A Family of Fuzzy Description Logics with Comparison Expressions^{*}

Jianjiang Lu¹, Dazhou Kang², Yafei Zhang¹, Yanhui Li², and Bo Zhou¹

¹ Institute of Command Automation, PLA University of Science and Technology, Nanjing 210007, China

² School of Computer Science and Engineering, Southeast University, Nanjing 210096, China

Abstract. The fuzzy knowledge plays an important role in many applications on the semantic web which faces imprecise and vague information. The current ontology languages on the semantic web use description logics as their logic foundation, which are insufficient to deal with fuzzy knowledge. Comparisons expressions between fuzzy membership degrees are frequently used in fuzzy knowledge systems. However, the current fuzzy extensions of description logics are not support the expression of such comparisons. This paper defines fuzzy comparison cuts to represent comparison expressions, extends fuzzy description logics by importing fuzzy comparison cuts and introducing new constructors. Furthermore, the reasoning algorithm is proposed. It enables representation and reasoning for fuzzy knowledge on the semantic web.

Keywords: Ontology, Distributed, Fuzzy, Description logic.

1 Introduction

Description logics (DLs) [1] are a family of knowledge representation languages widely used in the semantic web as a logic foundation for knowledge representation and reasoning. It is often necessary to represent fuzzy knowledge in real-life applications [2]. The fuzzy knowledge plays an important role in many domains which faces a huge amount of imprecise and vague knowledge and information, such as text mining, multimedia information system, medical informatics, machine learning, human natural language processing. However, classical DLs are insufficient to representing fuzzy knowledge [3]. Fuzzy DLs import the fuzzy set theory to enable the capability of dealing with fuzzy knowledge.

Many research work on fuzzy DLs have been carried out. Yen provided a fuzzy extension of DL \mathcal{FL}^- [4]. Tresp presents a fuzzy extension of \mathcal{ALC} , \mathcal{ALC}_{F_M} [3]. Straccia presented fuzzy \mathcal{ALC} and an algorithm for assertional reasoning [8]. There are many extensions of fuzzy \mathcal{ALC} . Höldobler introduced the membership manipulator constructor to present \mathcal{ALC}_{FH} [9]. Sanchez generalized the quantification in fuzzy \mathcal{ALCQ} [10]. Stoilos provided pure ABoxes reasoning algorithms

^{*} This work was supported in part by the National High Technology Research and Development Program of China (No. 2007AA01Z126, 863 Program).

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 395-402, 2008.

[©] Springer-Verlag Berlin Heidelberg 2008

for the fuzzy extensions of SHIN [11]. There are several works using the idea of fuzzy cuts. Straccia transformed fuzzy ALC into classical ALCH [5]. Li presented a family of extended fuzzy DLs (EFDLs) [6]. Calegari showed the fuzzy OWL [12] and Straccia presented a fuzzy SHOIN(D)[13].

It is a familiar description that "Tom is taller than Mike," which can be seemed as a comparison between two fuzzy membership degrees. We call such descriptions *comparison expressions* on fuzzy membership degrees. However, the current fuzzy DLs do not support the expression of comparisons between fuzzy membership degrees. So it is necessary to extend fuzzy DLs with the ability of expressing comparison expressions.

This paper defines *fuzzy comparison cuts* (*cuts* for short) to represent comparison expressions on fuzzy membership degrees. The reasoning algorithm is proposed. It enables representation and reasoning for expressive fuzzy knowledge on the semantic web.

2 Fuzzy DLs with Comparison Expressions

2.1 Represent Comparison Expressions

For an individual a and a fuzzy concept C, let a : C be the degree to which a is an instance of C. Similarly, (a, b) : R is the degree to which two individuals a and b has a role R. In fuzzy DLs, the degrees can have their values in [0, 1]. We can show ranges of degrees in a set of *fuzzy assertions* of the form $\langle \alpha \bowtie n \rangle$, where α is a degree, $n \in [0, 1]$ is a constant and $\bowtie \in \{=, \neq, <, \leq, >\}$.

It is often necessary to compare the fuzzy membership degrees. There can be different kinds of comparisons between fuzzy membership degrees:

- A numerical comparison compares a degree to a constant. Tom : Tall > 0.8 means "Tom is quite tall." Mike : Tall ≤ 0.9 means "Mike is not very tall."
- An abstract comparison compares degrees of the same individual. Tom : Absolutist < Tom : Liberalist means "Tom prefers liberalism to absolutism."
- A relative comparison compares degrees between different individuals. Tom : Tall < Mike : Tall means "Tom is taller than Mike."
- A complex comparison is constructed from the above kinds of simple comparisons. If for any person x such that (Tom, x) : hasFriend > 0.9, it holds Tom : Tall > x : Tall or Tom : Strong > x : Strong, then we can say "No close friend (the degree of friendship is greater than 0.9) of Tom is taller and stronger than him."

