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Abstract. The fuzzy knowledge plays an important role in many appli-
cations on the semantic web which faces imprecise and vague information.
The current ontology languages on the semantic web use description log-
ics as their logic foundation, which are insufficient to deal with fuzzy
knowledge. Comparisons expressions between fuzzy membership degrees
are frequently used in fuzzy knowledge systems. However, the current
fuzzy extensions of description logics are not support the expression of
such comparisons. This paper defines fuzzy comparison cuts to represent
comparison expressions, extends fuzzy description logics by importing
fuzzy comparison cuts and introducing new constructors. Furthermore,
the reasoning algorithm is proposed. It enables representation and rea-
soning for fuzzy knowledge on the semantic web.
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1 Introduction

Description logics (DLs) [1] are a family of knowledge representation languages
widely used in the semantic web as a logic foundation for knowledge representa-
tion and reasoning. It is often necessary to represent fuzzy knowledge in real-life
applications [2]. The fuzzy knowledge plays an important role in many domains
which faces a huge amount of imprecise and vague knowledge and information,
such as text mining, multimedia information system, medical informatics, ma-
chine learning, human natural language processing. However, classical DLs are
insufficient to representing fuzzy knowledge [3]. Fuzzy DLs import the fuzzy set
theory to enable the capability of dealing with fuzzy knowledge.

Many research work on fuzzy DLs have been carried out. Yen provided a fuzzy
extension of DL FL− [4]. Tresp presents a fuzzy extension of ALC, ALCFM [3].
Straccia presented fuzzy ALC and an algorithm for assertional reasoning [8].
There are many extensions of fuzzy ALC. Höldobler introduced the membership
manipulator constructor to present ALCFH [9]. Sanchez generalized the quantifi-
cation in fuzzy ALCQ [10]. Stoilos provided pure ABoxes reasoning algorithms
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for the fuzzy extensions of SHIN [11]. There are several works using the idea
of fuzzy cuts. Straccia transformed fuzzy ALC into classical ALCH [5]. Li pre-
sented a family of extended fuzzy DLs (EFDLs) [6]. Calegari showed the fuzzy
OWL [12] and Straccia presented a fuzzy SHOIN (D)[13].

It is a familiar description that “Tom is taller than Mike,” which can be
seemed as a comparison between two fuzzy membership degrees. We call such
descriptions comparison expressions on fuzzy membership degrees. However, the
current fuzzy DLs do not support the expression of comparisons between fuzzy
membership degrees. So it is necessary to extend fuzzy DLs with the ability of
expressing comparison expressions.

This paper defines fuzzy comparison cuts (cuts for short) to represent com-
parison expressions on fuzzy membership degrees. The reasoning algorithm is
proposed. It enables representation and reasoning for expressive fuzzy knowl-
edge on the semantic web.

2 Fuzzy DLs with Comparison Expressions

2.1 Represent Comparison Expressions

For an individual a and a fuzzy concept C, let a : C be the degree to which a
is an instance of C. Similarly, (a, b) : R is the degree to which two individuals
a and b has a role R. In fuzzy DLs, the degrees can have their values in [0, 1].
We can show ranges of degrees in a set of fuzzy assertions of the form 〈α �� n〉,
where α is a degree, n ∈ [0, 1] is a constant and �� ∈ {=, �=, <, ≤, ≥, >}.

It is often necessary to compare the fuzzy membership degrees. There can be
different kinds of comparisons between fuzzy membership degrees:

– A numerical comparison compares a degree to a constant. Tom : Tall > 0.8
means “Tom is quite tall.” Mike : Tall ≤ 0.9 means “Mike is not very tall.”

– An abstract comparison compares degrees of the same individual. Tom :
Absolutist < Tom : Liberalist means “Tom prefers liberalism to absolutism.”

– A relative comparison compares degrees between different individuals. Tom :
Tall < Mike : Tall means “Tom is taller than Mike.”

