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Preface

This volume contains the papers selected for presentation at the Third Interna-
tional Conference on Rough Sets and Knowledge Technology (RSKT 2008) held
in Chengdu, P.R. China, May 16–19, 2008.

The RSKT conferences were initiated in 2006 in Chongqing, P.R. China.
RSKT 2007 was held in Toronto, Canada, together with RSFDGrC 2007, as
JRS 2007. The RSKT conferences aim to present state-of-the-art scientific re-
sults, encourage academic and industrial interaction, and promote collaborative
research in rough sets and knowledge technology worldwide. They place emphasis
on exploring synergies between rough sets and knowledge discovery, knowledge
management, data mining, granular and soft computing as well as emerging
application areas such as bioinformatics, cognitive informatics, and Web intelli-
gence, both at the level of theoretical foundations and real-life applications.

RSKT 2008 focused on five major research fields: computing theory and
paradigms, knowledge technology, intelligent information processing, intelligent
control, and applications. This was achieved by including in the conference
program sessions on rough and soft computing, rough mereology with appli-
cations, dominance-based rough set approach, fuzzy-rough hybridization, gran-
ular computing, logical and mathematical foundations, formal concept analysis,
data mining, machine learning, intelligent information processing, bioinformat-
ics and cognitive informatics, Web intelligence, pattern recognition, and real-life
applications of knowledge technology. A very strict quality control policy was
adopted in the paper review process of RSKT 2008. Firstly, the PC Chairs re-
viewed all submissions. Some submissions, not meeting the quality standards of
the conference, were rejected in this step. Then, 184 papers were subjected to a
double-blind review process. In this step, every paper was examined by at least
two reviewers. In all, 105 papers were initially selected by the PC Chairs accord-
ing to reviewers’ comments. Among these initially selected papers, some were
conditionally approved, subjected to revision, and then additionally evaluated.
Finally, 91 papers were accepted for RSKT 2008.

This volume contains 100 papers, including 3 invited keynote papers, 6 invited
tutorial papers, and 91 contributed papers.

We are grateful to our Honorary Chairs, Ruqian Lu and Lotfi A. Zadeh,
for their support and visionary leadership. We also acknowledge the scientists
who kindly agreed to give the keynote and tutorial lectures: Ruqian Lu, Witold
Pedrycz, Feiyue Wang, Andrzej Skowron, Hung Son Nguyen, Roman Slowinski,
Salvatore Greco, Guoyin Wang, Yiyu Yao, and Mihir Kumar Chakraborty. We
also wish to express our deep appreciation to all Conference Chairs, Organizing
Chairs, Special Session Chairs, Industry Chairs, Publicity Chairs, Steering Com-
mittee Chairs, Steering Committee members, Program Committee members, and
all reviewers.



VI Preface

We wish to thank all the authors who submitted high-quality papers and all
conference participants.

We greatly appreciate the co-operation, support, and sponsorship of various
institutions, companies, and organizations, including: Southwest Jiaotong Uni-
versity (SWJTU), Beijing Institute of Technology (BIT), Chongqing University
of Posts and Telecommunications (CQUPT), University of Regina (UofR), Inter-
national Rough Set Society (IRSS), Rough Sets and Soft Computation Society of
the Chinese Association for Artificial Intelligence (CRSSC), and IEEE Chengdu
Section.

Last but not least, we are thankful to Alfred Hofmann of Springer for support
and co-operation during preparation of this volume.

May 2008 Guoyin Wang
Tianrui Li

Jerzy Grzymala-Busse
Duoqian Miao

Andrzej Skowron
Yiyu Yao
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Knowware: A Commodity Form of Knowledge

Ruqian Lu

Academy of Mathematics and System Science,
The Chinese Academy of Sciences, Beijing 100080, P.R. China

Abstract. Knowledge and Intelligence have a much closed relationship.
Knowledge is both the crystallization and source of intelligence. Knowl-
edge embodies intelligence, and intelligence emerges from knowledge. Ev-
ery ICAX system (Intelligent Computer Aided X, where X may mean
any domain, such as education, design or manufacturing, etc.), such as
ICAI (I = Instruction), ICAD (D = Design), ICAM (M = Manufactur-
ing), etc., has its intelligence based on a content rich knowledge base.
In this sense, we may have the formula: ICAX = CAX + X knowledge
base. Using this formula, we have developed a methodology of generat-
ing knowledge based system automatically. The core idea is to develop a
domain-oriented pseudo-natural language (PNL for short), where PNL
means a normalized subset of some natural language, which can be eas-
ily parsed by computer. Each domain expert may use this language to
write down his knowledge and experience. A PNL compiler then com-
piles ’program’s written in this PNL to form a domain knowledge base.
Combined with a preexisting system shell, a prototype of the knowledge
based system is automatically generated. We have applied this idea to
automatic generation of ICAI and ICASE (SE = Software Engineering)
systems. The following problem is how to generalize this idea. Can the
development of knowledge base and system shell be done by different
people or groups? Can the knowledge base be easily renewed or even
become an independent commodity? Finally, we have got an answer to
this problem. The commodity form of such knowledge base is knowware.
In general, knowware is a commodity form of knowledge.

More precisely, knowware is a commercialized knowledge module with
documentation and intellectual property, which is computer operable,
but free of any built-in control mechanism, meeting some industrial
standards and embeddable in software/hardware. The process of devel-
opment, application and management of knowware is called knowware
engineering. Three different knowware life cycle models are discussed:
the furnace model, the crystallization model and the spiral model. Soft-
ware/knowware co-engineering is a mixed process involving both software
engineering and knowware engineering issues. It involves three parallel
lines of developing system components of different types. The key issues
of this process are how to guarantee the correctness and appropriateness
of system composition and decomposition. The ladder principle, which
is a modification of the waterfall model, and the tower principle, which
is a modification of the fountain model, are proposed.
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Abstract. In recent years multi-agent systems have emerged as one of the inter-
esting architectures facilitating distributed collaboration and distributed prob-
lem solving. Each node (agent) of the network might pursue its own agenda, 
exploit its environment, develop its own problem solving strategy and establish 
required communication strategies. Within each node of the network, one could 
encounter a diversity of problem-solving approaches. Quite commonly the 
agents can realize their processing at the level of information granules that is 
the most suitable from their local points of view. Information granules can 
come at various levels of granularity. Each agent could exploit a certain formal-
ism of information granulation engaging a machinery of fuzzy sets, interval 
analysis, rough sets, just to name a few dominant technologies of granular com-
puting. Having this in mind, arises a fundamental issue of forming effective in-
teraction linkages between the agents so that they fully broadcast their findings 
and benefit from interacting with others.  

Keywords: Granular computing, Fuzzy sets, Rough sets, Multi-agent systems, 
Communication schemes, Granularity of information. 

1   Introduction 

There has been a growing interest in agent systems and their collaborative structures 
of multi-agent topologies. There is a great deal of methodological and algorithmic 
pursuits as well a wave of application-oriented developments cf. [1][4][6][10][20][21] 
Given the nature of the problem tackled by such systems where we commonly en-
counter nodes (agents) operating quite independently at various levels of specificity, it 
is very likely that the effectiveness of the overall system depends directly upon a way 
in which the agents collaborate and exchange their findings.  

In this study, we are interested in the development of schemes of interaction 
(communication) in multi-agent systems where exchange of findings obtained locally 
(at the level of individual agents) are represented as information granules 
[12][13][14][15][17][18][19][22] rather than plain numeric entities (which might not 
be feasible or very much limited in terms of knowledge representation). There are a 
number of important and practically relevant issues dealing with various ways  
of expressing incoming evidence available to an individual agent which expresses 
findings in the format available to all other agents in the network.  



4 W. Pedrycz 

Each agent could exploit its own formalism of information granules be it fuzzy sets 
[2][7][8][17], rough sets [12][13][14][15], rough fuzzy sets or fuzzy rough sets [7], 
type-2 fuzzy sets [6] and others including hybrid models. What becomes quite appar-
ent in the realization of the communication schemes is an increase of the sophistica-
tion of the information granules which are exchanged between agents and need to be 
translated into an internal format acceptable to the particular agent. An example of 
this tendency is an emergence of type-2 fuzzy sets (in cases when originally we have 
dealt with fuzzy sets).  We demonstrate that the concept of rough sets becomes central 
to our investigations as a conceptual and algorithmic realization of the communication 
mechanisms.  

The study is structured in a top-down manner. Some generic architectural and 
functional insights into granular agents are presented in Section 2. Sections 3-5 pre-
sent the conceptual underpinnings of communication realized between the agents and 
a way of dealing with multiple evidence and related aggregation issues. The consecu-
tive sections concentrate on the detailed algorithmic developments of the concepts. 

2   Granular Agents and Multi-agent Systems: Architectural and 
Functional Insights 

In a nutshell, by a granular agent we mean a processing module which realizes proc-
essing carried out at the level of information granules (no matter what formalism of 
information granulation is being used there). The module comes with substantial 
processing capabilities, is able to carry out some learning and enhancements on a 
basis of locally available experimental evidence. It communicates its findings to other 
agents and engages into some collaborative pursuits. Each agent operates at its own 
level of information granularity  

A general scheme of a multi-agent system can be schematically outlined in  
Figure 1. Note that the communication layer of each agent (which comes in the form 
of a certain stratum) plays a pivotal role in establishing a sound and effective  
 

 

 

Fig. 1. An overview of a multi-agent system; each agent develops and evolves on a basis of 
experimental data that are locally available and communicates with other agents. Distinguished 
are the computing core (dark center) and the communication layer of the nodes (surrounding 
light color region) present in the multi-agent systems. 
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collaborative interaction which becomes essential when building distributed models, 
forming distributed control strategies and constructing distributed classification archi-
tectures, just to name the most representative categories of tasks.  

The communication scheme in which an agent accepts some result of processing 
offered by some other agent has to deal with an issue of representation of the incom-
ing evidence in the setting of the information granules.  

3   Agent Communication: Internal Representation of Incoming 
Evidence 

Agent accepts findings coming from other agents and expresses them in the format 
which is pertinent to its own processing. We can view this process as translating an 
input evidence X with the aid of a vocabulary of information granules {A1, A2, …, 
Ac} pertinent to the agent under discussion. Both X and Ai could exhibit a significant 
diversity in terms of their underlying formalism of information granulation. In spite of 
this possible diversity, some general representation guidelines can be envisioned. 
First, we can describe X by considering an extent to which X and Ai overlap consid-
ering that this concept is reflective of the notion of closeness (resemblance) between 
these two information granules. Anticipating that such a quantification might not be 
able to capture the entire matching process, we consider X and Ai in the context of an 
extent to which X is included in Ai. The predicate of inclusion itself could be gradual 
viz. returning a certain numeric quantification with values confined to the unit inter-
val. Denote the results of this representation by λi and μi, respectively 

)Aτ(Xλ ii ∩=  (1) 

)Aτ(Xμ ii ⊂=  (2) 

where the operation τ is used here to schematically capture the realization of the op-
erations of overlap and inclusion. Overall, the scheme realized above isgraphically 
represented in Figure 2. 

 

X 

A1  λ1    μ1 

A2   λ2    μ2 

Ac   λc    μc 

 

Fig. 2. The representation of incoming evidence through the operations of overlap and inclusion 

It is interesting to underline that the general operations (1) – (2) exhibit a close re-
semblance with the very nature of rough sets. The quantification conveyed by the 
values of λi and μi relate directly with the lower and upper approximations forming 
the holy grail of rough sets. Note however that in the formulation above we have not 
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confined ourselves to any specific formal representation of information granules. This 
representation underlines the fundamental feature of the concept of rough sets which 
stretches beyond the original concept introduced by Pawlak. It is needless to say the 
implementation details depend upon the character of the information granules. The 
quality of the incoming evidence X is assessed vis-à-vis existing information granules 
Ai by plotting the values of (1) and (2). There are two interesting boundary cases: 

 
Numeric information. It leads to the equality μi = λi 
Totally unknown piece of evidence. In this case λi=1 for all i=1, 2, …, c and μi=0. 
 
The plots of these two boundaries are shown in Figure 3. There are, obviously, 

a lot of other scenarios whose visualization manifests in the form of points posi-
tioned over the main diagonal. The closer the point is to the main diagonal, the 
tighter the bounds are and the higher the quality of the input evidence (assessed 
with regard to Ai). 

 

1 λ 

λi =1   μi=0 

μ 

 

Fig. 3. Visualization of λi and μi for various nature of the incoming evidence 

Referring to the characterization of X in terms of Ais, it is worth noting that by de-
fault we considered that the specificity of X is higher than the information granules Ai 
and therefore it becomes legitimate to talk about the relationship of inclusion. The 
notion of granularity (which is intuitively appealing) requires here further quantifica-
tion which depends upon the formalism of information granules.  The simplest one 
would envision is to count the number of elements in the information granule or 
summing up the degrees of membership (which is more suitable when dealing with 
fuzzy sets). 

4   Communicating Granular Findings 

The results of granular processing carried out within the bounds of a certain agent are 
next broadcasted to other agents existing in the system. To do so, the agent realizes its 
findings in the form of a certain information granule. Typically, for the agent we 
encounter a collection of information granules in some input space (say, some recep-
tor space) and a family of information granules in the output space (e.g., a space of 
actions, decisions, etc.). There could be a fairly advanced web of connections between 
them which could be either “hardwired” or it may exhibit some level of plasticity 
which is essential in supporting learning capabilities. Rule-based architectures such as 
e.g., fuzzy rule-based models are examples of such granular architectures. The result 
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of processing are expressed via degrees of overlap and inclusion pertaining to the 
individual information granules in the output space.  

Referring to the way in which the input evidence has been captured, the internal 
processing realized by the agent returns a vector of degrees of overlap γ  (=[γ1 γ2 … 
γm] ) and degrees of inclusion η(=[η1 η2 … ηm]) . Those need to be translated into 
some information granule where in this construct we engage the corresponding infor-
mation granules Bj. Being more formal, we are concerned with the following inverse 
problem: 

-for given vectors γ and η information granules  Bi and a family of constraints 

)Bτ(Bγ ii ∩=   )Bτ(B ii ⊂=η   i=1, 2, …, m 

determine B. The graphical visualization of the underlying problem is illustrated in 
Figure 4. 

 

B 

B1  γ1    ν1 

B2  γ2    ν2 

Bc  γc    νc 

 

Fig. 4. The essence of communicating granular findings 

5   Acceptance of Multiple Input Evidence and Its Representation  

Evidence coming from different agents is expressed in terms of Ai producing the 
results conveyed in the format (1) – (2). As we encounter several sources of informa-
tion which might be in some interaction, they need to be reconciled or aggregated [3]. 
Schematically we display this situation as included in Figure 5.  

 X1 

λi1    μi1 

X2 

XN 

λi2    μi2 

λiN   μiN 

 

Fig. 5. Multiple source evidence and its reconciliation prior to further processing by the com-
puting core of the agent 

The crux of the construct is to reflect upon the nature of reconciled evidence which 
has to be taken into account when proceeding with further processing realized by the 
agent. Intuitively, any sound aggregation would return some quantification at the 
same level of granularity as the originally available evidence. For instance, from the 
statistical perspective, we could contemplate using average, modal or median as a 
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meaningful descriptor of the available evidence. A more suitable approach would be 
the one in which we convey not only the single numeric quantity but an information 
granule whose role is to quantify the diversity of available sources of evidence.  

In what follows, we discuss several detailed computing realizations which support 
the implementation of the individual communication mechanisms presented so far.  

6   Realization of Acceptance of Input Evidence through the Use of 
Logically Inclined Logic Operators 

In the realization of (1) – (2), we quantify an overlap and inclusion holding between 
X and Ai. With this regard the following formulas are commonly encountered 

(x)][X(x)tAsupλ ixi X∈=  (3) 

and  

(x)]X(x))sA-[(1infμ ixi X∈=  (4) 

In fuzzy sets (3) is referred as possibility measure while (4) comes is a necessity 
measure. The notation of “t” and “s” is used to denote t-norms and t-conorms (s-
norms) which are commonly encountered as realizations of logic operators of and and 
or. The above formulas apply directly to information granules formalized as sets and 
fuzzy sets. Considering even a fairly specific case when dealing with finite space X, 
the above formulas may exhibit shortcomings. First, the max (sup) and min (inf) op-
erations are non-interactive so they tend to lead to the results that are getting close to 
1 (in case of (3) ) and 0 (for (4)). Second, the result is entirely dependant upon the 
extreme entry in the whole set of results X(x)tAi(x) for the possibility measure and (1-
X(x))sAi(x) for the necessity measure. These two measures could have quite evident 
drawbacks by leading to the computing machinery which produces results where the 
bounds used in the description of X are getting quite loose converging to 1 and 0, 
respectively. To alleviate this problem, the underlying concept is to incorporate some 
knowledge about the statistics of the partial results of computing t- norms and t-
conorms for the individual elements of X. This leads us to statistically-grounded logic 
operators. We introduce a concept of statistically augmented (directed) logic connec-
tives by constructing a connective that takes into consideration a statistically driven 
aggregation with some weighting function being reflective of the nature of the under-
lying logic operation. Furthermore let us denote by zj the result of t-norm aggregation 
of X(xj) and Ai(xj), zi = X(xj) and Ai(xj) assuming that the space X is finite, card  
(X) =N.  

6.1   SOR Logic Connectives 

The (SOR) connective is defined as follows. Denote by w(x) a monotonically non-
decreasing weight function from [0,1] to [0,1] with the boundary condition w(1) = 1. 
The result of the aggregation of z = [z1, z2, …, zN], denoted by SOR(z; w), is obtained 
from the minimization of the following expression (performance index) Q 
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Q =  |yz|)w(z i

N

1j
j −∑

=

   Miny Q  (5) 

where the value of “y” minimizing the above expression is taken as the result of the 
operation SOR(z, w) = y. Put it differently, we have SOR(z, w) = 

|yz|)w(zmin  arg k

N

1k
k[0,1]y −∑

=
∈  The weight function “w” is used to model a contri-

bution of different membership grades to the result of the aggregation. Several models 
of the relationships “w” are of particular interest; all of them are reflective of the or 
type of aggregation 

 
(a) w(z) assumes a form of a certain step function  

⎩
⎨
⎧ ≥

=
otherwise 0,

z z if  1
w(z) max  (6) 

where zmax  is the maximal value reported in  z. This weight function effectively 
eliminates all the membership grades but the largest one. For this form of the 
weight function, we effectively end up with the maximum operator, SOR(z, w) 
=max (z1, z2, …, zN) 

 
(b) w(z) is equal identically to 1, w(z) =1. It becomes clear that the result of the 

minimization of the following expression  

|yz| j

N

1j

−∑
=

 (7) 

is a median of z, median(z). Subsequently SOR(z, w) = median(z). Interestingly, the 
result of the aggregation is a robust statistics of the membership grades involved in 
this operation.  

We can consider different forms of weight functions. In particular, one could think 
of an identity function w(z) = z. There is an interesting and logically justified alterna-
tive which links the weight functions with the logic operator standing behind the logic 
operations. In essence, the weight function can be induced by various t-conorms (s-
norms) by defining w(z) to be in the form w(z) = zsz. In particular, for the maximum 
operator, we obtain the identity weight function w(z) =max(z,z) = z. For the probabil-
istic sum, we obtain w(z) = (z+z-z*z) = 2z(1-z). For the Lukasiewicz or connective, 
the weight function comes in the form of some piecewise linear relationship with 
some saturation region, that is w(z) = max(1, z+z) = max (1, 2z).  The plots of these 
three weight functions are included in Figure 6.  

In general, the weight functions (which are monotonically non-decreasing and sat-
isfy the condition w(1) = 1) occupy the region of the unit square as portrayed in Fig-
ure 7. Obviously the weight functions induced by t-conorms are subsumed by the 
weight functions included in Figure 7.   
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max 
 
probabilistic sum
 
Lukasiewicz 

 

Fig. 6. Plots of selected weight functions induced by selected t-conorms 

 w(u) 
 
1 

1     u  

Fig. 7. Examples of weight functions generating SORs logic operators induced by t-conorms; 
all of them are localized in the shaded region of the unit square 

For all these weight functions implied by t-conorms, the following inequality holds  
median(z) ≤  SOR(z, w)  ≤ max(z). 

6.2   SAND Logic Connectives 

The statistically grounded AND (SAND) logic connective is defined in an analogous 
way as it was proposed in the development of the SOR. Here w(x) denotes a mono-
tonically non-increasing weight function from [0,1] to [0,1] with the boundary condi-
tion w(0)=1. The result of the aggregation of z = [z1, z2, …, zN], denoted by SAND(z; 
w), is obtained from the minimization of the same expression (3) as introduced be-
fore. Thus we produce the logic operator SAND(z, w) = y with “y” being the solution 
to the corresponding minimization problem.  

As before, we can envision several models of the weight function; all of them are 
reflective of the and type of aggregation 

(a) w(z) assumes a form of some step function  

⎩
⎨
⎧ ≤

=
otherwise 0,

z z if  1
w(z) min  (8) 

where zmin is the minimal value in  z. This weight function eliminates all the member-
ship grades but the smallest one. For this form of the weight function, we effectively 
end up with the maximum operator, SAND(z, w) =min (z1, z2, …, zN) 
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(b) for w(z) being equal identically to 1, w(z) =1,  SAND becomes a median, 
namely SAND(z, w) = median(z).  

(c) more generally, the weight function is defined on a basis of some t-norm as fol-
lows, w(z) =1- ztz. Depending upon the specific t-norm, we arrive at different forms 
of the mapping. For the minimum operator, w(z) =1- min(z,z) =1-z which is a com-
plement of “z”. The use of the product operation leads to the expression w(z) =1- z2. 
In the case of the Lukasiewicz and connective, one has w(z)=1-max(0, z+z-1) =1-
max(0, 2z-1). 

min 
 
product 
 
Lukasiewicz 

 

Fig. 8. Examples of weight functions used in the construction of the SAND operation 

If we confine ourselves to monotonically non-increasing functions of [0,1] with the 
boundary condition of w(0) =1, they can be illustrated as shown in Figure 9. Note that 
the general inequality relationship holds  min(z)  ≤ SAND(z, w)  ≤  median(z).  

 w(u) 
 
1 

1     u  

Fig. 9. Localization of weight functions induced by t-norms generating SANDs logic operators 

Investigating the fundamental properties of the logic connectives, we note that the 
commutativity and monotonicity properties hold. The boundary condition does not 
hold when being considered with respect to a single membership grade (which is 
completely understood given the fact that the operation is expressed by taking into 
consideration a collection of membership grades). Assuming the t-norm and t-conorm 
driven format of the weight function (where we have w(1) =1 and w(0) =0 for or 
operators and w(0)=1 and w(1)=1 for and operators) we have SOR(1, w) =0, 
SAND(0, w) = 0. The property of associativity does not hold. This is fully justified 
given that the proposed operators are inherently associated with the processing of all 
membership grades not just individual membership values. 
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A brief numeric example serves as an illustration of the concepts of the statistically  
grounded logic operators. The collection of membership grades to be aggregated 
consists of 13 values located in the unit interval 

{ 0.4 0.1 0.8 0.6 0.5 0.4 0.35 0.9 1.0 0.55 0.22 0.1 0.7} 

The median of these membership grades is 0.50. The optimization of the SOR and 
SAND operators leads to the following aggregation results for selected t-norms and t-
conorms:  

SOR operator    max:  0.70,    Lukasiewicz: 0.55,  probabilistic sum: 0.60 
SAND operator  min: 0.35     Lukasiewicz:   0.35 product: 0.40 
 

We note that all SOR values are located above the median while the SAND opera-
tors generate aggregations with the values below the median. For the given data set, 
the specific values of the aggregation depend on the character of the weight function. 
The monotonicity in the weight functions induced by the corresponding t- and t-
conorms is fully reflected in the order of the aggregation results. In other words, as 
the weight function implied by the max function is shifted to the right in comparison 
with the one induced by the probabilistic sum, then the result of SOR for the min is 
higher than the one for the SOR formed with the aid of the probabilistic sum.  

Clearly the introduced SAND and SOR operators can also help deal with the lack 
of discriminatory capabilities of the possibility and necessity measures.  

If we consider that the membership grades to be aggregated are governed by some 
probability density function p(x) then the optimization problem can be expressed in 
the following format 

Q= ∫∫∫ −+−=−
1

m

0

m

0

0

1

0 0

0

x)p(x)dxw(x)(m)p(x)dxmw(x)(xp(x)dx|mx|w(x)  (9) 

7   Reconstruction of Information Granules 

The problem of communication of granular computing realized by the agent is to 
construct the information granule which leads to the determination of B given Bis 
and the results of processing conveyed by the two vectors γ and η. A careful inspec-
tion of these relationships reveals that when the intersection and inclusion operations 
are realized with t-norms and t-conorms, we end up with a system of fuzzy relational 
equations and the determination of B comes as a result of the solution to inverse 
problem.  

Let us recall that we have 
γi = (x)][B(x)tBsup ix X∈  (10) 

ηi = (x)]B(x))sB-[(1inf ix X∈  (11) 

One can look at (10) and (11) and treat these relationships as a system of equations to 
be solved with respect to B. There is no unique solution to neither the first nor the 
second set of equations. There are, however extreme solutions that are unique to the 
problem at hand. Their construction is supported by the theory of fuzzy relational 
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equations (as a matter of fact, (10) as a sup-t composition of B and Bi). In light of the 
fundamental results available in the theory, the membership function of this maximal 
fuzzy set (mapping) induced by the Bi reads as  

⎩
⎨
⎧ ≤

=→=
otherwise  

(x)B if   1
(x)B(x)B̂

i

ii
iii γ

γ
γ  (12) 

The above formula applies to the t-norm implemented as a minimum operator. In 
general, for any continuous t-norm (12) reads in the form  

](x)atB|[0,1]sup[a(x)B(x)B̂ iiiii γγ ≤∈=→=  (13) 

When using the entire family of Bis (that leads to the intersection of the partial re-
sults presented above 

i

c

1i
B̂B̂

=
= I  (14) 

The theory of fuzzy relational equations [5][16] plays the same dominant role in 
the case of the necessity computations. It is worth noting that we are faced with so-
called dual fuzzy relational equations. Let us rewrite (11) as follows 

ηi = (x)](x)sB[Binf i
*

x X∈  (15) 

where B*(x) =1-B(x). Here the minimal solution to (15) for Bi and ηi given reads in 
the form 

⎩
⎨
⎧ <

==
otherwise           , 0

η(x)B if   ,η
η (x)εB(x)B

~ iii
ii

*
i  (16) 

Again the above formula applies to the maximum realization of the t-conorm. 
More generally, we have 

}(x)asB|[0,1]inf{a(x)εB(x)B
~

iiii
*
i ηη ≥∈==  (17) 

The partial results constructed in this manner are combined by taking their union  

U
c

1i

*
i

* B
~

B
~

=

=  (18) 

In conclusion, (14) and (18) become a description of the information granule ex-
pressed in terms of bounds of membership values that is 

(x))]B̂(x),B
~

-max(1 (x)),B̂(x),B
~

-[min(1 **   for each x. 

An illustrative example of the discussed concept is shown in Figure 10 when the 
family of Bis involves Gaussian membership functions with modal values of 1.9, 3.4 
and 5 and equal spreads of 0.8. Here we consider several vectors of numeric values of 
γ and η.  The resulting information granule comes in the form of the type-2 fuzzy set, 
and interval-valued fuzzy set. 
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Fig. 10. A collection of  Gaussian membership functions (a) and resulting information granules  
for  γ =  [0.4  1.0  0.9]  and  η  = [0.1  0.7  0.1] (b)  γ  = [0.9 1.0  0.8]  η  = [0.5  0.7  0.1] (c), 
and    γ  =  [0.4  1.0  0.5] η  = [0.3  0.9  0.4] (d) 

8   Aggregating and Representing Multiple Evidence: A Principle 
of Justifiable Granularity 

A single agent accepts evidence from other agents. Denote these incoming entities by 
X1, X2, …, XN. Their characterization in terms of Ai returns the values of λi1, λi2,… , 
λiN and μi1, μi2,… , μiN. These levels of overlap or inclusion could be different as be-
ing reflective of the diversified evidence provided by the entities available to this 
agent. To quantify the results in some synthetic manner, we proceed with a certain 
unified construct formed on the basis of the numeric values of  λi1 and  λi1, respec-
tively. This construct offers an interesting conceptual alternative which leads to the 
emergence of granular constructs. In particular this may lead to type-2 fuzzy sets. 
From the algorithmic perspective, we transform numeric quantities into a single 
granular representative. Its design is guided by the principle of justifiable granularity. 
To illustrate its essence, we consider a finite collection of numeric entities, say  { λij} 
or { μij}. To unify the notation to e used, let denote these numeric evidence by {wij}, 
j=1, 2,…, N.  The underlying idea of the principle of justifiable granularity [11] is to 
represent the numeric entries wij in the form of a certain fuzzy set Ω which “spans” 
over the data in such a way that it “represents” the data to the highest extent while 
being maintained quite specific (detailed). The modal value of the fuzzy set con-
structed in this way is taken as the median of {wij}. The left-hand and the right –hand 
side of the support of the membership function is constructed independently on the 
basis of the available data. Consider those elements  wij whose values are lower than 
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w, that is wij < w where “w” is the median of the set {wij}.  Denote by “a” the lowest 
value in [0,1] the left-hand side of the support of Ω.  

There are two requirements guiding the determination of the “optimal” value  
of “a”: 

(a) maximize the experimental evidence of the fuzzy set; this implies that we 
tend to “cover” as many numeric data as possible, viz. the coverage has to 
be made as high as possible. Graphically, in the optimization (maximiza-
tion) of this requirement, we move “a” down to zero as much as possible. 

The sum of the membership grades W(wij), ∑
i

ij )W(w  has to be maxi-

mized which reflects that the experimental evidence is high enough.  
(b) Simultaneously, we want to make the fuzzy set as specific as possible so 

that is comes with some well defined semantics. This requirement is met 
by making the support of Ω as small as possible, that is mina|w –a|  

 

To accommodate these two conflicting requirements, we combine (a) and (b) into a 
form of a single scalar index which in turn has to be maximized. The following ex-
pression is one of the viable alternatives which captures these two requirements at the 
same time 

uamax ≠ |aw|

)W(w
i

ij

−

∑
  (19) 

The same construct is realized for the upper bound of the support of the fuzzy set. 
The construct does not restrict itself to any specific form of the membership function. In 
particular, we could consider triangular or parabolic membership functions; they need to 
be symmetric, though. The crux of the above construct is illustrated in Figure 11.  

 

a 

A 

w 

 

a 

A 

w 
 

    (a)                 (b) 

Fig. 11. The development of information granule formed on a basis of the principle of  justifi-
able granularity: (a) forming the membership function, and (b) construction of the characteristic 
function 

The above construct equally well applies to the optimization of the characteristic 
function in case we consider sets as information granules. In this case, the sum is 
simply the cardinality of the experimental data “covered” contained in the set as illus-
trated in Figure 11(b). 
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The information granule formed in this manner reflects the diversity of the evi-
dence available to the agent. Note that the granularity has emerged because of this 
phenomenon of diversity the agent was exposed to.  

9   Conclusions  

In this study, we elaborated on the role of effective communication mechanisms in 
multi-agent and showed that given various perspectives and mechanisms of comput-
ing supported individual agents there is a need to develop schemes of interaction at 
the level of information granules. We have formulated the main communication 
mechanisms by starting with conceptual aspects and offering detailed algorithmic 
developments. 

There are several observations of a general nature that are worth spelling out: 

• The communication is quantified by describing relationships between informa-
tion granules in terms of their overlap and inclusion. This description empha-
sizes the relevance of this principle which associates well to rough sets  

• Any exposure to multiple sources of evidence leads to the emergence of  
information granules; the principle of justifiable granularity is a compelling  
illustration of the way in which information granules are constructed 

• The quantification of interaction between agents gives rise to information 
granules of higher type (say, type-2 fuzzy sets). 
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Linguistic Dynamic Systems for Computing with

Words and Granular Computing

Fei-Yue Wang
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Abstract. The term of Linguistic Dynamic Systems (LDS) was origi-
nally coined in earlier 1990s to reformulate logic programming for com-
puting with words and granular computing dynamically and numerically.
In the earlier stage of its development, fuzzy sets were used as the logic
foundation for its analytical formulation and cell-to-cell mappings were
applied in its computational framework. Therefore, many concepts and
methods developed in ODE-based conventional dynamic systems can be
used directly for computing with words and granular computing in LDS.
Actually, cell mappings lead analysis in LDS to search problems in cell
spaces, thus various search methods and techniques in Artificial Intelli-
gence can be utilized for LDS. However, the procedure of transformation
from fuzzy logic in hyper-cubes to cell-to-cell mappings in cell spaces is
quite tedious and involving ad hoc steps in the process.

Both rough sets and type-2 fuzzy sets can be very useful in the im-
provement or even reformulation of LDS. Rough sets can lead to a con-
nection between LDS and data mining, as well as granular computing,
especially in dynamic construction and computing of value, variable, con-
cept, and ontology granulation. There is a natural connection between
LDS and type-2 fuzzy sets. As a matter of fact, a cell in cellular struc-
tured hyper-cubes is a specialized type-2 fuzzy set. New concepts and
methods developed in the emerging type-2 fuzzy sets could be used in
LDS for better design and improved computational efficiency in analysis
of rule-based linguistic control systems. In this presentation, we will dis-
cuss and investigate the issues related to the relationship among LDS,
computing with words, granular computing, and other methods.

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, p. 18, 2008.
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This tutorial is a survey on rough set theory and some of its applications in
Knowledge Discovery from Databases (KDD). It will also cover the practice guide
to analysis of different real life problems using rough set methods as well as the
presentation of Rough Set Exploration System (RSES) what can be treated as
a preliminary material for the main conference and associated workshops.

Rough Set theory was introduced by Zdzis�law Pawlak in the early 80’s and has
currently reached a level of high visibility and maturity [3,2,4,5,6]. Originally,
rough sets, whose main philosophy is based simply on indiscernibility and dis-
cernibility of objects, were presented as an approach to concept approximation
under uncertainty. This brilliantly simple idea has been successively expanded
in the last twenty years. Many effective methods for data analysis have been
developed on the basis of rough set theory.

In recent years, a growth of interest in rough set theory and its applications can
be seen in the number of research papers submitted to international workshops,
conferences, journals and edited books, including two main biannual conferences
on rough sets and the special sub-line of LNCS series. A large number of efficient
applications of rough sets in Knowledge Discovery for various types of databases
have been developed. Rough sets are applied in many domains, such as medicine,
finance, marketing, telecommunication, conflict resolution, text mining, intelli-
gent agents, image analysis, pattern recognition, bioinformatics (e.g., see, [4,5,6]
and the bibliography in these papers).

This tutorial is intended to fulfill the needs of many researchers to understand
the rough set methodologies for mining of standard and nonstandard data. The
methodology based on rough sets can serve as a useful tool to complement ca-
pabilities of other data mining methods. The tutorial should help the audience
to find out if some of the presented methods may support their own KDD and
data mining (DM) research.

The tutorial is intended to occupy four slots of 45 minutes each and to cover
the following topics:

– Fundamentals of rough set theory;
– Rough set approach to KDD;
– Examples of rough set based methods for data reduction, rule extraction,

discretization, decomposition, hierarchical learning;
– Practical guide for Rough Set Exploration System (RSES);

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 19–20, 2008.
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– Some exemplary applications of RSES (with exercises);
– Emergent challenging problems.

The second part of this tutorial is targeted to young researchers who want to
apply the rough set approach to real-life problems in KDD.

For more readings the readers are referred to the survey papers [4,5,6] and the
bibliography in these papers, in particular to [1], as well as to the bibliography
accessible from http://rsds.univ.rzeszow.pl/.
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This tutorial lecture intends to introduce the Dominance-based Rough Set Ap-
proach (DRSA) methodology for reasoning about ordinal data. DRSA, proposed
by Greco, Matarazzo and S�lowiński (see e.g. [2,6]), extends the classical Rough
Set approach by handling background knowledge about ordinal evaluations of
objects and about monotonic relationships between these evaluations. In DRSA,
the indiscernibility or tolerance relation among objects, which is used in the
classical Rough Set approach, has been replaced by the dominance relation –
the only relation uncontested in multiattribute pairwise comparisons when at-
tribute scales are ordered. The lecture starts with principles of DRSA and goes
through the application of DRSA to fuzzy-rough hybridization [1], to end with
DRSA to case-based reasoning [3], which builds on this hybridization. This tu-
torial prepares the ground for a second tutorial lecture on applications of DRSA
to decision analysis.

There are various reasons for taking into account the order in data analysis.
The ordering of data describing decision situations is naturally related to pref-
erences on considered condition and decision attributes. For example, in credit
rating, the degree of regularity in paying previous debts by a consumer is a
condition attribute with a value set (scale) clearly ordered, e.g., unstable, ac-
ceptable, very stable; on the other hand, the decision attribute evaluating the
potential risk of lending money to a consumer has also a clearly ordered value set
(scale), e.g., high-risk, medium-risk, low-risk; these two scales are ordinal scales,
typical for evaluation criteria; moreover, there exists a natural monotonic rela-
tionship between the two attributes: the more stable the payment of the debt,
the less risky is the new credit. Both these aspects: ordering of values sets, and
monotonic relationship between condition attributes (criteria) and the decision
attribute, are taken into account in DRSA, which is new in machine learning.

While the above example is typical for data describing multiple criteria clas-
sification problems (called also ordinal classification), DRSA is also relevant in
case where preferences are not considered but a kind of monotonicity relating or-
dered attribute values is meaningful for the analysis of data at hand. In general,
monotonicity concerns relationship between different aspects of a phenomenon
described by data, e.g., “the larger the house, the higher its price” or “the more
a tomato is red, the more it is ripe”. The qualifiers, like “large house”, “high

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 21–22, 2008.
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price”, “red” and “ripe”, may be expressed either in terms of some measurement
units, or in terms of degrees of membership to some fuzzy sets.

In recent years, one can observe a growing interest in ordinal classification
within machine learning. The proposed approaches are based on statistical anal-
ysis of data, such as support vector machines, decision trees, loss function and
ordinal regression approaches. DRSA has been proposed well before. It extends
the classical Indiscernibility-based Rough Set Approach (IRSA) on ordinal clas-
sification, while maintaining all good properties of IRSA [4]. Being proposed
on the ground of rough sets, DRSA escapes the statistical approach giving a
non-invasive methodology for reasoning about ordinal data.

Looking at DRSA from granular computing perspective, we can say that
DRSA permits to deal with ordered data by considering a specific type of in-
formation granules defined by means of dominance-based constraints having a
syntax of the type: “x is at least R” or “x is at most R”, where R is a qualifier
from a properly ordered scale. In condition and decision space, such granules are
dominance cones.

Decision rules induced from dominance-based rough approximations put in
evidence the monotonic relationship between conditions and decision. For exam-
ple, in credit rating, the decision rule could be:
“if the customer has the bank account since at least 3 years, his income is at
least 2000$/month, and his previous payment of the debt was at least acceptable,
then the new credit is acceptable with care or better”.

The DRSA rules involve partial profiles which are compared with evaluation
of objects using a simple dominance relation.

The DRSA decision rules can be characterized by the usual confidence and
coverage factors, however, as shown in [5], some Bayesian confirmation measures
account in a more meaningful way for the attractiveness of these rules.
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Scientific analysis of decision problems aims at giving the decision maker (DM) a
recommendation concerning a set of objects (called also alternatives, solutions,
acts, actions, cases, candidates) evaluated wiht respect to a plurality of their
characteristics considered relevant for the problem at hand, and called attributes.
For example, a decision can regard:

1) diagnosis of pathologies for a set of patients, being the objects of the decision,
and the attributes are symptoms and results of medical examinations,

2) assignment to classes of risk for a set of firms, being the objects of the
decision, and the attributes are ratio indices and other economic indicators
such as the market structure, the technology used by the enterprises, the
quality of the management and so on,

3) selection of a car to be bought from a given set of cars, being the objects
of the decision, and the attributes are maximum speed, acceleration, price,
fuel consumption and so on,

4) ordering of students applying for a scholarship, being the objects of the
decision, and the attributes are scores in different disciplines.

The following three most frequent decision problems are typically distinguished:

– classification, when the decision aims at assigning objects to predefined
classes,

– choice, when the decision aims at selecting the best objects,
– ranking, when the decision aims at ordering objects from the best to the

worst.

Looking at the above examples, we can say that 1) and 2) are classification
problems, 3) is a choice problem and 4) is a ranking problem. The above catego-
rization can be refined with respect to classification problems by distinguishing
between

– nominal classification, called also taxonomy, when neither the value sets of
attributes nor the predefined classes are preference ordered,

– ordinal classification, called also sorting, when both the value sets of at-
tributes and the predefined classes are preference ordered [1] (even if in this
case it is also possible to take into consideration attributes with non ordered
value sets [2]).

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 23–24, 2008.
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Looking at the above examples, one can say that 1) is a nominal classification
problem, while 2) is an ordinal classification problem. Classical Rough Set Ap-
proach (CRSA) proposed by Pawlak [5] cannot deal with preference order in
the value sets of attributes. Thus, among all listed above decision problems,
CRSA supports nominal classification only. For ordinal classification, choice and
ranking it is necessary to generalize the CRSA, so as to take into account prefer-
ence orders. This generalization, called Dominance-based Rough Set Approach
(DRSA), has been proposed by Greco, Matarazzo and Slowinski [1],[3]. More-
over, it has been proved that CRSA is a specific case of DRSA, and, therefore,
any application of rough set approach to decision problems can be effectively
dealt with using DRSA [4]). In this tutorial we present applications of DRSA to
many real life decision problems, emphasizing the advantages of this approach
with respect to competitive approaches.

References
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Abstract. Recent advances in computing, communications, digital stor-
age technologies, and high-throughput data-acquisition technologies,
make it possible to gather and store incredible volumes of data. It cre-
ates unprecedented opportunities for large-scale knowledge discovery from
huge database. Data mining (DM) technology has emerged as a means of
performing this discovery. There are countless researchers working on de-
signing efficient data mining techniques, methods, and algorithms. Many
data mining methods and algorithms have been developed and applied in
a lot of application fields [1]. Unfortunately, most data mining researchers
pay much attention to technique problems for developing data mining
models and methods, while little to basic issues of data mining [2].

In this talk, some basic issues of data mining are addressed. What
is data mining? What is the product of a data mining process? What
are we doing in a data mining process? What is the rule we should
obey in a data mining process? Through analyzing existing data mining
methods, and domain-driven (or user-driven) data mining models [3-5],
we find that we should take a data mining process as a process of
knowledge transformation. Based on this understanding of data mining,
a conceptual data mining model of domain-oriented data-driven data
mining (3DM) is proposed [2]. The relationship between traditional
domain-driven (or user-driven) data mining models and our proposed
3DM model is also analyzed. Some domain-oriented data-driven data
mining algorithms for mining such knowledge as default rule [6],
decision tree [7], and concept lattice [8] from database are proposed.
The experiment results for these algorithms are also shown to illustrate
the efficiency and performance of the knowledge acquired by our 3DM
data mining algorithms.

Keywords: Data mining, machine learning, rough set, data driven, do-
main driven, domain oriented.
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Granular computing offers a new paradigm of computation that exploits vary-
ing sized data, information, knowledge, and wisdom granules. It may be inter-
preted in terms of nature-inspired computing, human-centered computing, and
machine-oriented computing. In this tutorial, I look at the past and the present,
and probe the future, of granular computing based on the triarchic theory/model
of granular computing.1

Emergence of Granular Computing

Granular computing may be viewed as both old and new. It is old in the sense
that its basic ideas, principles, strategies, methodologies, and tools have indeed
appeared and reappeared in many branches of science and various fields of com-
puter science under different names and with different notations. It is new by
its distinctive goals and scopes. Based on existing studies, granular computing
is growing into a school of thought and a full-scale theory, focusing on problem-
solving and information processing in the abstract, in the brain, and in machines.

Investigations of concrete models, including rough sets and fuzzy sets, are a
major driving force behind granular computing. In a wider context, motivations
for the emerging study of granular computing are much similar to the emergence
of the study of systems theory a few decades earlier. A general systems theory
may be viewed as an interdisciplinary study of complex systems in nature, so-
ciety, and science. It investigates the principles common to all complex systems
and abstract models of such diverse systems. Granular computing may be viewed
as an interdiscriplary study of computations in nature, society, and science and
abstract models of such computations, with an underlying notion of multiple
levels of granularity. It extracts and studies principles, strategies, and heuristics
common to all types of problem solving and information processing.

The Triarchic Theory of Granular Computing

Granular computing is an interdisciplinary and a multidisciplinary study, emerg-
ing from many disciplines. Results from cognitive science and psychology on
human guessing, knowing, thinking and languages provide evidence to support
the philosophical view of granular computing that humans perceive, understand,
1 More detailed information about the triarchic model can be found in my papers

available at http://www.cs.uregina.ca/∼yyao/grc paper. The reference section of
those papers contains an extensive literature that, unfortunately, cannot be included
here. I would like to thank Professors Guoyin Wang and Tianrui Li for the support
and encouragement when preparing the tutorial.
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and represent the real world in multiple levels of granularity and abstraction.
Results from the general systems theory, regarding efficient evolution of complex
systems and organized complexity, suggest that multilevel hierarchical granular
structures used in granular computing are suitable for describing complex real-
world problems. The effective methodology of structured programming, charac-
terized by top-down design and step-wise refinement, is generally applicable to
other types of problem solving, and hence may provide a methodological foun-
dation for granular computing. The systematic study of human problem solving,
strategies and heuristics, knowledge represent! ation and search, in artificial in-
telligence may provide the necessary models, methods, and tools required by
granular computing. Advances in information processing and related systems
may help in establishing a computational basis of granular computing.

The Triarchic Theory of granular computing reflects the above integration. It
consists of the philosophy, methodology and computation perspectives, based on
multilevel and multiview hierarchical granular structures. While a single hierar-
chy offers one representation and understanding with many levels of granularity,
multiple hierarchies afford a complete understanding from many views. Briefly,
the three perspectives are:

– Philosophy: a way of structured thinking. It combines analytical think-
ing for decomposing a whole into parts and synthetic thinking for integrating
parts into a whole.

– Methodology: a method of structured problem solving. It promotes
systematic approaches, effective principles, and practical heuristics and
strategies used effectively by humans in solving real-world problems. Three
tasks are considered: constructing granular structures, working within a par-
ticular level of the structure, and switching between levels.

– Computation: a paradigm of structured information processing.
Two related basic issues are representations and processes. Representation
covers the formal and precise description of granules and granular struc-
tures. Processes may be broadly divided into the two classes: granulation
and computation with granules.

Future of Granular Computing

Falmagne insightfully pointed out that a “scientific field in its infancy . . . requires
loving care in the form of a steady diet of fresh ideas and results.” A steady
diet for granular computing may be provided in several ways. First, we need
to emphasize on a balanced approach by considering all the three perspectives.
Second, we need to stress for diversity, in order to arrive at a unity. Third, we
need to cross the boundaries of different disciplines, in order to observe their
commonalities and to use them for granular computing. Forth, we need to shift
from machine-centered approaches to human-centered approaches. Fifth, we need
to move beyond the current rough sets and fuzzy sets dominated research agenda.
Finally, we need to learn to appreciate both the ideas and concrete results.
After all, what makes granular computing attractive is its ideas. It is exciting to
investigate how to realize those ideas.
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Representations of the lower and upper approximations of a set in the context of
an approximation space as modal operators in the first order language of modal
logics, are quite natural and widely familiar now to the rough-set community.
According to the perception of an observer, objects of a universe (of discourse)
are clustered. These are the basic information granules (or quanta). With re-
spect to the information available, objects belonging to the same cluster are
indistinguishable. It may not always be the case that the clusters are mutually
disjoint.

Now, an indiscernibility relation I may be defined such that for any objects
a, b of the universe, aIb holds if (and only if) a and b belong to the same cluster.
It is quite reasonable to assume that I is at least reflexive and symmetric.

The relation I may be formally interpreted as the (general) accessibility re-
lation of the Kripke-models of modal logic-systems. Although the accessibility
relation in the models of modal logics need not be symmetric (and even reflexive),
if I is taken to be indiscernibility there should not be any valid reason of its being
non-symmetric. The corresponding modal system turns out to be the system B.
In Pawlaks rough set systems since I is defined in terms of information tables
with respect to attribute-value systems, the indiscernibility relation I turns out
to be transitive too. Thus, I being an equivalence relation, the corresponding
modal logic-system has to be S5.

In the present lecture, however, we shall concentrate on two basic types of
clustering of the universe, viz. the covering based clustering and partition based
clustering of the objects of the universe – the first giving rise to relations which
are reflexive and symmetric, i.e. tolerances, while the second giving rise to equiv-
alences (reflexive, symmetric and transitive).

Now, the main support of the inference machine (methodology) in a logic or
broadly speaking in reasoning, rests on the rule Modus Ponens (M.P.) which
says that “If from a premise set X , the sentences A and A → B ( If A then B)
are both derivable then to infer B from X”.

In the context of approximate reasoning, this rule of inference is usually re-
laxed in various ways. For example in the fuzzy logic literature one gets fuzzy
modus ponens rule like“If A′ and A → B are derivable from X where A′ is
similar to or in some sense related to A, then to infer B′ from X”.

A typical example of the above extended MP rule that is noticed in fuzzy
literature is
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“ If mango is red then mango is ripe.
This mango is very red.
Hence this mango is very ripe.”

A similar approach shall be taken here in the rough-context where A′ , the
first premise, is not exactly the same as the antecedent of the second premise
but similar to it.

The MP rule, however, is equivalent to the following rule that we call MP
(modified). “If A, B → C both follow from X and A → B is universally true,
then to infer C from X .” By “universally true” we mean that under all states of
affairs, the wff A → B is true. This, in turn reduces to the claim that, the states
of affairs making A true makes B true also, i.e. Int(A) ⊆ Int(B), where Int(A)
is the set of the states of affairs making A true.

Now, in rough-set context one can define various notions of inclusion, viz.
rough lower/ upper inclusion, rough inclusion and others. In the case of Pawlak
rough sets, we get the following ultimate categories of inclusion

A ⊆ B, A ⊆ B, A ⊆ B ∧ A ⊆ B, A ⊆ B, A ⊆ B, A ⊆ B.

Thus Int(A) and Int(B) may have now all the above five various inclusion
relations of which one (viz. the second one) gives the classical inclusion.

Rough logic based on various “Rough MP” rules may now be defined by

A, B → C roughly follow from X
Int(A) rough-included (Rough Inc) in Int(B)

C roughly follows from X

where “Rough Inc” is any of the rough inclusions mentioned above. In fact, a
hierarchy of rough-logics shall be obtained.

Besides these rough MP rules there have been some other variants of MP rules
in rough set context.

In the lectures we shall focus on

• definitions of various rough MP rules
• rough logics developed with the help of these rules
• the interrelations between them
• the semantics of these logics
• suggested applications of rough MP rules.
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Abstract. We present results of extensive experiments performed on
nine data sets with numerical attributes using six promising discretiza-
tion methods. For every method and every data set 30 experiments of
ten-fold cross validation were conducted and then means and sample
standard deviations were computed. Our results show that for a specific
data set it is essential to choose an appropriate discretization method
since performance of discretization methods differ significantly. However,
in general, among all of these discretization methods there is no statis-
tically significant worst or best method. Thus, in practice, for a given
data set the best discretization method should be selected individually.

Keywords: Rough sets, Discretization, Cluster analysis, Merging inter-
vals, Ten-fold cross validation, Test on the difference between means,
F-test.

1 Introduction

Many real-life data contain numerical attributes whose values are integers or real
numbers. Mining such data sets requires special techniques, taking into account
that input data sets are numerical. Most frequently, numerical attributes are
converted into symbolic ones during a special process, called discretization [9],
before the main process of knowledge acquisition. In some data mining systems
both processes, discretization and knowledge acquisition, are executed at the
same time. Examples of such systems are C4.5 [14], CART [1], and MLEM2 [10].

Our objective was to compare, for the first time, the most promising discretiza-
tion techniques [4,9,11,15] through extensive experiments on real-life data sets
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and using ten-fold cross validation, standard statistical test on the difference
between means and F -test. The oldest method, among our six approaches to
discretization, is based on conditional entropy and was presented in [7]. The
remaining five approaches are implemented in the data mining system LERS
(Learning from Examples based on Rough Sets) [8]. One of them is based on
a hierarchical method of cluster analysis, two on a divisive method of cluster
analysis, and remaining two on merging intervals. Our results show that there is
no best or worst method. Additionally, for a specific data set, difference in per-
formance between different discretization techniques is significant and the best
discretization method should be selected individually, trying as many techniques
as possible.

2 Discretization Methods

Knowledge acquisition, such as rule induction or decision tree generation, from
data with numerical attributes requires converting numerical values of an at-
tribute into intervals. The process of converting numerical values into intervals,
called discretization, is usually done as a preprocessing, before the main process
of knowledge acquisition. In some data mining systems, such as C4.5, CART, and
MLEM2, both processes: discretization and knowledge acquisition are conducted
simultaneously. In this paper we will discuss discretization as a preprocessing.

For a numerical attribute a with an interval [a, b] as a range, a partition of
the range into n intervals

{[a0, a1), [a1, a2), ..., [an−2, an−1), [an−1, an]},

where a0 = a, an = b, and ai < ai+1 for i = 0, 1, ..., n − 1, defines discretization
of a. The numbers a1, a2,..., an−1 are called cut-points.

Discretization methods in which attributes are processed one at a time are
called local [4,9] (or static [5]). On the other hand, if all attributes are con-
sidered in selection of the best cut-point, the method is called global [4,9] (or
dynamic [5]). Additionally, if information about the expert’s classification of
cases is taken into account during the process of discretization, the method is
called supervised [5].

Many discretization methods [9] are used in data mining. In this paper we will
use three approaches to discretization based on cluster analysis, two additional
methods that will use similar principles, and, for comparison, a well-known dis-
cretization method based on minimal conditional entropy. All of these methods
are global and supervised.

The simplest discretization methods are local methods called Equal Inter-
val Width and Equal Frequency per Interval [4,9]. Another local discretization
method [7] is called a Minimal Class Entropy. The conditional entropy, defined
by a cut-point q that splits the set U of all cases into two sets, S1 and S2 is
defined as follows

E(q, U) =
|S1|
|U | E(S1) +

|S2|
|U | E(S2),
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where E(S) is the entropy of S and |X | denotes the cardinality of the set X .
The cut-point q for which the conditional entropy E(q, U) has the smallest value
is selected as the best cut-point. If k intervals are required, the procedure is
applied recursively k − 1 times. Let q1 and q2 be the best cut-points for sets S1
and S2, respectively. If E(q1, S1) > E(q2, S2) we select q1 as the next cut-point,
if not, we select q2.

2.1 Globalization of Local Discretization Methods

We will present an approach to convert local discretization methods to global [4].
First, we discretize all attributes, one at a time, selecting the best cut-point for
all attributes. If the level of consistency is sufficient, the process is completed.
If not, we further discretize, selecting an attribute a for which the following
expression has the largest value

Ma =

∑
B∈{a}∗

|B|
|U|E(B)

|{a}∗| .

In all six discretization methods discussed in this paper, the stopping condition
was the level of consistency [4], based on rough set theory introduced by Z.
Pawlak in [12]. Let U denote the set of all cases of the data set. Let P denote
a nonempty subset of the set of all variables, i.e., attributes and a decision.
Obviously, set P defines an equivalence relation ℘ on U , where two cases x and
y from U belong to the same equivalence class of ℘ if and only if both x and
y are characterized by the same values of each variable from P . The set of all
equivalence classes of ℘, i.e., a partition on U , will be denoted by P ∗.

Equivalence classes of ℘ are called elementary sets of P . Any finite union of
elementary sets of P is called a definable set in P . Let X be any subset of U . In
general, X is not a definable set in P . However, set X may be approximated by
two definable sets in P , the first one is called a lower approximation of X in P ,
denoted by PX and defined as follows

⋃
{Y ∈ P ∗|Y ⊆ X}.

The second set is called an upper approximation of X in P , denoted by PX and
defined as follows ⋃

{Y ∈ P ∗|Y ∩ X �= ∅}.

The lower approximation of X in P is the greatest definable set in P , con-
tained in X . The upper approximation of X in P is the least definable set in P
containing X . A rough set of X is the family of all subsets of U having the same
lower and the same upper approximations of X .

A level of consistency [4], denoted Lc, is defined as follows

Lc =

∑
X∈{d}∗ |AX |

|U | .

Practically, the requested level of consistency for discretization is 100%, i.e.,
we want the discretized data set to be consistent.
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2.2 Discretization Based on Cluster Analysis and Interval Merging

The data mining system LERS uses two methods of cluster analysis, agglom-
erative (bottom-up) [4] and divisive (top-down) [13], for discretization. In ag-
glomerative techniques, initially each case is a single cluster, then clusters are
fused together, forming larger and larger clusters. In divisive techniques, initially
all cases are grouped in one cluster, then this cluster is gradually divided into
smaller and smaller clusters. In both methods, during the first step of discretiza-
tion, cluster formation, cases that exhibit the most similarity are fused into
clusters. Once this process is completed, clusters are projected on all attributes
to determine initial intervals on the domains of the numerical attributes. During
the second step (merging) adjacent intervals are merged together.

Initially all attributes were categorized into numerical and symbolic. During
clustering, symbolic attributes were used only for clustering stopping condition.
All numerical attributes were normalized [6] (attribute values were divided by
the attribute standard deviation).

In agglomerative discretization method initial clusters were single cases. Then
the distance matrix of all Euclidean distances between pairs of cases was com-
puted. The closest two cases, a and b, compose a new cluster {a, b}. The distance
from {a, b} to any remaining case c was computed using the Median Cluster
Analysis formula [6]:

1
2
dca +

1
2
dcb − 1

4
dab,

where dxy is the Euclidean distance between x and y. The closest two cases
compose a new cluster, etc.

At any step of clustering process, the clusters form a partition π on the set
of all cases. All symbolic attributes define another partition τ on the set of all
cases. The process of forming new clusters was continued as long as π · τ ≤ {d}∗.

In divisive discretization method, initially all cases were placed in one cluster
C1. Next, for every case the average distance from all other cases was computed.
The case with the largest average distance was identified, removed from C1,
and placed in a new cluster C2. For all remaining cases from C1 a case c with
the largest average distance d1 from all other cases in C1 was selected and the
average distance d2 from c to all cases in C2 was computed. If d1 −d2 > 0, c was
removed from C1 and put to C2. Then the next case c with the largest average
distance in C1 was chosen and the same procedure was repeated. The process
was terminated when d1 − d2 ≤ 0. The partition defined by C1 and C2 was
checked whether all cases from C1 were labeled by the same decision value and,
similarly, if all cases from C2 were labeled by the same decision value (though
the label for C1 might be different than the label for C2). The process of forming
new clusters was continued until π · τ ≤ {d}∗.

Final clusters were projected into all numerical attributes, defining this way
a set of intervals. The next step of discretization was merging these intervals
to reduce the number of intervals and, at the same time, preserve consistency.
Merging of intervals begins from safe merging, where, for each attribute, neigh-
boring intervals labeled by the same decision value are replaced by their union.
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Table 1. Data sets

Data set Number of

cases attributes concepts

Australian 690 14 2

Bank 66 5 2

Bupa 345 6 2

German 1000 24 2

Glass 214 9 6

Iris 150 4 3

Segmentation 210 19 7

Wine 178 13 3

Wisconsin 625 9 9

The next step of merging intervals was based on checking every pair of neigh-
boring intervals whether their merging will result in preserving consistency. If
so, intervals are merged permanently. If not, they are marked as un-mergeable.
Obviously, the order in which pairs of intervals are selected affects the final out-
come. In our experiments we started either from an attribute with the most
intervals first or from an attribute with the largest conditional entropy.

3 Experiments

Our experiments were conducted on nine data sets, summarized in Table 1. All
of these data sets, with the exception of bank, are available on the University
of California at Irvine Machine Learning Repository. The bank data set is a
well-known data set used by E. Altman to predict a bankruptcy of companies.

The following six discretization methods were used in our experiments:

– Cluster analysis divisive method with merging intervals with preference for
attributes with most intervals, coded as 00,

– Cluster analysis divisive method with merging intervals with preference for
attributes with largest conditional entropy, coded as 01,

– Merging intervals with preference for attributes with most intervals, coded
as 10,

– Merging intervals with preference for attributes with largest conditional en-
tropy, coded as 11,

– Globalized minimal class entropy method, coded as 13,
– Cluster analysis hierarchical method, coded as 14.

Every discretization method was applied to every data set, with the level
of consistency equal to 100%. For any discretized data set, the ten-fold cross
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Table 2. Error Rates—Means

Data set Methods of discretization

00 01 10 11 13 14

Australian 16.01 14.62 16.32 14.81 15.51 15.88

Bank 4.70 4.35 3.69 4.29 4.50 3.03

Bupa 36.81 36.82 36.72 37.38 42.73 35.90

German 31.11 31.32 31.12 31.34 29.99 29.30

Glass 31.21 28.54 28.65 28.78 42.63 31.21

Iris 3.26 3.29 3.29 3.31 8.71 4.02

Segmentation 14.67 15.00 16.51 12.87 49.24 17.05

Wine 7.32 7.27 7.21 7.42 2.40 6.26

Wisconsin 21.03 19.45 20.76 19.06 20.87 20.05

validation experiment for determining an error rate was repeated 30 times, with
different re-ordering and partitioning the set U of all cases into 10 subsets, where
rule sets were induced using the LEM2 algorithm [3,8]. The mean and standard
deviation were computed for every sequence of 30 experiments.

Then we used the standard statistical test about the difference between two
means, see, e.g., [2]. With the level of significance at 0.05, the decision: reject H0
if Z ≥ 1.96 or Z ≤ −1.96, where H0 is the hypothesis that the performance of
two respective methods do not differ. For example, for Australian data set, the
value of Z for methods 00 and 01 is 5.55, hence they do differ—as follows from
Table 2, method 01 is better (the error rate is smaller). In general, for Australian
data set, methods 01 and 11 are significantly better than all remaining methods
while methods 01 and 11 do not differ significantly. For remaining methods
situation is more complicated: methods 13 and 14 do not differ significantly,
but method 13 is obviously worse than methods 01 and 11 and is better than
methods 00 and 10. Method 14, though worse than 01 and 11, does not differ
significantly from methods 00 and 10. On the other hand, methods 00 and 01
do not differ significantly between each other and method 14. A similar analysis
was conducted for every data set, the details are skipped because of the page
limit for this paper.

As follows from Tables 2–3, performance of discretization methods varies with
the change of the data set. The question is if there exists a universally best or
worst method. The appropriate test here is the F -test, based on the analysis of
variance. The variance s2

n of sample means is equal to 6.07. The mean s2
d of all

sample variances is equal to 178.0. Thus the test statistics F , where

F =
s2
2

s2
d

(n)
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Table 3. Error Rates—Standard Deviations

Data set Methods of discretization

00 01 10 11 13 14

Australian 0.88 1.05 1.02 0.88 0.88 0.78

Bank 1.28 1.24 1.10 1.95 0.63 0.00

Bupa 1.79 1.41 1.43 1.41 2.06 1.83

German 1.15 0.80 0.81 0.90 0.87 0.84

Glass 1.98 2.20 2.10 2.06 2.36 1.42

Iris 0.20 0.17 0.46 0.33 1.05 0.62

Segmentation 1.42 1.35 1.31 1.06 2.22 1.31

Wine 0.98 1.11 1.09 1.13 0.83 1.26

Wisconsin 0.56 0.43 0.55 0.64 0.74 0.41

and n = 9 (the number of data sets), is equal to 0.307. Since F is less than 1,
we do not need to look to the F -table to know that these discretization methods
do not show a statistically significant variation in performance.

4 Conclusions

Our paper presents results of experiments in which six promising discretization
methods were used on nine data sets with numerical attributes. All six methods
were global and supervised. Results of all six methods, the discretized input data,
were used for rule induction using the same LEM2 rule induction algorithm. The
performance of discretization, for every method and every data set, was evaluated
using 30 experiments of ten-fold cross validation. As a result, we conclude that

– for a specific data set, difference in performance between different discretiza-
tion methods is significant,

– there is no universally best or worst discretization method. In different words,
difference in performance for our six discretization methods, evaluated on all
nine data sets, is not significant.

Thus, for a specific data set the best discretization method should be selected
individually.
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Abstract. In this paper a generic adaptive classification scheme based
on a classifier with reject option is proposed. A testing set is considered
iteratively, accepted, semi-labeled cases are used to modify the under-
lying hypothesis and improve its accuracy for rejected ones. We apply
our approach to classification with jumping emerging patterns (JEPs).
Two adaptive versions of JEP-Classifier, by support adjustment and by
border recomputation, are discussed. An adaptation condition is formu-
lated after distance and ambiguity rejection strategies for probabilistic
classifiers. The behavior of the method is tested against real-life datasets.

Keywords: jumping emerging pattern, adaptive classification, classifi-
cation with reject option, transaction database, local reduct, rough set.

1 Introduction

Classification belongs to major knowledge discovery tasks. It has been ap-
proached with a wide spectrum of tools, like basic statistical methods, support
vector machines, neural networks or pattern/rule-based solutions. Also, real-life
applications can be found in various fields, like medicine, business, industry etc.
Our attention has been drawn by a problem of reliable classification under a
small training set. In fact, many solutions in this area employ adaptive mech-
anisms. In supervised learning, they are present in widely known approaches
like AdaBoost and evolutionary algorithms. They also enhance semi-supervised
strategies, e.g. a self-training EM algorithm for EEG signal classification ([1]) or
an adaptive algorithm for high-dimensional data ([2]).

Here, we seek accuracy improvement by modifying a model during a testing
phase. An adaptive generic scheme that employs a classifier with reject option is
proposed. Initially, one performs supervised learning with labeled training cases.
Then, for a testing set, labels are predicted in an iterative manner. Accepted
cases are assumed semi-labeled and used to modify the classifier, while the rest
becomes an input for the next iteration. This way harder cases can be approached
with an enriched model. When no further improvement is possible, the remaining
objects are handled with the version of a final classifier without reject option.
� The research has been partially supported by grant No 3 T11C 002 29 received from
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Classification with reject option is a classical problem approached most often
with the statistical framework. In practice, it remains a common choice when a
cost of incorrect classification is high, like in medical diagnosis or email filtering
([3]). The uncertain cases are rejected and usually undergo separate processing.
In our case, adaptations with incorrectly labeled objects are harmful for the
underlying model and should be prevented by rejections.

Our generic scheme is used to improve classification with jumping emerging
patterns (JEPs, [4]) in transaction databases. This relatively new concept refers
to patterns that are present in one class and absent from others and, thus, highly
discriminative ([5]). Recent works show a direct relation between JEPs and the
rough set theory ([6]). We discuss and experimentally compare two adaptation
strategies: support adjustment and border recomputation. Also, an adaptation
condition is proposed basing on distance and outlier rejection approaches ([7]).

The paper is organized as follows. Section 2 introduces formal background for
classification problem in transaction databases. In Sect. 3 a general adaptation
scheme employing a classifier with reject option is proposed. Fundamentals on
emerging patterns and their use in classification are given in Sect. 4. Section 5
covers adaptive versions of JEP-Classifier and discusses an adaptation condition.
In Sect. 6 experimental results are presented. The paper is summarized in Sect. 7.

2 Classification Problem

This section formulates the classification problem considered in the paper. Since
our scheme is concretized for classifiers based on emerging patterns, we introduce
definitions relevant to transaction databases. The convention follows [6].

Let a transaction system be a pair (D, I), where D is a finite sequence of
transactions (T1, .., Tn) (database) such as Ti ⊆ I for i = 1, .., n and I is a non-
empty set of items (itemspace). Let a decision transaction system be a tuple
(D, I, Id), where (D, I ∪ Id) is a transaction system and ∀T∈D|T ∩ Id| = 1.
Elements of I and Id are called condition and decision items, respectively. For
each c ∈ Id, we define a decision class sequence Cc = (Ti)i∈K , where K = {k ∈
{1, .., n} : c ∈ Tk}. The notations Cc and C{c} are used interchangeably.

Given a system (D, I, Id), we define a classifier as any function f : {T − Id :
T ∈ D} �→ Id, i.e. it is able to predict a single class for any transaction from
the considered domain. A classifier with reject option is defined as any function
fR : {T −Id : T ∈ D} �→ Id ∪R, where R refers to a rejection class (bucket). If a
classifier is not confident about a decision for a given transaction it gets assigned
to a rejection class and called rejected (accepted, otherwise).

In the supervised learning, a classifier is constructed basing on information
from a training sequence and assessed with a testing one. In our case, the testing
sequence also affects the way the model evolves. The whole sequence is assumed
to be known upfront, which makes the procedure independent a transaction
order. In practice, one may consider adaptation on separate testing subsequences
arriving at different points of time. In consequence, earlier cases cannot benefit
from adaptation performed with the bundles considered later.
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3 Adaptive Classification

Let us consider a decision transaction system (D, I, Id). For D ∈ D, we intro-
duce the notation MSEQ(D) as a set of possible sequences of elements from
D. F (FR) denote a set of possible classifiers (with reject option). Now, let
us describe adaptation of a classifier (with reject option) by a function: F ×
MSEQ(Dadapt) �→ F (FR × MSEQ(Dadapt) �→ FR), where Dadapt = (Tadapt,k)
and Tadapt,|Id|∗(i−1)+j−1 = Ti −Id ∪{Ij}, for i ∈ {1, .., |D|}, j ∈ {1, .., |Id|}. Note
that Dadapt is a sequence of combinations of all transactions from D with all pos-
sible classes from Id. In other words, adaptation uses a sequence of transactions,
called further an adaptation sequence, to modify a classifier.

In the paper, we propose an iterative self-training scheme that employs an
internal classifier with reject option f ∈ FR. We assume that this option can
be disabled. In each iteration, unclassified transactions are passed through the
internal classifier f . Its answers for accepted transactions become answers for the
whole scheme. We treat them as confident and use for adaptation. If any transac-
tions in a particular step were accepted, the model was possibly enriched and can
be used to classify transactions rejected so far. In this case, these transactions
become an input for the next iteration. When no adaptation happens anymore,
depending on the type of classification, one may reject remaining transactions
or classify them with a final version of f without reject option.

Algorithm 1 takes an internal classifier f and a testing sequence Dtest, and pro-
duces a sequence of classes C. The flag reject enables classification with reject op-
tion. Two functions has to be defined to obtain an instance of the whole classifier.
The first one, classify(indices, seq-of -transactions, classes, classifier, reject)
uses an internal classifier with/without reject option basing on a parameter
reject to classify transactions from seq-of -transactions of specified indices.
It returns a sequence of classes, where only answers referring to indices are
affected and the rest is copied from a sequence classes. The second one,
adapt(indices, seq-of -transactions, classes, classifier) performs adaptation of
a given classifier by transactions and classes indicated by indices. In order
to concretize this general concept, one has to make three choices: an internal
classifier, rejection condition and adaptation method.

4 Emerging Patterns

Our meta-scheme is concretized for classifiers based on emerging patterns, a
concept introduced to capture highly discriminating features between two classes
of transactions ([4]). Historically, first proposition is known as CAEP ([8]) and
works by aggregating ρ-EPs. It was followed, in particular, by JEP/CEP/SEP-
Classifier and DeEP ([5,9]). The choice of a particular type does not affect the
general idea of our approach.

Let us consider a decision transaction system (D, I, Id). For a database D =
(Ti)i∈K⊆{1,..,n} ⊆ D, we define a complementary database D′ = (Ti)i∈{1,..,n}−K .
The support of an itemset X ⊆ I ∪ Id in a sequence D = (Ti)i∈K ⊆ D is
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Algorithm 1. Input: Dtest,f ,reject, Output: C

1: C = (R)k∈{1,..,|Dtest|}, Kunclassified ⇐ {1, .., |Dtest|}, fold ⇐ f , fnew ⇐ NULL
2: while fold �= fnew do
3: Kaccepted ⇐ {k ∈ {1, .., |Dtest|} : Ck �= R}
4: C ⇐ classify(Kunclassified, Dtest, C, fnew, true)
5: Kunclassified ⇐ {k ∈ {1, .., |Dtest|} : Ck = R}
6: fold ⇐ fnew

7: fnew ⇐ adapt(Kadapt, Dtest, C, fnew),
where Kadapt = {k ∈ {1, .., |Dtest|} : Ck �= R} − Kaccepted

8: end while
9: if ¬reject then

10: C ⇐ classify(Kunclassified, Dtest, C, fnew , false)
11: end if
12: return C

defined as suppD(X) = |{i∈K:X⊆Ti}|
|K| , where K ⊆ {1, .., n}. Given two databases

D1, D2 ⊆ D, the growth-rate of an itemset X ∈ P from D1 to D2 is defined as
GRD1→D2(X) = GR(suppD1(X), suppD2(X)), where, for further convenience,
for m1, m2 ∈ R+ ∪ {0}: GR(m1, m2) = 0, for m1, m2 = 0; = ∞, for m1 = 0
and m2 
= 0; = m2

m1
, otherwise. A ρ-emerging pattern is defined as an itemset

X ⊆ I, for which GR(X) ≥ ρ. Similarly, we define a jumping emerging pat-
tern (JEP) from D1 to D2 as an itemset X ⊆ I with an infinite growth-rate,
GRD1→D2(X) = +∞. The set of all JEPs from D1 to D2 is called a JEP space
and denoted by JEP (D1, D2). JEP spaces can be described concisely by means
of borders ([4]). For c ∈ Id, we use a border < Lc, Rc > to represent a JEP space
JEP (C′

c, Cc). L and R are called a left and a right bound, respectively.
Let us consider a decision transaction system (D, I, Id) and define D = {T −

Id : T ∈ D}. In general, each of these classifiers can be defined according to the
following template: (1) class-wise collections, {Pk}k∈Id

, where P =
⋃

k∈Id
Pk ⊆

D; (2) interestingness measures, mk,i : Pk �→ R, for k ∈ Id and i ∈ {1..M},
where M is the number of measures; (3) scoring function, s : R

M �→ R. Class
membership is expressed by a labeling function, (Lk)k∈Id

= L : D �→ R
|Id|,

where Lk(X) =
∑

P∈Pk∧P⊆X s(mk,1(P ), .., mk,M (P )) for a given transaction
X ∈ D. This is the case of pattern-based classifiers that such labels do not have
precise probabilistic interpretation. Nevertheless, one is usually interested in a
single class and this labeling is hardened: argmaxk∈Id

Lk(X).

5 Adaptive JEP-Classifier

Our generic self-training scheme can be concretized for EP-based solutions. We
describe how adaptation can be incorporated in JEP-Classifier ([5]).

Throughout this section we consider a decision transaction system (D, I, Id),
an internal classifier f : {T − Id : T ∈ D} �→ Id and a training sequence Dtrain.
In order to clearly present adaptation process, let us consider a sequence of classi-
fiers obtained by subsequent modifications. For a given step i ∈ N∪{0}, we have a
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classifier f i ∈ F and an associated sequence Di
train = Dtrain+

∑
j∈{1,..,i} Dj

adapt,

where Dj
adapt for j ∈ {1, .., i} are successive adaptation sequences. For brevity,

we represent concatenation of sequences by addition. We also define respective
decision classes Ci

train,k, for i ∈ N ∪ {0} and Cj
adapt,k, for j ∈ {1, .., i}, where

k ∈ Id. At the beginning, one has an initial classifier f0 trained with a se-
quence D0

train = Dtrain. When a respective sequence of classifiers is consider,
superscripts are added only to the parameters that are affected by adaptation.

5.1 Support Adjustment

A common strategy to distinguish importance of patterns is to assign to them
specific weights. Following this idea, we put forward an approach placed among
existing propositions for emerging patterns. It employs a modified JEP-Classifier.
In i-th step, f i can be characterized as follows: (1) patterns: {Pk}k∈Id

=
{Lk}k∈Id

for JEP (C′
train,k, Ctrain,k); (2) measures: mi

k,1(P ) = suppCi
train,k

(P ),

mi
k,2(P ) = suppCi

train,k
′(P ), mi

k,3(·) = |Ci
train,k|, mi

k,4(·) = |Ci
train,k

′|, in

(Di
train, I, Id); (3) pattern scoring function s(m1, m2) = GR(m1,m2)

GR(m1,m2)+1 ∗ m1.
Note that, once this classifier is trained, we have mk,2(P ) = ∞ for P ∈ Pk and

k ∈ Id. Therefore, it behaves exactly like regular JEP-Classifier. The reason for
the extension of the scoring function is that we want to modify the importance of
patterns through adaptation. In fact, patterns are treated as emerging patterns
with growth rate equal to GR(mk,1(P ), mk,2(P )). Scoring is performed like in
CAEP. We also decided not to perform normalization of scores ([8]), since this
approach is not present in all EP-based classifiers ([5]).

It is advantageous that a training sequence is not necessary to compute sup-
ports for each adaptation. For each transaction in adaptation sequence, it is
sufficient to increment by one respective supports of the patterns it contains.
The proof is omitted due to space limitations and analogical for mk,2, mk,4.

Theorem 1. ∀i∈N∀k∈Id
∀P∈Pk

mi
k,1(P )=

mi−1
k,1(P )∗mi−1

k,3 (P )+|{j:P⊆Tj∧Tj∈Ci
adapt,k}|

|mi
k,3(P )| ∧

mi
k,3(P ) = mi−1

k,3 (P ) + |Ci
adapt,k|.

5.2 Border Recomputation

Although support adjustment enriches our knowledge on pattern importance,
one is deprived of discovering new patterns. A more invasive approach is to
assume that newly accepted transactions are correctly labeled, add them to a
training sequence and recompute pattern collections and supports.

In i-th step, a classifier f i requires collections {P i
k}k∈Id

= {Li
k}k∈Id

for JEP (Ci
train,k

′
, Ci

train,k) and supports in each class for all the patterns,
mi

k,1(P ) = suppCi
train,k

(P ), for P ∈ Pk and k ∈ Id, all computed in
(Di

train, I, Id). A matching pattern is scored with s(m) = m, for m ∈ R.
There are several important drawbacks of this approach. First of all each adap-

tation requires maintenance of borders for each class ([4]). In consequence, not
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only minimal, but also maximal patterns have to be stored. Secondly, although
negative supports, equal to 0, are not present, in order to recompute positive
supports a sequence Di

train is stored. Instead, one may use another maintainable
structure that provides supports for patterns, e.g. a hash tree. Regardless, the
size of the classifier grows with the number of adaptations.

5.3 Adaptation Condition

In general, a testing transaction should be rejected when a classifier is not certain
of its decision. One may look at the training sequence and assess how represen-
tative is the neighborhood of this transaction ([10]). In another approach, a
condition can be based on labels predicted by a classifier ([7]). For probabilistic
classifiers, the problem of minimizing risk given certain costs of possible deci-
sions is solved ([11]). Following this path, one considers two types of rejection:
outlier/distance and ambiguity. The first one expresses how certain a classifier is
about each label, while the other one - decisiveness of a class choice. We formulate
analogical criteria for labeling functions of EP-based classifiers. As pointed out,
these functions do not have probabilistic interpretation, which makes a formal
discussion much harder. Instead, an experimental verification is presented.

Let us perform a class-wise normalization with the largest value for training
transactions in a respective class of i-th step, namely: L′

k(X) = Lk(X)
Mi

k

for M i
k =

maxT∈Ci
train,k

Lk(T ), k ∈ Id and X ∈ D = {T − Id : T ∈ D}. The normalizing
values are stored with a classifier and maintained. Note that this normalization
does not prevent labels from going beyond 1 for certain unseen transactions. If
a transaction is accepted, a respective normalizing value is updated.

Now, let us move to the actual adaptation criteria. A given transaction X ∈
D is accepted with a classifier’s decision c ∈ Id, only if the following criteria
are met: L′

c(X) > tdistance and L′
c(X)

L′
k(X) > tambiguity for all k ∈ Id. The values

tdistance ∈ [0, 1], tambiguity ∈ R+ are certain thresholds. They can be estimated
experimentally on a training sequence as a tipping point of accuracy.

6 Experimental Results

Our tests investigated behavior of JEP-Classifier (JEPC), Adaptive JEP-
Classifier with support adjustment (JEPC-Adjust) and with border recom-
putation (JEPC-Recompute). Accuracy, a ratio of adaptation (Adapt) and
percentage of correct adaptations (AdAcc) were collected. The datasets origi-
nated from UCI repository. Due to their relational form, JEP spaces used in
classifiers were obtained with RedApriori ([6]). Border maintenance was per-
formed by incremental routines ([4]). Classification statistics were assessed by
means of a modified k-fold cross validation scheme, which uses one fold for train-
ing and the rest for testing.

According to Tab.1, JEPC was outperformed by both adaptive approaches in
all the investigated cases except wine and JEPC-Recompute is not a winner only
for tic-tac-toe. The biggest improvement towards JEPC of > 8 p.p. occurred for
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Table 1. Accuracy, adaptation ratio and adaptation accuracy for Adaptive JEP-
Classifier in a modified 5-fold cross validation, tdistance = 20%, tambiguity = 2

Dataset Trans Attrs Items
JEPC JEPC-Adjust JEPC-Recompute
Accu Accu Adapt AdAcc Accu Adapt AdAcc

balance 625 4 20 71.32 73.40 60.96 79.00 79.76 63.32 80.10
breast-wisc 699 9 29 96.17 96.21 92.45 98.30 96.92 94.13 98.33

car 1728 6 21 83.17 87.30 75.27 93.62 90.35 84.23 92.31
election 202 16 32 70.67 71.16 70.92 83.25 72.52 73.89 83.42

geo 402 10 78 49.07 57.59 63.74 62.24 60.45 90.98 66.23
heart 270 13 22 78.70 79.91 79.26 87.03 81.57 82.22 87.39
house 435 16 48 90.17 91.09 88.51 94.61 92.24 92.64 94.29
lymn 148 18 59 71.28 80.57 78.89 86.94 81.08 93.75 86.31

monks-1 556 6 17 84.71 94.15 90.51 93.89 94.24 99.82 94.28
monks-2 601 6 17 64.89 67.18 60.11 71.21 70.84 57.99 73.24
monks-3 554 6 17 94.68 96.80 95.31 97.16 96.84 96.16 97.04

tic-tac-toe 958 9 27 81.86 90.08 82.88 90.81 89.77 96.76 91.07
wine 178 13 35 90.59 90.31 89.33 95.60 93.96 98.46 95.44
zoo 101 16 35 76.73 78.96 79.46 90.34 81.19 92.57 86.90

balance, geo, monks-1, lymn. Although each initial classifier was created with
a small training sequence, JEPC-Adjust was able to achieve a significant gain
only by modifying importance of patterns. In fact, average accuracy difference
over all the datasets for JEPC-Recompute—JEPC is equal to 3.29 p.p. When
JEPC-Recompute, we gain another 1.70 p.p. At the same time, the choice of
the adaptation condition is confirmed by high adaptation ratio and accuracy.
On the whole, the results are promising. Even a simple strategy used in JEPC-
Adjust gives already much improvement, whereas high performance of JEPC-
Recompute is traded off expensive model modifications.

7 Conclusions

In this paper, we have proposed an adaptive classification scheme and investi-
gated its impact on overall accuracy. The procedure is iterative and employs a
classifier with reject option. In each step a certain part of a testing sequence
is classified and used to modify the classifier. The process is repeated for a re-
jected part as an input until no new transactions are accepted. To the best of
our knowledge, the fact that a testing sequence is analyzed as a whole and each
transaction may be classified multiple times with presumably more exact ver-
sions of the model distinguish our approach from existing adaptive algorithms.

Our concept has been used to improve classification with jumping emerging
patterns (JEPs). We have considered two approaches combined with the same
distance/ambiguity reject strategy. The first one, support adjustment, employs
an internal JEP-based classifier with reject option and the labeling function
from CAEP. Adaptation does not change the original set of patterns and mod-
els pattern confidence to be JEPs in the domain by modifying positive and
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negative support. The second option, border recomputation, uses an internal
JEP-Classifier with reject option and adapts to accepted cases by recomputing
class-wise borders and pattern supports. Although maintenance of borders can
be efficiently done in incremental manner, support calculations require a com-
plete transaction sequence and the structure grows with subsequent adaptations.

Our experiments have assumed that relatively small training sequences are
available. Both solutions outperform classical JEP-Classifier in terms of accu-
racy. The difference is especially visible when an initial model behaves poorly.
In almost all cases, border recomputation is a winner. However, the price is a
much longer classification time and growing classifier’s complexity.
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Abstract. A framework of learning a new form of rules from incomplete
data is introduced so that a user can easily identify attributes with or
without missing values in a rule. Two levels of measurement are assigned
to a rule. An algorithm for two-phase rule induction is presented. Instead
of filling in missing attribute values before or during the process of rule
induction, we divide rule induction into two phases. In the first phase,
rules and partial rules are induced based on non-missing values. In the
second phase, partial rules are modified and refined by filling in some
missing values. Such rules truthfully reflect the knowledge embedded in
the incomplete data. The study not only presents a new view of rule
induction from incomplete data, but also provides a practical solution.

Keywords: Missing attribute values, Filled-in values, Two-phase rule
induction.

1 Introduction

A major focus of machine learning and data mining research is to extract useful
knowledge from a large amount of data. For such a purpose, the integrality of
data is very important. However, real-world data sets frequently contain missing
values, i.e., attribute values of objects may be unknown or missing [14]. To deal
with missing values, many methods have been proposed [2,3,4,5,6,8,1,10]. They
may be broadly classified into three categories. The first category mainly focuses
on transforming incomplete data into complete data by filling in the missing
values. Rules are induced from the completed data. The second category fills
in the missing values during the process of rule induction. The third category
considers tolerance relations or similarity relations defined based on missing
values [5,6,10].

The third category may be considered as a special case of the first category.
In fact, one may first fill in the missing values and then derive a similarity rela-
tion. One disadvantage of filling in attribute values before the learning process
is that the learning goals and algorithms are not directly considered. Another
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disadvantage is that all missing values are filled in although some of them are
not necessary. Since rules normally contain only a subset of all (attribute, value)
pairs, we do not need to fill in all missing values. To avoid those problems, one
can combine the processes of filling in the missing values and learning together.
Algorithms like C4.5 [1] fill in missing attribute values according to some special
learning goals. In addition, missing values are filled in only when the demand
arises in the learning process.

Two fundamental important problems still remain in the existing algorithms
for inducing rules from incomplete data. One is the use of the filled-in values.
Any method of filling in missing values is based on certain assumption about the
data, which may not be valid. However, rule learning algorithms treat filled-in
values as if they are the original values. This may result in rules having more
number of filled-in values and less number of the original values. That is, we may
obtain rules that more fit the filled-in values. Although these rules may have good
statistical characteristics, they are in fact not reliable. The other issue is the use
of induced rules by users. Without a clear distinction between the filled-in values
and the original values, a user may find it difficult to interpret and apply rules.
In fact, a user may misuse a rule by putting more weights on filled-in values.
Solutions for those two problems require new ideas and methodologies.

The objective of this paper is to propose a new framework of rule induction by
separating filled-in and the original values in both the learning process and the
induced rules. A two-phase model is suggested. The first phase induces partial
rules based only on the original values. Rules induced in the first phase will
be associated with a quantitative measures such as confidence, coverage and
generality [11,13]. In the second phase of rule induction, filled-in values are taken
into account so that the performance of the rules may improve. A new form of
rules is introduced, in which known attribute values and filled-in attribute values
are used. A user can easily identify attributes with or without missing values in
rules.

2 A Framework of Two-Phase Rule Induction

The two-phase framework of rule induction from incomplete data uses a new
form of rule involving both the known attribute values and filled-in values. In
the first phase of rule induction, rules is induced only based on known attribute
values. Many approaches of machine learning and data mining methods, such
as concept learning, decision tree and rough set-based learning, can be used.
One may associate certain quantitative measures to express the strength of a
rule. In the second phase of rule induction, missing attribute values are filled
in according to a certain method, and rules are induced based on the repaired
data. The performance of the new rule induced in the second phase should be
superior (higher) than that of rule induced in the first phase.

The main ideas of two-phase rule induction can be illustrated by a simple
example. Suppose r is a rule induced in the first phase based on known attribute
values with a measure α1:
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r : φ1 ∧ φ2 → ψ (m = α1),

where φ1 and φ2 are concepts or conditions based on known attribute values,
and ψ is a decision concept, and m is a measure of the rule. By filling in missing
attribute values, a new concept φ3 may appear and a new rule r∗ may be induced
as follows:

r∗ : φ1 ∧ φ2 ∧ φ∗
3 → ψ (m = (α1, α2)),

where “*” indicates that φ3 is a concept based on a filled-in value while other
two concepts φ1 and φ2 are based on the original values, and α1 is the measure of
rule based on known attribute values and α2 is the measure of rule based on both
known attribute value and filled-in values. A user can easily identify attributes
with or without missing values in this form of rules. Suppose m = (α1, α2)
represents the confidence of a rule. It may be necessary to require that α2 > α1,
otherwise there is no need to fill in the missing values. Thus, the conditions for
filling in missing values can be analyzed in the second phase. It is not necessary
to filling in all missing values.

A high level outline of the two-phase rule induction method is:

Phase 1: R = ∅;
Repeat the following operations

Add rule to R;
Remove a rule from R;
Replace rule in R by one or more rules;

Until R satisfies a termination condition

Phase 2: R∗ = R;
Repeat the following operations

Replace a rule in R∗ by one or more rules
with filled-in values;

Until R∗ satisfies a termination condition

In the Phase 1, the condition φ of each rule φ → ψ in R must be expressed
using only existing attribute values. Furthermore, each rule is associated with the
value of a quantitative measure. The termination condition is typically related
to the measure. In the phase 2, one may fill in missing values and add extra
conditions that contain only filled-in values. At the end of Phase 2, a rule is of
the form:

φ ∧ φ∗ → ψ,

where φ → ψ is a rule in R. In addition, the rule is associated with another value
based on the measure. In general, if unknown value is good enough to induce
a reasonable rule, a rule may not necessarily use filled-in value. That is, φ∗ is
optional.
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3 An Algorithm of Two-Phase Rule Induction

The high-level schematic algorithm presented in the last section offers a wide
class of algorithms for two-phase rule induction. In the first phase, we can adopt
and adapt any existing rule induction algorithm. In the second phase, we can use
any of the existing approaches for filling in missing values. As an illustration, we
present a concrete algorithm of two-phase rule induction, as shown in Figure 1.
In this algorithm, we assume that the performance of a rule is measured by its
confidence. The details of the algorithm are explained below.

3.1 Induction of Partial Rules Based on Known Value

In the first phase of rule induction, we present an algorithm using a concept
learning method. The process of rule induction can be described as finding a
class of conjunctive concepts [12], each covering a subset of a given decision
concept, and the union of these conjunction concepts can cover all instances.

As mentioned in [12], extension of a k-conjunction concept formed by adding
a new atomic formula to the (k − 1)-conjunction concept is a subset of that of
(k − 1)-conjunction concept. The most general 1-conjunction concepts can cover
the most number of objects in universe. We search the 1-conjunction concept
first. Suppose φ1 is a 1-conjunction concept, if the extension of a 1-conjunction
concept m(φ1) is the subset of the extension of a decision concept ψ, a certain
rule can be extracted, i.e., φ1 → ψ. Otherwise, we search other 1-conjunction
concept that can be appropriately classified into a decision concept. If all 1-
conjunction concepts have been checked, we start with 2-conjunction concepts,
and we may induce a rule as: φ1 ∧ φ2 → ψ. This process will go on until all
objects are covered or a certain condition is met.

In general we can not expect to find a set of certain rules or high performance
rules that covers all objects, especially for incomplete data and inconsistent
data. We introduce measures such as confidence, coverage and generality to
quantify the performance of a rule. In the algorithm of Figure 1, we introduce
two thresholds for the confidence measure.