Our idea is to define new elements to express the above kinds of comparisons, and integrate them into the current fuzzy DLs. We call the new elements fuzzy comparison cuts. In the fuzzy set theory[2], the cut sets are indeed classical sets, but facilitate a normative theory for formalizing fuzzy set theory. The idea of fuzzy cuts can also be used for fuzzy DLs. [5] use the idea of cut sets of fuzzy concepts to transform fuzzy DL ALC to classical DL ALCH. [6] defined cuts of fuzzy concepts for more expressive ability.

2.2 Syntax and Semantics

The new languages with comparison cuts is called FCDLs. The syntax of FCDLs starts from three disjoint sets: N_I , N_C and N_R : N_I is a set of individual names, N_C is a set of fuzzy concept names, and N_R is a set of fuzzy role names. Complex fuzzy descriptions can be built from them inductively with fuzzy concept constructors and fuzzy role constructors.

Definition 1. The set of fuzzy role descriptions (or fuzzy roles for short) is defined as: every fuzzy role name $R \in N_R$ is a fuzzy role; and for any fuzzy role R, R^- is also a fuzzy role (let $(R^-)^- := R$). For two fuzzy role $R, S, R \sqsubseteq S$ is called a fuzzy role inclusion axiom. A finite set of role inclusions is called a role hierarchy. For individual names $a, b \in N_I$ and a constant $n \in [0, 1]$, $\langle (a, b) : R \bowtie n \rangle$ is called a fuzzy role assertion.

If for any a, b, (a, b) : R = n iff (b, a) : S = n, then S is an inverse role of R, written R^- . The role inclusion is transitive and $R \sqsubseteq S$ implies $R^- \sqsubseteq S^-$. For a role hierarchy \mathcal{R} , let $\sqsubseteq_{\mathcal{R}}$ be the transitive reflexive closure of \sqsubseteq on $\mathcal{R} \cup \{R^- \sqsubseteq S^- | R \sqsubseteq S \in \mathcal{R}\}$. Beside the definition, N_R consists both transitive and normal fuzzy role names $N_R = N_{R^+} \cup N_{R^P}$, where $N_{R^+} \cap N_{R^P} = \emptyset$. For a transitive fuzzy role R, if $(a, b) : R \ge n$ and $(b, c) : R \ge n$, then it must have $(a, c) : R \ge n$. Let $\operatorname{trans}(S, \mathcal{R})$ be true if for some R with R = S or $R \equiv_{\mathcal{R}} S$ such that $R \in N_{R^+}$ or $R^- \in N_{R^+}$, where $R \equiv_{\mathcal{R}} S$ is an abbreviation for $R \sqsubseteq_{\mathcal{R}} S$ and $S \sqsubseteq_{\mathcal{R}} R$. A role R is simple w.r.t. \mathcal{R} iff $\operatorname{trans}(S, \mathcal{R})$ is not true for all $S \sqsubseteq_{\mathcal{R}} R$. Simple roles is required in order to avoid undecidable logics [1].

Definition 2. The set of fuzzy concepts is that

- 1. every fuzzy concept name $A \in N_C$ is a fuzzy concept, \top and \bot are fuzzy concepts,
- 2. if C, D are fuzzy concepts, $o \in N_I$ is an individual name, R is a fuzzy role, S is a simple fuzzy role, and $q \in \mathbb{N}$, then $\neg C, C \sqcap D, C \sqcup D, \forall R.C, \exists R.C, \geq qS.C, \leq qS.C, \{o\}$ are also fuzzy concepts,
- 3. if R is a fuzzy role, S is a simple fuzzy role, P is a cut, and $q \in \mathbb{N}$, then $\exists R.P, \forall R.P, \geq qS.P, \leq qS.P$ are also fuzzy concepts.

For two fuzzy concept $C, D, C \sqsubseteq D$ is called a fuzzy concept inclusion. For $a \in N_I$ and $n \in [0, 1]$, $\langle a : C \bowtie n \rangle$ is called a fuzzy concept assertion.

