are
equivalent when there are only two attributes, and the former is somewhat easier
to work with.

Table 2. Component measures wl�(F) + wnn(F) for maximum degree 3

Section wl wn Time

2 to 2.4 0.25 −0.5 O∗ (
20.1n

) ⊂ O∗ (1.0718n)
2.4 to 2 + 2/3 0.185373 −0.344895 O∗ (

20.1495n
) ⊂ O∗ (1.1092n)

2 + 2/3 to 3 0.155985 −0.266527 O∗ (
20.2015n

) ⊂ O∗ (1.1499n)

Lemma 4. For a formula F with d(F) ≤ 3, algorithm C runs in O∗ (1.1499n)
time.

Proof. The components of the compound measure for this case are on the form
μa(l, n) = wll + wnn, with the parameters of the measures given in Table 2. It
may seem strange that wn < 0 for these components, but this can be translated
into the form

∑
i wini with wi = iwl + wn, in which case wi ≥ 0 for every i ≥ 2,

which also shows that μa(l, n) is non-increasing over every reduction (and since
μa(F) ≥ μ(F), so is μ(F)). For cases 2 and 3 of the algorithm, note that since
μa is linear, μ(F) = μa(F) =

∑
i μa(Fi) ≥

∑
i μ(Fi); the time used is dominated

by the time spent on the heaviest component.
Also, when estimating Δf , this means that our underestimations are safe

unless the formula we compare against contains a singleton (since w1 < 0 for
some sections of f). Specifically, Δf can be described as w2 for every removed
2-variable, w3 for every removed 3-variable, and wl for every variable that has
had its degree reduced from 3 to 2.

Next, consider case 4a. We can see that in both branches we will have re-
moved all of N [x] plus the variable y, and at least two heavy variables will
have been reduced to light variables (since multiplier reduction does not apply).

A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances 209

Both branches get a reduction of at least (S(x) + 5)wl + 5wn, where S(x) =∑
y∈N [x] d(y), which will compare favourably to the results of using case 4b, and

will never result in a worse branching.

Table 3. Component measures
∑

i wini(F) for maximum degree 4

Section w2 w3 w4 Time

2–3 0.045443 0.201428 0.324788 O∗ (1.1499n)
3–3.2 0.084777 0.201428 0.285454 O∗ (1.1634n)

3.2–3.5 0.092882 0.202779 0.280051 O∗ (1.1822n)
3.5–3.75 0.097593 0.204349 0.278481 O∗ (1.1975n)
3.75–4 0.107950 0.208788 0.277001 O∗ (1.2117n)

The worst cases of the algorithm remain. These branchings are given in Table 1,
in terms of generic weights wl and wn, since they do not depend upon the particu-
lar measure associated with the current section, and the branchings can be verified
without great difficulty. Using the measures from Table 2, it can be verified that
every branching has a branching number of at most 2 in a section where it is appli-
cable (e.g. the first measure gives branching numbers of at most 2 for every case,
while in the final section up to 3, only the 3-regular case is applicable).

We see that the time is indeed in O∗ (
2μ3(F)

)
for the μ3(F) given in Table 2,

and the total worst time is O∗ (1.1499n), as given in the table. ��

Now, we present the analysis of the case when d(F) = 4. For this case, the
multiple attributes-version of the analysis is used, with component measures∑

i wini(F), as explained in Sect. 3. We use Δwi = wi − wi−1 to simplify ex-
pressions of branchings. The weights of the measure are given in Table 3. These
weights were calculated automatically according to the approach described in
Sect. 3, with resulting non-zero pivot points at average degrees 3, 3.2, 3.5, and
3.75 (the amount of pivot at the other potential pivot points was found to be zero
in an optimal solution). The component measure for section 2–3 coincides with
the top-most component measure for d(F) = 3: 0.155985�(F) − 0.266527n(F)
results in w2 = 2wl −wn = 0.045443 and w3 = 3wl −wn = 0.201428. The auto-
matic weight calculation also guarantees that the choice of weights and pivoting
strategy is optimal. The bound achieved for d(F) = 4 is O∗ (1.2117n).

Lemma 5. The weights of Table 3 form a correct compound measure.

Lemma 6. For a formula F with d(F) = 4, C(F) runs in time O∗ (1.2117n).

Proof. We refer again to Table 3 for a definition of the weights in the com-
pound measure. The measure is clearly well-behaved. The branching depends on
the neighbourhood of the variable that is chosen; the explicit table has been cut,
but the cases are similar to those for d(F) = 3 (and easier to find). We will prove
that these are the worst-case branchings shortly, but first we consider case 4a:

210 M. Wahlström

if case 4a is used, then N [x] and y are removed in both branches, and at least
two variables decrease their degree, which can be adjusted for the parity of �(F).
In the heavy branch of the maximally unbalanced branching, N [x] is removed
and at least three variables get their degrees decreased, likewise adjusted for the
parity of �(F). We see that in case 4a, both branches will be at least as heavy
as the heaviest possible branch of case 4b. Thus, we only consider case 4b in the
following.

When removing only the variable x and repeatedly applying cases 1 and 2 of
the algorithm, if any variable gets its degree reduced to 03 or ends up in a non-
biggest connected component (even if this happens after subsequent applications
of case 2), then x is a cut-vertex and multiplier reduction applies to F . Also,
obviously, if any variable gets its degree reduced to 1, then multiplier reduction
applies and one more reduction of the degree of some variable occurs. Thus,
when x has k light neighbours and only x is removed in one branch, the total
reduction is at least w4 + kw2 + kΔw4 plus the reductions in degree of the other
neighbours of x, for the light branch of the maximally unbalanced branching.
When some other variable is assigned, this does not apply, though we do know
that in total, there are at least three variables outside of N [x] that have links to
variables in N(x).

The case when the neighbours of x are not all removed in the same branch
does not provide a hard case; this is in agreement with the general principle that
τ(a − d, b + d) > τ(a, b) when a ≤ b and d ≥ 0, and can be proven by going
through the cases in a simple though lengthy manner.