3.2 Refinement of Rules Based on Filled-In Missing Values

At the end of the first phase of rule induction, rules and partial rules have
been induced. In a special case, all rules are not partial rules, and all objects in
universe have been covered, then it is not necessary to fill in missing values, and
the second phase of rule induction is not required. Otherwise, it is necessary to
fill in the missing values so that some new rules with better performance may
be induced.

There are many methods to deal with filling in the missing values. Grzymala-
Busse and Hu discuss and compare nine different approaches to fill in missing
attribute values. For example, two of them are known as “most common attribute
value” and “concept most common attribute value”[2]. A main objective of two-
phase rule induction is to introduce a new pattern of rules. Any approach of
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Input: a training set of examples S,
a pair thresholds (α1, α2) of a performance measure,
a conjunction order threshold K,
a partition of the training set Π = {π1, · · · , πN}

corresponding to decision concepts set Ψ = {ψ1, · · · , ψN}
Output: a set of rules R∗

Phase 1:
Set R = ∅;
Set k = 1;
While S is not empty and k ≤ K

For each k-conjunction φ
Select a πi with the maximum value of measure(φ → ψi);
If measure(φ → ψi) ≥ α2

Add rule φ → ψi to R;
S = S − S ∩ m(φ);

Add all k-conjunction rules satisfying the following conditions:
(a). can not be further specialized,
(b). performance ≥ α1,

into R;
Delete instances correctly covered by those rules from S;
k = k + 1;

Phase 2:
Set R∗ = R;
While (there exists a ri = φi → ψi ∈ R∗

satisfying measure(ri) < α2 and
the number of attributes in it < K)

Select an attribute cj that has missing values
Fill in missing values of cj ;
Set Φ∗ = {all cj related concepts};
Select a set of rules {r∗

i = φi ∧ φ∗ → ψi}
with the largest measures and
covering most of instances of rule ri;

Replace ri by r∗
i ;

Delete those rules that do not satisfy required conditions from R∗;
Return R∗

Fig. 1. A Two-phase Rule Induction Algorithm

filling in missing value may be used. When filling in the missing value, the filled-
in values must help to increase the performance of rules. In the algorithm of
Figure 1, we use the simplest “most common attribute value” method to fill in
missing values.

3.3 An Example

We use a simple example of cars given in Table 1, taken from [6], to illus-
trate the main idea of two-phase rule induction from incomplete data. We adopt
the confidence as a performance measure of rules. The set of all objects in the
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table, i.e., object 1-6, is partitioned into three classes according to the decision
attribute d:

(d, good), (d, excellent), (d, poor),

which form three decision concepts and the corresponding extensions are:

m(d, good) = {1, 2, 4, 6}, m(d, excellent) = {5}, m(d, poor) = {3}.

Assume further that K = 3, α1 = 0.5 and α2 = 0.9.

Table 1. An Incomplete Information Table

Car Price Mileage Size Max-Speed d

1 high low full low good
2 low ∗ full low good
3 ∗ ∗ compact low poor
4 high ∗ full high good
5 ∗ ∗ full high excellent
6 low high full ∗ good

Phase 1: In the first phase, rules are induced only from known values. The most
general 1-conjunction concepts are considered and they are given by:

(Price, high), (Price, low), (Mileage, high), (Mileage, low)
(Size, full), (Size, compact), (Max-Speed, high), (Max-Speed, low).

Their extensions are:

m(Price, high) = {1, 4}, m(Price, low) = {2, 6},
m(Mileage, high) = {6}, m(Mileage, low) = {1},
m(Size, full) = {1, 2, 4, 5, 6}, m(Size, compact) = {3},
m(Max-Speed, high) = {4, 5}, m(Max-Speed, low) = {1, 2, 3}.

According to the thresholds α1 = 0.5 and α2 = 0.9, we have the following
1-conjunction rules:

r1 : (Price, high) → (d, good) (m = 1),
r2 : (Price, low) → (d, good) (m = 1),
r3 : (Mileage, high) → (d, good) (m = 1),
r4 : (Mileage, low) → (d, good) (m = 1),
r5 : (Size, compact) → (d, poor) (m = 1).

They do not cover the entire universe. We thus search for 2-conjunction rules.
In this case, only one rule can be found:

r6 : (Size, full) ∧ (Max-Speed, high) → (d, excellent) (m = 0.5).

All objects in the table are now covered by these rules, and the first phase of
rule induction terminates.
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Phase 2: All rules, with the exception of r6, satisfy the conditions as specified
by threshold values. For r6, we need to add attributes with missing values. Since
r6 only covers instance 5, we only need to fill in missing values for object 5.
Based on the idea of “most common attribute values,” one may fill in either low
or high for attribute Mileage. Similarly, for attribute Price we can fill in either
low or high. Suppose we fill in the value high for attribute Mileage, we obtain
the following rule:

r∗6 : (Size, full) ∧ (Max-Speed, high) ∧ (Mileage, high)∗ → (d, excellent)
(m = (0.5, 1)).

On the other hand, filling-in the value low for attribute Price produces the rule:

r∗7 : (Size, full) ∧ (Max-Speed, high) ∧ (Price, low)∗ → (d, excellent)
(m = (0.5, 1)).

Filling in other values would not produce a satisfactory rule. Both rules with
filled-in values seem to be reasonable, although rule r∗6 seems more plausible
than rule r∗7 . Typically, a car with low price may not be full size and have high
max-speed.

Unlike existing methods, the majority of rules produced in the first phase
is satisfactory. We only need to fill in one missing value in this example. It
demonstrates the advantage of the two-phase rule induction approach.

4 Conclusion

This paper proposes a framework of two-phase rule induction from incomplete
data. The main idea is to divide the process of rule induction into two phases.
The aim of the first phase is to induce rules only from known attributes values.
If rules induced in the first phase are good enough, it may not be necessary to fill
in missing values. If needed, the second phase fills in missing values and refine
rules obtained in the first phase. A new form of rules is introduced by explicitly
denoting the known values and the filled-in values and associating with two levels
of performance. As future research, we plan to study systematically combinations
of learning algorithms in the first phase and filling in missing values algorithms
in the second phase.
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Abstract. In the paper, two lazy classification algorithms of polynomial
time complexity are considered. These algorithms are based on determin-
istic and inhibitory decision rules, but the direct generation of rules is not
required. Instead of this, for any new object the considered algorithms
extract from a given decision table efficiently some information about
the set of rules. Next, this information is used by a decision-making pro-
cedure. The reported results of experiments show that the algorithms
based on inhibitory decision rules are often better than those based on
deterministic decision rules.

Keywords: Rough sets, Decision tables, Deterministic decision rules,
Inhibitory decision rules.

1 Introduction

In the paper, the following classification problem is considered: for a given deci-
sion table T [11,12] and a new object v generate a value of the decision attribute
on v using values of conditional attributes on v.

We compare two lazy [1,9] classification algorithms based on deterministic
and inhibitory decision rules of the forms

a1(x) = b1 ∧ . . . ∧ at(x) = bt ⇒ d(x) = b,

a1(x) = b1 ∧ . . . ∧ at(x) = bt ⇒ d(x) �= b,

respectively, where a1, . . . , at are conditional attributes, b1, . . . , bt are values of
these attributes, d is the decision attribute and b is a value of d. By Vd(T ) we
denote the set of values of the decision attribute d.
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The first algorithm (D-algorithm) was proposed and studied by J.G. Bazan
[2,3,4]. This algorithm is based on the deterministic decision rules. For any new
object v and each decision b ∈ Vd(T ) we find (using polynomial-time algorithm)
the number D(T, b, v) of objects u from the decision table T such that there exists
a deterministic decision rule r satisfying the following conditions: (i) r is true for
the decision table T , (ii) r is realizable for u and v, and (iii) r has the equality
d(x) = b on the right hand side. For the new object v we choose a decision
b ∈ Vd(T ) for which the value D(T, b, v) is maximal. Note that this approach
was generalized by J.G. Bazan [2,3,4] to the case of approximate decision rules,
and by A. Wojna [16] to the case of decision tables with not only nominal but
also numerical attributes.

The second algorithm (I-algorithm) is based on the inhibitory decision rules.
For any new object v and each decision b ∈ Vd(T ) using a polynomial-time
algorithm it is computed the number I(T, b, v) of objects u from the decision
table T such that there exists an inhibitory decision rule r satisfying the following
conditions: (i) r is true for the decision table T , (ii) r is realizable for u and v, and
(iii) r has the relation d(x) �= b on the right hand side. For the new object v we
choose a decision b ∈ Vd(T ) for which the value I(T, b, v) is minimal. Hence, for
v we vote, in a sense, for the decision b for which there are weakest arguments
“against”. Note that in [10] the dissimilarity measures are used for obtaining
arguments against classification of a given handwritten digit to some decision
classes. These arguments can be interpreted as inhibitory rules.

Results of experiments show that the algorithm based on inhibitory decision
rules is, often, better than the algorithm based on deterministic decision rules.

This work was inspired by results of comparison of deterministic and in-
hibitory rules for information system S = (U, A) [11,12], where U is a finite
set of objects and A is a finite set of attributes (functions defined on U). The
considered rules are of the following form:

a1(x) = b1 ∧ . . . ∧ at(x) = bt ⇒ at+1(x) = bt+1,

a1(x) = b1 ∧ . . . ∧ at(x) = bt ⇒ at+1(x) �= bt+1,

where a1, . . . , at+1 are attributes from A and b1, . . . , bt+1 are values of these
attributes. We consider only true and realizable rules. True means that the rule
is true for any object from U . Realizable means that the left hand side of the
rule is true for at least one object from U . We identify objects from U and tuples
of values of attributes from A on these objects. Let V be the set of all tuples
of known values of attributes from A. We say that the set U can be described
by deterministic (inhibitory) rules if there exists a set Q of true and realizable
deterministic (inhibitory) rules such that the set of objects from V , for which
all rules from Q are true, is equal to U .

In [14,15] it was shown that there exist information systems S = (U, A) such
that the set U can not be described by deterministic rules. In [7] it was shown
that for any information system S = (U, A) the set U can be described by in-
hibitory rules. It means that the inhibitory rules can express essentially more
information encoded in information systems than the deterministic rules. This
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fact is a motivation for a wider use of inhibitory rules, in particular, in classi-
fication algorithms and in algorithms for synthesis of concurrent systems [14].
To compare experimentally the classification quality based on inhibitory and de-
terministic rules, we create two similar families of lazy classification algorithms
based on deterministic and inhibitory rules, respectively [6]. Results of experi-
ments show that the algorithms based on inhibitory rules are noticeably better
than those based on deterministic rules.

The paper consists of seven sections. In Sect. 2, we recall the notion of decision
table. In Sects. 3 and 4, we describe notions of deterministic and inhibitory
decision rules. Sect. 5 contains definitions of two lazy classification algorithms.
Results of experiments are discussed in Sect. 6.

2 Decision Tables

Let T = (U, A, d) be a decision table, where U = {u1, . . . , un} is a finite nonempty
set of objects, A = {a1, . . . , am} is a finite nonempty set of conditional attributes
(functions defined on U), and d is the decision attribute (function defined on U).
We assume that for each ui ∈ U and each aj ∈ A the value aj(ui) and the value
d(ui) belong to ω, where ω = {0, 1, 2, . . .} is the set of nonnegative integers. By
Vd(T ) we denote the set of values of the decision attribute d on objects from U .

Besides objects from U we consider also objects from U(T ) = ωm. The set
U(T ) is called the universe for the decision table T . For any object (tuple)
v ∈ U(T ) and any attribute aj ∈ A the value aj(v) is equal to j-th integer
component of v.

3 Deterministic Decision Rules

Let us consider a rule

aj1(x) = b1 ∧ . . . ∧ ajt(x) = bt ⇒ d(x) = b, (1)

where t ≥ 0, aj1 , . . . , ajt ∈ A, b1, , . . . , bt ∈ ω, b ∈ Vd(T ) and numbers j1, . . . , jt

are pairwise different. Such rules are called deterministic decision rules. The rule
(1) is called realizable for an object u ∈ U(T ) if aj1(u) = b1, . . . , ajt(u) = bt or
t = 0. The rule (1) is called true for an object ui ∈ U if d(ui) = b or (1) is not
realizable for u. The rule (1) is called true for T if it is true for any object from
U . The rule (1) is called realizable for T if it is realizable for at least one object
from U . By Det(T ) we denote the set of all deterministic decision rules which
are true for T and realizable for T .

Our aim is to recognize, for given objects ui ∈ U and v ∈ U(T ), and given
value b ∈ Vd(T ) if there exists a rule from Det(T ) which is realizable for ui and v
and has d(x) = b on the right hand side. Such a rule “supports” the assignment
of the decision b to the new object v.

Let M(ui, v) = {aj : aj ∈ A, aj(ui) = aj(v)} and P (ui, v) = {d(u) :
u ∈ U, aj(u) = aj(v) for any aj ∈ M(ui, v)}. Note that if M(ui, v) = ∅, then
P (ui, v) = {d(u) : u ∈ U} = Vd(T ).
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Proposition 1. Let T = (U, A, d) be a decision table, ui ∈ U , v ∈ U(T ), and
b ∈ Vd(T ). Then in Det(T ) there exists a rule, which is realizable for ui and v
and has d(x) = b in the right hand side, if and only if P (ui, v) = {b}.

Proof. Let P (ui, v) = {b}. In this case, the rule

∧

aj∈M(ui,v)

aj(x) = aj(v) ⇒ d(x) = b (2)

belongs to Det(T ), is realizable for ui and v, and has d(x) = b in the right hand
side.

Let us assume that there exists a rule (1) from Det(T ), which is realizable
for ui and v, and has d(x) = b in the right hand side. Since (1) is realizable for
ui and v, we have aj1 , . . . , ajt ∈ M(ui, v). Since (1) is true for T , the rule (2) is
true for T . Therefore, P (ui, v) = {b}. �	

From Proposition 1 it follows that there exists a polynomial algorithm recogniz-
ing, for a given decision table T = (U, A, d), given objects ui ∈ U and v ∈ U(T ),
and a given value b ∈ Vd(T ), if there exists a rule from Det(T ), which is re-
alizable for ui and v, and has d(x) = b in the right hand side. This algorithm
constructs the set M(ui, v) and the set P (ui, v). The considered rule exists if
and only if P (ui, v) = {b}.

4 Inhibitory Decision Rules

Let us consider a rule

aj1(x) = b1 ∧ . . . ∧ ajt(x) = bt ⇒ d(x) �= b, (3)

where t ≥ 0, aj1 , . . . , ajt ∈ A, b1, , . . . , bt ∈ ω, b ∈ Vd(T ), and numbers j1, . . . , jt

are pairwise different. Such rules are called inhibitory decision rules. The rule
(3) is called realizable for an object u ∈ U(T ) if aj1(u) = b1, . . . , ajt(u) = bt or
t = 0. The rule (3) is called true for an object ui ∈ U if d(ui) �= b or (3) is not
realizable for ui. The rule (3) is called true for T if it is true for any object from
U . The rule (3) is called realizable for T if it is realizable for at least one object
from U . By Inh(T ) we denote the set of all inhibitory decision rules which are
true for T and realizable for T .

Our aim is to recognize for given objects ui ∈ U and v ∈ U(T ), and given
value b ∈ Vd(T ) if there exists a rule from Inh(T ), which is realizable for ui

and v, and has d(x) �= b in the right hand side. Such a rule “contradicts” the
assignment of the decision b to the new object v.

Proposition 2. Let T = (U, A, d) be a decision table, ui ∈ U , v ∈ U(T ), and
b ∈ Vd(T ). Then in Inh(T ) there exists a rule, which is realizable for ui and v,
and has d(x) �= b in the right hand side, if and only if b /∈ P (ui, v).
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Proof. Let b /∈ P (ui, v). In this case, the rule
∧

aj∈M(ui,v)

aj(x) = aj(v) ⇒ d(x) �= b (4)

belongs to Inh(T ), is realizable for ui and v, and has d(x) �= b in the right
hand side.

Let us assume that there exists a rule (3) from Inh(T ), which is realizable
for ui and v, and has d(x) �= b in the right hand side. Since (3) is realizable for
ui and v, we have aj1 , . . . , ajt ∈ M(ui, v). Since (3) is true for T , the rule (4) is
true for T . Therefore, b /∈ P (ui, v). �	

From Proposition 2 it follows that there exists a polynomial algorithm recogniz-
ing for a given decision table T = (U, A, d), given objects ui ∈ U and v ∈ U(T ),
and a given value b ∈ Vd(T ) if there exists a rule from Inh(T ), which is realizable
for ui and v, and has d(x) �= b in the right hand side. This algorithm constructs
the set M(ui, v) and the set P (ui, v). The considered rule exists if and only if
b /∈ P (ui, v).

5 Classification Algorithms

Let T = (U, A, d) be a decision table. We consider the following classification
problem: for an object v ∈ U(T ) predict the value of the decision attribute
d on v using only values of attributes from A on v. To this end, we use the
D-classification algorithm (D-algorithm) and the I-classification algorithm (I-
algorithm).

D-algorithm is based on the use of the parameter D(T, b, v), b ∈ Vd(T ). This
parameter is equal to the number of objects ui ∈ U for which there exists a rule
from Det(T ), that is realizable for ui and v, and has d(x) = b in the right hand
side. From Proposition 1 it follows that there exists a polynomial algorithm which
for a given decision table T = (U, A, d), a given object v ∈ U(T ) and a given
value b ∈ Vd(T ) computes the value D(T, b, v) = |{ui : ui ∈ U, P (ui, v) = {b}}|.
D-algorithm: For given object v and each b ∈ Vd(T ) we find the value of the
parameter D(T, b, v). As the value of the decision attribute for v we choose
b ∈ Vd(T ) such that D(T, b, v) has the maximal value. If more than one such b
exists then we choose the minimal b for which D(T, b, v) has the maximal value.

I-algorithm is based on the use of the parameter I(T, b, v), b ∈ Vd(T ). This
parameter is equal to the number of objects ui ∈ U for which there exists a rule
from Inh(T ), that is realizable for ui and v, and has d(x) �= b in the right hand
side. From Proposition 2 it follows that there exists a polynomial algorithm which
for a given decision table T = (U, A, d), a given object v ∈ U(T ) and a given
value b ∈ Vd(T ) computes the value I(T, b, v) = |{ui : ui ∈ U, b /∈ P (ui, v)}|.
I-algorithm: For given object v and each b ∈ Vd(T ) we find the value of the
parameter I(T, b, v). As the value of the decision attribute for v we choose b ∈
Vd(T ) such that I(T, b, v) has the minimal value. If more than one such b exists
then we choose the minimal b for which I(T, b, v) has the minimal value.



60 P. Delimata et al.

6 Results of Experiments

We have performed experiments with D-algorithm and I-algorithm and decision
tables from [8] using DMES system [5]. Some attributes in tables are discretized,
and missing values are filled by algorithms from RSES2 [13]. We removed at-
tributes of the kind “name” that are distinct for each instance. To evaluate the
accuracy of an algorithm on a decision table (the percent of correctly classified
objects) we use either train-and-test method or cross-validation method.

Let us, for some algorithm and some table, use n-fold cross-validation method
for the estimation of the accuracy. Then for this table we obtain n accuracies
x1, . . . , xn. As the final accuracy we use the value x̄ = 1

n

∑n
i=1 xi which is the

arithmetic mean of x1, . . . , xn. Maximal relative deviation for x1, . . . , xn is equal
to max

{
|xi−x̄|

x̄ : i = 1, . . . , n
}

. This value characterizes algorithm stability.
Table 1 contains results of experiments for D-algorithm and I-algorithm and

initial decision tables from [8]. Columns “D ac” and “I ac” contain accuracy of
D-algorithm and I-algorithm. Columns “D mrd” and “I mrd” contain maximal
relative deviations of accuracies in the case when cross-validation method is used.

Table 1. Results of experiments with initial decision tables

Decision table D ac I ac D mrd I mrd Decision table D ac I ac D mrd I mrd

monk1 89.8 89.8 lenses 71.6 76.6 0.534 0.565

monk2 80.0 80.0 soybean-small 57.5 57.5 0.652 0.652

monk3 93.9 93.9 soybean-large 85.6 85.9

lymphography 78.5 79.2 0.272 0.279 zoo 85.1 94.0 0.177 0.063

diabetes 75.2 75.2 0.168 0.168 post-operative 65.5 64.4 0.152 0.310

breast-cancer 76.4 76.4 0.121 0.121 hayes-roth 92.8 85.7

primary-tumor 35.7 37.5 0.322 0.290 lung-cancer 40.0 40.0 0.665 0.665

balance-scale 78.7 76.6 0.099 0.097 solar-flare 97.8 97.8

For 3 decision tables the accuracy of D-algorithm is greater than the accuracy
of I-algorithm, for 5 decision tables the accuracy of I-algorithm is greater than the
accuracy of D-algorithm, and for 8 decision tables D-algorithm and I-algorithm
have the same accuracy. The considered algorithms are not stable.

Table 2 contains results of experiments for D-algorithm and I-algorithm and
modified decision tables from [8]. For each initial table from [8] we choose a
number of attributes different from the decision attribute, and consider each such
attribute as new decision attribute. As the result we obtain the same number
of new decision tables as the number of chosen attributes (this number can be
found in the column “New”). The column “D opt” contains the number of new
tables for which the accuracy of D-algorithm is greater than the accuracy of
I-algorithm. The column “I opt” contains the number of new tables for which
the accuracy of I-algorithm is greater than the accuracy of D-algorithm. The
columns “D aac” and “I aac” contain the average accuracy of D-algorithm and
I-algorithm for new tables.
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Table 2. Results of experiments with modified decision tables

Decision table New D opt I opt D aac I aac

lymphography 9 4 3 54.9 55.3

primary-tumor 3 1 2 64.8 65.7

balance-scale 4 0 4 19.5 23.9

soybean-large 5 0 3 86.2 86.4

zoo 1 0 1 73.0 74.0

post-operative 8 1 4 56.4 57.4

hayes-roth 4 1 3 45.5 49.9

lung-cancer 7 0 1 58.7 59.1

solar-flare 7 1 3 67.0 67.8

For 8 new decision tables the accuracy of D-algorithm is greater than the
accuracy of I-algorithm, for 24 new decision tables the accuracy of I-algorithm
is greater than the accuracy of D-algorithm, and for 16 new decision tables D-
algorithm and I-algorithm have the same accuracy. Note also that for each of the
considered initial tables the average accuracy of I-algorithm for new tables corre-
sponding to the initial one is greater than the average accuracy of D-algorithm.

7 Conclusions

Results of experiments show that the algorithm based on inhibitory decision
rules is, often, better than the algorithm based on deterministic decision rules. It
means that inhibitory decision rules are as relevant to classification algorithms as
deterministic decision rules. There is an additional (intuitive) motivation for the
use of inhibitory decision rules in classification algorithms: the inhibitory decision
rules have much more chance to have larger support than the deterministic ones.

In our future investigations we are planning to continue the comparison of
classification algorithms based on deterministic and nondeterministic (contained
on the right hand side more than one value of decision attribute) decision rules.
Moreover, to improve the stability of classification, we plan to combine approx-
imate decision rules (using them as arguments “for” decisions specified by the
right hand sides of such rules) with generalized inhibitory rules (used as argu-
ments “against” decisions defined by the right hand sides of such rules).
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Abstract. In this paper, we focus on how to measure the consistency
of an ordered decision table and the fuzziness of an ordered rough set
and an ordered rough classification in the context of ordered information
systems. The membership function of an object is defined through using
the dominance class including itself. Based on the membership function,
we introduce a consistency measure to assess the consistency of an or-
dered decision table and define two fuzziness measures to compute the
fuzziness of an ordered rough set and an ordered rough classification.
Several examples are employed to illustrate their mechanisms as well.
These results will be helpful for understanding the uncertainty in or-
dered information systems and ordered decision tables.

Keywords: Ordered decision table, Consistency, Fuzziness.

1 Introduction

Rough set theory, introduced by Pawlak [1, 2], has been conceived as a tool to
conceptualize and analyze various types of data. It can be used in the attribute-
value representation model to describe the dependencies among attributes and
evaluate the significance of attributes and derive decision rules. It has important
applications to intelligence decision and cognitive sciences, as a tool for dealing
with vagueness and uncertainty of facts, and in classification [3-8]. Rough-set-
based data analysis starts from a data table, called information systems. The
information systems contains data about objects of interest, characterized by a
finite set of attributes [9-14].

The original rough sets theory does not consider attributes with preference-
ordered domains, that is, criteria. However, in many real situations, we are often
faced with the problems in which the ordering of properties of the considered
attributes plays a crucial role. One such type of problem is the ordering of
objects. For this reason, Greco, Matarazzo, and Slowinski [15, 16] proposed an
extension of rough set theory, called the dominance-based rough sets approach
(DRSA) to take into account the ordering properties of criteria. This innovation
is mainly based on substitution of the indiscernibility relation by a dominance
relation.
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Because the notion of consistency degree [1] is defined for a decision table,
in some sense, it could be regarded as measures for evaluating the decision per-
formance of a decision table [17, 18]. Nevertheless, the consistency degree has
some limitations. For instance, the consistency of a decision table could not
be well depicted by the consistency degree when its value achieve zero. As we
know, the fact that consistency degree is equal to zero only implies that there
is no decision rule with the certainty of one in the decision table. Hence, the
consistency degree of a decision table cannot give elaborate depictions of the
consistency for a given decision table. Therefore, we introduced three new mea-
sures to assess the entire decision performance of a decision-rule set extracted
from a complete/incomplete decision table [18, 19]. So far, however, how to
assess the consistency of an ordered decision table has not been reported. In
addition, like classical rough set theory, there exist some fuzziness of an ordered
rough set and an ordered rough classification in the dominance-based rough sets
approach.

The rest of the paper is organized as follows. Some basic concepts of ordered
information systems and ordered decision tables are briefly reviewed in Section
2. In Section 3, how to measure the consistencies of a set and an ordered decision
table are investigated. In Section 4, we propose fuzziness measures of an ordered
rough set and an ordered rough classification in an ordered decision table. Section
5 concludes this paper with some remarks.

2 Preliminaries

In this section, we recall some basic concepts of ordered information systems and
ordered decision tables.

An information system (IS) is an quadruple S = (U, AT, V, f), where U is
a finite nonempty set of objects and AT is a finite nonempty set of attributes,
V =

⋃
a∈AT Va and Va is a domain of attribute a, f : U × AT → V is a total

function such that f(x, a) ∈ Va for every a ∈ AT , x ∈ U , called an information
function. A decision table is a special case of an information system in which,
among the attributes, we distinguish one called a decision attribute. The other
attributes are called condition attributes. Therefore, S = (U, C ∪ d, V, f) and
C ∩ d = Ø, where the set C is called the condition attributes and d is called the
decision attribute.

If the domain (scale) of a condition attribute is ordered according to a de-
creasing or increasing preference, then the attribute is a criterion.

Definition 1.[20] A decision table is called an ordered decision table (ODT) if
all condition attributes are criterions.

It is assumed that the domain of a criterion a ∈ AT is completely pre-ordered
by an outranking relation �a; x �a y means that x is at least as good as
(outranks) y with respect to criterion a. In the following, without any loss of
generality, we consider a condition criterion having a numerical domain, that is,
Va ⊆ R (R denotes the set of real numbers) and being of type gain, that is,
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x �a y ⇔ f(x, a) ≥ f(y, a) (according to increasing preference) or x �a y ⇔
f(x, a) ≤ f(y, a) (according to decreasing preference), where a ∈ AT , x, y ∈ U .
For a subset of attributes B ⊆ C, we define x �B y ⇔ ∀a ∈ B, f(x, a) ≥ f(y, a).
In other words, x is at least as good as y with respect to all attributes in B.
In general, the domain of the condition criterion may be also discrete, but the
preference order between its values has to be provided.

In a given ordered information system, we say that x dominates y with respect
to B ⊆ C if x �B y, and denoted by xR≥

By. That is R≥
B = {(y, x) ∈ U × U |

y �B x}. Obviously, if (y, x) ∈ R≥
B, then y dominates x with respect to B.

Let B1 be attributes set according to increasing preference and B2 attributes
set according to decreasing preference, hence B = B1 ∪ B2. The granules of
knowledge induced by the dominance relation R≥

B are the set of objects domi-
nating x, that is

[x]≥B = {y | f(y, a1) ≥ f(x, a1)(∀a1 ∈ B1) and f(y, a2) ≤ f(x, a2)(∀a2 ∈ B2)}
= {y ∈ U | (y, x) ∈ R≥

B}
and the set of objects dominated by x,

[x]≤B = {y | f(y, a1) ≤ f(x, a1)(∀a1 ∈ B1) and f(y, a2) ≥ f(x, a2)(∀a2 ∈ B2)}
= {y ∈ U | (x, y) ∈ R≥

B},
which are called the B-dominating set and the B-dominated set with respect to
x ∈ U , respectively.

Let U/R≥
B denote classification on the universe, which is the family set {[x]≥B |

x ∈ U}. Any element from U/R≥
B will be called a dominance class with respect

to B. Dominance classes in U/R≥
B do not constitute a partition of U in general.

They constitute a covering of U .

3 Consistency of an Ordered Decision Table

In this section, we deal with how to measure the consistency of an ordered
decision table.

Let S = (U, AT ) be an ordered information system, P, Q ⊆ A, U/R≥
P =

{[x1]
≥
P , [x2]

≥
P , · · · , [x|U|]

≥
P } and U/R≥

Q = {[x1]
≥
Q, [x2]

≥
Q, · · · , [x|U|]

≥
Q}. We define a

partial relation � as follows: P � Q ⇔ [xi]
≥
P ⊆ [xi]

≥
Q for any xi ∈ U , where

[xi]
≥
P ∈ U/R≥

P and [xi]
≥
Q ∈ U/R≥

Q. If P � Q, we say that Q is coarser than P (or
P is finer than Q).

Let S = (U, C ∪ d) be an ordered decision table, U/R≥
C = {[x1]

≥
C , [x2]

≥
C , · · ·,

[x|U|]
≥
C} and U/R≥

d = {[x1]
≥
d , [x2]

≥
d , · · · , [x|U|]

≥
d }. If C � d, then S is said to be

a consistent ordered decision table; otherwise, S is said to be inconsistent.
Firstly, we investigate the consistency of the dominance class [xi]

≥
C (i ∈

{1, 2, · · · , |U |}) with respect to d in an ordered decision table.
Let S = (U, C ∪ d) be an ordered decision table, [xi]

≥
C ∈ U/R≥

C a dominance
class and U/R≥

d = {[xi]
≥
d : xi ∈ U}. For any object x ∈ U , the membership

function of x in the dominance class [xi]
≥
C is defined as
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δ[xi]
≥
C
(x) =

{ |[xi]
≥
C∩[x]≥d |

|[xi]
≥
C | , if x = xi;

0, if x = xi.
(1)

Where δ[xi]
≥
C
(x) denotes a fuzzy concept.

If δ[xi]
≥
C
(x) = 1, then the dominance class [xi]

≥
C can be said to be consistent

with respect to d. In other words, if [xi]
≥
C is a consistent set with respect to d,

then [xi]
≥
C ⊆ [xi]

≥
d . This generates a fuzzy set F d

[xi]
≥
C

= {(x, δ[xi]
≥
C
(x)) | x ∈ U}

on the universe U .

Definition 2. Let S = (U, C ∪ d) be an ordered decision table, [xi]
≥
C ∈ U/R≥

C a
dominance class and U/R≥

d = {[x1]
≥
d , [x2]

≥
d , · · · , [x|U|]

≥
d }. A consistency measure

of [xi]
≥
C with respect to d is defined as

C([xi]
≥
C , d) =

∑

x∈U

δ[xi]
≥
C
(x), (2)

where 0 ≤ C([xi]
≥
C , d) ≤ 1.

Proposition 1. The consistency measure of a consistent dominance class in an
ordered decision table is one.

In the following, based on the above discussion, we research the consistency
between the condition part and the decision part in an ordered decision table.

Definition 3. Let S = (U, C ∪ d) be an ordered decision table, U/R≥
C =

{[x1]
≥
C , [x2]

≥
C , · · ·, [x|U|]

≥
C} and U/R≥

d = {[x1]
≥
d , [x2]

≥
d , · · · , [x|U|]

≥
d }. A consistency

measure of C with respect to d is defined as

C(C, d) =
1

|U |

|U|∑

i=1

∑

x∈U

δ[xi]
≥
C
(x), (3)

where 0 ≤ C(C, d) ≤ 1 and δ[xi]
≥
C
(x) is the membership function of x ∈ U in the

dominance class [xi]
≥
C .

Example 1. An ODT is presented in Table 1, where U = {x1, x2, x3, x4, x5, x6}
and C = {a1, a2, a3}.

Table 1. An ordered decision table

U a1 a2 a3 d
x1 1 2 1 1
x2 3 2 2 2
x3 1 1 2 1
x4 2 1 3 2
x5 3 3 2 1
x6 3 2 3 2
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In this table, from the definition of dominance classes, one can obtain that
the dominance classes determined by C are

[x1]
≥
C = {x1, x2, x5, x6}, [x2]

≥
C = {x2, x5, x6}, [x3]

≥
C = {x2, x3, x4, x5, x6},

[x4]
≥
C = {x4, x6}, [x5]

≥
C = {x5}, [x6]

≥
C = {x6};

and the dominance classes determined by d are
[x1]

≥
d = [x3]

≥
d = [x5]

≥
d = {x1, x2, x3, x4, x5, x6}, [x2]

≥
d = [x4]

≥
d = [x6]

≥
d =

{x2, x4, x6}.
From formula (1), one has that

C([x1]
≥
C , d) = 1, C([x2]

≥
C , d) = 2

3 , C([x3]
≥
C , d) = 1, C([x4]

≥
C , d) = 1, C([x5]

≥
C , d)

= 1 and C([x6]
≥
C , d) = 1. Therefore,

C(C, d) = 1
|U|

∑|U|
i=1

∑
x∈U δ[xi]

≥
C
(x) = 1

6 (1 + 2
3 + 1 + 1 + 1 + 1) = 17

18 .

Proposition 2. The consistency measure of a consistent ordered decision table
is one.

Proof. Let S = (U, C∪d) be an ordered decision table, U/R≥
C = {[x1]

≥
C , [x2]

≥
C , · · ·,

[x|U|]
≥
C} and U/R≥

d = {[x1]
≥
d , [x2]

≥
d , · · · , [x|U|]

≥
d }. If S is consistent, then, for

any xi ∈ U , one has [xi]
≥
C ⊆ [xi]

≥
d . Hence, when x = xi, we have δ[xi]

≥
C
(x) =

|[xi]
≥
C∩[xi]

≥
d |

|[xi]
≥
C | = |[xi]

≥
C |

|[xi]
≥
C | = 1; otherwise, δ[xi]

≥
C
(x) = 0. Therefore,

C(C, d) = 1
|U|

∑|U|
i=1

∑
x∈U δ[xi]

≥
C
(x) = 1

|U|
|U|∑

i=1
(1 · 1 + (|U | − 1) · 0) = 1.

Thus, the consistency measure of a consistent ordered decision table is one.

4 Fuzziness of an Ordered Rough Set and an Ordered
Rough Classification

In this section, we present fuzziness measures of an ordered rough set and an
ordered rough classification in an ordered decision table.

In the literature, Greco et al. [15, 16] proposed the rough set theory for multi-
criteria decision analysis. For any X ⊆ U and B ⊆ C, the lower and upper
approximation of X with respect to the dominance relation R≥

B are defined as

R≥
B(X) = {x ∈ U | [x]≥B ⊆ X} and R≥

B(X) = {[x]≥B | [x]≥B ∩ X = Ø}. Unlike

classical rough set theory, one can easily notice the properties R≥
B(X) = {[x]≥B |

[x]≥B ⊆ X} and R≥
B(X) = {[x]≥B | [x]≥B ∩ X = Ø} do not hold.

Let S = (U, AT ) be an ordered information system and X ⊆ U . For any
object x ∈ U , the membership function of x in X is defined as

μX(x) =
|[x]≥AT ∩ X |

|[x]≥AT |
(4)

where μX(u) (0 ≤ μX(u) ≤ 1) represents a fuzzy concept. It can generate a fuzzy
set FAT

X = {(x, μX(x)) | x ∈ U} on the universe U . Based on this membership
function, one can define a fuzzy measure of a given rough set induced by the
attribute set AT as follows.
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Definition 4. Let S = (U, A) be an ordered information system and X ⊆ U . A
fuzziness measure of the rough set X is defined as

E(FAT
X ) =

|U|∑

i=1

μX(xi)(1 − μX(xi)). (5)

Proposition 3. The fuzziness measure of a crisp set equals zero in an ordered
information system.

Proof. Let X be a crisp set in the ordered information system S = (U, AT ),
then R≥

AT (X) = R≥
AT (X). Hence, for any x ∈ U , one can get that if x ∈ R≥

AT (X),

then [x]≥AT ⊆ X , thus μX(x) = 1; and if x ∈ R≥
AT (X), then x ∈ R≥

AT (X), i.e.,

[x]≥AT ∩ X = Ø, thus μX(x) = 0. Therefore, one has that μX(x)(1 − μX(x)) = 0,
that is E(FAT

X ) = 0. This completes the proof.

Proposition 4. The fuzziness measure of a rough set is the same as that of its
complement set in an ordered information system.

Proof. Let X be a rough set in the ordered information system S = (U, AT )
and Xc is its complement set on the universe U , i.e., Xc = U − X . For any
x ∈ U , one has that

μX(x) + μXc(x) =
|X ∩ [x]≥AT |

|[x]≥AT |
+

|Xc ∩ [x]≥AT |
|[x]≥AT |

=
|[x]≥AT |
|[x]≥AT |

= 1,

i.e., μXc(x) = 1 − μX(x). Thus, for any x ∈ U , one can obtain that μX(x)(1 −
μX(x)) = μXc(x)(1 − μXc(x)), i.e., E(FAT

X ) = E(FAT
Xc ).

Assume that the decision attribute d makes a partition of U into a finite
number of classes; let D = {D1, D2, · · · , Dr} be a set of these classes that are
ordered, that is, for all i, j ≤ r if i ≥ j, then the objects from Di are preferred
to the objects from Dj . The sets to be approximated are an upward union and a
downward union of classes, which are defined as D≥

i =
⋃

j≥i Dj , D≤
i =

⋃
j≤i Dj ,

(i ≤ r) [15, 16]. The statement x ∈ D≥
i means “x belongs to at least class Di”,

whereas x ∈ D≤
i means “x belongs to at most class Di”. In the following, we

review the definitions of the lower and upper approximations of D≥
i (i ≤ r) with

respect to the dominance relation R≥
C in an ODT [20].

Definition 5.[15, 16] Let S = (U, C ∪ d) be an ODT, A ⊆ C and D =
{D1, D2, · · · , Dr} the decision induced by d. Lower and upper approximations
of D≥

i (i ≤ r) with respect to the dominance relation R≥
C are defined as

R≥
C(D≥

i ) = {x ∈ U | [x]≥C ⊆ D≥
i }, R≥

C(D≥
i ) =

⋃
x∈D≥

i
[x]≥C .

Denoted by R≥
C(D)=(R≥

C (D≥
1 ), R≥

C(D≥
2 ), · · · , R≥

C(D≥
r )), R≥

C(D) = (R≥
C(D≥

1 ),

R≥
C(D≥

2 ), · · · , R≥
C(D≥

r )). (R≥
C(D), R≥

C(D) are called the rough decision induced
by C. For any object x ∈ U , the membership function of x in D is defined as
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μD(x) =
|[x]≥C ∩ D≥

j |
|[x]≥C |

(u ∈ Dj), (6)

where μD(x) (0 ≤ μD(x) ≤ 1) represents a fuzzy concept. It can generate a
fuzzy set FC

D = {(x, μD(x)) | x ∈ U} on the universe U .

Definition 6. Let S = (U, C ∪ d) be an ordered information system and D =
{D1, D2, · · ·, Dr}. A fuzziness measure of a rough decision is defined as

E(FC
D) =

|U|∑

i=1

μD(xi)(1 − μD(xi)), (7)

where μD(xi) denotes the membership function of xi ∈ U in the decision D.

Example 2. (Continued from Example 1.) Suppose that D1 = {x2, x4, x6} and

D2 = {x1, x3, x5}. From formula (6), we have that μD(x1) = |[x1]
≥
C∩D≥

2 |
|[x1]

≥
C | = 1,

μD(x2) = |[x2]
≥
C∩D≥

1 |
|[x2]

≥
C | = 2

3 , μD(x3) = |[x3]
≥
C∩D≥

2 |
|[x3]

≥
C | = 1, μD(x4) = |[x4]

≥
C∩D≥

1 |
|[x4]

≥
C | = 1,

μD(x5) = |[x5]
≥
C∩D≥

2 |
|[x5]

≥
C | = 1, μD(x6) = |[x6]

≥
C∩D≥

1 |
|[x6]

≥
C | = 1. Therefore, E(FC

D) =
6∑

i=1
μD(xi)(1 − μD(xi)) = 1 × (1 − 1) × 5 + 2

3 × 1
3 = 2

9 .

Proposition 5. In an ordered decision table S = (U, C ∪ d), the fuzziness
measure of a crisp decision equals zero.

Proof. Let D = {D1, D2, · · · , Dr} be a crisp decision in the ordered deci-
sion table, i.e., R≥

C(D≥
j ) = R≥

C(D≥
j ), j = {1, 2, · · · , r}. Hence, for any one has

that [x]≥C ⊆ D≥
j . Thus, μD(x) =

|[x]≥C∩D≥
j |

|[x]≥C | = |[x]≥C |
|[x]≥C | = 1, ∀x ∈ U . Therefore,

μD(xi)(1 − μD(xi)) = 0, i ≤ |U |, i.e., E(FC
D) = 0. This completes the proof.

5 Conclusions

In this study, we have constructed the membership function of an object through
using the dominance class including itself. Based on the membership function,
we have introduced a consistency measure to calculate the consistency of an
ordered decision table and fuzziness measures to compute the fuzziness of an
ordered rough set and an ordered rough classification in the context of ordered
information systems. Their mechanisms and validity have been shown by sev-
eral illustrative examples. These results will be helpful for understanding the
uncertainty in ordered decision tables.
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Abstract. Many researchers are working on developing fast data min-
ing methods for processing huge data sets efficiently. In this paper, we
develop some efficient algorithms for knowledge reduction based on rough
sets. In these algorithms we use the fact that the average time complex-
ity for the quick sort algorithm for a two dimensions table with n rows
and m columns is just n × (m + logn) (not m × n × logn). Experiment
results also show the efficiency of these algorithms.
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1 Introduction

Knowledge reduction is one of the most important contributions of rough set the-
ory [1] to data mining. Usually, there are several steps in knowledge reduction
based on rough set theory. That is, data preparation, data discretization, at-
tribute reduction, value reduction. Attribute reduction is the key for knowledge
reduction. Many researchers proposed some algorithms for attribution reduction
[2-9]. These reduction algorithms can be classified into two categories: reduction
without attribute order and reduction with attribute order. The former does not
take the domain experts’ priori knowledge into consideration in the knowledge
reduction process. It generates knowledge from data only. The later considers the
domain experts’ priori knowledge (attribute order) in the knowledge reduction
process. Knowledge generated from data in this kind of methods also depends
on domain experts’ prior knowledge. However, the efficiencies of these reduction
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algorithms in dealing with huge data sets are not high enough. There are two
reasons: one is the time complexity, and the other is the space complexity.

Quick sort for a two dimensions table is an important operation in data min-
ing. In huge database processing based on rough set theory, it is a basic operation
to divide a decision table into indiscernible classes. Quick sort could be used to
deal with this problem. Some researchers found that reduction algorithms will
become quicker when database management system and quick sort are used for
reduction generation [10]. If the data of a two dimensions table has uniform distri-
bution, then the average time complexity of quick sort for a two dimensions table
with m attributes and n records was usually considered to be O(n × logn × m)
[4,5,6]. However, we find in [11] that this time is just O(n×(logn+m)). Based on
this finding, we may further revise knowledge reduction algorithms and improve
their performance.

In this paper, we will reanalyze the time complexity of quick sort for a two
dimensions table briefly, propose an algorithm for computing attribute core based
on divide and conquer method, and develop some improved knowledge reduction
methods based on the idea of quick sort. Some simulation experiment results will
show the performance of our improved methods.

2 Time Complexity of Quick Sort

The process of sorting a two dimensions table with m attributes (k1, k2, ..., km)
and n records is as follows.

Step 1, according to the first attribute k1, the quick sort algorithm for one di-
mension table is used to sort the decision table and generate an ordered partition
on k1.

Step 2, the quick sort method for one dimension table is used to sort each
partition part respectively and generate an ordered partition of the original table
on both k1 and k2.

Step 3, repeat the sort process of step 2 using the other attributes k3, k4, ..., km

until all attributes have been used to sort the decision table. A partition part
containing only one record needs not to be further sorted using remaining at-
tributes in this process.

In order to discuss about the quick sort algorithm for a two dimensions table,
a procedure and a function are used.

Procedure 1: TwoDimension QuickSort(int r, int low, int high)
// r is the number of keywords(attributes), low and high are the pointers point-
ing to the first record and the last records respectively.
{

IF (r > m) THEN return;
IF (low == high) THEN return;
CanBePartition = false;
FOR j = low + 1 TO high DO
{ IF (S[L[j][r]] �= S[L[low][r]]) THEN

{ CanBePartition = true; BREAK;}
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}
IF (CanBePartition == true) THEN
{ average = (S[L[low]][r] + S[L[(low + high)/2]][r] + S[L[high]][r])/3;

mid=CALL Partition(r, low, high, average);
CALL TwoDimension QuickSort(r, low, mid);
CALL TwoDimension QuickSort(r, mid + 1, high);

}
IF (CanBePartition == false) THEN
{ CALL TwoDimension QuickSort(r + 1, low, high); }

}
Function 1: Partition(int r, int low, int high, int average)
{

i = low; j = high;
WHILE (i < j) DO
{ WHILE (S[L[j]][r] > average)&&(i < j) DO j − −;

Swapping L[i] and L[j];
WHILE (S[L[i]][r] ≤ average)&&(i < j) DO i + +;
Swapping L[i] and L[j];

}
IF (S[L[i]][r] > average) THEN RETURN i − 1;
ELSE RETURN i;

}
Algorithm 1: Quick Sort Algorithm for a Two Dimensions Table
Input: A two dimensions table S[1..n][1..m]
Output: An ordered two dimensions table S[1..n][1..m]
Step 1: FOR i = 1 TO n DO L[i] = i;
Step 2: CALL TwoDimension QuickSort(1, 1, n);
Step 3: RETURN S.

When the Partition function is invoked once, the number of comparison is
(high − low + 1). The time complexity of Algorithm 1 mainly depends on the
TwoDimension QuickSort procedure . Now, let’s analyze the running time of
the TwoDimension QuickSort procedure. Suppose T (r, n) be the time com-
plexity of the TwoDimension QuickSort procedure(where, n = high− low+1).
T (r, n) can be approximated by the following recursive equation [11]:

T (r, n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(a) 1 if n = 1
(b) 1 if r = m + 1
(c) n + T (r + 1, n) if n > 1, 1 ≤ r ≤ m, and

the values of n records key kr are unique)
(d) 2n + T (r, n − k) + T (r, k) if 1 ≤ r ≤ m, 1 ≤ k < n, n > 1,

and the values of n records on key kr are not unique)

(1)

Suppose that T0 represents the total time cost of invoking (a) and (b), T1
represents the total time cost of invoking (c), and T2 represents the total time
cost of invoking (d). The average time complexity of TwoDimension QuickSort
procedure would be: T (r, n) = T0 + T1 + T2, where, the average and worst time
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cost of T1 is O(m × n), T0 + T2 can be approximate by the following recursive
equation [11]:

T0 + T2 =
{

1 if n = 1
2n + T (n − k) + T (k) if 1 ≤ k < n, n > 1 (2)

It is the same as the time cost of quick sort for a one dimension array. That
is, T0 + T2 = T1(n) = O(n × logn). Thus, T (r, n) = T0 + T1 +T2 = T1 + T1(n) =
O(n × m) + O(n × logn) = O(n × (m + logn)) .

Hence [11], T (r, n) = O(n × (m + logn)).
That is, the average time complexity of Algorithm 1 is O(n × (m + logn)).
Since Algorithm 1 is a recursive algorithm, the recursive stack space is con-

sidered in the computation of space complexity. In TwoDimension QuickSort
procedure, when TwoDimension QuickSort is invoked recursively, the three
parameters: (r, low, high) are needed to be stored into the stack. So, the recur-
sive stack space complexity S(r, n) of quick sort for a two dimensions table can
be approximated by the following recursive equation [11]:

S(r, n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if n ≤ 1
0 if r > m
0 if n > 1, 1 ≤ r ≤ m, and

the values of n records key kr are unique
3 + S(r, n/2) if n > 1, 1 ≤ r ≤ m, 1 ≤ k ≤ n − 1, and

the values of n records on key kr are not unique

(3)

Hence [11], S(r, n) = O(logn).
Because array L[1..n] needs O(n) space, the space complexity of Algorithm 1

is O(n) + O(logn) = O(n).

3 Algorithm for Computing Attribute Core

Theorem 1. Given a decision table S =< U, C ∪ D, V, f >. For any c(c ∈ C),
according to U/{c}, S is divided into k(k = |IND(U/{c})|) sub-decision tables
S1, S2,..., Sk, where, Sk =< Uk, (C − {c}) ∪ D, Vk, fk >, and ∀x∈Ui∀y∈Uic(x) =
c(y)(1 ≤ i ≤ k) and ∀x∈Ui∀z∈Uj c(x) �= c(z)(1 ≤ i < j ≤ k). Suppose Corei(1 ≤
i ≤ k) be the core of the sub decision table Si, and Core be the attribute core
of the decision table S. Then,

⋃

1≤i≤k

Corei ⊆ Core ⊆ {c} ∪
⋃

1≤i≤k

Corei.(If c is a

core attribute, Core = {c} ∪
⋃

1≤i≤k

Corei)

According to the Theorem 1, an efficient algorithm for computing the core of
a decision table based on divide and conquer can be developed.

Algorithm 2: Computation of Attribute Core Based on Divide and Conquer
Method
Input: A decision table S =< U, A = C ∪ D, V, f >
Output: Attribute core (Core) of S
Step 1: Core = φ;
Step 2: IF |C| == 1 THEN

{ IF PosC(D) �= PosC−{c1}(D) THEN Core = C;
GOTO Step 3;
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}
ELSE //|C| > 1
{ Choose the first attribute c1 in C;

Calculate PosC(D) and PosC−{c1}(D) using divide and conquer
method;
IF PosC(D) �= PosC−{c1}(D) THEN Core = Core ∪ {c1};
According to U/c1, divide S into |U/c1| sub decision tables S1

1 , S1
2 , ...,

S1
|U/c1|;

C = C − {c1};
Calculate all the attribute cores of the sub decisions tables Core1, Core2,
..., Core|U/c1| recursively;

}
Step 3: RETURN Core = Core ∪ Core1 ∪ Core2 ∪ ... ∪ Core|U/c1|;

Suppose n = |U |, m = |C|. The time complexity of the Algorithm 2 is O(n ×
m2) [12]. Suppose n = |U |, m = |C|, p = max(|Vi|)(1 ≤ i ≤ |C|). Then, the space
complexity of the Algorithm 2 is O(n + p × m) [12].

4 Fast Knowledge Reduction Based on Attribute Order

If the idea of divide and conquer is adopted in the attribute reduction of rough set
theory, some more efficient knowledge reduction algorithms may be developed.
In this section, a quick attribute reduction algorithm based on the divide and
conquer method is proposed.

4.1 Attribute Order

An attribute reduction algorithm based on attribute order was proposed by
Wang in 2001 [7]. For the convenience of illustration, some basic notions about
attribute order are introduced here.

Given a decision table S =< U, C ∪ D, V, f >, we could define an attribute
order relation over C(SO : c1 ≺ c2 ≺ ... ≺ c|C|). Suppose M is the discernibility
matrix of S [2]. For any δ ∈ M , the attributes of δ inherit the order relation of
SO from left to right. The first element of δ is called the label of δ.

For cj , we define a set [cj ] = {δ|δ = cjB, δ inherit the order relation of SO from
left to right, δ ∈ M}. Hence, M can be divided into equivalent classes defined
by attribute labels defining a partition {[c1], [c2], ..., [c|C|]} of M denoted by
M/L(SO). be the partition. The partition can be also expressed by M/L(SO) =
{[1], [2], ..., [|C|]} [7,8].

In order to compute the attribute reduction of a decision table, we should
calculate its non-empty label attribute set at first. Using the divide and conquer
method, the following algorithm for computing non-empty label attribute set is
developed.

Algorithm 3: Computation of Non-empty Label Attribute Set L(SO)
Input: A decision table S =< U, A = C ∪D, V, f > and a given attribute order
SO : c1 ≺ c2 ≺ ... ≺ c|C|
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Output: The non-empty label attribute set R1 of S
Step 1: R1 = φ; r = 1; OSet11 = U ;

FOR j = 1 TO |C| DO NonEmptyLabel[j] = 0;
Step 2: NonEmptyLabelAttr(1, OSet11);
Step 3: FOR j = 1 TO |C| DO

IF NonEmptyLabel[j] == 1 THEN R1 = R1 ∪ {cj};
Step 4: RETURN R1 .
Function 2: NonEmptyLabelAttr(int r, ObjectSet OSet)
{ IF r < (|C| + 1) THEN

{ IF |OSet| == 1 THEN RETURN;
ELSE IF PosC(D) == φ THEN RETURN;
ELSE IF |V (cr)| == 1 THEN
{ r = r + 1; NonEmptyLabelAttr(r, OSet);
}
ELSE
{ NonEmptyLabel[r] = 1;

Divide OSet into |V (cr)| parts: OSet1, OSet2, ..., OSet|V (cr)|;
r = r + 1;
FOR i = 1 TO |V (cr − 1)| + 1 DO

NonEmptyLabelAttr(r, OSetri );
}

}
}

4.2 Attribute Reduction Based on Attribute Order and Divide and
Conquer Method

Given an attribute order of the condition attributes in a decision table, using
the Algorithm 3 and divide and conquer method, an efficient attribute reduction
algorithm is developed.

Algorithm 4: Attribute Reduction Based on Divide and Conquer Method
Input: A decision table S =< U, A = C ∪D, V, f > and a given attribute order
SO : c1 ≺ c2 ≺ ... ≺ c|C|
Output: Attribute reduction R of S
Step 1: U1

1 = U ; R = φ.
Step 2: Compute the positive region PosC(D) of S.
Step 3: Compute the non-empty label attribute set R1 by Algorithm 3.
Step 4: //Suppose cN ′ be the maximum label attribute of R1.

R = R ∪ {cN ′}; R1 = R1 − R; C = R ∪ R1;
IF R1 == φ THEN RETURN R;
ELSE
{ Generate a new attribute order: c1

1 ≺ c1
2 ≺ ... ≺ c1

|R| ≺ c2
1 ≺ c2

2 ≺ ... ≺
c2
|R1|(c

1
i ∈ R, c2

j ∈ R1);
Compute a new non-empty label attribute set R1 by Algorithm 3;
GOTO Step 4.
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}
Suppose n = |U | and m = |C|, the average time complexity of the Algorithm

4 is O(m × n × (m + logn)). Its space complexity is (m + n).
Algorithm 4 depends on attribute order. However, it is provided by domain

experts since in some domain it is easy for domain experts to provide the
order [7,8].

5 Experiment Results

In order to test the efficiency of Algorithm 4, we have done an experiment. In
the experiment, the KDDCUP99 data set is used. 10%, 20%, 30%, ..., and 100%
records of the KDDCUP99 data set are selected randomly to create a testing
data set each time respectively. The Equal Frequency Discretization Algorithm
[13] is used to discretize these 10 data sets. The domains of all attributes are [0,
255]. The parameters of the computer used here are P4 2.6G CPU, 512M RAM,
and Windows XP. The experiment results are shown in Table 1.

Table 1. Results of the test for Algorithm 4

Rate of Num of Num of Running Num of attributes Memery
records records total attributes time(Sec) in the reduction usage(KB)

10% 489843 41 61.232417 29 198804

20% 979686 41 135.023143 30 246972

30% 1469529 41 218.743598 31 303232

40% 1959372 41 283.406260 30 344984

50% 2449216 41 384.723173 32 395144

60% 2939059 41 469.103032 32 444576

70% 3428902 41 602.920099 34 493672

80% 3918745 41 661.663162 33 543172

90% 4408588 41 753.895816 33 592372

100% 4898432 41 13337.205877 34 641896

From Table 1, we can find that the processing speed of the Algorithm 4 is very
fast. However, when the number of records reaches to 4898432, the processing
speed slows down greatly. The reason is that the Algorithm 4 will use too much
memory when the number of records reaches to 4898432. The using rate of CPU
is below 10% in this case. Therefore, the space complexity of an algorithm plays
a very important role in dealing with huge data sets.

6 Conclusions and Future Works

In this paper, the complexities of quick sort method for a two dimensions ta-
ble with m attributes and n records are analyzed. Its average time and space
complexities are find to be O(n × (m + logn)) and O(n) respectively. Moreover,
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an algorithm for computing attribute core is developed. Its time complexity is
O(n×m2). Besides, given an attribute order of a decision table, a quick attribute
reduction algorithm based on divide and conquer method is developed. Its time
complexity is O(m × n × (m + logn)), and space complexity is O(m + n).
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Abstract. The work presents an investigation of multiple-source ap-
proximation systems, which are collections of Pawlak approximation
spaces over the same domain. We particularly look at notions of defin-
ability of sets in such a collection μ. Some possibilities for membership
functions in μ are explored. Finally, a relation that reflects the degree to
which objects are (in)discernible in μ is also presented.

Keywords: Approximation spaces, Rough sets, Rough membership
functions.

1 Introduction

In this article, we are interested in situations where information is obtained from
different sources about the same set of objects, giving rise to a sequence of Pawlak
approximation spaces [5,8] over the same domain. This has been discussed, for
instance, in [13,3]. In a more general setting, multi-agent systems have also been
studied (cf. [1], [4], [10], [9]). Our focus, however, is on the following.

Definition 1. A multiple-source approximation system (MAS) is a tuple
(U, {Ri}i∈N), where U is a non-empty set, N an initial segment of the set of
positive integers, and Ri, i ∈ N, is an equivalence relation on the domain U .

We present the basic notions in Section 2. Different kinds of definability of sets
that one may have in MAS’s, are given in Section 3, and some ensuing properties
discussed.

For a Pawlak approximation space (U, R), the rough membership function fX

[8,7] quantifies the degree of relative overlap between a set X(⊆ U) and the equiv-
alence class [x] for an object x of U . If fX(x) > fX(y), y has a greater possibility
to be an element of X compared to x. When we consider an MAS μ, the situation
is clearly different. In Section 4, two simple instances of membership function for
μ are defined. Further, we consider the approximation space (U, indμ) obtained
from a given MAS μ := (U, {Ri}1≤i≤n), by taking indμ := ∩n

i=1Ri. This has been
considered, for instance, in [13] while discussing common knowledge of a group
of agents. A relation that reflects the degree to which objects are (in)discernible

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 80–87, 2008.
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in μ is presented, and related to the previously defined notions. Furthermore,
some observations about the rough membership function in (U, indμ) are made.
For lack of space, we must omit many propositions on the notions defined in the
paper. Section 5 concludes the article.

2 Basic Notions in Multiple-source Approximation
Systems

Let us consider the following example.

Example 1. Suppose we have information regarding the attribute set {transport
facilities(Tra), law and order(LO), literacy(Li)} for the cities Calcutta(Cal),
Mumbai(Mum), Delhi(Del), Chennai(Chen), Bangalore(Ban) and Kanpur(Kan)
from four different agencies M1, M2, M3 and M4:

M1 M2 M3 M4
Tra LO Li Tra LO Li Tra LO Li Tra LO Li

Cal a a g a a a a a g g g a
Mum g g a a a g a g p p a g
Del g g a a a a a g p a a g

Chen g p g a a g a p g p p g
Ban a a g a a g a g p p a g
Kan p g g p g p a p g p p g

Here g, a, p stand for good, average and poor. Let U := {Cal, Mum, Del, Chen,
Ban, Kan}. We then have an MAS (U, {Ri}1≤i≤4), where
R1 := {{Cal, Ban}, {Mum, Del}, {Chen}, {Kan}};
R2 := {{Cal, Del}, {Mum, Chen, Ban}, {Kan}};
R3 := {{Cal}, {Mum, Del, Ban}, {Chen, Kan}};
R4 := {{Cal}, {Mum, Ban}, {Del}, {Chen, Kan}}.
Let us consider a subset X := {Cal, Mum, Del} of U and suppose we wish
to define this set in terms of the attributes (Tra), (LO), (Li). We obtain dif-
ferent lower/upper approximations of X , e.g. XR1

= {Mum, Del} and XR2
=

{Cal, Del}. Moreover, in terms of types of elements, we shall have more possibil-
ities to be considered. For instance, there may be an object which is a possible
element of X in every (U, Ri), but may or may not be a positive element of X
there; or, it may be a possible element of X in some (U, Ri), but a negative
element of X in the rest. We give the following definitions.

Let μ := (U, {Ri}i∈N ) be an MAS, and X ⊆ U .

Definition 2. The strong lower approximation Xsμ
, weak lower approximation

Xwμ
, strong upper approximation Xsμ , and weak upper approximation Xwμ of

X, respectively, are defined as follows.

Xsμ
:=

⋂
XRi

; Xwμ
:=

⋃
XRi

; Xsμ :=
⋂

XRi ; Xwμ :=
⋃

XRi .
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If there is no confusion, we shall omit μ as the subscript in the above definition.
The relationship between the defined sets is:

Xs ⊆ Xw ⊆ X ⊆ Xs ⊆ Xw.

Note that if μ := (U, {R}) then Xs = Xw = XR, and Xs = Xw = XR. So
in the special case of a single approximation space, the weak/strong lower and
upper approximations are just the standard lower and upper approximations
respectively.

We thus obtain a partition of the domain U by the five disjoint sets Xs, Xw \
Xs, Xs \ Xw, Xw \ Xs, and (Xw)c. Note that the possibility of an element
x ∈ U to belong to X on the basis of information provided by μ, reduces as we
go from Xs to (Xw)c.

Definition 3. x ∈ U is said to be a

certain positive element of X, if x ∈ Xs,
possible positive element of X, if x ∈ Xw \ Xs,
certain negative element of X, if x ∈ (Xw)c,
possible negative element of X, if x ∈ Xw \ Xs, and
certain boundary element of X, if x ∈ Xs \ Xw.

The following can be shown.

Proposition 1

1. X ∩ Y s = Xs ∩ Y s ; X ∪ Y w = Xw ∪ Y w.

2. X ∩ Y s ⊆ Xs ∩ Y s ; X ∪ Y w ⊇ Xw ∪ Y w.

3. Xc
s = (Xw)c ; Xc

w = (Xs)c ; Xc
s = (Xw)c ; Xc

w = (Xs)
c.

4. If X ⊆ Y then Xs ⊆ Y s, Xw ⊆ Y w, Xs ⊆ Y s and Xw ⊆ Y w.

5. Xw = (Xw)
w

; Xs = (Xs)s ; Xw = (Xw)
w

= (Xs)w ; (Xs)w ⊆ Xw.

Remark 1. We observe from Proposition 1 (3) that Xw is the dual of Xs, while
Xs is the dual of Xw.

3 Different Notions of Definability

Let μ := (U, {Ri}i∈N ), and X ⊆ U.

Definition 4. X is said to be

lower definable in μ, if Xw = Xs,
upper definable in μ, if Xw = Xs,
strong definable in μ, if Xw = Xs, i.e. every element of U is either certain
positive or certain negative,
weak definable in μ, if Xs = Xw, i.e. X does not have any certain boundary
element.

It is then not difficult to obtain the following for lower and upper definable sets.
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Proposition 2

1. X is lower definable in μ, if and only if XRi
= XRj

, for each i, j ∈ N ,
i.e. the sets of positive elements in all the approximation spaces of μ are
identical. Similarly, X is upper definable in μ, if and only if the sets of
negative elements in all the approximation spaces of μ are identical.

2. X is both lower and upper definable in μ, if and only if the sets of boundary
elements in all the approximation spaces of μ are the same.

3. X is upper definable, if and only if Xc is lower definable.
4. If X and Y are upper definable then so are Xs, X

c
w, Xc

s, Xs ∪Y s, Xs ∩Y s.
5. Arbitrary union (intersection) of upper (lower) definable sets is also upper

(lower) definable.

Using Proposition 2 (4) and Remark 1, one would get corresponding properties
for lower definable sets. We also observe that the collection of upper (lower)
definable sets is not closed under intersection (union) – cf. Example 2 below.

Example 2. Let us consider an MAS μ := (U, {R1, R2}) where U := {a, b, c, d},
U/R1 := {{a, c}, {b}, {d}} and U/R2 := {{a, b}, {c, d}}. The subsets Y1 :=
{a}, Y2 := {c} of U are lower definable, but their union, i.e. the set Y1 ∪ Y2 =
{a, c}, is not lower definable. Similarly, the subsets Z1 := {a, b, d}, Z2 := {b, c, d}
are upper definable, but the set Z1 ∩ Z2 = {b, d} is not upper definable.

For strong definable sets, we have the following.

Proposition 3

1. ∅, U are both strong definable.
2. If X(⊆ U) is strong definable then Xc is also strong definable.
3. Arbitrary union and intersection of strong definable subsets of U are also

strong definable.
4. The following are equivalent.

(i) X is strong definable in μ.
(ii) There is a collapse of the regions given in (*) following Definition 2:

Xs = Xw = X = Xs = Xw.
(iii) X is both lower and upper definable in μ, and X is definable in some

approximation space of μ.
(iv) X is definable in each approximation space of μ.

Remark 2. From this Proposition, it may be concluded that the collection of all
strong definable sets forms a complete field of sets.

It is clear that, if X is definable in an approximation space of μ, it is weak
definable in μ. Not much more can be said about the collection of these sets, as
we see, for instance, from the following.

Example 3. Consider the MAS of Example 2. The subsets Y1 := {a, b} and
Y2 := {a, c} of U are weak definable, but the set Y1 ∩ Y2 = {a} is not weak
definable. Similarly, the subsets Z1 := {b}, Z2 := {c, d} are weak definable, but
the set Z1 ∪ Z2 = {b, c, d} is not weak definable.
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4 Membership Functions and Degree of Indiscernibility

We only consider MASs with finite cardinality.
Let μ := (U, {Ri}1≤i≤n) be an MAS and X ⊆ U . Given two objects x, y ∈ U ,

one may ask which one has a greater possibility to be an element of X . In other
words, one may be interested in a function which will determine the relative
possibilities of objects to be an element of a given set, based on the information
provided by μ. A natural and simple candidate for such a membership function
would be the mean of the rough membership functions corresponding to the
constituent approximation spaces.

Given μ and X ⊆ U , the membership function MX
μ (x) : U → [0, 1] is defined as

MX
μ (x) :=

∑n
i=1 fX

i (x)
n

,

where fX
i (x) := |[x]i∩X|

|[x]i| , i.e. fX
i is the rough membership function for X in the

ith approximation space of μ.
Using MX

μ (x), we can define lower and upper approximation of X with some
arbitrary level of precision π ∈ (1/2, 1] as follows [15]:

Xπ
μ := {x : MX

μ (x) ≥ π},, and X
π

μ := {x : MX
μ (x) > 1 − π}.

Thus if we take π = 1, then Xπ
μ = Xs and X

π

μ = Xw. From this it follows that
a set X ⊆ U is strong definable, if and only if Xπ

μ = X
π

μ for π = 1.
In another approach, one can determine the relative possibility of an object of

U to be an element of a subset X , by considering the number of instances when
the object is a positive/negative element of X in the constituent approximation
spaces of μ. We note that if an object is a positive (negative) element of X in
even one approximation space, it cannot be a negative (positive) element of X in
any approximation space. Thus we have three situations: x, y ∈ Xw; x, y /∈ Xw;
and x ∈ Xw, but y /∈ Xw.

A mathematical formulation of this idea may be given by considering a mem-
bership function GX

μ which is the mean of the three valued functions μX
i , i =

1, 2, . . . n, defined as follows.

μX
i (x) :=

⎧
⎪⎨

⎪⎩

1 if x ∈ Xi
1
2 if x ∈ X

i \ Xi

0 if x ∈ (X
i
)c

i.e. GX
μ (x) :=

∑ n
i=1 μX

i (x)
n . An easy observation leads to the following.

Proposition 4
1. GX

μ (x) = 1, if and only if x ∈ Xs.
2. GX

μ (x) = 0, if and only if x ∈ (Xw)c.
3. 1/2 < GX

μ (x) < 1, if and only if x ∈ Xw \ Xs.
4. GX

μ (x) = 1/2, if and only if x ∈ Xs \ Xw.
5. 0 < GX

μ (x) < 1/2, if and only if x ∈ Xw \ Xs.
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It is not difficult to see that GX
μ and MX

μ match on Xs and (Xw)c. But we
may have x ∈ Xw and y ∈ Xs \ Xw such that MX

μ (y) > MX
μ (x), although

GX
μ (y) < GX

μ (x).

4.1 Degree of Indiscernibility of Objects in μ

Let us now consider indiscernibility in μ, by combining the information available
from each source. An equivalence relation that would reflect this combination
is the intersection of all the indiscernibility relations in μ. Let us denote the
intersection by indμ, i.e. indμ := ∩n

i=1Ri.
We observe that

Xs ⊆ Xw ⊆ Xindμ
⊆ X ⊆ Xindμ ⊆ Xs ⊆ Xw.

It is easy to see that every weak definable set in μ is definable in the approx-
imation space (U, indμ). Thus the number of definable sets in (U, indμ) is larger
than the number of weak (or strong) definable sets in μ.

In a more general scenario, one may also wish to consider the number of ap-
proximation spaces in which these objects are indistinguishable. This motivates
us to consider a fuzzy relation based on MASs.

Definition 5. The degree of indiscernibility of objects x, y ∈ U in μ, is given
by a fuzzy relation R on U × U defined as:

R(x, y) =
|rel(x, y)|

n
, x, y ∈ U,

where rel(x, y) := {Ri : xRiy} (so that 0 ≤ |rel(x, y)| ≤ n).
In a standard way [3], fuzzy lower and upper approximations of a set X ⊆ U ,
L̃X

μ , ŨX
μ : U → [0, 1] may be defined.

L̃X
μ (x) := min{1 − R(x, y) : y /∈ X}, and

ŨX
μ (x) := max{R(x, y) : y ∈ X}.

R is clearly a (fuzzy) reflexive and symmetric relation.

Proposition 5 (Properties of L̃X
μ , ŨX

μ )

1. x ∈ Xindμ
, if and only if L̃X

μ (x) > 0.

2. x ∈ Xindμ , if and only if ŨX
μ (x) = 1.

3. L̃X
μ (x) = 0 ⇒ x /∈ Xw; L̃X

μ (x) = 1 ⇔ x ∈ Xs.

4. ŨX
μ (x) = 1 ⇒ x ∈ Xs; ŨX

μ (x) = 0 ⇔ x /∈ Xw.

5. L̃X
μ (x) = 0 and ŨX

μ (x) = 1 ⇒ x ∈ Xs \ Xw.

6. L̃X∪Y
μ (x) ≥ max{L̃X

μ (x), L̃Y
μ (x)}; ŨX∪Y

μ (x) = max{ŨX
μ (x), ŨY

μ (x)}.
7. L̃X∩Y

μ (x) = min{L̃X
μ (x), L̃Y

μ (x)}; ŨX∩Y
μ (x) ≤ min{ŨX

μ (x), ŨY (x)}.
8. L̃Xc

μ (x) = 1 − ŨX
μ (x); ŨXc

(x) = 1 − L̃X
μ (x).

9. If X ⊆ Y , then L̃X
μ ≤ L̃Y

μ and ŨX
μ ≤ ŨY

μ .
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4.2 Another Membership Function for μ

We now consider the rough membership function with respect to the indiscerni-
bility indμ, i.e. fX

indμ
=

|[x]indμ∩X|
|[x]indμ | .

Proposition 6

1. If x ∈ Xw then fX
indμ

(x) = 1.

2. If x /∈ Xs then fX
indμ

(x) = 0.

3. If x ∈ Xs then 0 ≤ fX
indμ

(x) ≤ 1.
4. If x, y are such that at least one of them is not in Xw,

fX
indμ

(x) ≥ fX
indμ

(y) ⇒ GX
μ (x) ≥ GX

μ (y).
The same holds if at least one of them is not in (Xs)c.

5. If x, y are such that at least one of them is not in Xs \ Xw,
GX

μ (x) ≥ GX
μ (y) ⇒ fX

indμ
(x) ≥ fX

indμ
(y).

We note that for x, y ∈ Xw, or x, y ∈ (Xs)c, we have fX
indμ

(x) = fX
indμ

(y) = 1
but GX

μ (x) >=< GX
μ (y). Similarly, for x, y ∈ Xs \Xw, we have GX

μ (x) = GX
μ (y)

but fX
indμ

(x) >=< fX
indμ

(y). Also note that for x ∈ Xw \ Xw and y ∈ (Xs)c,
we always have GX

μ (x) > GX
μ (y) and fX

indμ
(x) > fX

indμ
(y) but we could have

MX
μ (y) > MX

μ (x).

5 Conclusions

Some properties of different kinds of definable sets in an MAS μ over a domain U
are studied. Two membership functions MX

μ , GX
μ for μ are defined, following two

different approaches. The intersection indμ of all constituent indiscernibilities of
μ is considered, to reflect the combined information from all the approximation
spaces of μ. (U, indμ) is finer than the individual approximation spaces of μ, and
points to other possibilities for defining composite indiscernibilities. Following
this line of thought, a fuzzy relation is presented which represents the ‘degree of
indiscernibility’ of two objects in μ.

To define MX
μ , we have used the rough membership functions of the con-

stituent approximation spaces of μ. But there are limitations in this approach,
and one may adopt alternatives. For example, the (probabilistic) membership
function [3] PX of the constituent approximation spaces PX(x) = Pr(X∩[x])

Pr([x])
may be used, where Pr is a probability distribution on the domain U . In some
applications, a ‘preference’ may need to be accorded to information provided
by one source over that by another. In such cases, one may define membership
functions by considering weighted mean.

In this paper, we have worked with equivalence relations. However, the gen-
eral notion of dynamic spaces [4] would be more appropriate for many appli-
cations. For example, in [2], a conditional probabilistic relation is regarded to
be more suitable in representing the relationship between two elements of data.
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For generalized approximation spaces, there has been much work on exploring
membership functions [12,6,15,14,2,11]. Depending on the collection of relations
and the desired application, a study of appropriate membership functions and
composite indiscernibilities for different dynamic spaces (generalized MASs) may
be a worthwhile pursuit.
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Abstract. Rough sets are widely used in feature evaluation and at-
tribute reduction and a number of rough set based evaluation functions
and search algorithms were reported. However, little attention has been
paid to compute and compare stability of feature evaluation functions. In
this work, we introduce three coefficients to calculate the stabilities of fea-
ture significance via perturbing samples. Experimental results show that
entropy and fuzzy entropy based evaluation functions are more stable
than the others and fuzzy rough set based functions are stable compared
with the crisp functions. These results give a guideline to select feature
evaluation for different applications.

1 Introduction

As the capability of gathering data increases, we are usually confronted data
with hundreds, even ten thousands of features and millions of samples nowa-
days. It is believed that learning algorithms will be confused by the superfluous
irrelevant features. Feature selection as a common preprocessing step for pattern
recognition and machine learning is attracting much attention from theoretical
and application domains [1,2,5,6,7].

Rough set theory, first proposed by Pawlak, is proven to be a powerful tool for
dealing with imperfect information [3]. Feature evaluation and attribute reduc-
tion are considered as the most important application of rough sets. A number
of algorithms were developed to evaluate features and search reducts based on
rough sets. An early review about rough set based feature selection and attribute
reduction was given in [9]. The algorithms discussed in this literature were devel-
oped based on Pawlak’s rough sets, which take equivalence relations as the foun-
dation of the model. However, the databases in real-world applications usually
come with heterogeneous features. Thus fuzzy rough sets, covering based rough
sets, neighborhood rough set and Tolerance-based approaches were introduced
and some new algorithms based on these models were proposed [6,10,13,14].
A number of feature evaluating functions were developed based on rough sets.
[4,6,8,11,12,15,16].

Although a number of coefficients for feature evaluation were proposed, little
work has been devoted to compare them in practical situations. In 1996, Choubey
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and Deogun et al compared the classification accuracies and feature subsets be-
tween different evaluation coefficient. Their work was limited in Pawlak’s rough
set model; yet, only accuracy is used in comparing. Obviously, there are different
viewpoints to compare them, such as numbers of selected features, complexity
of the model learned from the reduced data, computational complexity and sta-
bility [19], where stability is an important measure to analyze the properties
of feature evaluation functions. On one side, one requires a stable function for
getting consistent results. On the other side, one needs an instable function to
get diverse subsets of features for ensemble learning [18,19,20].

The stability of classification algorithms attracted much attention; However,
little attention has been paid to the stability of feature evaluation and selection.
Kalousis et al designed some measures to estimate the stability of feature eval-
uation functions in [17]. They considered the correlation or similarity degrees
between different experiments via bootstrapping and obtained a relation ma-
trix, where the element is the correlation coefficient or similarity of the ith and
jth estimates. Then the grand average of the matrix is taken as the final mea-
sure of stability. Intuitively Correlation should be high if the evaluation function
is stable because it is not sensitive to the variation of samples. We name this
as sample-stability. In this work, we will introduce these measures to discuss
the property of rough set based feature evaluation. Moreover, we introduce an
information function to compute the stability of relation matrix [21].

2 Stability Coefficients of Feature Evaluation

Generally speaking, classification learning can be understood as a task of build-
ing a predictive model f : C → d from a set of samples which can be formulated
as < U, C, d >, where U is the set of samples {x1, x2, · · · , xn}; C is the set of
condition attributes {a1, a2, · · · , am} and d is the decision of samples. Usually,
the elements in C are not equivalently important for constructing the predictive
model f . Some of features are even irrelevant and should be eliminated from
C. Therefore, an evaluation function is introduced to estimate the relevance be-
tween conditions and decision. With the evaluation function, a weight vector
{w1, w2, · · · , wm} can be associated with the attributes.

As to the same learning task, we examine the variation of weight vectors if
the samples or the parameters in learning models are perturbed. We here require
a measure to calculate the variation. Pearson’s correlation coefficient can be
introduced. Given two estimates of weight vectors W = {w1, w2, · · · , wm} and
W ′ = {w′

1, w
′
2, · · · , w′

m}, correlation coefficient is computed as

Sw(W, W ′) =

m∑

i=1
(wi − wi)(w′

i − w′
i)

√
m∑

i=1
(wi − wi)2

m∑

i=1
(w′

i − w′
i)2

.

If there are k estimates of feature vector, we get a k×k matrix M = (mij)k×k,
where element mij is the correlation coefficient of the ith and jth estimates.
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In some cases, one may care the ranking of the feature weights, rather than
the weights themselves. Given two vectors of weights W = {w1, w2, · · · , wm}
and W ′ = {w′

1, w
′
2, · · · , w′

m}, two rankings R = (r1, r2, · · · , rm) and R′ =
(r′1, r

′
2, · · · , r′m) can be obtained via ranking the features with the weights in

ascending order or descending order, where ri and r′i are the orders of feature
ai. To measure correlation between two rankings, we use Spearman’s rank cor-
relation coefficient:

SR(R, R′) = 1 − 6
m∑

i=1

(ri − r′i)
2

m(m2 − 1)
.

Value domain ofSR(R, R′) is [-1, 1]. SR(R, R′) = 1 means that the two rank-
ings are identical; SR(R, R′) = 0 means that there is no correlation between
these rankings, while SR(R, R′) = −1 means the rankings have exactly inverse
orders.

Generally speaking, the output of a feature selection algorithm is a subset
of features. Using an unstable algorithm the selected subset may be different
if we perturb the samples or model parameters. Assumed B = {a1, a2, · · ·} and
B′ = {a′

1, a
′
2, · · ·} are two subsets of features, the similarity between these subsets

can be calculated with a straightforward adaptation of Tanimoto distance:

SS(B, B′) = 1 − |B| + |B′| − 2|B ∩ B′|
|B| + |B′| − |B ∩ B′| =

|B ∩ B′|
|B| + |B′| − |B ∩ B′| ,

where | • | means the cardinality of a set. SS reflects the overlap of two sets.
SS ∈ [0, 1]. SS(B, B′) = 1 if B = B′, while SS(B, B′) = 0if B ∩ B′ = ∅. As to
a stable feature selection algorithm, the selected features may be similar even if
the learning samples or model parameters are different. In this situation, a great
value of SS is obtained.

A resampling technique, such as bootstrapping, can be introduced for esti-
mating multiple weight vectors. Bootstrapping is an effective method to produce
diversity in constructing multiple classifier systems. This approach randomly se-
lects n patterns with replacement from the original set of n patterns. Another
well-known resampling method is k-fold cross-validation. By dividing data set
randomly into k disjoint subsets, new overlapping training sets can be created
for each estimate, by leaving out one of these k subsets and training on the
remainder. K-fold cross validation (CV) is widely applied in estimating classifi-
cation performance of a learning system. Usually k is specified with 3, 5 or 10.
In this work, we are going to select 10-fold CV to estimate the stability of a
feature evaluation algorithm. And we can obtain 10 estimates of significance of
feature vector.

A 10 × 10 matrix is produced by computing the correlation coefficient or
similarity of each pair of estimates. We denote it by (Sij)10×10. Obviously, we
have Sii = 1 and Sij = Sji. Moreover, Sij = 1 if the estimated weights or the
selected features are all the same. We consider that the evaluation function is
stable in this case. Sij = 0 (i �= j) if the estimated weights are irrelevant or
the selected features are disjoint. Correspondingly, the evaluation function is
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unstable. We need to estimate the stability of feature evaluation function with
the matrix (Sij)10×10. It is notable that Sij usually takes values in unit interval
[0, 1] in practice. Therefore, we can consider the matrix as a correlation coefficient
based relation matrix. Yu, Hu and Wu discussed the uncertainty measure of this
kind of matrix, respectively [21]. Here we introduce the fuzzy entropy to compute
the overall similarity represented in the matrix as the measure of stability.

Given a fuzzy relation matrix (Sij)k×k, the uncertainty is computed as

H(S) = −
k∑

i=1

1
k log |Si|,where |Si| =

k∑

l=1
Sik.

H(S) ∈ [0, 1], H(S) ≤ H(S′)if S ⊇ S′, where S ⊇ S′ means that ∀ij,
Sij ≥ S′

ij . Furthermore we have H(S) = log kif Sij = 0, i �= j and H(S) = 0 if
∀ij, Sij = 1. In fact, H(S) can be understood as a measure of instability in this
context because a great value of H(S) means an instable evaluation function.

3 Rough Set Based Feature Evaluation Functions

Given a decision table < U, C, d >, an optimal subset B ⊆ C, called a reduct,
should satisfy that 1) POSB(D) = POSC(D); 2) ∀a ∈ B, POSB(D) ⊃
POSB−a(D). The first term guarantees that the selected features B produce
the same decision positive region as the original features. The second condition
shows features in the reduct is indispensable. In this work, we discuss seven eval-
uation functions: dependency, information entropy, consistency, neighborhood
dependency (ND), fuzzy entropy (FE), Gaussian kernel approximation based
fuzzy dependency (GKA) and neighborhood consistency (NC).

Given a decision table < U, C, d >, C = {a1, a2, · · · , am}, the dependency
of decision d to ai is defined as rai(d) = |POSai

(d)|
|U| , i = 1, · · · , m, where

POSai(d) = {x|x ∈ U, [x]ai ⊆ [x]d}.
Assumed that B is a subset of features, and U/B = {X1, X2, · · · , Xl} and

U/d = {Y1, Y2, · · · , Yl} are two families of equivalent classes induced by B and
d, if we view P (Xi) = |X i|/|U | as a probability measure, then the entropy
of the system can be computed by H(B) = −

∑
i p(Xi) log p(Xi). The con-

ditional entropy, is calculated with H(B|d) = H(B ∪ d) − H(B). In terms
of information entropy, the significance of attribute a is defined as MI(B, d).
It is easy to show MI(B, d) = H(d) + H(B) − H(B ∪ d). Given a set of
features C = {a1, a2, · · · , am}, the significance of features can be written as
MI(ai, d) = H(d) + H(ai) − H(ai ∪ d).

Hu et al. [8] introduced consistency to measure the significance of features.
Consistency is the percentage of samples which can be correctly classified ac-
cording to majority decision rule. As we know, the equivalent classes with sam-
ples from the same label belong to the decision positive region, while equivalent
classes with samples from different decision labels constitute the decision bound-
ary region. In computing dependency, the samples in the boundary region are not
taken into consideration. However, not all the samples in the boundary region
will be misclassified in practice. According to majority decision rule, the equiva-
lent classes with samples from different decision labels will be assigned with the
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majority class. Correspondingly, the samples with the minority classes is mis-
classified in this case. Slezak first captured this idea and named the percentage
of samples of majority classes as attribute quality measure [16]

Pawlak’s rough sets, information entropy and consistency take equivalence
relationes and equivalent classes as the foundation of the methods. These ideas
work when the available features are categorical. Now three approaches were
developed to deal with numerical features.

First, Neighborhood relationes and neighborhood rough sets were introduced
to deal with numerical features, where we take the neighborhood informa-
tion granules, to approximate the decision. Formally, the neighborhood granule
around sample x is the subset: N(xi) = {x|||x − xi|| ≤ δ, x ∈ U}, where || • ||
stands for some distance function. In neighborhood model, the decision positive
region is defined as POSB(d) = {x|x ∈ U, N(x) ⊆ [x]d}, where N(x) is the
neighborhood granule in feature space B and [x]dis the set of samples with the
same decision as x. The neighborhood dependency of d to numerical features B
is defined as |POSB(d)|/|U |. The neighborhood model is a natural generalization
of Pawlak’s model and it will degrade to Pawlak’s model if δ = 0.

Like Pawlak’s rough sets, there is a similar problem with the function of neigh-
borhood dependency. As mentioned above, not all the samples in the boundary
region are misclassified; only the samples in the minority classes are mislabeled
according to majority decision rule. Therefore, neighborhood consistency was
introduced to evaluate the numerical features.

Finally, fuzzy set theory is integrated with rough sets in dealing with numerical
information. Given a decision table < U, C, d >, R is a fuzzy relation over U and
X is a fuzzy subset of U.The lower approximation and upper approximation is
denoted by RX and RX . ∀x ∈ U ,are given by

{
μRX(x) = ∧{μX(y) ∨ (1 − R(x, y)) : y ∈ U}, x ∈ U
μRX(x) = ∨{(μX(y) ∧ R(x, y) : y ∈ U}, x ∈ U

Jensen and Shen extended the dependency in Pawlak’s model into the fuzzy
case and proposed the definition of fuzzy dependency in [6].

How to extract the fuzzy relation from the data is one of the key problems in a
fuzzy rough set based feature evaluation. Chen, Hu et al. compute the similarity
degree between two samples with Gaussian kernel [22]. They found that the
membership of sample x ∈ dt to the decision positive region is determined by
the nearest sample u with a different class. The significance of Bcomputed with
Gaussian kernel approximation (GKA) is

r =
∑

x∈U
inf

u/∈dt

√
1 − R(x, u)2/|U |.

The similarity relation extracted with a fuzzy similarity function can be writ-
ten as a fuzzy matrix M(R) = (rij)n×n, where rij is the similarity degree between
samples xi and xj . The uncertainty quantity of the fuzzy relation is defined in
[12,21], and attribute reduction was constructed based on the proposed fuzzy
entropy.
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With the evaluation functions, we can construct various feature selection al-
gorithms by using different search strategies. We here select the greedy search
strategy in comparing the stability of feature selection for efficiency.

4 Experimental Analysis

To empirically estimate the stability of feature evaluation functions, 12 databases
are gathered from UCI Machine Learning Repository. There are only categorical
features in databases soybean and zoo, and only numerical features in databases
iono, sonar, wdbc, wine and wpbc, while anneal, credit, heart hepatitis and
horse have both categorical and numerical features. In computing the signif-
icance based on dependency, entropy and consistency, the numerical features
should be discretized. Entropy-MDL discretization algorithm is used in prepro-
cessing. Moreover, numerical features are standardized into [0, 1].In the below,
the parameters used in computing neighborhood relation in neighborhood rough
sets, the kernel parameter used in Gaussian kernel approximation is 0.1.

Table 1 shows the entropy value computed on different data with the seven
evaluation functions, where ND for neighborhood dependency, FE for fuzzy en-
tropy, GKA for Gaussian kernel fuzzy approximation, NC for neighborhood con-
sistency, while D, E, C for dependency, entropy and consistency, respectively. As
discussed above that the value of entropy reflects the instability of the evaluation
functions. The greater the entropy is, the more the function is stable. Among
these evaluation functions, entropy and fuzzy entropy produce the least value of
entropy. This shows that entropy and fuzzy entropy is more robust to sample
perturbation than other functions. By contraries, neighborhood consistency and
consistency are instable. It is notable that dependency gets some NaN values in
table 1 for data credit, heart, and sonar. It results from the zero weight for all

Table 1. Stability of feature evaluating indexes

Data ND FE GKAD NC D E C

anneal 0.0001 0.0002 0.0001 0.0031 0.0001 0.0002 0.0019
credit 0.1285 0.0041 0.0208 0.5728 NaN 0.0046 0.6235
heart 0.1888 0.0310 0.0345 0.2927 NaN 0.0232 0.1694

hepatitis 0.1052 0.0165 0.0367 0.0330 0.0029 0.0171 0.0095
horse 0.1319 0.0060 0.0160 0.0415 0.0696 0.0027 0.0253
iono 0.1385 0.0389 0.1056 0.2918 0.0623 0.0210 0.1368
sonar 0.3022 0.0704 0.1910 1.0195 NaN 0.0208 0.4477
wdbc 0.0196 0.0018 0.0084 0.0707 0.1445 0.0017 0.1510
wine 0.0511 0.0079 0.0260 0.7752 0.0688 0.0066 0.4406
wpbc 0.0918 0.0920 0.0695 0.8214 0.5737 0.1260 0.7144

soybean 0.0290 0.0009 0.0290 0.1909 0.0290 0.0009 0.1909
zoo 0.0002 0.0054 0.0002 0.0637 0.0002 0.0054 0.0637

Average 0.0989 0.0229 0.0448 0.3480 – 0.0192 0.2479
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Table 2. Stability of feature ranking index

Data ND FE GKAD NC D E C

anneal 0.0222 0.0122 0.0190 0.0027 0.0222 0.0124 0.0009
credit 0.1013 0.0358 0.0599 0.6843 0.0141 0.0257 0.7221
heart 0.0918 0.0341 0.0326 0.4181 0.0549 0.0398 0.2992

hepatitis 0.0476 0.0460 0.0034 0.0126 0.0012 0.0438 0.0044
horse 0.0622 0.0099 0.0044 0.0536 0.0655 0.0082 0.0453
iono 0.1338 0.0819 0.1433 0.3574 0.0796 0.0377 0.1556
sonar 0.1958 0.1774 0.2230 1.0659 0.0351 0.0111 0.2739
wdbc 0.0842 0.0076 0.0165 0.1128 0.0693 0.0035 0.2909
wine 0.1533 0.0111 0.0347 0.7890 0.0549 0.0399 0.5293
wpbc 0.3127 0.1291 0.2254 0.5338 0.2352 0.2587 0.2831

soybean 0.0352 0.0052 0.0352 0.3378 0.0352 0.0052 0.3378
zoo 0 0.0077 0 0.0984 0 0.0077 0.0984

Average 0.1033 0.0465 0.0664 0.3722 0.0556 0.0411 0.2534

the single features. In this case, the correlation coefficient can not be computed
because the denominator is zero. Therefore the corresponding value of entropy
is also meaningless. As to other data, such as horse, iono, wpbc, etc, dependency
is comparable with consistency. Gaussian kernel based fuzzy approximation is
more stable than neighborhood dependency and neighborhood consistency with
respect to data credit, heart, horse, iono, sonar, wdbc and wpbc. We rank the
evaluation functions in terms of stability of weights: entropy > fuzzy entropy >
GKA > neighborhood dependency > consistency > neighborhood consistency.