Definition 3. The set of fuzzy comparison cuts (or cuts for short) is defined as: if C, D are fuzzy concepts, $n \in [0, 1]$ and $\bowtie \in \{=, \neq, >, \geq, <, \leq\}$, then $[C \bowtie n]$, $[C \bowtie D]$ and $[C \bowtie D^{\uparrow}]$ are cuts (and $[C \bowtie]$ is an abbreviation of $[C \bowtie C^{\uparrow}]$); if P, Q are cuts, then $\neg P, P \sqcap Q$ and $P \sqcup Q$ are also cuts. For any cut P and $a \in N_I, P(a)$ is called an absolute cut. If a cut P contains no \uparrow , then P itself is an absolute cut, and we do not distinguish P and P(a) for any a. For two absolute cuts $P, Q, P \sqsubseteq Q$ is called a cut inclusion. For an absolute cut P(b)and $a \in N_I, \langle a : P(b) \rangle$ is called a cut assertion. **Definition 4.** A fuzzy interpretation $\mathcal{I} = \langle \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}} \rangle$ consists a nonempty set $\Delta^{\mathcal{I}}$ as its domain, and a function $\cdot^{\mathcal{I}}$ maps every individual $a \in N_I$ to an element $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$, maps every fuzzy concept name $A \in N_C$ to a function $A^{\mathcal{I}} : \Delta^{\mathcal{I}} \to [0, 1]$, and maps every fuzzy role name $R \in N_R$ to a function $R^{\mathcal{I}} : \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to [0, 1]$.

The interpretation function is also extended to complex descriptions. It maps every fuzzy concept C to a function $C^{\mathcal{I}} : \Delta^{\mathcal{I}} \to [0,1]$, maps every fuzzy role R to a function $R^{\mathcal{I}} : \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to [0,1]$, maps every cut P to a function $P^{\mathcal{I}} : \Delta^{\mathcal{I}} \to 2^{\Delta^{\mathcal{I}}}$, and maps every absolute cut P(a) to a set $P^{\mathcal{I}}(a^{\mathcal{I}}) \subseteq \Delta^{\mathcal{I}}$.

The syntax and semantics of FCDLs are showed in Table 1. Table 1 does not list all available constructors, but only selects the most common ones.

From the semantics, it is clear that the interpretation of $[C \bowtie n]^{\mathcal{I}}(s)$ and $[C \bowtie D]^{\mathcal{I}}(s)$ do not depend on s. For any cut P and individual name a, P(a) is an absolute cut, and $(P(a))^{\mathcal{I}} = P^{\mathcal{I}}(a^{\mathcal{I}})$. If a cut P contains no \uparrow , then $P^{\mathcal{I}}(s)$ is independent of s. So P itself is an absolute cut.

With the cuts and new constructors, FCDLs are more expressive than the current fuzzy DLs. FCDLs support all kinds of comparison expressions. They enable representation of expressive fuzzy knowledge on the semantic web.

2.3 Knowledge Bases and Reasoning

Definition 5. A knowledge base (KB) of FCDLs is consists of an ABox, a TBox and a RBox:

An ABox is a finite set of concept assertions of the form $\langle a : C \bowtie n \rangle$, role assertions of the form $\langle (a, b) : R \bowtie n \rangle$, and cut assertions of the form $\langle a : P(b) \rangle$. An interpretation \mathcal{I} satisfies an ABox \mathcal{A} iff \mathcal{I} satisfies each assertion in \mathcal{A} ; such \mathcal{I} is called a model of \mathcal{A} . \mathcal{I} satisfies $\langle a : C \bowtie n \rangle$ iff $C^{\mathcal{I}}(a^{\mathcal{I}}) \bowtie n$, \mathcal{I} satisfies $\langle (a, b) : R \bowtie n \rangle$ iff $R^{\mathcal{I}}(a^{\mathcal{I}}, b^{\mathcal{I}}) \bowtie n$, \mathcal{I} satisfies $\langle a : P(b) \rangle$ iff $a^{\mathcal{I}} \in P^{\mathcal{I}}(b^{\mathcal{I}})$.

An TBox is a finite set of concept inclusions of the form $C \sqsubseteq D$, and cut inclusions of the form $P \sqsubseteq Q$. \mathcal{I} satisfies a TBox \mathcal{T} iff \mathcal{I} satisfies each inclusion in \mathcal{T} ; such \mathcal{I} is called a model of \mathcal{T} . \mathcal{I} satisfies $C \sqsubseteq D$ iff for any $s \in \Delta^{\mathcal{I}}$, $C^{\mathcal{I}}(s) \leq D^{\mathcal{I}}(s)$, \mathcal{I} satisfies $P \sqsubseteq Q$ iff $P^{\mathcal{I}} \subseteq Q^{\mathcal{I}}(s)$.