All that remains are the cases of a neighbourhood of degrees (d1, d2, d3, d4)
where in one branch only the branching variable disappears (producing Δμ =
w4+

∑
i Δwdi) and in the other, N [x] disappears (producing Δμ =

∑
y∈N [x] wd(y)

+ kΔw4, for k = 3 or k = 4 according to the parity of the sum of degrees of
N [x]). Again, it can be verified that each such case has a branching number of
at most 2 in every section where it is applicable. The total worst-case time for
the d(F) = 4 case, as stated, is O∗ (2w4n) for the final value of w4 = 0.277001,
or O∗ (1.2117n). ��

Table 4. Weights for d(F) > 4 analysis

w2 w3 w4 w5 w6

0.115507 0.208788 0.277001 0.301245 0.307612

6 Analysis: The General Case

With d(F) > 4, the effects of a changing average degree seem to be less important
than the number of variables removed. The analysis is performed in terms of a
standard weight-based measure μ(F) =

∑
i wini(F), whose weights are given in

3 By “reduced to 0” we mean that all neighbours of the variable are removed, and we
do not include when a variable is removed by multiplier reduction.

A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances 211

Table 4. Note that while the values of w3 and w4 are the same as in the topmost
measure for the d(F) = 4 analysis, the value of w2 is increased to get a better
worst-case branching number. This inequality is no problem, since the degree of
a variable never increases by the application of a reduction: once d(F) < 5, the
case d(F) > 4 does not appear in any subinstance.

The hard cases will be one case with a smallest-possible neighbourhood (d(x)=
5 and N(x) is 2-regular), and the two cases with biggest-possible neighbourhoods
(for d(x) = 5 and d(x) = 6). Since the latter two cases have average degree limits
of 5 resp. 6, a compound measure would not be the right tool for this analysis.

Lemma 7. Using μ(F) =
∑

i wini(F) with the weights given in Table 4, the
running time of C for a formula F with d(F) ≤ 6 is in O∗ (

2μ(F)
)
.

Proof. If d(F) < 5, then see Sect. 5 (note that the weights w2, . . . , w4 give a
bound that is consistent with that for section 3.75–4, which is in turn a valid
bound for all cases with d(F) ≤ 4). As before, the application of case 4a guar-
antees a reduction in both branches that is at least as high as the reduction in
the heavy branch of the maximally unbalanced branching, and all cases with a
branching number of 2 appear in case 4b with the maximally unbalanced branch-
ing. Providing a list of all branching numbers would require several pages; such
lists are omitted for space, but the claim can be verified by a simple computer
program. The cases of k-regular neighbourhoods with d(x) = k are avoided as
far as possible in case 5 of the algorithm, and as a result these cases happen
at most once each in every path through the branching tree: they only apply
if the k-variables form a regular connected component, and since no reduction
creates a new occurrence of any variable in the formula, any k-regular connected
component that appears in some subsequent subcase of some k-regular formula
F must occur as a subformula in F , which is impossible. Since these cases occur
at most once in every path of the tree, they contribute only to the polynomial
part of the running time.

No case with a more balanced branching has a higher branching number than
2; the proof for this is also omitted. We see that all cases have a branching
number of at most 2. ��
Theorem 1. The algorithm C counts the number of max-weight models for a
formula F in time O∗ (1.2377n).

Proof. If d(F) ≤ 6, then this follows from Lemma 7. Otherwise, we can perform
a quick analysis in terms of n(F): the measure n(F) is a well-behaved measure
for the algorithm and since d(F) ≥ 7, the branching number for case 5 is at
worst τ(1, 8) < 1.2321. ��
Finally, we make a brief note on lower bounds for the algorithm. While it would
be good as a reference point to have strong lower bounds to match the upper
bounds on the algorithm’s running time, e.g. through presenting a class of in-
stances for which we can prove that the algorithm, through making poor choices
compatible with the algorithm description, can require Ω∗(cn) time for some c,

212 M. Wahlström

actually producing instances for which we can confidently predict the execution
process proves very difficult. The best we are able to present in this paper is a
type of instance of maximum degree 3 taking Ω∗(1.1048n) time, to contrast with
our upper bound O∗ (1.1499n) for the same situation.

For this purpose, build an instance Ik as a form of warped k-rung “ladder”:
Use variables xi and yi for 1 ≤ i ≤ k, and clauses (yi ∨ yi+1) for all 1 ≤ i < k,
(xi ∨ xi+2) for all 1 ≤ i ≤ k − 2, and (xi ∨ yi) for all 1 ≤ i ≤ k. We show
that Ω∗(1.1048n) is consistent with the algorithm description for this type of
instance.

Lemma 8. The algorithm C, applied to an instance Ik with n = 2k variables,
can take Ω∗(τ(6, 8)) > Ω∗(1.1048n) time.

Proof. It is consistent with the algorithm description that it branches on the
leftmost yi whose every neighbour is of degree 3 (in the original instance Ik,
this would be y3). When yi = 0, all variables xj and yj for j ≥ i + 2 remain,
making the next branching candidate yi+4; when yi = 1, at least all variables xj

and yj with j > i remain, making the next branching candidate yi+3. Following
this process until i ≥ k − 3 forms a recursion tree with, asymptotically, τ(3, 4)k

lowest-level instances. ��

7 Conclusions

We have shown how to integrate analysis by non-uniform, piecewise linear mea-
sures, as used in previous #2SATw bounds [3, 7], with the multi-variate recur-
rence approach by Eppstein [5], thereby combining the ability of the former to
model algorithms whose behaviour varies depending on parameters of the input,
with the good bounds and the automatability of the bound calculation of the
latter. On the one hand, we have used this to give a tighter upper bound of
O∗ (1.2377n) on the time required for solving #2SATw. On the other, we would
like to point out that the question of the tightness of the resulting bound is
unresolved. In other words, under what conditions will the bound O∗ (cμ) pro-
duced by the method correctly describe the worst-case behaviour of a model of
degree-bounded branchings as described in Sect. 3, or of other related variants?

References

[1] Brueggemann, T., Kern, W.: An improved deterministic local search algorithm
for 3-SAT. Theoretical Computer Science 329(1–3), 303–313 (2004)

[2] Dahllöf, V., Jonsson, P., Wahlström, M.: Counting satisfying assignments in 2-
SAT and 3-SAT. In: H. Ibarra, O., Zhang, L. (eds.) COCOON 2002. LNCS,
vol. 2387, pp. 535–543. Springer, Heidelberg (2002)

[3] Dahllöf, V., Jonsson, P., Wahlström, M.: Counting models for 2-SAT and 3-SAT
formulae. Theoretical Computer Science 332(1–3), 265–291 (2005)

[4] Dubois, O.: Counting the number of solutions for instances of satisfiability. The-
oretical Computer Science 81, 49–64 (1991)

A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances 213

[5] Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In: Proceedings
of the 15th annual ACM-SIAM symposium on Discrete algorithms (SODA 2004),
pp. 788–797 (2004)

