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Abstract. We present results of extensive experiments performed on
nine data sets with numerical attributes using six promising discretiza-
tion methods. For every method and every data set 30 experiments of
ten-fold cross validation were conducted and then means and sample
standard deviations were computed. Our results show that for a specific
data set it is essential to choose an appropriate discretization method
since performance of discretization methods differ significantly. However,
in general, among all of these discretization methods there is no statis-
tically significant worst or best method. Thus, in practice, for a given
data set the best discretization method should be selected individually.

Keywords: Rough sets, Discretization, Cluster analysis, Merging inter-
vals, Ten-fold cross validation, Test on the difference between means,
F-test.

1 Introduction

Many real-life data contain numerical attributes whose values are integers or real
numbers. Mining such data sets requires special techniques, taking into account
that input data sets are numerical. Most frequently, numerical attributes are
converted into symbolic ones during a special process, called discretization [9],
before the main process of knowledge acquisition. In some data mining systems
both processes, discretization and knowledge acquisition, are executed at the
same time. Examples of such systems are C4.5 [14], CART [1], and MLEM2 [10].

Our objective was to compare, for the first time, the most promising discretiza-
tion techniques [4,9,11,15] through extensive experiments on real-life data sets
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and using ten-fold cross validation, standard statistical test on the difference
between means and F -test. The oldest method, among our six approaches to
discretization, is based on conditional entropy and was presented in [7]. The
remaining five approaches are implemented in the data mining system LERS
(Learning from Examples based on Rough Sets) [8]. One of them is based on
a hierarchical method of cluster analysis, two on a divisive method of cluster
analysis, and remaining two on merging intervals. Our results show that there is
no best or worst method. Additionally, for a specific data set, difference in per-
formance between different discretization techniques is significant and the best
discretization method should be selected individually, trying as many techniques
as possible.

2 Discretization Methods

Knowledge acquisition, such as rule induction or decision tree generation, from
data with numerical attributes requires converting numerical values of an at-
tribute into intervals. The process of converting numerical values into intervals,
called discretization, is usually done as a preprocessing, before the main process
of knowledge acquisition. In some data mining systems, such as C4.5, CART, and
MLEM2, both processes: discretization and knowledge acquisition are conducted
simultaneously. In this paper we will discuss discretization as a preprocessing.

For a numerical attribute a with an interval [a, b] as a range, a partition of
the range into n intervals

{[a0, a1), [a1, a2), ..., [an−2, an−1), [an−1, an]},

where a0 = a, an = b, and ai < ai+1 for i = 0, 1, ..., n − 1, defines discretization
of a. The numbers a1, a2,..., an−1 are called cut-points.

Discretization methods in which attributes are processed one at a time are
called local [4,9] (or static [5]). On the other hand, if all attributes are con-
sidered in selection of the best cut-point, the method is called global [4,9] (or
dynamic [5]). Additionally, if information about the expert’s classification of
cases is taken into account during the process of discretization, the method is
called supervised [5].

Many discretization methods [9] are used in data mining. In this paper we will
use three approaches to discretization based on cluster analysis, two additional
methods that will use similar principles, and, for comparison, a well-known dis-
cretization method based on minimal conditional entropy. All of these methods
are global and supervised.

The simplest discretization methods are local methods called Equal Inter-
val Width and Equal Frequency per Interval [4,9]. Another local discretization
method [7] is called a Minimal Class Entropy. The conditional entropy, defined
by a cut-point q that splits the set U of all cases into two sets, S1 and S2 is
defined as follows

E(q, U) =
|S1|
|U | E(S1) +

|S2|
|U | E(S2),
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where E(S) is the entropy of S and |X | denotes the cardinality of the set X .
The cut-point q for which the conditional entropy E(q, U) has the smallest value
is selected as the best cut-point. If k intervals are required, the procedure is
applied recursively k − 1 times. Let q1 and q2 be the best cut-points for sets S1
and S2, respectively. If E(q1, S1) > E(q2, S2) we select q1 as the next cut-point,
if not, we select q2.

2.1 Globalization of Local Discretization Methods

We will present an approach to convert local discretization methods to global [4].
First, we discretize all attributes, one at a time, selecting the best cut-point for
all attributes. If the level of consistency is sufficient, the process is completed.
If not, we further discretize, selecting an attribute a for which the following
expression has the largest value

Ma =

∑
B∈{a}∗

|B|
|U|E(B)

|{a}∗| .

In all six discretization methods discussed in this paper, the stopping condition
was the level of consistency [4], based on rough set theory introduced by Z.
Pawlak in [12]. Let U denote the set of all cases of the data set. Let P denote
a nonempty subset of the set of all variables, i.e., attributes and a decision.
Obviously, set P defines an equivalence relation ℘ on U , where two cases x and
y from U belong to the same equivalence class of ℘ if and only if both x and
y are characterized by the same values of each variable from P . The set of all
equivalence classes of ℘, i.e., a partition on U , will be denoted by P ∗.