An RBox (or called role hierarchy) is a finite set of role inclusions of the form $R \sqsubseteq S$. \mathcal{I} satisfies an RBox \mathcal{R} iff $R^{\mathcal{I}}(s,t) \leq S^{\mathcal{I}}(s,t)$ for each $R \sqsubseteq S \in \mathcal{R}$; such \mathcal{I} is called a model of \mathcal{R} .

For a knowledge base $\mathcal{K} = \langle \mathcal{A}, \mathcal{T}, \mathcal{R} \rangle$, if \mathcal{I} is a model of \mathcal{T}, \mathcal{R} and \mathcal{A} , then \mathcal{I} is called a model of \mathcal{K}

Definition 6. The basic inference problems of FCDLs include

- Satisfiability of concepts: a concept C is satisfiable w.r.t. a TBox \mathcal{T} and a RBox \mathcal{R} to a given degree n, iff there exists a model \mathcal{I} of \mathcal{T} and \mathcal{R} with $\exists s \in \Delta^{\mathcal{I}}, C^{\mathcal{I}}(s) \geq n$.
- Consistency of ABoxes: an ABox \mathcal{A} is consistent w.r.t. \mathcal{T} and \mathcal{R} , iff there exists a model of \mathcal{T} , \mathcal{R} and \mathcal{A} .

 \mathcal{ALC}_{fc} is the most basic FCDL. For any \mathcal{ALC}_{fc} -role $R, R \in N_{R^P}$; and \mathcal{ALC}_{fc} concepts are $C, D ::= A|\top|\perp|\neg C|C \sqcap D|C \sqcup D|\exists R.C|\forall R.C|\exists R.P|\forall R.P$. The \mathcal{ALC}_{fc} -cuts are $P, Q ::= [C \bowtie n]|[C \bowtie D]|[C \bowtie D^{\uparrow}]|\neg P|P \sqcap Q|P \sqcup Q$.