Sometimes users require the ranking of features for comparing the relatively
importance. Raking is very important in feature ranking based selection. The
variation of weights does not necessarily cause the variation of ranking. So, the
instable evaluation functions of feature weights may produce stable ranking.
Table 2 presents the stability of feature ranking. Among ND, FE, GKA and
NC, FE and GKA are stable compared with ND and NC. E is the most stable
among D, E and C. Comparing table 1 and table 2, we can get that the stability
of feature ranking has the same rule as the stability of feature weight. The
evaluation function with the great stability in weight estimation also gets the
great stability in feature ranking.

Now let’s discuss the stability of the selected features. Here the features are
selected with the greedy search strategy. By perturbing the samples, we get 10
subsets of features. The similarity between two subsets is computed with SS ,
and the overall similarity is the entropy of the similarity matrix. The value of
zero in table 3 means that the selected features in 10 reducts are identical. If
there are two empty sets of features, the similarity degree in this situation can
not be computed. Then we get the entropy of stability is NaN.

ND, GKA, NC, D and C select the same features in 10 reductions as to data
anneal, while D gets empty sets of features in some reducts for credit, heart
and horse. Moreover, we can also get the conclusions that: as to stability of
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Table 3. Stability of feature subsets

Data ND FE GKAD NC D E C

anneal 0 0.3103 0 0 0 0.3103 0
credit 0.0984 0.0410 0.0790 0.0762 NaN 0.0644 0.3924
heart 0.2292 0.2876 0.0528 0.3413 NaN 0 0.0745

hepatitis 0.4898 0.1529 0.1327 1.1623 0.6473 0.8489 0.9242
horse 0.6169 0.4089 0.7945 0.9174 0.3981 0.2842 0.2842
iono 1.1287 1.0856 1.0665 1.6040 0.5572 1.0486 1.0699
sonar 2.2376 0.8374 1.6681 1.9947 NaN 0.5896 0.7410
wdbc 0.9794 0.3667 0.4874 1.2733 0.5044 0.7054 1.4939
wine 0.5973 0.9701 0.7139 0.8800 0.1174 0.3557 0.2336
wpbc 1.1481 1.1728 0.9656 1.2753 1.4681 1.2950 1.2790

soybean 0.3567 0.1696 0.3567 0.1539 0.3567 0.1696 0.3567
zoo 0.2826 0.5135 0.2826 0.0549 0.2826 0.5135 0.2826

Average 0.6804 0.5264 0.5500 0.8111 – 0.5154 0.5943

selected features, entropy > fuzzy entropy > GKA > neighborhood dependency >
consistency > neighborhood consistency.

5 Conclusion

Although the stability of classification learning algorithms is widely discussed
and used in comparing and selecting classification algorithms, little work has
been devoted to analyzing the stability of feature evaluation and selection. Rough
set theory is a hot topic in feature selection and attribute reduction these years.
A number of feature evaluation functions have been proposed based on rough set
methodology. In this work, we introduce three measures to calculate and com-
pare the stability of rough set based feature evaluation. We empirically study the
influence of sample perturbation on the stability and find entropy and fuzzy en-
tropy based evaluation functions are more stable than consistency, neighborhood
dependency, and neighborhood consistency functions, while Gaussian kernel ap-
proximation based fuzzy rough sets is similar to entropy functions.
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Abstract. A rough set-based semi-naive Bayesian classification method
is applied to dependency parsing, which is an important task in syn-
tactic structure analysis of natural language processing. Many parsing
algorithms have emerged combined with statistical machine learning
techniques. The rough set-based classifier is embedded with Nivre’s de-
terministic parsing algorithm to conduct dependency parsing task on
a Chinese corpus. Experimental results show that the method has a
good performance on dependency parsing task. Moreover, the experi-
ments have justified the effectiveness of the classification influence.

Keywords: Rough set, Attribute dependency, Semi-naive Bayesian clas-
sifier, Dependency parsing.

1 Introduction

In natural language processing, dependency parsing is an important task as
classification in data mining, and interest in dependency parsing has been in-
creasing fast in recent years. Many syntactic parsing methods have been pro-
posed, among which syntactic representation, parsing algorithms and machine
learning are three mainstream dependency parsing techniques. Machine learn-
ing techniques and parsing algorithms are often combined together to carry out
the parsing task. Nivre’s memory based parsing algorithm [1] is such a kind of
method. As Yuret [2] says, dependency parsing can be regarded as a classification
task. So in this paper, the approach is designed to perform Nivres dependency
parsing algorithm [1] utilizing a rough set-based semi-naive Bayesian classifier
[3]. Experimental results show that the proposed method achieves a comparable
performance on the Chinese corpus.

In data mining, classification is an important task, and many classification
techniques have been developed, among which Naive-Bayesian classifier and de-
cision tree have come into wide use because of their good performance. Naive-
Bayesian classification is a simple, computationally efficient and accurate clas-
sifier. Its characteristics have been shown in many contributions [4]. Naive-
Bayesian classification is based on Bayes theorem and an assumption that all
attributes are mutually independent within each class. This classifier predicts
that a test example A with a set of attribute values A =< a1, a2, . . . , an >
belongs to the class Ci, which maximizes the posterior probability P (Ci|A)

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 97–105, 2008.
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=
P (Ci)

∏
j P (aj |Ci)

P (A) , where P (Ci) is the prior probability of class Ci, and P (aj |Ci)
is the conditional probability of examples with attribute value aj occurs in class
Ci. Although Naive Bayesian classifier has been proved to be the optimal clas-
sifier [5] in many domains, we cannot make sure that Naive Bayesian classifier
performs better than others when the attribute dependence violates the mutual
independent assumption. Thus, many kinds of semi-Naive Bayesian classifiers
were developed to alleviate the strict assumption, e.g., TAN [6], LBR [7], AODE
[8], NBTree [9] are among the well-known semi-Naive Bayesian classifiers. De-
cision tree learning is another classical classification technique. It is also very
fast and comprehensible. Conducting the attribute selection is the main part of
the inducing process at the current tree node. The process of inducing a deci-
sion tree classifier often uses the top down algorithms which follow the divide
and conquer strategy [10,11]. Along with the top down process, replication and
fragmentation [12] may decrease decision tree learner’s performance.

Thus, we design an approach to perform Nivres dependency parsing algorithm
[1] utilizing a rough set-based semi-naive Bayesian classifier [3]. Experimental
results illustrate that the proposed method achieves a comparable performance
on the Chinese corpus.

This paper is organized as follows: section 2 describes the related works on
dependency parsing in natural language processing and rough sets dependence
measure; section 3 describes the rough set-based classifier algorithm; section 4 il-
lustrates the performance of Nivre’s parsing algorithm embedded with the rough
set-based classifier on a Chinese corpus; section 5 makes a conclusion and dis-
cusses the future work.

2 Preliminaries

2.1 Dependency Parsing

Dependency parsing, which is a hot and important topic in natural language
processing, is a kind of syntactic structure, consisting of lexical terms, linked by
binary asymmetric relations. The Fig. 1 below shows an example of dependency
between the words for a Swedish sentence. “Dependency” means a kind of re-
lationships between two words according to “head rules”. If there exists a rule
that nouns are dependent on verbs, so “John hit it” implies two dependencies:
“John” is dependent on “hit” and “it” is dependent on “hit”.

In recent years, many parsing algorithms and methods have emerged. Char-
niak [13] presents a parser which parses Wall Street Journal tree-bank down
to Penn tree-bank style with 90% accuracy. McDonald [14] regards dependency
parsing as a task to find a maximum spanning tree in a directed graph, and
this parser can be naturally extended to non- projective parsing. Yamada [15]
proposes a parsing algorithm with three parsing actions: shift, right and left.
Similarly, Nivre [16] proposes another parsing algorithm with four parsing ac-
tions: shift, reduce, right and left. Also, Nivre [1] regards dependency parsing
as a classification task and utilizes memory based method to guide parsing
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Fig. 1. Swedish: an example for dependency graph

process. Among them, Yamada and Nivre’s algorithms are representative meth-
ods embedded with classification techniques.

To understand Yamada and Nivre’s algorithms, we need to give a definition
of a well-formed dependency graph [16]:

(1) A string of words W is represented as a list of tokens, where each token
n = (i, w) is a pair consisting of a position i and a word form W ; the functional
expressions POS(n) = i and LEX(n) = w can be used to extract the position
and word form of a token. We let < denote the complete and strict ordering of
tokens in W , i.e. n < n′ iff POS(n) <POS(n′).

(2) A dependency graph for W is a directed graph D=(NW , A), where the
set of nodes NW is the set of tokens in W , and the arc relation A is binary,
irreflexive relation on NW . We write n → n′ to say that there is an arc from n
to n′, i.e. (n, n′) ∈ A; we use →∗ to denote the reflexive and transitive closure
of the arc relation A; and we use ↔ and ↔∗ for the corresponding undirected
relations, i.e. n ↔ n′ iff n → n′ or n′ → n.

(3) A dependency graph D=(NW , A) is well-formed iff the following condi-
tions are satisfied:

Single head: (∀nn′n′′)(n → n′ ∧ n′′ → n′) ⇒ n = n′′

Acyclic: (∀nn′)¬(n → n′ ∧ n′ →∗ n)
Connected: (∀nn′)n ↔∗ n′

Projective: (∀nn′n′′)(n ↔ n′ ∧ n < n′′ < n′) ⇒ (n →∗ n′′ ∨ n′ →∗ n′′)
Yamada and Nivre’s algorithms are all based on the formal definition of de-

pendency graph, and carry out the dependency parsing guided by several actions.
There is a difference between Yamada and Nivre’s parsing algorithms. At first,
Yamada’s algorithm [17] was designed for Japanese parsing with only two ac-
tions and later Yamada [15] added one more action to the algorithm so that
when parsing English his method can achieve better results. Nivre’s algorithm
[16] has four actions : left, right, reduce, shift, with one more action ”reduce”
than Yamada’s.

Nivre’s deterministic parsing algorithm [16] is shown in Table 1. In the ta-
ble, 〈S,W,A〉 is a triple which represents a state during the parsing process.
W is the input string of one single sentence; S is a stack store the tokens re-
moved from the stack of W ; A records the set of arcs between the words in
W. Every state in the parsing process has a triple 〈S,W,A〉 representation,
and the parsing algorithm predicts an action based on the current state, and
carries out the action which changes the state. This process repeats until W is
empty.
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Table 1. Formal Description of Actions

Initialization: 〈nil, W, ∅〉
Termination: 〈S, nil,A〉
Left Arc: 〈n|S, n′|W,A〉 → 〈S, n′|W,A ∪ {(n′, n)}〉

if LEX(n) ← LEX(n′) ∈ R ¬∃n′′(n′′, n) ∈ A
Right Arc: 〈n|S, n′|W,A〉 → 〈n′|n|S,W,A ∪ {(n, n′)}〉

if LEX(n) → LEX(n′) ∈ R ¬∃n′′(n′′, n′) ∈ A
Reduce: 〈n|S,W,A〉 → 〈S,W,A〉
Shift: 〈S, n|W,A〉 → 〈n|S,W,A〉

2.2 Rough Sets Dependence Measure

In rough set theory [18], an information table is denoted by S = 〈U, A, V, f〉,
where U denotes a finite and nonempty set of instances, which is called universe;
we have A = C ∪D, and C ∩D = ∅, where A denotes the attribute set, and C is
the nonempty condition attribute set and D is the nonempty decision attribute
set, and often card(D) = 1; V =

⋃
a∈A Va is the domain of attribute values; f

is an information function such that f(ui, a) ∈ Va, for every a ∈ A and every
ui ∈ U .

Based on the above definitions and lower/upper approximations [18] in Rough
Sets , we introduce Rough Sets dependence measure, which is utilized in Pawlak
[19] to measure the dependencies among attributes.

Dependency measure

K(P, Q) =

m∑

i=1
card(P (Xi))

card(U)
, where P ∩ Q = ∅, Xi ∈ E(Q). (1)

3 Rough Set-Based Classifier

Similar with Naive Bayesian classifiers and decision tree learners, the rough set-
based classifier [3] utilizes the rough set methodology 1 to measure the attribute
dependencies, and splits the training data into subsets in order to alleviate the
interdependence using a tree model. The growth of the tree structure of the
classifier continues until there are no dependencies in the subset of training
data or the instances in the subset are less than a threshold. And finally, the
classifier generates a local Naive Bayesian classifier in each leaf node. The pro-
cedure is similar with the decomposition methods in RSES, but different in
the decomposition measure which is the rough set dependence measure in our
method.

Let A1 = {a11, . . . , a1g} denote the set of the test attributes on the path to the
leaf, and let A2 = {a21, . . . , a2(n−g)} denote the set of the remaining attributes.
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The classifier in [3] classifies the test example by choosing the class with the
maximum posterior probability:

argmax
ci

⎛

⎝P (ci|a1t)
n−g∏

j=1

P (a2j |ci, a1t)

⎞

⎠ (2)

where a1t ∈ A1, and it is a constant for a test example. Detailed algorithm is
presented in Table 2.

Table 2. Rough Set-based Classifier Algorithm

Rough Set-based Classifier Algorithm
Input: Att, Data, TreeLevel, θ, P , Q = Att − P .

Output: A decision tree-like model.

Algorithm begin:
Initialization: P = ∅, Q = Att − P .

For(ai ∈ Q)

{
Pi = P ∪ {ai}; Qi = Q − {ai}; compute K(Pi, Qi);

}
index=arg max

i
K(Pi, Qi);

If(stopping criterion==false)

{
data[]=split(Data,index);

Pindex = P ∪ {aindex};Qindex = Q − {aindex};

For(data[i])

RSClassifier(Att,data[i],TreeLevel+1,θ,Pindex ,Qindex);

}
Else

NaiveBayes classifier=new NaiveBayes(Data);

Algorithm End.
Note: Stopping criterion–(Data.instanceNo≤50) or (TreeLevel≥4)

or (K(Pindex, Qindex)≤θ) or (Data.instanceNO
Data.branchNO

≤50)

In our algorithm implementation, Att denotes the set of all attributes in the
data set, while P and Q represent two subsets of Att whose union is equivalent
to Att. Data represents the training data and TreeLevel means the depth of
the current node in the tree structure of the classifier [3]. Data[ ] is equal to
the partition on Data according to the attribute aindex. Similar with Decision
Tree, the key of the rough set-based classifier relies on the attribute selection
by Equation (1) to partition Data. With checking stopping criterion, if not
stopping, we recursively repeat the construction process. Otherwise, we stop
splitting Data and train a NaiveBayes classifier on Data.
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4 Experiments

Two experiments are designed in this section: (1) Both of the rough set-based
classifier and Naive Bayesian classifier are embedded in Nivre’s deterministic
dependency parsing process. (2) Conduct dependency parsing task by combining
Nivre’s deterministic method with the rough set-based classifier.

4.1 Data Set and Task Description

Data set–The Chinese Corpus is from the CoNLL-X Shared Task on Multi-
lingual Dependency Parsing of the Tenth Conference on Computational Natural
Language Learning, and the corpus is especially in Chinese. Table 3 represents
the information of the corpus in use.

Table 3. Data Set description

Training data Testing data
#Instance #Attribute #Instance #Attribute

corpus 354719 5 39405 5

data set 451994 13 50806 13

Task description–The original corpus represents the information of every sin-
gle word, while the single line in the data set contains the information of a
word pair. So the original corpus needs transforming into the data set which is
well formatted for the rough set-based classifier. While different parsers utilize
different transformations, in this paper, the proposed parser utilizes a way of
transformation in [16]. And the parsing process regarded as a classification task
is illustrated in Fig.2.

4.2 Experimental Analysis

In dependency parsing, Dependency Accuracy(DA) and Root Accuracy(RA) are
two important measures on evaluation of parsing performance. And they are
defined as:

Dependency Accuracy =
#correct parsed word

#word
(3)

Root Accuracy =
#correct parsed root

#root
(4)

(1)Rough Set-based Classifier vs NaiveBayes:
In Table 4, values in bold face get a higher accuracy than the other. It shows that
Rough Set-based Classifier can often get higher DA and RA values than Naive-
Bayes, on almost all situations. However, Rough Set-based Classifier has only a
slight improvement on Naive Bayesian Classifier. Maybe, this is because attribute
dependency assumption is not violated in the data set. But in general, Rough Set-
based Classifier performs better than NaiveBayes on this classification task.
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Fig. 2. Dependency parsing process

Table 4. Rough Set-based Classifier vs NaiveBayes

NO of Sentences 1000 2000 3000 4000 5000

Naive RA 0.854 0.8605 0.8533 0.8555 0.8562

Bayesian DA 0.5941 0.6063 0.6039 0.6017 0.6026

RS-based RA 0.853 0.8605 0.855 0.8567 0.8582
Classifier DA 0.5960 0.6073 0.6056 0.6033 0.6040

Table 5. Rough Set-based Parser vs Other Parsers

English corpora Charniak Collins Yamada Action Model RS-based Parser
DA 0.921 0.91 0.903

RA 0.952 0.952 0.916

Chinese corpora Charniak Collins Yamada Action Model RS-based Parser
DA 0.8013 0.8282 0.8347 0.6040

RA 0.7009 0.7013 0.6823 0.8582

(2)Rough Set-based Parser vs Other Parsers:
Action model [20] is a new deterministic parser, which achieves the best de-
pendency accuracy on Chinese corpora. However, our rough set-based classifier
combined with Niver’s deterministic parsing algorithm performs much better on
root accuracy than Action model and all other parsers. The reason is that, in the
parsing process, our parser tends to classify a word to be dependent on the root
of the sentence. So our parser usually performs a bias towards root accuracy,
and as a result of this, our dependency accuracy is decreased. One of our future
works will focus on how to improve our dependency accuracy without breaking
the balance between these two measures.

5 Conclusion and Future Work

The experimental results prove that the rough set-based classifier gets better
performance than Naive-Bayes classifier on dependency parsing task, and com-
bining the rough set-based classifier classifier with Nivre’s deterministic parser
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achieves comparable performance with other parsers. However, there are some
issues we will work on.

(1) Constructing the rough set-based classifier model is a time con-
suming process. In training phase, the computation of attribute dependence
measure is costly. So our future work will focus on how to decrease the time
complexity of the rough set-based classifier.

(2) Improvement of the attribute dependence measure. The quality
of dependence measure has direct influences on the classification performance.
It is important to study how to improve the rough sets dependence measure to
get better performance.

(3) Modification on Nivre’s parsing algorithm to parsing Chinese
sentences. Because Nivre’s algorithm is not designed for Chinese dependency
structure and the process performs a bias towards root accuracy, we need not
only to design a classifier with better performance, but also to improve Nivre’s
parsing algorithm.
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Aida Vitória1, Andrzej Szałas2,3, and Jan Małuszyński3
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Abstract. Rough set approximations of Pawlak [15] are sometimes generalized
by using similarities between objects rather than elementary sets. In practical
applications, both knowledge about properties of objects and knowledge of sim-
ilarity between objects can be incomplete and inconsistent. The aim of this pa-
per is to define set approximations when all sets, and their approximations, as
well as similarity relations are four-valued. A set is four-valued in the sense that
its membership function can have one of the four logical values: unknown (u),
false (f), inconsistent (i), or true (t). To this end, a new implication operator and
set-theoretical operations on four-valued sets, such as set containment, are intro-
duced. Several properties of lower and upper approximations of four-valued sets
are also presented.

1 Introduction

Rough sets [15] are constructed by means of approximations obtained by using elemen-
tary sets which partition a universe. The assumption as to partitioning of the universe
has been relaxed by many authors (see, e.g., [1,6,9,17,18,19]), however the Pawlak’s
idea of approximations has remained the same. Namely, an object o belongs to the
lower approximation of a given set A whenever all objects indiscernible from o belong
to A and o belongs to the upper approximation, when there are objects indiscernible
from o belonging to A. Indiscernibility is modeled by similarity relations reflecting
limited perceptual capabilities as well as incomplete and imprecise knowledge. Such
approximations naturally lead to three- and four-valued logics (see, e.g., [3,8,10,14]).

The goal of the current paper is to ground Pawlak’s ideas in a four-valued frame-
work. To this end, we define a four-valued set theory in the sense that the membership
function, set containment as well as union, intersection and complement of sets are
four-valued. We may then have that either an element belongs to a given set, or it does
not belong to the set, or its membership in the set may be unknown or inconsistent, per-
haps, due to contradictory evidence. Notice that we assume that all sets and relations are
four-valued, in particular the underlying similarity relation. To our knowledge, this is

� Supported in part by the MNiSW grant N N206 399334 and by the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net).

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 106–114, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://rewerse.net


Four-Valued Extension of Rough Sets 107

a fundamental difference between the work we present and the work discussed by other
authors in the rough-set field. Therefore, we take into account the fact that in practical
applications our knowledge about similarity between objects of the universe can also
be incomplete and inconsistent. This novel aspect of our work has led us to re-think
and extend the usual notions of upper and lower approximations. Since we consider
similarity relations as four-valued sets, there are cases, when we cannot establish with
certainty whether the neighborhood of an element is a subset of (or whether is disjoint
with) a given set. To tackle this problem, we propose upper and lower approximations
that are also four-valued sets. It is important to note that in cases, when only the stan-
dard truth values t and f are used, all notions we define reduce to the standard operations
on rough sets.

The work presented in [11] also captures the same type of knowledge uncertainty,
as described above. However, uncertainty in the properties of objects is captured by
fuzzy sets and (two-valued) equivalence relations are used to capture similarity between
objects of the universe. Upper and lower approximation of a fuzzy set are defined in
[11]. Unlike [11], in our framework, similarity between objects is captured by four-
valued relations and all properties correspond to four-valued sets.

When considering similarities as well as approximations to be four-valued, as we do
in the current paper, it appears that the truth ordering proposed in [14] makes definitions
of set containment and approximations problematic. Therefore, we propose to slightly
modify the truth ordering (by changing the relationship between f and u only).

The paper is structured as follows. First, in Section 2, we formalize the notion of
four-valued set. Section 3 is devoted to four-valued approximations. In Section 4, we
provide an example illustrating the approach. Finally, Section 5 concludes the paper.

2 The Framework

In this section, we first define four-valued sets together with the notions of four-valued
set containment and four-valued set intersection and union. To formalize four-valued
set containment, we introduce a new implication connective.

2.1 Four-Valued Sets

Let B = {t, f, i, u} be the set of truth values, where t stands for true, f stands for false,
i stands for inconsistent and u stands for unknown. Any of these logical values can be
negated: ¬t = f, ¬i = i, ¬u = u, and ¬f = t.

Let us now formalize the notion of four-valued sets. Given a universe U , we introduce

a new set, disjoint with U , denoted by ¬U and defined by ¬U
def= {¬x | x ∈ U}, where

¬x denotes elements in ¬U . Intuitively, x ∈ A represents the fact that there is an
evidence that x is in A and (¬x) ∈ A represents the fact that there is an evidence that x
is not in A. A four-valued set A on U is any subset of U ∪ ¬U .

In our framework, set membership is four-valued and it extends the usual two-valued
membership. We assume that ¬(¬x) is equivalent to x.
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Definition 1. Set membership, denoted as ε : U × 2U∪¬U → B, is defined by:

x ε A =

⎧
⎪⎪⎨

⎪⎪⎩

t if x ∈ A and (¬x) �∈ A
i if x ∈ A and (¬x) ∈ A
u if x �∈ A and (¬x) �∈ A
f if x �∈ A and (¬x) ∈ A.

The complement ¬A of a four-valued set A, is defined by ¬A
def= {¬x | x ε A}. �

Let P be a four-valued set on a universe U . To simplify the notation, P (x) stands for
x ε P . For instance, let U = {a, b, c} and Red= {a, ¬a, b}, In this case, Red(b) = t
and Red(a) = i, since both a ∈ Red and ¬a ∈ Red. Moreover, ¬Red= {a, ¬a, ¬b}.

2.2 Four-Valued Calculus

In our work, we use two orderings of the logical values: truth ordering and knowledge
ordering. Truth ordering is used for calculations within a single information source
while knowledge ordering is used for gathering knowledge from different sources. This
approach has been considered by in [4] and in the framework of bilattices, in [13,12].

The truth ordering ≤t and the knowledge ordering ≤k on B are defined as the small-
est reflexive and transitive relations satisfying f ≤t u ≤t i ≤t t, u ≤k f ≤k i, and
u ≤k t ≤k i. The disjunctions ∨t and ∨k (conjunctions ∧t and ∧k) are defined to be
the least upper bounds (greatest lower bounds) of their arguments w.r.t. ≤t and ≤k,
respectively.

Let us relate the orderings above with Belnap’s truth and knowledge ordering [4].
The knowledge ordering we defined above coincides with Belnap’s knowledge order-
ing. However, our truth ordering is different from the Belnap’s truth ordering. This
change is motivated by the fact that Belnap’s truth ordering can give counterintuitive
results when used for reasoning, as shown in [14].

We also need to extend the notion of set containment and set intersection to four-
valued sets. We discuss next these two ideas.

Given two four-valued sets A1 and A2 over a universe U , A1 � A2 stands for A1
being contained in A2. Notice that our notion of set containment is also four-valued.
Thus, A1 � A2 can be evaluated to one of the four logical values in B. If A and B

are two-valued sets, then set containment is defined as A ⊆ B
def= ∀x ∈ U(x ∈ A →

x ∈ B). This definition relies on the notion of universal quantification and logical
implication →. We follow a similar idea. Therefore, we first extend the notion of uni-
versal and existential quantification. We then propose a new implication connective, ↪→,
for our four-valued logic.

Since ∀ (∃) is a generalized conjunction (a generalized disjunction), we define

∀x[P (x)] def= GLB
x∈U

t{P (x)} and ∃x[P (x)] def= LUB
x∈U

t{P (x)} ,

where the superscript t indicates that the greatest lower bound (GLB) and least upper
bound (LUB) are computed w.r.t. truth ordering.
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We define now the semantics of a new implication operator ↪→. To define this oper-
ator, we must have in mind that it should be suitable for determining set containment,
in the case of four-valued sets. Obviously, ↪→ should also be an extension of the usual
logical implication →. We present below a table defining ↪→ and then, we provide the
motivation.

↪→ f u i t
f t t t t
u u u i t
i i i i t
t f u i t

Let X and Y be two four-valued sets and assume we want to verify whether X �
Y . If we know that an element x does not belong to X (i.e., x ε X = f) then the
membership of x in Y should have no influence on the result of X � Y . This motivates
the first line of the table. If x belongs to Y (i.e., x ε Y = t) then the truth valued
of x ε X is irrelevant. This explains the last column of the table above. If x belongs
to X (i.e., x ε X = t) then our conclusions w.r.t. element x should depend only on
our knowledge about x ε Y . This is the intuition behind the last line of the table. It
seems obvious that if we know nothing about membership of x in X and nothing about
membership of x in Y (i.e., both x ε X and x ε Y are evaluated to u) then, we cannot
conclude anything about the contribution element x gives to determine whether X is
a subset of Y . Thus, u ↪→ u is evaluated to u. Similarly, i ↪→ i is evaluated to i.

Let us now discuss the remaining cases. If ↪→ is going to be used to determine
set containment, then it is desirable that it has the following property: (b1 ↪→ b2) =
(¬b2 ↪→ ¬b1). Since t ↪→ u is evaluated to u and t ↪→ i is evaluated to i, we should
then have that u ↪→ f and i ↪→ f should be evaluated to u and i, respectively.

If we have no information about whether x belongs to X (i.e., x ε X = u) and we
have contradictory evidence about the membership of x in Y (i.e., x ε Y = i), then
future information about membership of x in X can lead us to the conclusion that

– element x contributes with i, if x ε X is evaluated to t (note that t ↪→ i = i), or
– element x contributes with t, if x ε X is evaluated to f (note that f ↪→ i = t), or
– element x contributes with i, if x ε X is evaluated to i (note that i ↪→ i = i).

Thus, we define u ↪→ i to be i since that is a possible value for the contribution of
element x in the future, when more knowledge is gathered, but it still conveys a degree
of uncertainty. Moreover, we have then that i ↪→ u should also be defined as i.

Other implication connectives have been proposed by other authors (see, e.g., [2]).
Let us make a brief comparison. Obviously, the proposed implication ↪→ extends the
usual two-valued logical implication, i.e. when we only consider the logical values t
and f. It also extends the implication of the Kleene three-valued logic [5,16] in the
sense that when we restrict truth values to {t, f, u} (or {t, f, i}), we obtain Kleene’s
implication.

On the other hand, our implication differs from the material implication �→ proposed
in [2], on the following two cases: u �→ i = t while u ↪→ i = i and i �→ u = t
while i ↪→ u = i. The material implication �→ can be defined by means of negation and
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disjunction. The same property turns out to be true for our implication connective, i.e.
(b1 ↪→ b2) = (¬b1 ∨t b2). In contrast to the internal implication ⊃ proposed in [2],
our implication does not satisfy the Modus Ponens, if we assume that {t, i} is the set of
designated values. For instance, i ↪→ f = i.

Observe that given two four-valued sets X and Y over a universe U , we can define
a new four-valued set P , such that (x ε P ) has the same truth value as (x ε X ↪→
x ε Y ), for every object x ∈ U . We can now formally define set containment, for
four-valued sets.

Definition 2. Assume that X and Y are four-valued sets on a universe U . Then,

X � Y
def= ∀x ∈ U(x ε X ↪→ x ε Y )

We say X is a subset of Y iff X � Y = t and X is not a subset of Y , denoted by
X �� Y , iff X � Y = f. �

The following proposition can be proved.

Proposition 1. Let X and Y be four-valued sets on a universe U . Then, (X � Y ) =
(¬Y � ¬X). �

Let us now define the notion of four-valued set intersection � and union �.

Definition 3. Let X and Y be four-valued sets on a universe U . Then,

x ε (X�Y ) def= (x ε X)∧t(x ε Y ) and x ε (X�Y ) def= (x ε X)∨t(x ε Y ) . �

Note that � and � reduce to the standard two-valued set intersection and union when
only values t and f are present.

3 Four-Valued Set Approximations

In the usual rough-set framework, given a set and a similarity relation, lower and upper
approximations of the set can be obtained. We extend these ideas to four-valued sets. In
contrast to previous work, we deal with four-valued sets on a given universe and four-
valued similarity relations. Moreover, upper and lower approximations of four-valued
sets are themselves four-valued sets.

Definition 4. By a four-valued similarity relation σ we mean any four-valued binary
relation on a universe U , satisfying the reflexivity condition, i.e., for any element x
of the universe (x, x) ε σ = t. By the neighborhood of element x ∈ U w.r.t. σ, we

understand the four-valued set σ(x) such that y ε σ(x) def= (x, y) ε σ. �

We proceed now with the definitions of four-valued approximations.

Definition 5. Let A be a four-valued set. Then, the lower and upper approximations of

A w.r.t. σ, denoted by A+
σ and A⊕

σ , respectively, are defined by x ε A+
σ

def= σ(x) � A

and x ε A⊕
σ

def= ∃y ∈ U [y ε (σ(x) � A)]. �
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The definitions above naturally extend the usual definitions of lower and upper approx-
imations presented in the rough set literature. We determine the membership of an ele-
ment x in the lower approximation by verifying (set) containment of its neighborhood,
σ(x), in set A. We determine the membership of an element x in the upper approxi-
mation by computing the largest membership value that an element of the universe can
have in the intersection of σ(x) and A, w.r.t. to ≤t.

The next theorems summarize some important properties of lower and upper approx-
imations of four-valued sets.

Theorem 1. Let A be a four-valued set on a universe U , σ be a four-valued similarity
relation. Then, (x ε A+

σ ) ≤t (x ε A⊕
σ ) , for all x ∈ U . �

The above theorem lead us to the conclusion that it is never the case that A+
σ �� A⊕

σ and
it is formalized below. From an intuitive point of view, this conclusion is the counter-
part of a known property of rough-set approximations: the lower approximation is al-
ways contained in the upper approximation, when usual (two-valued) sets are used.

Theorem 2. Let A be a four-valued set on a universe U , σ be a four-valued similarity
relation. Then, (A+

σ � A⊕
σ ) >t f . �

4 An Example

In this section, we present an example that illustrates the discussed ideas.
Perception can be modelled by similarity relations in the sense that objects indis-

cernible due to the perceptive limitations are considered similar to each other (see,
e.g., [7], where incomplete knowledge about similarities has been taken into account in
the context of perception). However, in our framework, in addition to incompleteness,
the knowledge of similarity between objects can also be inconsistent. For instance,
two different sensors, may give contradictory evidence about the similarity of two
objects.

The universe U = {a, b, c, d} consists of objects classified as being dangerous. The
four-valued set Danger represents this property. Note that this classification may be
incomplete in some cases and uncertain in others. For instance, for object d there is no
information about its danger, while for for object c there is contradictory evidence about
whether it is dangerous (i.e. c ε Danger = i).

Suppose that we have four information sources, denoted by Ii (i ∈ {1, 2, 3, 4}),
about the objects similarity, modelled by the similarity relations σi, respectively.

The set Danger and the similarities of a to other elements of the universe, σi(a),
are given below.

a b c d
σ1(a) t i u f
σ2(a) t f f f
σ3(a) t t u t
σ4(a) t u f t

Danger t f i u
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Membership of a in the lower approximation of Danger for information source I1,
is obtained by computing ∀y ∈ U [y ε σ1(a) ↪→ y ε Danger].

a ε Danger+
σ1

= GLB
y ε U

t{y ∈ σ1(a) ↪→ y ∈ Danger} =

GLBt{t ↪→ t, i ↪→ f, u ↪→ i, f ↪→ u} = GLBt{t, i, i, t} = i

Membership of a in the upper approximation of Danger for information source I1,
is obtained by computing ∃y ∈ U [y ε σ1(a) ∧t y ε Danger].

a ε Danger⊕
σ1

= LUB
y ε U

t{y ∈ σ1(a) ∧t y ε Danger} =

LUBt{t ∧t t, i ∧t f, u ∧t i, f ∧t u} = LUBt{t, f, u, f} = t

Membership of a in the lower approximation of Danger for the other information
sources, I2, I3, and, I4, is shown below.

a ε Danger+
σ2

= GLB
y∈U

t{y ε σ2(a) ↪→ y ε Danger} = t

a ε Danger+
σ3

= GLB
y∈U

t{y ε σ3(a) ↪→ y ε Danger} = f

a ε Danger+
σ4

= GLB
y ε U

t{y ε σ4(a) ↪→ y ε Danger} = u.

For any of the information sources above, a ε Danger⊕
σi

= t, with i ∈ {2, 3, 4}.
We may compare the conclusions obtained with different information sources about

the level of danger of object a. For instance, with the information from I2, we are more
certain that object a is dangerous than with the information provided by I1 or I4, since
a ε Danger+

σ1
= i and a ε Danger+

σ4
= u, while a ε Danger+

σ2
= t. However, all

information sources indicate that object a may be dangerous, since a ε Danger⊕
σi

= t,
with i ∈ {1, 2, 3, 4}. Note that the fact lower and upper approximations are four-valued
sets, allow us a finer comparison of the degree of evidence each information source has
to support its conclusions.

The discussion in the previous paragraph brings us to the problem of collecting and
combining knowledge from different sources (agents), which is a relevant point from the
practical point of view. Note that this aspect is work in progress and it is not formalized
in the paper. However, we use this example to illustrate our point and the relevance of
knowledge ordering, ≤k, in this context. For example, according to sources I2 and I4,
we can conclude that a is surely dangerous, since

LUBk{a ε Danger+
σ2

, a ε Danger+
σ4

} = LUBk{t, u} = t.

On the other hand, sources I2 and I3 provide a contradictory information about mem-
bership of a in the lower approximation of Danger and accordingly,

LUBk{a ε Danger+
σ2

, a ε Danger+
σ3

} = LUBk{t, f} = i.

Similarly, fusing information from all sources or from sources including I1 result in
common knowledge being i.
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5 Conclusions

We introduced a notion of four-valued set to model situations where both knowledge
about properties of objects and knowledge of similarity between objects can be incom-
plete or inconsistent. For modelling inclusion of four-valued sets, we proposed a new
implication operator. We have shown how the similarity-based notions of lower- and up-
per approximation used in the usual rough-set framework can be extended in a natural
way to our four-valued setting.

As future work, we plan to develop and to implement a language that allows users
to define and reason about vague relations. Vague relations will be represented as four-
valued sets and underlying similarity relations will be used to build relation (set) ap-
proximations, as we discuss in the paper. A knowledge base of such relations can then
be queried by applications.
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Abstract. We propose a concept of characteristic combination patterns
to treat characteristics about how to combine objects in the object-
oriented rough set model proposed by the authors. The object-oriented
rough set model treats semi-structured data in the framework of rough
sets by using structural hierarchies among objects, and semi-structured
decision rules represent structural characteristics among objects, which
enable us to capture what to combine objects. However, it is generally
difficult to capture characteristics about how to combine objects by semi-
structured decision rules. Thus, in this paper, we consider to capture how
to combine objects by characteristic combination patterns.

Keywords: Semi-structured decision rules, Object-oriented rough sets,
Characteristic combination patterns.

1 Introduction

Rough set theory proposed by Prof. Z. Pawlak [4] provides an interesting the-
oretical framework and useful tools for data mining based on approximation of
concepts and reasoning about data. In applications of rough sets, generating
decision rules from various kinds of data is one of the most hot topics. Usually,
target data of Pawlak’s rough set theory is illustrated by decision tables with
fixed attributes and no hierarchy among data. On the other hand, the authors
have proposed the object-oriented rough set model (for short, OORS) [1], and
semi-structured decision rules in OORS [3]. The object-oriented rough set model
illustrates hierarchical structures among data by using the concepts of classes,
names, objects, and is-a and has-a relationships. Moreover, semi-structured de-
cision rules in OORS illustrate characteristic combination of objects as parts of
some objects, which enable us to capture characteristics about what to combine
objects. However, it is generally difficult to capture characteristics about how to
combine objects by semi-structured decision rules. In this paper, we propose a
concept of characteristic combination patterns to treat characteristics about how
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to combine objects in OORS, and illustrate a method to calculate characteristic
combination patterns from semi-structured decision rules.

2 The Object-Oriented Rough Set Model

We briefly review the object-oriented rough set model. Note that the contents
of this section are entirely based on the authors’ previous papers [1,2,3].

OORS consists of the following three triples: a class structure C, a name
structure N and an object structure O, respectively:

C = (C, �C , �C), N = (N, �N , �N), O = (O, �O, �O),

where C, N and O are finite and disjoint non-empty sets such that |C| ≤ |N |
(|X | is the cardinality of X). Each element c ∈ C is called a class. Similarly,
each n ∈ N is called a name, and each o ∈ O is called an object. The relation
�X (X ∈ {C, N, O}) is an acyclic binary relation on X , and the relation �X

is a reflexive, transitive, and asymmetric binary relation on X . Moreover, the
relations �C and �C of the class structure C satisfy the property:

– ∀ci, cj , ck ∈ C, ci �C cj , cj �C ck ⇒ ci �C ck.

These three structures have the following characteristics, respectively:

– The class structure illustrates abstract data forms and those hierarchical
structures based on part / whole relationship (has-a relation) and specialized
/ generalized relationship (is-a relation).

– The name structure introduces numerical constraint of objects and those
identification, which provide concrete design of objects.

– The object structure illustrates actual combination of objects.

Two relations �X and �X on X ∈ {C, N, O} illustrate hierarchical structures
among elements in X . The relation �X is called a has-a relation, and xi �X xj

means “xi has-a xj”, or “xj is a part of xi”. On the other hand, the relation �X

is called an is-a relation, and xi �X xj means that “xi is-a xj”.
Each object o ∈ O is defined as an instance of some class c ∈ C, and the class

of o is identified by the class identifier function. The class identifier idC is a
p-morphism between O and C (cf. [5], p.142), that is, the function idC : O −→ C
satisfies the following conditions:

1. ∀oi, oj ∈ O, oi �O oj ⇒ idC(oi) �C idC(oj).
2. ∀oi ∈ O, ∀cj ∈ C, idC(oi) �C cj ⇒ ∃oj ∈ O s.t. oi �O oj and idC(oj) = cj ,

and the same conditions are also satisfied for �O and �C . idC(o) = c means
that the object o is an instance of the class c.

The object structure O and the class structure C are also connected through
the name structure N by the naming function nf : N −→ C and the name
assignment na : O −→ N . The naming function provides names to each class,
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which enable us to use plural instances of the same class simultaneously. On the
other hand, the name assignment provides names to every objects, thus we can
treat objects by using their names. Formally, the naming function nf : N −→ C
is a surjective p-morphism between N and C, and satisfies the following name
preservation constraint:

– If nf(ni) = nf(nj), ∀ni, nj ∈ N , then HN (c|ni) = HN (c|nj), ∀c ∈ C,

where HN (c|n) = {nj ∈ N | n �N nj, f(nj) = c} is the set of names of c that
n has. These characteristics of the naming function nf imply that (1) there is
at least one name for each class, (2) the name structure reflects all structural
characteristics of the class structure, and (3) all names of the parts of any class
are uniquely determined.

On the other hand, the name assignment na : O −→ N is a p-morphism
between O and N , and satisfies the following uniqueness condition:

– For any x ∈ O, if HO(x) 
= ∅, the restriction of na into HO(x):
na|HO(x) : HO(x) −→ N is injective,

where HO(x) = {y ∈ O | x �O y} is the set of objects that x has. na(x) = n
means that the name of the object x is n. The uniqueness condition requires
that all distinct parts y ∈ HO(x) have different names.

We say that C, N and O are well-defined if and only if there exist a naming
function nf : N −→ C and a name assignment na : O −→ N such that idC =
nf ◦ na, that is, idC(x) = nf(na(x)) for all x ∈ O.

In well-defined structures, if a class ci has m objects of a class cj , then any
instance oi of the class ci has exactly m instances oj1, · · · , ojm of the class cj [1].
This good property enables us the following description for clear representation
of objects. Suppose we have o1, o2 ∈ O, n1, n2 ∈ N , and c1, c2 ∈ C such that
o1 �O o2, and na(oi) = ni, nf(ni) = ci for i ∈ {1, 2}. We denote o1.n2 instead
of o2 by means of “the instance of c2 named n2 as a part of o1”.

In OORS, an indiscernibility relations ∼ on O is introduced by using the
concept of equivalence as instances as follows [1]:

x ∼ y ⇐⇒

x and y satisfy the following two conditions:
1. idC(x) = idC(y), and,

2.

{
x.n ∼ y.n, ∀n ∈ HN (na(x)) if HN (na(x)) 
= ∅,
V al(x) = V al(y) otherwise,

(1)

where HN (na(x)) is the set of names that na(x) has. V al(x) is the “value” of
the “value object” x. Because C is a finite non-empty set and �C is acyclic,
there is at least one class a such that a has no other class c. We call such class
a an attribute, and for any instance x of the attribute a, we call x a value object
of a. The value object x of a represents a “value” of the attribute a. Moreover,
we assume that we can compare “values” of value objects of the same attribute.

Moreover, to capture hierarchical characteristics among objects by indiscerni-
bility relations in OORS, consistent sequences of names are introduced [3].
Formally, a sequence of names n1. · · · .nk with length k (k ≥ 1) such that
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ni ∈ N (1 ≤ i ≤ k) is called a consistent sequence of names if and only if either
(1) k = 1, or (2) k ≥ 2 and nj+1 ∈ HN (nj) for each name nj (1 ≤ j ≤ k − 1).
We denote the set of all consistent sequences of names in N by N+. Hereafter,
we concentrate consistent sequences of names. Note that all names n ∈ N are
consistent sequences with length 1, thus we have N ⊂ N+.

For any non-empty set of sequences of names S ⊆ N+, indiscernibility re-
lations ≈S on O which directly treat “nested” parts of objects are defined [3]:

x ≈S y ⇐⇒

x and y satisfy the following two conditions:

1. ∀n1. · · · .nk

[
n1. · · · .nk ∈ S ⇒
{n1 ∈ HN (na(x)) ⇔ n1 ∈ HN (na(y))}

]

,

2. ∀n1. · · · .nk

[
n1. · · · .nk ∈ S and n1 ∈ HN (na(x))
⇒ x.n1. · · · .nk ∼ y.n1. · · · .nk

]

.

(2)

The condition 1 in (2) requires that the object x and y concern the same
sequences in S. Thus, if the objects x and y satisfy the condition 1, we say that
x and y are comparable by the relation ≈S . The condition 2 requires that, for all
sequences n1. · · · .nk ∈ S that connect both x and y, the object x.n1. · · · .nk as
a nested part of x is equivalent to the object y.n1. · · · .nk as a nested part of y.

Let N+
CON and N+

DEC be the sets of consistent sequences which may appear
in antecedents and conclusions, respectively. Semi-structured decision rules in
OORS are introduced with the following form [3]:

c ∧ c.n11. · · · .n1k1 ∼ x.n11. · · · .n1k1 ∧ · · · ∧ c.ns1. · · · .nsks ∼ x.ns1. · · · .nsks

⇒ c.m11. · · · .m1l1 ∼ x.m11. · · · .m1l1 ∧ · · · ∧ c.mt1. · · · .mtlt ∼ x.mt1. · · · .mtlt

(3)
where c ∈ C, x ∈ O such that idC(x) = c, ni1. · · · .niki ∈ N+

CON (1 ≤ i ≤ s, ki ≥
1), mj1. · · · .mjlj ∈ N+

DEC (1 ≤ j ≤ t, lj ≥ 1) , and all sequences which appear in
(3) have to connect to the object x. We call this rule a semi-structured decision
rule of the class c by the object x. As a special case, we allow semi-structured
decision rules with no sequences of names at the antecedent part as follows:

c ⇒ c.m11. · · · .m1l1 ∼ x.m11. · · · .m1l1 ∧ · · · ∧ c.mt1. · · · .mtlt ∼ x.mt1. · · · .mtlt .
(4)

We say that a semi-structured decision rule is consistent if all the other semi-
structured decision rules with the same antecedents to the semi-structured de-
cision rule are also have the same conclusions. Hereafter, all semi-structured
decision rules we treat in this paper are consistent.

Example 1. Suppose that we need to check a client person Mr. Foo’s break-
fast menus in eight days, and extract Mr. Foo’s favorite patterns in breakfast
menus. Here, we consider the following class structure C = (C, �C , �C) with
C = {Breakfasti (1 ≤ i ≤ 6), · · · , Favorite}, where Kind, Taste and Favorite are
attributes. Next, the name structure is N = (N, �N , �N ) with N = {breakfasti,
· · · , favorite}, Finally, the object structure that actually illustrates breakfast
menus in eight days is O = (O, �O, �O) with O = {bfi, bi, · · · , yes, no}. Sup-
pose also that these structures are well-defined.
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Figure 1 illustrates has-a relationship among objects, and assignment of names
to objects. For example, the object bf1 is an instance of the class Breakfast1,
and bf1 consists of an instance b1(=bf1.bread) of the class Bread, an instance
e1(=bf1.egg) of the class Egg, and so on, respectively. Note that the value of the
attribute Favorite means whether Mr. Foo likes the menu, thus Mr. Foo likes the
breakfast menus bf1, bf3 and bf4.

Now, to extract Mr. Foo’s favorite patterns in breakfast menus, we consider to
generate semi-structured decision rules from these well-defined structures. Using
the set N+

DEC = {favorite}, and the following set:

N+
CON =(N\{favorite})∪

⎧
⎨

⎩

breakfasti.bread, breakfasti.egg, breakfasti.salad,
breakfasti.drink, breakfasti.bread.kind,
breakfasti.bread.taste, breakfasti.egg.kind, · · ·

⎫
⎬

⎭
,

Therefore, we can consider the following semi-structured decision rules about
Mr. Foo’s favorites in breakfast menus:

– Breakfast1∧ Breakfast1.bread.kind ∼ toast ⇒ Breakfast1.favorite ∼ yes,
– Breakfast1∧ Breakfast1.salad.kind ∼ ham ⇒ Breakfast1.favorite ∼ yes,
– Breakfast2 ⇒ Breakfast2.favorite ∼ yes,
– etc. · · · .
– Breakfast1∧ Breakfast1.bread.kind ∼ raisin ⇒ Breakfast1.favorite ∼ no,
– Breakfast1∧ Breakfast1.salad.kind ∼ vegetable ⇒ Breakfast1.favorite ∼ no,
– Breakfasti ⇒ Breakfasti.favorite ∼ no (3 ≤ i ≤ 6),
– etc. · · · .

By these semi-structured decision rules, we can consider characteristic combi-
nations of foods in each breakfast menu, however, it is difficult to interpret Mr.
Foo’s favorite patterns about how to combine foods.

3 Characteristic Combination Patterns as Essential Part
of How to Combine Objects

In this section, we propose a concept of characteristic combination patterns which
illustrate essential part of how to combine objects based on semi-structured de-
cision rules in OORS. As we have mentioned, generally, semi-structured decision
rules for a decision class describe what objects should be checked for correctly
discerning objects in the decision class from other objects in different decision
classes. Thus, we can consider characteristics about what to combine objects by
such semi-structured decision rules. On the other hand, in some cases, we can
discern objects in a decision class from other objects in different decision classes
by just checking classes of objects. We think that this discernibility based on
checking classes is due to some parts of the name structure related to the class.
We regard such essential part as characteristic combination patterns which rep-
resent uniqueness of how to combine objects in the decision class.

By the above discussion, we introduce the concept of characteristic combina-
tion patterns for decision classes to capture the concept of characteristics about
how to combine objects.
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Breakfast1: bf1

bread: b1 kind: toast

taste: good

egg: e1 kind: scrambled

taste: good

salad: s1 kind: ham

taste: good

drink: d1 kind: coffee

taste: no good

favorite: yes

Breakfast1: bf2

bread: b2 kind: raisin

taste: no good

egg: e2 kind: fried

taste: good

salad: s2 kind: vegetable

taste: no good

drink: d2 kind: tea

taste: good

favorite: no

Breakfast2: bf3

bread: b3 kind: toast

taste: good

egg: e3 kind: scrambled

taste: good

drink: d3 kind: coffee

taste: no good

favorite: yes

Breakfast2: bf4

bread: b4 kind: raisin

taste: no good

egg: e4 kind: fried

taste: good

drink: d4 kind: tea

taste: good

favorite: yes

Breakfast3: bf5

bread: b5 kind: toast

taste: good

egg: e5 kind: scrambled

taste: good

favorite: no

Breakfast4: bf6

bread: b6 kind: raisin

taste: no good

drink: d6 kind: tee

taste: good

favorite: no

Breakfast5: bf7

bred: b7 kind: toast

taste: good

salad: s7 kind: ham

taste: good

drink: d7 kind: tee

taste: good

favorite: no

Breakfast6: bf8

egg: e7 kind: fried

taste: good

drink: d7 kind: tee

taste: good

favorite: no

Fig. 1. Breakfast menus in Example 1
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Definition 1. Let N+
DEC be the set of consistent sequences which may appear in

conclusions, D ⊆ O be a decision class based on the equivalence relation ≈N+
DEC

,
x ∈ D be an instance of a class c, that is, idC(x) = c. Moreover, suppose there is
a consistent semi-structured decision rule of the class c by the object x with no
sequences of names in the antecedent part of the rule like (4). A characteristic
combination pattern CCP (c; D) of the decision class D by the class c is a non-
empty subset of names defined as follows:

CCP (c; D) def=

⎛

⎝
⋃

y∈T (c)

{HN (c) \ HN (idC(y))}

⎞

⎠ \ N+
DEC , (5)

where A \ B
def= {x | x ∈ A and x 
∈ B}. The set T (c) is a set of “target” objects

discerned from instances of the class c, and defined as follows:

T (c) def=
{

y
y ∈ O, idC(y) 
= c and ∃n1. · · · .nk ∈ N+

DEC

such that n1 ∈ HN (c) ∩ HN (na(y))

}

. (6)

For example, in the case of the class Breakfast2 and a non-favorite menu bf8
of the class Breakfast6 in Example 1, we have the following sets, respectively:

– HN (Breakfast2) = {bread, egg, drink, favorite},
– HN (idC(bf8)) = {egg, drink, favorite},
– HN (Breakfast2) \ HN (idC(bf8)) = {bread}.

Then, the existence of the name “bread” in HN (Breakfast2) is essential to discern
Breakfast2 from the class idC(bf8) (=Breakfast6).

More generally, in Definition 1, the set HN (c) \ HN (idC(y)) for any object
y ∈ T (c) illustrates essential parts to discern the class c from the class idC(y),
therefore the set HN (c)\HN(idC(y)) captures the essential part of discernibility
by checking the class c as follows:

– If there is some name n in HN (c) \ HN(idC(y)): existence of the name n in
HN (c) is essential to discern the class c from the class idC(x).

– If HN (c)\HN (idC(y)) = ∅ and there is some name n in HN (idC(y)): absence
of the name n in HN (c) is essential to discern c from idC(y).

– Otherwise: we have no need to discern c from idC(y).

Thus, combining all the essential parts HN (c) \ HN (idC(y)) of all y ∈ T (c),
and removing all names related to decision classes, we can get the characteristic
combination pattern CCP (c; D) of the decision class D by the class c.

Example 2. This example is continuation of Example 1. Using the following
consistent semi-structured decision rule, we construct a characteristic combi-
nation pattern CCP (Breakfast2; D) of the decision class of favorite menus D

def=
{bf1, bf3, bf4} by the class Breakfast2 based on the equivalence relation ≈favorite:

– Breakfast2 ⇒ Breakfast2.favorite ∼ yes.
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First, we need to construct the set T (Breakfast2) of objects. Each element
in T (Breakfast2) is comparable to any instance of Breakfast2 by the equivalence
relation ≈favorite, but the element is not an instance of Breakfast2. Because ob-
jects to which the name “favorite” connects are instances of the classes Breakfasti
(1 ≤ i ≤ 6), thus, the set T (Breakfast2) is the set of non-favorite menus:

– T (Breakfast2) def= {bf2, bf5, bf6, bf7, bf8}.

Next, we calculate essential parts to discern Breakfast2 from classes of non-
favorite menus as follows:

HN (Breakfast2) \ HN (idC(bf2))=HN (Breakfast2) \ HN (idC(bf8)) = {bread},
HN (Breakfast2) \ HN (idC(bf5))={drink}, HN (Breakfast2) \ HN (idC(bf7))=∅,
HN (Breakfast2) \ HN (idC(bf6))={egg}.

Combining these essential parts, we get a characteristic combination pattern:

– CCP (Breakfast2, D) = {bread, egg, drink}.

The constructed characteristic combination pattern indicates that the names
“bread”, “egg” and “drink” are essential to discern the class Breakfast2 from
the other classes. Therefore, by this result, we can guess that Mr. Foo likes the
combination of bread, egg and drink.

4 Conclusion

In this paper, we have proposed characteristic combination patterns to treat
characteristics about how to combine objects in OORS. Characteristic combi-
nation patterns of a fixed decision class illustrate essential parts to discern the
decision class from other decision classes, thus we consider that the character-
istic combination patterns capture the uniqueness of how to combine objects in
the decision class. As future issues, we need to refine the proposed method to
calculate characteristic combination patterns in more general cases, because the
calculation method in this paper requires existence of semi-structured decision
rules with special forms. Moreover, implementation of the proposed method and
evaluation experiments using real-life data are very important future issues.
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Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 219–227.
Springer, Heidelberg (2007)

4. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sci-
ence 11, 341–356 (1982)

5. Popkorn, S.: First Steps in Modal Logic. Cambridge University Press, Cambridge
(1994)



G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 124–131, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Induced Intuitionistic Fuzzy Ordered Weighted 
Averaging Operator and Its Application to Multiple 

Attribute Group Decision Making 

Guiwu Wei  

Department of Economics and Management, Chongqing University of Arts and Sciences, 
Yongchuan, Chongqing, 402160, P.R. China  

weiguiwu@163.com 

Abstract. With respect to multiple attribute group decision making (MAGDM) 
problems in which both the attribute weights and the expert weights take the 
form of real numbers, attribute values take the form of intuitionistic fuzzy num-
bers, a new group decision making analysis method is developed. Firstly, some 
operational laws of intuitionistic fuzzy numbers, score function and accuracy 
function of intuitionistic fuzzy numbers are introduced. Then a new aggregation 
operator called induced intuitionistic fuzzy ordered weighted averaging  
(I-IFOWA) operator is proposed, and some desirable properties of the  
I-IFOWA operators are studied, such as commutativity, idempotency and 
monotonicity. An I-IFOWA and IFWA (intuitionistic fuzzy weighted averag-
ing) operators-based approach is developed to solve the MAGDM under the in-
tuitionistic fuzzy environment. Finally, an illustrative example is given to verify 
the developed approach and to demonstrate its practicality and effectiveness. 

Keywords: Group decision making, Intuitionistic fuzzy numbers, Induced in-
tuitionistic fuzzy ordered weighted averaging (I-IFOWA) operator. 

1   Introduction 

Atanassov [1,2] introduced the concept of intuitionistic fuzzy set(IFS), which is a 
generalization of the concept of fuzzy set [3]. The intuitionistic fuzzy set has received 
more and more attention since its appearance. Gau and Buehrer [4] introduced the 
concept of vague set. But Bustince and Burillo [5] showed that vague sets are in-
tuitionistic fuzzy sets. In [6], Xu developed some geometric aggregation operators. In 
[7], Xu developed some arithmetic aggregation operators. In this paper, we shall de-
velop a new operator called induced intuitionistic fuzzy ordered weighted averaging 
(I-IFOWA) operator which is an extension of IOWA operator proposed by Yager and 
Filev[8]. Based on the I-IFOWA and IFWA operators, we shall develop an approach 
to MAGDM under intuitionistic fuzzy environment. The remainder of this paper is set 
out as follows. In the next section, we introduce some basic concepts related to  
intuitionistic fuzzy sets. In Section 3 a new aggregation operator called I-IFOWA 
operator is proposed, and some desirable properties of the I-IFOWA operators are  
studied, such as commutativity, idempotency and monotonicity. In Section 4, An  
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I-IFOWA and IFWA operators-based approach is developed to solve the MAGDM 
under the intuitionistic fuzzy environment. In Section 5, an illustrative example is 
given. In Section 6 we conclude the paper and give some remarks. 

2   Preliminaries  

In the following, we introduce some basic concepts related to IFS. 

Definition 1. An IFS A  in X  is given by 

( ) ( ){ }, ,A AA x x x x Xμ ν= ∈                             (1) 

where [ ]: 0,1A Xμ →  and [ ]: 0,1A Xν → , with the condition 

( ) ( )0 1A Ax xμ ν≤ + ≤ , x X∀ ∈  

The numbers ( )A xμ  and ( )A xν  represent, respectively, the membership degree 

and non- membership degree of the element x to the set A [1,2]. 

Definition 2. For each IFS A  in X , if 

( ) ( ) ( )1A A Ax x xπ μ ν= − − , x X∀ ∈ .                            (2) 

Then ( )A xπ  is called the degree of indeterminacy of x to A [1,2].  

Definition 3. Let ( ),a μ ν=%  be an intuitionistic fuzzy number, a score function S  

of an intuitionistic fuzzy value can be represented as follows [9]: 

( )S a μ ν= −% ， ( ) [ ]1,1S a ∈ −% .                                   (3) 

Definition 4. Let ( ),a μ ν=%  be an intuitionistic fuzzy number, a accuracy function 

H  of an intuitionistic fuzzy value can be represented as follows [10]: 

( )H a μ ν= +% ， ( ) [ ]0,1H a ∈%  .                                      (4) 

to evaluate the degree of accuracy of the intuitionistic fuzzy value ( ),a μ ν=%  , 

where ( ) [ ]0,1H a ∈% . The larger the value of ( )H a% , the more the degree of accu-

racy of the intuitionistic fuzzy value a% . 

Based on the score function S and the accuracy function H , Xu[6] give an order rela-
tion between two intuitionistic fuzzy values, which is defined as follows: 

Definition 5. Let ( )1 1 1,a μ ν=%  and ( )2 2 2,a μ ν=%  be two intuitionistic fuzzy values, 

( )1 1 1s a μ ν= −%  and ( )2 2 2s a μ ν= −%  be the scores of a%  and b% , respectively, and 

let ( )1 1 1H a μ ν= +%  and ( )2 2 2H a μ ν= +%  be the accuracy degrees of a%  and b% , 

respectively, then if ( ) ( )S a S b< %% , then a%  is smaller than b% , denoted by a b< %% ; if 
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( ) ( )S a S b= %% , then, (1) if ( ) ( )H a H b= %% , then a%  and b%  represent the same 

information, denoted by a b= %% ; (2) if ( ) ( )H a H b< %% , a%  is smaller than b% , de-

noted by a b< %% [6]. 

3   I-IFOWA Operator  

Definition 6. Let ( )( ), 1,2, ,j j ja j nμ ν= =% L   be a collection of intuitionistic 

fuzzy values, and let IFWA: nQ Q→ , if 

( ) ( )ω 1 2
1 1 1

IFWA , , , 1 1 ,
j j

n nn

n j j j j
j j j

a a a a
ω ωω μ ν

= = =

⎛ ⎞
= = − −⎜ ⎟

⎝ ⎠
∑ ∏ ∏% % % %L          (5) 

where ( )1 2, , ,
T

nω ω ω ω= L  be the weight vector of ( )1,2, ,ja j n=% L , and 

0jω > , 
1

1
n

j
j

ω
=

=∑ , then IFWA is called the intuitionistic fuzzy weighted averaging 

(IFWA) operator [7].   

Definition 7. Let ( )( ), 1,2, ,j j ja j nμ ν= =% L   be a collection of intuitionistic fuzzy 

values, An intuitionistic fuzzy ordered weighted averaging (IFOWA) operator of 

dimension n  is a mapping IFOWA: nQ Q→ , that has an associated weight vector 

( )1 2, , ,
T

nw w w w= L  such that 0jw >  and 
1

1
n

j
j

w
=

=∑ . Furthermore, 

( ) ( ) ( )( ) ( )w 1 2
1 1 1

IFOWA , , , 1 1 ,
j

j

n nn w w

n j j j j
j j j

a a a w aσ σ σμ ν
= = =

⎛ ⎞
= = − −⎜ ⎟

⎝ ⎠
∑ ∏ ∏% % % %L              (6) 

where ( ) ( ) ( )( )1 , 2 , , nπ π πL  is a permutation of ( )1, 2, ,nL , such that 

( ) ( )1j jπ πα α− ≥% %  for all 2, ,j n= L .  [7].   

In the following, we shall develop an induced intuitionistic fuzzy ordered weighted 
averaging (I-IFOWA) operator. 

Definition 8. An induced intuitionistic fuzzy ordered weighted averaging (I-IFOWA) 
operator is defined as follows: 

( )1 1 2 2I-IFOWA , , , , , ,w n nu a u a u a% % %L   

( )
1 1 1

1 1 ,
j j

n nn w w

j j j j
j j j

w g μ ν
= = =

⎛ ⎞
= = − −⎜ ⎟

⎝ ⎠
∑ ∏ ∏%                     (7) 
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where ( )1 2, , ,
T

nw w w w= L is a weighting vector, such that [ ]0,1jw ∈ , 

1

1
n

j
j

w
=

=∑ , 1, 2, ,j n= L , ( ),j j jg μ ν=% is the ia%  value of the IFOWA pair 

,i iu a%  having the jth largest [ ]( )0,1i iu u ∈ ,and iu in ,i iu a%  is referred to as the 

order inducing variable and ( )( ),i i i ia a μ ν=% %  as the intuitionistic fuzzy values. 

The I-IFOWA operator has the following properties similar to those of the IOWA 
operator[8]. 

Theorem 1 (Commutativity)  

( )1 1 2 2I-IFOWA , , , , , ,w n nu a u a u a% % %L

( )1 1 2 2I-IFOWA , , , , , ,w n nu a u a u a′ ′ ′= % % %L  

where ( )1 1 2 2, , , , , ,n nu a u a u a′ ′ ′% % %L  is any permutation of 

( )1 1 2 2, , , , , ,n nu a u a u a% % %L . 

Theorem 2. (Idempotency) If ( )( ) ( )( ), ,j j j ja a a aμ ν μν= = =% % % %  for all j , then 

( )1 1 2 2I-IFOWA , , , , , ,w n nu a u a u a a=% % % %L  

Theorem 3. (Monotonicity)  If j ja a′≤% %  for all j, then 

( )1 1 2 2I-IFOWA , , , , , ,w n nu a u a u a% % %L

( )1 1 2 2I-IFOWA , , , , , ,w n nu a u a u a′ ′ ′≤ % % %L  

4   An Approach to Group Decision Making with Intuitionistic 
Fuzzy Information 

Let 
{ }1 2, , , mA A A A= L

 be a discrete set of alternatives, and 

{ }1 2, , , nG G G G= L
be the set of attributes, 

( )1 2, , , nω ω ω ω= L
 is the weight-

ing vector of the attribute
( )1,2, ,jG j n= L

, where
[ ]0,1jω ∈

, 
1

1
n

j
j

ω
=

=∑ . Let 

{ }1 2, , , tD D D D= L be the set of decision makers, ( )1 2, , , nν ν ν ν= L  be the 

weighting vector of decision makers, with [ ]0,1kν ∈ , 
1

1
t

k
k

ν
=

=∑ . Suppose that 
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( )( ) ( ) ( )( ),k k k
k ij ij ij

m n m n
R r μ ν

× ×
= =% %  is the intuitionistic fuzzy decision matrix, where ( )k

ijμ  

indicates the degree that the alternative iA  satisfies the attribute jG  given by the 

decision maker kD , ( )k
ijν  indicates the degree that the alternative iA  doesn’t satisfy 

the attribute jG  given by the decision maker kD , ( ) [ ]0,1k
ijμ ⊂ , ( ) [ ]0,1k

ijν ⊂  , 

( ) ( ) 1k k
ij ijμ ν+ ≤ , 1, 2, ,i m= L , 1, 2, ,j n= L , 1, 2, ,k t= L . 

In the following, we apply the I-IFOWA and IFWA operator to MAGDM based on 
intuitionistic fuzzy information. 

Step 1. Utilize the decision information given in matrix kR% , and the I-IFOWA opera-

tor which has associated weighting vector ( )1 2, , ,
T

nw w w w= L  

( ) ( ) ( ) ( )( )1 2
1 2, I-IFOWA , , , , , , t

ij ij ij w ij ij t ijr r r rμ ν ν ν ν= =% % % %L  

1, 2, , , 1, 2, ,i m j n= =L L .                     (8) 

to aggregate all the decision matrices  ( )1,2, ,kR k t=% L  into a collective decision 

matrix ( )ij m n
R r

×
=% % ,where { }1 2, , , tν ν ν ν= L be the weighting vector of decision 

makers. 

Step 2. Utilize the decision information given in matrix R% , and the IFWA operator 

( ) ( )1 2= , =IFWA , , ,i i i i i inr r r rωμ ν% % % %L , 1, 2, ,i m= L .               (9) 

to derive the collective overall preference values ( )1,2, ,ir i m=% L of the alternative 

iA ,where ( )1 2, , ,
T

nω ω ω ω= L is the weighting vector of the attributes. 

Step 3. calculate the scores ( ) ( )1,2, ,iS r i m=% L of the collective overall intuitionistic 

fuzzy preference values ( )1,2, ,ir i m=% L to rank all the alternatives 

( )1, 2, ,iA i m= L  and then to select the best one(s) (if there is no difference be-

tween two scores ( )iS r%  and ( )jS r% , then we need to calculate the accuracy degrees 

( )iH r%  and ( )jH r%  of the collective overall intuitionistic fuzzy preference values ir%  

and jr% , respectively, and then rank the alternatives iA  and jA  in accordance with 

the accuracy degrees ( )iH r%  and ( )jH r% . 

Step 4. Rank all the alternatives ( )1, 2, ,iA i m= L  and select the best one(s) in 

accordance with ( )iS r%  and ( )iH r% ( )1, 2, ,i m= L . 
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5   Illustrative Example 

Let us suppose there is an investment company, which wants to invest a sum of 
money in the best option [11]. There is a panel with five possible alternatives to invest 
the money:①A1 is a car company;②A2 is a food company;③A3 is a computer com-
pany;④A4 is an arms company;⑤A5 is a TV company. The investment company 
must take a decision according to the following four attributes:①G1 is the risk analy-
sis;②G2 is the growth analysis;③G3 is the social-political impact analysis;④G4 is the 
environmental impact analysis.  

The five possible alternatives ( )1,2, ,5iA i= L  are to be evaluated using the in-

tuitionistic fuzzy numbers by the three decision makers (whose weighting vec-

tor ( )0.35,0.40,0.25
Tν= ) under the above four attributes (whose weighting vector 

( )0.2,0.1,0.3,0.4
Tω = ), and construct, respectively, the decision matrices as listed 

in the following matrices ( )( ) ( )
5 4

1, 2,3k
k ijR r k

×
= =% %  as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

0.4,0.3 0.5,0.2 0.2,0.5 0.1,0.6

0.6,0.2 0.6,0.1 0.6,0.1 0.3,0.4

0.5,0.3 0.4,0.3 0.4,0.2 0.5,0.2

0.7,0.1 0.5,0.2 0.2,0.3 0.1,0.5

0.5,0.1 0.3,0.2 0.6,0.2 0.4,0.2

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

%  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

0.5,0.4 0.6,0.3 0.3,0.6 0.2,0.7

0.7,0.3 0.7,0.2 0.7,0.2 0.4,0.5

0.6,0.4 0.5,0.4 0.5,0.3 0.6,0.3

0.8,0.1 0.6,0.3 0.3,0.4 0.2,0.6

0.6,0.2 0.4,0.3 0.7,0.1 0.5,0.3

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

%  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3

0.4,0.5 0.5,0.4 0.2,0.7 0.1,0.8

0.6,0.4 0.6,0.3 0.6,0.3 0.3,0.6

0.5,0.5 0.4,0.5 0.4,0.4 0.5,0.4

0.7,0.2 0.5,0.4 0.2,0.5 0.1,0.7

0.5,0.3 0.3,0.4 0.6,0.2 0.4,0.4

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

%  

Then, we utilize the approach developed to get the most desirable alternative(s). 



130 G. Wei 

Step 1. Utilize the decision information given in matrix kR% , and the I-IFOWA opera-

tor which has associated weighting vector ( )0.2,0.35,0.45
T

w = , we get a collec-

tive decision matrix ( )ij m n
R r

×
=% %  as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

0.421,0.400 0.522,0.296 0.221,0.603 0.121,0.704

0.622,0.296 0.622,0.188 0.622,0.188 0.321,0.502

0.522,0.400 0.421,0.400 0.421,0.296 0.522,0.296

0.723,0.137 0.522,0.296 0.221,0.400 0.121,0.603

0.522,0.188 0.321,0.29

R=%

( ) ( ) ( )6 0.622,0.174 0.421,0.296

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Step 2. Utilize the IFWA operator, we obtain the collective overall preference values 

ir%  of the alternatives ( )1, 2, ,5iA i = L . 

( ) ( ) ( )
( ) ( )

1 2 3

4 5

0.266,0.551 , 0.523,0.305 , 0.484,0.324

0.367,0.369 , 0.502,0.231

r r r

r r

= = =

= =

% % %

% %
 

Step 3. calculate the scores ( ) ( )1,2, ,5iS r i =% L of the collective overall intuitionistic 

fuzzy preference values ( )1, 2, ,5ir i =% L  

( ) ( ) ( ) ( ) ( )1 2 3 4 50.284, 0.217, 0.160, 0.002, 0.271S r S r S r S r S r=− = = =− =% % % % %  

Step 4. Rank all the alternatives ( )1, 2,3,4,5iA i =  in accordance with the 

scores ( )iS r%  ( )1,2, ,5i = L of the collective overall intuitionistic fuzzy preference 

values ( )1,2, ,5ir i =% L : 5 2 3 4 1A A A A Af f f f , and thus the most desirable alter-

native is 5A . 

6   Conclusion 

In this paper, we have developed an induced intuitionistic fuzzy ordered weighted 
averaging (I-IFOWA) operator, which take as their argument pairs, called IFOWA 
pairs, in which one component is used to induce an ordering over the second compo-
nents which are intuitionistic fuzzy values and then aggregated. We have studied 
some desirable properties of the I-IFOWA operators, such as commutativity, idempo-
tency and monotonicity, and applied the I-IFOWA operators to group decision mak-
ing with intuitionistic fuzzy information. Finally an illustrative example has been 
given to show the developed method. In the future, we shall continue working in the 
extension and application of the I-IFOWA operators to other domains. 
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Abstract. Determining the correct threshold values for probabilistic
rough set models has been a heated issue among the community. This
article will formulate a game-theoretic approach to calculating these
thresholds to ensure correct approximation region size. By finding equi-
librium within payoff tables created from approximation measures and
modified conditional risk strategies, we provide the user with tolerance
levels for their loss functions. Using the tolerance values, new thresholds
are calculated to provide correct classification regions. Better informed
decisions can be made when utilizing these tolerance values.

1 Introduction

In rough sets [10], a set within the universe of discourse is approximated. Rough
set regions are defined with these approximations. One of the goals of improv-
ing the classification ability of rough sets is to reduce the boundary region,
thus, reducing the impact that this uncertainty has on decision making. The
decision-theoretic rough set [16] and variable-precision rough set [17] models
were proposed solutions to this problem of decreasing the boundary region.

The decision-theoretic rough set model (DTRS) [14] utilizes the Bayesian
decision procedure to calculate rough set classification regions. Loss functions
correspond to the risks involved in classifying an object into a particular clas-
sification region. This gives the user a scientific means for linking their risk
tolerances with the probabilistic classification ability of rough sets [12].

The decision-theoretic model observes a lower and upper-bound threshold
for region classification [13]. The thresholds α and β provide the probabilities
for inclusion into the positive, negative, and boundary regions. The α and β
thresholds are calculated through the analysis of loss function relationships, thus,
a method of reducing the boundary region materializes from the modification of
the loss functions. Utilizing game theory to analyze the relationships between
classification ability and the modification of loss functions, we can provide the
user with a means for changing their risk tolerances.

Classification ability of a rough set analysis system is a measurable charac-
teristic [4]. In this article, we introduce a method for calculating loss tolerance
using game theory to analyze the effects of modifying the classification risk. This
also provides an effective means of determining how much a loss function can
fluctuate in order to maintain effective classification ability.

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 132–139, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 Decision-Theoretic Rough Sets

The decision-theoretic approach is a robust extension of rough sets for two rea-
sons. First, it calculates approximation parameters by obtaining easily under-
standable notions of risk or loss from the user [14,15].

2.1 Loss Functions

Let P (wj |x) be the conditional probability of an object x being in state wj given
the object description x. The set of actions is given by A = {aP , aN , aB}, where
aP , aN , and aB represent the three actions to classify an object into POS(A),
NEG(A), and BND(A) respectively. Let λ(a�|A) denote the loss incurred for
taking action a� when an object is in A, and let λ(a�|Ac) denote the loss incurred
by taking the same action when the object belongs to Ac. This can be given as
loss functions λ�P = λ(a�|A), λ�N = λ(a�|Ac), and � = P , N , or B. Through
the combination of the set of loss functions, α, β, and γ parameters can be
calculated to define the regions.

A crucial assumption when using this model is that the set of loss functions
is provided by the user. This is a drawback, as it is still dependant upon user-
provided information for calculating rough set region boundaries. In order to
pass this obstacle, a method of calculating loss functions from the relationships
found within the actual data must be found. Although this is beyond the scope
of this article, we can provide a method for determining how much these loss
functions can change, an equally important problem.

2.2 Conditional Risk

The expected loss R(a�|[x]) associated with taking the individual actions can be
expressed as:

RP = R(aP |[x]) = λPP P (A|[x]) + λPNP (Ac|[x]),
RN = R(aN |[x]) = λNP P (A|[x]) + λNNP (Ac|[x]),
RB = R(aB|[x]) = λBP P (A|[x]) + λBNP (Ac|[x]), (1)

where λ�P = λ(a�|A), λ�N = λ(a�|Ac), and � = P , N , or B. RP , RN , and RB

are the expected losses of classifying an object into the positive region, negative
region, and boundary region respectively. The Bayesian decision procedure leads
to the following minimum-risk decision rules (PN-BN):

(PN) If RP ≤ RN and RP ≤ RB, decide POS(A);
(NN) If RN ≤ RP and RN ≤ RB, decide NEG(A);
(BN) If RB ≤ RP and RB ≤ RN , decide BND(A);

These minimum-risk decision rules offer us a foundation in which to classify
objects into approximation regions. They give us the ability to not only collect
decision rules from data frequent in many rough set applications [6], but also the
calculated risk that is involved when discovering (or acting upon) those rules.
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3 A Game-Theoretic Calculation for Conditional Risk

We stated previously that the user could make use of a method of linking their
notions of cost (risk) in taking a certain action and classification ability of the
classification system. Game theory can be a powerful mathematical paradigm for
analyzing these relationships and also provides methods for achieving optimal
configurations for classification strategies. It could also provide a means for the
user to change their beliefs regarding the types of decisions they can make [7].
They would not have to change the probabilities themselves, only their risk
beliefs. This is beneficial as many users cannot intuitively describe their decision
needs in terms of probabilities.

3.1 The Boundary Region and Conditional Risk

We wish to emphasize the relationship between the conditional risk, loss func-
tions, and boundary region. Classification can be performed by following the
minimum risk decision rules PN, NN, and BN or by using the α and β parame-
ters to define region separation. We wish to make the boundary region smaller
by modifying either method so that the positive region can be increased. To
measure the changes made to the regions, we use two measures: approximation
accuracy (φ) and approximation precision (ψ).

When increasing the size of the positive region, the size of the lower approx-
imation is made larger. By recording the accuracy and precision measures, we
can directly see the impact this has on classification ability. To increase the size
of the lower approximation, measured by φ and ψ, we can observe the changes in
the conditional risk found in Equation 1. That is, to increase the size of the lower
approximation, we can reduce the risk associated with classifying an object into
the positive region. This can be done by modifying the loss functions.

Furthermore, while doing this, we need to maintain the size of |apr(A)|. Re-
calling rules (PN, NN, BN), we see that in order to increase the size of the lower
approximation, we need decrease the expected loss RP . This results in more
objects being classified into the positive region since it is less “risky” to do so.
An increase RN and RB may also have the desired effect. This is intuitive when
considering that in order for more objects to be classified into POS(A), we need
to lower the risk involved in classifying an object into this region.

We see that in order to decrease the value of RP , we need to decrease one or
both of the loss functions λPP and λPN (Equation 1: RP ). Likewise, to increase

Table 1. The strategy scenario of increasing approximation accuracy

Action (Strategy) Goal Method Result

a1 (−RP ) Decrease RP Decrease λPP or λPN Larger POS region
a2 (+RN) Increase RN Increase λNP or λNN Smaller NEG region
a3 (+RB) Increase RB Increase λBP or λBN Smaller BND region
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RN , we need to increase either λNP or λNN . Finally, to increase RB, we need
to increase λBP or λBN . This is summarized in Table 1.

We want to increase approximation precision when considering the second
measure, ψ. For the deterministic case, in order to increase precision, we need to
make |apr(A)| as large as possible. Again, recalling rules (PN, NN, BN), we see
that in order to increase the size of the lower approximation, we need to decrease
the expected loss RP and to increase RN and RB. It has the same strategy set as
the first player because we wish to increase the size of the lower approximation.

Of course, there may be some tradeoff between the measures φ and ψ. An
increase in one will not have a similar increase in the other. This implies some
form of conflict between these measures. We can now use game theory to dic-
tate the increases/decreases in conditional risk for region classification and as a
method for governing the changes needed for the loss functions.

3.2 Game-Theoretic Specification

Game theory [9] has been one of the core subjects of the decision sciences,
specializing in the analysis of decision-making in an interactive environment.
The disciplines utilizing game theory include economics [8,11], networking [1],
and machine learning [5].

When using game theory to help determine suitable loss functions, we need
to correctly formulate the following: a set of players, a set of strategies for each
player, and a set of payoff functions. Game theory uses these formulations to
find an optimal strategy for a single player or the entire group of players if
cooperation (coordination) is wanted. A single game is defined as,

G = {O, S, F}, (2)

where G is a game consisting of a set of players O using strategies in S. These
strategies are measured using individual payoff functions in F .

To begin, the set of players should reflect the overall purpose of the competi-
tion. In a typical example, a player can be a person who wants to achieve certain
goals. For simplicity, we will be using competition between two players. With
improved classification ability as the competition goal, each player can represent
a certain measure such as accuracy (φ) and precision (ψ). With this in mind, a
set of players is formulated as O = {φ, ψ}. Through competition, optimal values
are attempting to appear for each measure. Although we are measuring accuracy
and precision, the choice of measures is ultimately up to the user to decide. We
wish to analyze the amount of movement or compromise loss functions can have
when attempting to achieve optimal values for these two measures.

Each measure is effectively competing with the other to win the “game”. Here,
the game is to improve classification ability. To compete, each measure in O has
a set of strategies it can employ to achieve payoff. Payoff is the measurable
result of actions performed using the strategies. These strategies are executed
by the player in order to better their position in the future, e.g., maximize
payoff. Individual strategies, when performed, are called actions. The strategy
set Si = {a1, . . . , am} for any measure i in O contains these actions. A total
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of m actions can be performed for this player. The strategic goal for φ would
be along the lines of “acquire a maximal value for approximation accuracy as
possible”. Likewise, the strategy for ψ would be to “acquire a maximal value for
approximation precision as possible”.

Approximation accuracy (φ), is defined as the ratio measured between the size
of the lower approximation of a set A to the upper approximation of a set A.
A large value of φ indicates that we have a small boundary region. To illustrate
the change in approximation accuracy, suppose we have player φ taking two
turns in the competition. For the first turn, player φ executes action a1 from it’s
strategy set. When it is time to perform another turn, the player executes action
a2. Ultimately, since the player’s goal is to increase approximation accuracy, we
should measure that φa1 ≤ φa2 . If this is not the case (φa1 > φa2), the player
has chosen a poor second action from it’s strategy set.

The second player, approximation precision (ψ), observes the relationship
between the upper approximation and a set. In order to increase precision, we
need to make |apr(A)| as large as possible. For non-deterministic approximations,
Yao [13] suggested an alternative precision measure.

In general, the two measures φ and ψ show the impacts that the loss functions
have on the classification ability of the DTRS model. Modifying the loss functions
contribute to a change in risk (expected cost). Determining how to modify the
loss functions to achieve different classification abilities requires a set of risk
modification strategies.

3.3 Measuring Action Payoff

Payoff, or utility, results from a player performing an action. For a particular
payoff for player i performing action aj, the utility is defined as μi,j = μ(aj).
A set of payoff functions F contains all μ functions acting within the game G. In
this competition between accuracy and precision, F = {μφ, μψ}, showing payoff
functions that measure the increase in accuracy and precision respectively.

A formulated game typically has a set of payoffs for each player. In our ap-
proach, given two strategy sets S1 and S2, each containing three strategies, the
two payoff functions μφ : S1 �→ P1 and μψ : S2 �→ P2 are used to derive the
payoffs for φ and ψ containing:

P1 = {φ1,1, φ1,2, φ1,3}, (3)
P2 = {ψ2,1, ψ2,2, ψ2,3}, (4)

reflecting payoffs from the results of the three actions, i.e., μφ(aj) = φ1,j . This
is a simple approach that can be expanded to reflect true causal utility based
on the opposing player’s actions. This means that not only is an action’s payoff
dependant on the player’s action, but also the opposing player’s strategy.

After modifying the respective loss functions, the function μφ calculates the
payoff via approximation accuracy. Likewise, the payoff function μψ calculates
the payoff with approximation precision for deterministic approximations. More
elaborate payoff functions could be used to measure the state of a game G,
including entropy or other measures according to the player’s overall goals [2].



Game-Theoretic Risk Analysis in Decision-Theoretic Rough Sets 137

Table 2. Payoff table for φ, ψ payoff calculation (deterministic)

ψ

−RP +RN +RB

−RP < φ1,1, ψ1,1 > < φ1,2, ψ1,2 > < φ1,3, ψ1,3 >

φ +RN < φ2,1, ψ2,1 > < φ2,2, ψ2,2 > < φ2,3, ψ2,3 >

+RB < φ3,1, ψ3,1 > < φ3,2, ψ3,2 > < φ3,3, ψ3,3 >

The payoff functions imply that there are relationships between the measures
selected as players, the actions they perform, and the probabilities used for region
classification. These properties can be used to formulate guidelines regarding the
amount of flexibility the user’s loss function can have to maintain a certain level
of consistency in the data analysis. As we see in the next section, the payoffs are
organized into a payoff table in order to perform analysis.

3.4 Payoff Tables and Equilibrium

To find optimal solutions for φ and ψ, we organize payoffs with the corresponding
actions that are performed. A payoff table is shown in Table 2, and will be the
focus of our attention.

The actions belonging to φ are shown row-wise whereas the strategy set be-
longing to ψ are column-wise. In Table 2, the strategy set S1 for φ contains
three strategies, S1 = {−RP , +RN , +RB}, pertaining to actions resulting in a
decrease in expected cost for classifying an object into the positive region and an
increase in expected cost for classifying objects into the negative and boundary
regions. The strategy set for ψ contains the same actions for the second player.

Each cell in the table has a payoff pair < φ1,i, ψ2,j >. A total of 9 payoff
pairs are calculated. For example, the payoff pair < φ3,1, ψ3,1 > containing
payoffs φ3,1 and ψ3,1 correspond to modifying loss functions to increase the risk
associated with classifying an object into the boundary region and to decrease
the expected cost associated with classifying an object into the positive region.
Measures pertaining to accuracy and precision after the resulting actions are
performed for all 9 cases. These payoff calculations populate the table with
payoffs so that equilibrium analysis can be performed.

In order to find optimal solutions for accuracy and precision, we determine
whether there is equilibrium within the payoff table [3]. This intuitively means
that both players attempt to maximize their payoffs given the other player’s
chosen action, and once found, cannot rationally increase this payoff.

A pair < φ∗
1,i, ψ

∗
2,j > is an equilibrium if for any action ak, where k �= i, j,

φ∗
1,i ≥ φ1,k and ψ∗

2,j ≥ ψ2,k. The < φ∗
1,i, ψ

∗
2,j > pair is an optimal solution for

determining loss functions since no actions can be performed to increase payoff.
Thus, once an optimal payoff pair is found, the user is provided with the

following information: a suggested tolerance level for the loss functions and the



138 J.P. Herbert and J. Yao

amount of change in accuracy and precision resulting from the changed loss
functions. Equilibrium is a solution to the amount of change loss functions can
undergo to achieve levels of accuracy and precision noted by the payoffs.

3.5 Loss Tolerance Calculation

Observed from decision rules (PN, NN, BN), we can calculate how much the loss
functions need to be modified to acquire a certain level of accuracy or precision.
There is a limit to the amount of change allowable for loss functions. For example,
the action of reducing the expected cost RP . We can reduce this cost any amount
and rule (PN) will be satisfied. However, the rules (NN) and (BN) are also
sensitive to the modification of RP , denoted R∗

P . R∗
P must satisfy R∗

P ≥ (RP −
RN ) and R∗

P ≥ (RP −RB). This results in upper limit of tmax
PP for λPP and lower

limit of tmin
PN for λPN . Assuming that λPP ≤ λBP < λNP and λNN ≤ λBN <

λPN , we calculate the following,

tmax
PP ≤ λBP − λPP

λPP
, tmin

PN <
λPN − λBN

λPN
. (5)

That is, tPP is the tolerance that loss function λPP can have (tPP for λPN ).
Tolerance values indicate how much change a user can have to their risk be-
liefs (loss functions) in order to maintain accuracy and precision measures of
< φ∗

1,i, ψ
∗
2,j >. In brief, when selecting a strategy, i.e., (+RP ), the game cal-

culates payoffs by measuring the approximation accuracy and prediction that
result from modifying the loss functions λPP and λPN . The new loss functions,
λ∗

PP and λ∗
PN are used to calculate a new expected loss R∗

P . In order to maintain
the levels of accuracy and precision stated in the payoffs, the user must have new
loss functions within the levels of tPP for λPP and tPN for λPN .

For example, let λPP = λNN = 4, λBP = λBN = 6, and λPN = λNP = 8. The
inequality restrictions for the loss functions hold. We calculate that tPP = 0.5
and tPN = −0.125. This means that we can increase the loss function λPP

by 50% and decrease the loss function λPN by 12.5% and maintain the same
classification ability. This new information was derived from the analysis of the
conditional risk modifications made possible through the use of game theory.

4 Conclusions

We provide a preliminary study on using game theory for determining the re-
lationships between loss function tolerance and conditional risk. By choosing
measures of approximation accuracy and approximation precision as players in
a game, with goals of maximizing their values, we set up a set of strategies that
each can perform. We investigate the use of three strategies for the deterministic
approximation case. The strategies involve decreasing or increasing the expected
losses for classifying objects into rough set regions.

Ultimately, taking an action within the strategy set involves modifying user-
provided loss functions. We provide a method for indicating how much a loss
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function can be modified in order to provide optimal approximation accuracy
and precision. This is very useful for the users as determining the amount of
tolerance they should have when modifying loss functions is difficult.

By finding an equilibrium in the payoff tables, we may find the correct values
for the loss functions, and thus, the optimal values of α and β parameters for
determining the region boundaries. Based on this, we express the consequences of
an increased or decreased expected loss of classification with the approximation
accuracy and precision measures.
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Abstract. The key problem in knowledge acquisition algorithm is how
to deal with large-scale datasets and extract small number of compact
rules. In recent years, several approaches to distributed data mining
have been developed, but only a few of them benefit rough set based
knowledge acquisition methods. This paper is intended to combine multi-
agent technology into rough set based knowledge acquisition method. We
briefly review the multi-knowledge acquisition algorithm, and propose a
novel approach of distributed multi-knowledge acquisition method. In-
formation system is decomposed into sub-systems by independent par-
tition attribute set. Agent based knowledge acquisition tasks depend
on universes of sub-systems, and the agent-oriented implementation is
discussed. The main advantage of the method is that it is efficient on
large-scale datasets and avoids generating excessive rules. Finally, the
capabilities of our method are demonstrated on several datasets and re-
sults show that rules acquired are compact, having classification accuracy
comparable to state-of-the-art methods.

Keywords: Attribute reduction, Multi-agent technology, Knowledge ac-
quisition, Classification accuracy.

1 Introduction

Rough set theory provides a framework for knowledge acquisition [1,2]. There has
been a great interest in designing efficient knowledge acquisition algorithm based
on rough set theory [3,4]. Most methods treat knowledge acquisition task as a
single reduction to a decision system. Because knowledge extracted is based on a
single reduct, results of these methods always include large amounts of rules that
are relatively hard for people to understand. In addition, if some attribute val-
ues are changed by environment, knowledge acquired by these methods becomes
obsolete, contributing little to decision-making process. The idea of extracting
multi-knowledge, which is based on multiple reducts of a decision system, is
proposed to address this issue [5,6]. However, these centralized methods cannot
avoid highly computing complexity in most cases. Modern information system
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usually maintains a large quantity of cases [7]. In decentralized data sources,
centralized method needs to be modified for handling distributions. In such cir-
cumstances, centralized multi-knowledge acquisition methods are inefficient to
scale up to massive datasets.

Decentralization research shows that multi-agent technology can improve the
performance of particular data mining techniques [8]. Agent technology also has
many intelligent properties such as autonomy, activity, reactivity, mobility and
sociality, which make it adapt to data mining algorithms [9]. Agent collaboration
[10] is used to address the scalability problem and enhance performance of a
system. Multi-agents may operate independently on decentralized datasets, and
then combine their respective obtained models. On the other hand, they may
share potential knowledge that has been discovered, in order to benefit from
the additional opinion of other agents. The core tasks concern two aspects: (1)
how agents mine from individual datasets, (2) how agents refine mined results
through collaborative work. These aspects are in the focus of this paper.