[6] Fomin, F.V., Grandoni, F., Kratsch, D.: Some new techniques in design and anal-
ysis of exact (exponential) algorithms. Bulletin of the EATCS 87, 47–77 (2005)

[7] Fürer, M., Kasiviswanathan, S.P.: Algorithms for counting 2-SAT solutions and
colorings with applications. Electronic Colloquium on Computational Complexity
(ECCC) 5(033) (2005)

[8] Iwama, K., Tamaki, S.: Improved upper bounds for 3-SAT. In: Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), p.
328 (2004)

[9] Kozen, D.: The design and analysis of algorithms. Springer, New York (1992)
[10] Littman, M., Pitassi, T., Impagliazzo, R.: On the complexity of counting satisfying

assignments. In: The working notes of the LICS 2001 workshop on Satisfiability
(2001)

[11] Ryser, H.J.: Combinatorial Mathematics. The Mathematical Association of Amer-
ica, Washington (1963)

[12] Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM Journal on Com-
puting 20(5), 865–877 (1991)

[13] Valiant, L.: The complexity of enumeration and reliability problems. SIAM Jour-
nal of Computing 8, 410–421 (1979)

[14] Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8, 189–201 (1979)

[15] Wahlström, M.: An algorithm for the SAT problem for formulae of linear length.
In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 107–118.
Springer, Heidelberg (2005)

[16] Wahlström, M.: Algorithms, measures, and upper bounds for satisfiability and
related problems. Linköping Studies in Science and Technology, PhD Dissertation
no. 1079 (2007), http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8714

[17] Zhang, W.: Number of models and satisfiability of sets of clauses. Theoretical
Computer Science 155, 277–288 (1996)

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8714

Exact Algorithms for Edge Domination�

Johan M.M. van Rooij and Hans L. Bodlaender

Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{jmmrooij, hansb}@cs.uu.nl

Abstract. In this paper we present a faster exact exponential time
algorithm for the edge dominating set problem. Our algorithm uses
O(1.3226n) time and polynomial space. The algorithm combines an enu-
meration approach based on enumerating minimal vertex covers with
the branch and reduce paradigm. Its time bound is obtained using the
measure and conquer technique. The algorithm is obtained by starting
with a slower algorithm which is refined stepwise. In this way a series of
algorithms appears, each one slightly faster than the previous, resulting
in the O(1.3226n) time algorithm.

The techniques also gives faster exact algorithms for: minimum weight
edge dominating set, minimum (weight) maximal matching, matrix dom-
ination and the parametrised version of minimum weight maximal
matching.

Keywords: edge dominating set, minimum maximal matching, exact
algorithms, exponential time algorithms, measure and conquer.

1 Introduction

Research on exponential time algorithms for finding exact solutions to NP-hard
problems dates back to the sixties and seventies. Some natural problems such
as independent set [20,22], colouring [13] and Hamiltonian circuit [10] have been
studied for a long time, while for other problems such as dominating set [7,18,24],
treewidth [25] and feedback vertex set [19] exact exponential algorithms with
non-trivial running times date from only recently. There is a renewed interest in
these algorithms, also visible in a recent series of surveys [8,11,21,26,27].

In this paper, we consider the minimum edge dominating set problem. This
problem is identical to the problem of finding a minimum dominating set in
a line graph. While both the minimum edge dominating set problem and the
minimum dominating set problem are NP-hard [28], in some ways the problem
restricted to line graphs is easier. For instance, minimum dominating set is hard
to approximate [4], while minimum edge dominating set is constant-factor ap-
proximable [1]. Also from the parametrised point of view, minimum dominating
set most likely is not fixed parameter tractable (it is W[2]-complete [2]), while

� This research was partially supported by project BRICKS (Basic Research for Cre-
ating the Knowledge Society).

M. Grohe and R. Niedermeier (Eds.): IWPEC 2008, LNCS 5018, pp. 214–225, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Exact Algorithms for Edge Domination 215

minimum edge dominating set is fixed parameter tractable [5]. In the setting of
exact exponential time algorithms, it also seems that the edge dominating set
problem is somewhat easier; the currently best known time bound for an exact
algorithm for minimum dominating set is O(1.5063n) [24], while in this paper
we present an O(1.3226n) time algorithm for minimum edge dominating set.

The first exact algorithm for minimum edge dominating set is from 2005 due to
Randerath and Schiermeyer [18] and has a running time of O(1.4423m). Raman
et al. [17] improved this to O(1.4423n) and recently Fomin et al. [6] obtained an
algorithm using O(1.4082n) time.

In this paper we combine the idea of enumerating minimal vertex covers in or-
der to compute (variants of) minimum edge dominating set with reduction rules
and matching techniques. In this way we improve upon the currently fastest
algorithms for these problems. The time bound for our algorithm is tightened
considerably by analysing it with measure and conquer. Furthermore this ap-
proach allows us to apply design by measure and conquer. This enables us to
create a series of improved algorithms with even smaller upper bounds on their
running times, similar to [24].

2 Preliminaries

Let G = (V, E) be an n-node undirected simple graph. Let G[V ′] be the subgraph
of G induced by a subset V ′ ⊆ V . Let N(v) be the open neighbourhood of a
vertex v ∈ V , N [v] be the closed neighbourhood of v ∈ V (N [v] = N(v) ∪ {v}),
and NV ′(v), NV ′ [v] be the open, respectively closed, neighbourhoods of v in
G[V ′]. NV ′(V ′′) is an extension of this notation to neighbourhoods of V ′′ ⊆ V :
NV ′(V ′′) = (

⋃
v∈V ′′ NV ′(v))\V ′′, NV ′ [V ′′] =

⋃
v∈V ′′ NV ′ [v]. For a subset of the

vertices V ′ ⊆ V , we define the V ′-degree of v ∈ V to be the degree of v in G[V ′].
An edge dominating set is a subset D ⊆ E such that every edge e ∈ E is dom-

inated by an edge f ∈ D, where f dominates e if e and f have a common end
point. We consider the minimum edge dominating set problem: given a graph G,
find an edge dominating set of minimum cardinality. For an edge weight function
ω : E → R≥0 the minimum weight edge dominating set problem is: given a graph
G, find an edge dominating set D of minimum total weight. Also we consider
the minimum (weight) maximum matching problem; this problem is equivalent to
minimum (weight) independent edge dominating set, where an edge dominating
set D is independent if no two edges in D are incident to the same vertex.