Syntax	Semantics	Symbol
R	$R^{\mathcal{I}}(s,t) \in [0,1]$	
R^{-}	$(R^{-})^{\mathcal{I}}(s,t) = R^{\mathcal{I}}(t,s)$	\mathcal{I}
$R\in N_{R^+}$	$\sup_{t_i \in \Delta^{\mathcal{I}}} \{ R^{\mathcal{I}}(s_1, t_i) \land R^{\mathcal{I}}(t_i, s_2) \le R^{\mathcal{I}}(s_1, s_2) $	$\mathcal{R}^+(\mathcal{S})$
A	$A^{\mathcal{I}}(s) \in [0,1]$	
Т	$\top^{\mathcal{I}}(s) = 1$	
\perp	$\perp^{\mathcal{I}}(s) = 0$	
$\neg A$	$(\neg A)^{\mathcal{I}}(s) = 1 - A^{\mathcal{I}}(s)$	$\mathcal{AL}(\mathcal{S})$
$C \sqcap D$	$(C \sqcap D)^{\mathcal{I}}(s) = \min(C^{\mathcal{I}}(s), D^{\mathcal{I}}(s))$	$\mathcal{AL}(\mathcal{S})$
$C \sqcup D$	$(C \sqcup D)^{\mathcal{I}}(s) = \max_{\mathcal{I}}(C^{\mathcal{I}}(s), D^{\mathcal{I}}(s))$	$\mathcal{U}(\mathcal{S})$
$\neg C$	$(\neg C)^{\perp}(s) = 1 - C^{\perp}(s)$	$\mathcal{C}(\mathcal{S})$
$\forall R.C$	$(\forall R.C)^{\mathcal{L}}(s) = \inf_{t \in \Delta^{\mathcal{I}}} \{\max(1 - R^{\mathcal{L}}(s, t), C^{\mathcal{L}}(t))\}$	$\mathcal{AL}(\mathcal{S})$
$\exists R.C$	$(\exists R.C)^{\mathcal{L}}(s) = \sup_{t \in \Delta^{\mathcal{I}}} \{\min(R^{\mathcal{L}}(s,t), C^{\mathcal{L}}(t))\}$	$\mathcal{E}(\mathcal{S})$
$\geq qR$	$(\geq qR)^{\perp}(s) = \sup_{t_1,\dots,t_q \in \Delta^{\mathcal{I}}} \min_{i=1}^q \{R^{\perp}(s,t_i)\}$	\mathcal{N}
$\leq qR$	$(\leq qR)^{\mathcal{I}}(s) = \inf_{t_{i} \in \mathcal{I}} \inf_{t_{i} \in \mathcal{I}^{\mathcal{I}}} \max_{i=1}^{q+1} \{1 - R^{\mathcal{I}}(s, t_{i})\}$	
$\geq qR.C$	$(\geq qR.C)^{\mathcal{I}}(s) = \sup_{t=1}^{q} \sup_{t=1}^{q} \min_{i=1}^{q} \{R^{\mathcal{I}}(s,t_i), C^{\mathcal{I}}(t_i)\}$	\mathcal{Q}
$\leq qR.C$	$(\leq qR.C)^{\mathcal{I}}(s) = \inf_{\substack{t_1, \dots, t_q \in \Delta^{\mathcal{I}} \\ t_1, \dots, t_{q+1} \in \Delta^{\mathcal{I}}}} \max_{i=1}^{q+1} \{1 - R^{\mathcal{I}}(s, t_i), C^{\mathcal{I}}(s, t_i)\}$	$\mathcal{I}(t_i)\}$
$\{o\}$	$\{o\}^{\mathcal{I}}(s) = \begin{cases} 1 \text{ if } s = o^{\mathcal{I}} \\ 0 \text{ if } s \neq o^{\mathcal{I}} \end{cases}$	\mathcal{O}
$\forall R.P$	$(\forall R.P)^{\mathcal{I}}(s) = \inf_{t \in P^{\mathcal{I}}(x)} \{1 - R^{\mathcal{I}}(s,t)\}$	$\mathcal{AL}(\mathcal{S})$
$\exists R.P$	$(\exists R.P)^{\mathcal{I}}(s) = \sup_{t \in P^{\mathcal{I}}(x)} \{ R^{\mathcal{I}}(s,t) \}$	$\mathcal{E}(\mathcal{S})$
$\geq qR.P$	$(\geq qR.P)^{\mathcal{I}}(s) = \sup \min_{i=1}^{q} \{R^{\mathcal{I}}(s,t_i)\}$	Q
$\leq aR.P$	$(\langle qR.P)^{\mathcal{I}}(s) = \inf_{i=1}^{t_1,,t_q) \in P^{\mathcal{I}}(x)} \max^{q+1} \{1 - R^{\mathcal{I}}(s,t_i)\}$	0
_ 1	$\underbrace{(-1)}_{t_1,\dots,t_{q+1}\in P^{\mathcal{I}}(x)} = \underbrace{(-1)}_{i=1} \underbrace{(-1)}_{(i,1)} \underbrace{(-1)}_{i=1} \underbrace$	ĩ
$[C \bowtie n]$	$[C \bowtie n]^{\mathcal{I}}(s) = \{t C^{\mathcal{I}}(t) \bowtie n\}_{\mathcal{I}}$	
$[C \bowtie D]$	$[C \bowtie D]^{\mathcal{L}}(s) = \{t C^{\mathcal{L}}(t) \bowtie D^{\mathcal{L}}(t)\}$	
$[C\bowtie D^{\top}]$	$[C \bowtie D^{\perp}]^{\mathcal{L}}(s) = \{t C^{\mathcal{L}}(t) \bowtie D^{\mathcal{L}}(s)\}$	
$\neg P$	$(\neg P)^{\mathcal{L}}(s) = \Delta^{\mathcal{L}} \backslash P^{\mathcal{L}}(s)$	
$P\sqcap Q$	$(P \sqcap Q)^{\mathcal{L}}(s) = P^{\mathcal{L}}(s) \cap Q^{\mathcal{L}}(s)$	$\mathcal{AL}(\mathcal{S})$
$P \sqcup Q$	$(P \sqcup Q)^{\perp}(s) = P^{\perp}(s) \cup Q^{\perp}(s)$	$\mathcal{U}(\mathcal{S})$
$R \sqsubseteq S$	$\forall s, t \in \Delta^{\mathcal{L}}, R^{\mathcal{L}}(s, t) \leq S^{\mathcal{L}}(s, t)$	\mathcal{H}
$(a,b): R \bowtie r$	$n R^{\mathcal{L}}(a^{\mathcal{L}}, b^{\mathcal{L}}) \bowtie n$	
$C \sqsubseteq D$	$\forall s \in \Delta^{\perp}, C^{\perp}(s) \le D^{\perp}(s)$	
$a: C \bowtie n$	$C^{\perp}(a^{\perp}) \bowtie n$	
$P \sqsubseteq Q$	$P^{\perp} \subseteq Q^{\perp}$ where P, Q are absolute cuts	
a:P(b)	$a^{\perp} \in P^{\perp}(b^{\perp})$	

Table 1. Syntax and semantics of FCDLs

3 Reasoning Algorithm

Here presents an algorithm to decide the consistency for \mathcal{ALC}_{fc} ABoxes by constructing completion graphs.