The remainder of this paper is organized as follows. First, a multi-reduction
algorithm is proposed in Section 2. It is the primary task for multi-agent based
knowledge acquisition. We then introduce the schema of agent cooperation to op-
timize extracted results and a multi-agent based knowledge acquisition method
is presented in Section 3. In Section 4, we present results of the method on sev-
eral public datasets. Finally, Section 5 concludes this paper and potential work
is given.

2 Multi-reduction Algorithm for Decision Space

A decision system can be denoted by S = (U, C
⋃

D, V, f) [2], where U is a
non-empty, finite set of cases called universe, C is a set of conditional attributes,
D is a set of decision attributes, where C

⋂
D = ∅, C

⋃
D = A, V is the domain

of attributes, and f is a information function. For an attribute set B ⊆ A, its
indiscernibility relation is denoted by INDS(B) = {(x, y) | ∀x∀y∀a(x ∈ U ∧ y ∈
U ∧ a ∈ B ∧ f(x, a) = f(y, a))}. Obviously, the indiscernibility relation is an
equivalence relation on U . The equivalence class containing x ∈ U related to
INDS(B) is denoted by [x]B = {y | ∀y((y ∈ U) ∧ ((x, y) ∈ INDS(B)))}.

The B-lower approximation of set X ⊆ U is B− = {x | ∀x((x ∈ U) ∧ ([x]B ⊆
X))}, and the B-upper approximation of X is B−(X) = {x | ∀x((x ∈ U) ∧
([x]B

⋂
X �= ∅))}. For P, Q ⊆ C, P -positive region of Q can be denoted by

POSP (Q) =
⋃

X∈U/Q P−(X). If POSRED(D) = POSP (D), where RED ⊆ P ,
and ∀a ∈ RED, POSRED\{a}(D) �= POSP (D), we call RED is a P ’s reduct of
S. If P = C, RED is a reduct of S. A set of reducts of S is denoted by �(S).

An algorithm for construction of multiple reducts (MRA) is presented in Al-
gorithm 1. γ(B, D) = |POSB(D)|/|U | is the degree of the dependency [11]. It is
important to note that the addition strategy is adopted in MRA. The algorithm
starts from a set of partial reducts that contain only one attribute, and adds at-
tributes with maximal σ value in LINE 11 one by one into partial reducts until
reducts are obtained. After the reducts construction process, MRA can obtain
up to |C| reducts.
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Data: A decision system S = (U, C
⋃

D, V, f).
Result: A set of reducts �.
Queue q;1

for ∀a ∈ C do2

if γ({a}, D) �= 0 then3

Enqueue(q, {a});4

end5

end6

while not IsEmpty(q) do7

B ⇐ Dequeue(q);8

max ⇐ 0;9

for ∀a ∈ C \ B do10

σ ⇐ γ(B
⋃

{a}, D) − γ(B, D);11

if σ > max then12

max = σ;13

CandidateAttr = a;14

end15

end16

if max = 0 then17

� ⇐ � ∪ {B};18

else19

Enqueue(q, B ∪ {CandidateAttr});20

end21

end22

return �;23

Algorithm 1. Multi-Reduction Alg. (MRA)

3 Multi-agent Based Knowledge Acquisition Method

Let S be a decision system, and π = {φ1, φ1, . . . , φn} be a partition of U . An
attribute set P̂ is called as independent partition attribute set if it satisfies that
P̂ = arg maxP⊆C

∑n
i=1

|P−(φi)|
|P −(φi)| . The boundary regions of all sub-universes re-

lated to independent partition attribute set contain a small set of cases. There-
fore, the sum of approximation accuracy of sub-universes can maintain the high-
est quality of approximation of decision classes on the whole universe U . Decision
system S is partitioned into sub-systems by P̂ , having sub-universe Ui = P̂−(φi),
i = 1, . . . , n. The set of sub-systems partitioned by P̂ is denoted by SP̂ .

The multi-agent system for knowledge acquisition can be constructed as
MAS =< SP̂ , AGlocal, AGglobal >. SP̂ is the set of sub-systems. There are two
sets of agents. AGlocal is a set of local agents, and AGglobal is a set of global
agents.

Figure 1 illustrates multi-agent architecture for knowledge acquisition. Local
agents firstly extract multiple reducts from sub-systems as candidate knowl-
edge concept. Knowledge acquisition tasks are based on cooperation between
agents. In our system, local agents score and exchange interactive rules using
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Fig. 1. Multi-Agent based Knowledge Acquisition Architecture

communication policies in [9]. For example, local agent 1 could decide to send
predicted compact rules to local agent 2. The cooperative module in local agent
2 may report score of interactive rules on its sub-system to local agent 1. Rules
in local agent 1 are optimized by means of agent cooperation. Global agents
are responsible for constructing final multi-knowledge base through synthesizing
scores of rules computed by local agents.

The multi-agent system firstly partitions the training data into n disjoint
subsets, assigns a local agent to each subset, and provides the infrastructure for
agent-communication when a local agent detects an acceptable rule. Local agents
construct rules from multiple reducts of individual sub-systems. The candidate
knowledge concept, which can be seen as a local rule base, is denoted by MKBi =
{B −→x D | x ∈ Ui ∧ ∃RED(RED ∈ �i ∧ B ⊆ RED)}, where �i is a set of
reducts of Si, for i = 1, ..., n.

A local agent takes the role of mining local dataset and it engages the ne-
gotiation to agree with interactive rules by matching score of the rule. Local
agents select rules with high confidence as the interactive rules and send them
to other local agents for feedback information. When a rule meets the evaluation
criterion for a sub-system, it becomes a candidate knowledge concept for testing
the globally evaluation criterion. A possible implementation of interaction be-
tween local agents according communicative acts of ACL FIPA is based on the
primitives such as call-for-proposal, accept, inform, etc. These primitives give
a first level semantics to message exchange between local agents. Negotiation
is initiated by local agents, and it contains handshaking primitives to ensure
that all sub-systems participate and the negotiation ends only if an agreement
has been reached. Each local agent computes quality of an interactive rule and
sends results to initiative agent. After the negotiation procedure, local agents can
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obtain a set of rules with high confidence in sub-systems. These rules are then
sent to global agents for global evaluation.

Local agents report the matching score of a case to a global agent using
Definition 1. The certification and coverage factors of a rule are introduced by
Pawlak [2]. In our system, decentralized selective protocol is used to match a
test case with a rule. For a given rule, local agents attempt to match a case
using complete matching score. If complete matching in local knowledge base
is impossible, agents try to match the case with all conditions except one on
individual sub-system. If all conditions except one in the rule can match the case,
knowledge extraction operation is completed. If not, all conditions except two
are searched for, etc. This strategy evaluates cases from decentralized knowledge
bases. Therefore, complete knowledge can be discovered by our method.

Definition 1. Matching score of a rule
Let r be a decision rule and x be a case. The matching score of x to r is denoted
by MR(r, x) = ρ × Cer(r) × Cov(r), where Cer is rule certification factor, Cov
is rule coverage factor, and ρ is the ratio of matching conditions to all conditions
in rule r. If ρ = 1, all condition attributes of x is matched by r, and we called
the matching score is complete matching score. Otherwise, 0 < ρ < 1, we called
the matching score is partially matching score.

Global agents aim at integrating the knowledge that is discovered out of sub-
systems with a minimum amount of network communication, and maximum of
local computation. They guarantee that each extracted rule is satisfactory over
the entire dataset. As a global agent discovers an acceptable rule, it broadcasts
the rule to other local agents to review its statistics over the rest of the dataset
for combining and exchanging the locally mined candidate knowledge. If the rule
meets the evaluation criterion globally, it is posted as a compact rule. Otherwise,
its local statistics are replaced with the global statistics in classification module.
Rules evaluated by global agents are ordered by rule performance on whole
dataset. The global agents gradually select rules until the total performance of
rule set is satisfactory.

In classification module, global agents decide how test cases match the concept
of whole decision system. They estimate rule quality using the matching score
of each concept in Definition 2. The concept with maximal matching score is
selected as the final classification result.

Definition 2. Matching score of a concept
Let x be a case. The matching score of x to the concept is denoted by MC(x) =∑n

i=1
∑

r∈Ri
MR(r, x), where Ri is a set of rules belong to the concept extracted

by local agent i, for i = 1, ..., n.

According to this approach, a multi-agent based multi-knowledge acquisition
algorithm is presented in Algorithm 2. Given a decision system S, independent
partition attribute set P̂ is employed to decomposes S into sub-systems. Local
agents are dispatched to sub-systems to perform multi-reduction algorithm and
evaluate rules through agent cooperation. Extracted rule set is optimized through
collaboratively exchanging interactive rules in the multi-agent system.
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Data: A decision system S = (U, C
⋃

D, V, f).
Result: A set of rules MKB.
Randomly partition U into π;1

Compute independent partition attribute set P̂ , P̂ ⊆ C;2

Partition decision system S into n sub-systems SP̂ ;3

Construct a multi-agent system MAS =< SP̂ , AGlocal, AGglobal >;4

MKB ⇐ Select top k rules r1 − rk according to matching score, such that5
∑k

i=1

∑
x∈U MR(ri, x) > 1

2 (
∑

r∈MKB1
⋃

...MKBn

∑
x∈U MR(r, x)), where

MKBi is a set of rule extracted by ith agent in AGlocal, i = 1, ..., n;
return MKB;6

Algorithm 2. Multi-Agent based Multi-Knowledge Acquisition Alg.
(MAMKA)

4 Experimental Results and Discussion

LERS [12], MKE [5], and GR [6] are primarily designed to induce rules from
training cases and classify new, unseen cases. Since they are extensively com-
pared by most other rough set based knowledge acquisition algorithms, MAMKA
algorithm is compared with these three algorithms. In LERS system, the LEM2
option is chosen. Four algorithms are tested on the same platform. Benchmark
datasets are chosen from UCI ML repository [13]. Numerical attributes are firstly
discretized by a modified Chi2 algorithm [14]. Conceptual reconstruction algo-
rithm [15] is used to deal with missing values in datasets. We adopt ten-fold
cross validation to validate experimental results.

Table 1. Comparison of four algorithms on eight datasets

Dataset1 1 2 3 4 5 6 7 8 Avg. Rank Rank

MAMKA
Accuracy 82.6 72.4 70.7 90.8 92.3 78.5 84.6 91.5 2.1

1.6Time 4 5 7 5 36 39 53 72 1
Rules 10 8 14 8 14 16 20 34 1.6

MKE
Accuracy 84.1 71.7 72.2 94.5 89.7 79.2 80.4 89.6 2.4

2.8Time 10 18 29 12 132 165 180 245 3
Rules 13 15 17 12 21 40 47 58 3

LERS
Accuracy 85.6 72.0 68.7 96.3 91.6 80.4 85.3 94.1 1.5

2.5Time 4 12 22 7 43 52 78 113 1.9
Rules 16 24 29 23 34 42 53 62 4

GR
Accuracy 77.0 70.1 54.3 81.4 68.2 72.1 78.2 82.3 4

3.1Time - - - - - - - - 4
Rules 6 10 12 6 12 8 24 16 1.4

1 Eight datasets are as follows: 1 - StatLog heart disease, 2 - BUPA liver disorder, 3
- TA evaluation , 4 - Congressional voting records, 5 - Wisconsin prognostic breast
cancer, 6 - Pima indians diabetes, 7 - Waveform, 8 - Thyroid disease.
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Table 1 shows percentage of accuracy, execution time in seconds and size of
rule set of four algorithms. The Avg. Rank column averages each estimator’s
rank out of four algorithms on eight datasets, and the Rank column summarizes
three Avg. Rank estimators of each algorithm. We use values in the Rank col-
umn to evaluate the overall performance of algorithms. Because GR algorithm
has highly computing complexity, its execution time is not compared in this
table, which means it gets the lowest rank of execution time. On average, the
MAMKA algorithm archives the highest overall performance on eight bench-
mark datasets. The second best algorithm is LEM2 in LERS system. It achieves
the highest accuracy on the majority of datasets, but the Avg. Rank for the size
of rule set is much lower than MAMKA. Because MKE is a centralized multi-
knowledge acquisition method, the running time and size of rules extracted are
not competent on large datasets (e.g. Dataset 5, 6, 7 and 8).

Scalability is tested on PIMA database. The dataset is firstly separated into
a half training set and a half testing set. We incrementally double the size of
training dataset from 50 to 400. Each algorithm runs ten times and come up
with the average results.
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Fig. 2. Scalability of four algorithms on PIMA database

As we can see from Figure 2, MAMKA gradually improves classification ac-
curacy but marginally increases the number of extracted rules. It is obvious that
the size of rule set obtained by MAMKA is much smaller than MKE and LERS.
That means in most cases MAMKA acquires complete knowledge containing
the least redundant rules. Thus, MAMKA is rational on both the number of
extracted rules and classification accuracy on new test cases.

5 Conclusion

A decentralized knowledge acquisition algorithm is presented to extract compact
knowledge on large-scale datasets. It combines multi-agent technology and rough
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set based knowledge acquisition method. Information system is partitioned into
sub-systems by independent partition attribute set. Local agents pursue multi-
reduction tasks and optimize extracted results through communication. Two main
advantages of this method are its scalability on huge datasets, and its robustness
to avoiding generating large amounts of rules. The algorithm is extensively tested
and compared with conventional algorithms. Experimental results show that our
method is faster, and generates compact rule set without sacrificing classification
accuracy on testing data. Our proposed method is thus well suited to distributed
knowledge acquisition system, which commonly involves huge datasets.

One of the open issues is the capability of the proposed method to deal with
noise in a decision system. Future work will aim to address this issue and perform
experiments on noisy datasets.
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Abstract. In this paper, Rough Set Theory (RST) was introduced to
discover knowledge hidden in the evolution process of Genetic Algorithm.
Firstly it was used to analyze correlation between individual variables
and their fitness function. Secondly, eigenvector was defined to judge the
characteristic of the problem. And then the knowledge discovered was
used to select evolution subspace and to realize knowledge-based evo-
lution. Experiment results have shown that the proposed method has
higher searching efficiency, faster convergent speed, and good perfor-
mance for deceptive problem and multi-modal problems.

Keywords: Rough set theory (RST), Genetic Algorithms (GAs), Knowl-
edge discovery, Knowledge evolution, Eigenvector.

1 Introduction

John Holland proposed binary Genetic Algorithm(GA) in 1960s. As an opti-
mal searching method, it is preferable for complex systems[1,2]. However, its
intelligent feature is due to natural selection strategy. Vose and Liepins[3] con-
sidered that GA operators do not have enough ability to guide individuals to
approximate to best schema, and this is why exist the low convergent speed, the
prematurity, and the local optimization problem.

Rough Sets[4] Theory (RST) proposed by Z.Pawlak in 1982 is one of data
mining tools, which has now been widely used in inductive reasoning[5], auto-
matic classification[6], pattern recognition[7], and learning algorithm[5]. There
are also some fruits in the combination of rough set and fuzzy logic, Petri Net
and granular computing[8,9]. Although there are some distinguished differences,
Lingras Pawan provided another sort of rough genetic algorithms[10,11].

RST needs no transcendental knowledge for data analysis except data itself.
In this paper, RST combined with binary granular computing is used to find
the relation between individual variables and fitness function. It can discover
the knowledge behind the data generated in evolution process, which will direct
evolution orientation and decrease searching space, those knowledge can provide
an ability to overcomes deceptive problem to a great extent.

� This paper is supported by the Youth Science Foundations Project of Shanxi
Province (No.2006021016 and No.2007021018).

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 148–155, 2008.
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The paper is organized as follows. In section 2, basic concepts of RST are
described and relation matrix between individuals and their fitness function
is defined. In section 3, the knowledge-based Genetic Algorithm is introduced.
Testing function and example application are described in section 4. Conclusions
and discussions for further study are given in section 5.

2 Some Basic Concepts

2.1 Indiscernibility Relation

Let K=(U ,R) be an information system, then in any B ⊆ R there is an associ-
ated equivalence relation INDR(B):

INDR(B) =
{
(x, x′) ∈ U × U : ∀a ∈ B a(x) = a(x′)

}
. (1)

INDR(B) (IND(B), for short) is called the B-indiscernibility relation and
its equivalence classes are denoted by [x]B.

[x]B = {y ∈ U |yBx} . (2)

Each equivalence class can be viewed as a granule consisting of indistinguish-
able elements.

2.2 Binary Granule Definition by Equivalence [12,13]

Let K = (U, R) be an information system, where U={u1,u2,· · ·, ul, · · ·, uL}. For
the subset [Y ]i in Uind(P ), the coding space is defined as a mapping function
from integer domain to binary space f : Z+ → {0, 1}L, and the binary string of
granule [Y ]i can be respectively expressed as

Yi = {a1, a2, · · · al · · · , aL} . (3)

al =
{

1, if ul ∈ Yi

0, if ul /∈ Yi
1 ≤ l ≤ L. (4)

After the granular extension of RST, logic operation can be introduced into
RST to extract knowledge quickly.

2.3 Space Partition of the GA Based on Indiscernibility Relation

The data generated in the genetic process can be regarded as a knowledge system.
Based on the indiscernibility relation in RST, the searching space of GA can be
divided into different regions by partitioning fitness function or object function.

Suppose that a multi-optimal problem is given a non-empty set S as the
solution space of GA. Let S be a bounded set in the n-dimension Euclidean
space Rn, as S = Πn

i=1 [ai, bi]. Marking any individual in GA operation as X ,
X = {x1, x2, · · · xn}, xi ∈ [ai, bi], xi is called individual variable. X and its
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corresponding fitness F constitute an ordered pair {X, F}, hence consisting the
universe U . If the interval [ai, bi] of each variable xi is divided probably, for
instance, by m-division method, that is, the solution space S of GA can be
divided into a series of solution subspace S′, where S′ ∈ S.

S′ =
∏n

i=1

∏m

k=1

[

ai +
bi − ai

m
∗ (k − 1), ai +

bi − ai

m
∗ k

]

. (5)

S′ or the union of S′ is called optimum-searching subspace.
If the fitness function being properly defined, all of the optimization problems

can be converted into the maximum value finding problem. Therefore, adopting
a set of thresholds αj , βj(0 < αj < βj), j = 1, 2, · · · , h, where h is the number
of the object function, we define the following equivalence relation.

Relation 1: The solutions in some searching spaces are excellent, that is, the
index of each object function is greater than the corresponding threshold βj :

R1 =
h
∧

j=1
(fvj ≥ βj). (6)

Relation 2: The object functions in some solution spaces are very bad, that is,
the index of all the object functions are less than the threshold αj :

R2 =
h
∧

j=1
(fvj < αj). (7)

Therefore, the whole solution space can be divided into three parts as follows:

SPOS =
⋃{

S′
∣
∣
∣
∣

h
∧

j=1
(fvj ≥ βj), S′ ∈ S

}

. (8)

SNEG =
⋃{

S′
∣
∣
∣
∣

h
∧

j=1
(fvj < αj), S′ ∈ S

}

. (9)

SBON = S − SPOS − SNEG. (10)

where SPOS is the subset of solution space where exist the excellent solutions,
SNEG is the subset of the bad solution space, SBON is the subset of the solution
space which has the optimum solution potentially.

2.4 Binary Relation Matrix of Individual Variables and Their
Fitness Function

For granule [xi]j (j = 1, 2, · · · , N) and fitness function granule [f ]k (k = 1, 2,
· · · , M), matrix-based granular computing algorithm[13] is introduced to com-
pute the relation of each individual variable to its fitness function. Let

Ax
i

=
(
[xi]1 · · · [xi]j · · · [x1]N

)′
=

⎛

⎜
⎝

a11 · · · a1L

... · · ·
...

aN1 · · · aNL

⎞

⎟
⎠ . (11)
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Af = ([f ]1 · · · [f ]k · · · [f ]M )′ =

⎛

⎜
⎝

b11 · · · b1L

... · · ·
...

bM1 · · · bML

⎞

⎟
⎠ . (12)

Txi→f
= Ax

i
× A′

f = (tjk)N×M . (13)

tjk =

⎧
⎪⎪⎨

⎪⎪⎩

1, if
L∑

l=1
(ajl ∧ bkl) > 0

0, if
L∑

l=1
(ajl ∧ bkl) = 0

. (14)

where i is the series number of the variable, j = 1, 2, · · · , N, k = 1, 2, · · · , M,
l = 1, 2, · · · , L. And, “∧” is the “and” operation in logic, “×” is the traditional
Cartesian product, tjk shows the subordinative relation between [xi]j and [f ]k.

3 Knowledge-Based Genetic Algorithm(KGA)

3.1 Classification for the Problem Being Solved

We defined eigenvector G (xi) to judge the property of the problem and use it
to measure the contribution of each subspace to fitness function as follows:

G (xi) = {G1(xi), · · · , Gj(xi), · · · , GN (xi)} , j = 1, 2, · · · , N . (15)

Gj(xi) = MAX{gk |gk = tjk × (k − 1), k = 1, 2, · · · , M}. (16)

where, j = 1, 2, · · · , N represents the different subspaces, xi is the ith variable.
After some definite generations, we can conclude evolution process through

data analysis no matter whether the global optimum is found. If the eigenvector
is monotone, the problem is single modal, and if G (xi) is not monotone, however,
it has only one maximum, it can also be considered to be a single modal problem.
Otherwise, it will belong to the multi-modal problem which includes deception.

3.2 Algorithm Description

In most optimal searching problems, the distribution of the optimal solutions is
unknown, especially for some complex problems such as multi-modal or deceptive
problems. The optimal solutions can be distributed in different subspaces. In this
proposed algorithm, the traditional GAs with large population, large mutation
probability and small selection probability are taken in the initial stage of the
evolution so as to make individual expansion in the whole space rapidly and to
collect as much data as possible.

Then RST is used to analyze the data and to form SPOS region, SNEG region
and SBON region by the fitness function thresholds α, β(0 < α < β < M). De-
termining the subspace for further searching depends on computing correlation
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between individual variables and their corresponding fitness function. Eigenvec-
tor is used to judge the property of the problem, and then different evolution
strategies are applied.

Through data analysis by RST, the whole solution space can be divided into
multiple subspaces. Multiple population evolution strategy keeps implicit paral-
lelism of the GA, and at the same time, the natural population is also included to
supplement the new knowledge. This process embodies the knowledge learning
ability of human beings, from rough to fine and from false to true. The algorithm
flow chart is shown as Fig. 1 .

Fig. 1. Schema of knowledge-based Genetic Algorithm

4 Simulation Experiment

To evaluate the efficiency of the algorithm, the functions in the Table 1 are
used for simulation. The parameters in the simulation process are set as follows:
the initial population is 200, the cross probability is 0.1. In the beginning of the
evolution, the mutation probability is 0.2 to keep the diversity of the population.
And then the cross probability is taken 0.05 after the evolution space is identified.

In Table 1 function min f5(x1, x2) has three global minimum values, which
belong to the multi-modal function, and herein min f5(x1, x2) is taken as an
example to illustrate the proposed algorithm. The traditional GA can find only
one of the global optimal values, which is 0.3979. In this paper max f ′

5 (x1, x2) =
3.98/min f5 (x1, x2) is taken as the fitness value of the function which is converted
into the maximum function optimization problem. After ten generations, data
pairs {Xt, Ft} are obtained. Variables {x1, x2} and their fitness function F are
both discretized into 7 grades (M=N=7) after eliminating redundant data, and
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Table 1. Test function

Function Optimal value

max f1(x1, x2) = 10.0 + sin(1/x1)
(x1−0.16)2+0.1 + 10.0 + sin(1/x2)

(x2−0.16)2+0.1

x1,x2 ∈(0,1) 39.7898

min f2(x1, x2) = (x2
1 + x2

2)
0.25(sin2(50(x2

1 + x2
2)

0.1) + 1)
x1,x2 ∈[-10,10] 0.00

max f3(x1, x2) =

(
a

b+(x2
1+x2

2)

)2

+
(
x2

1 + x2
2
)2

x1,x2 ∈ [-5.12,5.12], a=3.0, b=0.05 3600

max f4(x1, x2) = 0.5 − sin2
√

x2
1+x2

2−0.5

(1+0.001(x2
1+x2

2))2

x1,x2 ∈[-10,10] 1.00

min f5(x1, x2) = (x2 − 5.1
4π2 x2

1 + 5
π
x1 − 6)2 + 10(1 − 1

8π
) cos x1 + 10

x1 ∈[-5,10], x2 ∈[0.15] 0.3979

Table 2. Binary granule table for max f ′
5 (x1, x2)

U
x1 x2 F

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

u1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

u2 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

u3 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

u4 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

uL 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

expanded granularly, then the Table 2 is obtained. Each classification can be
expressed in form of binary granule.

The subspace and individual variables x1 and x2 relation matrix with their
fitness are obtained as follows.

Tx1→f =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0 0 0
1 1 1 1 1 1 1
1 0 0 0 0 0 0
1 1 1 1 1 1 1
1 1 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

7×7

Tx2→f =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0 0 0
1 1 1 1 1 1 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 1 1
1 1 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

7×7

The eigenvectors G (x1) = {1, 6, 0, 6, 1, 1, 6} and G (x2) = {1, 5, 1, 0, 3, 6, 2} re-
flect the nature characteristic of the function of max f ′

5 (x1, x2). Let β = 0.618M ,
the corresponding individual subspace is taken into consideration in SPOS region.
By matrix-based binary granular computing to those classifications in F ≥ β,
the solution space in the SPOS region can be found. Confirmed optimal searching
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Table 3. Subspace distribution and optimization result

Index
Subspace Independent variables

maxf ′
5(x1, x2) minf5 (x1, x2)

x1 x2 x1 x2

1 {3} {1} 3.14167 2.27488 10.00250 0.39790

2 {6} {1} 9.42479 2.47687 10.00251 0.39790

3 {1} {5} -3.14155 12.2749 10.00251 0.39790
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Fig. 2. The evolution process of the function max f ′
7(x1, x2)

subspaces are shown in Table 3. The optimal searching process of the function
max f ′

5 (x1, x2) is shown in Fig. 2. There are three subspaces and natural pop-
ulation in Fig. 2. The three global optimums of the function max f ′

5(x1, x2) are
found in subspaces 1, 2 and 3. Compared with the optimal searching of the nat-
ural population, the convergent speed and the optimization precision are much
higher in the limited iteration times.

The comparison of the optimization results is shown in Table 4 between the
proposed algorithm and the traditional GA. The hardware configuration is Intel
Pentium 725/1.6 GHz, 512M memory and the software requires Matlab 7.0 plat-
form. The data in Table 4 are the mean values after 20 times of optimization,
where the calculation times and average time are the calculation times of the fit-
ness function and consuming time when obtaining the maximum. In the process
of KGA algorithm, the mean time is 1.0127s when doing rough set calculation.
From Table 4, the proposed KGA algorithm has more optimization precision
and calculation efficiency than the traditional GA.

Table 4. Test results

Function
GA KGA

Calculation Average
Optimum

Calculation Average
Optimum

times time (s) times time (s)

F1 63666 13.3272 39.7800628 25103.2 5.34736 39.7897702

F2 61853.44 10.8576 0.0151739 29188 5.3878 0.0111307

F3 54627.52 11.8903 3599.997315 20359 4.1255 3599.999982

F4 50759.08 10.3656 0.9999958 19137 4.7252 0.99999995
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5 Conclusion

A knowledge-based genetic algorithm is proposed in this paper. Rough set and
granular computing method is introduced to explore knowledge hidden in the
data generated in GA evolution process. The knowledge then can be used to
guide the evolution orientation. The test function show that the proposed al-
gorithm in this paper is good to increase the convergent speed of the genetic
algorithm. It overcomes the deceptive problem to some extent in the genetic
algorithm. The proposed algorithm shows the good performance for the multi-
modal function. Therefore the knowledge-based genetic algorithm is effective.

At the same time there are still some problems to be further studied. For
example, the degrees of the data discretization and the size of the granule gen-
eration based on the discrete data have the great influence on the calculation
efficiency of the rough set. The division thresholds α, β to the rough set has
great influence on the performance of the proposed algorithm and directly on
the number of the optimum searching subspaces. All the above is the research
direction in the future.
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Abstract. Yager [1] introduced several families of ordered weighted averaging 
(OWA) operators, in which the associated weights depend on the aggregated 
arguments. In this paper, we develop a new dependent uncertain linguistic 
OWA operator based on dependent OWA operator and dependent uncertain 
OWA operator in uncertain linguistic setting, and study some of its desirable 
properties. The prominent characteristic of this dependent uncertain linguistic 
OWA operator is that it can relieve the influence of unfair arguments on the ag-
gregated results. Finally，an illustrative example is given. 

Keywords: Group decision making (GDM), Uncertain linguistic variable, De-
pendent uncertain linguistic OWA operator. 

1   Introduction 

The ordered weighted aggregation operator as an aggregation technique has re-
ceived more and more attention since its appearance [2]. One important step of 
the OWA operator is to determine its associated weights. Many authors have de-
veloped some useful approaches to obtaining the OWA weights [1-7]. Especially, 
Xu and Da [4] established a linear objective-programming model for obtaining 
the weights of the OWA operator. Xu [5] developed a normal distribution based 
method. Xu [6] developed a new dependent OWA (DOWA) operator. Xu [7] 
developed some dependent uncertain ordered weighted aggregation operators. 
However, in many situations, the input arguments take the form of uncertain lin-
guistic variables because of time pressure, lack of knowledge, and people’s lim-
ited expertise related with problem domain. In this paper, we will develop a new 
argument-dependent approach to determining the uncertain linguistic OWA 
weights. The remainder of this paper is set out as in follows. In the next section, 
we introduce some basic concepts of uncertain linguistic variables and develop a 
dependent uncertain linguistic ordered weighted averaging (DULOWA) operator 
in which the associated weights only depend on the aggregated uncertain linguis-
tic arguments and can relieve the influence of unfair uncertain linguistic argu-
ments on the aggregated results by assigning low weights to those “false” and 
“biased” ones. In Section 3 we develop a practical method based on the ULWA 
and the DULOWA operators for GDM problem. In Section 4, we give an illustra-
tive example. In Section 5 we conclude the paper and give some remarks. 
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2   DULOWA Operator 

We consider a finite and totally ordered discrete linguistic label set 

{ }, , 1,0,1, ,iS s i t t= =− −L L , where t  is a positive integer, is  represents a linguistic 

variable and satisfy i js s> , if i j> . For example, S can be defined as [8]. 

4 3 2 1

0 1 2 3 4

{ , , , ,

, , , , }

S s extremely poor s very poor s poor s slightly poor

s fair s slightly good s good s very good s extremely good
− − − −= = = = =

= = = = =
 

To preserve all the given information, Xu[8] extend the discrete term set S to a 

continuous term set { }[ , ]aS s a q q= ∈ − , where ( )q q t>  is a sufficiently large 

positive integer. If as S∈ , then we call as the original linguistic term, otherwise, we 

call as the virtual linguistic term. In general, the decision maker uses the original 

linguistic term to evaluate attributes and alternatives, and the virtual linguistic terms 
can only appear in calculation [8]. 

Definition 1. Let [ , ]s s sα β=% , ,s s Sα β ∈ , sα  and sβ  are the lower and the upper 

limits, respectively, we call s%  the uncertain linguistic variable [8].  

Let S%  be the set of all the uncertain linguistic variables. Consider any three uncertain 

linguistic variables ,s s sα β⎡ ⎤= ⎣ ⎦% ,
1 11 ,s s sα β⎡ ⎤= ⎣ ⎦%  and 

2 22 ,s s sα β⎡ ⎤= ⎣ ⎦% , 

[ ]1 2, , , 0,1s s s S λ∈ ∈%% % % , then their operational laws are defined as [8]: 

(1)
1 1 2 21 2 , ,s s s s s sα β α β⎡ ⎤ ⎡ ⎤⊕ = ⊕⎣ ⎦ ⎣ ⎦% %

1 2 1 2 1 2 1 2
, ,s s s s s sα α β β α α β β+ +⎡ ⎤ ⎡ ⎤= ⊕ ⊕ =⎣ ⎦ ⎣ ⎦ ; 

(2) , , ,s s s s s s sα β α β λα λβλ λ λ λ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦% . 

Definition 2. Let
1 11 ,s s sα β⎡ ⎤= ⎣ ⎦%  and 

2 22 ,s s sα β⎡ ⎤= ⎣ ⎦%  be two uncertain linguistic 

variables, and let ( )1 1 1len s β α= −% , ( )2 2 2len s β α= −% , then the degree of possi-

bility of 1 2s s≥% %  is defined as[8]  

( ) ( ) ( ) ( )( )
( ) ( )

1 2 2 1
1 2

1 2

max 0, max ,0len s len s
p s s

len s len s

β α+ − −
≥ =

+
% %

% %
% %

                   (1) 

From Definition 3,we can easily get the following results easily: 

(1) ( ) ( )1 2 2 10 1,0 1p s s p s s≤ ≥ ≤ ≤ ≥ ≤% % % % ; 

(2) ( ) ( )1 2 2 1 1p s s p s s≥ + ≥ =% % % % . Especially, ( ) ( )1 1 2 2 0.5p s s p s s≥ = ≥ =% % % % . 



158 G. Wei 

Definition 3. Let ( )ULWA :
n

S S→% % , if 

( )1 2 1 1 2 2ULWA , , , n n ns s s s s sω ω ω ω= ⊕ ⊕ ⊗% % % % % %L L               (2) 

where ( )1 2, , ,
T

nω ω ω ω= L is the weighting vector of uncertain linguistic variables 

( )1,2, ,js j n=% L , and [ ]0,1jω ∈ , 1, 2, ,j n= L ,
1

1
n

jj
ω

=
=∑ , then ULWA is 

called the uncertain linguistic weighted averaging (ULWA) operator [8]. 

Definition 4. An uncertain linguistic ordered weighted averaging (ULOWA) operator 

of dimension n is a mapping ( )ULOWA :
n

S S→% % , which has associated weight-

ing vector ( )1 2, , ,
T

nw w w w= L such that [ ]0,1jw ∈ ,
1

1
n

jj
w

=
=∑ , 

1, 2, ,j n= L . Furthermore: 

( ) ( ) ( ) ( )1 2 1 21 2ULOWA , , ,w n n ns s s w s w s w sπ π π= ⊕ ⊕ ⊗% % % % % %L L                (3) 

where ( ) ( ) ( )( )1 , 2 , , nπ π πL  is a permutation of ( )1, 2, ,nL , such that 

( ) ( )1j js sπ π− ≥% %  for all 2, ,j n= L [8]. 

Definition 5. Let 1 2, , , ns s s% % %L  be a collection of uncertain linguistic variables, where 

js S∈ %% , 1, 2, ,j n= L , then we define the mean of these uncertain linguistic vari-

ables as  

( )*
1 2 ns s s s n= ⊕ ⊕ ⊕% % % %L                                        (4) 

Definition 6. Let 
1 11 ,s s sα β⎡ ⎤= ⎣ ⎦%  and 

2 22 ,s s sα β⎡ ⎤= ⎣ ⎦%  be two uncertain linguistic 

variables, then we call [9] 

( ) ( )1 2 1 2 1 2, 2d s s α α β β= − + −% %                                  (5) 

the distance between 1s%  and 2s% . 

Definition 7. Let 1 2, , , ns s s% % %L  be a collection of uncertain linguistic variables, and 

let *s%  the mean of these uncertain linguistic variables, then we call 

( )( ) ( )( ) ( )( )* * *

1
, 1 , ,

n

j j jj
sd s s d s s d s sπ π π=

= − ∑% % % % % % , 1, 2, ,j n= L .       (6) 

the degree of similarity between the jth  largest uncertain linguistic variables ( )jsπ%  

and the mean *s% , where ( ) ( ) ( )( )1 , 2 , , nπ π πL  is a permutation of 

( )1, 2, ,nL , such that ( ) ( )1j js sπ π− ≥% %  for all 2, ,j n= L . 
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In real-life situations, the uncertain linguistic variables 1 2, , , ns s s% % %L  usually take 

the form of a collection of n  preference values provided by n  different individuals. 
Some individuals may assign unduly high or unduly low preference values to their 
preferred or repugnant objects. In such a case, we shall assign very low weights to 
these “false” or “biased” opinions, that is to say, the closer a preference value  is to 
the mid one(s), the more the weight [5]. As a result, based on (3), we define the 
ULOWA weights as 

( )( ) ( )( )* *

1
, ,

n

j j jj
w sd s s sd s sπ π=

= ∑% % % % , 1, 2, ,j n= L                            (7) 

Obviously, 0jw ≥ , 1, 2, ,j n= L  and 
1

1
n

jj
w

=
=∑ . Especially, if i js s=% % , for 

all , 1, 2, ,i j n= L , then by (7), we have 1jw n= , for all 1, 2, ,j n= L . 

By (3), we have  

( ) ( )( )
( )( ) ( )

( )( ) ( )

( )( )

*
*

1
1 2 * *

1
1 1

,,
ULOWA , , ,

, ,

n

j jn
j j

w n jn n
j j jj j

sd s s ssd s s
s s s s

sd s s sd s s

π π
π

π
π π

=

=
= =

= =
∑

∑
∑ ∑

% % %% %
% % % %L

% % % %
        (8) 

Since ( )( ) ( ) ( )* *

1 1
, ,

n n

j jj jj j
sd s s s sd s s sπ π= =

=∑ ∑% % % % % %  

and  ( )( ) ( )* *

1 1
, ,

n n

jjj j
sd s s sd s sπ= =

=∑ ∑% % % %  

then we replace (8) by 

( ) ( ) ( )* *
1 2 1 1

ULOWA , , , , ,
n n

w n j j jj j
s s s sd s s s sd s s

= =
=∑ ∑% % % % % % % %L        (9) 

We call (9) a dependent uncertain linguistic ordered weighted averaging (DU-
LOWA) operator, which is a generalization of the dependent uncertain ordered 
weighted averaging (DUOWA) operator [7]. Similar to DOWA operator[6] and 
DUOWA[7], consider that the aggregated value of the DULOWA operator is inde-
pendent of the ordering, thus it is also a neat operator. 

Similar to [7], we have the following result: 

Theorem 1. Let 1 2, , , ns s s% % %L  be a collection of uncertain linguistic variables, and let 
*s%  the mean of these linguistic arguments, ( ) ( ) ( )( )1 , 2 , , nπ π πL  is a permuta-

tion of ( )1, 2, ,nL , such that ( ) ( )1j js sπ π− ≥% %  for all 2, ,j n= L . If  

( )( ) ( )( )* *, ,i jsd s s sd s sπ π≥% % % % , then i jw w≥ . 

3   An Approach to GDM under Uncertain Linguistic Environment 

For the GDM making problems, in which both the attribute weights and the expert 
weights take the form of real numbers, and the attribute preference values take the 
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form of uncertain linguistic variables, we shall develop an approach based on the 
ULWA and DULOWA operators to GDM under uncertain linguistic environment. 

Let { }1 2, , , mA A A A= L  be a discrete set of alternatives, 

{ }1 2, , , nG G G G= L be the set of attributes, ( )1 2, , , nω ω ω ω= L  is the weighting 

vector of the attributes ( )1,2, ,jG j n= L , where [ ]
1

0,1 , 1
n

j jj
ω ω

=
∈ =∑ , 

{ }1 2, , , tD D D D= L be the set of decision makers. Suppose that ( )( )k
k ij

m n
R r

×
=% %  

is the decision matrix, where ( )k
ijr S∈ %%  is a preference values, which take the form of 

uncertain linguistic variable, given by the decision maker kD D∈ , for the alternative 

iA A∈  with respect to the attribute jG G∈ . 

Step 1. Utilize the decision information given in matrix kR% , and the ULWA operator 

( ) ( ) ( ) ( )( )1 2ULWA , , , , 1,2, , , 1,2, , .k k k k
i i i inr r r r i m k tω= = =% % % %L L L  

to derive the individual overall preference value ( )k
ir%  of the alternative iA . 

Step 2. Utilize the DULOWA operator: 
( ) ( ) ( )( )1 2DULOWA , , , , 1,2, ,t

i w i i ir r r r i m= =% % % %L L . 

to derive the collective overall preference values ( )1,2, ,ir i m=% L  of the alterna-

tive iA , ( )1 2, , , nw w w w= L is the associated weighting vector of the DULOWA 

operator, with [ ]0,1jw ∈ , 
1

1
n

jj
w

=
=∑ . 

Step 3. To rank these collective overall preference values ( )1,2, ,ir i m=% L , we 

first compare each ir%  with all the ( )1, 2, ,jr j m=% L  by using Eq.(1). For simplic-

ity, we let ( )ij i jp p r r= ≥% % , then we develop a complementary matrix as 

( )ij m m
P p

×
= , where 0ijp ≥ , 1ij jip p+ = , 0.5iip = , , 1, 2, ,i j n= L . 

Summing all the elements in each line of matrix P , we have 

1
, 1,2, ,

m

i ijj
p p i m

=
= =∑ L . 

Then we rank the collective overall preference values ( )1,2, ,ir i m=% L  in de-

scending order in accordance with the values of ( )1, 2, ,ip i m= L . 

Step 4. Rank all the alternatives ( )1, 2, ,iA i m= L  and select the best one(s) in 

accordance with the collective overall preference values ( )1,2, ,ir i m=% L . 
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4   Illustrative Example 

Let us suppose there is an investment company, which wants to invest a sum of 
money in the best option (adapted from [10]). There is a panel with five possible 
alternatives to invest the money:①A1 is a car company;②A2 is a food company;③
A3 is a computer company;④A4 is a arms company;⑤A5 is a TV company. The 
investment company must take a decision according to the following four attributes:
①G1 is the risk analysis;②G2 is the growth analysis;③G3 is the social-political 
impact analysis;④G4 is the environmental impact analysis. The five possible alterna-

tives are to be evaluated using the linguistic term set S by the three decision makers 
under the above four attributes, and construct, respectively, the decision matrices as 

follows ( )( ) ( )
5 4

1, 2,3k
k ijR r k

×
= =% %  :  

2 3 3 4 1 2 1 2

1 2 2 3 3 4 2 3

1 2 4 1 3 0 3 3 1

0 2 1 2 2 3 2 3

3 4 1 3 1 4 3 4

[ , ] [ , ] [ , ] [ , ]

[ , ] [ , ] [ , ] [ , ]

[ , ] [ , ] [ , ] [ , ]

[ , ] [ , ] [ , ] [ , ]

[ , ] [ , ] [ , ] [ , ]

s s s s s s s s

s s s s s s s s

R s s s s s s s s

s s s s s s s s

s s s s s s s s

−

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

%  

1 2 1 4 1 2 1 3

1 3 2 4 2 3 2 3

2 2 4 1 2 1 2 4 2

2 3 3 4 2 1 1 3

3 2 0 2 1 4 1 3
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[ , ] [ , ] [ , ] [ , ]

[ , ] [ , ] [ , ] [ , ]

s s s s s s s s

s s s s s s s s

R s s s s s s s s

s s s s s s s s

s s s s s s s s

−

−

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

%  

2 4 1 3 1 4 1 2

1 2 2 4 1 2 2 4

3 3 1 3 4 1 4 1 3
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R s s s s s s s s

s s s s s s s s

s s s s s s s s

− −

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

%  

In the following, we shall utilize the proposed approach in this paper getting the 
most desirable alternative(s): 

Step 1. Utilize the ULWA operator (Let ( )0.3,0.1,0.2,0.4ω = ) to derive the 

individual overall preference value ( )k
ir%  of the alternative iA . 
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( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ]

1 1 1 1
1 1.5 2.5 2 1.5 2.9 3 0.5 2.5 4 1.3 2.6

1 2 2 2
5 2.2 3.9 1 0.2 2.6 2 1.7 3.1 3 0.7 2.6

, , , , , , ,

, , , , , , ,

r s s r s s r s s r s s

r s s r s s r s s r s s

−

−

= = = =

= = = =

% % % %

% % % %
  

( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ]
( ) [ ]

2 2 2 2
2 1.7 3.1 3 0.7 2.6 4 0.9 2.7 5 0.3 2.8

3 3 3 3
1 1.3 3.1 2 1.5 3 3 0.6 2.7 4 1.3 3.7

3
5 0.2 2.9

, , , , , , ,

, , , , , , ,

,

r s s r s s r s s r s s

r s s r s s r s s r s s

r s s

− −

−

−

= = = =

= = = =

=

% % % %

% % % %

%

 

Step 2. Utilize the DULOWA operator to derive the collective overall preference 

values ( )1, 2, ,5ir i =% L  of the alternative iA . 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1 1.5 2.5 0.2 2.6 1.3 3.1 1.039 2.744

2 1.5 2.9 1.7 3.1 1.5 3 1.550 2.993

3 0.5 2.5 0.7 2.6 0.6 2.7 0.613 2.613

0.343 , 0.300 , 0.357 , ,

0.321 , 0.250 , 0.429 , ,

0.250 , 0.375 , 0.375 , ,

r s s s s s s s s

r s s s s s s s s

r s s s s s s s s− − − −

= × ⊕ × ⊕ × =

= × ⊕ × ⊕ × =

= × ⊕ × ⊕ × =

%

%

%

 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

4 1.3 2.6 0.9 2.7 1.3 3.7 1.159 2.948

5 2.2 3.9 0.3 2.8 0.2 2.9 0.364 3.114

0.362 , 0.353 , 0.284 , ,

0.250 , 0.364 , 0.386 , ,

r s s s s s s s s

r s s s s s s s s− −

= × ⊕ × ⊕ × =

= × ⊕ × ⊕ × =

%

%
 

Step 3.  By using Eq.(1), and then we develop a complementary matrix: 

0.500 0.379 0.681 0.454 0.534

0.621 0.500 0.772 0.567 0.627

0.319 0.228 0.500 0.290 0.376

0.546 0.433 0.710 0.500 0.569

0.466 0.373 0.624 0.431 0.500

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Summing all the elements in each line of matrix P , we have 

1 2 3 4 52.548, 3.008, 1.713, 2.758, 2.393.p p p p p= = = = =  

Step 4. Rank all the alternatives ( )1, 2, ,5iA i = L  in accordance with the val-

ues ( )1, 2, ,5ip i = L : 2 4 1 5 3A A A A Af f f f , and thus the most desirable al-

ternative is 2A . 

5   Conclusion 

In this paper, we have investigated the dependent uncertain linguistic OWA operators 
in uncertain linguistic setting, and developed a new argument-dependent approach to 



 Dependent Uncertain Linguistic OWA Operator 163 

determining the uncertain linguistic OWA weights, which can relieve the influence of 
unfair arguments on the aggregated results. We have verified the practicality and 
effectiveness of the approach with a numerical example. 
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Abstract. The main challenge of gene selection from gene expression
dataset is to reduce the redundant genes without affecting discernibility
between objects. A pipelined approach combining feature ranking to-
gether with rough sets attribute reduction for gene selection is proposed.
Feature ranking is used to narrow down the gene space as the first step,
top ranked genes are selected; the minimal reduct is induced by rough
sets to eliminate the redundant attributes. An exploration of this ap-
proach on Leukemia gene expression data is conducted and good results
are obtained with no preprocessing to the data. The experiment results
show that this approach is successful for selecting high discriminative
genes for cancer classification task.

Keywords: Gene selection, Feature ranking, Rough sets, Attributes
reduction.

1 Introduction

The emergence of cDNA microarray technologies makes it possible to record the
expression levels of thousands of genes simultaneously. Generally, different cells
or a cell under different conditions yield different microarray results, thus com-
parisons of gene expression data derived from microarray results between normal
and tumor cells can provide the important information for tumor classification
[1]. A reliable and precise classification of tumors based on gene expression data
may lead to a more complete understanding of molecular variations among tu-
mors, and hence, to better diagnosis and treatment strategies.

Gene expression data set has very unique characteristics that are very different
from all the previous data used for classification. Most publicly available gene
expression data usually has the following properties:

� high dimensionality: Up to tens of thousands of genes,

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 164–171, 2008.
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� very small data set size: Not more than a few dozens of samples,
� most genes are not related to tumor classification.

With such a huge attribute space, it is almost certain that very accurate clas-
sification of tissue samples is difficult and among a large amount of genes, only
a very small fraction of them are informative for classification task [1] [2] [3]
[4] [5] [12] [14] [15], thus performing gene selection prior to classification makes
help to narrowing down the attribute number and improving classification ac-
curacy and time-complexity of classification algorithms. More importantly, with
the ”noise” from the large number of irrelevant genes removed, the biological
information hidden within will be less obstructed; this would assist in drug dis-
covery and early tumor discovery. How to select the most useful genes for cancer
classification is becoming a very challenging task.

A good number of algorithms have been developed for this purpose [1] [2] [3] [5]
[11] [12] [14] [15]; feature-ranking approach is most widely used. In this approach,
each feature/attribute is measured for correlation with the class according to
some measuring criteria. The features/attributes are ranked and the top ones
or those that satisfy a certain criterion are selected. The main characteristic of
feature ranking is that it is based on individual feature correlation with respect
to class separately. Simple method such as statistical tests (t-test, F-test) has
been shown to be effective [1] [6]. This kind of approach also has the virtue of
being easily and very efficiently computed.

Feature sets so obtained have certain redundancy because genes in similar
pathways probably all have very similar scores and therefore no additional in-
formation gain, rough sets attribute reduction can be used to eliminate such
redundancy and minimize the feature sets. The theory of rough sets [7] , as a
major mathematical tool for managing uncertainty that arises from granularity
in the domain of discourse-that is, from the indiscernibility between objects in a
set, has been applied mainly in data mining tasks like classification, clustering
and feature selection. Recent years, rough sets theory has been used in gene selec-
tion task by some researchers. Evolutionary rough feature selection is employed
on three gene expression datasets in [19], not more than 10 genes are selected
on each data set while high classification accuracies are obtained; In [20], with
the positive region based reduct algorithm, more than 90% of redundant genes
are eliminated.

In this paper, we introduce a pipelined method using feature ranking and
rough sets attribute reduction for gene selection. This paper is organized as fol-
lows. The next section gives the background of rough sets. Then, our method is
detailed in Section 3. And in Section 4, experimental results are listed. The
discussions of these results are given. Finally, the conclusions are drawn in
Section 5.

2 Rough Sets Based Feature Selection

In rough sets theory, a decision table is denoted by T = {U, A), where A =
C ∪ D,C is called condition attribute sets,D = {d} is decision feature, and U
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is universe of discourse. Rows of the decision table correspond to objects, and
columns correspond to attributes [7].

Definition 1. Indiscernibility Relation. Let a ∈ A,P ⊆ A, a binary relation
IND(P ), called the indiscernibility relation, is defined as the following:

IND(P ) = {(x, y) ∈ U × U |∀a ∈ P, a(x) = a(y)}

Let U/IND(P ) denotes the family of all equivalence classes of the relation
IND(P ),U/IND(P ) is also a definable partition of the universe induced
by P.

Definition 2. Indispensable and Dispensable Attribute.An attribute c ∈
C is an indispensable attribute if

Card(U/IND(C − {c})) �= Card(U/IND(C − {c} ∪ D))

An attribute c ∈ C is a dispensable attribute if

Card(U/IND(C − {c})) = Card(U/IND(C − {c} ∪ D))

Definition 3. Reduct.The subset of attributes R ⊆ C is a reduct of attribute
set C if

Card(U/IND(R ∪ D)) = Card(U/IND(C ∪ D))

And ∀Q ⊂ R

Card(U/IND(Q ∪ D)) �= Card(U/IND(C ∪ D))

Definition 4. Core.The set of all indispensable features in C is

CORE(C) = ∩RED(C)

where RED(C) is the set of all reducts of C with respect to D
The reduct represent the minimal set of non-redundant features that are capa-

ble of discerning objects in a decision table. An optimal feature subset selection
based on the rough set theory can be viewed as finding such a reduct R,R ⊆ C
with the best classifying properties.R,instead of C , will be used in a rule discov-
ery algorithm. It is obvious that all of indispensable features in core cannot be
deleted from C without losing the accuracy of a decision table; the feature(s) in
core must be the member of feature subsets. Therefore, the problem of feature
subset selection will become how to select the features from dispensable features
for forming the best reduct with core. Obtaining all reducts of a decision table
is a NP-hard problem, thus heuristic knowledge deriving from the dependency
relationship between condition attributes and decision attributes in a decision
table is mainly utilized to assist the attribute reduction. Many methods have
been proposed to search for the attribute reducts, which are classified into sev-
eral categories: 1) positive region [7]; 2) frequency function [8]; 3) information
entropy [9]; etc. .
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3 Rough Sets Based Gene Selection Method

Our learning problem is to select high discriminate genes for cancer classifica-
tion from gene expression data. We may formalize this problem as a decision
system, where universe U = {x1, x2, ......, xm} is a set of tumors, the conditional
attributes set C = {g1, g2, ......, gn} contains each gene; the decision attribute d
corresponds to class label of each sample. Each attribute gi ∈ C is represented by
a vector gi = {x1,i, x2,i, ......, xm,i}, i = 1, 2, ....., n , where xk,i is the expression
level of gene i at sample k, k = 1, 2, ......, m.

To select genes, t-test is widely used in the literature [1] [6]. Assuming that
there are two classes of samples in a gene expression data set, the t-value for
gene g is given by:

t =
μ1 − μ2√

σ2/n1 + σ2/n2
(1)

Where μi and σi are the mean and the standard deviation of the expression
levels of a gene g for class i respectively, and ni is the number of samples in class
i for i = 1, 2. When there are multiple classes of samples, the t-value is typically
computed for one class versus all the other classes. The top genes ranked by t-
value can then be selected for data mining. Feature sets so obtained have certain
redundancy because genes in similar pathways probably all have very similar
score and therefore no additional information gain. If several pathways involved
in perturbation but one has main influence it is possible to describe this pathway
with fewer genes, therefore Rough Sets attribute reduction is used to minimize
the feature sets.

Reduct is constructed from core because it represents the set of indispensable
features, thus all attributes in core must be in the reduct, then we adding at-
tributes using information entropy as the heuristic information until a reduct is
find. The attribute with lowest information entropy will be selected first because
the higher attribute entropy means the more expected information is needed us-
ing the attribute to classify the samples. Given the partition by D, U/IND(D),
of U , the entropy based on the partition by c ∈ C, U/IND(c), of U , is given by

E(c) = − 1
|U |

∑

X∈U/IND(D)

∑

Y ∈U/IND(c)

|X ∩ Y | log2
|X ∩ Y |

|Y | (2)

We can formulate our method as the following steps:

1. Calculate t-value of each gene, select the top ranked n genes to form the
attribute set C.

2. Calculate core attribute sets of C using Discernibly Matrix [8],denoted by
CORE(C).

3. Calculate the reduct of C using information entropy as the heuristic in-
formation. Let RED(C) ← CORE(C), while Card(U/IND(C ∪ D)) �=
Card(U/IND(RED(C) ∪ D)), we calculate information entropy of each
gene g ∈ C − RED(C), denoted by E(g), if E(g1) = min

g∈C−RED(C)
E(g)

then we assign g1 to RED(C). Repeat the above operation until we find a
reduct of C.
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4 Experimental Results

A well known gene expression data sets, leukemia data set of Golub et al. (1999),
which is the same data sets used in many publications for gene selection and can-
cer classification [1] [3] [5] [11] [12] [19] [20], is used to evaluate the performance of
our method. The acute leukemia dataset (http://www.genome.wi.mit.edu/MPR)
consists of 38 samples including 27 cases of acute lymphoblastic leukemia (ALL)
and 11 cases of acute myeloid leukemia (AML). The gene expression measure-
ments were taken from high-density oligonucleotide microarrays containing 7129
genes. An independent test set of 20 ALL and 14 AML samples also exists.

First t-test is employed as a filter on the training set; the top ranked 50
genes are selected. Then entropy based discretization introduced in [16] is used
to discretize the domain of each attribute because rough sets methods require
discrete input. Entropy based attribute reduction algorithm is employed on the
data set to find a minimal reduction. As the result, X95735 is the only gene to be
selected in the reduction. A box plot of X95735 expression levels in the training
set is presented in Fig. 1. This figure clearly indicates that the expression levels
of X95735 can be used to distinguish ALL from AML in the training set.

Two rules are induced by Rough sets: if the expression level of X95735 � 938
then the sample is classified as AML; If the expression level of X95735 <938
then the sample is classified as ALL. With the simples rules induced by Rough
sets, 31 test samples are correctly classified; there are only three mistakes, one
for AML, and two for ALL.

Fig. 1. Expression Levels of X95735 in Training Set

It is interesting that X95735 is also selected by many other methods. It is
reported in [5] that X95735 is the only gene identified by J48 pruned tree and
the emerging patterns algorithm, and X95735 is also selected by voting machine
[1], SVM [10], Deb’s NSGA-algorithm [21] and Cho’s work [22]. An approach
using clustering in combination with Rough Sets and neural networks has been
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investigated in [11], X95735 is repeated selected, and the classification accuracy
is 91.2% on test data set. For comparison, the feature selection and classification
results obtained by our method and some results in previous publishers are shown
in table 1.

Table 1. The Comparison of Feature Selection and Classification Results

Method Number of features Classification Results
Rough sets 1 31

J48 1 31
Emerging Patterns 1 31

SVM 7 34
NSGA-II 3 34

The results obtained by us suggest that the expression level of X95735 plays
an important role in distinguishing two types of acute leukemia. Role of X95735
in discerning between two types of acute leukemia samples is also verified by
biological researchers [17] [18].

5 Conclusions

Gene expression data set usually has thousands of genes while a few dozens of
samples, among a large amount of genes, only a very small fraction of them
are informative for classification task. In order to achieve good classification
performance, and obtain more useful insight about the biological related issues
in cancer classification, gene selection should be well explored to reduce the noise
and avoid overfitting of classification algorithm.

In this paper, a successful gene selection method based on rough sets theory
is presented. Filter kind of method is done first as a preprocessing to select top
ranked genes; the minimal reduct of the filtered attribute sets is induced by rough
sets. Acute leukemia gene expression dataset is used to test the performance
of this novel method; only one gene X95735 is selected, and high prediction
accuracies have been achieved on the test data set. Gene X95735 is also selected
by many other methods, and has been verified by biological researchers to play
an important role in distinguish two different types of acute leukemia, AML
and ALL.
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Abstract. By means of analyzing kernel clustering algorithm and rough
set theory, a novel clustering algorithm, rough kernel k-means clustering
algorithm, was proposed for clustering analysis. Through using Mercer
kernel functions, samples in the original space were mapped into a high-
dimensional feature space, which the difference among these samples
in sample space was strengthened through kernel mapping, combining
rough set with k-means to cluster in feature space. These samples were
assigned into up-approximation or low-approximation of corresponding
clustering centers, and then these data that were in up-approximation
and low-approximation were combined and to update cluster center.
Through this method, clustering precision was improved, clustering con-
vergence speed was fast compared with classical clustering algorithms
The results of simulation experiments show the feasibility and effective-
ness of the kernel clustering algorithm.

Keywords: Kernel methods, Kernel clustering algorithm, K-means,
Rough set, Rough clustering.

1 Introduction

Clustering has been applied in a wide variety of fields, ranging from engineer-
ing(machine learning, artificial intelligence, pattern recognition), computer sci-
ences and medical sciences to social science. Accordingly, clustering is also known
as numerical taxonomy, learning without a teacher (or unsupervised learning),
typological analysis and partition. The diversity reflects the important position
of clustering in scientific research. Clustering algorithms partition data into a
certain number of clusters. There is no universally agreed upon definition. Most
researchers describe a cluster by considering the internal homogeneity and the
external separation. i.e. patterns in the same cluster should be similar and the
dissimilarity should be examinable in a clear and meaningful way. Here we give
some simple mathematical description of several types of clustering, based on
the description in [1].

These clustering algorithms don’t consider sample characters and cluster these
samples, hence clustering performance depend on distribution of samples deeply.
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In order to solve this bottleneck, we put forward a novel clustering algorithm,
kernel-based rough k-means clustering algorithm. By using kernel learning the-
ory, firstly, we can transform these samples in the samples space to a high-
dimensional feature space, and the data can be classified linearly (maybe usually
nonlinear). Secondly, we can use Lingras’ algorithm-rough k-means to perform
clustering in feature space. Efficiently, Supposing the non-linear mapping is
continuum and velvet, the geometrical structure and sequence of samples are
preserved in feature space, and distribution of samples are changed, therefore
assemble data in original space will be assemble data in feature space. Besides
these, the character of data in sample space is enhanced through kernel mapping,
clustering precision of the method is improved. In order to improve clustering
preciseness rate furtherly, we adopt rough k-means algorithm [5]-[6] to cluster
in feature space, comparing with k-means, clustering precision can be increased
obviously.

2 Related Basic Theory

2.1 Kernel Method

Kernel methods [11]-[13] are appellation of a serious advanced nonlinear data
dealing technology, and using kernel map are their common characteristics. From
idiographic operating, firstly, samples are mapped into feature space using non-
linear method; secondly, dealing with these samples in feature space in linear
operating. The process can be illustrated in Fig 1. For using nonlinear mapping
and these nonlinear mapping are often rather complex, kernel method possess
strong ability of dealing with nonlinear data.

Fig. 1. Kernel mapping process

Kernel functions are nonlinear map function Φ : �d → F which for all pattern
sets,

xj ∈ �d, j = 1, 2, · · · , N, . ⇔ {x1, x2, · · · , xN} ⊂ �d, (1)

Φ(x1), Φ(x2), · · · , Φ(xN ) ⊂ F.

Here, �d is sample space .F represents a feature space with arbitrary high di-
mensionality, In feature space, kernels are often referred to as Mercer kernels or
others .They provide an element way of dealing with nonlinear algorithms by
reducing them to linear ones in some feature space F . Φ may not be explicitly
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known, but is defined implicitly in terms of the positive (semi-) definite kernel
function satisfying the Mercer Condition:

K(x1, x2) = Φ(x1) • Φ(x2)T , (2)

Kernel-based clustering have many advantages:

1) It is more possible to obtain a linearly separable hyperplane in the high-
dimensional, or even infinite feature space.

2) They can form arbitrary clustering shapes other than hyperellipsoid and
hypersphere.

3) Kernel-based clustering algorithms, like SVC, have the capability of dealing
with noise and outliers.

4) There is no requirement for priori knowledge to determine the system
topological means to estimate the number of clusters. In order to illustrate kernel
method, we give an example to show the process.

2.2 Kernel Clustering Algorithm

Given an unlabeled data set X = {x1, x2, · · · , xn}in the d-dimension input space
�d ,let Φ : �d → F be a nonlinear map function from input space to a high
dimensional feature space F . we can use k-means to perform clustering in feature
space. efficientlyThe character of data in sample space is enhanced through kernel
mapping [11]-[13].

2.3 Rough Clustering Algorithm

There are two different points between Lingras’ algorithm[4]-[6] and k-means.
1) An sample is not only assigned to one class. According to the distance

between sample and clustering center, and assigning it to up approximation and
low approximation of different cluster center;

2) Adjustment of cluster centroids depend on samples in up-approximation
and low-approximation.

3 Rough Kernel Clustering Algorithm

Main idea about rough kernel clustering is firstly, Given an unlabeled data set
X = {x1, x2, · · · , xn} in the d-dimension input space �d, let Φ : �d → F be a
nonlinear map function from input space to a high dimensional feature space F ,
differences of these samples are enhanced and these samples can be classified lin-
early (maybe close to linear).Secondly, we can use k-means clustering algorithm
to perform clustering in feature space.

Object function is following:

Jφ =
C∑

j=1

NK∑

i=1

||Φ(xi) − mφ
j ||2
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=
C∑

j=1

NK∑

i=1

K(xi, Xj) − 2
N

Nj∑

k=1

K(xi, Xk) +
1

N2
i

Nj∑

k,p=1

K(xk, xp).

K-means algorithm in the high dimension feature space F iteratively searches
for k clusters by minimizing the object function of the algorithm.

3.1 Basic Process of Rough Kernel Clustering Algorithm

1) Given an unlabeled data set in sample space �d : {x1, x2, · · · , xN ⊂ �d;

Fig. 2. An example of assigning

2) Given a kernel function Φ and map these samples into Hilbert space F :
{Φ(x1), Φ(x2), · · · , Φ(xN ) ⊂ F .

3) Initializing clustering centroidsmφ
k = {mφ

1 , mφ
2 , · · · , mφ

K}, where K is num-
ber of class;

4) In kernel space, assigning each sample Φ(xi) into up-approximation and
low-approximation according to near distance principle

a) d(Φ(xi), mk) ,calculating the distance between Φ(xi) and clustering cen-
troids mk), k = 1, 2, · · · , K

dmin
i,h = di,h(Φ(xi), mk) = mink=1,2,···,K{Φ(xi), mk}. (4)

and assigning Φ(xi) to up- approximation of mk), means Φ(xi) ∈ C̄h;
b) the distance d(Φ(xi), mk) between Φ(xi) and mk) is less than dmin

i,h and
∃ε:

T = {k : (d(Φ(xi), mk) − d(Φ(xi), mh) ≤ ε) ∧ (h 
= k)}. (5)

if T 
= ∅,
then Φ(xi) ∈ (̄Ci), ∀t ∈ T ;
else Φ(xi) ∈ Ch;
5) Re-calculating clustering centroids mφ

k = {mφ
1 , mφ

2 , · · · , mφ
K} and object

function Jφ;
Because clustering center cannot calculated explicitly in feature space, calcula-

tion of cluster centroids is a puzzle question in this method. In this
paper, we adopt following method that every sample can be assigned into up-
approximation and low-approximation of each cluster centroids and Lingras al-
gorithm is adopted to update cluster centroids, we can use following formulation
to do this work:
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mφ
k :=

⎧
⎨

⎩

wl ·
∑

Φ(xn)∈|Ck|
Φ(xn)
|Ck| + wB ·

∑
Φ(xn)∈|CB

k
|Φ(xn)

|Ck| for Ck 
= φ

wl ·
∑

Φ(xn)∈|Ck|
Φ(xn)
|Ck| otherwise

6) repeat step 4 and step 5until the value diversification of Jφ is very small.

3.2 An Example of Rough Assigning

About step 4, we show a example to illustrate the process (Fig. 2). Let a sample
and three clustering centroids C1, C2, C3.

Let d(xn, C1) = 1.665, d(xn, C2) = 1.5, d(xn, C3) = 1.65, ε = 0.2

dmin
n,2 = d(xn, m2) = mink=1,···,3d(xn, mk)

Hence h = 2, k = 1, 2, 3, xn ∈ C2
If d1 = d(xn, C1) − d(xn, C2) = 0.165 < 0.2 = ε, then xn ∈ C1;
If d2 = d(xn, C3) − d(xn, C2) = 0.15 < 0.2 = ε, then xn ∈ C3;
If d1 > 0.2 and d2 > 0.2, then xn ∈ C2.
For outlier, taking into account this assigning method about up-approximation

and low-approximation, there are little opportunities that outlier are assigned
into low-approximation in clustering later process. Otherwise, outlier maybe af-
fect up-approximation of cluster center are more than low-approximation, clus-
ter centroids can be calculated by combination of up-approximation and low-
approximation, Hence this cluster method have a thick thin about outlier.

3.3 Rough Kernel Cluster Algorithm

Algorithm 1 Rough kernel cluster algorithm;
Input1) {x1, x2, · · · , xN} ⊂ �d; 2) Gauss RBF 3) w1, wu, ε, δ;
OutputClustering result (K cluster centroids and K classes)
Begin
flag=1; num=1; for i = 1 : K, mφ

i = Φ(xi),// initializing clustering centroids;
initializing Jφ(1);
for i = 1 : N //calculating kernel metrices among samples for j = 1 :

N, k(xi, xj) = d(Φ(xi) • Φ(xj)); end for end for;
While (flag==1) for i=1:N // calculating kernel metrices between samples

and clustering centroids for j = 1 : K, k(xi, mj) = d(Φ(xi) • Φ(mj)); end for
end for;

for i = 1 : K // calculating kernel metrices among clustering centroids for
j = 1 : K, k(xi, xj) = d(Φ(xi) • Φ(xj)); end for end for;

dmin
i,h = di,h(Φ(xi), mh) = mink=1,···,K{Φ(xi), mh},

Φ(xi) ∈ Ch;

T = {k : (d(Φ(xi), mk) − d(Φ(xi), mh) ≤ ε) ∧ (h 
= k)};

if T 
= ∅,
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then Φ(xi) ∈ Ci, ∀t ∈ T ;
else Φ(xi) ∈ Ch; end if;
for k = 1 : K //update cluster centroids

mφ
k :=

⎧
⎨

⎩

wl ·
∑

Φ(xn)∈|Ck|
Φ(xn)
|Ck| + wB ·

∑
Φ(xn)∈|CB

k
|Φ(xn)

|Ck| , for Ck 
= φ

wl ·
∑

Φ(xn)∈|Ck|
Φ(xn)
|Ck| , otherwise

end if
num=num+1;

Jφ(num) =
C∑

j=1

NK∑

i=1

||Φ(xi) − mφ
j ||2

=
C∑

j=1

NK∑

i=1

K(xi, Xj) − 2
N

Nj∑

k=1

K(xi, Xk) +
1

N2
i

Nj∑

k,p=1

K(xk, xp).

if (Jφ(num) − Jφ(num − 1) < δ flag=0;

4 Experiments

In order to validate the feasibility and validity about this algorithm, we realize
the algorithm about one typical data sets, and kernel function is Gauss RBF. Our
experiment environment is Pentium IV computer, 256M memory, MATLAB 7.0.

Sample is Set1(Fig3 ), and means value of samples is (0.0029,-0.2686), there
are 200 samples in this data set and the distribution of these samples are two
nested cycles. It is difficult to cluster about Set1. We adopt rough kernel cluster
algorithm to do this work and get the result in Fig 4. Note there are 7 times
better results among 10 experiments. Close curve denote equidistance thread.

From above 3 experiments, we can see kernel clustering algorithm is better
than k-means in clustering performance. Note the reason that rough k-means
algorithm performance is worse than k-means is due to these data sets. Adopting
rough kernel k-means to do this work and get best performance than others

Fig. 3. Sample Set1
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Fig. 4. Clustering result about Set1

Table 1. Comparing with 3 algorithm clustering result about 1 data set

Data set k-means Rough k-means Kernel k-means Rough kernel k-means
set (Error rate %) (Error rate %) (Error rate %) (Error rate %)

Set1 Class 1:54 Class 1:47 Class 1:3 Class 1:0
Class 2:49 Class 2:45 Class 2:4 Class 2:1

algorithm. Via experiment, we know that kernel clustering result strongly depend
on initializing clustering centers. Rough kernel k-means algorithm has a better
stability, clustering performance and clustering precision is improved.

5 Conclusions

Generally, the stability, precision and performance of clustering algorithm are
depended on geometrical characteristics of the training data. If the difference is
evidence and can be clustered easily. However in practical, this difference is not
obvious among training data and even different samples in different are cross,
traditional clustering algorithm based on distance can not resolve this prob-
lem. Kernel clustering algorithm can transform samples in original space into
Hilbert space, the difference among samples can be preserved and even magni-
fied, and therefore we can use k-means to do clustering in Hilbert space and get
a better clustering performance. In this paper, we think different samples can
have different affection about different clustering centroids, assigning each sam-
ple into up-approximation and low-approximation according to some principles.
And updating clustering centroids according to the linear combination of up-
approximation and low-approximation. Via experiment, we can know that this
method has a better clustering performance and precision than kernel cluster-
ing algorithm, rough clustering algorithm. Another merit is that it can restrain
outlier role about clustering results.
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Abstract. The current reduction algorithms based on rough sets still
have some disadvantages. First, we indicated their limitations for reduct
generation. We modified the mean decision power, and proposed to use
the algebraic definition of decision power. To select optimal attribute re-
duction, the judgment criterion of decision with inequality was presented
and some important conclusions were obtained. A complete algorithm
for the attribute reduction was designed. Finally, through analyzing the
given example, it was shown that the proposed heuristic information was
better and more efficient than the others, and the presented in the pa-
per method reduces time complexity and improves the performance. We
report experimental results with several data sets from UCI repository
and we compare the results with some other methods. The results prove
that the proposed method is promising.

Keywords: Rough set, Decision table, Reduction, Decision power.

1 Introduction

Rough set theory is a valid mathematical tool that deals with imprecise, uncer-
tain, vague or incomplete knowledge of a decision system (see [1]). Reduction
of knowledge is always one of the most important topics. Pawlak (see [1]) first
proposed attribute reduction from the algebraic point of view. Wang (see [2,
3]) proposed some reduction theories based on the information point of view,
and introduced two novel heuristic algorithms of knowledge reduction with the
time complexity O(|C||U |2)+O(|U |3) and O(|C|2|U |)+O(|C||U |3) respectively,
where |C| denotes the number of conditional attributes and |U | is the number of
objects in U , and the heuristic algorithm based on the mutual information (see
[4]) with the time complexity O(|C||U |2) + O(|U |3). These presented reduction
algorithms have still their own limitations, such as sensitivity to noises, relatively
high complexities, nonequivalence in the representation of knowledge reduction
and some drawbacks in dealing with inconsistent decision tables.

It is known that reliability and coverage of a decision rule are all the most
important standards for estimating the decision quality (see [5, 6]), but these
algorithms (see [1, 2, 3, 7, 8, 9]) can’t reflect the change of decision quality ob-
jectively. To compensate for their limitations, we construct a new method for

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 180–188, 2008.
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separating consistent objects from inconsistent objects, and the corresponding
judgment criterion with an inequality used in searching for the minimal or opti-
mal reducts. Then we design a new heuristic reduction algorithm with relatively
lower time complexity. For the large decision tables, since usually |U | � |C|, the
reduction algorithm is more efficient than the algorithms discussed above. Fi-
nally, six data sets from UCI repository are used to illustrate the performance of
the proposed algorithm and a comparison with the existing methods is reported.

2 Rough Set Theory Preliminaries

A decision table is defined as S = (U, C, D, V, f). Let P, Q be equivalence re-
lations on U . Then the partition U/Q is coarser than the partition U/P , in
symbols U/P ≤ U/Q if and only if ∀Pi ∈ U/P and ∃Qj ∈ U/Q such that
Pi ⊆ Qj . If U/P ≤ U/Q and U/P ≥ U/Q, then U/P = U/Q. If U/P ≤ U/Q
and U/P 	= U/Q, then U/Q is strictly coarser than U/P , i.e., U/P < U/Q.

Let U/P={X1, X2, . . ., Xr}, and U/Q={X1, X2, . . ., Xi−1, Xi+1, . . ., Xj−1,
Xj+1, . . ., Xr, Xi∪Xj} be a new partition formed by unifying Xi and Xj in U/P
to Xi ∪ Xj, then U/P ≤ U/Q. Moreover, let us assume U/B = {Y1, Y2, . . . , Ys},
then for the conditional entropy we have H(B|P ) ≤ H(B|Q). The equation holds

iff
|Xi ∩ Yk|

|Xi|
=

|Xj ∩ Yk|
|Xj |

, ∀Yk ∈ U/B. If P, Q ⊆ C, then H(D|P ) ≤ H(D|Q).

The equation holds iff
|Xi ∩ Dr|

|Xi|
=

|Xj ∩ Dr|
|Xj |

, ∀Dr ∈ U/D (see [10]).

Thus let r ∈ P , and if H(D|P ) = H(D|P − {r}), then r in P is unnecessary
for D, else r is necessary. If every element in P is necessary for D, then P is
independent relative to D.

For P ⊆ C, POSP (D) = ∪{PY |Y ∈ U/D} is called the P -positive region of
D, where PY = ∪{[x]P |[x]P ⊆ Y } indicates the P -lower approximation of Y .

If POSC(D) = U , then the decision table is called a consistent one, otherwise
an inconsistent one. The set POSC(D) is called the (positive region) consistent
object set, and U − POSC(D) is called the inconsistent object set.

3 The Proposed Approach

3.1 Limitations of Current Reduction Algorithms

Hence, one can analyze algorithms based on the positive region and the condi-
tional entropy deeply. Firstly, if for any P ⊆ C, the P -quality of approximation
relative to D is equal to the C-quality of approximation relative to D, i.e.,
γP (D) = γC(D), and there is no P ∗ ⊂ P such that γP∗(D) = γC(D), then P is
called the reduct of C relative to D (see [1, 7, 8, 9]). In these algorithms, whether
or not any conditional attributes is redundant depends on whether the lower ap-
proximation corresponding to decision set is changed or not after the attribute
is deleted. Accordingly if new inconsistent objects are added to the decision ta-
ble, it is not taken into account whether the conditional probability distribution
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of the primary inconsistent objects are changed in every corresponding decision
class (see [10]). Hence, if the generated deterministic decision rules are the same,
they will support the same important standards for estimating decision quality.
Suppose the generated deterministic decision rules are the same, that is, the
prediction of these rules is not changing. Thus it is seen that these presented
algorithms only take into account whether or not the prediction of deterministic
decision rules is changing after reduction.

Secondly, if for any P ⊆ C, H(D|P ) = H(D|C) and P is independent relative
to D, then P is called the reduct of C relative to D (see [2, 3, 10, 11]). Hence,
whether any conditional attributes is redundant or not depends on whether the
conditional entropy of decision table is changed or not, after the attribute is
deleted. It is known that the conditional entropy generated by POSC(D) is 0,
thus U −POSC(D) can lead to a change of conditional entropy. Due to the new
added and primary inconsistent objects in every corresponding decision class,
if their conditional probability distribution changes, it will cause the change
of conditional entropy of the whole decision table. Therefore, as it goes, the
main criterions of these algorithms for estimating decision quality include two
aspects, the invariability of the deterministic decision rules, the invariability of
the reliability of nondeterministic decision rules.

So, some researchers above only think about the change of reliability for all
decision rules after reduction. However, in decision application, besides the reli-
ability of decision rules, the object coverage of decision rules is also one of the
most important standards of estimating decision quality. So these current re-
duction algorithms above can’t reflect the change of decision quality objectively.
Meanwhile, the significance of attribute is regarded as the quantitative compu-
tation of radix for the positive region, which merely describes the subsets of
certain classes in U , while from the information point of view, the significance of
attribute only indicates the detaching objects of different decision classes in the
equivalence relation of conditional attribute subset. However, for the inconsistent
objects, these current measures for attribute reduction lack of dividing U into
consistent object sets and inconsistent object sets for the inconsistent decision
table. Therefore, these algorithms will not be equivalent in the representation of
of knowledge reduction for inconsistent decision tables (see [12]). It is necessary
to seek for a new kind of measure to search for the precise reducts effectively.

3.2 Representation of Decision Power on Decision Table

If A ⊆ C, then POSA(D) = POSC(D) if and only if the A-lower approximation
of Di is equal to the C-lower approximation of Di, i.e., ADi = CDi, for any
Di ∈ U/D (see [12]). Thus suppose D0 = U −POSC(D), we have CD0 = D0. If
all sets from {AD0, AD1, AD2, . . . , ADm} are nonempty, then the sets create
a partition of U . If ADi is empty, then ADi is called a redundant set of the new
partition. After all redundant sets are taken out, we obtain a partition of U .

Suppose A ⊂ C, then in the partition {AD0, AD1, AD2, . . . , ADm}, all in-
consistent objects are the set AD0. Meanwhile, the new partition of conditional
attribute set C is {CD0, CD1, CD2, . . . , CDm}, then we have a new equivalence
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relation generated by this new partition, denoted by RD, i.e., U/RD={CD0,
CD1, CD2, . . ., CDm}. Accordingly the decision partition U/RD not only cov-
ers consistent objects from different decision classes in U , but also separates
consistent objects from inconsistent objects, while U/D is gained through ex-
tracting objects from different decision classes relative to equivalence classes.

The most concise decision rules set that satisfies condition of the mean de-
cision power discussed in the paper is regarded as the final reduction result in
the new reduction model (see [13, 14]). Some experiments show that the mean
decision power can acquire good standards. At all points of attribute reduction
on decision table based on the mean decision power, we suppose that a new mea-
sure to knowledge reduction is presented without the number of original decision
rules, compared with classical reduction algorithms. Thus, it not only occupies
much smaller storage space and requires much lower computational costs and
implementation complexity, but also has no effects on helping to get the mini-
mal or optimal reducts. Thereby, based on U/RD, the mean decision power is
introduced and modified to discuss the roughness and attribute reduction based
on rough sets. Thus we propose the algebraic definition of the decision power,
which not only has effects on the subsets of the certain classes but also on the
subsets of the uncertain (relative to the decision) classes in U .

Definition 1. Let P ⊆ C, U/P = {X1, X2, . . . , Xt}, D = {d}, U/D = {Y1,
Y2, . . . , Ym}, and U/RD={CY0, CY1, CY2, . . . , CYm}, then the decision power of
equivalence relation RD relative to P is defined as

S (RD; P ) =
t∑

i=1

m∑

j=0

(
|Xi ∩ CYj |

|Xi|
× |Xi ∩ CYj |

|U | ) =
t∑

i=1

m∑

j=0

(
|Xi ∩ CYj |2

|Xi||U | ). (1)

From Definition 1, we know that any Xi is C-definable. Hence, Xi is a union
of some C-equivalence classes. C-lower approximation of Yj is also C-definable.
Hence, the C-lower approximation of Yj is also a union of some C-equivalence
classes. We obtain that the intersection of Xi and the C-lower approximation
of Yj is equal to the union of all C-equivalence classes which are included in
the C-lower approximation of Yj and in Xi. Meanwhile, |Xi ∩ CYj |/|Xi| and
|Xi ∩CYj |/|U | represent the reliability of a decision rule and the object coverage
corresponding to the rule respectively (see [6]), while it is only taken into account
the change of reliability of all decision rules for the conditional entropy.

Theorem 1. Let r ∈ P ⊆ C, then we have S(RD; P ) ≥ S(RD; P − {r}).

Proof. To simplify notation in the proof, we consider only a special case. The
proof in the general case goes in the analogous way. We assume that U/P =
{X1, . . . , Xt} and U/P − {r} contains the same classes as in U/P with the only
one exception that Xp and Xq are joined, i.e., Xp ∪ Xq is a class of U/P − {r}
and Xp, Xq are not. If many classes in U/P will be also joined after r in P is
deleted, the coalition may be considered as automatically comprising more two
partitions continually. So we have
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S� = S(RD; P ) − S(RD; P − {r})

=
m∑

j=0

(
|Xp ∩ CYj |2

|Xp||U | ) +
m∑

j=0

(
|Xq ∩ CYj |2

|Xq||U | ) −
m∑

j=0

(
|(Xp ∩ CYj) ∪ (Xq ∩ CYj)|2

|Xp ∪ Xq||U | ).

Suppose |Xp| = x, |Xq| = y, |Xp ∩ CYj | = ax, |Xq ∩ CYj | = by, there must be
x > 0, y > 0, 0 ≤ a ≤ 1, and 0 ≤ b ≤ 1, thus we have

S� =
m∑

j=0

(ax)2

x|U | +
m∑

j=0

(by)2

y|U | −
m∑

j=0

(ax + by)2

(x + y)|U | =
1

|U |

m∑

j=0

xy(a − b)2

x + y
.

Assume a function fj =
xy(a − b)2

x + y
, for any j (j = 0, 1, . . . , m). Hence, it is

obviously true that when a = b, we have
|Xp ∩ CYj |

|Xp|
=

|Xq ∩ CYj |
|Xq|

, then fj = 0.

So, when any attribute r is deleted from decision table, there must exist
S� ≥ 0. Hence, the proposition S(RD; P ) ≥ S(RD; P − {r}) is true.

Thus, we obtain the conclusion that the decision power of knowledge decreases
non-monotonously as the information granularities become finer.

Theorem 2. If S is a consistent one, then U/RD = U/D. Assume that
|Xp ∩ CYj |

|Xp|
=

|Xq ∩ CYj |
|Xq|

such that
|Xp ∩ Yj |

|Xp|
=

|Xq ∩ Yj |
|Xq|

, then S(RD; P ) =

S(RD; P − {r}) ⇔ H(D|P ) = H(D|P − {r}) ⇔ γP (D) = γp−{r}(D). If S is

inconsistent, then CY0 = Y0. Assume that
|Xp ∩ CY0|

|Xp|
=

|Xq ∩ CY0|
|Xq|

such that

|Xp ∩ Y0|
|Xp|

=
|Xq ∩ Y0|

|Xq|
, then S(RD; P ) = S(RD; P−{r}) ⇔ γP (D) = γp−{r}(D).

Proof. One can prove Theorem 2 easily from Lemma 1 in [3].

Theorem 3. Let P ⊆ C, then any attribute r in P is said to be unnecessary
relative to D if and only if S(RD; P ) = S(RD; P − {r}).

Definition 2. If P ⊆ C, then the significance of any attribute r ∈ C−P relative
to D is defined by

SGF (r, P, D) = S(RD; P ∪ {r}) − S(RD; P ). (2)

Notice that when P = Ø, SGF (r, Ø, D) = S(RD; {r}).
From Theorem 2 and (2), we know that if SGF (r, P, D) = 0, then the signif-

icance of attribute based on the positive region is also 0, on the other hand, if
the radix of positive region fills out after adding any attributes, then that sig-
nificance of attribute isn’t 0. Meanwhile, we also have SGF (r, P, D) 	= 0. Hence,
SGF (r, P, D) can not only include more information than that based on the
positive region, but also compensate for some limitations of the significance of
attribute based on the algebraic point of view and the information point of view.

Definition 3. Let P ⊆ C, then P is an attribute reduction of C relative to D,
if S(RD; P ) = S(RD; C) and S(RD; P ∗) < S(RD; P ), for any P ∗ ⊂ P .
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3.3 Design of Reduction Algorithm Based on Decision Power

We know that the calculated S(RD; P ) is the same every time, then calculating
any attribute r with the maximum of SGF (r, P, D), when used as heuristic
information, is in fact to calculate that with the maximum of S(RD; P ∪ {r}).
Therefore, we only need calculate S(RD; P ∪ {r}) except S(RD; P ). However,
calculating S(RD; P ∪ {r}) is in fact to calculate corresponding partitions and
positive region principally. Then we make use of the effective computational
methods of equivalence (indiscernibility) classes, positive region and attribute
importance in [9], attribute core in [15]. Thus it will help to reduce the quantity
of computation and the time and space of search.

The reduct consists of the following steps, first, detaching objects from equiv-
alence classes step by step, then determining attribute core of objects, finally,
obtaining the minimum relative reducts through adding attributes bottom-up.

Input: Decision table S = (U, C, D, V, f).
Output: A relative attribute reduction P .
(1) Calculate POSC(D) and U − POSC(D) for the partition U/RD.
(2) Calculate S(RD; C), CORED(C), and let P = CORED(C).
(3) If P=Ø, then turn to (4), and if S(RD; P ) = S(RD; C), then turn to (6).
(4) Calculate S(RD; P ∪ {r}), for any r ∈ C − P , select an attribute r with the
maximum of S(RD; P ∪ {r}), and if this r is not only, then select that with the
maximum of |U/(P ∪ {r})|.
(5) Let P = P ∪ {r}, and if S(RD; P ) 	= S(RD; C), then turn to (4), else
{P ∗ = P − CORED(C); t = |P ∗|;
for(i=1; i ≤ t; i++)
{ ri ∈ P ∗; P ∗ = P ∗ − {ri};
and if S(RD; P ∗ ∪ CORED(C)) < S(RD; P ), then P ∗ = P ∗ ∪ {ri};}
P = P ∗ ∪ CORED(C);}
(6) The output P is a minimum relative attribute reduction.

It is clear that this algorithm is complete. In other words, none of the at-
tributes in P can be eliminated again without decreasing its discriminating qual-
ity, whereas many algorithms are incomplete, which can’t ensure that the final
reducts will be obtained (see [8]). Thus the algorithms in [8, 12, 14] are complete,
but the algorithms in [3, 4] are not. Meanwhile, we can easily see that the time
complexity of algorithm is O(|C|2|U |), which is less than that of [3, 4, 6, 8, 12].

4 Experimental Results

In Table 1 below, we give an inconsistent decision table S = (U, C, D, V, f),
where U = {x1, x2, . . . , x10}, C = {a1, a2, . . . , a5}, and D = {d}.

In Table 2 below, there is the significance of attribute relative to the core {a2}
and the relative reducts, the Algorithm in [7],CEBARKCC in [3], Algorithm
2 in [12], and the proposed Algorithm are denoted by A1, A2, A3, and A4
respectively, and let m, n be the number of attributes and universe respectively.
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Table 1. Inconsistent Decision Table S

U a1 a2 a3 a4 a5 d
x1 0 1 0 0 1 0
x2 0 0 0 1 0 0
x3 0 1 0 0 1 1
x4 0 0 1 0 0 0
x5 1 0 1 1 1 1
x6 0 1 1 0 0 0
x7 0 0 0 0 1 1
x8 0 0 1 0 0 1
x9 1 0 0 1 1 1
x10 0 0 0 0 1 0

Table 2. Comparison of Experimental Results

Algorithm Relative {a2} Reduction Result Time Complexity
a1 a3 a4 a5

A1 0.200 0.100 0 0.100 {a1,a2,a3,a5} O(m3n2)
A2 0.204 0.089 0.014 0.165 {a1,a2,a3,a5} O(mn2) + O(n3)
A3 0.604 0.365 0.689 0.565 {a2,a4,a5} O(m2n log(n))
A4 0.240 0.200 0.267 0.200 {a2,a4,a5} O(m2n)

Table 3. Comparison of Reducts for Data Sets

Database T or F Objects Radix m A1 A2 A3 A4 A5
n t n t n t n t n t

Balloon(1) T 20 4 2 0.20 2 0.06 2 0.04 2 0.02 2 0.12
Zoo F 101 17 10 0.36 11 0.29 10 0.14 10 0.09 10 5.83

Voting-records T 435 16 10 0.98 9 0.51 9 0.27 9 0.26 9 6.75
Tic-tac-toe T 958 9 8 0.95 8 1.38 8 0.56 8 0.52 8 9.65

Chess end-game T 3196 36 29 275.27 29 23.15 29 5.56 29 5.25 29 32.28
Mushroom T 8124 22 5 486.36 4 16.58 4 6.68 4 6.56 4 29.87

From Table 2, the significance of attribute in [3, 7] a4 is relatively minimum,
and their reducts are {a1, a2, a3, a5}, rather than the minimum relative reduct
{a2, a4, a5}. However, the SGF (a4, {a2}, D) is relatively maximum. Thus we get
the minimum relative reduction {a2, a4, a5} generated by A3 and A4. Compared
with A1 and A2, the new proposed algorithm does not need much mathematical
computation, logarithm computation in particular. Meanwhile, we know that
the general schema of adding attributes is typical for old approaches to forward
selection of attributes although they are using different evaluation measures, but
it is clear that on the basis of U/RD, the proposed decision power is feasible to
discuss the roughness of rough sets. Hence, the new heuristic information will
compensate for the proposed limitations of those current algorithms. Therefore,
this algorithm’s effects on reduction of knowledge are well remarkable.

Here we choose six discrete data sets from UCI repository and five algorithms
to do more experiments on PC (P4 2.6G, 256M RAM, WINXP) under JDK1.4.2
in Table 3 below, where T or F indicates that the data sets are consistent or
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not, m, n are the number of primal attributes and after reduction respectively, t
is the time of operation, and A5 denotes the algorithm in [6].

5 Conclusion

In this paper, to reflect the change of decision quality objectively, a measure for
reduction of knowledge and its judgment theorem with an inequality are estab-
lished by introducing the decision power from the algebraic point of view. To
compensate for these current disadvantages of classical algorithms, we design
an efficient complete algorithm for reduction of knowledge with the time com-
plexity reduced to O(|C|2|U |) (In preprocessing, the complexity for computing
U/C based on radix sorting is cut down to O(|C||U |), and the complexity for
measuring attribute importance based on the positive region is descended to
O(|C − P ||U ′ − U

′

P |) (see [9]).), and the result of this method is objective.
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Fund of Henan Province (No. 0511011500) and New Century Excellence Genius
Support Plan of Henan Province of China (No. 2006HANCET-19).
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Abstract. In this paper we devote to study some feature selection of
an information system in which redundant or insignificant attributes in
data sets can be eliminated. An approach of importance gain function
is suggested to evaluate the global average information gain associated
with a subset of features. A heuristic algorithm on iterative criterion of
feature selection on the significance of attributes is proposed to get the
least reduction of attribute set in knowledge discovery. The feasibility of
feature selection proposed here is validated by some of examples.