3 Using Minimal Vertex Covers for Edge Dominating Set

We start by showing how vertex covers and matchings can be used to compute
minimum edge dominating sets. This leads to a reduction rule, a special treat-
ment of graphs of low degree, and an algorithm that improves upon the currently
fastest algorithm for this problem. We use:

Property 1. If D ⊆ E is an edge dominating set in G = (V, E), then C = {v ∈
V |∃e∈D v ∈ e} is a vertex cover in G.

216 J.M.M. van Rooij and H.L. Bodlaender

Proof. For each e ∈ E, there is an edge f ∈ D that dominates e, i.e. e and f
have an end point v in common. Because v ∈ C, C is a vertex cover. ��
For a vertex cover C define DC to be the minimum edge dominating set con-
taining C in its set of endpoints. For given C, DC can be computed in the
following way: compute a maximum matching C′ in G[C] and add an edge for
every unmatched vertex in C. |DC | is minimum because |C′| is maximum.

Since every vertex cover contains a minimal vertex cover, we can use this
in a simple algorithm for minimum edge dominating set: compute DC for all
minimal vertex covers C in G, and return one of minimum cardinality. This can
be done in O(1.4423n) time, since minimal vertex covers can be enumerated with
polynomial delay [12,14] and their number is bounded by 3n/3 [15].

This number is tight: consider the family of graphs consisting of l triangles.
Finding a minimum edge dominating set in a triangle, however, is trivial. This
observation can be generalised: we obtain Rule 1 used in Algorithm 1.

Algorithm 1 continuously keeps track of a partitioning of the vertices of G
in three sets: a set C of vertices that must become part of the vertex cover, a
set I of vertices that may not become part of the vertex cover (they are in the
complementing independent set), and a set U of vertices, which we call the set
of undecided vertices. We denote such a state by the four-tuple (G, C, I, U).

Rule 1
if G[U] contains a connected component H that is a clique then

let G̃ = (V ∪ {v}, E ∪ {{u, v}|u ∈ H}); C̃ = C ∪H ∪ {v}; Ũ = U\H
recursively solve (G̃, C̃, I, Ũ) and obtain the edge dominating set D
if D contains two distinct edges {u, v}, {v, w} incident to v then

return (D\{{u, v}, {v, w}})∪ {{u, w}}
return D\{{u, v}}, where {u, v} is the unique edge in D incident to v

Proof of Correctness. After the recursive call the extra vertex v is incident to
one or two edges in D, since v ∈ C̃ and if there are more edges incident to v then
two such edges can be replaced by the edge joining the other endpoints: this
gives a smaller edge dominating set with C̃ as a subset of the set of endpoints.

All clique edges in the original graph are dominated if at most one clique
vertex is not incident to a dominating edge. Therefore both return statements
return an edge dominating set in G that contains C within its set of endpoints.

Because D is of minimum cardinality (in G̃) and in both cases the returned
set is of cardinality one smaller, it must also be of minimum cardinality (in G):
if it is not then in both cases we can obtain a smaller edge dominating set in G̃
by adding one edge to the returned set. ��
Algorithm 1 enumerates minimal vertex covers by branching on vertices of max-
imum degree. It either puts such a vertex in the vertex cover, or in the indepen-
dent set and hence all its neighbours in the vertex cover. If G[U] is maximum
degree two, then the algorithm branches on vertices in cycles until G[U] is a
collection of paths. Then it branches on the third vertex of such a path: Rule 1
guarantees that in both branches at least the first three vertices are removed
from U . We estimate the number of subproblems generated:

Exact Algorithms for Edge Domination 217

Algorithm 1. Algorithm for Minimum Edge Dominating Set
Input: a graph G = (V, E) and sets C, I, U partitioning V (initially C = I = ∅, U = V)
Output: a minimum edge dominating set in G
1: exhaustively apply Rule 1
2: if a vertex v of maximum degree in G[U] has U -degree at least three

or G[U] contains a connected component H which is a cycle (pick v ∈ H) then
3: create two subproblems and solve each one recursively:
4: 1: (G, C ∪ NU (v), I ∪ {v}, U\NU [v]) 2: (G, C ∪ {v}, I, U\{v})
5: else if G[U] contains a connected component which is a path of length ≥ 4 then
6: Let v1, v2, v3, v4 be the vertices at an end of the path. Recursively solve:
7: 1: (G, C∪{v2, v4}, I∪{v1, v3}, U\{v1, v2, v3, v4}) 2: (G, C∪{v3}, I, U\{v3})
8: else if G[U] contains a connected component which is a path of length three then
9: Let v be the middle vertex and recursively solve the subproblems:

10: 1: (G, C ∪ NU (v), I ∪ {v}, U\NU [v]) 2: (G, C ∪ {v}, I ∪ NU (v), U\NU [v])
11: else
12: compute the candidate edge dominating set DC {here: U = ∅, C ∪· I = V }
13: return the smallest edge dominating set encountered

Lemma 1. For Algorithm 1 and l ≥ 4:

1. A cycle component Cl in G[U] generates a maximum of 4l/6 subproblems.
2. A path component Pl in G[U] generates a maximum of 4(l−1)/6 subproblems.

Proof. (1) Let P (l), C(l) be the number of subproblems generated by Algo-
rithm 1 when dealing with a path or cycle of length l respectively. Derive the
values of P (l) and C(l) for l ≤ 4 directly and consider the recurrence relation:

P (1) = P (2) = C(1) = C(2) = C(3) = 1 P (3) = P (4) = C(4) = 2

∀l≥5 : P (l) = P (l − 3) + P (l − 4) C(l) = P (l − 1) + P (l − 3)

Let x be the solution to 1 = x−3 +x−4. For l ≥ 4, P (l) < xl follows by induction
after noting that it holds for l ∈ {4, 5, 6, 7}. For l ≥ 10 we have:

C(l) < xl−1 + xl−3 = xl(x−1 + x−3) =
(
x l

√
x−1 + x−3

)l

< (41/6)l

using the fact that l
√

x−1 + x−3 is decreasing and smaller than 41/6 if l ≥ 10.
Direct computation shows that for l < 10: C(l) ≤ 4l/6.

(2) For l ≥ 8, xl/(l−1) is decreasing and smaller than 41/6, therefore:

P (l) < xl =
(
xl/(l−1)

)l−1

< (41/6)l−1

For 4 ≤ l ≤ 7: P (l) ≤ 4(l−1)/6, by direct computation. ��
A classical analysis of Algorithm 1 already improves upon previous results on
this problem, using much simpler techniques as for example in [6].

218 J.M.M. van Rooij and H.L. Bodlaender

Theorem 1. Algorithm 1 solves the edge dominating set problem in O(1.3803n)
time and polynomial space.