Definition 7. A completion graph is $T = \langle S, E, L, \delta \rangle$, where S is a set of nodes in the graph. E is a set of edges (pairs of nodes) in the graph. L is a function:

R1	if	$\neg C \in L(x)$, and not $C(x) =_{\delta} 1 - (\neg C)(x)$
	then	$L(x) \to L(x) \cup \{C\}$, and $C(x) =_{\delta} 1 - (\neg C)(x)$
$\mathbf{R2}$	if	$C \sqcap D \in L(x)$, and not $\min(C(x), D(x)) =_{\delta} (C \sqcap D)(x)$
	then	$L(x) \to L(x) \cup \{C, D\}$, and $\min(C(x), D(x)) =_{\delta} (C \sqcap D)(x)$
$\mathbf{R3}$	if	$C \sqcup D \in L(x)$, and not $(C \sqcup D)(x) =_{\delta} 1 - (\neg C \sqcap \neg D)(x)$
	then	$L(x) \to L(x) \cup \{C \sqcup D\}, \text{ and } (C \sqcup D)(x) =_{\delta} 1 - (\neg C \sqcap \neg D)(x)$
$\mathbf{R4}$	if	$\exists R.C \in L(x)$, and there is y with $R \in L(x, y)$
	_	but not $X \leq_{\delta} (\exists R.C)(x)$ for some $X \in \{R(x,y), C(x)\}$
	then	$L(y) \to L(y) \cup \{C\}$, and $X \leq_{\delta} (\exists R.C)(x)$
$\mathbf{R5}$	if	$\exists R.C \in L(x)$, and there is no y with $X =_{\delta} (\exists R.C)(x)$
		or $X \leq_{\delta} (\exists R.C)(x)$, for some $X \in \{R(x,y), C(x)\}$
	then	add a new node y with $L(x,y) = \{R\}, L(y) = \{C\},$
Da	• 6	and $A =_{\delta} (\exists R.C)(x)$ of $A \leq_{\delta} (\exists R.C)(x)$
R6	11 thon	$\forall R. C \in L(x)$, and not $(\forall R. C)(x)_{\delta} = 1 - (\exists R. \neg C)(x)$
D 7	:c	$\Box L(x) \to L(x) \cup \{ \exists n. \neg \cup \}, \text{ and } (\forall n. \cup)(x) = \delta 1 - (\exists n. \neg \cup)(x) \}$
R1	11	$\exists R.P \in L(x)$, and there is y with $R \in L(x, y)$ but not $P(x, y) \in \langle \exists R C \rangle(x)$ nor $= P(x) \in C(y)$
	then	But not $I(x, g)_{\delta} \leq (\exists R, C)(x)$ not $\exists I(x)_{\delta} \in L(g)$ $B(x, y) \leq s (\exists R, C)(x)$ or $L(y) \rightarrow L(y) \sqcup \{\neg P(x)\}$
R8	if	$\exists R \ P \in L(x)$ and there is no u with $P(x) \in L(u)$
100	11	$B(x,y) = \delta(\exists R.C)(x)$ or $B(x,y) \leq \delta(\exists R.C)(x)$
	then	add a new node y with $L(x, y) = \{R\}, L(y) = \{P(x)\},$
		and $R(x,y) =_{\delta} (\exists R.C)(x)$ or $R(x,y) <_{\delta} (\exists R.C)(x)$
R9	if	$\forall R.P \in L(x)$, and not $(\forall R.P)(x) =_{\delta} 1 - (\exists R. \neg P)(x)$
	then	$L(x) \to L(x) \cup \{\exists R. \neg P\}, \text{ and } (\forall R. P)(x) =_{\delta} 1 - (\exists R. \neg P)(x)$
R10	if	$[C \bowtie n] \in L(x)$, and not $C(x) \bowtie_{\delta} n$
	then	$L(x) \to L(x) \cup \{C\}$, and $C(x) \bowtie_{\delta} n$
$\mathbf{R11}$	if	$[C \bowtie D] \in L(x)$, and not $C(x) \bowtie_{\delta} D(x)$
	then	$L(x) \to L(x) \cup \{C, D\}$, and $C(x) \bowtie_{\delta} D(x)$
R12	if	$[C \bowtie D^{\uparrow}](y) \in L(x)$, and not $C(x) \bowtie_{\delta} D(y)$
	then	$L(x) \to L(x) \cup \{C\}, L(y) \to L(y) \cup \{D\}, \text{ and } C(x) \bowtie_{\delta} D(y)$
R13	if	$(P \sqcap Q)(y) \in L(x)$, and not $\{P(y), Q(y)\} \subseteq L(x)$
	then	$L(x) \to L(x) \cup \{P(y), Q(y)\}$
R14	it there	$(P \sqcup Q)(y) \in L(x), \text{ and } \{P(y), Q(y)\} \cap L(x) = \emptyset$
	then	$L(x) \to L(x) \cup \{X\}$ for some $X \in \{P(y), Q(y)\}$
R15	11 thon	$C \sqsubseteq D \in I$, and there is x with no $C(x) \leq_{\delta} D(x)$
B16	if	$C \sqsubset D \in \mathcal{T}$ and there is x with no $C(x) \leq D(x)$
1010	then	$L(x) \rightarrow L(x) \cup \{C, D\}$, and $C(x) <_{\delta} D(x)$
R17	if	$C \in L(x)$ or $R \in L(x, y)$, and let $X = C(x)$ or $R(x, y)$
		there is no <i>i</i> such that $v_i <_{\delta} X <_{\delta} v_{i+1}$, or $X =_{\delta} v_i$
	then	$v_i <_{\delta} X <_{\delta} v_{i+1}$ for some v_i, v_{i+1} , or $X =_{\delta} v_i$ for some v_i