Keywords: Rough set, Importance, Feature selection.

1 Introduction

Feature selection is a process of finding a subset of features from the original set
of features, forming patterns in a given data set, optimally according to the given
goal of processing and criterion. See, for example, [1]-[2].Reduction of pattern
dimensionality via feature extraction and feature selection belongs to the most
fundamental steps in data preprocessing. Feature selection is often isolated as
a separate step in processing sequence. Features constituting the object’s pat-
tern may be irrelevant (having no effect on processing performance) or relevant
(having an impact on processing performance). Features can be redundant (de-
pendent), and may have a different discriminatory or predictive power. In the
virtue of the minimum construction idea, one of the techniques for the best fea-
ture selection could be based on choosing a minimal feature subset that fully
describes all concepts (for example classes in prediction-classification) in a given
data set. Let us call this paradigm a minimum concept description.

The concept of a rough set, which was presented by Pawlak et al. [3] and
Pawlak [4], is an important concept since it is applicable in many fields such
as artificial intelligence, expert systems, data mining, pattern recognition and
decision theory. See, for example, [8]-[9].
� The corresponding author.
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The application of rough sets in feature selection was proposed in several con-
tributions. The simplest approach is based on calculation of a core for discrete
attribute data set, containing strongly relevant features, and reduction, contain-
ing a core plus additional weakly relevant features, so that each reduction is
satisfactory to determine concepts in the data set. Based on a set of reduction
for a data set, some criteria for feature selection can be formed, for example
selecting features from a minimal reduction, i.e., a reduction containing minimal
set of attributes.

In this paper, we concentrate on the issue of the attribute reduction which
is addressed in the theory of rough sets in terms of (approximate) decision re-
duction [10]-[13]. We give the importance gain function, to evaluate the global
average information gain associated with a subset of features. We also formulate
criteria for maintaining the level of the importance gain during the process of
attribute reduction.

2 Preliminaries

In rough set, the decision table expression is T = (U, A, C, D), where U is a set
of objects, A is a nonempty finite set of attribute, A = C ∪ D, C ∩ D, and C
and D are called as the condition attribute set and the decision attribute set,
respectively.

Definition 1. The indiscernible binary relation is defined as: for a ∈ A, P ⊂ A,

IND(P ) = {(x, y) ∈ U × U | a(x) = a(y), ∀a ∈ P}.

All the classes of equivalence relations IND(P ) are expressed by U/IND(P ),
and U/IND(P ) is denoted by U/P . U/IND(C) and U/IND(D) are called as
the condition class and the decision class, respectively.

Definition 2. R−(x) is the lower approximation of R of X

R−(x) =
⋃

{Y ∈ U/R| Y ⊆ X}, for R ⊆ C, X ⊆ U.

Definition 3. The positive region of C of D:

POSC(D) =
⋃

X∈U/D

C−(X),

where C−(X) expresses the lower approximation of C to X .

Definition 4. For c ∈ C, feature c is called omit-able in T when POS(C−{c})
(D) = POSC(D), otherwise cannot be omitted. T is independent if all c ∈ C
can’t be omitted.

Definition 5. If T ′ = (U, A, C, D) is independent and POSR(D) = POSC(D),
then R is the reduction of C. In other words, the least reduction of attribute-set
satisfies the above conditions.

Definition 6. All of the independent attribute set of C is denoted by CORE(C),
namely, CORE(C) =

⋂
RED(C), where RED(C) is the reduction of C.
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3 Importance

Let I = (U, A) is an information system, X ⊆ A is an attribute subset, x ∈ A
is an attribute, we consider the importance of x for X , namely the attribute
x is added to X to enhance the degree of resolution, the bigger degree to be
enhanced, the more important x is to X , so the definition is as the following:

Definition 7. Assume X ⊆ A is an attribute subset, x ∈ A is an attribute, the
importance of x for X is denoted by SigX(x), the definition is:

SigX(x) = 1 − |X ∪ {x}|/|X |,

where |X | = |IND(X)|. Suppose U/IND(X) = U/X = {X1, X2, · · · , Xn}, then

|X | = |IND(X)| =
n∑

i=1
|Xi|2.

|X | − |X ∪ {x}| represents the decrement of indiscernibility and also the in-
crement of discernibility as attribute x is added to X . Namely, the number of
selection methods is originally indiscernible in X , but it is discernible in X ∪{x},
and the increment of indiscernibility is expressed by

(|X | − |X ∪ {x}|)/X = 1 − |X ∪ {x}|/X.

Proposition 1. The following conclusions are equal:

1) x for X is unimportant, it means SigX(x) = 0.
2) x for X redundancy, namely:

X ∪ {x} ↔ X.

3) X → x.
4) IND(X ∪ {x}) = IND(X).
5) For u, v ∈ U , if u, v are indiscernible in X , then u, v are indiscernible in

x. It means that if uIND(X)v, then uθxv (θx expresses the equal relations
produced by x).

Proposition 2. Let X, Y ⊆ A. If X ↔ Y , then SigX(x) = SigY (x), for x ∈ A.

Proposition 3. Let X ⊆ A. Then

1) Sig(RED(X)−{x})(x) > 0, for x ∈ RED(X), where RED(X) is the reduction
of X . Namely, each element is important to other elements of the reduction.

2) SigRED(X)(x) = 0 for x ∈ X − RED(X) when RED(X) 
= ∅.

Namely each outside element of the reduction is unimportant to the reduction.

Proposition 4. Let X ⊆ A. if X − CORE(X) 
= ∅, the necessary and suf-
ficient condition of CORE(X) = RED(X) is SigCORE(X)(x) = 0 for x ∈
X − CORE(X).
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4 Heuristic Search of the Selection of Feature Subset

Feature selection’s final goal is to archive optimal feature subset according to
some criterion without damaging sort power. The heuristic search is used to get
the subset when the data processed is massive and the features are too many. The
best feature will be selected gradually from the feature space, until a reduction
is gained.

4.1 Heuristic

The importance may serve as the selection criteria for attribute, the least reduc-
tion of X is constituted by adding attributes in CORE(X) one by one according
to importance of attributes. The detail is as the following:

1) The selection of feature a. Add feature a in subset R, if its value of impor-
tance Sig is the biggest one.

2) If two features obtained the same importance value, then the one has less
discrete value is selected.

Hence, the heuristic algorithm of approximate-optimization reduction R can
be described as: Take CORE as the initialization subset, the feature is selected
from the space of omit-able feature and is added in the subset one by one, until
the near-optimization reduction is gained.

4.2 Heuristic Method

According to the above discussion, the algorithm is described as the following:
Assume X ⊆ A is an attribute subset, x ∈ X is an attribute.

1) Calculation of nucleus CORE(X): Compute SigX−{x}(x) for x ∈ X . Thus,
CORE(X) is constructed by all of the attributes which Sig values are bigger
than zero, maybe CORE(X) = ∅.

2) RED(X) ← CORE(X).
3) Go to 6) when IND(RED(X)) = IND(X). Otherwise go to 4).
4) Calculate all SigRED(X)(x) value for x ∈ X − RED(X), take x1 to satisfy:

SigRED(X)(x1) = max max
x∈RED(X)

{SigRED(X)(x)}.

If there are two features obtained the same value, then select the one that
has the less feature value.

5) RED(X) ← RED(X) ∪ {x1}, go to 3).
6) Output least reduct RED(X).

5 An Example

Let the condition attribute A = {a, b, c, d} and the decision attribute D = {e}.
Then, the data of an information system are shown in Table 1.
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Table 1. Data of an information system

U a b c d e

1 0 2 1 0 1
2 0 0 1 2 2
3 1 2 1 2 0
4 0 0 2 1 2
5 0 1 2 1 2
6 1 2 2 1 1

1) the calculation of nucleus

SigA−{a}(a) = 1 − |A|
|A − {a}| = 1 − 1 + 1 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1
= 0,

SigA−{b}(b) = 1 − |A|
|A − {b}| = 1 − 1 + 1 + 1 + 1 + 1 + 1

1 + 2 × 2 + 1 + 1 + 1
= 0.25,

SigA−{c}(c) = 1 − |A|
|A − {c}| = 1 − 1 + 1 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1
= 0,

SigA−{d}(d) = 1 − |A|
|A − {d}| = 1 − 1 + 1 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1
= 0.

Therefore, CORE(A) = {b}.
2) Calculation of the least reduction.

SigCORE(A)(a) = 1 − |{a, b}|
|{b}| = 1 − 1 + 2 × 2 + 2 × 2 + 1

1 + 2 × 2 + 3 × 3
=

2
7
,

SigCORE(A)(c) = 1 − |{b, c}|
|{b}| = 1 − 1 + 2 × 2 + 1 + 1 + 1

1 + 2 × 2 + 3 × 3
=

3
7
,

SigCORE(A)(d) = 1 − |{b, d}|
|{b}| = 1 − 1 + 1 + 1 + 1 + 1 + 1

1 + 2 × 2 + 3 × 3
=

4
7
.

Sig{b}(d) is the biggestso d is added to subset.
Let A1 = CORE(A) ∪ {d} = {b, d}.

SigA1(a) = 1 − |{a, b, c}|
|{b, d}| = 1 − 1 + 1 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1
= 0,

SigA1(c) = 1 − |{b, c, d}|
|{b, d}| = 1 − 1 + 1 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1
= 0.

Therefore, this information system least reduction is {b, d}.
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6 Application in Image Classification

The method has been used in our research project of provincial educational
committee, it works well. In this experiment, we use the micrograph of Chinese
wine. These images are shown in Figure 1.

Fig. 1. Part of Chinese Wine micrograph

These images have been converted into gray-scale format, and resized to
256256.We sub-divide the image into a number of equal sized sub-images. For
Feature Extraction methodology, we select most of 26 characteristic feature spec-
ified in [14]. The 26 features are used to compute the meaningful characteristics
of each sub-image. We apply the Statistic Zoning method to transforming con-
tinuous numbers into discrete categories. Figure 2 shows part of the discrete
categories.

Fig. 2. Part of the discrete categories

We collect the feature extracted values for each micrograph and build the
training DB. We use 10 images, and these images are taken from various Chinese
Wine. We compute the reducts, cores, and rule generation by using the method
introduced in the paper. Figure 3 shows part of the result.
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Fig. 3. Part of the feature selection result

7 Feature Selection Results

The method of heuristic attribute reduction is proposed based on the attribute
importance in this paper. Take CORE(A) as initial condition, we select the
feature and add it in subset according to the Sig value of attribute importance,
until the least reduction is obtained. In the example we use sub-image size 64×64,
and the system generates 16 sub-images. We extract 26 features in each sub-
image, so there are totally 4160 features for ten Chinese Wine micrographs. We
compute the least reduct of training DB through using the method in the paper
and traditional method specified in [15]. Table 2 shows the results.

Table 2. Result of feature selection

Items Traditional New

Feature number 480(4160) 384(4160)
Selection ratio 11.54% 9.23%
Run time 25 seconds 12 seconds

With the results from the computed reducts, core, and rule generations, we
create the appropriate knowledge and techniques to perform image recognition.
Using the classification rules, the automated process sequentially examines each
image representative object in testing set, applying the optimal classified rule
and declaring the result. The testing set collecting is similar to the training
database, but we use other micrographs of these ten kinds of Chinese Wine. We
compare the two feature selection methods by the final classification result and
show as Table 3.

From Tables 2 and 3, it follows that we have obtained about 9.23% selection
ratio and 84.37% classification results in this experiment by using our feature
selection method, and the method is more efficient than traditional rough set
method specified in [15].



196 X. Sun et al.

Table 3. Result of image classification

Items Traditional New

Error sub-image number 27(160) 25(160)

Error ratio 16.88% 15.63%
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Abstract. This work aims at presenting to a wider audience fundamen-
tal notions and ideas of rough mereology. We discuss various methods
for constructing rough inclusions in data sets, then we show how to ap-
ply them to the task of knowledge granulation, and finally, we introduce
granular reflections of data sets with examples of classifiers built on them.

Keywords: rough sets, knowledge granulation, rough mereology, rough
inclusions.

1 Motivations: Rough Set Analysis of Vagueness

Rough set analysis of vague concepts [4], begins with the idea of saturation by
classes of indiscernibility: given an information function Inf : U → V defined
on objects in a set U with values in a set V which induces an indiscernibility
relation Ind on the set U × U with Ind(u, v) iff Inf(u) = Inf(v), concepts
X ⊆ U are divided into two categories: the category of Inf–definable concepts
which are representable as unions of classes [u]Ind = {v ∈ U : Ind(u, v)} of
the relation Ind, and the category of Inf–non–definable (or, Inf–rough) concepts
which do not possess the definability property.

Definable concepts are the concepts which can be described with certainty:
for objects u, v ∈ U with Ind(u, v), and a definable concept X , either u, v belong
in X or u, v do not belong in X ; whereas for a non–definable concept Y , there
exist objects u, v such that Ind(u, v) and u belongs in Y but v belongs in U \Y .

Rough set theory solves the problem of non–definable concepts with the
idea of an approximation: given a concept Y , there exist by completeness of
the containment relation ⊆, two definable concepts Y and Y such that Y ⊆
Y ⊆ Y , Y is the largest definable subset of Y and Y is the smallest definable
superset of Y .

The following points deserve attention in the above presented scheme:
1. Definable concepts are unions of atomic concepts: indiscernibility classes.
2. Non–definable concepts are approached with definable ones by means of
containment.

Both operations involved in 1, 2, above, are particular cases of general con-
structs of mereology [3]: the union of sets is a particular class operator and
containment is a particular ingredient relation. It follows that setting the rough
set context in the realm of mereology, one obtains a more general and formally
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adequate means of analysis of vagueness on the lines of rough set theory. This is
what we are going to present in the sequel.

2 A Mereological Content of Rough Set Analysis of
Vagueness

The relation π of being a part is [3] a non–reflexive and transitive relation on
objects, i.e.,

P1. π(u, u) for no u.
P2. π(u, v) and π(v, w) imply π(u, w).

An example is the proper containment relation ⊂ on sets.
It is easy to make π into a partial order relation ing of an ingredient: v ing u if

and only if either π(v, u) or v = u. Clearly, ing is reflexive, weakly–antisymmetric
and transitive. An example is the containment relation ⊆ on sets.

The union of sets operator used in constructions of approximations, has its
counterpart in the mereological class operator Cls [3]; it is applied to any non–
empty collection F of objects to produce the object ClsF ; the formal definition
is given in terms of the ingredient relation: an entity X is the class ClsF if and
only if the two conditions are satisfied,

C1. u ing X for each u ∈ F .
C2. u ing X implies the existence of entities v, w with the properties:

i. v ing u;
ii. v ing w;
iii. w ∈ F .

It is easy to verify that in the case when π is ⊂, the relation ing is ⊆, and for
F , a non–empty collection of sets, ClsF is

⋃
F , the union of F .

3 Rough Mereology: Motivation

In the process of development of rough set theory, it has turned out that indis-
cernibility could rather be relaxed to similarity: in [13] attention was focused
on tolerance relations, i.e., relations which are reflexive and symmetric but need
not be transitive. An example of such relation was given in [5]: given a metric
ρ and a fixed small positive δ, one declares points x, y in the relation simρ,δ if
and only if ρ(x, y) < δ. The relation simρ,δ is a tolerance relation but it is not
any equivalence, save, e.g., for non–archimedean ρ’s.

We continue this example by introducing a graded version of simρ,δ, viz., for
a real number r ∈ [0, 1], we define the relation simρ,δ,r by letting,

simρ,δ,r(x, y) iff ρ(x, y) ≤ 1 − r. (1)
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The collection simρ,δ,r of relations have the following properties evident by
the properties of the metric ρ:

SIM1. simρ,δ,1(x, y) iff x = y.
SIM2. simρ,δ,1(x, y) and simρ,δ,r(z, x) imply simρ,δ,r(z, y).
SIM3. simρ,δ,r(x, y) and s < r imply simρ,δ,s(x, y).

Properties SIM1–SIM3 induced by the metric ρ refer to the ingredient re-
lation = whose corresponding relation of part is empty; a generalization can
thus be obtained by replacing the identity with an ingredient relation ing in a
mereological universe (U, π).

In consequence a relation μ(u, v, r) is defined that satisfies the following con-
ditions:

RI1. μ(u, v, 1) iff u ing v.
RI2. μ(u, v, 1) and μ(w, u, r) imply μ(w, v, r).
RI3. μ(u, v, r) and s < r imply μ(u, v, s).

Any relation μ which satisfies the conditions RI1–RI3 is called a rough inclu-
sion, see [7], [12]. This relation is a similarity relation which is not necessarily
symmetric, but it is reflexive. It is read as ”the relation of a part to a degree”.

4 Rough Inclusions: Case of Information Systems

The problem of methods by which rough inclusions could be introduced in infor-
mation/decision systems has been studied in [7], [8], [9] among others. Here we
recapitulate the results and add new ones. We recall that an information system
is a method of representing knowledge about a certain phenomenon in the form
of a table of data; formally, it is a pair (U, A) where U is a set of objects and
A is a set of conditional attributes; any object u ∈ U is described by means of
its information set Inf(u) = {(a, a(u)) : a ∈ A}. The indiscernibility relation
Ind, definable sets and non–definable sets are defined from Inf as indicated in
Sect. 1.

We discuss some methods for inducing rough inclusions:

Case 1. Rough inclusions from metrics
Case 2. Rough inclusions from t–norms:

Subcase a. Archimedean t–norms
Subcase b. Continuous t–norms

Case 3. Weak variants of rough inclusions.

Case 1

As Sect. 3 shows, any metric ρ defines a rough inclusion μρ by means of the
equivalence μρ(u, v, r) ⇔ ρ(u, v) ≤ 1 − r. A very important example of a
rough inclusion obtained on these lines is the rough inclusion μh with h(u, v)
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being the reduced Hamming distance on information vectors of u and v, i.e.,
h(u, v)= |{a∈A:(a,a(u)) �=(a,a(v))}|

|A| , |X | denoting the cardinality of the set X .
Thus, μh(u, v, r) iff h(u, v) ≤ 1 − r; introducing sets DIS(u, v) = {a ∈ A :

(a, a(u)) �= (a, a(v))} and IND(u, v) = A \ DIS(u, v)={a ∈ A : a(u) = a(v)},
one can write down the formula for μh either as,

μh(u, v, r) ⇔ |DIS(u, v)|
|A| ≤ 1 − r, (2)

or,

μh(u, v, r) ⇔ |IND(u, v)|
|A| ≥ r. (3)

The formula (3) witnesses that the rough inclusion μh is an extension of the
indiscernibility relation Ind to a graded indiscernibility.

In a similar manner one should be able to compute rough inclusions in-
duced by other metrics standardly used on information sets like Euclidean,
Manhattan, or lp.

Rough inclusions induced by metrics possess an important property of func-
tional transitivity expressed in general form by the rule,

μρ(u, v, r), μρ(v, w, s)
μρ(u, w, L(r, s))

, (4)

where L(r, s) = max{0, r + s − 1} is the �Lukasiewicz t–norm, see, e.g. [6]. We
offer a short proof of this fact: assuming that μρ(u, v, r), μρ(v, w, s) which means
in terms of the metric ρ that ρ(u, v) ≤ 1 − r, ρ(v, w) ≤ 1 − s; by the triangle
inequality, ρ(u, w) ≤ (1 − r) + (1 − s), i.e., μρ(u, w, r + s − 1).

Case 2a

A functor (t–norm) t : [0, 1]×[0, 1] is Archimedean in case the equality t(x, x) = x
holds for x = 0, 1 only; it is known, see e.g. [6] that such t–norms are the
�Lukasiewicz L and the product t–norm P (x, y) = x · y.

Each of these t–norms admits a functional representation: t(x, y) = g(f(x) +
f(y)), see, e.g., [6].

One defines a rough inclusion μt by letting, see [7],

μt(u, v, r) ⇔ g(
|DIS(u, v)|

|A| ) ≥ r. (5)

In particular, in case of the t–norm L, one has g(x) = 1 − x, see, e.g., [6], and
thus the rough inclusion μL is expressed by means of the formula (3).

Case 2b

Other systematic method for defining rough inclusions is by means of residual
implications of continuous t–norms, see [8]. For a continuous t–norm t, the resid-
ual implication x ⇒t y is a mapping from the square [0, 1]2 into [0, 1] defined as
follows, see, e.g., [6],
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x ⇒t y ≥ z iff t(x, z) ≤ y; (6)

thus, x ⇒t y = max{z : t(x, z) ≤ y}.

Proposition 1. The residual implication x ⇒t y does induce a rough inclusion
μ⇒

t by means of the formula: μ⇒
t (x, y, r) if and only if x ⇒t y ≥ r for every

continuous t–norm t.

Proof. We include a short argument for the sake of completeness; clearly,
μ⇒

t (x, x, 1) holds as x ⇒t y ≥ 1 is equivalent to x ≤ y. Assuming μ⇒
t (x, y, 1),

i.e., x ≤ y, and μ⇒
t (z, x, r), i.e., z ⇒ x ≥ r hence t(z, r) ≤ x, we have t(z, r) ≤ y,

i.e., z ⇒ y ≥ r so finally μ⇒
t (x, y, r). Clearly, by definition, from μ⇒

t (x, y, r) and
s < r it does follow that μ⇒

t (x, y, s).

We list here some rough inclusions obtained from most frequently applied t–
norms. In all cases, μ⇒

t (x, y, 1) iff x ≤ y so the associated ing relation is ≤ and
the underlying part relation is <. For r < 1, i.e., x > y, one has

For t = L: x ⇒L y = min{1, 1 − x + y}, hence μ⇒
L (x, y, r) if and only if

1 − x + y ≥ r.
For t = P : x ⇒P y = y

x when x �= 0 and 1 when x = 0 hence μ⇒
P (x, y, r) if

and only if y ≥ x · r.
For t = min(x, y): x ⇒min y is y hence μ(x, y, r) if and only if y ≥ r.

Case 3

In applications to be presented in works in this special session, some modified
rough inclusions or weaker similarity measures will be instrumental, and we
include a discussion of them here.

For the rough inclusion μL, the formula μL(v, u, r) means that |IND(v,u)|
|A| ≥ r,

i.e., at least r · 100 percent of attributes agree on u and v; an extension of this
rough inclusion depends on a chosen metric ρ bounded by 1 in the attribute
value space V (we assume a simple case that ρ works for each attribute).

Then, given an ε ∈ [0, 1], we let με(v, u, r) iff |{a ∈ A : ρ(a(v), a(u)) < ε}| ≥
r ·|A|; it is manifest that με is a rough inclusion if ρ is a non–archimedean metric,
i.e., ρ(u, w) ≤ max{ρ(u, v), ρ(v, w)}; otherwise the monotonicity condition RI2
of Sect. 3 need not be satisfied and this takes place with most popular metrics
like Euclidean, Manhattan, or lp.

In this case, a remedy is to define a rough inclusion μ∗ as follows: μ∗(v, u, r)
if and only if there exists an ε such that με(v, u, r). Then it is easy to check that
μ∗ is a rough inclusion.

Assume that a residual implication ⇒t is chosen, and for an information
system (U, A), with an ingredient relation ing on U , a mapping φ : U → [0, 1] is
given such that φ(u) ≤ φ(v) iff u ing v. Then, the relation,

μφ(v, u, r) iff φ(u) ⇒t φ(v) ≥ r, (7)

is a rough inclusion on U . We include a short proof of this fact: μφ(u, v, 1) is
equivalent to φ(u) ≤ φ(v) hence to u ing v.
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Assuming that μφ(u, v, 1) and μφ(w, u, r), the proof that RI2 holds, i.e.,
μφ(w, v, r) goes like proof of RI2 in the proof of Prop. 1. Finally, the property
RI3 is evident.

As candidates for φ, relative to a standard object s ∈ U , we consider,

1. φ1 = dis(u) = |{a∈A:a(s) �=a(u)}|
|A| .

2. φ2 = ind(u) = |{a∈A:a(s)=a(u)}|
|A| .

3. φ3 = disε(u) = |{a∈A:ρ(a(s),a(u))≥ε}|
|A| .

4. φ4 = indε(u) = |{a∈A:ρ(a(s),a(u))≤ε}|
|A| ,

where ρ is a chosen metric on the set of attribute values V , and ε is a cho-
sen threshold in [0, 1].

Proposition 2. In all cases i = 1, 2, 3, 4, the relation μφi(v, u, r) defined with
φi as above is a rough inclusion.

The reference object s can be chosen as a ”standard object”, e.g., such that its
conditional class is contained in its decision class.

Comparison od objects u, v on lines of Case 3, need not lead to rough in-
clusions due to a possible violation of the property RI2; yet, such variants are
of importance as they allow for a direct comparison among objects, rules and
granules.

We introduce for given objects u, v, and ε ∈ [0, 1], factors: disε(u, v) =
|{a∈A:ρ(a(u),a(v))≥ε}|

|A| , and indε(u, v) = |{a∈A:ρ(a(u),a(v))<ε}|
|A| , where ρ is a met-

ric on attribute value sets.
Then, we modify the formula (7)to the form,

ν(u, v, r) iff disε(u, v) ⇒t indε(u, v) ≥ r. (8)

Clearly, ν has properties: 1. ν(u, u, 1); 2. ν(u, v, r) and s < r imply ν(u, v, s) but
monotonicity property RI2 need not hold. Yet, ν has an advantage of accounting
for oscillations in attribute values on objects. Rough inclusions and their weak
variants will be essentially exploited in data mining tasks presented in other
contributions in this session, e.g., [1],[2],[11].

5 Applications: Granulation of Knowledge

Formal theory of rough inclusions allows for a formal mechanism of granulation
of knowledge; we assume an information system (U, A) is given. Granulation of
knowledge, proposed as a paradigm by L. A. Zadeh, means grouping objects into
collections called granules, objects within a granule being similar with respect to
a chosen measure; granular computing means computing with granules in place
of objects.

The mechanism of granule formation based on rough inclusions has been pre-
sented by the author in a few works, see, e.g. [8], [9], and we recall it here. The
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basic tool in establishing properties of granules is the class operator of mereol-
ogy, see Sect. 2 along with the Lesniewski Inference Rule (IR), see [3]:

(IR) For objects x, y, if for each z, from z ing x it follows that there exists
w such that w ing z, w ing y, then x ing y.

Given a rough inclusion μ on the universe U , for each object u and each r ∈ [0, 1],
the granule gμ(u, r) of the radius r about u relative to μ is defined as the class of
the property Φ(u, r, μ) = {v : μ(v, u, r)}:

gμ(u, r) is ClsΦ(u, r, μ). (9)

In case of symmetric and transitive rough inclusions, the following holds,
see [7],

u ing gμ(v, r) iff μ(u, v, r). (10)

This fact allows for representing the granule gμ(v, r) as the list of those u for
which μ(u, v, r) holds.

5.1 Applications: Granular Data Sets

Given a decision system (U, A, d), a rough inclusion μ on the universe U , and a
radius r, one can find granules gμ(u, r) for all u ∈ U and make them into the
set Gran(U, r, μ). From this set, a covering Cov(U, r, μ) of the universe U can
be selected by means of a strategy G, i.e., Cov(U, r, μ) = G(Gran(U, r, μ)). Each
granule g in Cov(U, r, μ) is a collection of objects; attributes in the set A ∪ {d}
can be factored through the granule g by means of a chosen strategy S, i.e., for
each attribute f ∈ A ∪ {d}, the new factored attribute f is defined by means of
the formula,

f(g) = S({a(u) : u ing gμ(u, r)}). (11)

In effect, a new decision system F(U) = (Cov(U, r, μ), {a : a ∈ A}, d) is
defined which is called the granular reflection of the original system. The object v
with Inf(v) = {(a, a(g)) : a ∈ A} is called the granular reflection of g. Granular
reflections of granules need not be objects found in data set; yet, the results
show, see, e.g., [1], [2], [10], that they mediate very well between the training
and test objects. Granular data sets were proposed in [8], [9] and their usefulness
in data classification was pointed there to.

6 Conclusions

We have surveyed basic means for inducing rough inclusions in data sets. Ap-
plications of them to classification of data have been tested with real data with
very good results, witness [10]. This is confirmed also by papers [1], [2] in these
Proceedings.



204 L. Polkowski

References

1. Artiemjew, P.: On classification of data by means of rough mereological granules of
objects and rules. In: RSKT 2008. LNCS (LNAI), vol. 5009, Springer, Heidelberg
(in print, 2008)

2. Artiemjew, P.: Rough mereological classifiers obtained from weak rough inclusions.
In: RSKT 2008. LNCS (LNAI), vol. 5009, Springer, Heidelberg (in print, 2008)
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Abstract. Rough mereology allows for similarity measures (called rough
inclusions) which in turn form a basis for the mechanism of granulation of
knowledge. Granules of knowledge, defined as classes of satisfactorily sim-
ilar objects, can be regarded as worlds in which properties of entities are
evaluated. Obtained in this way granular rough mereological intensional
logics reveal essential properties of rough set based reasoning. We present
in this work the essential facts about these logics.
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1 Introductory Notions

We assume that the reader is familiar with basics of rough sets, see, e.g., [4]; the
context in which our considerations are set is an information system (U, A) or a
decision system (U, A, d).

We recall that a rough inclusion μ is a relation μ ⊆ U × U × [0, 1] which
satisfies the conditions,

RI1. μ(u, v, 1) iff ing(u, v).
RI2. μ(u, v, 1), μ(w, u, r) imply μ(w, v, r).
RI3. μ(u, v, r), s < r imply μ(u, v, s).

The relation ing is an ingredient (element) relation of mereology [2], see also [8].
Rough inclusions can be regarded as similarity measures on objects, μ(u, v, r)

meaning that the object u is similar (is part of) to the object v to a degree of r.
Formal definition of rough inclusions along with technical features of mereology,
see [2] allows for a formalization of rough set based reasoning. The first step in
this process is granulation of knowledge.

2 Granulation of Knowledge

The paradigm of granulation was proposed by Zadeh [11]; within rough set frame-
work, the attention to it was brought for in Lin [3].
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Our approach to granulation differs from those by other authors because we
exploit rough inclusions as a basic tool, not using directly indiscernibility rela-
tions or inverse images of binary relations. We begin with an inventory of tech-
nical means for forming granules and establishing their basic properties. This
discussion is divided into parts: mereology, rough mereology, granule formation.

2.1 Mereological Tools

In mereology theory of concepts proposed by Lesniewski [2], the basic notion of
a part is a relation p which is transitive and non–reflexive, i.e.,

P1. p(x, y), p(y, z) imply p(x, z).
P2. p(x, x) holds for no x.

The associated with p ingredient relation ingp is defined as

ingp(x, y) iff p(x, y) or x = y. (1)

The important property of the ingredient relation is the rule established by
Lesniewski [2],

If for each z [ing(z, x) implies w s.t. ing(w, z), ing(w, y)] then ing(x, y). (2)

This means that if for each z such that z is an ingredient of x there exists an object
w such that w is an ingredient of both z and y then x is an ingredient of y.

In turn, the ingredient relation is essential in definition of the class operator
Cls whose role is to make collections (properties) of objects into single objects
representing those collections. The definition of the class operator is as follows,

C1. If x ∈ F then ing(x, ClsF );
C2. If ing(x, ClsF ) then ∃.w, z such that

ing(w, x), ing(w, z), z ∈ F.
(3)

This defines the class ClsF for each non–empty collection F .
To visualize the working of the operator Cls, we remind that the strict con-

tainment relation ⊂ is a part relation, the corresponding ingredient relation is
the containment relation ⊆, and the class ClsF for a non–empty family of sets
is then according to (3) the union

⋃
F of F .

2.2 Rough Mereological Tools

The part relation of mereology was given an extension in the form of a relation
μ of part to a degree, see [8]. The relation μ was required to satisfy conditions
RI1–RI3 of Sect. 1.

Rough inclusions in information systems are described in, e.g., [8]. In appli-
cations, presented in this session, the most important rough inclusion is defined
as follows,

μL(u, v, r) iff
|{a ∈ A : a(u) = a(v)}|

|A| ≥ r, (4)

and it is a graded extension of indiscernibility relation.
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An important property of this rough inclusion is its transitivity, which means,

μL(u, v, r), μL(v, w, s) imply μL(u, w, L(r, s)), (5)

where L(r, s) = max{0, r + s − 1} is the �Lukasiewicz tensor product (t–norm),
see, e.g., [5].

We also recall, see [8], that μL can be obtained from the t–norm L by means
of the formula: μL(v, u, r) iff g(disA(u, v)) ≥ r where g is a mapping in the
representation L(r, s) = g(f(r)+f(s)), see [5], and disA(u, v) = |{a∈A:a(u) �=a(v)}|

|A| .

Rough Inclusions on Sets. For our purpose it is essential to extend rough
inclusions to sets; we follow the method described already in Sect. 2.2, and we
use the t–norm L along with the representation L(r, s) = g(f(r) + f(s)) already
mentioned. We denote these kind of inclusions with the generic symbol ν.

For finite sets X, Y , we let,

νL(X, Y, r) iff g(
|X \ Y |

|X | ) ≥ r; (6)

as g(x) = 1 − x, see [5], we have that νL(X, Y, r) holds if and only if |X∩Y |
|X| ≥ r.

Let us observe that νL is regular, i.e., νL(X, Y, 1) if and only if X ⊆ Y and
νL(X, Y, r) only with r = 0 if and only if X ∩ Y = ∅.

Thus, the ingredient relation associated with a regular rough inclusion is the
improper containment ⊆ whereas the underlying part relation is the strict con-
tainment ⊂.

Other rough inclusion on sets we we exploit is the 3–valued rough inclusion
ν3 defined via the formula,see [6],

ν3(X, Y, r)iff

⎧
⎨

⎩

X ⊆ Y and r = 1
X ∩ Y = ∅ and r = 0
r = 1

2 otherwise,
(7)

The rough inclusion ν3 is regular.

2.3 Granule Formation

Granules of knowledge are defined by means of a rough inclusion μ in the universe
U of an information/decision system (U, A, d) as classes of appropriate similarity
property, see [7],

g(u, r, μ) is Cls(Pμ(u, r)), (8)

where g(u, r, μ) is the granule about an object u of the radius r, and Pμ(u, r) is
the property (collection) {v ∈ U : μ(v, u, r)}.

Of particular interest in this work are granules induced by the rough inclusion
μL. Their important property relies in the lack of synergic effects which could
be caused by general definition of the class, see [7],

ing(v, g(u, r, μL)) iff μL(v, u, r) iff Pμ(u, r)(v). (9)
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On the strength of this property, one can express the granule g(u, r, μL) as a
list of those objects v which satisfy μL(v, u, r). In order to show the reader the
flavor of reasoning by mereological notions, we offer a short proof of (9).

Assume that an object v is an ingredient of the granule g(u, r, μL); by def-
inition (8) of a granule, and by definition (3) of the class operator, there ex-
ist objects w, z such that: (a) ing(w, v); (b) ing(w, z); (c) z ∈ PμL(u, r), i.e.,
μL(z, u, r), where ing is the ingredient relation induced by μL. By condition
RI1 in Sect. 1, it follows from (a) and (b) respectively that (a’) μL(w, v, 1); (b’)
μL(w, z, 1). By symmetry of μL, one obtains from (a’) that μL(v, w, 1) which
together with (b’) yields by the transitivity property (5) that μL(v, z, L(1, 1)),
i.e., μL(v, z, 1). The last fact combined with (c) by means of the transitivity
property, gives that μL(v, u, L(r, 1)), i.e., μL(v, u, r), as required. The converse
implication holds obviously by condition C1 in (3).

This pattern of reasoning can be applied as well in establishing a number of
properties of granules, see in this respect [7].

3 Granular Rough Mereological Logics

The idea of a granular rough mereological logic, see [9], [7], consists in measur-
ing the meaning of a predicate (unary) in the model which is a universe of an
information system against a granule defined to a certain degree by means of a
rough inclusion. The result can be regarded as the degree of truth (the logical
value) of the predicate with respect to the given granule.The obtained logics
are intensional as they can be regarded as mappings from the set of granules
(possible worlds) to the set of logical values in the interval [0, 1], the value at a
given granule regarded as the extension at that granule of the generally defined
intension, see [1] for a general introduction to intensional logics.

We assume that an information/decision system (U, A, d) is given, along with a
rough inclusion ν on the subsets of the universe U ; for a collection of predicates
(unary) Pr, interpreted in the universe U (meaning that for each predicate
φ ∈ Pr the meaning [φ] is a subset of U), we define the intensional logic grmν

on Pr by assigning to each predicate φ in Pr its intension Iν(φ) defined by the
family of extensions I∨ν (g) at particular granules g, as,

I∨ν (g)(φ) ≥ r iff ν(g, [φ], r). (10)

With respect to the rough inclusion νL, the formula (10) becomes,

I∨νL
(g)(φ) ≥ r iff

|g ∩ [φ]|
|g| ≥ r. (11)

The counterpart for ν3 is specified by definition (7).

Descriptor Logic. An important logic for information systems is the descriptor
logic, see,e.g., [4]. A descriptor is a formula of the form (a, v) with the meaning
[a, v] = {u ∈ U : a(u) = v}; from descriptors, formulas are formed by means of
connectives ∨, ∧, ⇒, ¬ with meanings defined by recursion,
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– [α ∨ β] = [α] ∪ [β].
– [α ∧ β] = [α] ∩ [β].
– [¬α] = U \ [α].
– [α ⇒ β] = (U \ [α]) ∪ [β].

In the language of descriptor logic, decision rules are written, in the form,
∧

{(a, a(u)) : a ∈ B} ⇒ (d, d(u)). (12)

The Notion of Truth. We say that a formula φ interpreted in the universe U
of an information system (U, A) is true at a granule g with respect to a rough
inclusion ν if and only if I∨ν (g)(φ) = 1.

Thus, for every regular rough inclusion ν, a formula φ interpreted in the
universe U , with meaning [φ], is true at a granule g with respect to ν if and only
if g ⊆ [φ]. In particular, for a decision rule r : p ⇒ q in the descriptor logic, the
rule r is true at a granule g with respect to a regular rough inclusion ν if and
only if g ∩ [p] ⊆ [q].

The formula ν(g, [φ], r) = 1 stating the truth of φ at g, ν with ν regular can
be regarded as a condition of orthogonality type, with the usual consequences.

1. If φ is true at granules g, h then it is true at g ∪ h.
2. If φ is true at granules g, h then it is true at g ∩ h.
3. If φ, ψ are true at a granule g then φ ∨ ψ is true at g.
4. If φ, ψ are true at a granule g then φ ∧ ψ is true at g.
5. If ψ is true at a granule g then φ ⇒ ψ is true at g for every formula φ.
6. If φ is true at a granule g then φ ⇒ ψ is true at g if and only if ψ is true

at g.

The graded relaxation of truth is given obviously by the condition, a formula
φ is true to a degree at least r at g, ν if and only if I∨ν (g)(φ) ≥ r, i.e., ν(g, [φ], r)
holds. In particular, φ is false at g, ν if and only if I∨ν (g)(φ) ≥ r implies r = 0,
i.e. ν(g, [φ], r) implies r = 0.

The Standard Semantics of Connectives. The properties 1–6 above do sug-
gest that the notion of truth in rough mereological logics has with respect to
connectives of logical calculi similar properties to those of classical sentential cal-
culus. Therefore, we introduce the following semantics of sentential connectives
¬, ∨, ∧, ⇒.

1. [¬α] = U \ [α].
2. [α ∨ β] = [α] ∪ [β].
3. [α ∧ β] = [α] ∩ [β].
4. [α ⇒ β] = (U \ [α]) ∪ [β].

With respect to this semantics, the following properties hold.

1. For each regular ν, a formula α is true at g, ν if and only if ¬α is false at
g, ν.

2. For ν = νL, ν3, I∨ν (g)(¬α) ≥ r if and only if I∨ν (g)(α) ≥ s implies s ≤ 1 − r.
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3. For ν = νL, ν3, the implication α ⇒ β is true at g if and only if g ∩ [α] ⊆ [β]
and α ⇒ β is false at g if and only if g ⊆ [α] \ [β].

4. For ν = νL, if I∨ν (g)(α ⇒ β) ≥ r then ⇒L (t, s) ≥ r where I∨ν (g)(α) ≥ t and
I∨ν (g)(β) ≥ s.

The functor ⇒L in 4. is the �Lukasiewicz implication of many–valued logic: ⇒L

(t, s) = min{1, 1 − t + s}.
Further analysis should be split into the case of νL and the case of ν3 as the

two differ essentially with respect to the form of reasoning they imply.

4 Reasoning with νL

The last property 4. shows in principle that the value of I∨ν (g)(α ⇒ β) is bounded
from above by the value of ⇒L (I∨ν (g)(α), I∨ν (g)(β)).

This suggests that the idea of collapse attributed to S. Lesniewski can be ap-
plied to formulas of rough mereological logic in the following form: for a formula
q(x) we denote by the symbol q∗ the formula q regarded as a sentential formula
(i.e., with variable symbols removed) subject to relations ¬q(x)∗ is ¬(q(x)∗) and
p(x) ⇒ q(x)∗ is p(x)∗ ⇒ q(x)∗. As the value [q∗]g of the formula q(x)∗ we admit
the value of |g∩[q(x)]|

|g| . Thus, the item 4 can be rewritten in the form.

I∨ν (g)(α ⇒ β) ≤⇒L ([α∗]g, [β∗]g). (13)

The following statement is then obvious: if α ⇒ β is true at g then the
collapsed formula has the value 1 of truth at the granule g. This gives a necessity
condition for verification of implications of rough mereological logics: if ⇒L

([α∗]g, [β∗]g) < 1 then the implication α ⇒ β is not true at g. This concerns
in particular decision rules: for a decision rule p(v) ⇒ q(v), it follows that the
decision is true on a granule g if and only if [p∗]g ≤ [q∗]g.

4.1 Rough Set Reasoning: Possibility and Necessity

Possibility and necessity are introduced in rough set theory by means of ap-
proximations: the upper and the lower, respectively. A logical rendering of these
modalities in rough mereological logics exploits the approximations. Denoting
the lower approximation as X = {u ∈ U : [u]A ⊆ X} and the upper approx-
imation as X = {u ∈ U : [u]A ∩ X �= ∅}, we define two modal operators: M
(possibility) and L (necessity) by means of their semantics.

To this end, we let

I∨ν (g)(Mα) ≥ r iff νL(g, [α], r)
I∨ν (g)(Lα) ≥ r iff νL(g, [α], r). (14)

Then we have the following criteria for necessarily or possibly true formulas.
A formula α is necessarily true at a granule g if and only if g ⊆ [α]; α is

possibly true at g if and only if g ⊆ [α].
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This semantics of modal operators M, L can be applied to show that rough
set structures carry the semantics of S5 modal logics, i.e., the following relations
hold at each granule g.

1. L(α ⇒ β) ⇒ [(Lα) ⇒ L(β)].
2. Lα ⇒ α.
3. Lα ⇒ LLα.
4. Mα ⇒ LMα.

Proofs can be found in [9].

5 Reasoning with ν3

In case of ν = ν3, one can check on the basis of definitions that I∨ν (g)(¬α) ≥ r if
and only if I∨ν (g)(α) ≤ 1−r; thus the negation functor in rough mereological logic
based on ν3 is the same as the negation functor in the 3–valued �Lukasiewicz logic.
For implication, the relations between rough mereological and 3–valued logics
L3 follow from tables of values of truth.

Table 1 shows truth values for the 3–valued logic L3 and Table 2 does the
same for rough mereological logic based on ν3.

Table 1. Truth values for implication in L3

⇒ 0 1 1
2

0 1 1 1
1 0 1 1

2
1
2

1
2 1 1

Table 2. Truth values for implication α ⇒ β in logic based on ν3

⇒ I∨
ν (g)(β) = 0 I∨

ν (g)(β) = 1 I∨
ν (g)(β) = 1

2
I∨

ν (g)(α) = 0 1 1 1
I∨

ν (g)(α) = 1 0 1 1
2

I∨
ν (g)(α) = 1

2
1
2 1 1 when g ∩ [α] ⊆ [β]; 1

2 otherwise

To express the relation between the two implications, we introduce a new
notion: we say that a formula φ is acceptable in either logic (L3 or grmν3) at a
granule g if and only if [φ∗]g ≥ 1

2 , respectively, I∨ν (g)(φ) ≥ 1
2 .

From Tables 1,2, one infers that I∨ν (g)(φ) ≥ [φ∗]g . This crucial relationship
implies that: if φ∗ is acceptable at g then φ is acceptable at g; if φ∗ is true at g
then φ is true at g. Also, if φ at false at g then φ∗ is false at g.

An another application of logics presented here can be found in [10] where a
formalization of perception calculus was given.



212 L. Polkowski and M. Semeniuk-Polkowska

References

1. Van Bentham, J.: A Manual of Intensional Logic. CSLI Stanford University (1988)
2. Leśniewski, S.: On the foundations of set theory. Topoi 2, 7–52 (1982)
3. Lin, T.Y.: From rough sets and neighborhood systems to information granulation

and computing with words. In: Proceedings of the European Congress on Intelligent
Techniques and Soft Computing, Verlag Mainz, Aachen, pp. 1602–1606 (1997)

4. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer,
Dordrecht (1991)

5. Polkowski, L.: Rough Sets. Mathematical Foundation. Physica Verlag, Heidelberg
(2002)

6. Polkowski, L.: A note on 3–valued rough logic accepting decision rules. Fundamenta
Informaticae 61, 37–45 (2004)

7. Polkowski, L.: Formal granular calculi based on rough inclusions (a feature talk).
In: Hu, X., Liu, Q., Skowron, A., Lin, T.Y., Yager, R.R., Zhang, B. (eds.) IEEE
GrC 2005, pp. 57–62. IEEE Press, Piscataway (2005)

8. Polkowski, L.: Rough mereology in analysis of vagueness. In: RSKT 2008. LNCS
(LNAI), vol. 5009, Springer, Heidelberg (in print, 2008)

9. Polkowski, L., Semeniuk–Polkowska, M.: On rough set logics based on similarity
relations. Fundamenta Informaticae 64, 379–390 (2005)

10. Polkowski, L., Semeniuk–Polkowska, M.: A formal approach to perception calculus
of Zadeh by means of rough mereological logic. In: Actes 11th International Con-
ference on Information Processing and Management in Knowledge–Based Systems
IPMU 2006, Paris, Univ. Marie Curie, pp. 1468–1473 (2006)

11. Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R.,
Yager, R.R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18.
North–Holland, Amsterdam (1979)



On the Idea of Using Granular Rough

Mereological Structures in Classification of Data

Lech Polkowski

Polish-Japanese Institute of Information Technology
Koszykowa 86, 02008 Warsaw, Poland

polkow@pjwstk.edu.pl

Abstract. This paper is devoted to an exposition of the idea of us-
ing granular structures obtained from data in the classification tasks of
these data into decision classes. Classifiers are induced from granular re-
flections of data sets.

Keywords: rough sets, granulation of knowledge, rough inclusions, gran-
ular classifiers.

1 Introduction: Rough Inclusions, Granulation of
Knowledge

We begin with an information system I = (U, A) where U is the set of objects
and A is the set of attributes. The value of an attribute a on an object u is
denoted a(u). A rough inclusion is a relation μ ⊆ U × U × [0, 1] with μ(u, v, r)
interpreted as object u being a part of object v to degree r at least. Specific
recipes for μ are given in [Po3].

Granulation of knowledge by means of μ consists in forming for each r ∈ [0, 1]
and each u ∈ U , of a granule gμ(u, r) = {v ∈ U : μ(v, u, r)}.

Granular data sets were proposed by L.Polkowski in [Po1], [Po2]. Given r ∈
[0, 1], the set of all granules Gμ

r = {gμ(u, r) : u ∈ U} is defined. From this set, a
covering Covμ

r (G) is chosen according to a strategy G. Granules in Covμ
r (G) form

a new universe of objects. For each g ∈ Covμ
r (G), and each attribute a ∈ A, a

factored attribute a is defined as a = S({a(u) : u ∈ g}) for a chosen strategy S.
The new information system Iμ

r = (Covμ
r (G), {a : a ∈ A}) is a granular

reflection of the original information system I. The object o(g) defined for a
granule g by means of InfA(o(g)) = {(a, a(g)) : a ∈ A} according to a strategy
S is called an S–reflection of the granule g; clearly, o(g) need not be a real object
in the training or test sets. Its role is to be a link between training and test sets.

2 The Case of Rough Inclusions from Hamming Metrics
on Information Sets

This rough inclusion, see [Po3], is of the form,

μh(u, v, r)iff
|IND(u, v)|

|A| ≥ r, (1)

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 213–220, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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where IND(u, v) = {a ∈ A : a(u) = a(v)} and h(u, v) = |{a∈A:a(u) �=a(v)}|
|A| . It is

manifest that μh is a direct extension of indiscernibility.
We show results of tests with Australian credit data set, see [UCI] and we

include in Table 1, for comparison, some best results obtained by other authors.
Classification quality is expressed by means of two factors: accuracy which is the
ratio of the number of correctly classified objects to the number of recognized
test objects and coverage, rec

test , where rec is the number of recognized test cases
and test is the number of test cases.

Table 1. Best results for Australian credit by some rough set based algorithms

source method accuracy coverage

[Ba] SNAPM(0.9) error = 0.130 −
[H] simple.templates 0.929 0.623
[H] general.templates 0.886 0.905
[H] tolerance.gen.templ. 0.875 1.0
[Wr] adaptive.classifier 0.863 −

Tests on this data with granular approach indicated above were carried by
splitting the Australian credit data set into the training and test sets in ratio
1:1; the training sample was granulated and a granular reflection was formed
from which by means of RSES exhaustive algorithm a classifier was produced
which was applied to the test part of data to find quality of classification.

Granules were calculated in a twofold way: first as indicated above and second,
by a modified procedure of concept dependent granulation, see [A1]: in the latter
procedure, the granule gc

h(u, r) = gh(u, r) ∩ [u]d was computed relative to the
concept, i.e., decision class, to which u belonged. The results of tests are given
in Table 2 in which the best results obtained with various granulation radii are
shown.

Table 2. Best results for Australian credit by granular approach

source method accuracy coverage

[PoA] granular∗.r = 0.642857 0.867 1.0
[PoA] granular∗∗.r = 0.714826 0.875 1.0
[A1] granular∗∗∗.concept.r = 0.785 0.9970 0.9995

Results in Table 2 do witness that granular approach gives results fully com-
parable with other results for satisfactorily large radii of granulation whereas
the concept dependent granulation gives results better than any other existing
approach.



On the Idea of Using Granular Rough Mereological Structures 215

3 Parameterized Variants of Rough Inclusions μh in
Classification of Data

As discussed in [Po3], for the formula μh(v, u, r) an extension is proposed which
depends on a chosen metric ρ bounded by 1 in the attribute value space V (we
assume for simplicity that ρ is suitable for all attributes).

Then, given an ε ∈ [0, 1], we let με
h(v, u, r) iff |{a ∈ A : ρ(a(v), a(u)) < ε}| ≥

r · |A|. The parameter r is called the catch radius.
Granules induced by με

h with r = 1 have a simple structure: a granule gε
h(u, 1)

consists of all v ∈ U such that ρ(a(u), a(v)) ≤ ε.
We use these granules to assign a decision class to an object u in the test set.
First, rules are induced from the training set by an exhaustive algorithm.

Then, given a set Rul of these rules, and an object u in the test set, a gran-
ule gε

h(u, 1) is formed in the set Rul: gε
h(u, 1) = {r ∈ Rul : ρ(a(u), a(r)) ≤

εfor each attribute a ∈ A where a(r) is the value of the attribute a in the premise
of the rule.

Rules in the granule gε
h(u, 1) are taking part in voting: for each value c of a

decision class, the following factor is computed,

param(c) =
sum of supports of rules pointing to c

cardinality of c in the training set
, (2)

cf., [Ba] for a discussion of various strategies of voting for decision values.
The class cu assigned to u is decided by

param(cu) = maxcparam(c), (3)

with random resolution of ties.
In computing granules, the parameter ε is normalized to the interval [0, 1] as

follows: first, for each attribute a ∈ A, the value train(a) = maxtraining seta −
mintraining seta is computed and the real line (−∞, +∞) is contracted to the
interval [mintraining seta, maxtraining seta] by the mapping fa,

fa(x) =

⎧
⎨

⎩

mintraining seta in case x ≤ mintraining seta
x in case x ∈ [mintraining seta, maxtraining seta]
maxtraining seta in case x ≥ maxtraining seta.

(4)

When the value a(u) for a test object u is off the range [mintraining seta,
maxtraining seta], it is replaced with the value fa(a(u)) in the range. For an
object v, or a rule r with the value a(v), resp., a(r) of a denoted a(v, r), the pa-
rameter ε is computed as |a(v,r)−fa(a(u))|

train(a) . The metric ρ was chosen as the metric
|x − y| in the real line. We show results of experiments with rough inclusions
discussed in this work. Our data set was a subset of Australian credit data in
which training set had 100 objects from class 1 and 150 objects from class 0
(which approximately yields the distribution of classes in the whole data set). T
he test set had 100 objects, 50 from each class. The RSES exhaustive classifier
[RSES] applied to this data set gave accuracy of 0.79 and coverage of 1.0.
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3.1 Results of Tests with Granules of Training Objects According
to με

h(v, u, 1) Voting for Decision

In Fig. 1 results of classification are given in function of ε for accuracy as well
as for coverage.

Fig. 1. Results for algorithm 1 v1, Best result for ε = 0.62: accuracy = 0.828283,
coverage = 0.99

Table 3. (40%-60%)(1-0); Australian credit; Algorithm 1 v2. r catch=catch radius,
optimal eps=Best ε, acc= accuracy, cov= coverage

r catch optimal eps acc cov

nil nil 0.79 1.0
0.071428 0 0.06 1.0
0.142857 0 0.66 1.0
0.214286 0.01 0.74 1.0
0.285714 0.02 0.83 1.0
0.357143 0.07 0.82 1.0
0.428571 0.05 0.82 1.0
0.500000 0 0.82 1.0
0.571429 0.08 0.84 1.0
0.642857 0.09 0.84 1.0
0.714286 0.16 0.85 1.0
0.785714 0.22 0.86 1.0
0.857143 0.39 0.84 1.0
0.928571 0.41 0.828283 0.99
1.000000 0.62 0.828283 0.99
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3.2 Results of Tests with Granules of Training Objects According
to με

h(v, u, r) Voting for Decision

The procedure applied in case of με
h(v, u, 1) can be repeated with r variable. The

resulting classifier is a function of two parameters ε, r. In Table 3, results are
included where against values of the catch radius r the best value for ε’s marked
by the optimal value optimal eps is given for accuracy and coverage.

Fig. 2. Results for algorithm 5 v1, Best result for ε=0.04, accuracy=0.82, coverage=1

Fig. 3. Results for algorithm 5 v2, Best result for ε=0.01, accuracy=0.84, coverage=1
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4 Rough Inclusions and Their Weaker Variants from
Residual Implications in Classification of Data

As shown in [Po3], residual implications of continuous t–norms can supply rough
inclusions according to a general formula,

μφ(v, u, r) iff φ(u) ⇒t φ(v) ≥ r, (5)

where φ maps the set U of objects into [0, 1] and φ(u) ≤ φ(v) if and only if u ing v
(ing is an ingredient relation of the underlying mereology, see e.g., [Po3]); ⇒t is
the residual implication induced by the t–norm , see [Po3].

Candidates for φ are proposed in [Po3], and a weak interesting variant of
this class of rough inclusions is indicated. This variant uses sets disε(u, v) =
|{a∈A:ρ(a(u),a(v))≥ε}|

|A| , and indε(u, v) = |{a∈A:ρ(a(u),a(v))<ε}|
|A| , for u, v ∈ U , ε ∈

[0, 1], where ρ is a metric |x − y| on attribute value sets.
The resulting weak variant of the rough inclusion μφ is,

μt(u, v, r) iff disε(u, v) ⇒t indε(u, v) ≥ r. (6)

Objects in the class c in the training set vote for decision at the test object
u according to the formula: p(c)=

∑
v∈c w(v,t)

|c| in the training set where weight w(v, t) is

disε(u, v) →t indε(u, v); rules induced from the training set pointing to the
class c vote according to the formula p(c)=

∑
r w(r,t)·support(r)

|c| in the training set . In either case,

the class c* with p(c*)=max p(c) is chosen. We include here results of tests
with training objects and t=min (Fig.2)and rules and t=min (Fig.3); a detailed
presentation of results is given in [A2].

Similarly, we include in Figs. 3,4 results of tests with granules of training
objects and rules for t=P, the product t–norm.

Fig. 4. Results for algorithm 6 v1, Best result for ε=0.01, accuracy=0.81, coverage=1
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Fig. 5. Results for algorithm 6 v2, Best result for varepsilon = 0.01, accuracy = 0.84,
coverage=1

The results of tests in best cases for optimal values of ε exceed results obtained
with the standard exhaustive algorithm. More detailed tests and results are given
in [A2], [A3].

5 Conclusion

The results shown here do witness that the proposed approach is a valid method
for building effective classifiers and validates the hypothesis put forth by the
author in [Po1].
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Abstract. Granulation of knowledge has turned an effective tool in data
classification. We propose the approach to classification of data which
extends our earlier methods by considering granules of either objects or
decision rules obtained either from the original training set or from its
granular reflection. Members of a granule vote for the decision class of
that object. We present results of tests which show that this method
usually gives results at least as good as the exhaustive classifier built on
rough set principles.

Keywords: rough sets, granulation of knowledge, rough inclusions, data
classification.

1 Introduction

The idea of granulation of knowledge encoded in information systems by means
of rough inclusions is presented in [Po1] in detail. We recall here its main lines.
We assume a given information system I = (U, A) with the object set U and the
attribute set A.

A rough inclusion is a ternary relation among pairs of objects and real numbers
in the interval [0, 1], written down in symbolic form as μ(u, v, r) and read as ”u
is a part of v to a degree not less than r”, see [Po1]. Rough inclusions which
are used in this paper stem from a class of rough inclusions defined by metrics
see [Po1].

In particular, see [Po1], the Hamming metric δ on information sets of objects
in an information system, relative to size |A| of the attribute set, does induce
the rough inclusion μδ,

μδ(u, v, r) if and only if
|IND(u, v)|

|A| ≥ r, (1)

where IND(u, v) = {a ∈ A : a(u) = a(v)}, meaning that u is a part of v (similar
to v) to degree not less than r if and only if at least r · 100 percent of attributes
take the same value on u and v.

In [Po4], the idea of a granular reflection of a data set was first put forth with
the hypothesis that granulated data sets should preserve to a satisfactory degree
knowledge contained in the original data set.

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 221–228, 2008.
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In this contribution, we report results of data classification tests in which some
modifications of this rough inclusion have been applied. In order to present the
results, some necessary notions should be introduced first. The reader will find
a detailed introduction in [Po1].

2 Granulation of Knowledge and Granular Reflections of
Data Sets

The idea of granulation of knowledge used here was proposed and studied in
[Po3], [Po4]. Granules of knowledge are formed essentially in this approach as
sets of objects close to a specified degree to the object designated as the granule
center; formally, for a radius of granulation r, an object u and a given rough
inclusion μ, the granule of radius r about u is given as

g(u, r, μ) = {v ∈ U : μ(v, u, r)}. (2)

The idea of a granular reflection of a data set was proposed in [Po4]: given
a granulation radius r, the set G(r, μ) of all granules of the radius r is formed.
From this set, a covering C(r, μ, G) of the set of objects U is chosen by means
of a strategy G, which is usually a random choice of granules with irreducibility
checking.

Given the covering C(r, μ, G), attributes in the set A are factored through
granules to make a new attribute set. For an attribute a ∈ A, and a granule g,
the value of the new attribute aG on g is defined as,

aG(g) = S({a(v) : v ∈ g}), (3)

and a new information system is formed: (UG = C(r, μ, G), AG = {aG : a ∈ A})
called a granular reflection of the given information system, see [Po1], [Po4].

3 A Modified Rough Inclusion and Applications to Data
Classification

As introduced in [Po1], the graded variant of μδ assumes that in deciding the
decision value at a test object u, collections of rules or objects take part; these
collections are built as granules with respect to a modified rough inclusion με

δ

see [Po1].
Given ε ∈ [0, 1], we let με

δ(v, u, r) iff

|{a ∈ A : δ(a(v), a(u)) ≤ ε}| ≥ r · |A|. (4)

The parameter r is called the catch radius.
With δ =l1, the granules are defined as,

g(u, r, με
δ) = {v ∈ U : |{a ∈ A : |a(v) − a(u)| ≤ ε}| ≥ r · |A|. (5)
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In particular, in case r = 1, the granule g(u, 1, με
δ) consists of v such that

|a(v) − a(u)| ≤ ε for each attribute a.
In computing granules, the parameter ε is normalized to the interval [0, 1] as

follows: first, for each attribute a ∈ A, the value train(a) = maxtraining seta −
mintraining seta is computed and the real line (−∞, +∞) is contracted to the
interval [mintraining seta, maxtraining seta] by the mapping fa,

fa(x) =

⎧
⎨

⎩

mintraining seta in case x ≤ mintraining seta
x in case x ∈ [mintraining seta, maxtraining seta]
maxtraining seta in case x ≥ maxtraining seta.

(6)

When the value a(u) for a test object u is off the range [mintraining seta,
maxtraining seta], it is replaced with the value fa(a(u)) in the range. The value

of ε in this case is defined as
fa(a(u))−mintraining seta

train(a) .

3.1 Voting by Granules on Decision Values

Given a granule g of either decision rules or objects in a decision system (U, A, d),
for each test object u, the value of decision assigned to u by the granule g is
defined as,

d(u)=c* iff sum of supports of rules pointing to c*
cardinality of c* in the training set =

maxc
sum of supports of rules pointing to c

cardinality of c in the training set .
(7)

where c denotes a decision value and c∗ is the decision value assigned to u.

4 Results of Tests with Classification Based on
Granulation by Means of με

δ(v, u, 1)

We present here results of tests in which the granulation with με
δ(v, u, 1) has

been applied in four cases:
1. Granules of training objects have been used.
2. Granules of granular objects have been used.
3. Granules of rules from the training set have been used.
4. Granules of rules from the granulated training set have been used.

All tests have been done with Australian credit data [UCI], split into the
training and test sets. The 5–fold cross validation has been applied. results are
expressed in terms of accuracy and coverage, cf., [RS].

4.1 Results of Tests

In Fig. 1, below the results of the test with granules of training objects (test
1-v.1) are shown for accuracy and coverage respectively in function of ε applied.
For comparison, the result obtained with the standard RSES exhaustive classifier
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Fig. 1. Results for test with granules of training objects. Best result for εopt = 0.83:
accuracy = 0.859219, coverage = 0.998551.

[RS] (marked with the horizontal line in Fig.1) is 0.845 for accuracy and 1.0 for
coverage.

In Table 1 results are shown of experiments with granules of granular objects
where for each value of the granulation radius r, the optimal (best) result for ε’s
is given as εopt.

Fig. 2 shows the results of experiments with granules of rules from the
training set.

In Table 2, we give results of tests with granules of rules from a granular
reflection of data set.

Table 1. CV-5; Australian credit; Algorithm 2 v1. r gran=granulation radius, εopt=
optimal epsilon, acc= accuracy, cov= coverage, m trn=mean training sample. Best
result for rgran = 0.7857: εopt = 0.54, accuracy=0.8616.

r gran εopt acc cov m trn

nil nil 0.845 1.0 552
0.428571 0.96 0.858144 0.742029 21.6
0.500000 0.95 0.838491 0.95942 52.8
0.571429 0.93 0.82871 0.998551 134.8
0.642857 0.95 0.831884 1.0 295.8
0.714286 0.71 0.858987 0.997102 456.4
0.785714 0.54 0.861673 0.995652 533.2
0.857143 0.83 0.859219 0.998551 546.2
0.928571 0.83 0.859219 0.998551 548
1.000000 0.83 0.859219 0.998551 552
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Fig. 2. Results for algorithm 3 v1. Best result for εopt = 0.46: accuracy = 0.871015,
coverage = 1.

Table 2. CV-5; Australian credit; Algorithm 4 v1. r gran=granulation radius,
εopt=optimal eps= optimal epsilon, acc= accuracy, cov= coverage. Best result for
rgran = 0.7857: εopt = 0.01, accuracy=0.85072.

r gran εopt acc cov m trn

nil nil 0.845 1.0 552
0.428571 0.01 0.765217 1.0 23.8
0.500000 0 0.771014 1.0 53.2
0.571429 0 0.824638 1.0 130.6
0.642857 0 0.834783 1.0 294.8
0.714286 0.02 0.83913 1.0 454.8
0.785714 0.01 0.850724 1.0 533
0.857143 0.01 0.850724 1.0 546.2
0.928571 0.01 0.849275 1.0 548
1.000000 0.1 0.850725 1.0 552

5 Results of Tests with Classification Based on
Granulation by Means of με

δ(v, u, r)

We present results of tests with granules based on με
δ(v, u, r) with all values of r.

Thus, a granule g(u, r, με
δ) consists of objects v such that at least r · 100 percent

of attributes a satisfy |a(u) − a(v)| ≤ ε. We present results of experiments with
granules of objects in training sets as well as rules from the training set.

In Table 3, results are given of test with granules of training objects. Best
classification results for distinct values of ε are shown against values of r.
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Table 3. CV-5; Australian credit; Algorithm 1 v2. r catch=catch radius, εopt= optimal
epsilon, acc= accuracy, cov= coverage. Best result for rcatch = 0.7857, εopt = 0.18,
accuracy=0.872.

r catch εopt acc cov

nil nil 0.845 1.0
0.071428 0 0.155073 1.0
0.142857 0 0.750725 1.0
0.214286 0.01 0.823188 1.0
0.285714 0.01 0.853623 1.0
0.357143 0.02 0.844927 1.0
0.428571 0.04 0.842029 1.0
0.500000 0.05 0.852174 1.0
0.571429 0.03 0.860869 1.0
0.642857 0.05 0.870866 0.998551
0.714286 0.24 0.868116 1.0
0.785714 0.18 0.872136 0.997102
0.857143 0.5 0.869565 1.0
0.928571 0.57 0.868116 1.0
1.000000 0.84 0.859219 0.998551

Table 4. CV-5; Australian credit; Algorithm 2 v2. r gran=granulation radius, opti-
mal r catch=optimal catch radius, εopt= optimal epsilon, acc= accuracy, cov= cov-
erage. Best result for rgran = 0.7142, optimal rcatch = 0.7142, εopt = 0.08, accu-
racy=0.8747.

r gran optimal r catch optimal eps acc cov

0 0.357143 0.11 0.556755 0.997102
0.0714286 0.357143 0.11 0.556755 0.997102
0.142857 0.428571 0.15 0.556755 0.997102
0.214286 0.428571 0.11 0.570352 0.988406
0.285714 0.928571 0.91 0.739727 0.857971
0.357143 0.928571 0.92 0.790782 0.975362
0.428571 0.928571 0.87 0.797704 0.995652

0.5 0.785714 0.29 0.840527 0.989855
0.571429 0.642857 0.07 0.844695 0.998551
0.642857 0.642857 0.05 0.866476 0.998551
0.714286 0.714286 0.08 0.874757 0.994203
0.785714 0.785714 0.19 0.869417 0.998551
0.857143 0.785714 0.58 0.872464 1
0.928571 0.642857 0.05 0.872316 0.998551

1 0.785714 0.18 0.872136 0.997102

In Table 4, we give results of tests with granules of granular objects. In this
case, classifiers depend on three parameters: granulation radii rgran, catch radii
rcatch, and ε’s. Results are shown for granulation radii in terms of optimal values
of rcatch and ε.



On Classification of Data by Means of Rough Mereological Granules 227

Table 5. CV-5; Australian credit; Algorithm 3 v2. r catch=catch radius,εopt= optimal
epsilon, acc= accuracy, cov= coverage. Best result for rcatch = 0.1428: εopt = 0.35,
accuracy= 0.8681.

r catch optimal eps acc cov

nil nil 0.845 1.0
0 0 0.555073 1.0

0.071428 0 0.83913 1.0
0.142857 0.35 0.868116 1.0
0.214286 0.5 0.863768 1.0
0.285714 0.52 0.831884 1.0
0.357143 0.93 0.801449 1.0
0.428571 1.0 0.514493 1.0
0.500000 1.0 0.465217 1.0
0.571429 1.0 0.115942 1.0

In Table 5, results are shown of tests with granules of rules from the training
set for all granulation radii in terms of optimal value of ε.

6 Conclusions

Results of tests show that the tested method of building classifiers is very promis-
ing. Results of tests for optimal values of parameters exceed quality of classifi-
cation by means of the standard exhaustive classifier in all cases and some of
them, e.g., accuracy of 0. 868 in Table 5 or 0.8747 in Table 4 are among the best
results obtained by rough set techniques, see [B].
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Abstract. Granular reflections of data sets have turned out to be very
effective in data classification. In this work we present results of classi-
fication of real data sets by means of an approach in which granules of
objects or decision rules are built on the basis of weak variants of rough
inclusions.
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1 Introduction

An information system is a pair I = (U, A) where U is a set of objects, and A
is a set of attributes; a decision system is a triple (U, A, d) where d /∈ A is a
decision. Objects in U are represented by means of information sets: Inf(u) =
{(a, a(u)) : a ∈ A} is the information set of the object u. Decision rules are
expressions of the form

∧
a∈A(a, a(u)) ⇒ (d = d(u)). The basic form of gran-

ulation in information/decision systems is partitioning of U into classes of the
indiscernibility relation IND(A) = {(u, v) : a(u) = a(v) for each a ∈ A}. Each
class [u]A = {v ∈ U : IND(v, u)} is interpreted as an elementary granule and
unions of elementary granules are granules of knowledge. Thus, granulation in
this case means forming aggregates of objects indiscernible over sets of attributes.

Another approach to granulation, proposed by L.Polkowski, see [Po1], [Po3],
[Po4], consists in using rough inclusions.

A rough inclusion is a relation μ ⊆ U × U × [0, 1] which can be regarded as
a graded similarity relation extending the indiscernibility relation by relaxing
restrictions on attribute values.

In this work we are using rough inclusions proposed by L. Polkowski, see [Po1],
obtained from continuous t–norms by means of their residual implications.

For a continuous t–norm t, see, e.g., [Po5], the residual implication x ⇒t y is
a mapping from the square [0, 1]2 into [0, 1] defined as follows, see, e.g., [Po5],

x ⇒t y ≥ z iff t(x, z) ≤ y; (1)

thus, x ⇒t y = max{z : t(x, z) ≤ y}.

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 229–236, 2008.
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As defined in [Po1], ⇒t does induce a rough inclusion on the interval [0, 1]:

μ⇒t(u, v, r) iff x ⇒t y ≥ r. (2)

This rough inclusion can be transferred to the universe U of an informa-
tion system as shown in [Po1]: for given objects u, v, and ε ∈ [0, 1], factors:
disε(u, v) = |{a∈A:|a(u)−a(v)|≥ε}|

|A| , and indε(u, v) = |{a∈A:|a(u)−a(v)|<ε}|
|A| are intro-

duced.
The weak variant of rough inclusion μ→t is defined, see [Po1], as,

μt ∗ (u, v, r) iff disε(u, v) ⇒t indε(u, v) ≥ r. (3)

Particular cases of this similarity measure induced by, respectively, t–norm
min, t–norm P (x, y), and t–norm L are, see [Po1],

For t = min(x, y), x ⇒min y is y in case x > y and 1 otherwise hence
μmin ∗ (u, v, r) iff disε(u, v) > indε(u, v) ≥ r with r < 1 and 1 otherwise.

For t = P where P (x, y) = x · y, x ⇒P y = y
x when x �= 0 and 1 when x = 0

hence μP ∗ (u, v, r) iff indε(u,v)
disε(u,v) ≥ r with r < 1 and 1 otherwise.

For t = L, x ⇒L y = min{1, 1 − x+ y}, hence μL ∗ (u, v, r) iff 1 − disε(u, v)+
indε(u, v) ≥ r with r < 1 and 1 otherwise.

These similarity measures will be applied in building granules and then in
data classification.

2 Granular Reflections of Data Sets

As introduced in [Po3], [Po4], granules defined by means of rough inclusions can
be made into new data sets called granular reflections of the original data sets,
see [Po1].

Granules of knowledge are defined by means of a rough inclusion μ as follows.
For an object u and a granulation radius r ∈ [0, 1], the granule g(u, r, μ) of
the radius r about u relative to μ is defined as the set of all objects v such that
μ(v, u, r) holds. This concerns as well weak variants of rough inclusions for which
we keep the same defining formula,

g(u, r, μ) = {v : μ(v, u, r)}. (4)

In particular, for the weak rough inclusion μt∗ (3), the granule g(u, r, μ) con-
sists of objects v such that disε(u, v) ⇒t indε(u, v) ≥ r.

The collection G(r, μ) of all granules of the given radius r relative to μ can
be filtered through a strategy G in order to select a covering C(r, μ) of the set U
of objects; in our approach, G is a random choice of granules with reduction of
reduntant granules in each step. For each attribute a in the attribute set A∪{d},
and each granule g ∈ C(r, μ), the factored attribute a takes on g the value,

a(g) = S({a(u) : u ∈ g}) (5)
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where S is a strategy of choosing the value. In our work, S is always the majority
voting with random tie resolution.

The granular reflection of the radius r defined up to a choice of C(r, μ), G and
S is the data set (C(r, μ), {a : a ∈ A}, d). This granular reflection was proposed
in [Po4], see [Po1] to serve as a basis for classifier construction.

The validity of this proposal was confirmed by tests with real data reported,
e.g., [Po2], [PoA] for granules computed with the rough inclusion based on the
�Lukasiewicz t–norm, see [Po1].

Fig. 1. Results for algorithm 5 v1, Best result for ε = 0.04: accuracy = 0.847826,
coverage = 1

Fig. 2. Results for algorithm 6 v1, Best result for ε = 0.06: accuracy = 0.847826,
coverage = 1
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In this work, we construct and test classifiers built on the basis of granules
computed by means of the weak rough inclusion μt∗, given explicitly above.

3 Results of Experiments

Tests were carried out with Australian credit data set [UCI] and the method was
CV-5 (the 5–fold cross validation). Results of classification have been judged

Fig. 3. Results for algorithm 7 v1, Best result for ε = 0.05: accuracy = 0.846377,
coverage = 1

Fig. 4. Results for algorithm 5 v2, Best result for ε = 0.02: accuracy = 0.86087, cov-
erage = 1
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by accuracy and coverage factors, see [RSES]. The accuracy computed with
the standard RSES exhaustive classifier [RSES] is for these data 0.845, and
coverage is 1.0.

We have four cases for testing with: 1. granules of objects in the training set,
2. granules of rules from the training set, 3. granules of granular objects, for each
of the three rough inclusions t=min, P, L.

In Case 1, training objects are made into granules for a given ε. Objects in
each granule g about a test object u, vote for decision value at u as follows: for

each decision class c, the value p(c)=
∑

training object v in g falling in c w(v,t)

size of c in training set is

Fig. 5. Results for algorithm 6 v2, Best result for ε = 0.01: accuracy = 0.850725,
coverage = 1

Fig. 6. Results for algorithm 7 v2, Best result for ε=0, accuracy=0.555073, coverage=1
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Table 1. CV-5; Australian credit; Algorithm 5 v3. r gran=granulation radius, opti-
mal eps= optimal epsilon, acc= accuracy, cov=coverage, m trn=mean training set

r gran optimal eps acc cov m trn

nil nil 0.845 1.0 552
0.500000 0.03 0.834783 1.0 53.8
0.571429 0.02 0.791304 1.0 134.4
0.642857 0.01 0.798551 1.0 295.8
0.714286 0.02 0.83913 1.0 454.8
0.785714 0.05 0.855072 1.0 533.8
0.857143 0.05 0.847826 1.0 546.2
0.928571 0.04 0.847826 1.0 548
1.000000 0.04 0.847826 1.0 552

Table 2. CV-5; Australian credit; Algorithm 6 v3. r gran=granulation radius, opti-
mal eps= optimal epsilon, acc= accuracy, cov= coverage, m trn=mean training set

r gran optimal eps acc cov m trn

nil nil 0.845 1.0 552
0 0.01 0.555073 1.0 1

0.500000 0.01 0.808696 1.0 54.8
0.571429 0.01 0.746377 1.0 131.8
0.642857 0.01 0.763768 1.0 295.2
0.714286 0.01 0.818841 1.0 454.4
0.785714 0.01 0.852174 1.0 533.2
0.857143 0.01 0.847826 1.0 546.2
0.928571 0.01 0.846377 1.0 548
1.000000 0.06 0.847826 1.0 552

Table 3. CV-5; Australian credit; Algorithm 7 v3. r gran=granulation radius, op-
timal eps= optimal epsilon, acc=Total accuracy, cov=Total coverage, m trn=mean
training set

r gran optimal eps acc cov m trn

nil nil 0.845 1.0 552
0.500000 0.01 0.707247 1.0 53.2
0.571429 0.01 0.595652 1.0 132
0.642857 0.01 0.563768 1.0 292.2
0.714286 0.02 0.786956 1.0 457.6
0.785714 0.01 0.85942 1.0 533
0.857143 0.05 0.847826 1.0 546.2
0.928571 0.05 0.849275 1.0 548
1.000000 0.05 0.846377 1.0 552
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computed where the weight w(v, t) is computed for a given t–norm t as w(v, t) =
disε(u, v) →t indε(u, v). The class c* assigned to u is the one with the largest
value of p. Results for the three chosen t–norms are given in Fig.1 (t=min), Fig.2
(t=P), Fig.3 (t=L).

In Case 2, weighted voting of rules in a given granule g for decision at test
object u goes according to the formula d(u)= arg max p(c) where

p(c)=
∑

rule in g pointing to c w(r,t)·support(r)

size of c in training set ,

where weight w(r, t) is computed as disε(u, r) →t indε(u, r).
Results are shown in Fig. 4 (t=min), Fig. 5 (t=P), Fig.6 (t=L).
In Case 3, granular objects from granules vote for decision. The difference

is in the fact that now we have two–parameter case with ε, r hence results are
given in Table 1(t=min), Table 2 (t=P), Table 3 (t=L) in which for each row
corresponding to the radius of granulation the best ε is given along with accuracy
and coverage in that case.

4 Conclusions

Optimal results obtained with granules of training objects relative to therules
induced from the original training set for t=min and t=P (Figs. 4,5) are fully
comparable with best results by rough set techniques see [B].
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Abstract. A new realtime interpolation algorithm for color image is
presented. The algorithm is based on the concept of indiscernibility re-
lation in rough sets (RS) theory. By applying the concept of upper and
lower approximation based on the continuity of images, the image is
first divided into homogenous area, edge pixels and isolated pixels. Then
Bézier surface interpolation is further achieved using the information of
classification. Besides emulation, the technology has been applied to the
visual presenter with low-resolution image sensor. Results demonstrate
that the new algorithm improves substantially the subjective and objec-
tive quality of the interpolated images over conventional interpolation
algorithms, and meets the requirements of real time image processing.
The algorithm represents an attempt to incorporate RS in image pro-
cessing.

Keywords: Rough sets, image interpolation, indiscernibility, upper ap-
proximation, lower approximation, Bézier surface.

1 Introduction

In many electronic imaging applications such as infrared imaging system, CCD
and CMOS, the image resolution is limited to the array densities of the sensors.
Moreover, the pixel difference of the optics, atmosphere and system noise will
blur and warp the images. Therefore, it is important and economical to improve
the image resolution by image interpolation technique. At present, common im-
age interpolation methods include bilinear interpolation, B shape interpolation,
SINC function, fractal interpolation, and so on. These interpolation algorithms
merely consider relativity between image neighbor pixels and do not consider
information degeneration after interpolation. Recently, many new image inter-
polation algorithms are put forward [1,2,3,4,5], however these algorithms are
implemented in emulation mode. With greater learning capability, artificial neu-
ral network has been applied to image interpolation since 1995 [6,7,8,9]. Even
so, tremendous nerve cell [6], huge calculation [8], or classification is desired, and

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 237–243, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



238 F. Liang and K. Xie

these approaches have never better extensive effect on the lesser neural network
scale [7].

RS theory, proposed by Pawlak in 1982 can be seen as a new mathemati-
cal approach to intelligent information processing. The RS approach seems to
be of fundamental importance in artificial intelligence and cognitive sciences,
especially in research areas such as machine learning, intelligent systems, induc-
tive reasoning, pattern recognition, metrology, image processing, signal analysis,
knowledge discovery, decision analysis, and expert systems. RS have been ap-
plied to image processing and comprehension by some researchers [10,11,12],
which include image filtering, classification, segmentation, and so on. A new im-
age interpolation algorithm is presented in this paper. The algorithm combined
Bézier surface interpolation with RS theory. Based on the continuity of images,
a RS criterion was put forward to distinguish noise pixels and edge pixels by ap-
plying the concept of upper and lower approximation. With the information of
classification, then Bézier surface interpolation is further implemented. In order
to confirm the above scheme’s validity and feasibility, we apply the technology
to the visual presenter with low-resolution image sensor. Results demonstrate
that the new interpolation algorithm removes effectively noises and preserves
the edge details during substantial resolution improvement.

2 RS Theory [13,14]

Suppose we are given a pair A = (U, A) of non-empty, finite sets U and A, where
U is the universe of objects, and A – a set consisting of attributes, i.e. functions
a : U −→ V a, where V a is the set of values of attribute a, called the domain of
a. The pair A = (U, A) is called an information system. Any information system
can be represented by a data table with rows labeled by objects and columns
labeled by attributes. Any pair (x, a), where x ∈ U and a ∈ A defines the table
entry consisting of the value a(x).

Any subset B of A determines a binary relation I(B) on U, called an indiscerni-
bility relation, defined by xI(B)y if and only if a(x) = a(y) for every a ∈ B. where
a(x) denotes the value of attribute a for object x. If (x, y) ∈ I(B) we will say that
x and y are B-indiscernible. Equivalence classes of the relation I(B) are referred
to as B-elementary sets or B-elementary granules. In the rough set approach the
elementary sets are the basic building blocks (concepts) of our knowledge about
reality. The unions of B-elementary sets are called B-definable sets.

For B ⊆ A we denote by InfB(x) the B-signature of x ∈ U , i.e., the set
(a, a(s)) : a ∈ A. Let Inf(B) = InfB(s) : s ∈ U . Then for any objects x, y ∈ U ,
xI(B)y if and only if InfB(x) = InfB(y). The indiscernibility relation will be
further used to define basic concepts of rough set theory. Let us define now the
following two operations on sets X ⊆ U .

{
B∗ (X) = {x ∈ U : B(x) ⊆ X}.
B∗ (X) = {x ∈ U : B(x) ∩ X �= Φ}.

(1)

assigning to every subset X of the universe U two sets B∗(X) and B∗(X) called
the B − lower and the B − upper approximation of X, respectively. The set
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BNB (X) = B∗ (X) − B∗ (X) will be referred to as the B − boundaryregion
of X.

3 Image Interpolation Combined with RS Theory

3.1 Bézier Surface Interpolation

To consider the powerful advantages of Bézier surface method, which is very
precise and can be implemented fast, the Bézier surface interpolation is selected.

Supposing a digital image as (i, j) , and its color value in ith row and jth
column pixel is Yi,j (i = 1, ..., m, j = 1, ..., n) .

Firstly, Y1 = {Yi,j : (i = 1, ..., m, j = 1, ..., n)} is extended to Y2 = {Yi,j : (i =
1, ..., m + 1, j = 1, ..., n + 1)} with equation

⎧
⎨

⎩

Ym+1,j = 2Ym,j − Ym−1,j (j = 1, . . . , n)
Yi,n+1 = 2Yi,n − Yi,n−1 (i = 1, . . . , m)
Ym+1,n+1 = 2Ym+1,n + Ym,n+1 − Ym,n

. (2)

With similar method, Y2 is extended to Y3 = {Yi,j : (i = 1, . . . , m + 2, j =
1, . . . , n + 2)}, so the Bézier surface is constructed as :

Si,j(x, y) =
∑3

s=0

∑3

t=0
Qi,j

s,tB
3
s(x)B3

t (y). (3)

where

Qi,j
3α,3β = Yi+α,j+β (α, β = 0, 1) (1 ≤ i ≤ m, 1 ≤ j ≤ n).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Qi,j
1,3β = Yi,j+β + (Yi+1,j+β − Yi−1,j+β)/6

Qi,j
2,3β = Yi+1,j+β + (Yi,j+β − Yi+2,j+β)/6

Qi,j
3α,1 = Yi+α,j + (Yi+α,j+1 − Yi+α,j−1)/6

Qi,j
3α,2 = Yi+α,j+1 + (Yi+α,j − Yi+α,j+2)/6

(α, β = 0, 1).

{
Qi,j

1,β = Qi,j
0,β + (Qi,j

3,β − Qi,j−1
0,β )/6

Qi,j
2,β = Qi,j

3,β + (Qi,j
0,β − Qi,j+1

3,β )/6
(β = 1, 2).

(4)

Thus Qi,j
α,β is the linear combination of sixteen pixels as {Yi+x,j+y, −1 ≤ x, y ≤

2}, and the whole Bézier surface is denoted as in (5), where[.]is integral form
operation.

F (u, v) + S[u],[v](u − [u], v − [v]). (5)

Compared to other conventional algorithms, the method has been proved to
get the higher revolution image efficiently. Even now, there are some edge burring
and noise remaining. So we propose the following scheme.
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3.2 RS Criterion for Noise and Edge

An image can be supposed as the approximate universe of objects with K =
(U, (B1, B2)) , where U is an image and (B1, B2) is the equivalence relation.

Here B1 is defined as: if every one of two pixels is within selected noise pa-
rameter range, then two pixels B1 correlation, and noise pixels can be got by
B1 − lower approximation B1∗(X). And B2 is defined as: if every one of two
pixels is within selected edge parameter range, then two pixels B2 correlation,
and edge pixels can be got by B2 − lower approximation B2∗(X).

For a color image, every pixel is denoted by three primary colors, namely R,
G and B. Supposing two pixels as M and N, certain color is denoted with xM

and xN respectively, and the ratio of colors is denoted as r(M : N) = xM/xN .
(xN = 1 is supposed when xN = 0, and the assumption couldn’t influence image
quality.). After practical test, eyes are unconscious of color variety while 0.9 ≤
r(M : N) ≤ 1.1, and eyes are conscious of color variety while r(M : N) < 0.9
or r(M : N) > 1.1. Thereby, the ratio of colors can be served as RS criterion to
judge isolated noise pixels and edge pixels.

Image can be divided into homogenous area, edge pixels and isolated pixels.
Except for isolated pixels, there is great correlation between neighbor pixels in
the natural image. If the color value is quite different from the neighbor region,
the pixel is likely to be noise; If the color value is close to the neighbor region,
the pixel is likely within the homogenous area; If the color value is close to two
neighbor pixels, but is quite different from other neighbor pixels, the pixel is
likely on the edge.

Supposing a digital image as matrix [i, j], (i, j expresses the pixel position),
Then sub image with 3 × 3 rotation window is denoted as:

M(xi,j) =

⎡

⎣
xi−1,j−1 xi−1,j xi−1,j+1
xi,j−1 xi,j xi,j+1

xi+1,j−1 xi+1,j xi+1,j+1

⎤

⎦ . (6)

By color ratio, the matrix is transformed into the following:

R(M(xi,j)) =

⎡

⎣
r(xi−1,j−1 : xi,j) r(xi−1,j : xi,j) r(xi−1,j+1 : xi,j)
r(xi,j−1 : xi,j) r(xi,j : xi,j) r(xi,j+1 : xi,j)

r(xi+1,j−1 : xi,j) r(xi+1,j : xi,j) r(xi+1,j+1 : xi,j)

⎤

⎦ . (7)

Then function w(xm,n) and C(xi,j) (i − 1 ≤ m ≤ i + 1, j − 1 ≤ n ≤ j + 1) is
denoted as:

w(xm,n) =

⎧
⎨

⎩

1, r(xm,n : xi,j) � 1.1
1, r(xm,n : xi,j) � 0.9
0, others

(8)

C(xi,j) =
∑i+1

m=i−1

∑j+1

n=j−1
w(xm,n). (9)

Define equivalence relation B1∗(X) and B2∗(X): within 3×3 rotation window,
ratios of center pixel to eight neighbor pixels are all greater than 1.1 or all lesser
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than 0.9, the pixel is noise. When ratios of center pixel to six neighbor pixels are
greater than 1.1 or lesser than 0.9, the pixel is edge. Namely:

{
B1∗(X) = {x|C(xi,j) = 8}.
B2∗(X) = {x|C(xi,j) = 6}.

(10)

3.3 RS Application on Image Interpolation

Before interpolation, image pixels are classified by RS criterion.

– while xi,j locates within the homogenous area, original interpolation is ap-
plied;

– while xi,j is noise, its color value is replaced with average of neighbor pixels;
– while xi,j is on the edge, its color value is replaced with average of two

nearest pixels and itself.

3.4 Experiments

The standard image testing card is applied in experiments, and the visual results
is shown as Fig. 1. Results showed that two conventional interpolations blur

(a) Original image (b) Bilinear interpolation

(c) Bézier surface interpolation (d) Interpolation combined with RS

Fig. 1. Image interpolation experiment results
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image edge and remain noise. The new interpolation algorithm enhanced details,
meanwhile improved definition and vision effect by a long way.

From the following table, PSNR is increased compared with bilinear interpo-
lation and Bézier surface interpolation.

Table 1. Interpolation Algorithm Comparison

Algorithm Bilinear Bézier surface Interpolation
Interpolation Interpolation with RS

PSNR(dB). 32.07 33.10 42.33

4 Conclusion

Due to classification by RS criterion, the new interpolation algorithm removes
effectively noises and preserves edge details during substantial resolution im-
provement. The advantage of the algorithm is quite apparent.

Except for emulation, the above approach has been applied on our visual
presenter with low-resolution image sensor, whose hardware platform core is
DSC21CPU. The implement is excellent from both quality and computational
complexity aspects obviously.
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Abstract. Dominance-based rough set introduced by Greco et al. is
an extension of Pawlak’s classical rough set theory by using dominance
relations in place of equivalence relations for approximating sets of pref-
erence ordered decision classes satisfying upward and downward union
properties. This paper introduces a formulation of approximation spaces
based on multiple criteria decision tables by using the concept of indexed
blocks, which are sets of objects indexed by pairs of decision values. The
approximations of sets of decision classes are formulated in terms of ex-
clusive neighborhoods of indexed blocks. We show that the set of indexed
blocks with exclusive neighborhoods forms a partition on the universe of
objects when approximating preference ordered decision classes with up-
ward and downward union properties. Examples are given to illustrate
presented concepts.

Keywords: Rough sets, Dominance-based rough sets, Multiple crite-
ria decision analysis (MCDA), Classification, sorting, Indexed blocks,
Granule.

1 Introduction

Dominance-based rough sets (DBRS) introduced by Greco, Matarazzo and
Slowinski [1, 2, 3] extend Pawlak’s classical rough sets (CRS) [8, 9, 10] by con-
sidering attributes, called criteria, with preference-ordered domains and by sub-
stituting the indiscernibility relation in CRS with a dominance relation that is
reflexive and transitive. The DBRS approach was motivated by representing pref-
erence models for multiple criteria decision analysis (MCDA) problems, where
preference orderings on domains of attributes are quite typical in exemplary
based decision-making. It is also assumed that decision classes are ordered by

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 244–251, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Dominance-Based Rough Sets Using Indexed Blocks as Granules 245

some preference ordering. More precisely, let Cl = {Clt|t ∈ T }, T = {1, 2, ..., n},
be a set of decision classes such that for each x in the universe U , x belongs to
one and only one Clt ∈ Cl and for all r, s ∈ T , if r > s, the decision from Clr
are preferred to the decision from Cls. A consistent preference model is taken to
be one that respects the dominance principle when assigning actions (objects) to
the preference ordered decision classes. Action x is said to dominate action y if
x is at least as good as y under all considered criteria. The dominance principle
requires that if action x dominates action y, then x should be assigned to a class
not worse than y. Given a total ordering on decision classes, in DBRS, the sets to
be approximated are the upward union and downward union of decision classes
[5]. The DBRS approach has been shown to be an effective tool for MCDA [12]
and has been applied to solve multi-criteria sorting problems [4, 5]. Algorithms
for inducing decision rules consistent with dominance principle were introduced
in [6, 7].