Proof. Correctness follows from the discussion about enumerating vertex covers
and the correctness of Rule 1.

Let u be the number of undecided vertices in our problem instance (initially
u = n), and S(u) be the number of subproblems generated to solve an instance
with |U | = u. The algorithm follows the following recurrence relation:

S(u) ≤
⎧
⎨

⎩

S(u− 1) + S(u− 4) branch on a vertex of U -degree ≥ 3
P (l)S(u− l) total effect of removing a path of length l
C(l)S(u − l) total effect of removing a cycle of length l

Here we group all branchings corresponding to the removal of an entire path or
cycle from G[U]. Let α be the solution to 1 = α−1+α−4. Now S(u) ≤ αu because
of the branching on a vertex of degree at least three. Also when a path or cycle
is removed from G[U] by a series of branchings, for each path or cycle of length
l: S(u) ≤ 4l/6S(u − l) ≤ (41/6)lαu−l < αl, by Lemma 1. This gives S(u) ≤ αu,
which results in the running time of O(poly(n)αn) or O(1.3803n). ��

4 Design by Measure and Conquer

We can prove a much smaller upper bound on the running time of Algorithm 1
by analysing it with measure and conquer [7]. This approach also allows us to
create a series of improved algorithms, each with a faster running time than the
previous. This is what we call design by measure and conquer [24].

For the measure and conquer analysis we need a weight function w : N→ [0, 1]
assigning weights w(d) to vertices of degree d in G[U]. Instead of counting the
number of undecided vertices to measure the progress of our algorithm, we will
now use their total weight k =

∑
v∈U w(degG[U](v)) as a measure of complexity.

If we can show that our algorithm runs in O(αk) time using weight function w,
it will also run in O(αn) time, since for any problem instance k ≤ n.

Theorem 2. Algorithm 1 solves the minimum edge dominating set problem in
O(1.3323n) time and polynomial space.

Proof. Let w : N→ [0, 1] be the weight function assigning weight w(degG[U](v))
to vertices v ∈ G[U]. The algorithm removes all vertices of U -degree zero, there-
fore w(0) = 0. Let Δw(i) = w(i)−w(i−1). Vertices with a larger U -degree should
be given a larger weight, hence we demand: ∀n≥1 Δw(n) ≥ 0. Furthermore we
impose the non-restricting steepness inequalities, ∀n≥1 Δw(n) ≥ Δw(n + 1).

Consider an instance where the algorithm branches on a vertex v of maximum
U -degree d ≥ 3 with ri neighbours of degree i in G[U] (d =

∑d
i=1 ri). Let d2 be

a lower bound on the number of vertices at distance two from v in G[U]:

d2 =

(
d∑

i=1

(i− 1)ri (mod 2)

)

except when d = r3 = 3 then: d2 = 2

Exact Algorithms for Edge Domination 219

This follows from a parity argument: there must be an edge in G[U] with only
one endpoint in NU [v] if 1 ≡ ∑d

i=1(i − 1)ri (mod 2). Also NU [v] cannot be a
clique by Rule 1, hence if d = rd we can use d2 = 2.

If v is put in the vertex cover, it is removed from U and the U -degrees of all
its neighbours in G[U] are decreased by one. If v is placed in the independent
set then NU [v] is removed from U , and at least d2 additional vertices have their
U -degree reduced by at least one. Hence the algorithm recurses on two instances
which are reduced Δindep and Δvc in measured complexity:

Δindep = w(d) +
d∑

i=1

riw(i) + d2Δw(d) Δvc = w(d) +
d∑

i=1

riΔw(i)

Let S(k) be the number of subproblems generated to solve a problem of measured
complexity k. For all d ≥ 3 and (d =

∑d
i=1 ri) we have a recurrence relation of

the form: S(k) ≤ S(k−Δindep)+S(k−Δvc). Let q(w) be the functional mapping
a weight function to the solution of this entire set of recurrence relations.

By Lemma 1, an l-cycle or l-path generates a maximum of 4l/6, respectively
4(l−1)/6, subproblems. An l-cycle has a measured complexity of l·w(2) and a path
of length l has measured complexity at least (l−1) ·w(2), since Δw(1) ≥ Δw(2)
and hence 2w(1) ≥ w(2). Therefore, in an instance where the vertices in cycle
components and path components of length at least four in G[U] have measured
complexity k′, the removal of these vertices from U by Algorithm 1 results in a
maximum of 4k′/6w(2) subproblems.

We now look for the optimal weight function w : N → [0, 1], satisfying the
restrictions, such that the following maximum over the worst case behaviours of
the different branch cases is minimum. We distinguish between three such cases:
the maximum U -degree is three or more, cycles and paths of length at least four
are removed from G[U], and a path of length three is removed from G[U].

S(k) ≤
(

min
w:N→[0,1]

max
{

q(w), 4(1/6)w(2) , 21/(w(2)+2w(1))
})k

(1)

By setting w(i) = 1 for all i ≥ 4 we obtain a finite dimensional quasiconvex
program [3]. Its solution shows a running time of O(1.3323k) using weights:

w(1) = 0.750724 w(2) = 0.914953 ∀i≥3 w(i) = 1

Since no subproblems are stored, Algorithm 1 uses polynomial space. ��
We will now stepwise improve upon this result, designing even faster algorithms
using design by measure and conquer [24]. The idea is the following: the quasi-
convex program proving the time bound of Theorem 2 has only a few cases that
are tight to the maximum of Equation 1. These cases follow by substituting the
optimal weights in the recurrence and can be considered for improvement.

The quasiconvex program of Theorem 2 has the following tight worst cases:

1. d = 3, r2 = 2, r3 = 1, i.e. in G[U] we have a vertex of maximum U -degree 3,
with two neighbours of U -degree 2 and one neighbour of U -degree 3.

220 J.M.M. van Rooij and H.L. Bodlaender

Table 1. Bounds on the running times of the algorithms in the improvement series

Strategies: none 1 1-2 1-3 1-4 1-5 1-7 1-8 1-9

O(xn): 1.3323 1.3315 1.3296 1.3280 1.3265 1.3248 1.3240 1.3228 1.3226

Ω(xn) [23]: 1.3160 1.2968 1.2968 1.2968 1.2968 1.2753 1.2753 1.2753 1.2753

2. d = 3, r3 = 3: we have a vertex of maximum U -degree 3, with three neigh-
bours in G[U] of U -degree 3.

3. a connected component in G[U] is a path of length three.