Fig. 1. Expansion rules for \mathcal{ALC}_{fc}

for every node $x \in S$, L(x) is a set of concepts or absolute cuts; for every edge $(x, y) \in E$, L(x, y) is a set of roles. δ is a set of formulas of the form $X \leq Y$, $X \neq Y$ or $X \leq Y$, where X, Y ::= n|C(x)|R(x, y)|1 - X such that $n \in [0, 1]$, C is a concept, R is a role, $x, y \in S$, and for any X, 1 - (1 - X) = X.

The completion graph T of an ABox \mathcal{A} w.r.t. a TBox \mathcal{T} initializes with: $S = \{a \in N_I | a \text{ occurs in } \mathcal{A}\}$; for any $\langle a : P(b) \rangle \in \mathcal{A}$, $P(b) \in L(a)$; for any $\langle (a, b) : R \bowtie n \rangle \in \mathcal{A}$, $R \in L(a, b)$ and $R \bowtie_{\delta} n$. Let $V_0 = \{v_1, v_2, \ldots, v_k\} = \{0, 1, 0.5\} \cup \{n \in [0, 1] | n \text{ or } 1 - n \text{ occurs in } \mathcal{A} \text{ or } \mathcal{T}\}$, where $0 = v_1 < v_2 < \cdots < v_k = 1$. For any $v_i < v_j$, let $v_i <_{\delta} v_j$. Then the graph grows up by applying the *expansion rules* showed in Fig. 1. If a rule applied to x creates a new node y, then y is a *successor* of x. Let *descendant* be transitive closure of successor. Several abbreviations are defined below:

$$\begin{aligned} X &\leq_{\delta} Y =_{def} X \leq Y \in \delta, \text{ or } X \leq_{\delta} Y, Y \leq_{\delta} Z, \text{ or } 1 - Y \leq_{\delta} 1 - X \\ \min(X,Y) =_{\delta} Z =_{def} Z \leq_{\delta} X, Z \leq_{\delta} Y, W \leq_{\delta} Z \text{ for some } W \in \{X,Y\}; \\ X \neq_{\delta} Y =_{def} X \neq Y \in \delta; & X <_{\delta} Y =_{def} X < Y \in \delta; \\ X \geq_{\delta} Y =_{def} Y \leq_{\delta} X; & X =_{\delta} Y =_{def} X \leq_{\delta} Y, Y \leq_{\delta} X; \\ X <_{\delta} Y =_{def} X \leq_{\delta} Y, X \neq_{\delta} Y; & X_{\delta} > Y =_{def} Y \leq_{\delta} X, X \neq_{\delta} Y. \end{aligned}$$

The \leq_{δ} relation is used to simulate the infinite supreme. For any $a \in N_I$, lev(a) = 1. If lev(x) = i, y is a successor of x by updating \leq_{δ} , then lev(y) = i+1. For any X of the form C(x), 1 - C(x), R(y, x), or 1 - R(y, x), if lev(x) = i, then $X \in V_i$. If $X \leq_{\delta} Y$ and $Y \in V_i$, then for any $Z \in V_j$ such that $j \leq i$, $Z \leq_{\delta} Y \to Z \leq_{\delta} X$ and $Z >_{\delta} X \to Z \geq_{\delta} Y$. So $X \leq_{\delta} Y$ means X is greater than any Z < Y such that $Z \in V_0 \cup V_1 \cup \cdots \cup V_i$ and $Y \in V_i$. It ensures that for any given constant ε , we can assign values to the variables in V such that $X - Y < \varepsilon$ without inducing any conflict.