This work is motivated by trying to study the relationship between the struc-
tures of approximation spaces based on dominance relations and the structures
of preference ordered decision classes satisfying upward and downward union
property. The basic idea is to consider relations on decision classes and the rep-
resentation of objects related by pairs of decisions in a multi-criteria decision
table. In addition, we are interested in computing the reduction of inconsistency
when criteria are aggregated one by one incrementally. Here inconsistency is as
a result of violating the dominance principle. In this study, we consider only
decision tables with multiple criteria which are quantitative and totally ordered.

The remainder of this paper is organized as follows. In Section 2, after re-
viewing related concepts, the concept of indexed blocks is defined. In Section 3,
we consider the combination of criteria and how to update indexed blocks. The
concept of exclusive neighborhoods is introduced, and three rules for combining
criteria are presented. An example is given to illustrate the concepts and rules.
In Section 4, we formulate approximations of sets of decision classes in terms of
indexed blocks and exclusive neighborhoods. We show that the set of indexed
blocks forms a partition on universe when all neighborhoods are exclusive. Fi-
nally, conclusions are given in Section 5.

2 Related Concepts

2.1 Information Systems, Rough Sets, and Dominance Based
Rough Sets

In rough sets theory [8, 9, 10], information of objects in a domain is represented
by an information system IS = (U, A, V, f), where U is a finite set of objects, A
is a finite set of attributes, V = ∪q∈AVq and Vq is the domain of attribute q, and
f : U×A → V is a total information function such that f(x, q) ∈ Vq for every q ∈
A and x ∈ U. In many applications, we use a special case of information systems
called decision tables to represent data sets. In a decision table (U, C∪D = {d}),
there is a designated attribute {d} called decision attribute, and attributes in C
are called condition attributes. Each attribute q in C ∪ D is associated with an
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equivalence relation Rq on the set U of objects such that for each x and y ∈ U ,
xRqy means f(x, q) = f(y, q). For each x and y ∈ U , we say that x and y are
indiscernible on attributes P ⊆ C if and only if xRqy for all q ∈ P.

In dominance-based rough sets, attributes with totally ordered domains are
called criteria. More precisely, each criterion q in C is associated with an out-
ranking relation [11] Sq on U such that for each x and y ∈ U, xSqy means
f(x, q) ≥ f(y, q). For each x and y ∈ U, we say that x dominates y on criteria
P ⊆ C if and only if xSqy for all q ∈ P. The dominance relations are taken to
be total pre-ordered, i.e., strongly complete and transitive binary relations [5].

Dominance-based rough sets approach is capable of dealing with inconsisten-
cies in MCDA problems based on the principle of dominance, namely: given
two objects x and y, if x dominates y, then x should be assigned to a class not
worse than y. Assignments of objects to decision classes are inconsistent if the
dominance principle is violated. The sets of decision classes to be approximated
are considered to have upward union and downward union properties. More pre-
cisely, let Cl = {Clt|t ∈ T }, T = {1, 2, ..., n}, be a set of decision classes such
that for each x ∈ U , x belongs to one and only one Cl t ∈Cl and for all r, s in
T , if r > s, the decision from Clr is preferred to the decision from Cls. Based on
this total ordering of decision classes, the upward union and downward union of
decision classes are defined respectively as:

Cl≥t = ∪s≥tCls, Cl≤t = ∪s≤tCls, t = 1, 2, ..., n.

An object x is in Cl≥t means that x at least belongs to class Cl t, and x is in Cl≤t
means that x at most belongs to class Cl t.

2.2 Indexed Blocks

To study the relationships between approximation spaces based on dominance
relations and the sets of decision classes to be approximated, we introduce a
new concept called indexed blocks, which are sets of objects indexed by pairs of
decision values.

Let (U, C ∪ D = {d}) be a multi-criteria decision table where condition at-
tributes in C are criteria and decision attribute d is associated with a total pref-
erence ordering. For each condition criterion q and a decision value di of d, let
minq(di) = min{f(x, q)|f(x, d) = di} and maxq(di) = max{f(x, q)|f(x, d) = di}.
That is, minq(di) denotes the minimum value of q among objects with decision
value di in a multi-criteria table, and maxq(di) denotes the maximum value.

For each condition criterion q, the mapping Iq(i, j) : D × D →℘(Vq) is
defined as

Iq(i, j) = {f(x, q) = v|v � min
q

(dj) and v � max
q

(di), for i < j; i, j = 1, ..., VD}

and Iq(i, i) = {f(x, q)|f(x, d) = i and f(x, q) /∈ ∪i�=jIq(i, j)}, where ℘(Vq) de-
notes the power set of Vq.

Intuitively, Iq(i, j) denotes the set of values of criterion q shared by objects
of decision values i and j. We will denote the set of values as [minq(j), maxq(i)]
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or simply as [minj , maxi] for a decision value pair i and j with i < j. The set
Iq(i, i) denotes the values of criterion q where objects can be consistently labeled
with decision value i. For i < j, values in Iq(i, j) are conflicting or inconsistent
in the sense that objects with higher values of criterion q are assigned to a lower
decision class or vice versa, namely, the dominance principle is violated.

For each Iq(i, j), the corresponding set of ordered pairs [Iq(i, j)]: D × D
→ ℘(U × U) is defined as [Iq(i, j)] = {(x, y) ∈ U × U |f(x, d) = i, f(y, d) =
j such that f(x, q) ≥ f(y, q) for f(x, q), f(y, q) ∈ Iq ∈ (i, j)}.

For simplicity, we will take the set [Iq(i, i)] to be reflexive.
For each [Iq(i, j)], the restrictions of [Iq(i, j)] to i and j are defined as:
[Iq(i, j)]i = {x ∈ U | there exists y ∈ U such that (x, y) ∈ [Iq(i, j)]} and
[Iq(i, j)]j = {y ∈ U | there exists x ∈ U such that (x, y) ∈ [Iq(i, j)]}.
The corresponding indexed block Bq(i, j) ⊆ U of [Iq(i, j)] is defined as

Bq(i, j) = [Iq(i, j)]i ∪ [Iq(i, j)]j .

For each criterion q, the union of its indexed blocks is a covering of U generally.

Example 1. The above concepts are illustrated using the following multi-criteria
decision table, where U is the universe of objects, q1 and q2 are condition criteria
and d is the decision with preference ordering 3 > 2 > 1.

Table 1. Example of a multi-criteria decision table

U q1 q2 d

1 1 2 2

2 1.5 1 1

3 2 2 1

4 1 1.5 1

5 2.5 3 2

6 3 2.5 3

7 2 2 3

8 3 3 3

In order to find out the minimum and maximum values for each decision class,
we can apply sorting on the decision d first, followed by sorting on the criterion
q1. The result is shown in Table 2 where we can derive inconsistent intervals
Iq1(i, j) with the following sets of ordered pairs:

[Iq1(1, 1)] = [Iq1(2, 2)] = ∅,

[Iq1(1, 2)] = {(4, 1), (2, 1), (3, 1)},

[Iq1 (1, 3)] = {(3, 7)},

[Iq1 (2, 3)] = {(5, 7)},

[Iq1 (3, 3)] = {(6, 6), (8, 8)}.

The indexed blocks are shown in Table 3.
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Table 2. Result after sorting in terms of {d} followed by {q1}

U q1 d

4 1 1

2 1.5 1

3 2 1

1 1 2

5 2.5 2

7 2 3

6 3 3

8 3 3

Table 3. Index blocks derived from [Iq1(i, j)]

D×D 1 2 3
1 Ø {1, 2, 3, 4} {3, 7}
2 Ø {5, 7}
3 {6, 8}

3 Combination of Criteria

In this section, we consider the combination of two criteria using indexed blocks
and the underlying sets of ordered pairs. For a criterionq and for each decision
value i ∈ Vd,and for each indexed block Bq(i, i)of [Iq(i, i)], the neighborhood of
Bq(i, i) is defined as

NB(Bq(i, i)) = {Bq(k, i)|k ≥ 1 and k < i} ∪ {Bq(i, k)|k ≥ 1 and k > i}.

Note that Bq(i, i) is not part of its neighborhood, and the “exclusive” neighbor-
hood ofBq(i, i) corresponds to sets of objects whichhave inconsistent decision class
assignments associated with decision i. Objects in Bq(i, i) are assigned to deci-
sion i consistently. Blocks in the neighborhood of Bq(i, i) are inconsistent blocks.
Alternatively, we may take the neighborhood of Bq(i, i) as a set of objects, i.e.,
∪NB(Bq(i, j)). For x in U , we say x does not belong to the neighborhood ofBq(i, i)
iff x /∈ B, for all B in NB(Bq(i, i)) iff x /∈ ∪NB(Bq(i, i)).

When combining two criteria q1 and q2, the following three rules are used to
update the sets of ordered pairs [I{q1,q2}(i, j)] and indexed blocks B{q1,q2}(i, j) :

Rule 1: For decision pairs (i, i):

[I{q1,q2}(i, i)] = [Iq1(i, i)] ∪ [Iq2 (i, i)].

Rule 2: For decision pairs (i,j) and i < j:

[I{q1,q2}(i, j)] = [Iq1 (i, j)] ∩ [Iq2 (i, j)].
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Rule 3: For pairs (x, y) in [Iq1 (i, j)] − [I{q1,q2}(i, j)] or [Iq2 (i, j)] − [I{q1,q2}(i, j)]:
If {x} does not belong to the neighborhood of B{q1,q2}(i, i),
then add (x, x) to [I{q1,q2}(i, i)], which is the same as adding x to B{q1,q2}(i, i).
If {y} does not belong to the neighborhood of B{q1,q2}(j, j),
then add (y,y) to [I{q1,q2}(j, j)],which is the same as adding y to B{q1,q2}(j, j).
After applying the above three rules in sequence, we can obtain the updated

indexed blocks accordingly. The working of the rules is illustrated in the following
example.

Example 2. Consider the criterion q2 in the multi-criteria decision table given
in Table 1. The set of inconsistent intervals Iq2 (i, j)with the following corre-
sponding sets of ordered pairs: [Iq2(1, 1)] = {(2, 2), (4, 4)}, [Iq2(1, 2)] = {(3, 1)},
[Iq2(1, 3)] = {(3, 7)}, [Iq2 (2, 2)] = ∅, [Iq2(2, 3)] = {(1, 7), (5, 7), (5, 6), (5, 8)},
[Iq2(3, 3)] = ∅.

The indexed blocks Bq2(i,j) are shown in Table 4.

Table 4. Indexed blocks Bq2(i, j)

D×D 1 2 3
1 {2, 4} {1, 3} {3, 7}
2 Ø {1, 5, 6, 7, 8}
3 Ø

Applying the three rules of combining q1 and q2 we have the combined indexed
blocks shown in Table 5 with the following exclusive neighborhoods:

NB(B{q1,q2}(1, 1)) = {B{q1,q2}(1, 2), B{q1,q2}(1, 3)},
NB(B{q1,q2}(2, 2)) = {B{q1,q2}(1, 2), B{q1,q2}(2, 3)},
NB(B{q1,q2}(3, 3)) = {B{q1,q2}(1, 3), B{q1,q2}(2, 3)}.

Table 5. Indexed blocks B{q1,q2}(i, j)

D×D 1 2 3
1 {2, 4} {1, 3} {3, 7}
2 Ø {5, 7}
3 {6, 8}

4 Approximating Sets of Decision Classes

Let (U, C ∪ D = {d}) be a multi-criteria decision table, P ⊆ C, and {BP (i, j)|
(i, j) ∈ Vd × Vd} be the indexed blocks derived from P for (i, j) ∈ Vd × Vd. For
a decision class Cli = {x ∈ U |f(x, d) = di, di ∈ Vd} with decision value di, the
lower approximation of Cl i by P is the indexed block BP (i, i), the boundary set
of Cl i is ∪NB(BP (i, i)) the union of blocks in the neighborhood of BP (i, i), and
the upper approximation of Cl i is the union of BP (i, i) and the boundary set.
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For a set of two decision values D2 = {i, j} ⊆ Vd, the neighborhoods of
indexed blocks BP (i, i) and BP (j, j) are reduced by removing objects associated
with decision values {i, j} only. This can be done by checking objects in the
indexed block BP (i, j).

For x in BP (i, j), if f(x, d) = i and x does not belong to NB(BP (i, i)) –
BP (i, j), then x is removed from the neighborhoodNB(BP (i, i)) and added to
BP (i, i). Similarly, if f(x, d) = j and x does not belong to NB(BP (j, j)) –
BP (i, j), then x is removed from the neighborhood NB(BP (j, j)) and added to
BP (j, j). More precisely, we define the updated indexed blocks as

BP (i, i)D2 = BP (i, i) ∪ {x ∈ BP (i, j)|f(x, d) = i and x /∈ NB(BP (i, i) −
BP (i, j)} and

BP (j, j)D2 =BP (j, j)∪{x ∈ BP (i, j)|f(x, d)=j and x /∈ NB(BP (j, j)−BP (i, j)}.

The neighborhood of BP (i, j) is defined as

NB(BP (i, j)) = [NB(BP (i, i)) ∪ NB(BP (j, j) − BP (i, j)] ∪ [BP (i, j)
∩(NB(BP (i, i)) − BP (i, j))] ∪ [BP (i, j)
∩(NB(BP (j, j)) − BP (i, j))].

In general, neighborhood of BP (i, j), for i 	= j, is not exclusive. It is partially
inclusive, i.e., some objects of BP (i, j) may be associated with some blocks other
than BP (i, j) in the neighborhood.

The lower approximation of ClD2= Cl i∪Cl j is defined as
P (ClD2) = BP (i, i) ∪ BP (j, j) ∪ [BP (i, j) – ∪NB(BP (i, j))]
= BP (i, i)D2 ∪ BP (j, j)D2,

the boundary set of Cl i∪Cl j is defined as
BN P (ClD2) = ∪NB(BP (i,j)), and

the upper approximation of Cl i∪Cl j is defined as
P̄ClD2= P ClD2∪ BN P (ClD2).
Now, for a set of k decision values Dk = {di1, . . . , dik} ⊆ Vd, the lower

approximation of the set ClDk = ∪{Cl i : i ∈ Dk} of decision classes by the set
P of criteria is defined as

P ClDk = ∪ { P (ClD2) : D2 = (i, j) in Dk × Dk and i < j},
the boundary set of ClDk is defined as

BN P (ClDk) = ∪ {∪NB(BP (i, j)): (i, j) in Dk × Dk}, and
the upper approximation of ClDk is defined as

P̄ClDk= P ClDk∪ BN P (ClDk).
Due to space limitation, examples and proof of the following proposition are

omitted.

Proposition. Let (U , C ∪ D={d}) be a multi-criteria decision table where do-
mains of all criteria q ∈ C are totally ordered and the preference-ordered decision
classes Cl = {Cl t: t ∈ T }, T = {1, . . . , n} satisfying the upward and downward
union properties. If the neighborhoods of indexed blocks BC(i, j) are exclusive
for (i,j) ∈ T × T , then the set of indexed blocks BC(i, j) is a partition on U .
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5 Conclusion

In this paper we introduced the concept of indexed blocks to represent dom-
inance based approximation spaces derived from multi-criteria decision tables.
We used exclusive neighborhoods of indexed blocks to represent inconsistent in-
formation. It can be shown that for approximating preference-ordered decision
classes with upward and downward union properties, the set of indexed blocks
forms a partition on the universe when the neighborhoods of these indexed blocks
are exclusive. These results demonstrate the efficacy of using indexed blocks as
granules for representing dominance based approximation space. It provides new
ways for understanding and studying dominance-based rough sets, and further
development of decision rules induction algorithms.
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Abstract. Dominance-based Rough Set Approach (DRSA) has been
proposed to generalize classical rough set approach when monotonicity
between memberships to considered concepts has to be taken into ac-
count. This is typical for data describing various phenomena, e.g., “the
larger the mass and the smaller the distance, the larger the gravity”.
These monotonicity relationships are fundamental in rough set approach
to multiple criteria decision analysis. In this paper, we propose an alge-
braic structure for DRSA.

1 Introduction

Rough set theory has been proposed by Pawlak in the early 80s [6,7] as a tool
for reasoning about data in terms of granules of knowledge. While the origi-
nal rough set idea is very useful for classification support, it is not handling a
background knowledge about monotonic relationship between evaluations of ob-
jects on condition attributes and their evaluations on decision attributes. Such
a knowledge is typical for data describing various phenomena and for data de-
scribing multiple criteria decision problems, e.g., “the larger the mass and the
smaller the distance, the larger the gravity”, “the more a tomato is red, the
more it is ripe” or “the better the school marks of a pupil, the better his over-
all classification”. The monotonic relationships within multiple criteria decision
problems follow from preferential ordering of value sets of attributes (scales of cri-
teria), as well as preferential ordering of decision classes. In order to handle these
monotonic relationships between conditions and decisions, Greco, Matarazzo and
S�lowiński [3,4,8] have proposed to substitute the indiscernibility relation with a
dominance relation. Dominance-based Rough Set Approach (DRSA) permits
approximation of ordered sets. When dealing with preferences, monotonicity is
expressed through the following relationship: “the better is an object with re-
spect to considered points of view (criteria), the more it is appreciated”. While
many algebraic characterizations of classical rough set approach have been pre-
sented, no result in this direction has been proposed for DRSA. In this paper
we give an algebraic c haracterization of DRSA in terms of bipolar comple-
mented de Morgan Brower-Zadeh distributive lattice, being a generalization of
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the de Morgan Brower-Zadeh distributive lattice [1], already proposed to char-
acterize classical rough set approach [2]. The paper is organized as follows. In
the next section classical rough set approach is introduced. The third section
presents the DRSA approximations. The fourth section recalls the de Morgan
Brower-Zadeh distributive lattice and the characterization of the classical rough
set approach in its terms. The fifth section introduces the bipolar complemented
de Morgan Brower-Zadeh distributive lattice and the characterization of the
DRSA approximations in its terms. The last sections contains conclusions.

2 Classical Rough Set as a Particular Case of the
Monotonic Rough Approximation of a Fuzzy Set

In classical rough set approach [6,?], the original information is expressed by
means of an information system, that is the 4-tuple S = < U, Q, V, φ >, where
U is a finite set of objects (universe), Q={q1,q2,...,qm} is a finite set of attributes,
Vq is the set of values of the attribute q, V =

⋃
q∈Q Vq and φ : U × Q → V is a

total function such that φ(x, q) ∈ Vq for each q ∈ Q, x ∈ U , called information
function.

Therefore, each object x from U is described by a vector DesQ(x) =
[φ(x, q1), φ(x, q2), ..., φ(x, qm)], called description of x in terms of the evalua-
tions of the attributes from Q; it represents the available information about x.
Obviously, x ∈ U can be described in terms of any non-empty subset P ⊆ Q.

With every (non-empty) subset of attributes P there is associated an indis-
cernibility relation on U , denoted by IP :

IP = {(x, y) ∈ U × U : φ(x, q) = φ(y, q), ∀q ∈ P}.

If (x, y) ∈ IP , it is said that the objects x and y are P -indiscernible. Clearly,
the indiscernibility relation thus defined is an equivalence relation (reflexive,
symmetric and transitive). The family of all the equivalence classes of the relation
IP is denoted by U |IP , and the equivalence class containing an element x ∈ U
by IP (x), i.e.

IP (x) = {y ∈ U : φ(y, q) = φ(x, q), ∀q ∈ P}.

The equivalence classes of the relation IP are called P-elementary sets.
Let S be an information system, X a non-empty subset of U and ∅ �= P ⊆

Q. The P-lower approximation and the P-upper approximation of X in S are
defined, respectively, as:

P (X) = {x ∈ U : IP (x) ⊆ X},

P (X) = {x ∈ U : IP (x) ∩ X �= ∅}.

The elements of P (X) are all and only those objects x ∈ U which belong to
the equivalence classes generated by the indiscernibility relation IP , contained
in X ; the elements of P (X) are all and only those objects x ∈ U which belong to
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the equivalence classes generated by the indiscernibility relation IP , containing
at least one object x belonging to X . In other words, P (X) is the largest union
of the P -elementary sets included in X , while P (X) is the smallest union of the
P -elementary sets containing X .

3 Dominance Based-Rough Set Approach

In this section, we recall the Dominance-based Rough Set Approach [3], taking
into account, without loss of generality, the case of rough approximation of fuzzy
sets [5].

A fuzzy information base is the 3-tuple B =< U, F, ϕ >, where U is a fi-
nite set of objects (universe), F={f1,f2,...,fm} is a finite set of properties, and
ϕ : U × F → [0, 1] is a function such that ϕ(x, fh) ∈ [0, 1] expresses the degree
in which object x has property fh. Therefore, each object x from U is described
by a vector

DesF (x) = [ϕ(x, f1), . . . , ϕ(x, fm)]

called description of x in terms of the evaluations of the properties from F ; it
represents the available information about x. Obviously, x ∈ U can be described
in terms of any non-empty subset E ⊆ F and in this case we have

DesE(x) = [ϕ(x, fh), fh ∈ E].

Let us remark that the concept of fuzzy information base can be considered
as a generalization of the concept of property system [9]. Indeed, in a prop-
erty system an object may either possess a property or not, while in the fuzzy
information base an object may possess a property in a given degree between
0 and 1.

With respect to any E ⊆ F , we can define the dominance relation DE as
follows: for any x,y ∈ U , x dominates y with respect to E (denoted as xDEy) if,
for any fh ∈ E,

ϕ(x, fh) ≥ ϕ(y, fh).

For any x ∈ U and for each non-empty E ⊆ F , let

D+
E (x) = {y ∈ U : yDEx}, D−

E (x) = {y ∈ U : xDEy}.

Given E ⊆ F , for each X ⊆ U , we can define its upward lower approximation
E(>)(X) and its upward upper approximation E

(>)
(X) as:

E(>)(X) =
{
x ∈ U : D+

E(x) ⊆ X
}

,

E
(>)

(X) =
{
x ∈ U : D−

E(x) ∩ X �= ∅
}

.

Analogously, given E ⊆ F , for each X ⊆ U , we can define its downward lower
approximation E(<)(X) and its downward upper approximation E

(<)
(X) as:

E(<)(X) =
{
x ∈ U : D−

E(x) ⊆ X
}

,
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E
(<)

(X) =
{
x ∈ U : D+

E(x) ∩ X �= ∅
}

.

Let us observe that in the above definition of rough approximations E(>)(X),
E

(>)
(X), E(<)(X), E

(<)
(X), the elementary sets, which in the classical rough

set theory are equivalence classes of the indiscernibility relation, are the sets
D+

E(x) and D−
E(x), x ∈ U . Observe also that the rough approximations E(>)(X),

E
(>)

(X), E(<)(X), E
(<)

(X) can be expressed as unions of the elementary sets
[5] , i.e. for any X ⊆ U and E ⊆ F

1. E(>)(X) =
⋃

x∈U

{
D+

E(x) : D+
E(x) ⊆ X

}
,

2. E
(>)

(X) =
⋃

x∈U

{
D+

E(x) : D−
E(x) ∩ X �= ∅

}
,

3. E(<)(X) =
⋃

x∈U

{
D−

E(x) : D−
E(x) ⊆ X

}
,

4. E
(<)

(X) =
⋃

x∈U

{
D−

E(x) : D+
E(x) ∩ X �= ∅

}
.

The rough approximations E(>)(X), E
(>)

(X), E(<)(X), E
(<)

(X) can be used
to analyze data relative to gradual membership of objects to some concepts
representing properties of objects and their assignment to decision classes. This
analysis takes into account the following monotonicity principle: “the greater the
degree to which an object has properties from E ⊆ F , the greater its degree of
membership to a considered class”. This principle can be formalized as follows.
Let us consider a fuzzy set X in U , characterized by the membership function
μX : U → [0, 1]. This fuzzy set represents a class of interest, such that function
μ specifies a graded membership of objects from U to considered class X . For
each cutting level α ∈ [0, 1], we can consider the following sets

– weak upward cut of fuzzy set X :

X≥α = {x ∈ U : μ(x) ≥ α} ,

– strict upward cut of fuzzy set X :

X>α = {x ∈ U : μ(x) > α} ,

– weak downward cut of fuzzy set X :

X≤α = {x ∈ U : μ(x) ≤ α} ,

– strict upward cut of fuzzy set X :

X<α = {x ∈ U : μ(x) < α} .
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Let us remark that, for any fuzzy set X and for any α ∈ [0, 1], we have that

U − X≥α = X<α, U − X≤α = X>α,

U − X>α = X≤α, U − X<α = X≥α.

Given a family of fuzzy sets X = {X1, X2, ...., Xp} on U , whose respective
membership functions are μ1, μ2, ..., μp, let P>(X) be the set of all the sets
obtained through unions and intersections of weak and strict upward cuts of
component fuzzy sets. Analogously, let P<(X) be the set of all the sets obtained
through unions and intersections of weak and strict downward cuts of component
fuzzy sets.

P>(X) and P<(X) are closed under set union and set intersection operations,
i.e. for all Y1, Y2 ∈ P>(X), Y1 ∪ Y2 and Y1 ∩ Y2 belong to P>(X), as well as
for all W1, W2 ∈ P<(X), W1 ∪ W2 and W1 ∩ W2 belong to P<(X). Observe,
moreover, that the universe U and the empty set ∅ belong both to P>(X) and
to P<(X) because, for any fuzzy set Xi ∈ X,

U = X≥0
i = X≤1

i

and
∅ = X>1

i = X<0
i .

4 Brower-Zadeh Distributive De Morgan Lattices

A system 〈Σ, ∧, ∨,′ ,∼ , 0, 1〉 is a quasi-Brower-Zadeh [1] distributive lattice if the
following properties (1)-(4) hold:

(1) Σ is a distributive lattice with respect to the join and the meet operations
∨, ∧ whose induced partial order relation is

a ≤ b iff a = a ∧ b (equivalently b = a ∨ b)

Moreover, it is required that Σ is bounded by the least element 0 and the
greatest element 1:

∀a ∈ Σ, 0 ≤ a ≤ 1

(2) The unary operation ′ : Σ → Σ is a Kleene (also Zadeh or fuzzy) comple-
mentation. In other words, for arbitrary a, b ∈ Σ,

(K1) a′′ = a,
(K2) (a ∨ b)′ = a′ ∧ b′,
(K3) a ∧ a′ ≤ b ∨ b′.

(3) The unary operation ∼ : Σ → Σ is a Brower (or intuitionistic) complemen-
tation. In other words, for arbitrary a, b ∈ Σ,

(B1) a ∧ a∼∼ = a,
(B2) (a ∨ b)∼ = a∼ ∧ b∼,
(B3) a ∧ a∼ = 0.



Algebraic Structures for Dominance-Based Rough Set Approach 257

(4) The two complementations are linked by the interconnection rule which must
hold for arbitrary a ∈ Σ:

(in) a∼ ≤ a′

A structure 〈Σ, ∧, ∨,′ ,∼ , 0, 1〉 is a Brower-Zadeh distributive lattice if it is a
quasi-Brower-Zadeh distributive lattice satisfying the stronger interconnection
rule:
(s-in) a∼∼ = a∼′.

A Brower-Zadeh distributive lattice satisfying also the ∨ de Morgan property

(B2a) (a ∧ b)∼ = a∼ ∨ b∼

is called a de Morgan Brower-Zadeh distributive lattice.
The de Morgan Brower-Zadeh distributive lattice is an algebraic structure

which can be given to the collection of all rough approximations within the
classical rough set approach as follows. Fixed P ⊆ C, for any X ⊆ U let us
consider the pair

〈
P (X), U − P (X)

〉
and

A =
{
(I, E) : ∃X ⊆ U for which I = P (X)and E = U − P (X)

}
.

The following result holds.

Theorem 1. [2] The structure 〈A, �, �,− ,≈ , 〈∅, U〉 , 〈U, ∅〉〉 where, for any
〈I1, E1〉 , 〈I2, E2〉 ∈ A,

〈I1, E1〉 � 〈I2, E2〉 = 〈I1 ∩ I2, E1 ∪ E2〉

〈I1, E1〉 � 〈I2, E2〉 = 〈I1 ∪ I2, E1 ∩ E2〉

〈I1, E1〉− = 〈E1, I1〉

〈I1, E1〉≈ = 〈E1, U − E1〉

is a de Morgan Brower-Zadeh distributive lattice.

5 Bipolar Complemented de Morgan Brower-Zadeh
Distributive Lattices

A system 〈Σ, Σ+, Σ−, ∧, ∨,′+ ,′− ,∼+ ,∼− , 0, 1〉 is a bipolar complemented quasi-
Brower-Zadeh distributive lattice if the following properties (1b)-(4b) hold:

(1b) Σ is a distributive lattice with respect to the join and the meet operations
∨ and ∧

(1b’) Σ+, Σ− ⊆ Σ are distributive lattices with respect to the join and the meet
operations ∨ and ∧. Σ is bounded by the least element 0 and the greatest
element 1, which implies that also Σ+ and Σ− are bounded.
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(2b) The unary operations ′+ : Σ+ → Σ− and ′− : Σ− → Σ+ are Kleene (also
Zadeh or fuzzy) bipolar complementation, that is, for arbitrary a, b ∈ Σ+

and c, d ∈ Σ−,
(K1b) a′+′− = a, c′−′+ = c,
(K2b) (a ∨ b)′+ = a′+ ∧ b′+,(c ∨ d)′− = c′− ∧ d′−,
(K3b) a ∧ a′+ ≤ b ∨ b′+, c ∧ c′− ≤ d ∨ d′−.
(3b) The unary operations ∼+

: Σ+ → Σ− and ∼−
: Σ− → Σ+ are Brower (or

intuitionistic) bipolar complementations, that is, for arbitrary a, b ∈ Σ+

and c, d ∈ Σ−,
(B1b) a ∧ a∼+∼−

= a, c ∧ c∼
−∼+

= c

(B2b) (a ∨ b)∼
+

= a∼+ ∧ b∼
+
, (c ∨ d)∼

−
= c∼

− ∧ d∼
−
,

(B3b) a ∧ a∼+
= 0, c ∧ c∼

−
= 0.

(4b) Complementation ′+ and complementation ∼+
in one hand and comple-

mentation ′− and complementation ∼−
in the other hand are linked by the

interconnection rule, that is, for arbitrary a ∈ Σ+ and arbitrary b ∈ Σ−:
(in-b) a∼+ ≤ a′+, b∼

− ≤ b′−

A structure 〈Σ, Σ+, Σ−, ∧, ∨,′+ ,′− ,∼+ ,∼− , 0, 1〉 is a bipolar complemented
Brower-Zadeh distributive lattice if it is a quasi-Brower-Zadeh distributive lattice
satisfying the stronger interconnection rule, that is, for arbitrary a ∈ Σ+ and
arbitrary b ∈ Σ−:

(s-in-b) a∼+∼−
= a∼+′− , b∼

−∼+
= a∼−′+ .

A bipolar complemented Brower-Zadeh distributive lattice is a bipolar com-
plemented de Morgan Brower-Zadeh distributive lattice, if it satisfies also the ∨
de Morgan property that is, for arbitrary a, b ∈ Σ+ and c, d ∈ Σ−

(B2a-b) (a ∧ b)∼+ = a∼+ ∨ b∼+, (c ∧ d)∼− = c∼− ∨ d∼−.

The bipolar complemented de Morgan Brower-Zadeh distributive lattice is an
algebraic structure which can be given to the collection of all rough approxima-
tions within the DRSA as follows. Fixed G ⊆ F , for any X ⊆ U let us consider
the pairs

〈
G(≤)(X), U − G

(≤)
(X)

〉
and

〈
G(≥)(X), U − G

(≥)
(X)

〉
and the sets

B = {(I, E) : I, E ⊆ U such that I ∩ E = ∅},

B− =
{

(I, E) : ∃X ⊆ U for which I = G(≤)(X) and E = U − G
(≤)

(X)
}
,

B+ =
{
(I, E) : ∃X ⊆ U for which I = G(≥)(X) and E = U − G

(≥)
(X)

}
.

The following result holds.

Theorem 2. The structure 〈B, B+, B−, �, �,−− ,−+ ,≈− ,≈+ , 〈∅, U〉 , 〈U, ∅〉〉
where, for any 〈I1, E1〉 , 〈I2, E2〉 ∈ B, 〈I3, E3〉 ∈ B−,〈I4, E4〉 ∈ B+,

〈I1, E1〉 � 〈I2, E2〉 = 〈I1 ∩ I2, E1 ∪ E2〉
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〈I1, E1〉 � 〈I2, E2〉 = 〈I1 ∪ I2, E1 ∩ E2〉

〈I3, E3〉−− = 〈E3, I3〉, 〈I4, E4〉−+ = 〈E4, I4〉

〈I3, E3〉≈− = 〈E3, U − E3〉, 〈I4, E4〉≈+ = 〈E4, U − E4〉

is a bipolar complemented de Morgan Brower-Zadeh distributive lattice.

6 Conclusions

In this paper we take into account a new problem in rough set approach: the
algebraic characterization of the DRSA. More precisely, we proposed a char-
acterization of the DRSA approximations in terms of a specific algebraic struc-
ture: bipolar complemented de Morgan Brower-Zadeh distributive lattice. Future
research will be oriented in investigating the formal properties of the bipolar
complemented de Morgan Brower-Zadeh distributive lattice and in the charac-
terization of DRSA in terms of other abstract algebras.
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5. Greco, S., Matarazzo, B., S�lowiński, R.: Dominance-Based Rough Set Approach as a
Proper Way of Handling Graduality in Rough Set Theory. In: Peters, J.F., Skowron,
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Abstract. Ordinal classification problemswithmonotonicity constraints
(also referred to as multicriteria classification problems) often appear in
real-life applications, however they are considered relatively less frequently
in theoretical studies than regular classification problems. We introduce
a rule induction algorithm based on forward stagewise additive modeling
that is tailored for this type of problems. The algorithm monotonizes the
dataset (excludes highly inconsistent objects) using Dominance-based
Rough Set Approach and generates monotone rules. Experimental results
indicate that taking into account the knowledge about order and mono-
tonicity constraints in the classifier can improve the prediction accuracy.

1 Introduction

An ordinal classification problem with monotonicity constraints consists in as-
signment of objects to finite number of ordered classes. Objects are described
by attributes with ordered value sets and monotonicity constraints are present
in the data: a higher value of an object on an attribute, with other values being
fixed, should not decrease its class assignment. Problems of ordinal classifica-
tion in the presence of monotonicity constraints are commonly encountered in
real-life applications. A typical representative is multiple-criteria classification
considered within multiple-criteria decision analysis (MCDA) [11]. Moreover, in
many other domains ordinal and monotone properties follow from the domain
knowledge about the problem and should not be neglected. They are encountered
in such problems as bankruptcy risk prediction [10], breast cancer diagnosis [18],
house pricing [14], credit rating [6] and many others.
In order to solve ordinal classification problem with monotonicity constraints,

one can apply two steps for improving the accuracy of the classifier. The first
one consists in “monotonization” of the dataset, i.e. exclusion of objects highly
violating the monotone relationships. The second one consists in imposing the
constraints such that only monotone functions are taken into account.
Dominance-based Rough Set Approach (DRSA) [11] is one of the first ap-

proaches introduced to deal with this type of problems. By replacing indiscerni-
bility relation, considered in classical rough sets [15], with a dominance relation,

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 260–267, 2008.
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DRSA is able to handle inconsistencies following from violation of monotone re-
lationships. In this context several specialized decision rule induction algorithms
were proposed that were able to capture the ordinal nature of data and handle
domain knowledge in the form of monotonicity constraints [12,5] (we will refer
to rules consistent with monotonicity constraints as monotone rules). Among
them, DOMLEM [12] seems to be the most popular one. It aims at finding a
minimal set of monotone rules covering the dataset, using the well-known se-
quential covering procedure as a search heuristic.
We follow a different methodology for monotone rule induction that is based

on forward stagewise additive modeling (FSAM) [7], i.e. greedy procedure for
minimizing a loss function on the dataset. The algorithm introduced in this pa-
per, called MORE (from MOnotone Rule Ensembles), treats a single rule as a
subsidiary base classifier in the ensemble. The rules are added to the ensemble
iteratively, one by one. Each rule is fitted by concentrating on the examples
which were hardest to classify correctly by rules that have already been gen-
erated. The advantage of this approach is that we use a single measure only
(value of the empirical risk) at all stages of learning procedure: setting the best
cuts (conditions), stopping the rule’s growth and determining the weight of the
rule; no additional features (e.g. impurity measures, pruning procedures) are
considered. Such an approach was already considered in ordinary classification
problems and algorithms such as RuleFit [9], SLIPPER [2], LRI [21] or EDR [1]
were introduced. The algorithm presented here can be seen as an extension of the
last from the mentioned above methods. It monotonizes the dataset (excludes
highly inconsistent objects) using DRSA and then generates monotone rules.

2 Problem Statement

In the classification problem, the aim is to predict the unknown class label
y ∈ Y = {1, . . . , K} (decision value) of an object x using the description of the
object in terms of p (condition) attributes, x = (x1, x2, . . . , xp) ∈ X , where X is
the attribute space. Here, we assume without loss of generality that value set of
each attribute is a subset of R, so that X ⊆ R

p. In the ordinal classification, it
is assumed that there is a meaningful order between classes which corresponds
to the natural order between class labels. We also assume the presence of mono-
tonicity constraints in the data.
In order to formalize the concept of monotonicity, we define the dominance

relation as a binary relation on X in the following way: for any x,x′ ∈ X we
say that x dominates x′, denoted x � x′, if on every attribute, x has value not
smaller than x′, xj ≥ x′

j , for all j = 1, . . . , p. The dominance relation is a partial
pre-order on X , i.e. it is reflexive and transitive. Having defined the dominance
relation, we define themonotone function to be any function f : X → Y satisfying
the monotonicity constraints:

x � x′ → f(x) ≥ f(x′) (1)

for any x,x′ ∈ X .
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Now, the problem of ordinal classification with monotonicity constraints can
be stated as a problem of finding the monotone classification function f(x) that
predicts accurately values of y. The accuracy is measured in terms of the loss
function L(y, f(x)), which is the penalty for predicting f(x) when the actual
value is y. The overall accuracy of function f(x) is defined as the expected loss
(risk) according to the probability distribution of data to be predicted:

R(f) = E[L(y, f(x))] (2)

Since the data probability distribution is unknown, the function is learned from a
set of n training examples {(x1, y1), . . . , (xn, yn)} (training set). In order to min-
imize the value of risk (2), the learning procedure usually performs minimization
of the empirical risk :

Remp(f) =
1
n

n∑

i=1

L(yi, f(xi)), (3)

which is the value of a loss function on the training set (training error). It
is possible to use a variety of loss functions for measuring accuracy; here, for
simplicity, we assume the loss function to be the absolute error loss,

Labs(y, f(x)) = |y − f(x)|. (4)

Although in classification a 0-1 loss is often considered (defined as L0−1(y, f(x))=
1 if y �= f(x), 0 otherwise), absolute error loss has the advantage over 0-1 loss
of being sensitive to the difference between predicted and actual class label,
therefore taking the order between classes into account.
Solution to the ordinal classification problem with loss function (4) can be

obtained by reducing the problem to K − 1 binary problems. Let us define for
a given class label y, auxiliary class labels yk equal to 1 if y ≥ k, otherwise −1,
for each k = 2, . . . , K. Then, we have y = 1 +

∑K
k=2

1
2 (yk + 1). Moreover, let

fk(x) ∈ R to be a function such that if f(x) ≥ k, then fk(x) > 0, and fk(x) < 0
otherwise. Then, we have:

Labs(y, f(x)) = |y − f(x)| =
K∑

k=2

∣
∣
∣
∣
1
2
(yk − sgn(fk(x)))

∣
∣
∣
∣ =

K∑

k=2

L0−1(ykfk(x))

where L0−1(ykfk(x)) is so called margin 0-1 loss defined for binary problems
as L0−1(ykfk(x)) = θ(−ykfk(x)), where θ(a) is a step function, equal to 1 for
a ≥ 0, and 0 elsewhere. The only problem is to satisfy fk(x) ≥ fk−1(x), for
k = 3, . . . , K. If this condition is violated, one can try to find gk(x), k = 2, . . . , K
satisfying this condition and being as close to fk(x), k = 2, . . . , K as possible:

min
K∑

k=2

(fk(x) − gk(x))2

This is the problem of isotonic regression [17]. The final prediction is then
f(x) = 1+

∑K
k=2

1
2 (sgn(gk(x))+1). However, one does not need to solve isotonic
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regression at all. It can be shown that simple voting procedure gives the same
prediction. For a given object x, if fk(x) > 0, then each class indicated by labels
k, . . . , K gets vote |fk(x)|; if fk(x) < 0, each class indicated by labels 1, . . . , k−1
gets vote |fk(x)|. Votes are summed for each k = 1, . . . , K and x is classified to
the class with the highest score.
From the monotonicity assumption dominance principle follows: for any two

objects xi,xj from the dataset, such that xi � xj , it should hold yi ≥ yj . How-
ever, it still may happen that in the dataset there exists an object xi, dominating
another object xj , while it holds yi < yj . Such a situation violates the mono-
tonicity assumption, so we shall call objects xi and xj inconsistent. Notice that
no monotone function can approximate accurately inconsistent objects. There-
fore, DRSA [11] and its stochastic extension [4] is applied in order to monotonize
the data. Instead of using all data, we remove the inconsistent objects taking
into account only stochastic lower approximations of decision classes:

Cl≥k = {xi : Pr(y ≥ k|xi) ≥ α, i = 1, . . . , n},

Cl≤k = {xi : Pr(y ≤ k|xi) ≥ α, i = 1, . . . , n}
where Pr(y ≥ k|xi) (Pr(y ≤ k|xi)) is a probability, conditioned on xi, of class
label at least (at most) k, and α ∈ (0.5, 1] is a chosen consistency level. The prob-
abilities are obtained using maximum likelihood estimation taking into account
monotonicity constraints [4].

3 Ensemble of Decision Rules

This section describes the general scheme for decision rule induction. Here we
focus on the binary classification case and assume that Y = {−1, 1}, where a
“positive” class is ranked higher (in the order) to a “negative” class. This algo-
rithm can be used in to each of the K − 1 binary problems resulting from the
reduction of the ordinal classification problem. One can also use lower approxi-
mations instead of whole dataset.
Decision rule is a logical statement of the form: if [condition], then [decision].

Let Xj be the set of all possible values for the j-th attribute. Condition part
of the rule consist of elementary expressions of the form xj ≥ sj or xj ≤ sj for
some sj ∈ Xj . Let Φ denote the set of elementary expressions constituting the
condition part of the rule, and let Φ(x) be an indicator function equal to 1 if an
objects x satisfies the condition part of the rule (we also say that a rule covers
an object), otherwise Φ(x) = 0. The decision is a single real value, denoted by
α. Therefore, we define a decision rule as:

r(x) = αΦ(x). (5)

Notice that the decision rule takes only two values, r(x) ∈ {α, 0}, depending
whether x satisfies the conditions or not. In this paper, we assume the classifi-
cation function is a linear combinations of M decision rules:

f(x) = α0 +
M∑

m=1

rm(x), (6)
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Algorithm 1. Monotone Rule Ensemble – MORE
input : set of n training examples {(y1,x1), . . . , (yn,xn)},

M – number of decision rules to be generated.
output: default rule α0, ensemble of decision rules {rm(x)}M

1 .

α0 = arg minα

∑n
i=1 σ(αyi);

f0(x) = α0;
for m = 1 to M do

Φm(x) = arg maxΦ

∣
∣
∣
∑

Φ(xi)=1 yiσ
′(yifm−1(xi))

∣
∣
∣;

αm = arg minα

∑
Φm(xi)=1 σ(yi(fm−1(xi) + α));

rm(x) = αmΦm(x);
fm(x) = fm−1(x) + rm(x);

end

where α0 is a constant value, which can be interpreted as a default rule, covering
the whole X . Object x is classified to the class indicated by the sign of f(x).
The combination (6) has very simple interpretation as a voting procedure: rules
with positive α vote for the positive class, while rules with negative α – for
the negative class. Object x is classified to the class with higher vote (which is
equivalent to the sign of f(x)). Notice that in order to maintain monotonicity
of f(x), it is necessary and sufficient that for the m-th rule, αm is positive when
all elementary expressions in Φm are of the form xj ≥ sj ; similarly, for negative
αm all the conditions must be of the form xj ≤ sj .
Rule induction is performed by minimizing the margin 0-1 loss function (clas-

sification error) on the set of n training examples (empirical risk). Notice that
this loss function, is neither smooth nor differentiable. Therefore, we approxi-
mate it with the sigmoid function:

σ(x) =
1

1 + ex
(7)

Thus, we minimize the following empirical risk:

Remp(f) =
n∑

i=1

σ(yif(xi)) (8)

However, finding a set of rules minimizing (8) is computationally hard, that is
why we follow here FSAM, i.e. the rules are added one by one, greedily mini-
mizing (8). We start with the default rule defined as:

α0 = argmin
α

Remp(α) = argmin
α

n∑

i=1

σ(αyi). (9)

Let fm−1(x) be a classification function after m − 1 iterations, consisting of
first m− 1 rules and the default rule. The m-th decision rule rm(x) = αmΦm(x)
should be obtained from rm = argminr Remp(fm−1+r), but in order to speed up
computations, it is built in two steps. First, we obtain value of Φm(x). Then, we
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obtain value of αm by solving the line-search problem with formerly determined
Φm(x). To explain the procedure for determining Φm(x), let us expand the value
of the loss function up to the first order using g(x + α) 	 g(x) + αdg(x)

dx :

σ(yi(fm−1(xi) + α)) = σ(yifm−1(xi)) + αyiσ
′(yifm−1(xi)), (10)

where σ′(x) is a derivative of sigmoid function σ(x). Using (10) in (8) we ap-
proximate the empirical risk Remp(fm−1 + r) as:

∑

Φ(xi)=1

[
σ(yifm−1(xi)) + αyiσ

′(yifm−1(xi))
]
+

∑

Φ(xi)=0

σ(yifm−1(xi)). (11)

However, minimizing (11) is equivalent to minimizing:

Lm(Φ) =
∑

Φ(xi)=1

yiσ
′(yifm−1(xi)) (12)

for any positive value of α or maximizing (12) for any negative value of α.
Thus, the general idea of algorithm for finding Φm is the following: first we
search for Φ+

m with positive α by minimizing Lm(Φ), next we search for Φ−
m with

negative α by maximizing Lm(Φ), and we choose Φm with higher |Lm(Φ)|, Φm =
argmax{|Lm(Φ+

m)|, |Lm(Φ−
m)|}. The procedure for finding Φ+

m (Φ
−
m) resembles

the way the decision trees are generated. Here, we look for only one branch
instead of the whole decision tree. At the beginning, Φ+

m (Φ
−
m) is empty and

in each next step an elementary expression xj ≥ sj (xj ≤ sj) is added to Φ+
m

(Φ−
m) until Lm(Φ+

m) (Lm(Φ−
m)) cannot be decreased. Let us underline that a

minimal value of Lm(Φ+
m) (Lm(Φ−

m)) is a natural stop criterion, what differs
this procedure from those used for decision trees generation. After Φm has been
determined, αm can be obtained by simply using the line search procedure to:

αm = argmin
α

∑

Φm(xi)=1

σ(yi(fm−1 + α)). (13)

In our implementation, to speed up the computations, instead of solving (9) and
(13) we perform a gradient search with short step – we choose αm to be a small,
fixed value ±γ that corresponds to a learning rate.

4 Experimental Results

In order to test how our approach to rule induction behaves in practice, we
selected eight datasets, for which it is known that monotonicity constraints make
sense. Five datasets come from UCI repository [19]: Wisconsin Breast Cancer,
CPU Performance, Ljubljana Breast Cancer, Boston House Pricing, Car. The
other three were obtained from different sources: Den Bosch House Pricing [3],
Bankruptcy Risk [10] and Windsor House Pricing [13]. Due to lack of space we
omit the detailed characteristics of each dataset.
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Table 1. Mean absolute error ± standard error. For each dataset, the best method
and all methods within one standard error below the best are marked with bold.

Dataset SVM j48 Adaboost MORE MORE+

DenBosch 0.2055±.0042 0.1689±.0041 0.1294±.0025 0.1181±.0031 0.1303±.0035

CPU 0.4366±.0028 0.1261±.0037 0.5727±.0027 0.0641±.0023 0.0641±.0023

Wisconsin 0.0324±.0004 0.0536±.0015 0.0406±.0007 0.0359±.0007 0.0331±.0008

Bankruptcy 0.1692±.0039 0.1756±.0028 0.2692±.0090 0.1256±.0059 0.1256±.0059

Ljubljana 0.3203±.0035 0.2437±.0015 0.2727±.0024 0.2781±.0018 0.2510±.0028

Boston 0.3856±.0016 0.3813±.0042 0.7659±.0029 0.3118±.0019 0.3101±.0019

Windsor 0.5774±.0028 0.6440±.0042 0.9294±.0029 0.5046±.0025 0.5040±.0029

Car 0.6752±.0012 0.6517±.0016 0.4005±.0001 0.0473±.0007 0.0490±.0007

For each dataset we tested three regular classifiers which do not take order nor
monotonicity into account: support vector machines (SVM) with linear kernel
[20], j48 decision trees [16] and AdaBoost [8] with decision stump as a base
learner. We used their implementations from Weka package [22]. Moreover, we
also used two versions of our MORE algorithm. The first one induces decision
rules from class unions. The second (“MORE+”) employs Stochastic DRSA [4]
and induces rules from lower approximations with consistency level 0.5. For SVM
and j48, typical parameters from Weka were chosen; for AdaBoost we increased
the number of iteration to 100 to make it more competitive; for MORE we have
chosen M = 100 and γ = 0.5). For each dataset and for each algorithm, 10-fold
cross validation was used and repeated 20 times to decrease the variance of the
results. The measured error rate is mean absolute error, which is the value of
absolute error loss on the testing set.
The results shown in Table 1 show a great improvement in accuracy when

using monotone rule ensembles over the regular classifiers. This is probably due
to the fact, that MORE utilizes the domain knowledge. Poor results of ordinary
algorithms, e.g. AdaBoost for Windsor dataset, can be explained by the fact,
that those algorithms are not adjusted to minimize absolute error. On the other
hand, there is only a small improvement (if any) in using lower approximations
in rule induction comparing to the rule induction from raw class unions.

5 Conclusions
We introduced a novel rule induction algorithm for ordinal classification problem
in the presence of monotonicity constraints. The algorithm uses forward stage-
wise additive modeling scheme for generating the ensemble of decision rules
for binary problems. We show how to solve the ordinal classification problem
with absolute error by solving binary subproblems with zero-one error. Due to
specific nature of the problem, a syntax typical to monotone rules was used to
find the statistically best ensemble. Moreover, we show how to use DRSA to deal
with inconsistent objects. The experimental results show that incorporating such
domain knowledge into classification algorithms can dramatically improve the
prediction accuracy.
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Abstract. Case-based reasoning (CBR) regards the inference of some
proper conclusions related to a new situation by the analysis of similar
cases from a memory of previous cases. We propose to represent similarity
by gradual decision rules induced from rough approximations of fuzzy
sets. Indeed, we are adopting the Dominance-based Rough Set Approach
(DRSA) that is particularly appropriate in this context for its ability
of handling monotonicity relationship of the type “the more similar is
object y to object x, the more credible is that y belongs to the same
set as x”. At the level of marginal similarity concerning single features,
we consider only ordinal properties of similarity, and for the aggregation
of marginal similarities, we use a set of gradual decision rules based
on the general monotonicity property of comprehensive similarity with
respect to marginal similarities. We present formal properties of rough
approximations used for CBR.

1 Introduction

The basic idea of case-based reasoning (CBR) (see e.g. [12]) can be found in the
following sentence of Hume [11]: “From causes which appear similar we expect
similar effects. This is the sum of all our experimental conclusions.” Rephrasing
Hume, one can say that “the more similar are the causes, the more similar one
expects the effects”. For this reason, measuring similarity is the essential point
of all approaches to CBR and, in particular, of fuzzy set approach to CBR [1].

Problems with measuring similarity are encountered at two levels:

– at the level of single features: how to define a meaningful similarity measure
with respect to a single feature?

– at the level of all features: how to properly aggregate the similarity measures
with respect to single features in order to obtain a comprehensive similarity
measure?

For the above reasons, we proposed in [8] a new way to deal with CBR,
using the Dominance-based Rough Set Approach (DRSA). It tries to be possibly

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 268–275, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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“neutral” and “objective” in approaching the problems of measuring similarity
at the two levels mentioned above. At the level of similarity concerning single
features, we consider only ordinal properties of similarity, and at the level of
aggregation, we consider a set of decision rules based on the general monotonicity
property of comprehensive similarity with respect to similarity of single features.

The Dominance-based Rough Set Approach (DRSA) has been proposed and
characterized by the authors in [4,5,6,7,14]. It operates on a decision table com-
posed of a set U of objects described by a set of condition attributes C and a
set of decision attributes D. Decision attributes from set D (often reduced to
a single decision attribute d) make a partition of set U into decision classes.
DRSA takes into account background knowledge about ordinal properties of the
considered attributes and monotonic relationships between condition and deci-
sion attributes, e.g.: “the larger the mass and the smaller the distance, the larger
the gravity”, “the more a tomato is red, the more it is ripe” or “the better the
school marks of a pupil, the better his overall classification”. Such monotonic
relationships are typical for ordinal classification problems [10].

DRSA permits, moreover, a natural hybridization of fuzzy set and rough set
concepts, without using any fuzzy connective [3,9,10]. Gradual decision rules fol-
lowing from this approach express monotonic relationships between membership
values in conditions and in the decision. For example: “if a car is speedy with
credibility at least 0.8 and it has high fuel consumption with credibility at most
0.7, then it is a good car with credibility at least 0.9”.

The above gives the reasons of the ability of fuzzy rough approximations in
handling monotonic relationships typical for CBR, i.e. monotonicity of the type:
“the more similar is y to x, the more credible is that y belongs to the same set
as x”. Application of DRSA in this context leads to decision rules similar to the
gradual decision rules:

“the more object z is similar to a referent object x w.r.t. condition attribute s,
the more z is similar to a referent object x w.r.t. decision attribute d”,

or, equivalently, but more technically, s(z, x) ≥ α ⇒ d(z, x) ≥ α,
where functions s and d measure the credibility of similarity with respect to
condition attribute and decision attribute, respectively. When there are multiple
condition and decision attributes, functions s and d aggregate similarity with
respect to these attributes.

The decision rules we propose do not need the aggregation of the similarity
with respect to different attributes into one comprehensive similarity. This is
important, because it permits to avoid using aggregation functions (involving
operators, like weighted Lp norms, min, etc.) which are always arbitrary to some
extent [2]. Moreover, the gradual decision rules we propose permit to consider
different thresholds for degrees of credibility in the premise and in the conclusion,
which is not the case for classical gradual rules.

The paper aims to state formal properties of DRSA applied to CBR presented
in [8] and improved in [10]. The paper is organized as follows. Section 2 recalls
DRSA applied to CBR. In section 3, we give relevant formal properties of DRSA
applied to CBR. The final section contains conclusions.
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2 DRSA for CBR

DRSA approximation of fuzzy sets for CBR is based on a pairwise fuzzy infor-
mation base being the 3-tuple

B = < U ,F ,σ>,

where U is a finite set of objects (universe), F={f1,f2,...,fm} is a finite set of
features, and σ : U × U × F →[0,1] is a function such that σ(x,y,fh) ∈[0,1]
expresses the credibility that object x is similar to object y w.r.t. feature fh. The
minimal requirement function σ must satisfy is that, for all x ∈ U and for all
fh ∈ F , σ(x,x,fh)=1. Therefore, each pair of objects (x,y) ∈ U × U is described
by a vector

DesF (x,y)=[σ(x,y,f1), . . . , σ(x,y,fm)]

called description of (x,y) in terms of the credibilities of similarity with respect to
features from F ; it represents the available information about similarity between
x and y. Obviously, similarity between x and y, x, y ∈ U , can be described in
terms of any non-empty subset E ⊆ F , and in this case we have

DesE(x,y)=[σ(x,y,fh), fh ∈ E].

With respect to any E ⊆ F , we can define the dominance relation DE on
U × U as follows: for any x,y,w,z ∈ U , (x,y) dominates (w,z) with respect to E
(denotation (x,y)DE(w,z)) if, for any fh ∈ E,

σ(x,y,fh) ≥ σ(w,z,fh).

Given E ⊆ F and x,y ∈ U , let

D+
E(y, x) = {w ∈ U : (w, x)DE(y, x)},

D−
E(y, x) = {w ∈ U : (y, x)DE(w, x)}.

In the pair (y, x), x is considered to be a reference object, while y can be called
a limit object, because it is conditioning the membership of w in D+

E(y, x) and
in D−

E(y, x).
For each X ⊆ U , we can define its upward lower approximation E(x)(>)

σ (X)
and its upward upper approximation E(x)(>)

σ (X), based on similarity σ with
respect to E ⊆ F and x ∈ U , as:

E(x)(>)
σ (X) =

{
y ∈ U : D+

E(y, x) ⊆ X
}

,

E(x)(>)
σ (X) =

{
y ∈ U : D−

E(y, x) ∩ X �= ∅
}

.

Analogously, for each X ⊆ U , we can define its downward lower approxima-
tion E(x)(<)

σ (X) and its downward upper approximation E(x)(<)
σ (X), based on

similarity σ with respect to E ⊆ F and x ∈ U , as:
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E(x)(<)
σ (X) =

{
y ∈ U : D−

E(y, x) ⊆ X
}

,

E(x)(<)
σ (X) =

{
y ∈ U : D+

E(y, x) ∩ X �= ∅
}

.

Observe, that in the above definition of rough approximations E(x)(>)
σ (X),

E(x)(>)
σ (X), E(x)(<)

σ (X), E(x)(<)
σ (X), the elementary sets are sets D−

E(y, x) and
D+

E(y, x), E ⊆ F , x, y ∈ U , instead of equivalence classes of the indiscernibil-
ity relation in the classical rough set theory. Observe, moreover, that the rough
approximations E(x)(>)

σ (X), E(x)(>)
σ (X), E(x)(<)

σ (X), E(x)(<)
σ (X) can be ex-

pressed as unions of the elementary sets, i.e. for any X ⊆ U and E ⊆ F ,

1) E(x)(>)
σ (X) =

⋃

y∈U

{
D+

E(y, x) : D+
E(y, x) ⊆ X

}
,

2) E(x)(>)
σ (X) =

⋃

y∈U

{
D+

E(y, x) : D−
E(y, x) ∩ X �= ∅

}
,

3) E(x)(<)
σ (X) =

⋃

y∈U

{
D−

E(y, x) : D−
E(y, x) ⊆ X

}
,

4) E(x)(<)
σ (X) =

⋃

y∈U

{
D−

E(y, x) : D+
E(y, x) ∩ X �= ∅

}
.

The rough approximations E(x)(>)
σ (X), E(x)(>)

σ (X), E(x)(<)
σ (X), E(x)(<)

σ (X)
can be used to analyze data concerning gradual membership of objects to some
concepts representing properties of objects and to decision classes. This analysis
takes into account the following monotonicity principle: “the greater the degree
to which an object w is similar to a reference object x with respect to features
E ⊆ F , the greater its degree of membership to a considered decision class”.

This principle can be formalized as follows. Let us consider a fuzzy set X in
U , characterized by the membership function μX : U → [0, 1]. This fuzzy set
represents a decision class of interest, such that function μ specifies a graded
membership of objects from U to decision class X . For each cutting level α ∈
[0, 1], we can consider the following sets:

– weak upward cut of fuzzy set X :

X≥α = {x ∈ U : μ(x) ≥ α} ,

– strict upward cut of fuzzy set X :

X>α = {x ∈ U : μ(x) > α} ,

– weak downward cut of fuzzy set X :

X≤α = {x ∈ U : μ(x) ≤ α} ,

– strict downward cut of fuzzy set X :

X<α = {x ∈ U : μ(x) < α} .
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Let us remark that, for any fuzzy set X and for any α ∈ [0, 1], we have

U − X≥α = X<α, U − X≤α = X>α,

U − X>α = X≤α, U − X<α = X≥α.

As the above cuts of fuzzy set X are crisp sets, the upward and downward
rough approximations obviously apply to them. Let us denote by Y ∈ U any
such cut set, and rewrite the rough approximations E(x)(>)

σ (Y ), E(x)(>)
σ (Y ),

E(x)(<)
σ (Y ), E(x)(<)

σ (Y ) as follows:

E(x)(>)
σ (Y ) = {y ∈ U : ∀w ∈ U, (w, x)DE(y, x) ⇒ w ∈ Y },

E(x)(>)
σ (Y ) = {y ∈ U : ∃w ∈ U such that (y, x)DE(w, x) and w ∈ Y },

E(x)(<)
σ (Y ) = {y ∈ U : ∀w ∈ U, (y, x)DE(w, x) ⇒ w ∈ Y },

E(x)(<)
σ (Y ) = {y ∈ U : ∃w ∈ U such that (w, x)DE(y, x) and w ∈ Y }.

This formulation of the rough approximation is concordant with the syntax of
the decision rules induced by means of DRSA from a fuzzy pairwise information
base. For example E(x)(>)

σ (Y ) is concordant with decision rules of the type:

“if object w is similar to object x w.r.t. feature fi1 to degree at least hi1 and
w.r.t. feature fi2 to degree at least hi2 and . . . and w.r.t. feature fip to degree at
least hip, then object w belongs to set Y ”,

where {fi1, . . . , fip} ⊆ E and hi1, . . . , hip ∈ [0, 1].

The above definitions of rough approximations and the syntax of decision
rules are based on ordinal properties of similarity relations only. In fact, no alge-
braic operation, such as sum or product, involving cardinal properties of function
σ measuring credibility of similarity relations is considered. This is an impor-
tant characteristic of our approach in comparison with alternative approaches
to CBR.

3 Formal Properties of DRSA for CBR

Given a family of fuzzy sets X = {X1, X2, ...., Xp} on U , whose respective mem-
bership functions are μ1, μ2, ..., μp, let P>(X) be the set of all the sets obtained
through unions and intersections of weak and strict upward cuts of component
fuzzy sets. Analogously, let P<(X) be the set of all the sets obtained through
unions and intersections of weak and strict downward cuts of component fuzzy
sets.

P>(X) and P<(X) are closed under set union and set intersection operations,
i.e. for all Y1, Y2 ∈ P>(X), Y1 ∪ Y2 and Y1 ∩ Y2 belong to P>(X), as well as
for all W1, W2 ∈ P<(X), W1 ∪ W2 and W1 ∩ W2 belong to P<(X). Observe,
moreover, that the universe U and the empty set ∅ belong both to P>(X) and
to P<(X) because, for any fuzzy set Xi ∈ X,

U = X≥0
i = X≤1

i
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and
∅ = X>1

i = X<0
i .

The following theorem states some important properties of the dominance-
based rough approximations for case based reasoning.

Theorem

1. For any Y ∈ P>(X) and for any W ∈ P<(X) and for any E ⊆ F and for
any x ∈ U ,

E(x)(>)
σ (Y ) ⊆ Y ⊆ E(x)(>)

σ (Y ), E(x)(<)
σ (W ) ⊆ W ⊆ E(x)(<)

σ (W ).

2. For any E ⊆ F and for any x ∈ U ,

E(x)(>)
σ (∅) = E(x)(>)

σ (∅) = ∅, E(x)(<)
σ (∅) = E(x)(<)

σ (∅) = ∅,

E(x)(>)
σ (U) = E(x)(>)

σ (U) = U, E(x)(<)
σ (U) = E(x)(<)

σ (U) = U.

3. For any E ⊆ F , for any Y1, Y2 ∈ P>(X) and for any W1, W2 ∈ P<(X), for
any x ∈ U

E(x)(>)
σ (Y1 ∪ Y2) = E(x)(>)

σ (Y1) ∪ E(x)(>)
σ (Y2),

E(x)(<)
σ (W1 ∪ W2) = E(x)(<)

σ (W1) ∪ E(x)(<)
σ (W2).

4. For any E ⊆ F , for any Y1, Y2 ∈ P>(X) and for any W1, W2 ∈ P<(X) and
for any x ∈ U ,

E(x)(>)
σ (Y1 ∩ Y2) = E(x)(>)

σ (Y1) ∩ E(x)(>)
σ (Y2),

E(x)(<)
σ (W1 ∩ W2) = E(x)(<)

σ (W1) ∩ E(x)(<)
σ (W2).

5. For any E ⊆ F , for any Y1, Y2 ∈ P>(X) and for any W1, W2 ∈ P<(X) and
for any x ∈ U ,

Y1 ⊆ Y2 ⇒ E(x)(>)
σ (Y1) ⊆ E(x)(>)

σ (Y2),

W1 ⊆ W2 ⇒ E(x)(<)
σ (W1) ⊆ E(x)(<)

σ (W2).

6. For any E ⊆ F , for any Y1, Y2 ∈ P>(X) and for any W1, W2 ∈ P<(X) and
for any x ∈ U ,

Y1 ⊆ Y2 ⇒ E(x)(>)
σ (Y1) ⊆ E(x)(>)

σ (Y2),

W1 ⊆ W2 ⇒ E(x)(<)
σ (W1) ⊆ E(x)(<)

σ (W2).

7. For any E ⊆ F , for any Y1, Y2 ∈ P>(X) and for any W1, W2 ∈ P<(X) and
for any x ∈ U ,

E(x)(>)
σ (Y1 ∪ Y2) ⊇ E(x)(>)

σ (Y1) ∪ E(x)(>)
σ (Y2),

E(x)(<)
σ (W1 ∪ W2) ⊇ E(x)(<)

σ (W1) ∪ E(x)(<)
σ (W2).
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8. For any E ⊆ F , for any Y1, Y2 ∈ P>(X) and for any W1, W2 ∈ P<(X) and
for any x ∈ U ,

E(x)(>)
σ (Y1 ∩ Y2) ⊆ E(x)(>)

σ (Y1) ∩ E(x)(>)
σ (Y2),

E(x)(<)
σ (W1 ∩ W2) ⊆ E(x)(<)

σ (W1) ∩ E(x)(<)
σ (W2).

9. For any E ⊆ F , for any Y ∈ P>(X) and for any W ∈ P<(X) and for any
x ∈ U ,

E(x)(>)
σ (U − W ) = U − E(x)(<)

σ (W ),

E(x)(<)
σ (U − Y ) = U − E(x)(>)

σ (Y ).

10. For any E ⊆ F , for any Y ∈ P>(X) and for any W ∈ P<(X) and for any
x ∈ U ,

E(x)(>)
σ (U − W ) = U − E(x)(<)

σ (W ),

E(x)(<)
σ (U − Y ) = U − E(x)(>)

σ (Y ).

11. For any E ⊆ F , for any Y ∈ P>(X) and for any W ∈ P<(X) and for any
x ∈ U ,

E(x)(>)
σ [E(x)(>)

σ (Y )] = E(x)(>)
σ [E(x)(>)

σ (Y )] = E(x)(>)
σ (Y ),

E(x)(<)
σ [E(x)(<)

σ (W )] = E(x)(<)
σ [E(x)(<)

σ (W )] = E(x)(<)
σ (W ).

12. For any E ⊆ F , for any Y ∈ P>(X) and for any W ∈ P<(X) and for any
x ∈ U ,

E(x)(>)
σ [E(x)(>)

σ (Y )] = E(x)(>)
σ [E(x)(>)

σ (Y )] = E(x)(>)
σ (Y ),

E(x)(<)
σ [E(x)(<)

σ (W )] = E(x)(<)
σ [E(x)(<)

σ (W )] = E(x)(<)
σ (W ). ��

The proof is omitted for the lack of space. The results given in the above
Theorem correspond to well known properties of classical rough sets (see the
original properties numbered in the same way in [13]), however, with the no-
ticeable exception of properties 9 and 10 characterizing the specific nature of
complementarity relations within DRSA.

4 Conclusions

DRSA applied to CBR exploits only ordinal character of similarity and avoids
harmful aggregation of similarity measures with respect to single features into a
real valued function. Instead, it proposes a very general aggregation using grad-
ual decision rules induced from dominance-based rough approximations of fuzzy
sets, corresponding to decision classes with degree of membership not smaller
(or not greater) than some level α. The formal properties of the fuzzy-rough
approximations prove that DRSA applied to CBR enjoys very good properties
requiring relatively weak assumptions.
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Abstract. By considering the inconsistent character in many informa-
tion system, the variable precision rough set (VPRS) model is introduced
to solve decision-making problems in this paper. Firstly, the integrations
of the interesting and discernibility of knowledge based on VPRS model
are defined, and an approach for available knowledge is proposed. Then,
the incremental learning method of VPRS model in dynamic environ-
ment and the incremental updating for accuracy and coverage are also
studied. At last, a case is studied to validate the feasibility of our method.

Keywords: VPRS, Accuracy, Coverage, Incremental learning.

1 Introduction

The people would come up against many complicated and uncertain problems
which include some inaccuracy, inconsistent, incomplete information in today’s
life. In generally, the probability in statistics and the membership function in
fuzzy mathematics were used to describe the uncertainty. Since Professor Pawlak
(1982) proposed the Rough sets Theory (RST) [1], the theory had developed very
fast in last 20 years to deal with the uncertain problems and had been used in
many fields such as business crisis prediction, database marketing and financial
investment, but the Pawlak RST had some shortages to deal with the incon-
sistent information system. Then Zarkio (1993) proposed the VPRS model to
extend the classical strict relation by introducing a probability value β (misclas-
sification parameter) [2], the new relation could induce some toleration rules,
which made the process of decision-making more reasonably and realism.

By considering the significance of VPRS model, many scholars had studied the
model in both theories and applications such as the methodologies of reduction
and classification [3-5]; the incremental learning methods of VPRS [6-7] and the
applications of VPRS for prediction [8-10].
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In this paper, some detailed and deeply works about VPRS model were dis-
cussed. Some basic concepts were reviewed in Section 2; the concept of available
knowledge in our opinion was proposed in Section 3; the incremental learning
method of VPRS in dynamic environment was studied in Section 4; the Section
5 showed a case to validate our model.

2 Preliminaries

The basic concepts, notations and results of rough sets as well as their extensions
are briefly reviewed.

Definition 1. [11]: A complete information system is defined as a pair S =
U/R, where U is a non-empty finite set of objects. Let :

P (X, Y ) = {1 − |X
⋂

Y |/|X |, |X | > 0; 0, |X | = 0}

Where, | · | stands for the number of elements in sets, and we call P(X,Y ) as the
relative misclassification parameter.

Definition 2. [11]: Suppose S = U/R is a complete information system. For
∀X ⊆ U , the β-lower approximation, β-upper approximation, β-boundary region
are defined as follow :

Rβ =
⋃

{[x]R|P ([x]R, Y ) ≤ β};

R
β

=
⋃

{[x]R|P ([x]R, Y ) < 1 − β};
BNGR =

⋃
{[x]R|β < P ([x]R, Y ) < 1 − β}.

In addition, we denote β-inclusion relation ⊆β as: X ⊆β Y ⇔ P(X,Y) < β. In
generally, we call β-inclusion relation as majority inclusion relation.

3 Interesting and Discernibility of Knowledge

Given an information system, the people usually want to obtain some available
decision knowledge. On the one hand, it should be performed as high accuracy
and high coverage simultaneously, which is called the interesting of the knowledge
[11]; on the other hand, the knowledge should be discernibility [12].

Firstly, we consider the interesting of knowledge based on VPRS model.

Definition 3. [12]: Suppose S = {U, C
⋃

D, V, F} is a complete information
system, we denote U/C = {X1, X2, · · · , Xm}, U/D = {D1, D2, · · · , Dn}. For
∀Xi ⊆ U/C and ∀Dj ⊆ U/D, the support, accuracy and coverage of Xi → Dj

are defined in the follow.
Support of Xi → Dj : Sup(Dj |Xi) = |Xi

⋂
Dj |;

Accuracy of Xi → Dj : Acc(Dj |Xi) = |Xi

⋂
Dj |/|Xi|;

Coverage of Xi → Dj : Cov(Dj|Xi) = |Xi

⋂
Dj|/|Dj |.

Based on the definition 3, we can construct the probability distributing matrix
(also can be called the accuracy matrix) and the coverage matrix as follow:
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Acc(D|X)=

⎛

⎜
⎜
⎜
⎝

Acc(D1|X1) Acc(D1|X2) · · · Acc(D1|Xm)
Acc(D2|X1) Acc(D2|X2) · · · Acc(D2|Xm)

...
...

...
...

Acc(Dn|X1) Acc(Dn|X2) . . . Acc(Dn|Xm)

⎞

⎟
⎟
⎟
⎠

(1)

Cov(D|X) =

⎛

⎜
⎜
⎜
⎝

Cov(D1|X1) Cov(D1|X2) · · · Cov(D1|Xm)
Cov(D2|X1) Cov(D2|X2) · · · Cov(D2|Xm)

...
...

...
...

Cov(Dn|X1) Cov(Dn|X2) . . . Cov(Dn|Xm)

⎞

⎟
⎟
⎟
⎠

(2)

Proposition 1. For ∀Xi ⊆ U/D(i = 1, 2, · · · , m) in matrix (1), it satisfies :
(1).

∑n
j=1(Dj |Xi) = 1; (2). 0 ≤ (Dj |Xi) ≤ 1.

Specially, If ∃Xi, it satisfies Acc(Dj |Xi) = 1, we have Xi ⊆ Dj . In addition,
for ∀Xi ⊆ U/C, if max(Dj |Xi) ≤ 0.5 holds, for ∀β ⊆ [0, 0.5), we can get that
R

β
= φ. In this case, we can’t find any interesting knowledge from the system.

Proposition 2. For ∀Dj ⊆ U/D(j = 1, 2, · · · , n) in matrix (2), it satisfies :
(1).

∑m
i=1(Dj |Xi) = 1; (2). 0 ≤ (Dj |Xi) ≤ 1.

In generally, we usually set two threshold value α and β when dealing with
the practical problem. For ∀Xi(i = 1, 2, · · · ,n) and ∀Dj(j = 1, 2, · · · ,m), if
Acc(Dj |Xi) ≥ β and Cov(Dj |Xi) ≥ α hold, we call the rules induced by Xi → Dj

are interesting knowledge.
After discussing the interesting knowledge acquisition, the affections of β to

the discernibility of information system are discussed in the follow.

Definition 4. [11]: Suppose S = U/R is a complete information system, For
∀X ⊆ U, if BNGR = φ(0 ≤ β < 0.5), we call X is β relative discernibility.

Due to definition 3, for ∀X ⊆ U, we denote ξ(X) as the minimum threshold
to sustain the discernibility of the system, if it satisfies: ξ(X) = max(m1,m2).
where, m1 = 1 − min{P(Xi)|∀Xi ⊆ U/C,P(Xi,X) > 0.5}, m2 = max{P(Xi)|
∀Xi ⊆ U/C,P(Xi,X) < 0.5}. If ∃β ∈ [ξ(X), 0.5), we can get Rβ = Rβ. In this
case, the information system will be discernibility.

In addition, according to the definition 1 and definition 3, we can get:
P(X,D) + Acc(D|X) = 1. So, as for the information system, we have β =
max(ξ(D1), ξ(D2), · · · , ξ(Dn)). If β ∈ [0, 0.5), the knowledge in the system will
be discernibility.

Finally, if the information system is available (interesting and discernibility
simultaneously), we have: ξ(D) ∈ [0, 0.5) and for ∀Dj ∈ D, it satisfies m1 ≤ m2.

4 The Incremental Learning Method

For a complete information system S = {U,C
⋃

D,V, f}, we denote the partition
based on condition attributes and decision attribute as U(t)/C={X1,X2, · · · ,Xm}
and U(t)/D = {D1,D2, · · · ,Dn} respectively in the tth time. G(t)is the element
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transfer function and U(t+1) = G(t)(U(t)). In addition, G(t) = g(t) ⋃
g(t), g(t)

and g(t) are the immigration and emigration functions respectively. It satisfies:
∃x∈U(t), such that g(t) = u ∈ U(t+1); ∃x’ ∈ U(t), such that g(x’) = u’∈U(t+1).

Then, let’s discuss the conditions when elements are entering and getting out
of the information system.

By considering the phenomena that the process of element transformation can
divide into individual, we just need to discuss the condition when one element
enters or gets out of the system.

For ∀x ∈ U(t) and ∃x∈U(t+1), x is an element to immigrate to the system, and
there are four cases hold.

(1).x∈Xi(i = 1, 2, · · · ,n), x has the different antecedent with the element of
U(t), and there are two cases hold.

(1.1). x∈Dj(j = 1, 2, · · · ,m)the immigration of x is independent with the
former system U(t), it generates a new conditional class Xm+1 and a new decision
class Dn+1, at this time, Acc(t+1)

(m+1,n+1) = 1, Cov(t+1)
(m+1,n+1) = 1.

(1.2). ∃j ∈ [1, 2, · · · , n], such that x ∈ Dj, which means the immigration of X
add the cardinal number of Dj , and X also forms a new conditional class Xm+1.

For Xm+1 → Dj , Acc(t+1)
(m+1,j) = 1,Cov(t+1)

(m+1,j) = 1/(|Dj | + 1);

For Xu → Dj(u 
= m + 1), Acc(t+1)
(u,j) = Acct

(u,j), Cov(t+1)
(u,j) = |Xu

⋂
Dj |/(|Dj | +

1). In addition,when Xm+1
⋂

Dk(k 
= j), we have: Acc(t+1)
(m+1,k) = Cov(t+1)

(m+1,k) = 0.
(2). ∃i ∈ [1, 2, · · · , m], such that x ∈ Xi, X has the same antecedent with Xi,

and there are two cases hold.
(2.1). ∃j ∈ [1, 2, · · · , n], such that x ∈ Dj , which means (Xi

⋃
x)

⋂
Dj 
= φ, so

the immigration of x support the rule of Xi → Dj .
For Xi → Dj ,Acc(t+1)

(i,j) = (|Xi

⋂
Dj | + 1)/(|Xi| + 1); Cov(t+1)

(i,j) = (|Xi

⋂
Dj | +

1)/(|Di| + 1).
For Xi → Dk(k 
= j), Acc(t+1)

(i,k) = (|Xi

⋂
Dk|)/(|Xi| + 1), Cov(t+1)

(i,k) = Cov(t)
(i,k);

For Xu → Dj(u 
= m+1), Acc(t+1)
(u,j) = Acc(t)

(u,j), Cov(t+1)
(u,j) = (Xu

⋂
Dj |)/

(|Dj | + 1).
In particularly, if Xi ⊆ Dj , the immigration of X don’t change the consistent

of Xi → Dj , it just support the rule; If Xi

⋂
Dj = φ, for the condition equiva-

lence class Xi, the immigration of x brings a inconsistent decision rule, we have:
for Xi → Dj ,Acc(t+1)

(i,j) = (|Xi

⋂
Dj | + 1)/(|Xi| + 1) = 1/(|Xi| + 1),Cov(t+1)

(i,j) =
(|Xi

⋂
Dj | + 1)/(|Dj | + 1) = 1/(|Dj | + 1).

(2.2). x∈Dj(j = 1, 2, · · · ,m)the immigration of x brings a new inconsistent
rule, and x forms a new decision class Dn+1.

For Xi → Dn+1, Acc(t+1)
(i,n+1) = 1/(|Xi| + 1), Cov(t+1)

(i,n+1) = 1;

For Xi → Dk(k 
= n + 1), Acc(t+1)
(i,k) = (|Xi

⋂
Dk|)/(|Xi| + 1), Cov(t+1)

(i,k) =

Cov(t)
(i,k);

For Xu → Dn+1, due to Xu

⋂
Dn+1 = φ, then Acc(t+1)

(u,n+1) = Cov(t+1)
(u,n+1) = 0.
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In the upper discussion, we are taking about the condition that the element
enters to the system, then we are discussing the case that the element goes out
of the system.

For ∀x’∈U(t) and ∃x’ ∈ U(t+1), ∃i ∈ [1, 2, · · · , m], j ∈ [1, 2, · · · , n], such that:
x’ ∈ Xi, x’ ∈ Dj in the tth time. Due to x’ ∈ Xi, x’ ∈ Dj , we have Xi

⋂
Dj 
= φ,

the new system is changed when x’ is deleted:
For Xi → Dj , Acc(t+1)

(i,j) = (|Xi

⋂
Dj | − 1)/(|Xi| − 1), Cov(t+1)

(i,j) = (|Xi

⋂
Dj | −

1)/(|Di| − 1);
For Xi → Dk(k 
= j), Acc(t+1)

(i,k) = (|Xi

⋂
Dk|)/(|Xi| − 1), Cov(t+1)

(i,k) = Cov(t)
(i,k);

For Xu → Dj(u 
= i), Acc(t+1)
(u,j) = Acc(t)

(u,j), Cov(t+1)
(u,j) = (|Xu

⋂
Dj |)/(|Dj | − 1).

In particularly:
(1). If Xu ⊆ Dj , when x’ is deleted, for Xi → Dj : Acc(t+1)

(i,j) = (|Xi

⋂
Dj | −

1)/(|Xi| − 1) = (|Xi| − 1)/(|Xi| − 1) = 1 = Acc(t)
(i,j);

For Xi → Dk(k 
= j), due to Xi

⋂
Dk 
= φ, we have : Acc(t+1)

(i,k) = Cov(t+1)
(i,k) = 0.

(2). If Xi

⋂
Dj = {x}, when x’ is deleted, Xi

⋂
Dj − {x} = φ, for Xi →

Dj :Acc(t+1)
(i,j) = Cov(t+1)

(i,j) = 0

5 A Case Study

Suppose S = {U,C
⋃

D,V, f} is a complete information system in the tth time,
the condition attributes C = {a1, a2, a3}, the decision attribute D = {d}. N
stands for the cardinal number of elements, the detailed information are showed
in Table 1.

Table 1. The data of a information system

U a1 a2 a3 d N U a1 a2 a3 d N

x1 0 0 0 0 10 x7 1 2 2 0 3

x2 0 1 0 0 15 x8 1 2 2 1 20

x3 0 1 0 1 5 x9 1 2 2 2 47

x4 0 1 1 1 25 x10 2 2 2 1 5

x5 0 1 1 3 3 x11 2 2 2 2 15

x6 1 1 2 2 42 x12 2 2 2 3 30

According to the table, we denote {X1} = {x1},{X2} = {x2, x3}, {X3} =
{x4, x5},{X4} = {x6}, {X5} = {x7, x8, x9}, {X6} = {x10, x11, x12}. Firstly, we
construct the probability distributing matrix and the coverage matrix in the tth
time as follow:

Acc(t)(D|X)=

⎛

⎜
⎜
⎝

1 0.75 0 0 0.043 0
0 0.25 0.893 0 0.286 0.1
0 0 0 1 0.671 0.3
0 0 0.107 0 0 0.6

⎞

⎟
⎟
⎠
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Cov(t)(D|X)=

⎛

⎜
⎜
⎝

0.357 0.536 0 0 0.107 0
0 0.088 0.438 0 0.386 0.088
0 0 0 0.412 0.441 0.147
0 0 0.091 0 0 0.909

⎞

⎟
⎟
⎠

By calculating the two matrixes, we have ξ{D1}=0.25, ξ{D2}=0.286, ξ{D3}=
0.358, ξ{D4} = 0.4, So β = max{ξ{D1}, ξ{D2}, ξ{D3}, ξ{D4}} = 0.4. Due to
Section 3, the knowledge is discernibility when β ∈ [0.4, 0.5).

Then, we are considering about the case of element transformation in the
(t+1)th time:

Suppose in the (t+1)th time: (1). 10 elements is going out of X1; (2) 10
elements is entering to x12; (3) a new sample set x13(a1 = 1, a2 = 1, a3 = 1, d = 1
is immigrating to the system, the cardinal number of x13 is 20, we denoted
X7 = x13. So we can recalculate the new accuracy and coverage matrix according
to the incremental learning method.

(1).10 elements is going out of X1: We have Acc(t+1)
(1,j) = Cov(t+1)

(1,j) = 0.

For Xu → D1(u 
= 1), Acc(t+1)
(u,1) = Acc(t)

(u,1), Cov(t+1)
(u,1) = (|Xu

⋂
D1|)/(|D1|−10).

(2).10 elements is entering to x12 in X6:
For X6 → D4,Acc(t+1)

(6,4) =(|X6
⋂

D4| + 10)/(|X6| + 10), Cov(t+1)
(6,4) = (|X6

⋂
D4| +

10)/(|D4| + 10);
For X6 → Dk(k 
= 4),Acc(t+1)

(6,k) = (|X6
⋂

Dk|)/(|X6| + 10), Cov(t+1)
(6,k) = Cov(t)

(6,k);

For Xu → D4(u 
= 6),Acc(t+1)
(u,4) = Acc(t)

(u,4), Cov(t+1)
(u,4) = (|Xu

⋂
D4|)/(|D4| + 10).

(3).a new sample set x13(a1 = 1, a2 = 1, a3 = 1, d = 1 is immigrating to the
system:

For X7 → D2,Acc(t+1)
(7,2) = 1,Cov(t+1)

(7,2) = 20/(|D2| + 20),

For X7 → Dk(k 
= 2), due to X7
⋂

Dk = φ, we can get Cov(t+1)
(7,k) = Cov(t)

(7,k) = 0,

For Xu → D2(u 
= 7), Acc(t+1)
(u,2) = Acc(t)

(u,2) = 0, Cov(t+1)
(u,2) = |Xu

⋂
D2|/(|D2| +

20).
So, we can construct the probability distributing matrix and converge matrix

in the (t+1)th time as follow:

Acc(t+1)(D|X)=

⎛

⎜
⎜
⎝

1 0.75 0 0 0.043 0 0
0 0.25 0.893 0 0.286 0.083 1
0 0 0 1 0.671 0.25 0
0 0 0.107 0 0 0.667 0

⎞

⎟
⎟
⎠

Cov(t+1)(D|X)=

⎛

⎜
⎜
⎝

0 0.833 0 0.167 0 0 0
0 0.067 0.334 0 0.226 0.067 0.226
0 0 0 0.412 0.441 0.147 0
0 0 0.07 0 0 0.93 0

⎞

⎟
⎟
⎠

By calculating the two matrixes, we have ξ{D1}=0.25, ξ{D2}=0.286, ξ{D3}=
0.329, ξ{D4} = 0.333, So β = max{ξ{D1}, ξ{D2}, ξ{D3}, ξ{D4}} = 0.333. Due
to Section 3, the new knowledge is discernibility when β ∈ [0.333, 0.5).

In addition, if we fix β and define |Rβ |/|U| as the measure of interesting knowl-
edge inducing by accuracy. When β is changed, the relations between accuracy
and the interesting of knowledge are showed in Fig. 1.
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Fig. 1. The relations between accuracy and the interesting of knowledge

Fig. 2. The relations between coverage and the interesting of knowledge

In the same way, the relations between the coverage and the knowledge in-
teresting can also be studied. For example, when the coverage threshold value
is more than 0.8, we can easily get that: Xi → D4 is interesting in the tth time;
Xi′ → D1 and Xi′ → D4 are interesting in the (t+1)th time. The relations
between coverage and the interesting of knowledge are showed in Fig. 2.

6 Conclusion

In this paper, the integrations of the interesting and discernibility based on
VPRS model are studied firstly. Then, we discuss the incremental learning
method of VPRS model in dynamic environment. Then the mechanism of the
knowledge acquiring based on the change of accuracy and coverage are also stud-
ied, which gives us a new thought to obtain the available knowledge. At last, a
case is proposed to validated the rationality and validity of our method. But, the
work of our study is only based on the complete information system and equiva-
lence relation. Future research work of our study will be focus on the incomplete
information system and extend the strict relation into dynamic environment, it
also seems worthwhile to explore if the proposed approach can be extended to
other generalized rough set models such as fuzzy rough set theory.
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Abstract. In this paper, within the context of fuzzy rough set theory,
we generalize the classical rough set framework for data-based attribute
selection and reduction, based on the notion of fuzzy decision reducts.
Experimental analysis confirms the potential of the approach.

Keywords: fuzzy sets, rough sets, decision reducts, classification.

1 Introduction

Rough set theory [5] is well-suited to semantics-preserving data dimensionality
reduction, i.e.: to omit attributes (features) from decision systems without sac-
rificing the ability to discern between objects belonging to different concepts or
classes. A minimal set of attributes that preserves the decision making power of
the original system is called a decision reduct.

Traditionally, discernibility is modeled by an equivalence relation in the set of
objects: objects are indiscernible w.r.t. a given set of attributes B if they have
the same values for all attributes in B. This works well for qualitative data, in
particular if the number of distinct values for each attribute is limited and there
is no particular relationship among them. Quantitative data, however, involve
continuous (i.e., real-valued) attributes like age, speed or length, and are tied to
a natural scale of closeness, loosely expressing that the closer the attribute values
of two objects are, the less discernible they are. While the standard methodology
can be tailored to handle them by applying discretization, it is more natural to
consider a notion of approximate equality between objects. Formally, such a
notion can be modeled by means of a fuzzy relation [10] in the set of objects.

Guided by this principle, the original rough set framework for data-based
attribute selection and reduction can be generalized (see e.g. [1,2,3,4,8]). This
paper differs from previous research efforts by the introduction of the concept
of a fuzzy decision reduct: conceptually, this is a weighted version of its classical
counterpart that assigns to each attribute subset the degree to which it preserves
the predictive ability of the original decision system. We consider alternative

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 284–291, 2008.
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ways of defining fuzzy decision reducts, grouped along two directions: the first
direction works with an extension of the well-known positive region, while the
second one is based on an extension of the discernibility function from classical
rough set analysis.

The remainder of this paper is organized as follows: we first recall preliminar-
ies of rough sets, fuzzy sets and their hybridization in Section 2. In Section 3,
we propose a general definition of a fuzzy decision reduct, and then develop a
number of concrete instances of it. In Section 4, experiments are conducted to
evaluate the effectiveness of these alternatives. Finally, in Section 5 we conclude.

2 Preliminaries

2.1 Rough Set Theory

Definitions. In rough set analysis, data is represented as an information system
(X, A), where X = {x1, . . . , xn} and A = {a1, . . . , am} are finite, non-empty sets
of objects and attributes, respectively. Each a in A corresponds to an X → Va

mapping, in which Va is the value set of a over X . For every subset B of A,
the B-indiscernibility relation RB is defined as RB = {(x, y) ∈ X2 and (∀a ∈
B)(a(x) = a(y))}. Clearly, RB is an equivalence relation. Its equivalence classes
[x]RB can be used to approximate concepts, i.e., subsets of the universe X .
Given A ⊆ X , its lower and upper approximation w.r.t. RB are defined by
RB↓A = {x ∈ X |[x]RB ⊆ A} and RB↑A = {x ∈ X |[x]RB ∩ A 	= ∅}.

A decision system (X, A∪{d}) is a special kind of information system, used in
the context of classification, in which d (d 	∈ A) is a designated attribute called
decision. Based on the values vk that d assumes (drawn from the finite1 set Vd),
X is partitioned into a number of decision classes Xk. Given B ⊆ A, the B-
positive region POSB =

⋃

vk∈Vd

RB↓Xk contains the objects for which the values

of B allow to predict the decision class unequivocally. The predictive ability w.r.t.
d of the attributes in B is then measured by γB = |POSB |

|X| (degree of dependency
of d on B). A subset B of A is called a decision reduct if POSB = POSA, i.e., B
preserves the decision making power of A, and if it cannot be further reduced,
i.e., there exists no proper subset B′ of B such that POSB′ = POSA.