Equivalence classes of ℘ are called elementary sets of P . Any finite union of
elementary sets of P is called a definable set in P . Let X be any subset of U . In
general, X is not a definable set in P . However, set X may be approximated by
two definable sets in P , the first one is called a lower approximation of X in P ,
denoted by PX and defined as follows

⋃
{Y ∈ P ∗|Y ⊆ X}.

The second set is called an upper approximation of X in P , denoted by PX and
defined as follows ⋃

{Y ∈ P ∗|Y ∩ X �= ∅}.

The lower approximation of X in P is the greatest definable set in P , con-
tained in X . The upper approximation of X in P is the least definable set in P
containing X . A rough set of X is the family of all subsets of U having the same
lower and the same upper approximations of X .

A level of consistency [4], denoted Lc, is defined as follows

Lc =

∑
X∈{d}∗ |AX |

|U | .

Practically, the requested level of consistency for discretization is 100%, i.e.,
we want the discretized data set to be consistent.
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2.2 Discretization Based on Cluster Analysis and Interval Merging

The data mining system LERS uses two methods of cluster analysis, agglom-
erative (bottom-up) [4] and divisive (top-down) [13], for discretization. In ag-
glomerative techniques, initially each case is a single cluster, then clusters are
fused together, forming larger and larger clusters. In divisive techniques, initially
all cases are grouped in one cluster, then this cluster is gradually divided into
smaller and smaller clusters. In both methods, during the first step of discretiza-
tion, cluster formation, cases that exhibit the most similarity are fused into
clusters. Once this process is completed, clusters are projected on all attributes
to determine initial intervals on the domains of the numerical attributes. During
the second step (merging) adjacent intervals are merged together.

Initially all attributes were categorized into numerical and symbolic. During
clustering, symbolic attributes were used only for clustering stopping condition.
All numerical attributes were normalized [6] (attribute values were divided by
the attribute standard deviation).

In agglomerative discretization method initial clusters were single cases. Then
the distance matrix of all Euclidean distances between pairs of cases was com-
puted. The closest two cases, a and b, compose a new cluster {a, b}. The distance
from {a, b} to any remaining case c was computed using the Median Cluster
Analysis formula [6]:

1
2
dca +

1
2
dcb − 1

4
dab,

where dxy is the Euclidean distance between x and y. The closest two cases
compose a new cluster, etc.

At any step of clustering process, the clusters form a partition π on the set
of all cases. All symbolic attributes define another partition τ on the set of all
cases. The process of forming new clusters was continued as long as π · τ ≤ {d}∗.

In divisive discretization method, initially all cases were placed in one cluster
C1. Next, for every case the average distance from all other cases was computed.
The case with the largest average distance was identified, removed from C1,
and placed in a new cluster C2. For all remaining cases from C1 a case c with
the largest average distance d1 from all other cases in C1 was selected and the
average distance d2 from c to all cases in C2 was computed. If d1 −d2 > 0, c was
removed from C1 and put to C2. Then the next case c with the largest average
distance in C1 was chosen and the same procedure was repeated. The process
was terminated when d1 − d2 ≤ 0. The partition defined by C1 and C2 was
checked whether all cases from C1 were labeled by the same decision value and,
similarly, if all cases from C2 were labeled by the same decision value (though
the label for C1 might be different than the label for C2). The process of forming
new clusters was continued until π · τ ≤ {d}∗.

Final clusters were projected into all numerical attributes, defining this way
a set of intervals. The next step of discretization was merging these intervals
to reduce the number of intervals and, at the same time, preserve consistency.
Merging of intervals begins from safe merging, where, for each attribute, neigh-
boring intervals labeled by the same decision value are replaced by their union.
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Table 1. Data sets

Data set Number of

cases attributes concepts

Australian 690 14 2

Bank 66 5 2

Bupa 345 6 2

German 1000 24 2

Glass 214 9 6

Iris 150 4 3

Segmentation 210 19 7

Wine 178 13 3

Wisconsin 625 9 9

The next step of merging intervals was based on checking every pair of neigh-
boring intervals whether their merging will result in preserving consistency. If
so, intervals are merged permanently. If not, they are marked as un-mergeable.
Obviously, the order in which pairs of intervals are selected affects the final out-
come. In our experiments we started either from an attribute with the most
intervals first or from an attribute with the largest conditional entropy.