Consider the first case. Let v be the vertex of maximum U -degree three, with
two neighbours u1, u2 ∈ U of U -degree two and one neighbour u3 ∈ U of U -
degree three. In our analysis of Theorem 2, we had a lower bound d2 on the
number vertices with distance two from v in G[U]; for this case we had d2 = 0.
We now consider two subcases.

In the first subcase v, u1, u2 and u3 form a connected component in G[U]
isomorphic to Subgraph 1 in Figure 1. Algorithm 1 branches on v. We modify
this now, by instead branching on one of the U -degree two vertices, e.g. u1. In
both subproblems that are obtained after branching on u1, the vertices of the
subgraph that remains in U form a clique in G[U], and so are dealt with by
Rule 1. Therefore the entire subgraph disappears from G[U] after one branching
step and application of Rule 1, while previously, we had a path of length three
in G[U] remaining in one subproblem that required another branching step.

In the second subcase vertices in U\{v, u1, u2, u3} are adjacent to u1, u2

and/or u3. If we branch on v, then these vertices will have their U -degrees
reduced by one in one branch, implying a larger progress than estimated in The-
orem 2: by a parity argument we can use d2 = 2 as a new lower bound on the
number vertices with distance two from v in G[U].

Thus we modify the algorithm and split this case in two subcases in the
measure and conquer analysis. The optimum of the new quasiconvex program
proves an upper bound on the running time of O(1.3315n) for this new algorithm.

Arguments, similar to the argument given above can be given in a large num-
ber of other case as well. This leads to a series of improvement steps, and a series
of algorithms: each algorithm slightly improves upon the previous by introducing
a new more efficient branching strategy on a tight case. In each case a number of
local configurations around a vertex the previous algorithm would branch on are
considered for more efficient branching. This results in an increase of the lower
bound d2 for all remaining configurations.

We do not have the space here to explain all these alternative branching
strategies in detail: we give these in a schematic manner in Figure 1; see [23]
for a more elaborate treatment. The graphs in the figure are ordered on their
appearance as a tight case in the algorithms in the series. The i-th algorithm uses
alternative branching strategies 1 up to i. Table 1 contains upper and lower [23]
bounds on the running times of the individual algorithms.

Algorithm 2. Let Algorithm 2 be the modification of Algorithm 1 using all the
alternative branching strategies illustrated in Figure 1.

Exact Algorithms for Edge Domination 221

1 2 3 4

5

7 8

8'
9

6

The leftmost vertex in every subgraph corresponds to a vertex we could branch on in
Algorithm 1 and grey vertices represent more efficient alternatives. If multiple vertices
are grey, simultaneously branch on these vertices generating four or eight subproblems.
Crossed vertices represent vertices branched on directly hereafter, but only in the sub-
problems where this induces extra 1, 2 or 3-cliques. Sometimes small path components
remain in a subproblem; these are immediately branched upon also.

Unfinished edges always connect to vertices outside the drawn subgraph, and there
are no other edges in G[U] between vertices with at least one drawn endpoint. Dashed
edges are optional.

Fig. 1. More efficient branching strategies on possible subgraphs of G[U]

Theorem 3. Algorithm 2 solves the minimum edge dominating set problem in
O(1.3226n) time and polynomial space.

Proof. Reconsider the quasiconvex program used to prove the running time of
Theorem 2 and include new recurrence relations corresponding to the subcases
in Figure 1 and modify the values of d2 for previously tight cases.

The solution to this modified quasiconvex program gives a running time of
O(1.3226n) for Algorithm 2 using weights:

w(1) = 0.779416 w(2) = 0.920821 w(3) = 0.997106 ∀i≥4 w(i) = 1 ��

5 Related Problems

The results of the previous sections also imply faster exact algorithms for a
variety of other problems.

222 J.M.M. van Rooij and H.L. Bodlaender

The matrix domination problem is: given a m × n matrix M with entries in
{0, 1}, find a minimum subset S of the 1-entries in M such that every row and
column of M contains at least one 1-entry in S.

Using the transformations of an edge dominating set into a minimum maximal
matching [9] and of a matrix domination instance to a bipartite edge dominating
set instance [28], one directly obtains:

Corollary 1. The minimum maximal matching problem can be solved by a mod-
ification of Algorithm 2 in O(1.3226n) time and polynomial space.

Corollary 2. The matrix domination problem can be solved by modification of
Algorithm 2 in O(1.3226n+m) time and polynomial space.

For minimum weight edge dominating set and minimum weight maximal match-
ing we have obtained similar results. Hereto we need to modify both the reduction
rule and the matching algorithm at the leaves of the search tree.

First consider the minimum weight generalised edge cover problem: in a graph
G cover a specified subset of the vertices C ⊆ V by a set of edges of minimum
total weight. This problem is solvable in cubic time too [16] (also see [5]). An
algorithm for this problem can directly be used to compute the minimum weight
edge dominating set containing a vertex cover C in its sets of endpoints.

Theorem 4. The minimum weight edge dominating set problem can be solved
by a modification of Algorithm 2 in O(1.3226n) time and polynomial space.

Proof. Consider Algorithm 2 using a polynomial time algorithm for minimum
weight generalised edge cover to compute the minimum weight edge dominating
set containing a vertex cover, and with Rule 1 replaced by the rules:

Rule 2. Put isolated vertices in G[U] in the independent set I.

Rule 3
if G[U] contains a connected component H that is a clique of size 2 or 3 then

let H = (V ′, E′), e = argmine′∈E′ω(e′) and C̃ = C ∪H ∪ {v}; Ũ = U\H
let G̃ = (V ∪ {v}, E ∪ {{u, v}|u ∈ H}) with ∀u∈H ω({u, v}) = ω(e)
recursively solve (G̃, C̃, I, Ũ) and obtain the edge dominating set D
if D contains two distinct edges f, g incident to v then

return (D\{f, g}) ∪ {e}
return D\{f}, where f is the unique the edge in D incident to v

Correctness is identical to the previous algorithms, only for the correctness of
Rule 3 we also need the observation that in a clique of size two or three at least
one vertex in any pair of vertices is incident to an edge of minimum weight.

The running time follows from Theorem 3. ��
For minimum weight maximal matching we need to consider the minimum weight
generalised independent edge cover problem: given a graph G, cover a specified
subset of the vertices C ⊆ V by a set of edges of minimum total weight such
that no two edges are incident to the same vertex.