Example 1. Consider the decision system2 in Table 1.a). There are two decision
classes: X0 contains all x for which d(x) = 0, while X1 contains those with
d(x) = 1. If we want to apply the standard rough set analysis approach, we
first have to discretize the system; a possible discretization is given in Table
1.b). Then we can calculate the positive region. For example, for B = {a4, a5},
POSB = {x1, x5, x6, x7}. Also, POSA = {x1, x2, x3, x4, x5, x6, x7, x8}.

1 In this paper, we assume that decisions are always qualitative (discrete-valued).
2 This is a sample taken from the Pima Indians Diabetes dataset, available at

http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Table 1. a) Original decision system b) Discretized decision system

a1 a2 a3 a4 a5 a6 a7 a8 d

x1 1 101 50 15 36 24.2 0.526 26 0
x2 8 176 90 34 300 33.7 0.467 58 1
x3 7 150 66 42 342 34.7 0.718 42 0
x4 7 187 68 39 304 37.7 0.254 41 1
x5 0 100 88 60 110 46.8 0.962 31 0
x6 0 105 64 41 142 41.5 0.173 22 0
x7 1 95 66 13 38 19.6 0.334 25 0

a1 a2 a3 a4 a5 a6 a7 a8 d

x1 0 0 0 0 0 0 2 0 0
x2 1 2 2 1 1 1 1 1 1
x3 1 1 1 1 1 2 2 1 0
x4 1 2 1 1 1 2 0 1 1
x5 0 0 2 1 0 3 2 1 0
x6 0 0 1 1 0 3 0 0 0
x7 0 0 1 0 0 0 1 0 0

Finding Decision Reducts. Decision reducts are used to synthesize minimal
decision rules, which result from overlaying the reducts over the decision system
and reading off the values. Below we recall a well-known approach to generate all
reducts of a decision system based on its decision-relative discernibility matrix
and function [7]. The decision-relative discernibility matrix of (X, A ∪ {d}) is
the n × n matrix O, defined by, for i and j in {1, ..., n}, Oij = ∅ if d(xi) = d(xj)
and Oij = {a ∈ A|a(xi) 	= a(xj)} otherwise. On the other hand, the discerni-
bility function of (X, A ∪ {d}) is the {0, 1}m → {0, 1} mapping f , defined by
f(a∗

1, ..., a
∗
m) =

∧
{
∨

O∗
ij |1 ≤ j < i ≤ n and Oij 	= ∅}. in which O∗

ij = {a∗|a ∈
Oij}. The boolean variables a∗

1, . . . , a
∗
m correspond to the attributes from A, and

we denote A∗ = {a∗
1, ..., a

∗
m}. If B ⊆ A, then the valuation function VB corre-

sponding to B is defined by VB(a∗) = 1 iff a ∈ B. This valuation can be extended
to arbitrary formulas, such that VB(f(a∗

1, ..., a
∗
m)) = f(VB(a∗

1), ..., VB(a∗
m)). This

expresses whether the attributes in B preserve the discernibility of (X, A ∪ {d})
(when its value is 1) or not (when it is 0). The discernibility function can be
reduced to its disjunctive normal form, that is f(a∗

1, ..., a
∗
m) =

∧
A∗

1 ∨ ... ∨
∧

A∗
p,

in which p ≥ 1, and for all i in {1, ..., p} it holds that A∗
i ⊆ A∗, and A∗

i 	⊆ A∗
j

for i 	= j. If we define a ∈ Ai iff a∗ ∈ A∗
i , then it can be shown that A1, . . . , Ap

constitute exactly all decision reducts of (X, A ∪ {d}).

Example 2. The reduced discernibility function of the decision system in Table
1.b) is given by f(a∗

1, . . . , a
∗
8) = a∗

2 ∨ (a∗
1 ∧ a∗

7) ∨ (a∗
5 ∧ a∗

7) ∨ (a∗
6 ∧ a∗

7) ∨ (a∗
7 ∧ a∗

8).
Hence, the decision reducts are {a2}, {a1, a7}, {a5, a7}, {a6, a7} and {a7, a8}.

2.2 Fuzzy Set Theory

Recall that a fuzzy set [10] in X is an X → [0, 1] mapping, while a fuzzy relation
in X is a fuzzy set in X × X . For all y in X , the R-foreset of y is the fuzzy set
Ry defined by Ry(x) = R(x, y) for all x in X . If R is reflexive and symmetric,
i.e., R(x, x) = 1 and R(x, y) = R(y, x) hold for all x and y in X , then R is
called a fuzzy tolerance relation. For fuzzy sets A and B in X , A ⊆ B ⇔ (∀x ∈
X)(A(x) ≤ B(x)). If X is finite, the cardinality of A equals |A| =

∑

x∈X

A(x).

Fuzzy logic connectives play an important role in the development of fuzzy
rough set theory. We therefore recall some important definitions. A triangu-
lar norm (t-norm for short) T is any increasing, commutative and associative
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[0, 1]2 → [0, 1] mapping satisfying T (1, x) = x, for all x in [0, 1]. In this pa-
per, we consider TM and TL, defined by TM (x, y) = min(x, y) and TL(x, y) =
max(0, x + y − 1) for x, y in [0,1]. An implicator is any [0, 1]2 → [0, 1]-mapping
I satisfying I(0, 0) = 1, I(1, x) = x, for all x in [0, 1]. Moreover, we require I to
be decreasing in its first, and increasing in its second component. In this paper,
we consider IM and IL, defined by, for x, y in [0, 1], IM (x, y) = 1 if x ≤ y and
IM (x, y) = y otherwise, and IL(x, y) = min(1, 1 − x + y).

2.3 Fuzzy Rough Set Theory

Research on hybridizing fuzzy sets and rough sets has focused mainly on fuzzi-
fying the formulas for lower and upper approximation. In this process, the set A
is generalized to a fuzzy set in X , allowing that objects can belong to a concept
to varying degrees. Also, rather than assessing objects’ indiscernibility, we may
measure their closeness, represented by a fuzzy tolerance relation R. For the
lower and upper approximation of A by means of a fuzzy tolerance relation R,
we adopt the definitions proposed in [6]: given an implicator I and a t-norm T ,
R↓A and R↑A are defined by, for all y in X , (R↓A)(y) = inf

x∈X
I(R(x, y), A(x))

and (R↑A)(y) = sup
x∈X

T (R(x, y), A(x)).

In this paper, given a quantitative attribute a with range l(a), we compute the
approximate equality between two objects w.r.t. a, by the parametrized relation
Ra, defined by, for x and y in X , Ra(x, y) = max

(
0, min

(
1, β − α |a(x)−a(y)|

l(a)

))
.

The parameters α and β (α ≥ β ≥ 1) determine the granularity of Ra.
Discernibility, or distance, of two objects x and y w.r.t. a can be computed as

the complement of their closeness: 1 − Ra(x, y). Assuming that for a qualitative
(i.e., nominal) attribute a, the classical way of discerning objects is used, i.e.,
Ra(x, y) = 1 if a(x) = a(y) and Ra(x, y) = 0 otherwise, we can define, for any
subset B of A, the fuzzy B-indiscernibility relation by RB(x, y) = min

a∈B
Ra(x, y).

It can easily be seen that RB is a fuzzy tolerance relation, and also that if only
qualititative attributes (possibly stemming from discretization) are used, then
the traditional concept of B-indiscernibility relation is recovered.

Example 3. For the non-dicretized decision system in Table 1a), assume that
α = 5 and β = 1.2 are used in Ra for each attribute a, and that the attributes’
ranges are determined by the minimal and maximal occurring values in the
decision system. It can be verified e.g. that Ra1(x2, x3) = 0.575, Ra2(x2, x3) = 0,
Ra4(x3, x6) = 1, and also that R{a3,a4}(x3, x4) = min(0.95, 0.88) = 0.88.

3 Fuzzy-Rough Attribute Reduction

In this section, we extend the framework for rough set analysis described in
Section 2.1 using concepts of fuzzy set theory, to deal with quantitative attributes
more appropriately. In order to do so, we introduce a number of increasing,
[0, 1]-valued measures to evaluate subsets of A w.r.t. their ability to maintain
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discernibility relative to the decision attribute. Once such a measure, say M, is
obtained, we can associate a notion of fuzzy decision reduct with it.

Definition 1. (Fuzzy M-decision reduct) Let M be a monotonic P(A) →
[0, 1] mapping, B ⊆ A and 0 < α ≤ 1. B is called a fuzzy M-decision reduct to
degree α if M(B) ≥ α and for all B′ ⊂ B, M(B′) < α.

3.1 Fuzzy Positive Region

Using fuzzy B-indiscernibility relations, we can define, for y in U , POSB(y) =(⋃
vk∈Vd

RB ↓ Xk

)
(y). Hence, POSB is a fuzzy set in X , to which y belongs to

the extent that its RB-foreset is included into at least one of the decision classes.
However, only the decision class y belongs to needs to be inspected:

Proposition 1. For y in X, POSB(y) = (RB ↓ Xk∗)(y) with Xk∗(y) = 1.

Example 4. Let us come back to the decision system in Table 1a). Using the same
indiscernibility relations as in Ex. 3, and I = IL, we can calculate the fuzzy pos-
itive region for B = {a4, a5}. For instance, POSB(x3) = 0.42. The complete re-
sult is POSB = {(x1, 1), (x2, 0.65), (x3, 0.42), (x4, 0.42), (x5, 1), (x6, 1), (x7, 1)}.
Compare this with Ex. 1, where POSB was computed for the discretized system:
the fuzzy positive region allows gradual membership values, and hence is able to
express that e.g. x2 is a less problematic object than x3 and x4. Finally, it can
also be verified that, with these parameters, still POSA = X .

Once we have fixed the fuzzy positive region, we can define an increasing [0, 1]-
valued measure to obtain fuzzy decision reducts. We may extend the degree of
dependency, as proposed by Jensen and Shen in [3,4], or, rather than considering
an average, it is also possible to focus on the most problematic element. These
alternatives are reflected by the following normalized3 measures:

γB = |POSB |
|POSA| δB =

min
x∈X

POSB(x)

min
x∈X

POSA(x)

Proposition 2. If B1 ⊆ B2 ⊆ A, then γB1 ≤ γB2 and δB1 ≤ δB2 .

Example 5. For B as in Ex. 4, γB = 5.49/7 = 0.78 and δB = 0.42. Also, B is a
fuzzy γ-decision reduct to degree 0.77, since for B′ ⊂ B, γB′ < 0.77.

3.2 Fuzzy Discernibility Function

The closeness relation RB can be used to redefine the discernibility function as
an {0, 1}m → [0, 1] mapping, such that, for each combination of conditional at-
tributes, a value between 0 and 1 is obtained indicating how well these attributes
maintain discernibility, relative to the decision attribute, between all objects.

3 In this paper, we assume POSA(x) > 0 for every x in X.
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A faithful extension of the decision-relative discernibility matrix, in which Oij

(i, j in {1, . . . , n}) is a fuzzy set in A, is obtained by defining, for any attribute
a in A, Oij(a) = 0 if d(xi) = d(xj) and Oij(a) = 1 − Ra(xi, xj) otherwise.
Accordingly, we can define O∗

ij as the fuzzy set in A∗, such that O∗
ij(a

∗) = Oij(a).
Interpreting the connectives in the crisp discernibility function by the minimum
and the maximum, we can then extend it to a {0, 1}m → [0, 1] mapping:

f(a∗
1, ..., a

∗
m) = min

1≤i<j≤n
cij(a∗

1, ..., a
∗
m) (1)

cij(a∗
1, ..., a

∗
m) =

{
1 if Oij = ∅
max(O∗

ij(a∗
1)a∗

1 ,...,O∗
ij(a

∗
m)a∗

m)
1−RA(xi,xj)

otherwise
(2)

Referring again to the valuation VB corresponding to a subset B of A,
VB(f(a∗

1, ..., a
∗
m)) is now a value between 0 and 1 that expresses the degree

to which, for all object pairs, different values in attributes of B correspond to
different values of d. Rather than taking a minimum operation in (1), which is
rather strict, one can also consider the average over all object pairs:

g(a∗
1, ..., a

∗
m) =

2.
∑

1≤i<j≤n

cij(a∗
1, ..., a

∗
m)

n(n − 1)
(3)

The following two propositions express that f and g are monotonic, and that
they assume the value 1 when all the attributes are considered.

Proposition 3. If B1 ⊆ B2 ⊆ A, then VB1(f(a∗
1, ..., a

∗
m)) ≤ VB2(f(a∗

1, ..., a
∗
m))

and VB1(g(a∗
1, ..., a

∗
m)) ≤ VB2(g(a∗

1, ..., a
∗
m)).

Proposition 4. VA(f(a∗
1, ..., a

∗
m)) = VA(g(a∗

1, ..., a
∗
m)) = 1

Example 6. For B as in Ex. 4, it can be verified that VB(f(a∗
1, ..., a

∗
m)) = f(0, 0, 0,

1, 1, 0, 0, 0) = 0.42, and that VB(g(a∗
1, ..., a

∗
m)) = g(0, 0, 0, 1, 1, 0, 0, 0) = 0.96.

Here, it holds e.g. that B is a fuzzy g-decision reduct to degree 0.95.

4 Experimental Analysis

In this section, we evaluate the performance of our measures in classification,
and compare the results to the approaches from [3,4]; the latter have already
been shown to outperform other state-of-the-art feature selection techniques in
terms of accuracy. In order to select suitable attribute subsets of a decision
system (X, A ∪ {d}) according to a given measure M and threshold α, we used
a heuristic algorithm called ReverseReduct, adapted from [3]. ReverseReduct
starts off with B = A, and progressively eliminates attributes from B as long as
M(B) ≥ α; at each step, the attribute yielding the smallest decrease in M is
omitted. By construction, when the algorithm finishes, B is a fuzzy M-reduct of
(X, A∪{d}) to degree α. After feature selection, the decision system is reduced
and classified. In our experiments, we used JRip for classification, implemented
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Table 2. Classification accuracy (%) and reduct size

Dataset γ-IL γ-IM δ-IL δ-IM f g Unred. [4]

Pima 77.0 (7) 76.0 (8) 76.8 (6) 76.0 (8) 77.0 (7) 77.6 (2) 76.0 (8) 76.0 (8)
Cleveland 54.2 (9) 54.5 (9) 53.2 (8) 53.9 (9) 53.2 (8) 53.9 (2) 52.2 (13) 54.6 (8)

Glass 65.4 (6) 67.8 (6) 63.1 (5) 71.5 (9) 65.9 (8) 55.1 (3) 71.5 (9) 71.5 (9)
Heart 80.7 (7) 81.9 (8) 73.7 (8) 73.7 (8) 73.7 (8) 75.2 (2) 77.4 (13) 78.5 (10)
Olitos 67.5 (8) 65.0 (12) 68.3 (5) 60.8 (6) 68.3 (5) 64.2 (2) 70.8 (25) 71.7 (5)

Water 2 82.8 (11) 81.0 (17) 83.1 (8) 83.1 (8) 83.1 (8) 83.3 (1) 83.9 (38) 85.6 (6)
Water 3 83.3 (11) 83.6 (17) 82.8 (7) 82.8 (7) 82.8 (7) 85.9 (2) 82.8 (38) 82.8 (11)
Wine 92.7 (6) 87.6 (8) 84.3 (5) 84.3 (5) 84.3 (5) 88.2 (2) 92.7 (13) 95.5 (5)

Fig. 1. Accuracy results and reduct size for varying values of threshold parameter α

in WEKA [9]. The benchmark datasets come from [4], and also include the full
version of the Pima dataset used in our running example.

In a first experiment, we fixed α to 0.9 (ReverseReduct looks for a fuzzy M-
decision reduct to degree 0.9). Table 2 records the results obtained with γ, δ, and
the min- and average-based variants of the fuzzy discernibility function; for the
measures based on the positive region, we worked with I = IL and I = IM as
implicators. To compute approximate equality, we used RB as defined in Section
2.3, with α = 5 and β = 1.2 for the average-based approaches, and α = 15 and
β = 1 for the min-based approaches4. The one but last column contains accuracy
and size for the unreduced dataset, and the last one records the best accuracy
obtained in [4], along with the size of the corresponding attribute set.

The results show that, on the whole, our methods are competitive with those
from [4]. Moreover, for three of the datasets, strictly better accuracy results can
be obtained with at least one of the new approaches. Also, in many cases shorter
attribute subsets are produced. In particular, note that g generates very short
subsets that have reasonable, and sometimes even excellent, accuracy.

We also investigated the influence of α on the quality of the fuzzy decision
reducts; Fig. 1 plots the results obtained for Pima with the four approaches5 as

4 Since the min-based approaches are stricter, they require crisper definitions of ap-
proximate equality to perform well.

5 For γ and δ, IL was used as implicator.
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a function of α. All approaches reach their optimum for α < 1, which clearly
endorses using fuzzy decision reducts. For the average-based measures, α =
0.9 seems a good compromise value, while the min-based approaches generally
require smaller values6. The corresponding reduct size decreases gradually for
most approaches, except for g which is sensitive to small changes when α is large.

5 Conclusion

We have introduced a framework for fuzzy-rough set based feature selection, built
up around the formal notion of a fuzzy reduct. By expressing that an attribute
subset should retain the quality of the full feature set to a certain extent only, we
are able to generate shorter attribute subsets, without paying a price in accuracy.
For the future, we plan to further investigate the role of the various parameters.
We also hope to extend the approach to deal with quantitative decisions.
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Abstract. This paper presents a hybrid relational clustering algorithm,
termed as rough-fuzzy c-medoids, to cluster biological sequences. It com-
prises a judicious integration of the principles of rough sets, fuzzy sets,
c-medoids algorithm, and amino acid mutation matrix used in biology.
The concept of crisp lower bound and fuzzy boundary of a class, in-
troduced in rough-fuzzy c-medoids, enables efficient selection of cluster
prototypes. The effectiveness of the algorithm, along with a comparison
with other algorithms, is demonstrated on different protein data sets.

1 Introduction

Cluster analysis is a technique for finding natural groups present in the data.
It divides a given data set into a set of clusters in such a way that two objects
from the same cluster are as similar as possible and the objects from different
clusters are as dissimilar as possible. In biological sequences, the only available
information is the numerical values that represent the degrees to which pairs of
sequences in the data set are related. Algorithms that generate partitions of that
type of relational data are usually referred to as relational or pair-wise clustering
algorithms. An well-known relational clustering algorithm is c-medoids due to
Kaufman and Rousseeuw [1].

One of the main problems with biological sequence is the uncertainty. Some
of the sources of this uncertainty include incompleteness and vagueness in class
definitions of biological data. In this background, fuzzy sets theory [2] and rough
sets theory [3], have gained popularity in modeling and propagating uncertainty.
Both fuzzy and rough sets provide a mathematical framework to capture uncer-
tainties associated with the data [3]. A recent fuzzy relational clustering algo-
rithm is Krishnapuram’s fuzzy c-medoids [4]. It offers the opportunity to deal
with the data that belong to more than one cluster at the same time. Also, it
can handle with the uncertainties arising from overlapping cluster boundaries.
However, it is very sensitive to noise and outliers. The possibilistic c-medoids [4]
is an extension of fuzzy c-medoids, which handles efficiently data sets containing
noise and outliers. But, it sometimes generates coincident clusters.

In this paper, we present a relational clustering algorithm, termed as rough-
fuzzy c-medoids algorithm, based on rough sets and fuzzy sets to cluster bio-
logical sequences. While the membership function of fuzzy sets enables efficient
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handling of overlapping partitions, the concept of lower and upper approxima-
tions of rough sets deals with uncertainty, vagueness, and incompleteness in class
definition. Each partition is represented by a medoid, a crisp lower approxima-
tion, and a fuzzy boundary. The medoid depends on the weighting average of
the crisp lower approximation and fuzzy boundary. The similarity between two
sequences is computed with reference to a biological similarity matrix (amino
acid mutation matrix). In effect, the biological content in the sequences can be
maximally utilized for accurate clustering. Some quantitative measures are used
to evaluate the quality of the relational clustering algorithm. The effectiveness
of the algorithm, along with a comparison with hard c-medoids [1] and fuzzy
c-medoids [4], has been demonstrated on different protein data sets.

2 Rough-Fuzzy C-Medoids Algorithm

In this section, we first describe hard c-medoids [1] and fuzzy c-medoids [4], for
clustering biological sequences. Next, we describe a novel relational clustering
algorithm, termed as rough-fuzzy c-medoids.

2.1 Hard C-Medoids and Fuzzy C-Medoids

The hard c-medoids algorithm [1] uses the most centrally located object in a
cluster, which is termed as the medoid. A medoid is essentially an existing data
from the cluster, which is closest to the mean of the cluster.

Let A be the set of 20 amino acids, X = {x1, · · · , xj , · · · , xn} be the set of
n sequences with m residues, and V = {v1, · · · , vi, · · · , vc} ⊂ X be the set of
c medoids such that vik, xjk ∈ A, ∀c

i=1, ∀n
j=1, ∀m

k=1. The non-gapped pair-wise
homology alignment score is considered to compute the similarity between two
sequences, which can be calculated using an amino acid mutation matrix [5].
The pair-wise alignment score between xj and vi is then defined as

S(xj , vi) =
m∑

k=1

M(xjk, vik) (1)

where M(xjk, vik) can be obtained from an amino acid mutation matrix through
a table look-up method. The function value is high if two sequences are similar
or close to each other, and small if two sequences are distinct.

The objective of the hard c-medoids algorithm for clustering biological se-
quences is to assign n sequences to c clusters. Each of the clusters βi is repre-
sented by a medoid vi for that cluster. The process begins by randomly choosing
c sequences as the medoids. The sequences are assigned to one of the c clusters
based on the maximum value of the non-gapped pair-wise homology alignment
score S(xj , vi) between the sequence xj and the medoid vi. After the assignment
of all the sequences to various clusters, the new medoid are calculated as follows:

vi = xq where q = arg max {S(xk, xj)}; xj ∈ βi; xk ∈ βi (2)

and S(xk, xj) can be calculated as per (1).
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The fuzzy c-medoids provides a fuzzification of the hard c-medoids algorithm
[4]. For relational clustering of biological sequences, it maximizes

J =
n∑

j=1

c∑

i=1

(μij)ḿ{S(xj , vi)} (3)

where 1 ≤ ḿ < ∞ is the fuzzifier, μij ∈ [0, 1] is the fuzzy membership of the
sequence xj in cluster βi, such that

μij =
c∑

l=1

{
S(xj , vi)
S(xj , vl)

} 1
ḿ−1

subject to
c∑

i=1

μij = 1, ∀j, 0 <

n∑

j=1

μij < n, ∀i. (4)

The new medoids are calculated as follows:

vi = xq where q = arg max
n∑

k=1

(μik)ḿ{S(xk, xj)}; 1 ≤ j ≤ n. (5)

2.2 Rough-Fuzzy C-Medoids

Let A(βi) and A(βi) be the lower and upper approximations of cluster βi, and
B(βi) = A(βi) − A(βi) denotes the boundary region of cluster βi. However, it is
possible to define a pair of lower and upper bounds [A(βi), A(βi)] or a rough set
for every set βi ⊆ U , U be the set of objects of concern [3]. The family of upper
and lower bounds are required to follow some of the basic rough set properties:
(i) an object xj can be part of at most one lower bound; (ii) xj ∈ A(βi) ⇒
xj ∈ A(βi); and (iii) an object xj is not part of any lower bound ⇒ xj belongs
to two or more upper bounds. Incorporating both fuzzy and rough sets, next
we describe the rough-fuzzy c-medoids algorithm. It adds the concept of fuzzy
membership of fuzzy sets, and lower and upper approximations of rough sets into
c-medoids algorithm. While the lower and upper bounds of rough sets deal with
uncertainty, vagueness, and incompleteness in class definition, the membership
of fuzzy sets enables efficient handling of overlapping partitions.

In fuzzy c-medoids, the medoid depends on the fuzzy membership values of dif-
ferent sequences. Whereas in rough-fuzzy c-medoids, after computing the mem-
berships for c clusters and n sequences, the membership values of each sequence
are sorted and the difference of two highest memberships is compared with a
threshold value δ. Let μij and μkj be the highest and second highest member-
ships of sequence xj . If (μij − μkj) > δ, then xj ∈ A(βi) as well as xj ∈ A(βi)
and xj /∈ A(βk), otherwise xj ∈ B(βi) and xj ∈ B(βk). That is, the algorithm
first separates the “core” and overlapping portions of each cluster βi based on
the threshold value δ. The “core” portion of the cluster βi is represented by
its lower approximation A(βi), while the boundary region B(βi) represents the
overlapping portion. In effect, it minimizes the vagueness and incompleteness
in cluster definition. According to the definitions of lower approximations and
boundary of rough sets, if a sequence xj ∈ A(βi), then xj /∈ A(βk), ∀k 	= i, and
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xj /∈ B(βi), ∀i. That is, the sequence xj is contained in βi definitely. Thus, the
weights of the sequences in lower approximation of a cluster should be inde-
pendent of other medoids and clusters, and should not be coupled with their
similarity with respect to other medoids. Also, the sequences in lower approxi-
mation of a cluster should have similar influence on the corresponding medoid
and cluster. Whereas, if xj ∈ B(βi), then the sequence xj possibly belongs to
βi and potentially belongs to another cluster. Hence, the sequences in boundary
regions should have different influence on the medoids and clusters.

So, in rough-fuzzy c-medoids, after assigning each sequence in lower approxi-
mations and boundary regions of different clusters based on δ, the memberships
μij of the sequences are modified. The membership values of the sequences in
lower approximation are set to 1, while those in boundary regions are remain un-
changed. In other word, the proposed c-medoids first partitions the data into two
classes - lower approximation and boundary. The concept of fuzzy memberships
is applied only to the sequences of boundary region, which enables the algorithm
to handle overlapping clusters. Thus, in rough-fuzzy c-medoids, each cluster is
represented by a medoid, a crisp lower approximation, and a fuzzy boundary.
The lower approximation influences the fuzziness of final partition. The fuzzy c-
medoids can be reduced from rough-fuzzy c-medoids when A(βi) = ∅, ∀i. Thus,
the proposed algorithm is the generalization of existing fuzzy c-medoids. The
new medoids are calculated based on the weighting average of the crisp lower
approximation and fuzzy boundary. The medoids calculation is given by:

vi = xq where q = arg max

⎧
⎨

⎩

w × A + w̃ × B if A(βi) 	= ∅, B(βi) 	= ∅
A if A(βi) 	= ∅, B(βi) = ∅
B if A(βi) = ∅, B(βi) 	= ∅

(6)

A =
∑

xk∈A(βi)

S(xk, xj); B =
∑

xk∈B(βi)

(μik)ḿS(xk, xj)

The parameters w and w̃ (= 1−w) correspond to the relative importance of lower
bound and boundary region. Since the sequences lying in lower approximation
definitely belong to a cluster, they are assigned a higher weight w compared to
w̃ of the sequences lying in boundary region. That is, 0 < w̃ < w < 1.

3 Quantitative Measure

In this section we present some quantitative indices to evaluate the quality of
relational clustering for biological sequences.

β Index: It is defined as

β =
1
c

c∑

i=1

1
ni

∑

xj∈βi

S(xj , vi)
S(vi, vi)

(7)

where ni is the number of sequences in the ith cluster βi and S(xj , vi) is the non-
gapped pair-wise homology alignment scores between sequence xj and medoid
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vi. The β index is the average normalized homology alignment scores of input
sequences with respect to their corresponding medoids. The β index increases
with increase in homology alignment scores within a cluster. The value of β also
increases with c. In an extreme case when the number of clusters is maximum,
i.e., c = n, the total number of sequences, we have β = 1. Thus, 0 < β ≤ 1.

γ Index: It can be defined as

γ = maxi,j
1
2

{
S(vj , vi)
S(vi, vi)

+
S(vi, vj)
S(vj , vj)

}

(8)

0 < γ < 1. The γ index calculates the maximum normalized homology alignment
score between medoids. A good clustering procedure for medoids selection should
make the homology alignment score between all medoids as low as possible. The
γ index minimizes the between-cluster homology alignment score.

Based on the mutual information, the β index would be as follows:

β =
1
c

c∑

i=1

1
ni

∑

xj∈βi

MI(xj , vi)
MI(vi, vi)

; MI(xi, xj) = H(xi) + H(xj) − H(xi, xj) (9)

MI(xi, xj) is the mutual information between sequences xi and xj with H(xi)
and H(xj) being the entropy of sequences xi and xj respectively, and H(xi, xj)
their joint entropy. H(xi) and H(xi, xj) are defined as

H(xi) = −p(xi)lnp(xi) H(xi, xj) = −p(xi, xj)lnp(xi, xj) (10)

p(xi) and p(xi, xj) are the a priori probability of xi and joint probability of xi

and xj respectively. Similarly, γ index would be

γ = maxi,j
1
2

{
MI(vi, vj)
MI(vi, vi)

+
MI(vi, vj)
MI(vj , vj)

}

(11)

4 Experimental Results

The performance of rough-fuzzy c-medoids (RFCMdd) is compared extensively
with that of hard c-medoids (HCMdd) [1] and fuzzy c-medoids (FCMdd) [4].
To analyze the performance of the RFCMdd, we use Cai-Chou HIV data set [6]
and caspase cleavage protein sequences downloaded from the NCBI
(www.ncbi.nih.gov). The Dayhoff amino acid mutation matrix [5] is used to
calculate the non-gapped pair-wise homology score between two sequences.

4.1 Optimum Values of Parameters ḿ, w, and δ

Tables 1-3 report the performance of different c-medoids for different values of ḿ,
w, and δ respectively. The results and subsequent discussions are presented here
with respect to β, γ, β, and γ. The fuzzifier ḿ controls the extent of membership
sharing between fuzzy clusters. From Table 1, it is seen that as the value of ḿ
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Table 1. Performance of RFCMdd and FCMdd for Different Values of ḿ

Value Algorithms Cai-Chou HIV Data Set Caspase Cleavage Proteins

of ḿ β γ β γ β γ β γ

1.7 RFCMdd 0.794 0.677 0.895 0.950 0.785 0.647 0.907 0.977
FCMdd 0.750 0.728 0.868 0.973 0.772 0.671 0.883 0.978

1.8 RFCMdd 0.818 0.639 0.907 0.932 0.803 0.628 0.923 0.972
FCMdd 0.764 0.695 0.890 0.954 0.795 0.671 0.890 0.978

1.9 RFCMdd 0.829 0.618 0.911 0.927 0.814 0.611 0.937 0.965
FCMdd 0.809 0.656 0.903 0.941 0.808 0.668 0.898 0.962

2.0 RFCMdd 0.829 0.618 0.911 0.927 0.839 0.608 0.942 0.944
FCMdd 0.809 0.656 0.903 0.941 0.816 0.662 0.901 0.953

2.1 RFCMdd 0.811 0.622 0.908 0.945 0.826 0.617 0.935 0.949
FCMdd 0.802 0.671 0.901 0.948 0.801 0.665 0.899 0.973

2.2 RFCMdd 0.802 0.640 0.903 0.958 0.817 0.639 0.928 0.954
FCMdd 0.767 0.692 0.892 0.977 0.798 0.665 0.895 0.973

2.3 RFCMdd 0.791 0.658 0.882 0.961 0.801 0.641 0.901 0.961
FCMdd 0.760 0.703 0.877 0.982 0.784 0.668 0.886 0.979

Table 2. Performance of RFCMdd for Different Values of w (= 1 − w̃)

Value Cai-Chou HIV Data Set Caspase Cleavage Proteins

of w β γ β γ β γ β γ

0.51 0.684 0.827 0.806 1.000 0.683 0.714 0.808 1.000
0.60 0.788 0.708 0.883 0.991 0.779 0.649 0.883 0.983
0.70 0.829 0.618 0.911 0.927 0.839 0.608 0.942 0.944
0.80 0.793 0.651 0.874 0.978 0.817 0.622 0.914 0.964
0.90 0.748 0.711 0.829 1.000 0.761 0.682 0.825 1.000
0.99 0.671 0.813 0.802 1.000 0.675 0.762 0.798 1.000

increases, the values of β and β increase, while γ and γ decrease. The RFCMdd
and FCMdd achieve their best performance with ḿ = 1.9 and 2.0 for Cai-Chou
HIV data set and ḿ = 2.0 for caspase cleavage protein sequences respectively.
But, for ḿ > 2.0, the performance of both algorithms decreases with the increase
in ḿ. That is, the best performance of RFCMdd and FCMdd is achieved when
the fuzzy membership value of a sequence in a cluster is equal to its normalized
homology alignment score with respect to all the medoids.

The parameter w has an influence on the performance of RFCMdd. Since the
sequences lying in lower approximation definitely belong to a cluster, they are
assigned a higher weight w compared to w̃ of the sequences lying in boundary
regions. Hence, for RFCMdd, 0 < w̃ < w < 1. Table 2 presents the performance
of RFCMdd for different values w considering ḿ = 2.0 and δ = 0.20. When the
sequences of both lower approximation and boundary region are assigned ap-
proximately equal weights, the performance of RFCMdd is significantly poorer
than HCMdd. As the value of w increases, the values of β and β increase, while
γ and γ decrease. The best performance of both algorithms is achieved with
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w = 0.70. The performance significantly reduces with w � 1.00. In this case,
since the clusters cannot see the sequences of boundary regions, the mobility
of the clusters and the medoids reduces. As a result, some medoids get stuck
in local optimum. On the other hand, when w = 0.70, the sequences of lower
approximations are assigned a higher weight compared to that of boundary re-
gions as well as the clusters and the medoids have a greater degree of freedom
to move. In effect, the quality of generated clusters is better compared to other
values of w.

Table 3. Performance of RFCMdd for Different Values of δ

Value Cai-Chou HIV Data Set Caspase Cleavage Proteins

of δ β γ β γ β γ β γ

0.00 0.713 0.782 0.817 1.000 0.707 0.698 0.862 1.000
0.05 0.753 0.707 0.868 1.000 0.766 0.683 0.881 1.000
0.10 0.794 0.683 0.882 0.991 0.801 0.641 0.907 0.995
0.15 0.806 0.629 0.902 0.964 0.819 0.622 0.928 0.973
0.20 0.829 0.618 0.911 0.927 0.839 0.608 0.942 0.944
0.25 0.811 0.638 0.907 0.952 0.814 0.631 0.932 0.980
0.30 0.805 0.681 0.894 0.988 0.791 0.667 0.908 0.995
0.35 0.784 0.704 0.875 1.000 0.772 0.671 0.881 1.000

The performance of RFCMdd also depends on the value of δ, which determines
the class labels of all the sequences. In other word, the RFCMdd partitions the
data set of a cluster into two classes - lower approximation and boundary, based
on the value of δ. Table 3 presents the performance of RFCMdd for different
values of δ considering ḿ = 2.0 and w = 0.70. For δ = 0.0, all the sequences
will be in lower approximations of different clusters and B(βi) = ∅, ∀i. In effect,
the RFCMdd reduces to conventional HCMdd. On the other hand, for δ = 1.0,
A(βi) = ∅, ∀i and all the sequences will be in the boundary regions of different
clusters. That is, the RFCMdd boils down to FCMdd. The best performance
of RFCMdd with respect to β, β, γ, and γ is achieved with δ = 0.2. This
is approximately equal to the average difference of highest and second highest
fuzzy membership values of all the sequences.

4.2 Comparative Performance of Different Relational Algorithms

Finally, Table 4 provides the comparative results of different algorithms. It is
seen that the RFCMdd produces medoids having the highest β and β values and
lowest γ and γ values for all the cases. Table 4 also provides execution time of
different algorithms for two data sets. The execution time required for RFCMdd
is comparable to FCMdd. For the HCMdd, although the execution time is less,
the performance is significantly poorer than that of FCMdd and RFCMdd. Use
of rough and fuzzy sets adds a small computational load to the HCMdd; however
the corresponding integrated methods (FCMdd and RFCMdd) show a definite
increase in β and β values and decrease in γ and γ values. Integration of rough
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Table 4. Comparative Performance of Different Methods

Data Set Algorithms β γ β γ Time (milli sec.)

Cai- RFCMdd 0.829 0.618 0.911 0.927 6217
Chou FCMdd 0.809 0.656 0.903 0.941 4083
HIV HCMdd 0.713 0.782 0.817 1.000 718

Caspase RFCMdd 0.839 0.608 0.942 0.944 513704
Cleavage FCMdd 0.816 0.662 0.901 0.953 510961
Protein HCMdd 0.707 0.698 0.862 1.000 8326

sets, fuzzy sets, and c-medoids, in the RFCMdd algorithm produces a set of most
informative medoids in the comparable computation time.

5 Conclusion

The main contribution of the paper is to develop a methodology integrating
the merits of rough sets, fuzzy sets, c-medoids algorithm, and amino acid muta-
tion matrix for clustering biological sequences. Although the methodology has
been efficiently demonstrated for biological sequence analysis, the concept can
be applied to other relational unsupervised classification problems.
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Abstract. A novel application of rough-fuzzy clustering is presented for
synthetic as well as CT scan images of the brain. It is observed that the
algorithm generates good prototypes even in the presence of outliers.
The rough-fuzzy clustering simultaneously handles overlap of clusters
and uncertainty involved in class boundary, thereby yielding the best
approximation of a given structure in unlabeled data. The number of
clusters is automatically optimized in terms of various validity indices.
A comparative study is made with related partitive algorithms. Experi-
mental results demonstrate the diagnosis of the extent of brain infarction
in CT scan images, and is validated by medical experts.

Keywords: Rough-fuzzy clustering, cluster validation, image segmenta-
tion, CT scan imaging.

1 Introduction

Soft computing consists of methodologies that work synergistically and provides
flexible information processing capability for handling real life ambiguity [1].
The main constituents of soft computing, at this juncture, include fuzzy logic,
neural networks, genetic algorithms and rough sets. Rough set theory, proposed
by Pawlak [2], is a paradigm to handle vagueness, uncertainty and incomplete-
ness in information systems. The theory of rough sets arises from the notion of
approximation spaces. The use of rough sets in clustering has been reported in
literature [3]. Fuzzy sets and rough sets were incorporated in the c-means frame-
work to develop the fuzzy c-means (FCM) [4] and rough c-means (RCM) [3]
algorithms. While membership in FCM enables efficient handling of overlapping
partitions, the concept of rough sets [2] deals with uncertainty, vagueness and
incompleteness in data in terms of upper and lower approximations.

Rough-fuzzy clustering was developed [5] [6] to incorporate the merits of both
rough and fuzzy sets in a hybridized framework. In this paper, we investigate
the application of rough-fuzzy clustering for segmentation of CT scan imagery
and for determining prototypes in the presence of outliers. The use of rough set
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helps in automatically controlling the effect of uncertainty among patterns lying
between the upper and lower approximation. Patterns within the lower approx-
imation play a central role during clustering. The incorporation of membership
in the RCM framework enhances the robustness of the algorithm. The Davies
Bouldin [7] and Xie-Beni [8] indices and the Silhouette statistic [9] are employed
to automatically determine the optimum number of clusters.

The article is organized into five sections. The rough and the rough-fuzzy al-
gorithms are discussed in Section 2. Cluster validation is concisely presented in
Section 3 while the results on synthetic data and CT scan imagery are presented
in Section 4. The application demonstrates an effective Computer Aided Diag-
nostic (CAD) methodology to provide a second opinion to radiologists. Finally,
Section 5 concludes the paper.

2 Rough Clustering Algorithms

Rough sets [2] are used to model clusters in terms of upper and lower approx-
imations, that are weighted by a pair of parameters while computing cluster
prototypes [3]. We observe that the rough set theory assigns objects into two
distinct regions, viz., lower and upper approximations, such that objects in lower
approximation indicate definite inclusion in the concept under discussion while
those in the upper approximation correspond to possible inclusion in it [2]. Since
there is no concept of membership involved in rough clustering, therefore any
measure of closeness of patterns to the clusters cannot be determined. Rough-
fuzzy hybridized clustering [6] attempts to overcome this limitation.

2.1 Rough C-Means (RCM)

In RCM [3], the concept of c-means is extended by viewing each cluster as an in-
terval or rough set X . It is characterized by the lower and upper approximations
BX and BX respectively, with the following properties. (i) An object xk can
be part of at most one lower approximation. (ii) If xk ∈ BX of cluster X , then
simultaneously xk ∈ BX . (iii) If xk is not a part of any lower approximation,
then it belongs to two or more upper approximations. This permits overlaps
between clusters. The centroid vi of cluster Ui is evaluated as

vi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wlow

∑
xk∈BUi

xk

|BUi| + wup

∑
xk∈(BUi−BUi)

xk

|BUi−BUi| if BUi �= ∅ ∧ BUi − BUi �= ∅,
∑

xk∈(BUi−BUi)
xk

|BUi−BUi| if BUi = ∅ ∧ BUi − BUi �= ∅,
∑

xk∈BUi
xk

|BUi| otherwise,
(1)

where the parameters wlow and wup correspond to the relative importance of the
lower and upper approximations respectively. Here |BUi| indicates the number
of patterns in the lower approximation of cluster Ui, while |BUi − BUi| is the
number of patterns in the rough boundary lying between the two approximations.
The algorithm is outlined as follows.
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1. Assign initial means vi for the c clusters.
2. Assign each data object (pattern) xk to the lower approximation BUi or

upper approximation BUi, BUj of cluster pairs Ui, Uj by computing the
difference in its distance dik − djk from cluster centroid pairs vi and vj .

3. Let dik be minimum and djk be the next to minimum.
If djk − dik is less than some threshold

then xk ∈ BUi and xk ∈ BUj and xk cannot be a member of any lower
approximation,

else xk ∈ BUi such that distance dik is minimum over the c clusters.
4. Compute new mean for each cluster Ui using eqn. (1).
5. Repeat Steps 2-4 until convergence, i.e., there are no more new assignments

of objects.

The parameter threshold measures the relative distance of an object xk from
a pair of clusters having centroids vi and vj . The parameter wlow controls the
importance of the objects lying within the lower approximation of a cluster in
determining its centroid. Hence an optimal selection of these parameters is an
issue of reasonable interest. We allowed wup = 1 − wlow, 0.5 < wlow < 1 and
0 < threshold < 0.5.

2.2 Rough-Fuzzy C-Means (RFCM)

A rough-fuzzy c-means algorithm, involving an integration of fuzzy and rough
sets, has been developed [5] [6]. This allows one to incorporate fuzzy membership
value uik of a sample xk to a cluster mean vi, relative to all other means vj ∀
j �= i, instead of the absolute individual distance dik from the centroid. This sort
of relativistic measure enhances the robustness of the clustering with respect to
different choices of parameters. The major steps of the algorithm are provided
below.

1. Assign initial means vi for the c clusters.
2. Compute membership uik for c clusters and N data objects as

uik =
1

∑c
j=1

(
dik

djk

) 2
m−1

. (2)

3. Assign each data object (pattern) xk to the lower approximation BUi or
upper approximation BUi, BUj of cluster pairs Ui, Uj by computing the
difference in its membership uik − ujk to cluster centroid pairs vi and vj .

4. Let uik be maximum and ujk be the next to maximum.
If uik − ujk is less than some threshold

then xk ∈ BUi and xk ∈ BUj and xk cannot be a member of any lower
approximation,

else xk ∈ BUi such that membership uik is maximum over the c clusters.
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5. Compute new mean for each cluster Ui as

vi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wlow

∑
xk∈BUi

um
ikxk

∑
xk∈BUi

um
ik

+wup

∑
xk∈(BUi−BUi)

um
ikxk

∑
xk∈(BUi−BUi)

um
ik

if BUi �=∅∧BUi−BUi �=∅,
∑

xk∈(BUi−BUi)
um

ikxk
∑

xk∈(BUi−BUi)
um

ik
if BUi = ∅ ∧ BUi − BUi �= ∅,

∑
xk∈BUi

um
ikxk

∑
xk∈BUi

um
ik

otherwise.

(3)
6. Repeat Steps 2-5 until convergence, i.e., there are no more new

assignments.

As in the case of RCM, we use wup = 1 − wlow, 0.5 < wlow < 1, m = 2, and
0 < threshold < 0.5.

3 Cluster Validation

Partitive clustering algorithms typically require prespecification of the number
of clusters. Hence the results are dependent on the choice of c. However there
exist validity indices to evaluate the goodness of clustering, corresponding to a
given value of c. In this article we compute the optimal number of clusters c0
in terms of the Davies-Bouldin cluster validity index [7], Xie-Beni index [8] and
Silhouette index [9].

3.1 Davies-Bouldin Index

The Davies-Bouldin index is a function of the ratio of the sum of within-cluster
distance to between-cluster separation. The optimal clustering, for c = c0, min-
imizes

DB =
1
c

c∑

k=1

max
l �=k

{
dw(Uk) + dw(Ul)

db(Uk, Ul)

}

, (4)

for 1 ≤ k, l ≤ c. In this process, the within-cluster distance dw(Uk) is minimized
and the between-cluster separation db(Uk, Ul) is maximized. The distance can
be chosen as the traditional Euclidean metric for numeric features.

3.2 Xie-Beni Index

The Xie-Beni index [8] presents a fuzzy-validity criterion based on a validity
function which identifies overall compact and separate fuzzy c-partitions. This
function depends upon the data set, geometric distance measure, distance be-
tween cluster centroids and on the fuzzy partition, irrespective of any fuzzy
algorithm used. We define χ as a fuzzy clustering validity function

χ =

∑c
i=1

∑N
j=1 u2

ij ||vi − xj||2

N mini,j ||vi − vj||2
. (5)
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In case of FCM and RFCM algorithms, with m = 2, eqn. (5) reduces to

χ =
J2

N ∗ (dmin)2
, (6)

where J2 is the fuzzy objective function with Euclidean norm and dmin =
mini,j ||vi − vj||. The more separate the clusters, the larger (dmin)2 and the
smaller χ. Thus the smallest χ, corresponding to c = c0, indeed indicates a valid
optimal partition.

3.3 Silhouette Statistic

The Silhouette statistic [9], though computationally more intensive, is another
way of estimating the number of clusters in a distribution. The Silhouette index,
S, computes for each point a width depending on its membership in any cluster.
This silhouette width is then an average over all observations. We define Sk as

Sk =
1
N

N∑

i=1

bi − ai

max(ai, bi)
, (7)

where N is the total number of points, ai is the average distance between point i
and all other points in its own cluster and bi is the minimum of the average dis-
similarities between i and points in other clusters. Finally, the global silhouette
index, S, of the clustering is given by

S =
1
c

c∑

k=1

Sk. (8)

The partition with highest S is taken to be optimal.

4 Results

The utility of rough sets in rough-fuzzy clustering is demonstrated on synthetic
and real life CT scan imagery. The synthetic data of Fig. 1 consists of 32 points
with two clusters. Three points shown in the upper part of the all the scatter
plot in Fig. 1, are outliers, which have been purposely inserted to test the ability
of the algorithms to resist a bias in the estimation of cluster prototypes.

The CT scan images were acquired by the Siemens Emotion-Duo model. The
images were of size 512 x 512 pixels with 16-bit gray levels. The brain images were
taken of patients in an age-range of 30-65 years, and exhibit different cases of
brain infarction. Fig. 2.(a) illustrates a sample image for patient P45 indicating
fresh vascular insult.

4.1 Synthetic Data

Fig. 1 represents the original data set and the centroids generated using different
clustering algorithms. The centroids are marked by rectangles on the figure. It
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(a) (b) (c)

(d) (e)

Fig. 1. Synthetic data set. (a) Original, and after clustering with (b) HCM (c) FCM
(d) RCM (e) RFCM algorithms.

can be easily seen that the noise or outlier has maximum effect on HCM and
RCM, while FCM and RFCM show reasonable improvement. Moreover, RFCM
gives the best estimation of the centroids in the presence of noise. The hybridiza-
tion of fuzzy membership with rough approximation leads to the better modeling.
All the cluster validity indices concur to generate two optimal partitions. The
results are tabulated below to further illustrate this central idea. It is observed
that the last column corresponds to the best results by RFCM, viz. minimum for
Davies-Bouldin and Xie-Beni, and maximum for Silhouette. It should be noted
that all the algorithms were randomly initialized and 9 runs were taken. The in-
dices were averaged over the 9 runs to compensate for possibly very bad starting
points.

4.2 CT Scan Imagery

Segmentation is a process of partitioning an image into some non-overlapping
meaningful regions [10]. Pixel clustering is one of the popular techniques of con-
stituting a homogeneous region for segmentation. In this subsection, we present
sample results of different members of the family of c-means algorithms on seg-
mentation of the infarcted region in CT scan images of the brain.

The patient under study, P45, is suffering from fresh vascular insult. The
infarction is observable on the left, with the left side compressing the right side
such that the third ventricle is not visible due to this severe edema. Dilation of
the blood ventricles is the main cause of the edema here. The problem at hand is
modeled as the task of segmenting six regions comprising the gray matter (GM),
the white matter (WM), the infarcted region, the skull and the background.
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Table 1. Cluster Validity Indices, for two clusters, on Synthetic data

Index HCM FCM RCM RFCM

Davies-Bouldin 0.6550 0.5973 0.6034 0.5971
Xie-Beni 0.5210 0.4560 0.4572 0.4477
Silhouette -0.6087 -0.2384 -0.2411 -0.2233

(a) (b) (c)

(d) (e)

Fig. 2. Sample case of Fresh Infarction for patient, P45. (a) Original CT scan image,
and the corresponding segmented versions for (b) HCM (c) FCM (d) RCM (e) RFCM
clustering.

Fig. 2 shows the results of segmentation under HCM, FCM, RCM and RFCM.
In the absence of an accurate index to test the accuracy of segmentation in CT
scan images, we resorted to expert domain knowledge. In all, 36 frames of the
patient P45 were studied, and the ground-truth regrading the best segmentation
was validated my an experienced radiologist. As before, the RFCM algorithm
produced the best results as verified by expert radiologists. It could be noted
that RFCM not only performed better for case of fresh infarction, but also in
cases of chronic infarction and subtle cases of infarction.

5 Conclusion

It is easily observed that the rough-fuzzy hybridization in RFCM enables better
performance, as compared to other algorithms of the c-means family. Although



Rough-Fuzzy Clustering: An Application to Medical Imagery 307

simultaneous use of fuzzy and rough sets increases the computation complexity,
but there is a marked improvement in the three validity indices, viz. Davies-
Bouldin, Xie-Beni and Silhouette. The hybrid approach aims to maximize the
utility of both fuzzy sets and rough sets with aim of estimating the best rep-
resentative of a structure, viz. the cluster prototype. The effectiveness of the
approach in knowledge discovery in case of both synthetic and real-life data is
suitably illustrated. The results describe a novel way of segmenting CT scan
imagery. They also promise to provide a helpful second opinion to radiologists
in case of Computer Aided Diagnostic (CAD).
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Abstract. In this paper, rough approximations of intuitionistic fuzzy
sets with respect to an intuitionistic fuzzy approximation space are first
introduced. Basic properties of intuitionistic fuzzy rough sets are then
examined. Finally, roughness measures of intuitionistic fuzzy sets are
defined and their properties are explored.
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roughness measures, rough sets.

1 Introduction

The theory of rough sets, proposed by Pawlak [14], is an extension of classical
set theory for the study of intelligent systems characterized by insufficient and
incomplete information. In Pawlak’s original rough set theory, a partition or
an equivalence (indiscernibility) relation is an important and primitive concept.
However, an equivalence relation is so stringent that it may limit the application
domain of the rough set model. The generalization of Pawlak’s rough set model
is thus one of the main directions for the study of rough set theory (see e.g.
[4,9,13,15,16,17,20,22,23,24,25]. Another interesting direction in the research of
rough set theory is to aim at defining uncertainty measures such as similarity
measures, roughness measures and fuzziness measures for rough sets which may
be useful in application to pattern recognition and image analysis problems
etc. [3,10].

As a more general case of fuzzy sets, the concept of intuitionistic fuzzy sets (IF
sets for short), which was originated by Atanassov [1], has played an important
role in the analysis of uncertainty of data [8,12,21]. Unlike a fuzzy set which
gives a degree to which an element belongs to a set, an IF set gives both a
membership degree and a nonmembership degree and is thus more precise to
describe the vagueness and uncertainty than a fuzzy set. More recently, rough
set approximations had been introduced into IF sets [6,7,11,18,19].

In this paper, we will investigate a generalized IF rough set model by employ-
ing the “max− min” operations. We will also define roughness measures of IF
rough sets to describe the rough approximation qualities of IF sets and explore
their properties.

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 308–315, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 Preliminaries

Let U be a nonempty set called the universe of discourse. The class of all subsets
(fuzzy subsets, respectively) of U will be denoted by P(U) (by F(U), respectively).

Definition 1. [1] Let a set U be fixed. An IF set A in U is an object having the
form

A = {〈x, μA(x), γA(x)〉 | x ∈ U},
where μA : U → [0, 1] and γA : U → [0, 1] satisfy 0 ≤ μA(x) + γA(x) ≤ 1 for all
x ∈ U , and μA(x) and γA(x) are called the degree of membership and the degree
of non-membership of the element x ∈ U to A respectively. The family of all IF
subsets of U is denoted by IF(U). The complement of an IF set A is denoted
by ∼ A = {〈x, γA(x), μA(x)〉 | x ∈ U}.

The basic set operations on IF(U) are defined as follows [1,2]: ∀A, B ∈ IF(U),
A ⊆ B if and only if (iff) μA(x) ≤ μB(x) and γA(x) ≥ γB(x) for all x ∈ U,
A ⊇ B iff B ⊆ A,
A = B iff A ⊆ B and B ⊆ A,
A ∩ B = {〈x, min(μA(x), μB(x)), max(γA(x), γB(x))〉 | x ∈ U},
A ∪ B = {〈x, max(μA(x), μB(x)), min(γA(x), γB(x))〉 | x ∈ U}.

Here we define a constant IF set ̂(α, β) = {〈x, α, β〉 | x ∈ U}, where 0 ≤
α, β ≤ 1, and α+β ≤ 1. The IF universe set is 1∼ = U = {〈x, 1, 0〉 | x ∈ U} and
the IF empty set is 0∼ = ∅ = {〈x, 0, 1〉 | x ∈ U}.

An IF relation R on U is an IF subset of U × U , that is,
R = {〈(x, y), μR(x, y), γR(x, y)〉 | x, y ∈ U},

where μR, γR : U × U → [0, 1] satisfy 0 ≤ μR(x, y) + γR(x, y) ≤ 1 for all
(x, y) ∈ U × U . We denote the family of all IF relations on U by IFR(U × U).

Definition 2. [5] Let R ∈ IFR(U × U), we say that R is
(1) reflexive if μR(x, x) = 1 and γR(x, x) = 0 for all x ∈ U ,
(2) symmetric if for any (x, y) ∈ U × U ,

μR(x, y) = μR(y, x) and γR(x, y) = γR(y, x).

(3) transitive if R ≥ R
∨,∧⊙

∧,∨
R, i.e., for any (x, z) ∈ U × U ,

μR(x, z) ≥ ∨y∈U [μR(x, y) ∧ μR(y, z)] and γR(x, z) ≤ ∧y∈U [γR(x, y) ∨ γR(y, z)].

3 Intuitionistic Fuzzy Rough Sets

In this section, we introduce IF rough approximation operators by employing
the “max− min” fuzzy logic operators and investigate their properties.

Definition 3. Let U be a nonempty and finite universe of discourse and R ∈
IFR(U × U), the pair (U, R) is called an IF approximation space. For any A ∈
IF(U), the upper and lower approximations of A w.r.t. (U, R), denoted by R(A)
and R(A), are two IF sets and are defined respectively as follows:

R(A) =
{〈

x, μR(A)(x), γR(A)(x)
〉

| x ∈ U
}
,
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R(A) =
{〈

x, μR(A)(x), γR(A)(x)
〉

| x ∈ U
}
,

where
μR(A)(x) = ∨y∈U [μR(x, y) ∧ μA(y)], γR(A)(x) = ∧y∈U [γR(x, y) ∨ γA(y)];

μR(A)(x) = ∧y∈U [γR(x, y) ∨ μA(y)], γR(A)(x) = ∨y∈U [μR(x, y) ∧ γA(y)].

R(A) and R(A) are called the upper and lower IF rough approximations of A
w.r.t. (U, R), respectively. The pair (R(A), R(A)) is called the IF rough set of A
w.r.t. (U, R), and R, R : IF(U) → IF(U) are referred to as upper and lower
IF rough approximation operators respectively.

Theorem 1. Let (U, R) be an IF approximation space. Then the upper and
lower IF rough approximation operators in Definition 3 satisfy the following
properties: ∀A, B ∈ IF(U), α, β ∈ [0, 1] with α + β ≤ 1,

(IL1) R(A) =∼ R(∼ A), (IU1) R(A) =∼ R(∼ A);
(IL2) R(1∼) = 1∼, (IU2) R(0∼) = 0∼;
(IL3) R(A ∩ B) = R(A) ∩ R(B), (IU3) R(A ∪ B) = R(A) ∪ R(B);
(IL4) A ⊆ B =⇒ R(A) ⊆ R(B), (IU4) A ⊆ B =⇒ R(A) ⊆ R(B);
(IL5) R(A ∪ B) ⊇ R(A) ∪ R(B), (IU5) R(A ∩ B) ⊆ R(A) ∩ R(B);
(IL6) R(A ∪ ̂(α, β)) = R(A) ∪ ̂(α, β), (IU6) R(A ∩ ̂(α, β)) = R(A) ∩ ̂(α, β).

Moreover, if R is an IF reflexive relation, then
(IRL7) R(A) ⊆ A, (IRU7) A ⊆ R(A).

Proof. (1) Let A = {〈x, μA(x), γA(x)〉 | x ∈ U}, then ∼ A = {〈x, γA(x), μA(x)〉 |
x ∈ U}. On one hand, for any x ∈ U , by definition we have

μR(∼A)(x) = ∧y∈U [γR(x, y) ∨ μ∼A(y)] = ∧y∈U [γR(x, y) ∨ γA(y)] = γR(A)(x),
γR(∼A)(x) = ∨y∈U [μR(x, y) ∧ γ∼A(y)] = ∨y∈U [μR(x, y) ∨ μA(y)] = μR(A)(x).

On the other hand, from R(A) =
{〈

x, μR(A)(x), γR(A)(x)
〉

| x ∈ U
}
, we have

∼ R(A) =
{〈

x, γR(A)(x), μR(A)(x)
〉

| x ∈ U
}
. Hence, R(∼ A) =∼ R(A), thus we

conclude (IL1). From (IL1) we can easily deduce (IU1).
(2) (IL2) and (IU2) follow directly from Definition 3.
(3) For any A = {〈x, μA(x), γA(x)〉 | x ∈ U} and B = {〈x, μB(x), γB(x)〉 |

x ∈ U}. Note that
A ∩ B = {〈x, min(μA(x), μB(x)), max(γA(x), γB(x))〉 | x ∈ U}.

Then, ∀x ∈ U ,
μR(A∩B)(x) = ∧y∈U

[
γR(x, y) ∨ min

(
μA(y), μB(y)

)]

= ∧y∈U

[
min

(
γR(x, y) ∨ μA(y), γR(x, y) ∨ μB(y)

)]

= min
[
∧y∈U (γR(x, y) ∨ μA(y)), ∧y∈U (γR(x, y) ∨ μB(y))

]

= min
(
μR(A)(x), μR(B)(x)

)
,

and
γR(A∩B)(x) = ∨y∈U

[
μR(x, y) ∧ max

(
γA(y), γB(y)

)]

= ∨y∈U

[
max

(
μR(x, y) ∧ γA(y), μR(x, y) ∧ γB(y)

)]

= max
[
∨y∈U (μR(x, y) ∧ γA(y)), ∨y∈U (μR(x, y) ∧ γB(y))

]

= max
(
γR(A)(x), γR(B)(x)

)
.

Thus (IL3) holds. Similarly, we can conclude (IU3).
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(4), (5) Properties (IL4) and (IL5) can be directly derived from (IL3), and
(IU4) and (IU5) can be induced from (IU3).

(6) Since A ∪ ̂(α, β) = {〈x, μA(x) ∨ α, γA(x) ∧ β〉 | x ∈ U}, we have, ∀x ∈ U ,
μ

R(A∪ ̂(α,β))(x)= ∧y∈U

[
γR(x, y) ∨

(
μA(y) ∨ α

)]
=∧y∈U

[(
γR(x, y) ∨ μA(y)

)
∨ α

]

= ∧y∈U [γR(x, y) ∨ μA(y)] ∨ α = μR(A)(x) ∨ α = μ
R(A)∪ ̂(α,β)(x),

and
γ

R(A∪ ̂(α,β))(x) = ∨y∈U

[
μR(x, y) ∧

(
γA(y) ∧ β

)]
=∨y∈U

[(
μR(x, y) ∧ γA(y)

)
∧ β

]

= ∨y∈U [μR(x, y) ∧ γA(y)] ∧ β = γR(A)(x) ∧ β = γ
R(A)∪ ̂(α,β)(x).

Therefore, R(A ∪ ̂(α, β)) = R(A) ∪ ̂(α, β), i.e., (IL6) holds. Likewise, we can
conclude (IU6).

(7) Assume that R is an IF reflexive relation and A ∈ IF(U). For any x ∈ U ,
by the reflexivity of R we have μR(x, x) = 1 and γR(x, x) = 0. Then

μR(A)(x) = ∨y∈U [μR(x, y) ∧ μA(y)] ≥ μR(x, x) ∧ μA(x) = μA(x),

and
γR(A)(x) = ∧y∈U [γR(x, y) ∨ γA(y)] ≤ γR(x, x) ∨ γA(x) = γA(x).

Thus we obtain (IRU7). Likewise, we can conclude (IRL7).

Definition 4. Let (U, R) be an IF approximation space and A, B ∈ IF(U), A
and B are called IF lower R−equal if R(A) = R(B), denote by A∼B; A and B
are called IF upper R−equal if R(A) = R(B), denote by A � B; A and B are
called IF R−equal if R(A) = R(B) and R(A) = R(B), denote by A ≈ B.

Theorem 2. Let (U, R) be an IF approximation space. Then for sets in IF(U)
we have

(1) A∼B iff A ∩ B∼A and A ∩ B∼B;
(2) A � B iff A ∪ B � A and A ∪ B � B;
(3) If A∼A′ and B∼B′, then A ∩ B∼A′ ∩ B′;
(4) If A � A′ and B � B′, then A ∪ B � A′ ∪ B′;
(5) If A ⊆ B and A∼U , then B∼U ;
(6) If A ⊆ B and B � ∅, then A � ∅;
(7) If A∼∅ or B∼∅, then A ∩ B∼∅;
(8) If A � U or B � U , then A ∪ B � U .

4 Roughness Measures of IF sets

In this section, we will investigate roughness measures of IF sets. Throughout
this section, we always assume that (U, R) is an IF reflexive approximation space,
i.e., R is an IF reflexive relation on U .

Definition 5. Let A ∈ IF(U) and α, β ∈ [0, 1], the α−level bottom cut set of
A, denoted by Aα, and the β−level top cut set of A, denoted by Aβ, are defined
respectively as follows:

Aα = {x ∈ U |μA(x) ≥ α}, Aβ = {x ∈ U |γA(x) ≤ β}.
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In terms of above definition, we introduce the definitions of roughness measures
of an IF set.

Definition 6. Let (U, R) be an IF approximation space. A ∈ IF(U), 0 < β ≤
α ≤ 1, an absolute roughness measure of A w.r.t. parameters α, β and the ap-
proximation space (U, R) is defined by

ρα,β
R (A) = 1 − |[R(A)]α|

|[R(A)]β |
,

meanwhile, a relative roughness measure of A w.r.t. parameters α, β and the ap-
proximation space (U, R) is defined by

�α,β
R (A) = 1 − |[R(A)]1−α|

|[R(A)]1−β |
.

In special, we think that ρα,β
R (A) = 0 when |[R(A)]β | = 0, and �α,β

R (A) = 0 when
|[R(A)]1−β | = 0, where |X | is the cardinality of the crisp set X.

Remark 1. If (U, R) is a fuzzy approximation space and A ∈ F(U), it can be
easily checked that [R(A)]α = [R(A)]1−α and [R(A)]β = [R(A)]1−β , then we
have ρα,β

R (A) = �α,β
R (A), thus the roughness measures in Definition 6 degenerate

to roughness measure of fuzzy set A defined by Banerjee and Pal [3].

Remark 2. If R(A) = R(A), i.e., A is a definable IF set on (U, R), and α = β,
then ρα,β

R (A) = 0 and �α,β
R (A) = 0.

Absolute roughness measure and relative roughness measure express the same
essence from two different aspects—membership and non-membership. These
measures may help us to analyze rough approximation qualities of IF sets in
fuzzy data processing. According to Definition 6, it immediately follows

Theorem 3. Let (U, R) be an IF approximation space, A ∈ IF(U), and 0 <
β ≤ α ≤ 1. Then

(1) 0 ≤ ρα,β
R (A) ≤ 1, 0 ≤ �α,β

R (A) ≤ 1;
(2) If β is fixed, then ρα,β

R (A) and �α,β
R (A) increase with α increasing; If α is

fixed, then ρα,β
R (A) and �α,β

R (A) decrease with β increasing.

Theorem 4. Let (U, R) be an IF approximation space and 0 < β ≤ α ≤ 1. If A

is a constant IF set, i.e., there exist two numbers δ, θ ∈ [0, 1] such that A = ̂(δ, θ),
then

(1) if 0 < β < δ < α ≤ 1, then ρα,β
R (A) = 1; and for 0 < δ < β ≤ α ≤ 1 or

0 < β ≤ α ≤ δ ≤ 1, we have ρα,β
R (A) = 0

(2) if 0 < 1− α < θ < 1−β, then �α,β
R (A) = 1; for 0 < θ ≤ 1−α ≤ 1 −β ≤ 1

or 0 < 1 − α ≤ 1 − β < θ ≤ 1, we have �α,β
R (A) = 0.

Proof. (1) Notice that R is reflexive, by Theorem 1 (6) and (7), it can be easily
concluded that R(A) = R(A) = ̂(δ, θ). Then for 0 < β < δ < α ≤ 1, we have
[R(A)]α = ∅ and [R(A)]β �= ∅. Hence ρα,β

R (A) = 1. While for 0 < δ < β ≤ α ≤ 1,
[R(A)]β = ∅, thus �α,β

R (A) = 0. For 0 < β ≤ α ≤ δ ≤ 1, [R(A)]α = [R(A)]β = U ,
then ρα,β

R (A) = 0. Similarly, we can prove (2).
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Theorem 5. Let (U, R) be an IF approximation space, A, B ∈ IF(U) and 0 <
β ≤ α ≤ 1. If A ⊆ B, then

(1) ρα,β
R (A) ≥ ρα,β

R (B) when [R(A)]β = [R(B)]β , and ρα,β
R (A) ≤ ρα,β

R (B) when
[R(A)]α = [R(B)]α;

(2) �α,β
R (A) ≥ �α,β

R (B) when [R(A)]1−β = [R(B)]1−β, and �α,β
R (A) ≤ �α,β

R (B)
when [R(A)]1−α = [R(B)]1−α.

Proof. From A ⊆ B we have [R(A)]α ⊆ [R(B)]α and [R(A)]β ⊆ [R(B)]β , mean-
while, [R(A)]1−α ⊆ [R(B)]1−α and [R(A)]1−β ⊆ [R(B)]1−β . So it is easy to
conclude the results of (1) and (2).

Theorem 6. Let (U, R) be an IF approximation space, A, B ∈ IF(U), and
0 < β ≤ α ≤ 1. Then

(1) A∼B =⇒ ρα,β
R (A ∩ B) ≤ ρα,β

R (A), ρα,β
R (A ∩ B) ≤ ρα,β

R (B), �α,β
R (A ∩ B) ≤

�α,β
R (A), and �α,β

R (A ∩ B) ≤ �α,β
R (B);

(2) A � B =⇒ ρα,β
R (A∪B) ≤ ρα,β

R (A), ρα,β
R (A∪B) ≤ ρα,β

R (B), �α,β
R (A∪B) ≤

�α,β
R (A), and �α,β

R (A ∪ B) ≤ �α,β
R (B);

(3) A ≈ B =⇒ ρα,β
R (A) = ρα,β

R (B), �α,β
R (A) = �α,β

R (B).

Proof. (1) Since A∼B, by definition we have R(A) = R(B). Then in terms
of Theorem 1, we obtain R(A ∩ B) = R(A) ∩ R(B) = R(A) = R(B), and
R(A ∩ B) ⊆ R(A) and R(A ∩ B) ⊆ R(B). So [R(A ∩ B)]α = [R(A)]α = [R(B)]α
and [R(A ∩ B)]1−α = [R(A)]1−α = [R(B)]1−α, [R(A ∩ B)]β ⊆ [R(A)]β and
[R(A ∩ B)]β ⊆ [R(B)]β , [R(A ∩ B)]1−β ⊆ [R(A)]1−β and [R(A ∩ B)]1−β ⊆
[R(B)]1−β . Thus,

ρα,β
R (A∩B) = 1− |[R(A ∩ B)]α|

|[R(A ∩ B)]β |
= 1− |[R(A)]α|

|[R(A ∩ B)]β |
≤ 1− |[R(A)]α|

|[R(A)]β |
= ρα,β

R (A).

Likewise, we can prove ρα,β
R (A ∩ B) ≤ ρα,β

R (B). Meanwhile

�α,β
R (A ∩ B) = 1 − |[R(A∩B)]1−α|

|[R(A∩B)]1−β | = 1 − |[R(A)]1−α|
|[R(A∩B)]1−β |

≤ 1 − |[R(A)]1−α|
|[R(A)]1−β | = �α,β

R (A).

Similarly, we can conclude �α,β
R (A ∩ B) ≤ �α,β

R (B).
(2) It is similar to the proof of (1).
(3) Since A ≈ B, we have R(A) = R(B) and R(A) = R(B). Thus by Definition

6 we conclude ρα,β
R (A) = ρα,β

R (B) and �α,β
R (A) = �α,β

R (B).

Example 1. Let U = {x1, x2}, α = 0.3, β = 0.3, and R is an IF relation on U
defined as follows:

R = {〈(x1, x1), 1, 0〉, 〈(x1, x2), 0.7, 0.2〉, 〈(x2, x1), 0.4, 0.4〉, 〈(x2, x2), 1, 0〉}.
If A = {〈x1, 0.1, 0.5〉, 〈x2, 0.6, 0.4〉} and B = {〈x1, 0.3, 0.4〉, 〈x2, 0.6, 0.4〉}, then
according to Definition 3, we have

R(A) = {〈x1, 0.1, 0.5〉, 〈x2, 0.4, 0.4〉}, R(A) = {〈x1, 0.6, 0.4〉, 〈x2, 0.6, 0.4〉},
R(B) = {〈x1, 0.3, 0.4〉, 〈x2, 0.4, 0.4〉}, R(B) = {〈x1, 0.6, 0.4〉, 〈x2, 0.6, 0.4〉}.
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Thus A � B, and
ρα,β

R (A) = 1− |[R(A)]0.3|
|[R(A)]0.3| = 1− 1

2 = 0.5, �α,β
R (A) = 1− |[R(A)]1−0.3|

|[R(A)]1−0.3| = 1−1 = 0,

ρα,β
R (B) = 1 − |[R(B)]0.3|

|[R(B)]0.3| = 1 − 1 = 0, �α,β
R (B) = 1 − |[R(B)]1−0.3|

|[R(B)]1−0.3| = 1 − 1 = 0.

Theorem 7. Let (U, R) and (U, S) be two IF approximation spaces, A ∈ IF(U),
and 0 < β ≤ α ≤ 1. If S ⊆ R, then ρα,β

S (A) ≤ ρα,β
R (A) and �α,β

S (A) ≤ �α,β
R (A).

Proof. Since S ⊆ R, for any (x, y) ∈ U × U , we have
μS(x, y) ≤ μR(x, y) and γS(x, y) ≥ γR(x, y).

Then according to Definition 3, it can be concluded that S(A) ⊇ R(A) and
S(A) ⊆ R(A). Hence, [S(A)]α ⊇ [R(A)]α, [S(A)]1−α ⊇ [R(A)]1−α and [S(A)]β ⊆
[R(A)]β , [S(A)]1−β ⊆ [R(A)]1−β . Therefore, by Definition 6 we obtain ρα,β

S (A) ≤
ρα,β

R (A) and �α,β
S (A) ≤ �α,β

R (A).

5 Conclusion

In this paper we have introduced rough approximations of IF sets with respect to
an IF approximation space and explored basic properties of IF rough approxima-
tion operators. We have also defined absolute roughness measures and relative
roughness measures of IF sets to describe roughness of the IF sets from mem-
bership degree and non-membership degree. For further study, the roughness
measures of IF sets in rough data analysis are needed.
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Abstract. Cluster validity indices have been used to evaluate the qual-
ity of fuzzy partitions. In this paper, we propose a new index, which
uses concepts of Fuzzy Rough sets to evaluate the average intra-cluster
similarity of fuzzy clusters produced by the fuzzy c-means algorithm.
Experimental results show that contrasted with several well-known clus-
ter validity indices, the proposed index can yield more desirable cluster
number estimation.

Keywords: Fuzzy c-means algorithm, Fuzzy Rough sets, Intra-cluster
similarity, Cluster validity index.

1 Introduction

Cluster analysis for revealing the structure existing in a given data (patterns)
set can be viewed as the problem of dividing the data set into a few compact
subsets. The fuzzy c-means (FCM) algorithm [1] for cluster analysis has been
the dominant approach in both theoretical and practical applications of fuzzy
techniques for the last two decades. The aim of FCM is to partition a given set
of data points (patterns) X = {x1,x2, · · · ,xn} ⊂ Rp into c clusters represented
as fuzzy sets F1, F2, · · · , Fc. The FCM objective function has the form of

Jm(U, V ) =
c∑

i=1

n∑

j=1

um
ij ‖ xj − vi ‖2, (1)

where vi is the centroid of the fuzzy cluster Fi, ‖·‖ is a certain distance function,
the exponent m > 1 is a fuzzifier, uij = Fi(xj) is the membership value of xj

belonging to Fi satisfying
∑c

i=1 uij = 1 (j = 1, 2, · · · , n) and 0 <
∑n

j=1 uij < n
(i = 1, 2, · · · , c), U = [uij ] is the partition matrix, and V = {v1,v2, · · · ,vc} is
the set of all cluster centroids. FCM iteratively updates U and V to minimize
Jm(U, V ) until a certain termination criterion has been satisfied. In FCM, a
fuzzy partition is denoted as (U, V ).

In FCM, if c is not known a priori, a cluster validity index must be used to
evaluate the quality of fuzzy partitions for different values of c to find out the
optimal cluster number. In most cited indices, e.g. the Xie-Beni index [2] and the

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 316–323, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fukuyama-Sugeno index [3], the intra-cluster similarity of a fuzzy partition is
estimated by using distances between data points and cluster centroids. But this
approach is not effective for large values of c, because limc→n ‖ xj − vi ‖2= 0
(see [4,5]). To overcome this shortcoming, the Kwon index [5] is proposed, and
another kind of index has been proposed in recent years [6,7]. This kind of index
only considers the inter-cluster proximity, which is evaluated by the membership
values of each data point belonging to all fuzzy clusters whereas the distance
function is not taken into account.

In this paper, we propose a new method to assess the intra-cluster similarity
of a fuzzy cluster by using the concepts of Fuzzy Rough sets. And the intra-
cluster similarity index of a fuzzy partition obtained from FCM is defined as the
average intra-cluster similarity of all fuzzy clusters. Experimental results indicate
that the proposed index can find the correct cluster number and is reliable in
comparison with several well-known cluster validity indices.

2 Basic Concepts

The concepts of Fuzzy Rough sets, which were proposed by Dubois and Prade
[8,9], aim at extending the classical Rough sets theory [10,11] to fuzzy informa-
tion systems. Let U be a nonempty set of objects. A fuzzy binary relation R on
U is called a T -similarity relation if R satisfies:
(1) Reflectivity: R(x, x) = 1, ∀x ∈ U ;
(2) Symmetry: R(x, y) = R(y, x), ∀x, y ∈ U ; and
(3) T -transitivity: R(x, z) ≥ T (R(x, y), R(y, z)), ∀x, y, z ∈ U ,
where T is a t -norm.

Definition 1. Let F be a fuzzy subset of U, and R a T-similarity relation, the
R-lower approximation and R-upper approximation of F, denoted by two fuzzy
sets R(F ) and R(F ) respectively, are defined as:

R(F )(x) = inf
y∈U

max{1 − R(x, y), F (y)}, (2)

R(F )(x) = sup
y∈U

min{R(x, y), F (y)}. (3)

The pair (R(F ), R(F )) is called a Fuzzy Rough set.
The above definitions were generalized in [12]. The R-lower approximation

and R-upper approximation of F are defined as:

R(F )(x) = inf
y∈U

IT {R(x, y), F (y)}, (4)

R(F )(x) = sup
y∈U

T {R(x, y), F (y)}, (5)

where IT is the residuation implication of T, i.e. IT (a, b) = sup{c ∈ [0, 1] :
T (a, c) ≤ b} for every a, b ∈ [0, 1].
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In general, the distance between two data points can qualify their similarity.
The longer distance indicates the less degree of similarity, and vice versa. This
intuition can be used to construct a fuzzy binary relation, which reflects the
whole structure of the given data set. Thus, based on it, we can construct the
lower approximations of F1, F2, · · · , Fc, and use these approximations to estimate
the quality of the corresponding fuzzy partition.

3 Proposed Intra-cluster Similarity Index

Definition 2. Let X = {x1,x2, · · · ,xn} ⊂ Rp be a given set of data points. A
fuzzy binary relation S on X is defined as: ∀xi,xj ∈ X,

S(xi,xj) = 1 − ‖ xi − xj ‖
dmax

, (6)

where dmax = maxi,j{‖ xi − xj ‖}.

Proposition 1. S is a TL-similarity relation, where TL is the Lukasiewicz t-
norm: TL(a, b) = max{0, a + b − 1} for every a, b ∈ [0, 1].

For the Lukasiewicz t-norm TL, ITL(a, b) = min{1, 1−a+b} for every a, b ∈ [0, 1].
Let Fi be a fuzzy cluster of X. By Eq. 4, we have:

S(Fi)(xi) = inf
xj∈X

min{1, 1 − S(xi,xj) + uij}. (7)

S(Fi)(xi) can be seen as the certainty degree of the event that a data point in
X belongs to the fuzzy cluster Fi according to the similarity between this data
point and xi. Intuitively, since S reflects the structure of the data set, we can
estimate the intra-cluster similarity of each fuzzy cluster based on this concept.

Definition 3. Let X = {x1,x2, · · · ,xn} ⊂ Rp be a given set of data points, and
F = {F1, F2, · · · , Fc} a fuzzy partition of X. ∀Fi ∈ F , the intra-cluster similarity
of Fi is defined as:

IS(Fi) =
1

|S(Fi)|
∑

x∈Bi

S(Fi)(x), (8)

where Bi = {x ∈ X |Fi(x) ≥ l} is the l-level set of Fi, 1
c ≤ l < 1, and | A |=∑

i A(xi) is the cardinality of a fuzzy set A.

Generally speaking, Bi contains “important” data points of the fuzzy cluster Fi.
IS(Fi) reflects the proportion of the sum of those “important” data points’ mem-
bership values belonging to the S -lower approximation of Fi to the cardinality
of the S -lower approximation of Fi.

Definition 4. Let X = {x1,x2, · · · ,xn} ⊂ Rp be a given set of data points, and
F = {F1, F2, · · · , Fc} a fuzzy partition of X. The intra-cluster similarity index
(IS) of F is defined as:

IS(F ) =
1
c

c∑

i=1

IS(Fi). (9)
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Table 1. Three existing validity indices for FCM

Index Functional description

XB Jm(U,V )
n mini�=j‖vi−vj‖2

FS Jm(U, V ) − Σc
i=1Σ

n
j=1u

m
ij ‖ vi − v1 ‖2

K
Jm(U,V )+ 1

c
Σc

i=1‖vi−v2‖2

mini�=j‖vi−vj‖2

v1 = 1
c
Σc

i=1vi, v2 = 1
n
Σn

i=1xi

IS(F ) is the average intra-cluster similarity of all fuzzy clusters in the fuzzy
partition F. A large value of IS(F ) indicates a good intra-cluster similarity of
the fuzzy partition F.

In [13], two validity indices, DBr and Dr, are also defined in rough-fuzzy
framework. The two indices extend the traditional Davies-Bouldin index and
Dunn index (see [14]), which are used for crisp clustering, respectively. The
main differences between the two indices and IS(F ) are as follows. Firstly, DBr

and Dr are used for Rough-Fuzzy c-means algorithm (a variation of Rough c-
means algorithm [15]), whereas IS(F ) is used for FCM. Since a crisp set can
be viewed as a special case of fuzzy sets, IS(F ) can be used for crisp clustering
either. Secondly, DBr and Dr use the distance between each data point and
the corresponding cluster center to evaluate the intra-cluster similarity, whereas
IS(F ) uses the concept of the lower approximation to do so. This concept can be
interpreted based on Zadeh’s possibility theory [9]. Finally, two parameters, wlow

and wup, must be assigned in DBr and Dr. These two parameters correspond
to the relative importance of the lower and upper approximations respectively.
In IS(F ), the threshold value l must be assigned. But in general, the task of
deciding the value of l is easier than that of wlow and wup.

4 Experimental Results

In order to evaluate the performance of the proposed index (IS ), we applied IS
and several well-known cluster validity indices, including the extended Xie-Beni
index (XB) [2], the Fukuyama-Sugeno index (FS ) [3] and the extended Kown
index (K ) [5], to fuzzy partitions obtained from FCM for two data sets. The
functional description of the above three index is listed in Table 1.

The first data set is a synthetic data set, which is shown in Fig. 1. It consists of
five clusters with 10 data points per cluster. The second one is the IRIS data set
from the UCI repository of machine learning databases [16], which represents
different categories of irises with four features. There are three classes in this
data set: Setosa, Versicolor and Virginica, with 50 samples per class. It is known
that two classes Versicolor and Virginica have a substantial overlap while the
class Setosa is linearly separable from the other two. Thus, the most suitable
cluster number is two or three.

For the mentioned data sets, we ran FCM for different values of c (c=2–9).
For a particular c and data set, FCM started from the same initial partition and
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Fig. 1. Synthetic data set

Table 2. Preferable values of c for the Synthetic data set chosen by each index
(c = 2– 9)

m XB FS K IS
1.5 5 9 5 5
1.6 5 9 5 5
1.7 5 7 5 5
1.8 5 5 5 5
1.9 5 5 5 5
2.0 5 5 5 5
2.1 5 5 5 5
2.2 5 5 5 5
2.3 5 5 4 5
2.4 5 5 4 5
2.5 5 4 4 5

Table 3. Preferable values of c for the IRIS data set chosen by each index (c = 2– 9)

m XB FS K IS
1.5 2 9 2 2
1.6 2 4 2 2
1.7 2 5 2 2
1.8 2 5 2 2
1.9 2 5 2 2
2.0 2 5 2 2
2.1 2 5 2 2
2.2 2 5 2 2
2.3 2 5 2 2
2.4 2 5 2 2
2.5 2 5 2 2
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Table 4. Values of the four indices on the Synthetic data set for c =2–9

c XB FS K IS
2 0.362 55.647 18.366 0.864
3 0.161 -79.486 8.388 0.817
4 0.079 -192.881 4.508 0.894
5 0.045 -231.212 3.029 0.957
6 0.528 -232.163 36.637 0.874
7 0.466 -235.497 32.527 0.833
8 0.498 -231.379 34.406 0.807
9 0.392 -246.722 29.577 0.824

(a) m=1.5

c XB FS K IS
2 0.371 63.161 18.809 0.793
3 0.152 -67.492 7.954 0.748
4 0.063 -193.353 3.685 0.832
5 0.043 -226.713 2.914 0.893
6 0.365 -225.784 24.984 0.814
7 0.436 -226.840 31.159 0.758
8 0.461 -221.323 32.741 0.713
9 0.368 -221.530 26.066 0.671

(b) m=1.7

c XB FS K IS
2 0.337 59.517 17.101 0.709
3 0.124 -56.816 6.563 0.670
4 0.047 -182.982 2.844 0.750
5 0.037 -200.951 2.625 0.753
6 0.342 -193.478 24.817 0.686
7 0.353 -188.133 27.196 0.625
8 0.335 -179.649 25.975 0.609
9 0.289 -175.988 24.622 0.593

(c) m=2.0

c XB FS K IS
2 0.275 49.525 14.012 0.619
3 0.087 -39.217 4.716 0.609
4 0.028 -136.591 1.937 0.611
5 0.024 -136.372 2.011 0.643
6 0.230 -122.279 20.219 0.564
7 0.202 -109.660 18.412 0.523
8 0.164 -102.443 16.733 0.500
9 0.168 -104.169 20.062 0.466

(d) m=2.5

Table 5. Values of the four indices on the IRIS data set for c =2–9

c XB FS K IS
2 0.062 -431.455 9.553 0.959
3 0.156 -515.259 24.812 0.893
4 0.183 -568.406 29.390 0.840
5 0.507 -533.600 83.792 0.801
6 0.228 -554.874 39.040 0.773
7 0.345 -559.269 59.150 0.737
8 0.548 -546.903 96.007 0.722
9 0.392 -577.570 67.790 0.737

(a) m=1.5

c XB FS K IS
2 0.059 -424.416 9.153 0.927
3 0.150 -496.773 23.899 0.846
4 0.174 -542.094 28.183 0.752
5 0.262 -628.713 43.251 0.679
6 0.211 -497.527 36.547 0.658
7 0.314 -498.966 54.866 0.664
8 0.307 -509.351 54.274 0.651
9 0.338 -510.541 59.708 0.629

(b) m=1.7

c XB FS K IS
2 0.054 -401.801 8.376 0.877
3 0.137 -450.495 21.955 0.777
4 0.159 -476.000 26.020 0.663
5 0.228 -544.972 38.241 0.578
6 0.175 -389.115 31.386 0.577
7 0.537 -344.699 99.514 0.549
8 0.254 -389.922 47.002 0.568
9 0.308 -384.021 57.666 0.556

(c) m=2.0

c XB FS K IS
2 0.044 -341.890 6.865 0.824
3 0.108 -344.731 17.709 0.693
4 0.124 -332.390 21.073 0.585
5 0.162 -348.558 28.637 0.512
6 0.114 -213.866 22.871 0.525
7 0.433 -162.868 93.035 0.554
8 0.197 -201.132 42.886 0.524
9 0.288 -149.523 69.877 0.537

(d) m=2.5
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ran for different values of m (m=1.5–2.5). After the fuzzy partition is obtained,
the four indices were computed. In the computation of IS, l = 1

c .
The results are shown in Tables 2– 5. As indicated in Tables 2 and 3, only

IS and XB correctly recognize correct cluster numbers of the two data sets for
all values of m. Furthermore, a cluster validity index is considered as a reliable
index when it is insensitive to changes in m [4,6]. From this point of view, IS
provides more reliable results compared to other indices, as shown in Tables 4
and 5, where the optimal value of each index is marked by boldface.

Thus we can conclude that the proposed index provides the best cluster num-
ber estimation for all test data sets.

5 Conclusions

The fuzzy c-means (FCM) algorithm is an effective tool for cluster analysis. In
FCM, if the cluster number c is not known a priori, a validation index must be
used to find out the optimal number of clusters. By using the concepts of Fuzzy
Rough sets, this paper presents a new intra-cluster similarity index to assess
the intra-cluster similarity of fuzzy partitions obtained from FCM. Experimen-
tal results show that contrasted with some existing cluster validity indices, the
proposed index yields the correct cluster number and is reliable in comparison
with several well-known cluster validity indices.

In future works, we plan to carry out extensive experiments and theoretical
analysis to firmly establish the utility of the proposed index. We also plan to
apply the basic ideas described in this paper to the evaluation of the inter-
cluster proximity as well as to the cluster validity analysis for crisp clustering
algorithms.
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Abstract. Support vector machines (SVM) have shown strong general-
ization ability in a number of application areas, including protein struc-
ture prediction. Bioinformatics techniques to protein secondary structure
prediction mostly depend on the information available in amino acid se-
quence. In this study, a new sliding window scheme is introduced with
multiple granular windows to form the protein data for training and test-
ing SVM. Orthogonal encoding scheme coupled with BLOSUM62 matrix
is used to make the prediction. The prediction of binary classifiers using
multiple windows is compared with single window scheme, the results
shows single window not to be good in all cases. New classifier is in-
troduced for effective tertiary classification. The accuracy level of the
new architectures are determined and compared with other studies. The
tertiary architecture is better than most available techniques.

Keywords: Binary classifier, BLOSUM62, encoding scheme, granular
computing, orthogonal profile, support vector machine (SVM), tertiary
Classifier.

1 Introduction

Protein secondary structure is closely related to the protein tertiary structure,
which determines the functional character of proteins. The success of genome
sequencing program resulted in massive amounts of protein sequence data (that
are produced by DNA sequencing) [HUMAN GENOME PROJECT]. This means
the output of experimentally determined protein structure is lagging far behind
the output of protein sequence. It is therefore becoming increasingly important
to predict protein structure from its amino acid sequence, using insight obtained
from already known structures.

The SVM method is a comparatively new learning system which is mostly used
in pattern recognition problems. This machines uses hypothesis space of linear
functions in a high-dimensional feature space, and it is trained with a learning
algorithm based on optimization theory. To compare the results of this study
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with previous results RS126 data set is used. RS 126 data set [1] is proposed by
Rost and Sander. Among neural networks Chandonia and Karplus [2] introduced
a novel method for processing and decoding the protein sequence with NNs
by using large training data set such as 681 non homologous proteins. And
with the use of jury method, this scheme records 74.8% percentage accuracy.
Some of the recent studies adopting this SVM learning machine for secondary
structure prediction are the one which used frequent profiles with evolutionary
information as an encoding schemes for SVM [3], the one which adopted two
layers of SVM, with a weighted cost function [4], the one which applied PSI-
BLAST PSSM profiles [5] as an input vector and the sliding window scheme
with SVM Representative architecture [6]. This paper is part of a research done
on protein secondary structure prediction the other section contains details about
another new tertiary architecture which combines both the svm and the neural
networks and uses genetic algorithms for optimization [13].

Granular computing is a study in which the details of data are seen from
different dimensions. It is an approach in which data are seen at different lev-
els/scales of granularity [14,15]. It is noted that the same data seen at different
levels of resolution depicts different patterns and regularities. The difference be-
tween multiple windows and single window method can also be considered as
different approach for scaling of protein sequence data to predict its structure.
The different course employed in considering granules in the encoding scheme
reflects on the accuracy of the method.

2 Multiple Granular Windows Encoding Scheme

The single window technique is challenged with multiple windows encoding
scheme in this study. In the case of multiple windows scheme, instead of using
a single sliding window multiple sliding windows are used. The center element
of the middle window becomes the target and all other windows are used as
feature values to train and test the SVM. Only the elements/residues/granules
inside the window forms the training/testing data, some residues in the middle
are skipped. Sliding window technique is applied to move to the next residue.
In this study windows of equal sizes are considered. Windows of different sizes
will be studied as future technique. In the case of different size windows, the
window in the middle will have more residues than windows at each side. In all
the multiple windows cases consider have three windows with different lengths.
Initially in this research BLOSUM 62 matrix [7] coupled with orthogonal en-
coding scheme is used. The single window technique is compared with multiple
windows encoding scheme. In both cases same parameter values are used.

The comparison of the two techniques reveals single window scheme not to be
good in all cases. For window of size 15 the simulation results show the multiple
windows to be better than single window for all the six binary classifiers. The
results are shown in the Table 1.In this case the single window is of length 15
and in the multiple windows case, 3 windows each of size 5 with gaps between the
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Table 1. Comparing Single Window and Multiple Windows

Binary Classifier Multiple Windows Single Window
H/ H 73.59% 73.52%
E/ E 78.39% 78.39%
C/ C 69.69% 69.62%
H/E 72.94% 72.33%
E/C 75.9% 75.59%
C/H 71.93% 71.74%

Average 73.74% 73.53%

Table 2. Simulation II: Single Window vs. Multiple Windows

Binary Classifier Accuracy of Multiple Windows Accuracy of Single Window
H/ H 72.37% 74.67%
E/ E 78.41% 78.34%
C/ C 70.00% 69.63%
H/E 72.24% 73.7%
E/C 75.45% 74.3%
C/H 71.43% 72.9%

Average 73.32% 73.92%

windows is used. In both the cases RBF kernel is used with the same parameter
values (gamma γ and cost co-efficient C).