3 Experiments

Our experiments were conducted on nine data sets, summarized in Table 1. All
of these data sets, with the exception of bank, are available on the University
of California at Irvine Machine Learning Repository. The bank data set is a
well-known data set used by E. Altman to predict a bankruptcy of companies.

The following six discretization methods were used in our experiments:

– Cluster analysis divisive method with merging intervals with preference for
attributes with most intervals, coded as 00,

– Cluster analysis divisive method with merging intervals with preference for
attributes with largest conditional entropy, coded as 01,

– Merging intervals with preference for attributes with most intervals, coded
as 10,

– Merging intervals with preference for attributes with largest conditional en-
tropy, coded as 11,

– Globalized minimal class entropy method, coded as 13,
– Cluster analysis hierarchical method, coded as 14.

Every discretization method was applied to every data set, with the level
of consistency equal to 100%. For any discretized data set, the ten-fold cross
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Table 2. Error Rates—Means

Data set Methods of discretization

00 01 10 11 13 14

Australian 16.01 14.62 16.32 14.81 15.51 15.88

Bank 4.70 4.35 3.69 4.29 4.50 3.03

Bupa 36.81 36.82 36.72 37.38 42.73 35.90

German 31.11 31.32 31.12 31.34 29.99 29.30

Glass 31.21 28.54 28.65 28.78 42.63 31.21

Iris 3.26 3.29 3.29 3.31 8.71 4.02

Segmentation 14.67 15.00 16.51 12.87 49.24 17.05

Wine 7.32 7.27 7.21 7.42 2.40 6.26

Wisconsin 21.03 19.45 20.76 19.06 20.87 20.05

validation experiment for determining an error rate was repeated 30 times, with
different re-ordering and partitioning the set U of all cases into 10 subsets, where
rule sets were induced using the LEM2 algorithm [3,8]. The mean and standard
deviation were computed for every sequence of 30 experiments.

Then we used the standard statistical test about the difference between two
means, see, e.g., [2]. With the level of significance at 0.05, the decision: reject H0
if Z ≥ 1.96 or Z ≤ −1.96, where H0 is the hypothesis that the performance of
two respective methods do not differ. For example, for Australian data set, the
value of Z for methods 00 and 01 is 5.55, hence they do differ—as follows from
Table 2, method 01 is better (the error rate is smaller). In general, for Australian
data set, methods 01 and 11 are significantly better than all remaining methods
while methods 01 and 11 do not differ significantly. For remaining methods
situation is more complicated: methods 13 and 14 do not differ significantly,
but method 13 is obviously worse than methods 01 and 11 and is better than
methods 00 and 10. Method 14, though worse than 01 and 11, does not differ
significantly from methods 00 and 10. On the other hand, methods 00 and 01
do not differ significantly between each other and method 14. A similar analysis
was conducted for every data set, the details are skipped because of the page
limit for this paper.

As follows from Tables 2–3, performance of discretization methods varies with
the change of the data set. The question is if there exists a universally best or
worst method. The appropriate test here is the F -test, based on the analysis of
variance. The variance s2

n of sample means is equal to 6.07. The mean s2
d of all

sample variances is equal to 178.0. Thus the test statistics F , where

F =
s2
2

s2
d

(n)
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Table 3. Error Rates—Standard Deviations

Data set Methods of discretization

00 01 10 11 13 14

Australian 0.88 1.05 1.02 0.88 0.88 0.78

Bank 1.28 1.24 1.10 1.95 0.63 0.00

Bupa 1.79 1.41 1.43 1.41 2.06 1.83

German 1.15 0.80 0.81 0.90 0.87 0.84

Glass 1.98 2.20 2.10 2.06 2.36 1.42

Iris 0.20 0.17 0.46 0.33 1.05 0.62

Segmentation 1.42 1.35 1.31 1.06 2.22 1.31

Wine 0.98 1.11 1.09 1.13 0.83 1.26

Wisconsin 0.56 0.43 0.55 0.64 0.74 0.41

and n = 9 (the number of data sets), is equal to 0.307. Since F is less than 1,
we do not need to look to the F -table to know that these discretization methods
do not show a statistically significant variation in performance.

4 Conclusions

Our paper presents results of experiments in which six promising discretization
methods were used on nine data sets with numerical attributes. All six methods
were global and supervised. Results of all six methods, the discretized input data,
were used for rule induction using the same LEM2 rule induction algorithm. The
performance of discretization, for every method and every data set, was evaluated
using 30 experiments of ten-fold cross validation. As a result, we conclude that

– for a specific data set, difference in performance between different discretiza-
tion methods is significant,

– there is no universally best or worst discretization method. In different words,
difference in performance for our six discretization methods, evaluated on all
nine data sets, is not significant.

Thus, for a specific data set the best discretization method should be selected
individually.
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