– A complex comparison is constructed from the above kinds of simple com-
parisons. If for any person x such that (Tom , x) : hasFriend > 0.9, it holds
Tom : Tall > x : Tall or Tom : Strong > x : Strong, then we can say “No
close friend (the degree of friendship is greater than 0.9) of Tom is taller and
stronger than him.”

Our idea is to define new elements to express the above kinds of comparisons,
and integrate them into the current fuzzy DLs. We call the new elements fuzzy
comparison cuts. In the fuzzy set theory[2], the cut sets are indeed classical sets,
but facilitate a normative theory for formalizing fuzzy set theory. The idea of
fuzzy cuts can also be used for fuzzy DLs. [5] use the idea of cut sets of fuzzy
concepts to transform fuzzy DL ALC to classical DL ALCH. [6] defined cuts of
fuzzy concepts for more expressive ability.
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2.2 Syntax and Semantics

The new languages with comparison cuts is called FCDLs. The syntax of FCDLs
starts from three disjoint sets: NI , NC and NR: NI is a set of individual names,
NC is a set of fuzzy concept names, and NR is a set of fuzzy role names. Com-
plex fuzzy descriptions can be built from them inductively with fuzzy concept
constructors and fuzzy role constructors.

Definition 1. The set of fuzzy role descriptions (or fuzzy roles for short) is
defined as: every fuzzy role name R ∈ NR is a fuzzy role; and for any fuzzy role
R, R− is also a fuzzy role (let (R−)− := R). For two fuzzy role R, S, R � S
is called a fuzzy role inclusion axiom. A finite set of role inclusions is called
a role hierarchy. For individual names a, b ∈ NI and a constant n ∈ [0, 1],
〈(a, b) : R �� n〉 is called a fuzzy role assertion.

If for any a, b, (a, b) : R = n iff (b, a) : S = n, then S is an inverse role of R,
written R−. The role inclusion is transitive and R � S implies R− � S−. For a
role hierarchy R, let �R be the transitive reflexive closure of � on R ∪ {R− �
S−|R � S ∈ R}. Beside the definition, NR consists both transitive and normal
fuzzy role names NR = NR+ ∪ NRP , where NR+ ∩ NRP = ∅. For a transitive
fuzzy role R, if (a, b) : R ≥ n and (b, c) : R ≥ n, then it must have (a, c) : R ≥ n.
Let trans(S, R) be true if for some R with R = S or R ≡R S such that R ∈ NR+

or R− ∈ NR+ , where R ≡R S is an abbreviation for R �R S and S �R R. A
role R is simple w.r.t. R iff trans(S, R) is not true for all S �R R. Simple roles
is required in order to avoid undecidable logics [1].

Definition 2. The set of fuzzy concepts is that

1. every fuzzy concept name A ∈ NC is a fuzzy concept,  and ⊥ are fuzzy
concepts,

2. if C, D are fuzzy concepts, o ∈ NI is an individual name, R is a fuzzy role,
S is a simple fuzzy role, and q ∈ N, then ¬C, C � D, C � D, ∀R.C, ∃R.C, ≥
qS.C, ≤ qS.C, {o} are also fuzzy concepts,

3. if R is a fuzzy role, S is a simple fuzzy role, P is a cut, and q ∈ N, then
∃R.P, ∀R.P , ≥ qS.P , ≤ qS.P are also fuzzy concepts.

For two fuzzy concept C, D, C � D is called a fuzzy concept inclusion. For
a ∈ NI and n ∈ [0, 1], 〈a : C �� n〉 is called a fuzzy concept assertion.