Exact Algorithms for Edge Domination 223

Algorithm 3. Minimum Weight Generalised Independent Edge Cover Algorithm
Input: a graph G = (V, E) and a subset of its vertices C ⊆ V
Output: a minimum weight generalised independent edge cover of C in G if one exists

1: if G has an odd number of vertices then
2: add a new vertex v to G (v �∈ C)
3: for all v, w ∈ V \C, v �= w do
4: add a new edge between v and w to G with zero weight
5: if there exists a minimum weight perfect matching P in G then
6: return P with all edges between vertices not in C removed
7: return false

Proposition 1. Algorithm 3 solves the minimum weight generalised indepen-
dent edge cover problem in polynomial time.

Proof. The returned edge set is a generalised independent edge cover of C in G
since it is a matching and it contains all vertices in C in its set of endpoints. The
edges in P between vertices in V \C have zero weight and thus the returned set
and P have equal total weight. Because all generalised independent edge covers
of C in G can be obtained in this way from perfect matchings, the returned set is
of minimal weight and false is only returned if no generalised independent edge
cover of C exists in G. ��
Theorem 5. The minimum weight maximal matching problem can be solved by
a modification of Algorithm 2 in O(1.3226n) time and polynomial space.

Proof. Consider Algorithm 2 using Algorithm 3 to compute the minimum weight
maximal matching containing a vertex cover, and with Rule 1 replaced by:

Rule 4
if G[U] contains a connected component H which is a clique then

let G̃ = (V ∪ {v}, E ∪ {{u, v}|u ∈ H}) with ∀u∈H ω({u, v}) = 0
C̃ := C ∪H ; Ĩ := I ∪ {v}; Ũ := U\H
recursively solve (G̃, C̃, I, Ũ) and obtain the maximal matching D
if D contains an edge e incident to v then

return D\{e}
return D

Correctness is identical to the previous algorithms, using that Rule 4 is correct
because the extra vertex v can only be incident to one edge in D, and this edge
is of zero weight. The running time follows from Theorem 3. ��
Using different techniques, Proposition 1 also implies the following:

Proposition 2 ([23]). The parametrised minimum weight maximal matching
problem, with parameter k can be solved in O∗(2.4178k)1.
1 Here we use the O∗ notation which suppresses not only constant but all polynomial

parts of the running time.

224 J.M.M. van Rooij and H.L. Bodlaender

Proof. Identical to the treatment of similar problems in [6], using Algorithm 3
if no path decomposition is computed. ��

6 Conclusion and Further Research

We have presented faster exact exponential time (and polynomial space) algo-
rithms for minimum edge dominating set and related problems. These algorithms
are obtained by using a vertex cover structure on the input graph, special branch-
ing strategies and reduction rules applied to simple instances and the iterative
improvement of a measure and conquer analysis.

It would be interesting to see if there are more related problems, such as
minimum (weight) total edge domination to which our methods can be applied.

We note that our algorithms have their running times expressed in the number
of vertices n in the input graph G, instead of the number of edges m in G.
As an interesting research topic, we mention the analysis and design of exact
algorithms for edge domination (and other problems), where we focus on the
running time as function of the number of edges m. See the discussion about
complexity parameters in [26].

References

1. Carr, R., Fujito, T., Konjevod, G., Parekh, O.: A 2 1
10

approximation algorithm for
a generalization of the weighted edge-dominating set problem. Journal of Combi-
natorial Optimization 5, 317–326 (2001)

2. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. Con-
gressus Numerantium 87, 161–178 (1992)

3. Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In: Proceedings of
the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pp.
781–790 (2004)

4. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652
(1998)

5. Fernau, H.: Edge dominating set: Efficient enumeration-based exact algorithms.
In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
140–151. Springer, Heidelberg (2006)

6. Fomin, F.V., Gaspers, S., Saurabh, S.: Branching and treewidth based exact al-
gorithms. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 16–25. Springer,
Heidelberg (2006)

7. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: Domination — a
case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)

8. Fomin, F.V., Grandoni, F., Kratsch, D.: Some new techniques in design and anal-
ysis of exact (exponential) algorithms. Bulletin of the EATCS 87, 47–77 (2005)

9. Harary, F.: Graph Theory. Addison-Wesley, Reading, MA (1969)
10. Held, M., Karp, R.: A dynamic programming approach to sequencing problems. J.

SIAM 10, 196–210 (1962)
11. Iwama, K.: Worst-case upper bounds for kSAT. Bulletin of the EATCS 82, 61–71

(2004)

Exact Algorithms for Edge Domination 225

12. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Information Processing Letters 27, 119–123 (1988)

13. Lawler, E.L.: A note on the complexity of the chromatic number problem. Infor-
mation Processing Letters 5, 66–67 (1976)

14. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal inde-
pendent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comput. 9,
558–565 (1980)

15. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
16. Plesńık, J.: Constrained weighted matchings and edge coverings in graphs. Disc.

Appl. Math. 92, 229–241 (1999)
17. Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerating

maximal independent sets and other techniques. Theory of Computing Systems 42,
563–587 (2007)

18. Randerath, B., Schiermeyer, I.: Exact algorithms for minimum dominating set.
Technical Report zaik2005-501, Universität zu Köln, Cologne, Germany (2005)

19. Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds,
R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)

20. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7, 425–440
(1986)

21. Schöning, U.: Algorithmics in exponential time. In: Diekert, V., Durand, B. (eds.)
STACS 2005. LNCS, vol. 3404, pp. 36–43. Springer, Heidelberg (2005)

22. Tarjan, R.E., Trojanowski, A.: Finding a maximum independent set. SIAM J.
Comput. 6, 537–546 (1977)

23. van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for edge domination. Tech-
nical Report UU-CS-2007-051, Department of Information and Computing Sci-
ences, Utrecht University, Utrecht, The Netherlands (2007)

24. van Rooij, J.M.M., Bodlaender, H.L.: Design by measure and conquer: A faster
exact algorithm for dominating set. In: Proc. 24th Symp. Theoretical Aspects of
Computer Science, STACS 2008 (2008)

25. Villanger, Y.: Improved exponential-time algorithms for treewidth and minimum
fill-in. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 800–811. Springer, Heidelberg (2006)

26. Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M.,
Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink!
LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

27. Woeginger, G.J.: Space and time complexity of exact algorithms: Some open prob-
lems (invited talk). In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC
2004. LNCS, vol. 3162, pp. 281–290. Springer, Heidelberg (2004)

28. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl.
Math. 38, 364–372 (1980)

Author Index

Amini, Omid 13
Aumann, Yonatan 30

Böcker, Sebastian 43
Bodlaender, Hans L. 160, 214
Bourgeois, Nicolas 55
Bui, Quang Bao Anh 43