Since there are variables, the blocking condition in \mathcal{ALC}_{fc} is different from classical DLs. It has to consider the comparisons between degrees. For any x, let $\delta(x) = \{X \bowtie Y | X \bowtie_{\delta} Y, X, Y \text{ are of the form } C(x), 1 - C(x), \text{ or } v_i$. A node x is blocked by y, iff x is an descendant of y, and $\delta(x) = [x/y]\delta(y)$, where $[x/y]\delta(y)$ means to replace any y in $\delta(y)$ by x. Then we call y blocks x. When x is blocked, all descendants of x is also blocked. No rules in Fig. 1 can be applied to blocked nodes. T is said to contain a clash if $\{X \neq_{\delta} Y, X =_{\delta} Y\} \subseteq \delta$, or $X >_{\delta} 1$, or $X <_{\delta} 0$. T is said to be clash-free if it contains no clash. If none of the expansion rules can be applied to T, then T is said to be complete.

From the blocking condition and the number of concepts in any L(x) is finite, the algorithm terminates. An \mathcal{ALC}_{fc} ABox \mathcal{A} is consistent w.r.t. TBox \mathcal{T} iff a complete and clash-free completion graph can be constructed from \mathcal{A} w.r.t. \mathcal{T} .

4 Conclusions

It is important to compare fuzzy membership degrees in representation of expressive fuzzy knowledge. This paper defines fuzzy comparison cuts to represent comparison expressions on fuzzy membership degrees, and extends fuzzy DLs by importing them and introducing new constructors. They enable representation and reasoning for expressive fuzzy knowledge on the semantic web. The future work is to design reasoning algorithms for more expressive FCDLs, implement reasoners for FCDLs and construct fuzzy knowledge systems based on FCDLs.

References

- Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The description logic handbook: theory, implementation, and applications. Cambridge University Press, Cambridge (2003)
- Zadeh, L.A., Kacprzyk, J. (eds.): Fuzzy logic for the management of uncertainty. John Wiley & Sons, Inc., New York (1992)
- Tresp, C.B., Molitor, R.: A description logic for vague knowledge. In: Proceedings of the 13th Biennial European Conference on Artificial Intelligence (ECAI 1998), Brighton, UK, pp. 361–365. J. Wiley and Sons, Chichester (1998)
- Yen, J.: Generalizing term subsumption languages to fuzzy logic. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence, Sidney, Australia, pp. 472–477 (1991)
- Straccia, U.: Transforming fuzzy description logics into classical description logics. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 385– 399. Springer, Heidelberg (2004)
- Li, Y., Xu, B., Lu, J., Kang, D., Wang, P.: A family of extended fuzzy description logics. In: Proceedings of the IEEE 29th Annual International Computer Software and Applications Conference, Edinburgh, Scotland, pp. 221–226 (2005)
- Kang, D., Xu, B., Lu, J., Li, Y.: Reasoning for a fuzzy description logic with comparison expressions. In: The 2006 International Workshop on Description Logics (DL 2006) (2006)
- Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence Research 14, 137–166 (2001)
- 9. Hölldobler, S., Störr, H.P., Tran, D.K.: The fuzzy description logic alcfh with hedge algebras as concept modifiers. Journal of Advanced Computational Intelligence and Intelligent Informatics 7(3), 294–305 (2003)
- Sánchez, D., Tettamanzi, A.G.: Generalizing quantification in fuzzy description logic. In: Proceedings of the 8th Fuzzy Days in Dortmund: Computational Intelligence, Theory and Applications. Advances in Soft Computing Series, Springer, Berlin (2004)
- Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J.Z., Horrocks, I.: The fuzzy description logic f-shin. In: Proceedings of the International Workshop on Uncertainty Reasoning for the Semantic Web, Galway, Ireland (2005)
- Calegari, S., Ciucci, D.: Fuzzy ontology, fuzzy description logics and fuzzy-OWL. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 118–126. Springer, Heidelberg (2007)
- 13. Straccia, U.: A fuzzy description logic for the semantic web. In: Sanchez (ed.) Fuzzy Logic and the semantic web, Elsevier, Amsterdam (2006)