Definition 3. The set of fuzzy comparison cuts (or cuts for short) is defined
as: if C, D are fuzzy concepts, n ∈ [0, 1] and �� ∈ {=, �=, >, ≥, <, ≤}, then [C ��
n], [C �� D] and [C �� D↑] are cuts (and [C ��] is an abbreviation of [C �� C↑]);
if P, Q are cuts, then ¬P , P � Q and P � Q are also cuts. For any cut P and
a ∈ NI , P (a) is called an absolute cut. If a cut P contains no ↑, then P itself
is an absolute cut, and we do not distinguish P and P (a) for any a. For two
absolute cuts P, Q, P � Q is called a cut inclusion. For an absolute cut P (b)
and a ∈ NI , 〈a : P (b)〉 is called a cut assertion.
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Definition 4. A fuzzy interpretation I =
〈
ΔI , ·I

〉
consists a nonempty set ΔI

as its domain, and a function ·I maps every individual a ∈ NI to an element
aI ∈ ΔI, maps every fuzzy concept name A ∈ NC to a function AI : ΔI → [0, 1],
and maps every fuzzy role name R ∈ NR to a function RI : ΔI × ΔI → [0, 1].

The interpretation function is also extended to complex descriptions. It maps
every fuzzy concept C to a function CI : ΔI → [0, 1], maps every fuzzy role R
to a function RI : ΔI ×ΔI → [0, 1], maps every cut P to a function P I : ΔI →
2ΔI

, and maps every absolute cut P (a) to a set P I(aI) ⊆ ΔI .

The syntax and semantics of FCDLs are showed in Table 1. Table 1 does not
list all available constructors, but only selects the most common ones.

From the semantics, it is clear that the interpretation of [C �� n]I(s) and
[C �� D]I(s) do not depend on s. For any cut P and individual name a, P (a) is
an absolute cut, and (P (a))I = P I(aI). If a cut P contains no ↑, then P I(s) is
independent of s. So P itself is an absolute cut.

With the cuts and new constructors, FCDLs are more expressive than the
current fuzzy DLs. FCDLs support all kinds of comparison expressions. They
enable representation of expressive fuzzy knowledge on the semantic web.

2.3 Knowledge Bases and Reasoning

Definition 5. A knowledge base (KB) of FCDLs is consists of an ABox, a
TBox and a RBox:

An ABox is a finite set of concept assertions of the form 〈a : C �� n〉, role
assertions of the form 〈(a, b) : R �� n〉, and cut asserions of the form 〈a : P (b)〉.
An interpretation I satisfies an ABox A iff I satisfies each assertion in A; such
I is called a model of A. I satisfies 〈a : C �� n〉 iff CI(aI) �� n, I satisfies
〈(a, b) : R �� n〉 iff RI(aI , bI) �� n, I satisfies 〈a : P (b)〉 iff aI ∈ P I(bI).

An TBox is a finite set of concept inclusions of the form C � D, and cut
inclusions of the form P � Q. I satisfies a TBox T iff I satisfies each inclusion
in T ; such I is called a model of T . I satisfies C � D iff for any s ∈ ΔI,
CI(s) ≤ DI(s), I satisfies P � Q iff P I ⊆ QI(s).

An RBox (or called role hierarchy) is a finite set of role inclusions of the form
R � S. I satisfies an RBox R iff RI(s, t) ≤ SI(s, t) for each R � S ∈ R; such
I is called a model of R.

For a knowledge base K = 〈A, T , R〉, if I is a model of T , R and A, then I
is called a model of K
Definition 6. The basic inference problems of FCDLs include

– Satisfiability of concepts: a concept C is satisfiable w.r.t. a TBox T and a
RBox R to a given degree n, iff there exists a model I of T and R with
∃s ∈ ΔI , CI(s) ≥ n.

– Consistency of ABoxes: an ABox A is consistent w.r.t. T and R, iff there
exists a model of T , R and A.