Chang, Maw-Shang 66
Chen, Jianer 1

Demaine, Erik D. 9
Dom, Michael 78
Dombb, Yair 30

Elbassioni, Khaled 91
Escoffier, Bruno 55

Fellows, Michael 103

Guillemot, Sylvain 115, 129

Hagen, Matthias 91
Hermelin, Danny 103

Kreutzer, Stephan 10

Lin, Chuang-Chieh 66
Lokshtanov, Daniel 78, 141

Müller, Moritz 103, 148

Paschos, Vangelis Th. 55
Penninkx, Eelko 160

Rauf, Imran 91
Rosamond, Frances 103
Rossmanith, Peter 66

Sau, Ignasi 13
Saurabh, Saket 13, 78
Scott, Allan 172
Stege, Ulrike 172

Traxler, Patrick 190
Truss, Anke 43

van Rooij, Johan M.M. 214
Villanger, Yngve 78

Wahlström, Magnus 202

	Title Page
	Preface
	Organization
	Table of Contents
	Randomized Disposal of Unknowns and Implicitly Enforced Bounds on Parameters
	Introduction
	Disposal of a Small Unknown Subset
	Implicitly Enforced Bounds on Parameters
	Conclusion

	Algorithmic Graph Minors and Bidimensionality
	Algorithmic Meta-theorems
	Parameterized Complexity of the Smallest Degree-Constrained Subgraph Problem
	Introduction
	Fixed-Parameter In-Tractability of MSMDd for d3
	W[1]-Hardness of MSMDd for d=3
	W[1]-Hardness of MSMDd for d4

	Faster FPT Algorithms for Graphs with Bounded Local Tree-Width and Graphs with Excluded Minors
	Graphs with Bounded Local Tree-Width
	M-Minor Free Graphs

	Conclusions

	Fixed Structure Complexity
	Introduction
	Complexity and Hardness
	Defining Fixed-Structure Graph Problems
	Problems Equivalent to FS-Exact-Halt
	Open Problems

	An Improved Fixed-Parameter Algorithm for Minimum-Flip Consensus Trees
	Introduction
	Preliminaries
	The Algorithm
	Data Reduction
	Solving Instances with c-Vertices of Degree at Least Three
	Solving Instances with c-Vertices of Degree at Most Two

	Algorithm Engineering
	Experiments
	Conclusion

	An $O∗(1.0977^{n})$ Exact Algorithm for $\sc max independent set$ in Sparse Graphs�
	Introduction
	Preprocessing
	Branching
	Dealing with Trees
	The Concluding Theorem

	New Fixed-Parameter Algorithms for the Minimum Quartet Inconsistency Problem
	Introduction
	Related Work
	Our Result

	Preliminaries
	An O(3.0446kn + n4) Algorithm
	An O(2.0162kn3 + n5) Algorithm
	An O*((1+)k) Algorithm

	Capacitated Domination and Covering: A Parameterized Perspective
	Introduction
	Preliminaries
	Parameterized Intractability -- Hardness Results
	CDS Is W[1]-Hard Parameterized by Treewidth and Solution Size
	CVC Parameterized by Treewidth Is W[1]-Hard

	FPT Algorithm for CVC on Graphs of Bounded Treewidth
	Conclusion

	Some Fixed-Parameter Tractable Classes of Hypergraph Duality and Related Problems
	Introduction
	Number of Edges as Parameter
	Maximum Degree as Parameter
	Vertex Complementary Degree as Parameter
	Results Based on the Apriori Technique
	The Generalized Apriori Algorithm
	Maximal Independent Sets
	Maximal Frequent Sets

	Concluding Remarks

	A Purely Democratic Characterization of W[1]
	Introduction
	Preliminaries
	Parameterized Complexity
	Logical Circuits and the W-Hierarchy
	Majority Circuits and the W"0365W-Hierarchy

	W[1] W"0365W[1]
	W"0365W[1] W[1]
	Higher Levels of the Hierarchies
	Discussion

	Parameterized Complexity and Approximability of the SLCS Problem
	Introduction
	Definitions
	Algorithmic Results for Slcs
	Algorithms for Slcs
	Algorithms for CSlcs

	Hardness Results for Slcs
	The Clases W[1] and WNL
	Complexity w.r.t. q,k
	Complexity w.r.t. k

	Consequences for Problems of Bounded Width
	Consequences for Lcs
	Consequences for Other Problems

	Concluding Remarks

	FPT Algorithms for Path-Transversals and Cycle-Transversals Problems in Graphs
	Introduction
	Homogeneous Path Systems
	Preliminaries
	LP Formulation and Half-Integrality
	Some Technical Lemmas
	The Main Result

	New Algorithms for the Multiway Cut and Multicut Problems
	The Multiway Cut Problems
	The Multicut Problem
	The Vertex Multicut Problem

	Feedback Set Problems on Group-Labelled Graphs
	Preliminaries
	The Group Feedback Vertex Set Problem
	The Group Feedback Arc Set Problem

	Concluding Remarks

	Wheel-Free Deletion Is W[2]-Hard
	Introduction
	Notation, Terminology and Preliminaries
	Wheel-Free Deletion Is W[2] Hard
	Conclusions
	References

	Parameterized Derandomization
	Introduction
	Parameterized Randomization
	The Dice Lemma
	Derandomization
	Questions

	A Linear Kernel for Planar Feedback Vertex Set
	Introduction
	Preliminaries
	Domination
	Rules
	Simple Rules
	Less Simple Rules
	The Algorithm

	Automated Proofs
	A Linear Bound on the Size of the Kernel
	Improving the Bound on the Size of the Kernel
	Conclusions

	Parameterized Chess
	Games as Combinatorial Problems
	The Class AW[*]
	The Game of Short Generalized Chess
	Parameterized Membership of Short Generalized Chess
	Encoding Positions
	The Winning Condition
	Formula F
	Testing for Broken Rules
	Correctness of the Reduction

	Hardness of Short Generalized Chess

	The Time Complexity of Constraint Satisfaction
	Introduction
	Preliminaries
	Binary Sparse CSP (Proof of Theorem 1)
	Unique CSP (Theorem 2)

	A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances
	Introduction
	Preliminaries
	On Analysis by Compound Measure
	Problem Definition and Algorithm
	Analysis: Maximum Degree 4
	Analysis: The General Case
	Conclusions

	Exact Algorithms for Edge Domination
	Introduction
	Preliminaries
	Using Minimal Vertex Covers for Edge Dominating Set
	Design by Measure and Conquer
	Related Problems
	Conclusion and Further Research

	Author Index