ALCfc is the most basic FCDL. For any ALCfc-role R, R ∈ NRP ; and ALCfc-
concepts are C, D ::= A||⊥|¬C|C � D|C � D|∃R.C|∀R.C|∃R.P |∀R.P . The
ALCfc-cuts are P, Q ::= [C �� n]|[C �� D]|[C �� D↑]|¬P |P � Q|P � Q.
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Table 1. Syntax and semantics of FCDLs

Syntax Semantics Symbol
R RI(s, t) ∈ [0, 1]

R− (R−)I(s, t) = RI(t, s) I
R ∈ NR+ supti∈ΔI {RI(s1, ti) ∧ RI(ti, s2) ≤ RI(s1, s2) R+(S)

A AI(s) ∈ [0, 1]
� �I(s) = 1
⊥ ⊥I(s) = 0

¬A (¬A)I(s) = 1 − AI(s) AL(S)
C � D (C � D)I(s) = min(CI(s),DI(s)) AL(S)
C � D (C � D)I(s) = max(CI(s),DI(s)) U(S)

¬C (¬C)I(s) = 1 − CI(s) C(S)
∀R.C (∀R.C)I(s) = inft∈ΔI {max(1 − RI(s, t), CI(t))} AL(S)
∃R.C (∃R.C)I(s) = supt∈ΔI {min(RI(s, t), CI(t))} E(S)
≥ qR (≥ qR)I(s) = sup

t1,...,tq∈ΔI
minq

i=1{RI(s, ti)} N

≤ qR (≤ qR)I(s) = inf
t1,...,tq+1∈ΔI

maxq+1
i=1 {1 − RI(s, ti)}

≥ qR.C (≥ qR.C)I(s) = sup
t1,...,tq∈ΔI

minq
i=1{RI(s, ti), CI(ti)} Q

≤ qR.C (≤ qR.C)I(s) = inf
t1,...,tq+1∈ΔI

maxq+1
i=1 {1 − RI(s, ti), CI(ti)}

{o} {o}I(s) =
{

1 if s=oI

0 if s�=oI O
∀R.P (∀R.P )I(s) = inft∈P I(x){1 − RI(s, t)} AL(S)
∃R.P (∃R.P )I(s) = supt∈P I(x){RI(s, t)} E(S)

≥ qR.P (≥ qR.P )I(s) = sup
t1,...,tq)∈P I(x)

minq
i=1{RI(s, ti)} Q

≤ qR.P (≤ qR.P )I(s) = inf
t1,...,tq+1∈P I(x)

maxq+1
i=1 {1 − RI(s, ti)} Q

[C �� n] [C �� n]I(s) = {t|CI(t) �� n}
[C �� D] [C �� D]I(s) = {t|CI(t) �� DI(t)}
[C �� D↑] [C �� D↑]I(s) = {t|CI(t) �� DI(s)}

¬P (¬P )I(s) = ΔI\P I(s)
P � Q (P � Q)I(s) = P I(s) ∩ QI(s) AL(S)
P � Q (P � Q)I(s) = P I(s) ∪ QI(s) U(S)
R � S ∀s, t ∈ ΔI , RI(s, t) ≤ SI(s, t) H

(a, b) : R �� n RI(aI , bI) �� n
C � D ∀s ∈ ΔI , CI(s) ≤ DI(s)

a : C �� n CI(aI) �� n

P � Q P I ⊆ QI where P, Q are absolute cuts
a : P (b) aI ∈ P I(bI)

3 Reasoning Algorithm

Here presents an algorithm to decide the consistency for ALCfc ABoxes by
constructing completion graphs.
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Definition 7. A completion graph is T = 〈S, E, L, δ〉, where S is a set of nodes
in the graph. E is a set of edges (pairs of nodes) in the graph. L is a function:

R1 if ¬C ∈ L(x), and not C(x) =δ 1 − (¬C)(x)
then L(x) → L(x) ∪ {C}, and C(x) =δ 1 − (¬C)(x)

R2 if C � D ∈ L(x), and not min(C(x),D(x)) =δ (C � D)(x)
then L(x) → L(x) ∪ {C, D}, and min(C(x), D(x)) =δ (C � D)(x)

R3 if C � D ∈ L(x), and not (C � D)(x) =δ 1 − (¬C � ¬D)(x)
then L(x) → L(x) ∪ {C � D}, and (C � D)(x) =δ 1 − (¬C � ¬D)(x)

R4 if ∃R.C ∈ L(x), and there is y with R ∈ L(x, y)
but not X ≤δ (∃R.C)(x) for some X ∈ {R(x, y), C(x)}

then L(y) → L(y) ∪ {C}, and X ≤δ (∃R.C)(x)
R5 if ∃R.C ∈ L(x), and there is no y with X =δ (∃R.C)(x)

or X �δ (∃R.C)(x), for some X ∈ {R(x, y), C(x)}
then add a new node y with L(x, y) = {R}, L(y) = {C},

and X =δ (∃R.C)(x) or X �δ (∃R.C)(x)
R6 if ∀R.C ∈ L(x), and not (∀R.C)(x)δ = 1 − (∃R.¬C)(x)

then L(x) → L(x) ∪ {∃R.¬C}, and (∀R.C)(x) =δ 1 − (∃R.¬C)(x)
R7 if ∃R.P ∈ L(x), and there is y with R ∈ L(x, y)

but not R(x, y)δ ≤ (∃R.C)(x) nor ¬P (x)δ ∈ L(y)
then R(x, y) ≤δ (∃R.C)(x), or L(y) → L(y) ∪ {¬P (x)}

R8 if ∃R.P ∈ L(x), and there is no y with P (x) ∈ L(y),
R(x, y) =δ (∃R.C)(x) or R(x, y) �δ (∃R.C)(x)

then add a new node y with L(x, y) = {R}, L(y) = {P (x)},
and R(x, y) =δ (∃R.C)(x) or R(x, y) �δ (∃R.C)(x)

R9 if ∀R.P ∈ L(x), and not (∀R.P )(x) =δ 1 − (∃R.¬P )(x)
then L(x) → L(x) ∪ {∃R.¬P}, and (∀R.P )(x) =δ 1 − (∃R.¬P )(x)

R10 if [C �� n] ∈ L(x), and not C(x) ��δ n
then L(x) → L(x) ∪ {C}, and C(x) ��δ n

R11 if [C �� D] ∈ L(x), and not C(x) ��δ D(x)
then L(x) → L(x) ∪ {C, D}, and C(x) ��δ D(x)

R12 if [C �� D↑](y) ∈ L(x), and not C(x) ��δ D(y)
then L(x) → L(x) ∪ {C}, L(y) → L(y) ∪ {D}, and C(x) ��δ D(y)

R13 if (P � Q)(y) ∈ L(x), and not {P (y),Q(y)} ⊆ L(x)
then L(x) → L(x) ∪ {P (y),Q(y)}

R14 if (P � Q)(y) ∈ L(x), and {P (y),Q(y)} ∩ L(x) = ∅
then L(x) → L(x) ∪ {X} for some X ∈ {P (y), Q(y)}

R15 if C � D ∈ T , and there is x with no C(x) ≤δ D(x)
then L(x) → L(x) ∪ {C, D}, and C(x) ≤δ D(x)

R16 if C � D ∈ T , and there is x with no C(x) <δ D(x)
then L(x) → L(x) ∪ {C, D}, and C(x) <δ D(x)

R17 if C ∈ L(x) or R ∈ L(x, y), and let X = C(x) or R(x, y)
there is no i such that vi <δ X <δ vi+1, or X =δ vi

then vi <δ X <δ vi+1 for some vi, vi+1, or X =δ vi for some vi

Fig. 1. Expansion rules for ALCfc
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for every node x ∈ S, L(x) is a set of concepts or absolute cuts; for every edge
(x, y) ∈ E, L(x, y) is a set of roles. δ is a set of formulas of the form X ≤ Y ,
X �= Y or X � Y , where X, Y ::= n|C(x)|R(x, y)|1 − X such that n ∈ [0, 1], C
is a concept, R is a role, x, y ∈ S, and for any X, 1 − (1 − X) = X.

The completion graph T of an ABox A w.r.t. a TBox T initializes with: S = {a ∈
NI |a occurs in A}; for any 〈a : P (b)〉 ∈ A, P (b) ∈ L(a); for any 〈(a, b) : R �� n〉 ∈
A, R ∈ L(a, b) and R ��δ n. Let V0 = {v1, v2, . . . , vk} = {0, 1, 0.5}∪ {n ∈ [0, 1]|n
or 1 − n occurs in A or T }, where 0 = v1 < v2 < · · · < vk = 1. For any vi < vj ,
let vi <δ vj . Then the graph grows up by applying the expansion rules showed
in Fig. 1. If a rule applied to x creates a new node y, then y is a successor of
x. Let descendant be transitive closure of successor. Several abbreviations are
defined below:

X ≤δ Y =def X ≤ Y ∈ δ, or X ≤δ Y, Y ≤δ Z, or 1 − Y ≤δ 1 − X

min(X, Y ) =δ Z =def Z ≤δ X, Z ≤δ Y, W ≤δ Z for some W ∈ {X, Y };
X �=δ Y =def X �= Y ∈ δ; X �δ Y =def X � Y ∈ δ;

X ≥δ Y =def Y ≤δ X; X =δ Y =def X ≤δ Y, Y ≤δ X;

X <δ Y =def X ≤δ Y, X �=δ Y ; Xδ > Y =def Y ≤δ X, X �=δ Y.

The �δ relation is used to simulate the infinite supreme. For any a ∈ NI ,
lev(a) = 1. If lev(x) = i, y is a successor of x by updating �δ, then lev(y) = i+1.
For any X of the form C(x), 1 − C(x), R(y, x), or 1 − R(y, x), if lev(x) = i,
then X ∈ Vi. If X �δ Y and Y ∈ Vi, then for any Z ∈ Vj such that j ≤ i,
Z <δ Y → Z <δ X and Z >δ X → Z ≥δ Y . So X �δ Y means X is greater
than any Z < Y such that Z ∈ V0 ∪ V1 ∪ · · · ∪ Vi and Y ∈ Vi. It ensures that
for any given constant ε, we can assign values to the variables in V such that
X − Y < ε without inducing any conflict.

Since there are variables, the blocking condition in ALCfc is different from
classical DLs. It has to consider the comparisons between degrees. For any x, let
δ(x) = {X �� Y |X ��δ Y , X, Y are of the form C(x), 1−C(x), or vi. A node x is
blocked by y, iff x is an descendant of y, and δ(x) = [x/y]δ(y), where [x/y]δ(y)
means to replace any y in δ(y) by x. Then we call y blocks x. When x is blocked,
all descendants of x is also blocked. No rules in Fig. 1 can be applied to blocked
nodes. T is said to contain a clash if {X �=δ Y, X =δ Y } ⊆ δ, or X >δ 1, or
X <δ 0. T is said to be clash-free if it contains no clash. If none of the expansion
rules can be applied to T , then T is said to be complete.

From the blocking condition and the number of concepts in any L(x) is finite,
the algorithm terminates. An ALCfc ABox A is consistent w.r.t. TBox T iff a
complete and clash-free completion graph can be constructed from A w.r.t. T .

4 Conclusions

It is important to compare fuzzy membership degrees in representation of ex-
pressive fuzzy knowledge. This paper defines fuzzy comparison cuts to represent
comparison expressions on fuzzy membership degrees, and extends fuzzy DLs by
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importing them and introducing new constructors. They enable representation
and reasoning for expressive fuzzy knowledge on the semantic web. The future
work is to design reasoning algorithms for more expressive FCDLs, implement
reasoners for FCDLs and construct fuzzy knowledge systems based on FCDLs.
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