In another simulation single window of size 21 is compared with 3 windows,
each of size 5 and a gap of 3 residues (gap means these three residue was not
considered to form the data for SVM) between the windows. The results of this
simulation are shown in Table 2. This indicates single window not be good in
all cases and multiple windows has less information to process (as it has only
15 residues to consider where as single window have 21 residues in each set).
Considering all the points multiple windows shows scope of performance. This
study was conducted to determine if single window scheme is solely the best
method to do protein secondary structure prediction, empirically there is scope
for other methods too. The optimal window length and other optimal values of
the parameters are selected to be the same as those used in previous studies. As
the previous studies have already run simulations and have obtained the optimal
values for all the parameters, further research is avoided.

3 Support Vector Machines

Support Vector Machines (SVM) are learning systems that use a hypothesis
space of linear function in a high dimensional feature space, trained with a
learning algorithm from optimization theory that implements a learning bias
derived from statistical learning theory. This learning strategy introduced by
Vapnik [8] and co-workers is a principled and very powerful method that in the
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few years since its introduction has already outperformed most other systems in
a wide variety of applications [9].

Binary classifier is frequently implemented by using a real-valued function
f : X ⊆ �2 → � in the following way: the input x = (x1, x2, ...., xn) is assigned
to the positive class, if f(x) ≥ 0, and otherwise to the negative class. If we consider
the case where f(x) is a linear function of x ∈ X, so that it can be written as

f(x) = w • x + b. (1)

=
n∑

i=1

wixi + b. (2)

The above algorithm for separable data, when applied to non-separable data,
will find no feasible solution: this will be evidenced by the objective function(
i.e. the dual Langrangian) growing arbitrarily large. So to extend these ideas
to handle non-separable data, the constraints (1) and (2) are relaxed, but only
when necessary, that is, by introducing further cost (i.e. an increase in the primal
objective function). This can be done by introducing positive slack variables
ξi, i = 1, .., n in the constraints, which then become:

xi • w + b ≥ +1 − ξi for yi = +1. (3)

xi • w + b ≤ −1 + ξi for yi = −1. (4)

4 SVM Complete: New Tertiary Classifier

In this method all the six binary classifiers are used to form the tertiary classifier.
In SVM Represnt. scheme [6], no matter what the distance values are positive
or negative, the classifier with the absolute maximum distance is chosen as the
representative classifier for the final decision of the class. In this paper, we con-
sider that fact that among the three one-versus-one classifier, two classifier try
to identify the same class, for example H/E and C/H tries to classify H ( only
difference is in H/E H is the positive class and in C/H H is the negative class).
So we add up the values of one-versus-one classifier which classifies the same
class. Then we also add the value of one-versus-rest classifier, to sum up the
total strength of the specific class.

For example, for calculating the strength of H, we have to:

Step 1: Check if SVM (H/E) is positive, if true
H = absolute value of SVM (H/E)

Step2: Check if SVM (C/H) is negative, if true
H = H + absolute value of SVM (C/H)

Step 3: Add one-versus-rest prediction value
H = H + value of SVM (H/H̃). *

* Note here we add the actual value not absolute, since we want to determine
H’s total strength.
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Similarly strength of E and C are calculated and final result is produced
depending upon which class has the highest value. Here SVM (H/E) means the
exact output the support vector machine gives after classifying the given data.

In SVM VOTE [3], all six binary classifiers are combined by using a sim-
ple voting scheme in which the testing sample is predicted to be state i (i is
among H, E and C) if the largest number of the six binary classifiers classify
it as state i. In case the testing samples have two classifications in each state,
it is considered to be a coil. Though all six binary classifiers are considered
for tertiary classification, only one constitutes the results. In SVM Complete
all six classifiers are used to calculate individual strengths of each class and
finally the one with highest strength is considered as the predicted secondary
structure.

5 Training and Testing Datasets

For comparing the results of this study with previously published results [6],
RS 126 data set is used. The RS 126 data set is proposed by Rost & Sander [1]
and according to their definition, it is non-homologous set. They used percentage
identity to measure the homology and defines non-homologous as no two proteins
in the set share more than 25% sequence identity over a length of more than 80
residues.

Table 3. 8-to-3 state reduction method in secondary structure assignment

DSSP Class 8 − state symbol 3 − state symbol Class Name
310- helix G
α-helix H H Helix
π-helix I

β-strand E E Sheet

isolated β-bridge B
Bend S
Turn T C loop

Rest (connection region) -

For each data set, the seven fold cross validation is done [1,3,6]. In the seven-
fold cross validation test, one subset is chosen for testing and remaining 6 subsets
are used for training and this process is repeated until all the subsets are chosen
for the testing. The secondary structure is converted from the experimentally
determined tertiary structure by DSSP [8], STRIDE [7] or DEFINE. In this
study, the DSSP scheme is used since it is the most generally used secondary
structure prediction method. In this study, these eight classes are reduced into
three regular classes based on the following Table 3.
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6 Accuracy Metrics

There are several standard evaluation methods of secondary structure predic-
tion. Among them, Q3, Matthew’s Correlation Coefficient and Segment Overlap
Measure (SOV) are widely used assessing methods. We have simulated results
comparing the Q3 percentage value of different tertiary classifier. Q3 is one of
the most commonly used performance measures in the protein secondary struc-
ture prediction and it refers to the three-state overall percentage of correctly
predicted residues. This measure is defined as,

Q3 =

∑
i∈{H,E,C} # of residues correctly predictedi

∑
i∈{H,E,C} # number of residues in class i

× 100 (5)

QI =
# of residues correctly predicted in state I

# number of residues in state I
× 100 (6)

I ∈ {H, E, C}
The new tertiary classifier is compared with other tertiary architectures of

former studies. The 7 fold test cases have been performed for a valid comparison
of the new tertiary classifier with that of the SVM Represnt. [6] contributed
classifier. The accuracy level of the tertiary classifier is important from research
point of view, as the main objective in this study is to accurately determine
the secondary structure of the protein sequence. The Table 4 gives the accuracy
level of all the methods [6] and also the accuracy levels the new SVM Complete
(tertiary classifier of this research). As shown in the table SVM Complete is
better than other available methods.

The table is adopted from [6].

Table 4. Accuracy of tertiary Classifiers on the RS 126 data set. Combined results of
7-fold cross validation are shown.

Tertiary Classifier Q3(%) QH(%) QE(%) QC(%)

TREE HEC [3] 63.2 51.0 45.2 79.9
TREE ECH [3] 62.3 62.4 26.2 79.0
TREE CHE [3] 61.2 64.8 47.3 65.2
SVM VOTE [3] 62.0 73.5 34.7 65
SVM MAX D [3] 63.2 61.0 40.1 75.5

DAG [3] 63.2 59.2 41.6 76.0
SVM REPRESNT. [6] 63.2 70.6 35.4 70.5

SVM Complete 66.7 64.0 40.8 80.3

First the accuracy levels of single window encoding scheme was compared
with different former methods. As seen in Table 4 the average accuracy of the
SVM Complete (a new classifier of this study) is better than other available
methods. The table 4 is the accuracy level for window of size 15. The results in
the table are obtained after 7-fold cross validation for window of size 15. The
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accuracies are compared with other classifiers that use single window encoding
scheme. In table 4 accuracy levels of SVM Represnt. [6] And SVM VOTE [3] are
obtained by simulation after 7-fold cross validation. All other former classifiers
accuracies are adopted from [6]. The simulations were performed for many win-
dow sizes. The accuracy levels of SVM Complete and SVM Represnt. are shown
in table 5 for window sizes 15, 13 and 11.

Table 5. Q3 % for Different Window Sizes

Window Size SVM Complete(%) SVM Represnt.
15 66.7% 63.15%
13 64.1% 62.43%
11 56.82% 55.93%

The are many researches that show accuracy greater than 75% but all this
studies use PSSM (Position Specific Scoring Matrix ) as their encoding scheme
for binary classifier. The reason for higher tertiary classifier accuracy is due
to the fact that their binary classifiers have over 85 % of prediction accuracy.
Accuracy levels of tertiary classifier using multiple windows encoding scheme are
shown in Table 6.

Table 6. Accuracy of Tertiary Classifier Using Multiple Windows Scheme

Tertiary Classifier Q3(%) QH(%) QE(%) QC(%)

SVM VOTE [3] 62.6 78.9 39.7 62.4
SVM REPRESNT. [6] 64.8 72.1 41.8 72.0

SVM Complete 68.4 69.1 45.0 78.8

7 Conclusion

After many demonstrations, it is now established that single window scheme is
not the only best method to encode while considering BLOSUM62 and orthogo-
nal matrix. Multiple windows scheme performed better in some cases where the
data given to the learning machine (SVM) was less informative than that given
in single window scheme. When both were encoded with equal amount of in-
formation, multiple window schemes’ performance is better than single window
scheme in every case.

All the tertiary classifiers discussed in this study have less accuracy when
directly compared with new tertiary classifiers introduces in this study. Though
the study is not better when compared directly to the claimed accuracy levels
of the former methods, the encoding scheme of binary classifiers used in those
methods is different and better than the one used in this study.
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Abstract. In this paper, we present a clustering method for non-
Euclidean relational data based on the combination of indiscernibility
level and linkage algorithm. Indiscernibility level quantifys the level of
global agreement for classifying two objects into the same category as in-
discernible objects. Single-linkage grouping is then used to merge objects
according to the indiscernibility level from bottom to top and construct
the dendrogram. This scheme enables users to examine the hierarchy of
data granularity and obtain the set of indiscernible objects that meets
the given level of granularity. Additionally, since indiscernibility level
is derived based on the binary classifications assigned independently to
each object, it can be applied to non-Euclidean, asymmetric relational
data.

1 Introduction

In some application areas where the relationships between instances are of main
concern, non-Euclidean (non-metric) relational data can be collected and pro-
vided as a subject for analysis. Non-Euclidean relational data involves the fol-
lowing properties: (1) objects are not represented in a usual feature vector space
but their relationships (usually similarity or dissimilarity) are measured and
stored in a relational data matrix. (2) The dissimilarity can be non-Euclidean;
that means the dissimilarity may not satisfy the triangular inequality nor sym-
metry. Examples in social sciences include subjectively judged relations between
students and input/output of the persons between countries [1].

Clustering of such non-Euclidean relational data has attracted much interests
as a method for discovering interesting groups of objects based on their pairwise
relationships. However, since attribute vectors do not exist and dissimilarities
are non-metric, the choice of clustering methods is limited compared to the
metric and/or non-relational cases. For example, methods such as k-means may
not be directly applied to this type of data as they assume the existence of data
vectors. Conventional hierarchical clusterings are capable of dealing with relative
or subjective measures. However, they involve other problems such as erosion or
expansion of data space by intermediate objects between large clusters, and in
some cases the results may change according to the order of processing objects
[2]. The NERF c-means proposed by Hathaway et al. [3] is an extension of fuzzy
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c-means and capable of handling the non-Euclidean relational data. However,
as it is a sort of partitional clustering method, it is still difficult to examine the
structure of the data, namely, the hierarchy of data groups. Additionally, most
of these methods are not designed to deal with asymmetric dissimilarity.

In this paper, we present a clustering method for non-Euclidean relational
data based on the combination of indiscernibility level and linkage algorithm.
Instead of using (dis-)similarity of objects, we use indiscernibility of objects as
proximity. The indiscernibility level represents the degree of global agreement
for classifying a pair of objects as indiscernible objects, and is calculated based
on the binary classifications determined independently to each object. Then the
simple nearest neighbor hierarchical clustering is used to construct a dendrogram
of objects, which represents the hierarchy of indiscernibility. This scheme allows
us to control the granularity of resultant object groups, by interactively selecting
the threshold level of indiscernibility. The benefits of this method also include
that the dissimilarity of objects for forming the binary classifications does not
need to satisfy symmetry nor triangular inequality; thus it could be applied to
various kind of datasets including relational data.

2 Preliminaries

This section provides basic definitions about indiscernibility, mostly come from
Rough Sets [4]. Let U �= φ be a universe of discourse and X be a subset of U . An
equivalence relation R classifies U into a set of subsets U/R = {X1, X2, ...XN}
that satisfies the following conditions: (1) Xi ⊆ U , Xi �= φ for any i, (2)Xi∩Xj =
φ for any i, j, i �= j, (3)∪i=1,2,...N Xi = U . Any subset Xi is called a category and
represents an equivalence class of R. A category in R containing an object x ∈ U
is denoted by [x]R. Objects xi and xj in U are indiscernible on R if (xi, xj) ∈ P
where P ∈ U/R. For a family of equivalence relations P ⊆ R, an indiscernibility
relation over P is defined as the intersection of individual relations Q ∈ P.

3 Method

The proposed method consists of three steps:

1. Assign a binary classification to each object.
2. Compute the indiscernibility level for each pair of objects according to the

binary classifications. Then construct a symmetric square matrix of indis-
cernibility level.

3. Construct a dendrogram from the indiscernibility matrix using the single
linkage (nearest-neighbor) hierarchical clustering.

3.1 Binary Classifications

First, each object independently classifies the entire set of objects U into two
disjoint sets P and U − P . This binary classification is formalized using an
equivalence relation. Let U = {x1, x2, ..., xN} be the set of objects we are
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Table 1. An example of asymmetric, non-Euclidean dissimilarity matrix

x1 x2 x3 x4 x5

x1 0.0 0.1 0.1 0.7 0.9
x2 0.2 0.0 0.1 0.6 0.8
x3 0.7 0.1 0.0 0.2 0.8
x4 0.2 0.3 0.2 0.0 0.6
x5 0.7 0.6 0.9 0.1 0.0

interested in and let Ri be an equivalence relation defined for object xi. Then
binary classification for xi is defined by

U/Ri = {Pi, U − Pi}, (1)

where Pi contains objects that are indiscernible to xi, and U−Pi contains objects
that are discernible to xi.

Method for determining the binary classification is arbitrary. Ri should pro-
vide some criteria to form Pi; however, it may not necessarily be defined explic-
itly. For example, one may simply form Pi according to the proximity between
objects as

Pi = {xj | d(xi, xj) ≤ Thdi}, ∀xj ∈ U. (2)

where d(xi, xj) denotes dissimilarity between objects xi and xj , and Thdi denotes
a threshold value of dissimilarity for object xi. Other methods can be used as
alternatives if they are appropriate with respect to the property of the data.
We have introduced a method for constructing binary grouping based on the
denseness of the objects in [5]; however, one may use any method, including
the choice of proximity measure, under the condition that it has the ability of
performing binary classification on U .

An important point to note is that U/Ri can be defined locally and inde-
pendently to each object xi, i = 1, 2, ..., N . For example, U/R1 can be defined
according only to the relationships between x1 and other N −1 objects, without
taking into account other information such as relationships between x2 and x3.
Similarly, U/Ri can be defined according only to the relationships between xi

and other N − 1 objects, without taking into account the relationships between
xj and xk, where j, k �= i. This property enables us to employ an asymmetric,
non-Euclidean proximity matrix as input data.

[Example 1:] Binary Classification
Let us assume U = {x1, x2, x3, x4, x5} and consider an asymmetric, non-
Euclidean dissimilarity matrix shown in Table 1. Suppose we define binary clas-
sifications U/Ri as

U/Ri = {Pi, U − Pi},

Pi = {xj | d(xi, xj) ≤ 0.5}, ∀xj ∈ U. (3)

Then we obtain the following five binary classifications.

U/R1 = {{x1, x2, x3}, {x4, x5}},
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U/R2 = {{x1, x2, x3}, {x4, x5}},

U/R3 = {{x2, x3, x4}, {x1, x5}},

U/R4 = {{x1, x2, x3, x4}, {x5}},

U/R5 = {{x4, x5}, {x1, x2, x3}}. (4)

Note that these five classifications are derived independently. Objects such as
x1 and x2 are classified as indiscernible in U/R1 and U/R2, but classified as
discernible in U/R3. �

3.2 Indiscernibility Level

The family of binary classifications U/R, where R = {R1, R2, . . . , RN}, produces
the finest sets of objects by taking intersection of all binary classifications. In
this scheme, objects fall into the same category in U/R only when all of the N
relations agree to classify them as indiscernible. If there is at least one relation
that discriminate them, they are regarded as discernible in U/R even when other
N − 1 relations agree to classify them as indiscernible.

Now recall the example shown in Eq. (4). This example contains three types
of binary classifications: U/R1 (= U/R2 = U/R5), U/R3 and U/R4. Since they
are slightly different, classification of U by the family of binary classifications R,
U/R, results in producing four very small, almost independent categories.

U/R = {{x1}, {x2, x3}, {x4}, {x5}}. (5)

This simple example demonstrates the following problems that prevent us from
observing data with appropriate granularity.

1. Binary classifications are defined independently; thus global relationships
between each classification is not taken into account.

2. Binary representation of indiscernible/discernible makes it difficult to reflect
the global agreement for classifying objects.

We here introduce indiscernibility level, a novel measure that solves the above
problems and makes it possible to represent the granularity of objects while
keeping the use of independently defined binary classifications. The indiscerni-
bility level, γ(xi, xj), defined for a pair of objects xi and xj , quantifies the ratio
of binary classifications that agree to classify xi and xj as indiscernible. The
higher level of indiscernibility implies that although there is small number of
counterview, they are likely to be treated as indiscernible, and vise versa.

The indiscernibility level γ(xi, xj) for objects xi and xj is defined as follows.

γ(xi, xj) =
∑|U|

k=1 δindis
k (xi, xj)

∑|U|
k=1 δindis

k (xi, xj) +
∑|U|

k=1 δdis
k (xi, xj)

, (6)

where

δindis
k (xi, xj) =

{
1, if (xi ∈ [xk]Rk

∧ xj ∈ [xk]Rk
)

0, otherwise. (7)
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and

δdis
k (xi, xj) =

⎧
⎨

⎩

1, if (xi ∈ [xk]Rk
∧ xj �∈ [xk]Rk

) or
if (xi �∈ [xk]Rk

∧ xj ∈ [xk]Rk
)

0, otherwise.
(8)

Equation (7) means that δindis
k (xi, xj) = 1 holds only when xi and xj are in-

discernible on U/Rk under the condition that they are also indiscernible with
xk. Equation (8) means that δdis

k (xi, xj) = 1 holds only when xi and xj are dis-
cernible on U/Rk, under the condition that either of them is indiscernible with
xk. By taking the sum of δindis

k (xi, xj) and δdis
k (xi, xj) for all k(1 ≤ k ≤ |U |) as

in Equation (6), we obtain the ratio of binary classifications that agree to treat
xi and xj as indiscernible objects. Note that in Equation (7), we excluded the
case when xi and xj are indiscernible but not indiscernible with xk. This is to
exclude the case where Rk does not significantly put weight on discerning xi and
xj . Pk for U/Rk is often determined by focusing on similar objects rather than
dissimilar objects. This means that when both of xi and xj are highly dissimilar
to xk, their dissimilarity is not significant for xk. Thus we only count the number
of binary classifications that certainly evaluate the dissimilarity of xi and xj .

[Example 2:] Indiscernibility Level
The indiscernibility level γ(x1, x2) of objects x1 and x2 in Example 1 is calculated
as follows.

γ(x1, x2) =
∑5

k=1 δindis
k (x1, x2)

∑5
k=1 δindis

k (x1, x2) +
∑5

k=1 δdis
k (x1, x2)

=
1 + 1 + 0 + 1 + 0

(1 + 1 + 0 + 1 + 0) + (0 + 0 + 1 + 0 + 0)
=

3
4
. (9)

Let us explain this example with the calculation of the numerator (1+1+0+1+0).
The first value 1 is for δindis

1 (x1, x2). Since x1 and x2 are indiscernible on U/R1
and obviously they are in the same class to x1, δindis

1 (x1, x2) = 1 holds. The
second value is for δindis

2 (x1, x2), and analogously, it equals 1. The third value
is for δindis

3 (x1, x2). Since x1 and x2 are discernible on U/R3, it becomes 0. The
fourth value is for δindis

4 (x1, x2) and it obviously, becomes 1. The last value is
for δindis

5 (x1, x2). Although x1 and x2 are indiscernible on U/R5, their class is
different to that of x5. Thus δindis

5 (x1, x2) becomes 0.
Indiscernibility levels for all pairs in U are tabulated in Table 2. Note that

the indiscernibility level of object xi to itself, γ(xi, xi), will always be 1. �

3.3 Hierarchy of Indiscernibility Level

The indiscernibility level can be used with thresholding to control the granu-
larity of data. According to the definition of indiscernibility level, any objects
(xi, xj) whose indiscernibility level exceeds the threshold value Thγ , namely, if
γ(xi, xj) ≥ Thγ holds, they should be treated as indiscernible. Since treating two
objects as indiscernible is equal to merge the two objects, and it is a stepwise
abstraction process that goes hierarchically from bottom to top according to the
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Table 2. Indiscernibility level γ for
objects in Eq. (4)

x1 x2 x3 x4 x5

x1 3/3 3/4 3/4 1/5 0/4
x2 4/4 4/4 2/5 0/5
x3 4/4 2/5 0/5
x4 3/3 1/3
x5 1/1

Table 3. Indiscernibility level γ for
objects in Eq. (4)(recalculated)

x1 x2 x3 x4 x5

x1 1.0 0.75 0.75 0.2 0.0
x2 1.0 1.0 0.4 0.0
x3 1.0 0.4 0.0
x4 1.0 0.33
x5 1.0

Table 4. Hierarchical merge process

Step pairs γ clusters

1 x2, x3 1.0 {x1}, {x2, x3}, {x4}, {x5}
2 x1, x2 0.75 {x1, x2, x3}, {x4}, {x5}
3 x2, x4 0.4 {x1, x2, x3, x4}, {x5}
4 x4, x5 0.33 {x1, x2, x3, x4, x5}

x1 x2 x3 x4 x5
1.00

0.75

0.40
0.33

x1 x2 x3 x4 x5
1.00

0.75

0.40
0.33

Fig. 1. Dendrogram for Example 3

indiscernibility level, it is possible to construct a dendrogram that represents
the hierarchy of indiscernibility by using conventional single-linkage hierarchi-
cal grouping method. By setting an appropriate threshold on the dendrogram,
one can obtain abstracted groups of objects that meet the given level of indis-
cernibility. Namely, one can interactively change the granularity of data. The
lowest threshold produces the finest groups of objects (granules) and the highest
threshold produces the coarsest groups.

[Example 3:] Hierarchy of Indiscernibility Level
Let us recall the case in Example 2. The matrix of indiscernibility levels is
provided in Table 2. For the sake of easy understandings, we provide in Table 3
recalculated values. Here we treat the indiscernibility level as similarity because
the mergence should proceed in decreasing order of γ(xi, xj). If one prefers to
treat it as dissimilarity, simply use 1 − γ(xi, xj) instead of γ(xi, xj).

Table 4 and Figure 1 provide the detail of merging process and the dendrogram
respectively. Since γ(x2, x3) = 1.0, these objects are indiscernible at the lowest
level; thus {x1}, {x2, x3}, {x4}, {x5} constitute the finest sets of objects (gran-
ules). At γ = 0.75, x1 becomes indiscernible with x2. Since x2 and x3 are also
indiscernible, {x1, x2, x3}, {x4}, {x5} constitute an abstracted sets of objects.
Similarly, at γ = 0.40, x4 becomes indiscernible with x2 and {x1, x2, x3, x4}, {x5}
constitute the more abstracted sets of objects. Finally, at γ = 0.33, all objects are
considered to be indiscernible and the most abstracted set is obtained. The level
of abstraction can be interactively set by changing the threshold value Thγ on
the dendrogram. For example, in Figure 1, one can set Thγ = 0.5 as a reasonable
level since the difference of γ between steps is relatively large. �
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Fig. 2. 2D plot of the test data
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Fig. 3. Dendrogram for the Test data

4 Experimental Results

We applied our method to a synthetic dataset. The dataset contained 19 objects
in two-dimensional space as shown in Figure 2. The dataset was generated by
Neyman-Scott method [6] with cluster number = 3. The label ’cls 1’ to ’cls 3’
shows the original class that each object belongs to.

The proposed method starts with determining a binary classification, U/Ri,
for each object xi, i = 1, 2, . . . , 19. In order to seclude the inference of meth-
ods/parameters for determining U/Ri, we used the following perfect binary clas-
sifications, which were generated based on the class labels of data.

U/Ri = {Pi, U − Pi},

Pi = {xj | c[xi] = c[xj ]}, ∀xj ∈ U. (10)

Then, in order to simulate the non-Euclidean properties, we applied random
disturbance to the perfect binary classifications. Taking the randomly disturbed
perfect classifications as input, we calculated the indiscernibility levels and con-
structed a dendrogram. Table 5 provides all the disturbed binary classifications
(U − Pi omitted for simplicity. x of xi also omitted in Pi for simplicity).

Using the binary classifications in Table 5, we calculated indiscernibility level
for each pair of objects. Then we generated the dendrogram shown in Figure 3.

At the lowest level of indiscernibility, 13 sets of objects were generated as
the finest granules because the randomly disturbed binary classifications were
slightly different each other. However, their disturbance affected locally; there-
fore the binary classifications retrained the ability of classifying most of the
object pairs correctly. In other words, although there exist a few counterviews,
object pairs in the same class retained higher level of agreement among binary
classifications to be classified as indiscernible objects. Therefore, if we changed
the threshold of indiscernibility level to a slightly lower value, for example to
0.8, most of the object pairs could recover their original indiscernibility. The
shapes of dendrogram around the bottom part visualizes this characteristics. As
the threshold level decreases (goes toward upper direction on the dendrogram),
the granularity of the data quickly became coarser, and then became stable for
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Table 5. Binary classifications for the test data

xi Pi of U/Ri xi Pi of U/Ri

x1 1,2,4,5,6,15 x11 7,8,9,10,11,12,13,14,15,12
x2 1,2,3,4,5,4 x12 7,8,9,10,11,13,14,15
x3 1,2,3,4,5,6,6 x13 7,8,9,10,11,12,13,14,15,6
x4 1,2,3,4,5,6,12 x14 7,8,9,10,12,13,14,15,15
x5 1,2,3,4,5,6,19 x15 7,8,9,10,11,12,13,14,15,6
x6 1,2,3,5,6,14 x16 16,17,18,19
x7 7,8,9,10,11,13,14,15 x17 16,17,18,19
x8 7,9,10,11,12,13,14,15 x18 16,17,18,19
x9 7,8,9,11,12,13,14,15 x19 16,17,18,19
x10 7,8,9,10,11,12,13,14

Thγ = 0.63 to 0.25. For these values, the method generated correct clusters,
which corresponded to the appropriate level of object granularity. If we further
set Thγ to lower value, objects with very low indiscernibility became merged
and excessively abstracted sets would be obtained.

The above results demonstrated that (1)the proposed method could visualize
the hierarchy of indiscernibility using dendrogram, (2) by changing the threshold
level on the dendrogram, users could interactively change the granularity of
objects defined based on the indiscernibility level, and (3) the method could
handle non-Euclidean relational data in which asymmetry and local disturbance
of the triangular inequality could occur.

5 Conclusions

In this paper, we presented a clustering method for non-Euclidean relational data
based on the combination of indiscernibility level and single-linkage AHC. Using
a simple synthetic dataset, we have demonstrated that the method could pro-
duce clusters that meet the user-specified level of granularity, and could handle
asymmetric dissimilarity using independently determined binary classifications.
It remains as a future work to apply this method to other real-world data, and
to compare the performance with other methods such as NERFCM [3].
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Abstract. Web prefetching is a primary means to reduce user access
latency. The PPM was used to predict user request patterns in traditional
literature. However the existing PPM models are usually constructed in
offline case, they could not be updated incrementally for user coming new
request, such models are only suitable for the relatively stable user access
patterns. In this paper, we present an online PPM granular prediction
model to capture the changing patterns and the limitation of memory,
its implementation is based on a noncompact suffix tree and a sliding
window W, the results show that our granular prediction model gives
the best result comparing with existing PPM prediction models.

Keywords: Granular Computing, Data Mining, Algorithms.

1 Introduction

Although high-speed network research has never stopped, users are experiencing
Web access latency more often than ever [1]. To tackle this latency problem, Web
caching proxies have been widely deployed as a means to reduce network traffic
and improve response time for Web accesses [2]. But its benefit has been signif-
icantly limited by the rapid change of objects in the web [3,4]. Web prefetching
is characterized as one of the efficient schemes to reduce the user access latency.
Web prefetching fetches objects and stores them in advance, the prefetched ob-
jects are likely to be accessed in the near future, and such accesses would be
satisfied from the cache rather than by retrieving the objects from the Web
server[5]. The core of Web prefetching is to build a prediction model that de-
scribes user request patterns and makes prediction. Prediction by Partial Match
(PPM) [6-9] is a commonly used technique, where prefetching decisions are made
based on historical user requests in a Markov prediction tree. The web content is
often dynamic changed, new user request may be available at any instant time,
user request patterns may change too. On the other hand, a PPM model may
soon become too big to size of its memory, so it is highly desirable to perform
the online update of the model incrementally. Therefore, the prediction model
should have the important online property. The online characteristic requires
that user requests are incrementally inserted and deleted to an existing PPM.
But existing PPM prediction models have the common limitations that they

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 340–347, 2008.
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aren’t online. They are normally constructed in off-line case. Such models are
only suitable for the relatively stable user access patterns. In past to reduce size
of PPM and higher prediction precision, the longest repeated subsequence (LRS
PPM [8]) and error-pruned (selective PPM [6]) been given, but the models could
not be updated in online too.

In this paper, we use some methods of granular computing[11] and propose an
online PPM granular prediction model which attempts to capture the changing
of user request patterns under limitation of the memory. To construct an real
prefetching system, we discuss some offline prediction granular models too, they
are important complementarity of our online granular model. The contributions
of this paper are the following: 1). Offline granular Models based on granular
computing is presented, they are important complementarity of our online gran-
ular model. 2). Our online PPM granular model based on noncompact suffix tree
is presented, it could incrementally insert the newest user request and deletes
the oldest user request. The detail of Larsson’s suffix tree construction algorithm
is seen in [10]. 3). A sliding window is proposed to control the number of user
requests in the granular model. Thus our online model could capture changing
of user patterns under size limitation of memory.

2 Offline Granular Prediction Models

2.1 Prediction Granula

A proxy log is viewed as a sequence L=r1,r2,...,ri,...,rn of page references, ri is the
five-tuples (rid , IP, sid, pid,t), where rid is an unique identifier, IP is an request
IP, sid is a being requested server identifier, pid is a being requested page, t is
the time of the request. Here,U=the set of all ri in L.

Definition 1. IP Sequence: An IP Sequence LIP ⊆ L, if a) ∀r ∈LIP , then
r.IP = IP ; b) ∀r ∈ L and r.IP = IP, then r ∈LIP . We have an equivalence
relation LIP1,..., LIPk in U. An IP sequence is often refered to an user sessions
as they assume that each IP address represents an individual web user.

Definition 2. t Sequence: An t Sequence Lt ⊆ L, if a)∀r ∈Lt, then r.t=t; b)
∀r∈ L and r.t=t, then r ∈Lt.We have an equivalence relation Lt1,..., Ltk in
U, where ti is a day or some days or a month or other times.

Definition 3. IP-Based Prediction Granula: If U is the set of LIP1, LIP2,...,
LIPk, we use a subset Gi to be prediction granula, here, Gi is a set of LIP
and IP in IP-SET, the subsets could be an equivalence partition R in U, then we
have U/R={G1, G2, ..., Gi, ..., Gm}, ∀X ⊆ U , then X∗ =

⋃
{Gi ∈ U/R|Gi ⊆ X},

X∗ =
⋃

{Gi ∈ U/R|Gi
⋂

X �= Φ}. For example, G1=the set of LIP1 and LIP2,
G2=the set of LIP3, LIP4and LIP5,..., Gm=the set of LIPk−2, LIPk−1 and LIPk.

Definition 4. t-Based Prediction Granula: If U is the set of Lt1, Lt2,..., Ltk,
we use a subset Gi to be prediction granula, here, Gi is the set of Lt and
t in T, the subsets could be an equivalence partition R in U, then we have
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U/R={G1, G2, ..., Gi, ..., Gm}, ∀X ⊆ U , then X∗ =
⋃

{Gi ∈ U/R|Gi⊆ X}, X∗=⋃
{Gi ∈ U/R|Gi

⋂
X �= Φ}. For example, G1= the set of t1 and t2, G2= the set

of t3, t4, t5 and t6,..., Gm=the set of tk−1 and tk. Here, Gi could be a time-based
partition group.

2.2 PPM-Based Prediction Granular Model

PPM model belongs to the context models. The context is a finite sequence of
symbols preceding the current symbol. The length of the sequence is called the
order of context. The context model keeps information about count of symbols’
appearances for the context. All context relations is used to build the PPM
model. PPM describes user request patterns in a Markov prediction tree. A k-
order PPM model maintains the Markov prediction tree with height k+1, which
corresponds to the contexts of length from 0 to k. Each node represents the
request sequence of Web pages that can be found by traversing the tree from
the root to the node. Figure 1 shows the prediction tree structure of the 3-
order PPM model for the request sequences Granula G1 of LIP1={ACD} and
LIP2={ACC} .It records the counts of request sequence occuring in the path.
For example, the notation C/2 indicates that request sequence{AC}was accessed
twice. Here, for G1 = {Lt1, Lt2} , Lt1 = {ACD} , Lt2 = {ACC},we have same
as figure 1 in some conditions too.

Fig. 1. Tree Structure of PPM for Request Sequences of {ACD} and {ACC}

3 Online t-Based Prediction Granular Model

Our idea of online prediction Granular model is based on two reasons: 1) the
proxy log will write dynamically down user being requested new page, a user
session in the log is an ordered user request sequence when the time difference
of consecutive request pages from same IP is less than some period, and the
U in definition 4 need be changed because of online needs. For example, the
boundary Ltk is changed into Ltk+Δtk; 2) because the size of online prediction
Granula Gm is usually limited, Gm need be change into Gm=a offline granula
Gm offline

⋃
online granula Gm online , and the oldest r element of Gm is added

to Gm offline, the new r is added to Gm online. Our p rediction granula always
incrementally inserts the newest user request and deletes the oldest user request
based on a noncompact suffix tree. To adapt the memory size and the change
of user request patterns, it keeps the recent requests by a sliding window W
and deletes the oldest requests as they drop out of the sliding window. A head
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pointer points to the newest user request and a tail pointer points to the oldest
user request. When new user request arrives, the head pointer is changed to the
request. The new request is directly inserted into if the difference between the
head pointer and the tail pointer is less than W, otherwise the request which
the tail pointer points to is deleted, then the new request is inserted and the tail
pointer is changed to next oldest request, so we have the following definition.

Definition 5. t-Based Prediction Granula with Δtk :
If U={Lt1, Lt2, ..., Ltk, LΔtk}, we use a subset Gi={Lt|t ∈ T } of U to be pre-
diction granula, and the subsets could be an equivalence partition R in U, then
we have U/R={G1, G2, ..., Gi, ..., Gm = Gm offline

⋃
Gm online}, ∀X ⊆ U ,

then X∗ =
⋃

{Gi ∈ U/R|Gi ⊆ X}, X∗ =
⋃

{Gi ∈ U/R|Gi
⋂

X �= Φ}.

3.1 Model’s Online Insertion

We use the noncompact suffix tree to implement the online prediction Granu-
lar model. The noncompact suffix tree is an efficient data structure for string
matching. A noncompact suffix tree indexes all substrings of a given string and
can be fast constructed. In the noncompact suffix tree, every node represents
a request sequence from the root to the node and includes a suffix pointer. In
order to fast update the model and predict requests, an additional structure
keeps track of the current longest context of active user sessions. A new user
request A is added to the model in the following fashion: 1). If A belongs to a
new user session S, S becomes active user session and the corresponding longest
current context points to the root node. 2). For the longest current context of
A’s active user session and all its suffixes, to check if any of child nodes represent
the new request A. 3). If such a node exists, its context count increments one.
Otherwise, create a new child node and set 1 as its context count. The longest
current context points to the new one. 4). If the new node is created, its suffix
pointer points to its suffix node.

The online insertion algorithm of our model is described as follows:
Algorithms ModelOnlineInsertion(A, T)

Input:new user request A, prediction tree T; Output:prediction tree T
Begin

i=Get Active Session( A ,T); p=Longest Current Context[i];
flag=0;Temp Suffix=0;
While (p)
Begin If (q is a child node of p and it represents A) q.count=q.count+1
Else Begin q is created ; q.count=1 End;
If (flag equals 0) Longest Current Context[i]=q; flag=1; p=p.Suffix Pointer;
If(Temp Suffix!=0) Temp Suffix.Suffix Pointer=q; Temp Suffix=q;
End; Return T;

End
Suppose user request sequence is {AABABC} and also is described as {121321}
for corresponding users. The label 1, the label 2 and label 3 represents user 1,
user 2 and user 3 respectively. The sequence is converted into user sessions. The
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session of user 1 is {ABC}, the session of user 2 is {AB} and the session of user
3 is {A}. The size of the sliding window is 6. Figure 2 shows that the request se-
quence is inserted into the PPM model. The arrow lines stand for suffix pointers.
Every step orderly inserts a request of {AABABC}. We use (6) in Figure 2 to
explain insertion principles. It inserts the sequence’s sixth request. The current
active contexts are {AB}, {B} and the root node, thus new nodes are created
and the corresponding context is {ABC}, {BC} and {C} respectively.

Fig. 2. Insertion Sequence {AABABC} Into the PPM

3.2 Model’s Online Deletion

We orderly delete these requests when they drop out of the sliding window W.
The oldest user request A is deleted from the model in the following fashion: 1).
The node p represents the request sequence A. Find p among the root’s child
nodes. 2). The node’s count reduces one from p to the corresponding longest
context node. The node is deleted when its count equals 0.

The online deletion algorithm is described as follows:
Algorithm ModelOnlineDeletion (T)

Input:prediction tree T; Output:prediction tree T
Begin

While (exceeds W)
Begin A=Tail.Request; Tail=Tail.Next; S=AX1X2X3...Xn; Find the node p
representing the request sequence A among the child nodes of the root; j=1;
While (p) Begin push(p); Find the node q which represents the request
sequence S[1]S[j+1] among the child nodes of p; If (q!=NULL) Begin push(q);
p=q; End; j++; End;
While (the stack is not empty) Begin p=pop(); p.count=p.count-1; If (p.count
equals 0) delete p; End;
End; Return T;

End.
Here, S represents the request sequence from A to the end request of the A’s user
session. Assume the size of the sliding window is adjusted to 4. Figure 3 shows
the result, which orderly deletes the leftmost two requests of {AABABC} from
(6) in Figure 2. We use (1) in Figure 3 to explain deletion principles. It deletes
the first request of {AABABC} and the request belongs to user 1. Therefore,
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Fig. 3. Orderly Deletion the Leftmost Two Requests of {AABABC}

the counts of the contexts {ABC}, {AB} and {A} all reduce one. The relative
node of the context {ABC} is deleted because its count has been changed to 0.

4 Experiments

We make the trace-driven simulation by an real trace file. The file is from a
Chinese University’s proxy server log that contains HTTP requests of half a
month. In this period there are totally 9.39 × 106 requests. There are a total of
477 unique IP addresses and 1,579,206 unique pages. We remove all dynamically
generated files. These files can be in types of .asp, .php ,.cgi and so on. We also
filter out the embedded image files such as .gif and .jpg. Finally, we also remove
requests with unsuccessful HTTP response code. The experiment takes 1/2 of
the log as training set and the remaining 1/2 as prediction set.

Precision is the ratio between the number of correct predictions and the num-
ber of total predictions. If the predicted page is accessed in a subsequent request,
this prediction is considered to be correct, otherwise incorrect. Hit rate (HR) is
the ratio between the number of correct predictions and the number of total
user requests. Traffic incremental rate (TIR) is the ratio between the traffic
from incorrect prefetching and the traffic from the total user requests.

We compare the performance of our online granular prediction model (OLPPM)
with the standard PPM (STPPM) and the longest repeated sequence (LRS
PPM). Each PPM model predicts at most an request according to a user’s cur-
rent request every time. In our model, the sliding windows’ size is the recent 7
days’ data and we create the first model using the training data and incremen-
tally update it using the test data. In each test, 2-order PPM model is employed.
Figure 4.(1) shows the precisions of three PPM models as the probability thresh-
old increases, the precision of our prediction model is consistently higher than
the other two prediction models when probability threshold varies from 0.5 to
0.9. There are several reasons to explain this. First, our prediction model keeps
the most recent user requests using a sliding window and captures the changing
user request patterns by online updating. Second, we consider the conditional
probability distribution of every node and predict the next request using the
node with low entropy. The precision of the LRS PPM model is higher than
that of the standard PPM model because it uses the longest repeated sequence
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Fig. 4. Precision and Hit Rate

Fig. 5. Traffic Incremental Rate

to predict the next request. Figure 4.(2) compares the hit rate of three PPM
models when the probability threshold varies from 0.5 to 0.9. The hit rates of
three PPM models decrease as the probability threshold increases, the hit rate
of our prediction model outperforms the LRS PPM and the standard PPM as
the probability threshold increases from 0.5 to 0.8. The hit rate of our model is
lower than that of the standard PPM model when the probability threshold is
0.9. The hit rate of LRS PPM is the lowest because it only uses longest repeated
subsequence to predict the users’ future requests. Figure 5 compares traffic in-
cremental rates among the three prediction models. The traffic increment rates
of three prediction models decrease as the probability threshold increases. Our
prediction model has the lowest traffic incremental rate. The main reason is that
our prediction model captures the changing web environment and predicts more
beneficial web request every time. The standard PPM model has the highest traf-
fic incremental rate because its prediction precision is lowest and the prediction
number is high.

5 Conclusions

In this paper, we propose an online PPM granular prediction model based on the
noncompact suffix tree, it uses a sliding window of memory and could capture
the changing user request patterns,and could insert the newest user request and
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delete the oldest request that drops out of the sliding window. It predicts user
requests based on the longest match. The results show that our online PPM
model gives the best result comparing with existing PPM prediction models.
However, seeing from definition 3 and 4, our online PPM granular prediction
model is only an online prediction granula, other Gi is an offline PPM-based
prediction granula, how an real prediction system to be constructed will be our
future goal.
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Abstract. Granular computing has impact on development methods in
such areas as knowledge discovery and data mining. This paper firstly
presents a new axiomatic definition of knowledge granularity, then gives
a series of methods of measuring knowledge granularity including con-
crete measurements lacking parameters and general measurements with
parameters. Furthermore, several combinatorial forms of different gran-
ularity formulas are described. The principal results seem to have some
theoretic and applied value to build granularity computation in informa-
tion system.

Keywords: Granular computing, Axiomation, Information system.

1 Introduction

Granularity has its origin in physics, where it refers to the average metric of
the size of particles, in fact, physics granularity means subdivision that makes
physical object finer. When we regard knowledge or information as the research
object, the measurement the knowledge granularity or information granularity.
In an information system, the granularity means actually average measure of re-
finement degree of knowledge and information. In general knowledge granularity
can represent discernibility ability of knowledge in rough set theory, in fact, the
smaller the knowledge granularity is, the stronger its discernibility ability is.

Granularity computation is a very new active direction in the research of ar-
tificial intelligence. This is a kind of new concept of information processing and
calculation normal form, which has extensive application prospects in numerous
fields such as artificial intelligence, knowledge discovery, image compression, se-
mantic Web service etc. The basic idea of granular computing is reflected in a
lot of fields including rough set theory, cluster analysis, machine learning, the
database and information retrieval, etc [1,2]. At present, there are several kinds
of models in granular computing based on: (1) rough sets[3]; (2) word computing
model [4]; (3) quotient space model [5].

In 1979, the problem of fuzzy information granularity was introduced by
Zadeh in [6]. Especially, several measures in an information system closely associ-
ated with granular computing such as granulation measure, information entropy,
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rough entropy and knowledge granulation and their relationships were discussed
in [7,8]. In [9,10], the constructive method is used to the research of knowledge
granularity. The current status of granular computiong is summariuzed in [11].
The paper [12,13] has proposed a kind of axiomatic definition of knowledge gran-
ularity, which defines granularity as one mapping satisfying a certain condition,
aiming at establishing the corresponding relation between attribute subset and
non-negative number, but this definition has some deficiencies as follows: firstly,
if we take one constant function as the mapping, all the conditions in the defini-
tion are still satisfied, it is obviously unreasonable to weigh different knowledge
granularity with it; in addition, the value of granularity is a non-negative num-
ber, the upper boundary is indeterminate, that is, the granularity might not be
0 when it is the finest division, and the granularity is not be 1 while the dividing
is the most coarse, which does not accord with people’s habit of thought greatly
. For overcoming the deficiencies in axiomatic definition of knowledge granu-
larity in [12,13], here we put forward a new axiomatic definition of knowledge
granularity that is more succinct, and provides a series of methods of measuring
knowledge granularity on what we have researched above. Furthermore, we have
also discussed the combinatorial forms of the knowledge granularity.

2 Axiomatic Definition of Knowledge Granularity

In the following, an axiom definition of knowledge granularity is given.

Definition 2.1 Let S = (U, A) be an information system, G be a mapping from
the power set of A to the set of real numbers. We say that G is a knowledge
granularity in an information system if G satisfies the following conditions:

(1)∀P, Q ⊆ A ,if there exists a bijection f : U/ind(P ) → U/ind(Q),which satis-
fies |Pi| = |f(Pi)|, Pi ∈ U/ind(P ) , then G(P ) = G(Q) (invariance);
(2)∀P, Q ⊆ A, if P ≺ Q, then G(P ) < G(Q) (strictly monotone);
(3)∀P ⊆ A, if U/ind(P ) = {{ui}|ui ∈ U}, then G(P ) = 0; if U/ind(P ) = {{U}},
then G(P ) = 1 (boundedness).

We can get ∀P ⊆ A, 0 ≤ G(P ) ≤ 1 from above definition.

Remark. The definition 2.1 is also established in incomplete information system.

3 Measure of Knowledge Granularity

Set out from definition 2.1, on the basis of the “average”thought in statistics,
including arithmetic average and harmonic average, we construct in our article
some new knowledge granulations have. These granulations are all significative
from the average meaning. It is to be noted here that the concept of geometric
average can’t be used in the structure of knowledge granularity.
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Definition 3.1 Let S = (U, A) be an information system, ∀R ⊆ A, U/ind(R) =
{R1, R2, · · · , Rm}, then knowledge granularity can be defined as follows:

G(R) =
1

|U |2 − 1

(
|U |

m∑

i=1
1/|Ri|

− 1

)

.

Theorem 3.1 Let S = (U, A) be an information system, ∀R ⊆ A, U/ind(R) =
{R1, R2, · · · , Rm}, then G in definition 3.1 is knowledge granularity under
definition 2.1.

Proof. G in definition 3.1 satisfies condition (1),(3) of definition 2.1 obviously,
we prove that the condition (2) holds too.

Let P, Q ⊆ A two subsets on A, such that P ≺ Q, and let U/ind(P ) =
{P1, P2, · · · , Pm} and U/ind(Q) = {Q1, Q2, · · · , Qn}. Because P ≺ Q, so m > n,
and there exists a partition C = {C1, C2, · · · , Cn} of {1, 2, · · · , m}, such that

Qj =
⋃

i∈Cj

Pi, j ≤ n.

Hence,

G(Q) =
1

|U |2 − 1

(
|U |

n∑

j=1
1/|Qj|

− 1

)

=
1

|U |2 − 1

(
|U |

n∑

j=1
1/|

⋃

i∈Cj

Pi|
− 1

)

=
1

|U |2 − 1

(
|U |

n∑

j=1
1/

∑

i∈Cj

|Pi|
− 1

)

.

Since m > n , so there exists Cj0 ∈ C, satisfying |Cj0 | > 1. Consequently,

1
∑

i∈Cj0

|Pi|
<

∑

i∈Cj0

1
|Pi|

,
1

∑

i∈Cj ,j �=j0

|Pi|
≤

∑

i∈Cj ,j �=j0

1
|Pi|

.

That is,
m∑

i=1

1
|Pi|

>

n∑

j=1

1
|Qj |

.

So we obtain that:

G(Q) =
1

|U |2 − 1

(
|U |

n∑

j=1
1/|Qj|

− 1

)
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>
1

|U |2 − 1

(
|U |

m∑

i=1
1/|Pi|

− 1

)

= G(P ).

Thus, G(R) in definition 3.1 is the knowledge granulation under definition 2.1.
Next, we will give the generalization form of theorem 3.1:

Theorem 3.2 Let S = (U, A) be an information system, ∀R ⊆ A, U/R =
{R1, R2, · · · , Rm}, then

Gα(P ) =
1

|U |α+1 − 1

(
|U |

m∑

i=1
1/|Ri|α

− 1

)

, α ≥ 0

is knowledge granularity under definition 2.1.
The proof of this theorem is similar to the certification process of theorem

3.1, only need to pay attention to the following inequality:

n∑

i=1

1
xα

i

>
1

(
n∑

i=1
xi

)α , xi > 0, α ≥ 0, n > 1(integer).

From Gα(R) defined in theorem 3.2, G0(R) = 1
|U|−1 ( |U|

m − 1) is a particular case

of Gα(R) when α = 0, this is the most basic calculational formula of knowledge
granularity.

Definition 3.2 Let S = (U, A) be an information system, ∀R ⊆ A, U/ind(R) =
{R1, R2, · · · , Rm}, the knowledge granularity of R can be defined as follows:

GK(R) =
1

|U | − 1

(
1

|U |

m∑

i=1

|Ri|2 − 1

)

.

Theorem 3.3 Let S = (U, A) be an information system, ∀R ⊆ A, U/ind(R) =
{R1, R2, · · · , Rm}, then GK in definition 3.2 is knowledge granularity under
definition 2.1 .

The proof of the theorem 3.3 can be finished by imitating certification process
of theorem 3.1, its generalization form of GK in definition 3.2 is the following
theorem:

Theorem 3.4 Let S = (U, A) be an information system, ∀R ⊆ A,U/ind(R) =
{R1, R2, · · · , Rm}, then

GKα(R) =
1

|U |α−1 − 1

(
1

|U |

m∑

i=1

|Ri|α − 1

)

, α > 1

is knowledge granularity under definition 2.1 .
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The proof of this theorem is similar to the certification process of theorem
3.1, only need to pay attention to the following inequality:

( n∑

i=1

xi

)α

>

n∑

i=1

xα
i , xi > 0, α > 1, n > 1(integer).

That is,
n∑

i=1
(xi/

n∑

i=1
xi)α < 1, omitting detailed certification process.

Next, we will research the limit of GKα(R) when α → 1+:

lim
α→1+

GKα(R) = lim
α→1+

1
|U |α−1 − 1

(
1

|U |

m∑

i=1

|Ri|α − 1

)

= lim
α→1+

1
|U |α−1 ln|U |

(
1

|U |

m∑

i=1

|Ri|αln|Ri|
)

=
1

|U |ln|U |

m∑

i=1

|Ri|ln|Ri|.

Is this a knowledge granularity formula? We can verify that it satisfies every
condition of definition 2.1, so it is really a knowledge granularity.

4 Combination Forms of Knowledge Granularity

The knowledge granularity formulas can be combined depending on the below
conclusion:

Theorem 4.1 Suppose n-ary function f(x1, x2, · · · , xn) (0 ≤ xi ≤ 1,i = 1,
2, · · · , n) satisfies the following conditions:

(1)the function is strictly increasing on every variable;
(2)f(0, 0, · · · , 0) = 0, f(1, 1, · · · , 1) = 1.

Let S = (U, A) be an information system, ∀R ⊆ A, if G1, G2, · · · , Gn are n
knowledge granularity formulas of R , so are f(G1(R), G2(R), · · · , Gn(R)).
The theorem can be verified directly. We can obtain the following deduction:

Deduction 4.1 Let S = (U, A) be an information system, ∀R ⊆ A, if G1,
G2, · · · , Gn are n knowledge granularity formulas of R , then, the next four
formulas are also knowledge granularity of R:

(1)
n∑

i=1
αiGi, 0 < αi < 1,

n∑

i=1
αi = 1;

(2)
n∏

i=1
Gαi

i , 0 < αi < 1,
n∑

i=1
αi = 1;

(3)
n∨

i=1
Gi;

(4)
n∧

i=1
Gi.
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5 Conclusions

This paper presents a new definition of knowledge granularity, then gives a series
of methods of measuring knowledge granularity. Especially, several combination
forms for different granularity are described. These results can explain the variety
of knowledge granularity, we can choose one to calculate knowledge granularity
of information system depending on the detailed conditions, even consider the
combination of different knowledge granularity formulas, to balance different
attitudes to understanding of knowledge granularity, or to emphasize a certain
attitude, which can achieve better results. The presented results seem to have
a theoretic and applied value to build granularity computation in information
system. They can be used in knowledge reduction, measurement of attribute
significance and rules acquisition. The practical application of the knowledge
granularity this text provides is the subject that we further want to study. We
will discuss in another paper examples of such applications.
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Abstract. In this paper, concepts of intuitionistic fuzzy measurable
spaces and intuitionistic fuzzy σ-algebras are first introduced. Relation-
ships between intuitionistic fuzzy rough approximations and intuition-
istic fuzzy measurable spaces are then discussed. It is proved that the
family of all intuitionistic fuzzy definable sets induced from an intu-
itionistic fuzzy serial approximation space forms an intuitionistic fuzzy
σ−algebra. Conversely, for an intuitionistic fuzzy σ−algebra generated
by a crisp algebra in a finite universe, there must exist an approximation
space such that the family of all intuitionistic fuzzy definable sets is the
class of all measurable sets in the given intuitionistic fuzzy measurable
space.

Keywords: Approximation spaces, intuitionistic fuzzy rough sets, intu-
itionistic fuzzy sets, measurable spaces, rough sets, σ−algebras.

1 Introduction

Approximation spaces in rough set theory and measurable spaces in measure
theory are two important structures to represent knowledge. An approximation
space in Pawlak’s rough set theory consists of a universe of discourse and an
equivalence relation imposed on it [6]. Based on the approximation space, the
notions of lower and upper approximation operators are induced. A set is said
to be definable if its lower and upper approximations are the same, and unde-
finable otherwise [6,12]. The notion of definable sets in rough set theory plays
an important role. A measurable space in measure theory contains a universe of
discourse and a family of measurable sets called a σ−algebra [4]. Based on the
measurable space, uncertainty of knowledge can be analyzed.

An equivalence relation in Pawlak’s original rough set model is a very re-
strictive condition which may affect the application of rough set theory. The
generalization of Pawlak’s rough set model is thus one of the main directions
for the study of rough set theory. Many authors have developed Pawlak’s rough
set model by using nonequivalence relations in crisp and/or fuzzy environments
(see e.g. literature cited in [7,8]). Other researchers have also defined rough ap-
proximations of intuitionistic fuzzy sets [2,3,5,9,10].

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 355–362, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



356 W.-Z. Wu and L. Zhou

It seems useful to investigate connections of definability in rough set theory
and measurability in measure theory. In [11], Wu and Zhang explored the con-
nections between rough set algebras and measurable spaces in both crisp and
fuzzy environments. In this paper, we will further study relationship between
the two knowledge representation structures in intuitionistic fuzzy environment.

2 Concepts Related to Intuitionistic Fuzzy Sets

Let U be a nonempty set called the universe of discourse. The class of all subsets
(fuzzy subsets, respectively) of U will be denoted by P(U) (by F(U), respec-
tively). For A ∈ P(U), 1A will denote the characteristic function of A, i.e.,
1A(x) = 1 for x ∈ A and 0 otherwise. N will denote the set of all positive
integers.

Definition 1. [1] Let a set U be fixed. An intuitionistic fuzzy (IF for short) set
A in U is an object having the form

A = {〈x, μA(x), γA(x)〉 | x ∈ U},
where μA : U → [0, 1] and γA : U → [0, 1] satisfy 0 ≤ μA(x) + γA(x) ≤ 1 for all
x ∈ U , and μA(x) and γA(x) are called the degree of membership and the degree
of non-membership of the element x ∈ U to A, respectively. The family of all IF
subsets in U is denoted by IF(U). The complement of an IF set A is denoted
by ∼ A = {〈x, γA(x), μA(x)〉 | x ∈ U}.

Obviously, a fuzzy set A = {〈x, μA(x)〉 | x ∈ U} can be identified with the IF set
of the form {〈x, μA(x), 1 − μA(x)〉 | x ∈ U}. We can observe that an IF set A in
U associates with two fuzzy sets μA and γA, we will simply write A = (μA, γA)
and A(x) = (μA(x), γA(x)) for x ∈ U .

The basic set operations on IF(U) are defined as follows [1]: ∀A, B ∈ IF(U),
• A ⊆ B if and only if (iff) μA(x) ≤ μB(x) and γA(x) ≥ γB(x) for all x ∈ U,
• A ⊇ B iff B ⊆ A,
• A = B iff A ⊆ B and B ⊆ A,
• A ∩ B = {〈x, min(μA(x), μB(x)), max(γA(x), γB(x))〉 | x ∈ U},
• A ∪ B = {〈x, max(μA(x), μB(x)), min(γA(x), γB(x))〉 | x ∈ U},
•

⋂

i∈J

Ai = {〈x,
∧

i∈J

μAi(x),
∨

i∈J

γAi(x)〉 | x ∈ U}, Ai ∈ IF(U), i ∈ J , J is an

index set,
•

⋃

i∈J

Ai = {〈x,
∨

i∈J

μAi(x),
∧

i∈J

γAi(x)〉 | x ∈ U}, Ai ∈ IF(U), i ∈ J , J is an

index set.
We define a constant IF set ̂(α, β) = {〈x, α, β〉 | x ∈ U}, where 0 ≤ α, β ≤

1, α + β ≤ 1. A special IF set (IF singleton set) 1y = (μ1y , γ1y) for y ∈ U is
defined as follows:

μ1y (x) =
{

1, if x = y,
0, if x �= y.

, γ1y(x) =
{

0, if x = y,
1, if x �= y.

.

The IF universe set is 1∼ = U = {〈x, 1, 0〉 | x ∈ U} and the IF empty set is
0∼ = ∅ = {〈x, 0, 1〉 | x ∈ U}.
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Definition 2. An IF relation R on U is an IF subset of U × U , that is,
R = {〈(x, y), μR(x, y), γR(x, y)〉 | x, y ∈ U},

where μR, γR : U × U → [0, 1] satisfy 0 ≤ μR(x, y) + γR(x, y) ≤ 1 for all
(x, y) ∈ U × U . An IF relation R on U is referred to as serial if for each x ∈ U
there exists an y ∈ U such that μR(x, y) = 1 and γR(x, y) = 0. A crisp relation
R on U is referred to as serial if for each x ∈ U there exists an y ∈ U such that
(x, y) ∈ R. A crisp relation R on U is referred to as equivalent if it is reflexive,
symmetric and transitive.

3 Intuitionistic Fuzzy Measurable Spaces

Definition 3. ([4]) Let U be a nonempty set. A subset A of P(U) is referred to
as a σ-algebra iff it satisfies following axioms:

(A1) U ∈ A,
(A2) {Xn|n ∈ N} ⊂ A =⇒

⋃
n∈N Xn ∈ A,

(A3) X ∈ A =⇒∼ X ∈ A.
The sets in A are called measurable sets (also called observable sets) and the
pair (U, A) a measurable space.

With the definition we can see that ∅ ∈ A and
(A2)′ {Xn|n ∈ N} ⊂ A =⇒

⋂
n∈N Xn ∈ A

If U is a finite universe of discourse, then axiom (A2) in Definition 3 can be
replaced by axiom (A2)′′:

(A2)′′ X, Y ∈ A =⇒ X ∪ Y ∈ A.
In such a case, A is called an algebra, alternatively, in a finite universe of dis-
course a family of sets of U is a σ−algebra if and only if it is an algebra. Moreover,
if we denote

[x]A = ∩{X ∈ A|x ∈ X}, x ∈ U,

then by (A2)′ we have [x]A ∈ A, it can be checked that {[x]A|x ∈ U} forms a
partition of U and [x]A is called the atomic set of A containing x.

Definition 4. Let U be a nonempty set. A subset F of IF(U) is referred to as
an IF σ-algebra iff it satisfies following axioms:

(IF1) ̂(α, β) ∈ IF for all α, β ∈ [0, 1] with α + β ≤ 1,
(IF2) {An|n ∈ N} ⊂ F =⇒

⋃
n∈N An ∈ F ,

(IF3) A ∈ F =⇒∼ A ∈ F .
The sets in F are called IF measurable sets and the pair (U, F) an IF measurable
space.

With the definition we can see that 0∼, 1∼ ∈ F and
(IF2)′ {An|n ∈ N} ⊂ F =⇒

⋂
n∈N An ∈ F .

If U is a finite universe of discourse, then axiom (IF2) in Definition 4 can be
replaced by axiom (IF2)′′:

(IF2)′′ A, B ∈ F =⇒ A ∪ B ∈ F .
In such a case, F is also called an IF algebra.
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Definition 5. Let U be a finite universe of discourse. An IF algebra F on U
is said to be generated by a crisp algebra A iff for each A ∈ F there exist
ai, bi ∈ [0, 1], i = 1, 2, . . . , k, such that

μA(x) =
k∑

i=1

ai1Ci(x), γA(x) =
k∑

i=1

bi1Ci(x), ∀x ∈ U,

where {C1, C2, . . . , Ck} = {[x]A|x ∈ U} is the atomic sets of A.

Remark 1. If an IF algebra F on U is generated by a crisp algebra A, we can
see that, for each A ∈ F , μA, γA : U → [0, 1] are measurable with respect to
(w.r.t.) A-B, where B is the Borel subsets of [0, 1], alternatively, μA and γA are
measurable in the sense of Zadeh [13].

4 Intuitionistic Fuzzy Rough Sets

In this section, we introduce IF rough approximation operators induced from an
IF approximation space and present their properties.

Definition 6. Let U be a nonempty universe of discourse and R an IF relation
on U , the pair (U, R) is called an IF approximation space. For any A ∈ IF(U),
the upper and lower approximations of A w.r.t. (U, R), denoted by R(A) and
R(A), are two IF sets and are defined respectively as follows:

R(A) =
{〈

x, μR(A)(x), γR(A)(x)
〉

| x ∈ U
}
,

R(A) =
{〈

x, μR(A)(x), γR(A)(x)
〉

| x ∈ U
}
,

where
μR(A)(x) = ∨y∈U [μR(x, y) ∧ μA(y)], γR(A)(x) = ∧y∈U [γR(x, y) ∨ γA(y)];

μR(A)(x) = ∧y∈U [γR(x, y) ∨ μA(y)], γR(A)(x) = ∨y∈U [μR(x, y) ∧ γA(y)].

The pair (R(A), R(A)) is called the IF rough set of A w.r.t. (U, R), R, R :
IF(U) → IF(U) are referred to as upper and lower IF rough approximation
operators respectively and the system (IF(U), ∩, ∪, ∼, R, R) an IF rough set al-
gebra. If R(A) = A = R(A), then A is referred to as definable, otherwise it is
undefinable.

Remark 2. If (U, R) is a Pawlak approximation space, i.e., R is an equivalence
(crisp) relation on U , then it can be checked that

μR(A)(x) = ∨y∈[x]RμA(y), γR(A)(x) = ∧y∈[x]RγA(y);

μR(A)(x) = ∧y∈[x]RμA(y), γR(A)(x) = ∨y∈[x]RγA(y),
where [x]R is the R-equivalent class containing x.

The following Theorem 1 can be easily concluded from Definition 6.

Theorem 1. Let (U, R) be an IF approximation space. Then the upper and
lower approximation operators in Definition 6 satisfy the following properties:
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A, Ai ∈ IF(U), i ∈ J , J is an index set, α, β ∈ [0, 1] with α + β ≤ 1,

(IL1) R(A) =∼ R(∼ A), (IU1) R(A) =∼ R(∼ A);
(IL2) R(A ∪ ̂(α, β)) = R(A) ∪ ̂(α, β), (IU2) R(A ∩ ̂(α, β)) = R(A) ∩ ̂(α, β),
(IL3) R(

⋂

i∈J

Ai) =
⋂

i∈J

R(Ai), (IU3) R(
⋃

i∈J

Ai) =
⋃

i∈J

R(Ai).

Properties (IL1) and (IU1) show that the IF rough approximation operators R
and R are dual to each other. Properties with the same number may be also
considered as dual ones. It can be observed that properties (IL2) and (IU2)
respectively imply following (IL4) and (IU4):

(IL4) R(1∼) = 1∼, (IU4) R(0∼) = 0∼.

The following properties can be induced from (IL3) and (IU3):

(IL5) R(
⋃

i∈J

Ai) ⊇
⋃

i∈J

R(Ai), (IU5) R(
⋂

i∈J

Ai) ⊆
⋂

i∈J

R(Ai);

(IL6) A ⊆ B =⇒ R(A) ⊆ R(B), (IU6) A ⊆ B =⇒ R(A) ⊆ R(B).

For IF rough approximation operators induced from an IF serial approxima-
tion space in which the IF relation is serial, we can conclude the following

Theorem 2. Let (U, R) be an IF approximation space, then

R is serial ⇐⇒ (IL0) R( ̂(α, β)) = ̂(α, β), ∀α, β ∈ [0, 1], α + β ≤ 1,

⇐⇒ (IU0) R( ̂(α, β)) = ̂(α, β), ∀α, β ∈ [0, 1], α + β ≤ 1,

⇐⇒ (IL0)′ R(0∼) = 0∼,

⇐⇒ (IU0)′ R(1∼) = 1∼,
⇐⇒ (ILU) R(A) ⊆ R(A), ∀A ∈ IF(U).

5 Relationships between IF Approximation Spaces and
IF Measurable Spaces

In this section, we examine under which conditions an IF approximation space
can associate with an IF measurable space such that the class of all IF measurable
sets in the IF measurable space is the family of all definable sets induced from
the IF approximation space.

Theorem 3. Assume that (U, R) is an IF serial approximation space and R
and R are IF rough approximation operators defined in Definition 6. Denote

F = {A ∈ IF(U)|R(A) = A = R(A)}.

Then F is an IF σ-algebra on U .

Proof. (IF1) For any α, β ∈ [0, 1] with α + β ≤ 1, since R is an IF serial relation
on U , by Theorem 2 we have R( ̂(α, β)) = ̂(α, β) = R( ̂(α, β)). Thus ̂(α, β) ∈ F .
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(IF2) Assume that Ai ∈ F , i ∈ N, that is,

R(Ai) = Ai = R(Ai), ∀i ∈ N.

Since R is an IF serial relation on U , by property (ILU) in Theorem 2 and (IU3)
in Theorem 1 we have

R(
⋃

i∈N

Ai) ⊆ R(
⋃

i∈N

Ai) =
⋃

i∈N

R(Ai) =
⋃

i∈N

Ai.

On the other hand, by the assumption and in terms of (IL5) we obtain
⋃

i∈N

Ai =
⋃

i∈N

R(Ai) ⊆ R(
⋃

i∈N

Ai).

Hence
R(

⋃

i∈N

Ai) =
⋃

i∈N

Ai = R(
⋃

i∈N

Ai).

Thus
⋃

i∈N
Ai ∈ F .

(IF3) Assume that A ∈ F , i.e., R(A) = A = R(A). Then by using the dual
properties (IL1) and (IU1) we have

R(∼ A) =∼ R(A) =∼ A =∼ R(A) = R(∼ A).

Thus ∼ A ∈ F .
Therefore we have proved that F is an IF algebra.

Theorem 3 shows that the family of all definable sets induced from an IF serial
approximation space forms an IF σ−algebra.

Theorem 4. Let U be a nonempty finite universe of discourse and F an IF
algebra on U . If F is generated by a crisp algebra A, then there exists an ap-
proximation space (U, R) such that

F = {A ∈ IF(U)|R(A) = A = R(A)}.

Proof. For any x ∈ U , let [x]A = ∩{C ∈ A|x ∈ C}. It is easy to see that
{[x]A|x ∈ U} is the family of atomic sets of A and it forms a partition of U . In
such a case we can find an equivalence binary relation R on U such that [x]R =
[x]A for all x ∈ U . With no loss of generality, we write the partition {[x]A|x ∈ U}
as {C1, C2, . . . , Ck}. We now define two IF set operators R, R : IF(U) → IF(U)
as follows:

R(A)(x) = (
∧

y∈[x]A
μA(y),

∨

y∈[x]A
γA(y)), x ∈ U, A ∈ IF(U),

R(A)(x) = (
∨

y∈[x]A
μA(y),

∧

y∈[x]A
γA(y)), x ∈ U, A ∈ IF(U).

Since R is an equivalence crisp relation, (U, R) can be regarded as a special IF serial
approximation space, by Theorem 3 we see that {A ∈ IF(U)|R(A)=A=R(A)}



Intuitionistic Fuzzy Approximations and Intuitionistic Fuzzy Sigma-Algebras 361

is an IF algebra. We only need to prove that F = {A ∈ IF(U)|R(A) = A =
R(A)}.

For any A ∈ F , notice that F is generated by the crisp algebra A, then there
exist ai, bi ∈ [0, 1], ai + bi ≤ 1, i = 1, 2, . . . , k, such that

A(x) = (
k∑

i=1

ai1Ci(x),
k∑

i=1

bi1Ci(x)), ∀x ∈ U.

For any x ∈ U , if x ∈ Ci, of course [x]A = [x]R = Ci, then

R(A)(x) = (
∧

y∈[x]R
μA(y),

∨

y∈[x]R
γA(y)) = (

∧

y∈Ci

μA(y),
∨

y∈Ci

γA(y)) = (ai, bi),

R(A)(x) = (
∨

y∈[x]R
μA(y),

∧

y∈[x]R
γA(y)) = (

∨

y∈Ci

μA(y),
∧

y∈Ci

γA(y)) = (ai, bi).

Thus R(A)(x) = R(A)(x) = A(x) = (ai, bi). Hence, R(A) = R(A) = A, from
which it follows that

F ⊆ {A ∈ IF(U)|R(A) = A = R(A)}.

Conversely, assume that B ∈ {A ∈ IF(U)|R(A) = A = R(A)}. For any
Ci ∈ {C1, C2, . . . , Ck} and x ∈ Ci, clearly, x ∈ Ci = [x]R. Then

R(A)(x) = (
∧

y∈Ci

μA(y),
∨

y∈Ci

γA(y)),

R(A)(x) = (
∨

y∈Ci

μA(y),
∧

y∈Ci

γA(y)).

Since R(A)(x) = A(x) = R(A)(x), we have
∧

y∈Ci

μB(y) =
∨

y∈Ci

μB(y) = μB(x),
∨

y∈Ci

γB(y) =
∧

y∈Ci

γB(y)) = γB(x).

Then
μB(y) = μB(x), γB(y) = γB(x), ∀y ∈ Ci = [x]R.

Let μB(x) = αi, γB(x) = βi, obviously, αi + βi ≤ 1, we then obtain

μB(y) = αi, γB(y) = βi, ∀y ∈ Ci, i = 1, 2, . . . , k.

Hence

B(x) = (
k∑

i=1

αi1Ci(x),
k∑

i=1

βi1Ci(x)), ∀x ∈ U.

Therefore, B ∈ F , from which it follows that

{A ∈ IF(U)|R(A) = A = R(A)} ⊆ F .

Thus we have proved that

{A ∈ IF(U)|R(A) = A = R(A)} = F .
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6 Conclusion

In this paper, we have introduced the concepts of IF measurable spaces and
IF σ−algebras. We have also discussed the relationships between IF rough set
approximations and IF measurable spaces. We have proved that the family of
all IF definable sets induced from an IF serial approximation space forms an IF
σ−algebra. On the other hand, in a finite universe, for an IF σ−fuzzy algebra
generated by a crisp algebra there must exist an approximation space such that
the family of all IF definable sets is the class of all measurable sets in the given
IF measurable space. Based on this observation, we hope to gain more insights
into the two structures of knowledge representation——definable sets in theory
set theory and measurable sets in measure theory.
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Abstract. A hierarchy of closure operators on the abstract context of
lattice structures is investigated, and compared to the abstract approach
to rough approximation spaces. In particular, the Tarski, the Kuratowski
and the Halmos closures are treated, with the corresponding models of
covering, topological and partition spaces.

1 Closure Operation in Lattice and Rough Approximation
Spaces

In [3,4] a first investigation about closure operations in a lattice context has been
done, based on the proof of the equivalence of (weak) closure with the notion of
rough approximation space according to the definition given in [2]. In this paper
we give a further in depth analysis of this argument. First of all, let us recall the
notion of closure, developed by Tarski in his study in consequences in logic [16].

Definition 1. A Tarski closure lattice is a structure 〈Σ, ∧, ∨, ′, ∗, 0, 1〉 where:

(Cl-dM1) The substructure 〈Σ, ∧, ∨, ′, 0, 1〉 is a de Morgan lattice, i.e., a bounded
lattice, equipped with a de Morgan complementation mapping ′ : Σ �→
Σ that satisfies, for arbitrary a, b ∈ Σ, the conditions: (dM1) a = a′′;
(dM2) (a ∨ b)′ = a′ ∧ b′.

(Cl-dM2) The mapping ∗ : Σ → Σ is a Tarski closure operation, that is, it
satisfies:

(C1) 0∗ = 0 (normalized)
(C2) a ≤ a∗ (increasing)
(C3) a∗ = a∗∗ (idempotent)
(C4) a∗ ∨ b∗ ≤ (a ∨ b)∗ (sub–additive)

The subset of closed elements is defined as the collection of elements which
are equal to their closure: formally, C(Σ) = {a ∈ Σ : a = a∗} . This set is not
� The author’s work has been supported by MIUR\PRIN project ”Automata and
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empty since 0, 1 are closed elements. Condition (C3) says that for any element
a ∈ Σ the corresponding a∗ is closed; this element is called the closure of a.
With respect to the notion of closure in a de Morgan lattice, the dual notion is
the following one.

Theorem 1. Suppose aTarski closure (deMorgan) lattice T =〈Σ, ∧, ∨, ′, ∗, 0, 1〉.
The mapping o : Σ → Σ defined by the law

∀a ∈ Σ, ao := ((a′)∗)′ (1)

is a (Tarski) interior operation, i.e., it satisfies the followings:

(I1) 1o = 1 (normalized)
(I2) ao ≤ a (decreasing)
(I3) ao = aoo (idempotent)
(I4) (a ∧ b)o ≤ ao ∧ bo (sub–multiplicative)

Analogously to the closure case, the structure T i = 〈Σ, ∧, ∨, ′, o, 0, 1〉 is said to
be a Tarski interior lattice.

The subset of open elements is defined as the collection of elements which are
equal to their interior. Formally, O(Σ) = {a ∈ Σ : a = ao} . Also this set is
not empty since the two elements 0, 1 are open too. Condition (I3) says that for
every a ∈ Σ the element ao, called the interior of a, is open.

Other important concepts, which is possible to introduce are: the set of clopen
elements: CO(Σ) := C(Σ) ∩ O(Σ), which is not empty and, in general, do not
coincide with the set of open or closed elements; the so–called exterior of an
element a ∈ Σ defined as the open element e(a) := (a∗)′ ∈ O(Σ); the boundary
defined as the closed element b(a) := (ao)′ ∧ a∗ ∈ C(Σ).

In order to grasp the intuitive aspects of the abstract notion of rough approx-
imation space, as introduced in [2], we have to recall the following result.

Theorem 2. Suppose a (de Morgan) lattice equipped with a Tarski interior
and a Tarski closure operations A = 〈Σ, o, ∗ 〉. Then, the structure A� :=
〈Σ, O(Σ), C(Σ)〉 is a (de Morgan) rough approximation space in the sense that,
defined for any arbitrary approximable element a ∈ Σ its lower approximation
as l(a) := ao (the interior of a) and its upper approximation as u(a) := a∗ (the
closure of a), the following hold:

(In1) l(a) ∈ O(Σ) (In2) l(a) ≤ a (In3) ∀β ∈ O(Σ), β ≤ a ⇒ β ≤ l(a);
(Up1) u(a) ∈ C(Σ) (Up2) a ≤ u(a) (Up3) ∀γ ∈ C(Σ), a ≤ γ ⇒ u(a) ≤ γ.

Any structure 〈Σ, C(Σ), u 〉 (resp., 〈Σ, O(Σ), l 〉 satisfying the conditions
(Up1)–(Up3) (resp., (In1)–(In3)) is called an upper (resp., a lower) rough ap-
proximation space, and the mapping l : Σ �→ O(Σ) (resp., u : Σ �→ C(Σ)) the
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lower (resp., upper) approximation map. Relatively to these last structures, the
element of C(Σ) (resp., O(Σ)) are also called upper (resp., lower) crisp elements.

In general, the above outlined structures of Tarski closure and induced interior
lattices allow one to introduce the important notion of rough approximation
mapping r : Σ �→ C(Σ)× O(Σ) which associates to any element a ∈ Σ its open–
closed rough approximation r(a) = (ao, a∗), with ao ∈ O(Σ), a∗ ∈ C(Σ), and
a0 ≤ a ≤ a∗ (see I2 and C2). In this context, an element e is said to be crisp (or
exact, also sharp) iff r(e) = (e, e), and this is equivalent to ask that e ∈ CO(Σ).

Some remarks.

(i) The non–equational conditions of Theorem 2 capture the intuitive aspects
of an expected rough approximation space: the lower (resp., upper) approx-
imations l(a) (resp., u(a)) is the best approximation of the approximable
element a from the bottom (resp., top) by open (resp. closed) elements.

(ii) Theorem 2 is only a part of a more complete version discussed in [3] which
can be summarized by the statement that the concrete category of de
Morgan lattice with Tarski closure (and induced interior) operator and the
one of de Morgan lattice with upper (and induced inner) approximation
map are categorical equivalent (isomorphic) between them.

(iii) Thus, if one works in the context of a generalization of the closure operator
conditions, for instance weakening (or suppressing) some of the above con-
ditions (C1)–(C4) of definition 1, then some of the “intuitive” conditions
expressed by (Up1)–(Up3) are correspondingly lost, or modified.

2 A Hierarchy of Closure Operators

Starting from the original Tarski closure given in definition 1, it is possible to
introduce a hierarchy of closure operators with increasingly strong behaviour.

Definition 2. A closure operation on a de Morgan lattice is said to be topo-
logical iff the sub–additive condition (C4) is substituted by the stronger additive
property: (C4T) a∗ ∨ b∗ = (a ∨ b)∗.

Citing from Rasiowa–Sikorski [14]: “The closure operation ∗ satisfies the con-
ditions (C1)–(C3) and (C4T). These Axioms are due to Kuratowski [7]. For a
detailed exposition of the theory of topological spaces see e.g. Kelley [8], Ku-
ratowski [9,10].” In agreement with this quotation, in the sequel we shall call
Kuratowski closure operation any topological closure on a de Morgan lattice.
A de Morgan lattice equipped with a Kuratowski closure operations is called a
Kuratowski closure lattice.

The Kuratowski interior operator dually defined according to the equation
(1) satisfies the multiplicative property: (I4T) ao ∧ bo = (a ∧ b)o.

Definition 3. A Kuratowski closure operation on a de Morgan lattice is a Hal-
mos closure iff the idempotent condition (C3) is substituted by the stronger one:
(sC3) a∗ ′ ∗ = a∗ ′. A Halmos closure lattice is any de Morgan lattice equipped
with a Halmos closure operation.
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This definition has been introduced by Halmos in [5] (collected in [6]) on the base
of a Boolean algebra structure as the algebraic formalization of the existential
quantifier. In the present context, we generalize this structure to the case of
de Morgan lattices. The following result assures that the Halmos closure is a
Kuratowski closure too.

Proposition 1. Let Σ be a de Morgan lattice with an operation ∗ : Σ �→ Σ
which satisfies conditions (C1), (C2), and (C4T). Then the following implication
holds: (sC3) ∀a ∈ Σ, a∗ ′ ∗ = a∗ ′ implies (C3) ∀a ∈ Σ, a∗ = a∗∗.

The following property characterizes de Morgan lattices with Halmos closure.

Proposition 2. Let Σ be a de Morgan lattice with a topological (i.e., Kura-
towski) closure operation. Then the following are equivalent:

1. the topological closure operation satisfies condition (sC3), i.e., it is Halmos;
2. the collection of closed elements and the collection of open elements coincide:

C(Σ) = O(Σ).

3 Tarski, Kuratowski and Halmos Closure Models on a
Concrete Universe

In this section we investigate three concrete examples of the three abstract no-
tions of closure, all based on a concrete nonempty set, the universe of the dis-
course X , and its power set P(X), the Boolean lattice of all subsets of X .

3.1 Coverings of a Universe as Models of Tarski Closure

First of all let us consider a covering of the universe X , i.e., a family γ = {Ci ∈
P(X) : i ∈ I} of nonempty subsets of X (indexed by the index set I) which
satisfies the covering condition: X = ∪{Ci ∈ γ : i ∈ I} .

Open sets are defined as the set theoretic union of subsets from the covering
plus the empty set ∅. Denoting by Oγ(X) their collection, we have that

L ∈ Oγ(X) iff ∃{Cj ∈ γ : j ∈ I} : L =
⋃

j∈I

Cj (2)

The following properties of an open family hold:

(PO1) Oγ(X) contains both the empty set and the whole universe, and
(PO2) it is closed with respect to arbitrary set theoretic union.

To any subset A of the universe X it is possible to assign the open set lγ(A) =
∪{L ∈ Oγ(X) : L ⊆ A}. The main result is the following.

Proposition 3. The mapping lγ : P(X) �→ P(X), A → lγ(A) is a Tarski
interior operator, or from an equivalent point, it is a lower approximation map.
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The lower rough approximation space with respect to the covering γ of X is
then LRγ = 〈P(X), Oγ(X), lγ〉, where the lower (open) approximation of A is
the interior Ao := lγ(A). In particular, from the point of view of a rough ap-
proximation space: the role of the bounded de Morgan lattice Σ of approximable
elements is played by the Boolean lattice P(X); the set of open elements Oγ(X)
is the lattice of lower crisp elements; for any subset A of X (the approximable
element) the corresponding lower approximation is its interior, i.e., the greatest
open set contained in A.

The dual of the covering γ is the anti–covering γd := {D ∈ P(X) : ∃C ∈
γ s.t D = Cc}, which satisfies the disjointness condition: ∅ = ∩{D : D ∈ γd} .
A closed subset is then the set theoretic intersection of elements from the dual
covering. The collection of all closed sets induced by the covering γ will be
denoted by Cγ(X) and so

U ∈ Cγ(X) iff ∃{Ds ∈ γd : s ∈ S} : U =
⋂

s∈S

Ds (3)

with U ∈ Cγ(X) iff ∃L ∈ Oγ(X) s.t. U = Lc . Of course, the following prop-
erties of the closed family holds:

(PC1) Cγ(X) contains both the empty set and the whole universe, and
(PC2) it is closed with respect to arbitrary set theoretic intersection.

These properties qualify Cγ(X) as a Moore family of subsets of X (see [1, p. 111]).
The upper (closed) approximation of any subset A of X is uγ(A) = ∩{U ∈
Cγ(X) : A ⊆ U} and we have the following result.

Proposition 4. The mapping uγ : P(X) �→ P(X), A → uγ(A) is a Tarski
closure operator or, equivalently, it is an upper approximation map.

In this closure framework the corresponding upper approximation space with
respect to the covering γ is then CRγ = 〈P(X), Cγ(X), uγ〉, where P(X) is the
collection of approximable elements; the collection Cγ(X) of all closed sets is the
lattice of upper crisp elements; for any A ⊆ X (the approximable element) the
corresponding upper approximation is its closure, i.e., the smallest closed set
containing A usually denoted by A∗ := u(A).

The rough approximation space induced by the covering γ is then the structure
RT = 〈P(X), Oγ(X), Cγ(X), lγ , uγ〉 where the rough approximation mapping
rγ : P(X) �→ Oγ(X)×Cγ(X) assigns to any subset A of the universe X its rough
approximation as the open–closed pair rγ(A) = (Ao, A∗), with Ao ⊆ A ⊆ A∗.
Note that crisp elements are just the clopen CγOγ(Σ) = Cγ(Σ) ∩ Oγ(Σ).

Borrowing some definitions from the (discussed in the sequel) partition case,
in the present covering context it is also possible to introduce the two open
approximations of any subset A as

l(op)
γ (A) := ∪{C ∈ γ : C ⊆ A} = lγ(A) (4a)

u(op)
γ (A) := ∪{D ∈ γ : D ∩ A �= ∅} �= uγ(A) (4b)



368 G. Cattaneo and D. Ciucci

This second definition, in general does not give the same result, since u
(op)
γ (A) ∈

O(X) is an open set (as set theoretic union of open sets), whereas uγ(A) =
A∗ ∈ C(X) is a closed set (as set theoretic intersection of closed sets). From a
terminological point of view, uγ(A) can be called the closed upper approximation
and u

(op)
γ (A) the open upper approximation of A.

Proposition 5. In any covering space the following inequality between upper
approximations holds: ∀A ∈ P(X), uγ(A) ⊆ u

(op)
γ (A) .

3.2 Topologies of a Universe as Models of Kuratowski Closure

Let us recall that a topological space can be introduced as a pair τ = (X, B)
consisting of a set X and a base for a topology (simply open base), i.e., a collec-
tion B = {Bi ∈ P(X) : i ∈ I} of subsets of X , each of which is an open granule
(or adopting the topological terminology, see [15, p. 99], a basic open set), such
that the following hold:

(C) covering condition: X = ∪{Bi ∈ B : i ∈ I} ;
(OB) open base condition: for any pair Bi, Bj of subsets of the base B for which

Bi ∩ Bj �= ∅ a collection {B̂ih
∈ B : h ∈ H} of elements from the base

exists such that Bi ∩ Bj = ∪{B̂ih
∈ B : h ∈ H}.

This constitutes a strengthening of the notion of covering owing to the further
condition (OB). Thus, similarly to the covering case, see equation (2), we intro-
duce the notion of topological open sets as any subset of X which is either a set
theoretic union of elements from the open base B or the empty set ∅. In this way
we have induced a topological space defined as a pair (X, O(X)) consisting of a
nonempty set X equipped with a family of open subsets O(X)In particular any
element of the open basis is an open set, that is B ⊆ O(X).

Further, we can construct the dual structure τd = (X, K), where K := {K ∈
P(X) : ∃B ∈ B s.t. K = Bc} is the dual base of closed granules. This collection
K is a base of closed sets (simply, closed base, see [15, p. 112]) for a topology on
X in the sense that the following hold:

(DB) disjointness condition: ∅ = ∩{K ∈ P(X) : K ∈ K};
(CB) closed base condition: for any pair Ki, Kj of subsets of the closed base K

for which Ki ∪ Kj �= X a collection {K̂iv ∈ K : v ∈ V } of elements from
the closed base exists such that Ki ∪ Kj = ∩{K̂iv ∈ K : v ∈ V }.

Similarly to the covering case, see equation (3), a topological closed set is either
the set theoretic intersection of elements from the closed base or the whole space
X . Trivially, a subset of X is closed iff it is the set theoretic complement of an
open set: C ∈ C(X) iff ∃O ∈ O(X) : C = Oc . All the elements of the closed
base are also closed, that is K ⊆ C(X).

Note that, as a particular case of closure, also in the now treated case of a
topology on a universe the notions of lower, upper, and rough approximation
spaces can be introduced inheriting all the properties discussed in the general



A Hierarchical Lattice Closure Approach 369

covering context. In particular, the inclusion uγ(A) ⊂ u
(op)
γ (A) continues to hold

in this context. Moreover, the lower (resp., upper) approximation is a Kuratowski
interior (resp., closure) operation.

3.3 Partitions of a Universe as Models of Halmos Closure

A partition of X is a (non necessarily finite) collection π = {Gi : i ∈ I} of
nonempty subsets of X such that the following hold: covering condition: X =
∪{Gi ∈ π : i ∈ I} ; disjointness condition: for any pair Gh, Gk of different
elements, Gh �= Gk, of the partition π it is Gh ∩ Gk = ∅. The usual approach
to rough set theory as introduced by Pawlak [11,12,13] is based on a concrete
partition space, that is a pair (X, π) consisting of a nonempty set X , the universe
of discourse (with corresponding power set P(X), the collection of all subsets of
X , which are the approximable sets), and a partition π := {Gi ∈ P(X) : i ∈ I} of
X whose elements are the elementary sets . The partition π can be characterized
by the induced equivalence relation R ⊆ X×X , defined as (x, y) ∈ R iff ∃G ∈
π : x, y ∈ G. In this case x, y are said to be indistinguishable with respect to R
and the equivalence relation R is called an indistinguishability relation.

Of course, a partition space (X, π) generates a topological space whose open
base is just the family π, i.e., B = π; the corresponding closed base is defined in
the usual way. A partition gives rise to a topology of clopen, denoted by Eπ(X),
formally: Eπ(X) = Oπ(X) = Cπ(X). Thus Eπ(X) is the collection of all crisp sets
(i.e., if in this model the collection of all approximable elements is Σ = P(X),
then the corresponding collection of all crisp set is Σc = Eπ(X)).

Thus, the concrete rough approximation space generated by the partition π
consists of the structure Rπ := 〈P(X), Eπ(X), lπ, uπ〉 where: P(X) is the Boolean
atomic (complete) lattice of all approximable subsets A of the universe X ; the
two sets of lower crisp elements and of upper crisp elements coincide with the
set of clopen (exact) elements Eπ(X); the map lπ : P(X) �→ Eπ(X) associates
with any subset A of X its lower approximation:

lπ(A) := ∪{O ∈ Eπ(X) : O ⊆ A} = ∪{G ∈ π : G ⊆ A} ; (5a)

the map uπ : P(X) �→ Eπ(X) associates with any subset A of X its upper
approximation

uπ(A) := ∩{C ∈ Eπ(X) : A ⊆ C} = ∪{H ∈ π : H ∩ A �= ∅} . (5b)

Note that for any subset A, the universe turns out to be the set theoretic
union of the mutually disjoint sets X = lπ(A) ∪ bπ(A) ∪ eπ(A), where bπ(A) :=
uπ(A) \ lπ(A) is the boundary and eπ(A) := X \ uπ(A) is the exterior of A.

Let us stress that in the case of a covering approximation space, as gener-
alization of the partition approximation space, the equations (4a) and (4b) are
generalizations of the corresponding partition versions (5a) and (5b). Further,
the lower (resp., upper) approximation lπ (resp., uπ) is a Halmos interior (resp.,
closure) operation.
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4 Conclusion

In the present work, we discussed three different notions of closure on a De Mor-
gan lattice: Tarski, Kuratowski and Halmos, giving rise to a hierarchy of operators.
For each of them a model of sets is discussed: coverings, topologies and partitions,
respectively. Further, to any closure operator it is possible to associate a dual in-
terior operator such that the pair interior-closure is a rough approximation.
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Rough Models
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Abstract. Rough approximation algebra is defined with the aim to give
a general abstract approach to all rough sets models, based either on
Boolean or Fuzzy sets. Further, a rough approximations framework is a
structure which is intended as an abstraction of all those cases where
several approximations are possibile on the same set. Some properties
and models of these structures are given.

1 Introduction

Since the first study by Pawlak [14] there has been a growing interest in rough
sets, with thousands of publications both from the theoretical and application
standpoint. As a result, several new models and generalizations of the original
Pawlak approach have been defined [17]. Then, new models mixing fuzzy and
rough sets have been introduced [10,18] and generalization to more abstract
structures performed [3,12] Of course, this kind of research is still going on, with
new paradigms being defined. Now, the question is what all these models have
in common and why they are all referred to as rough. Here, we try to give an
answer by looking at their properties and their algebraic structure.

Both in the case of boolean rough sets and fuzzy rough sets, the properties
of the upper and lower approximations of several models have been studied (for
instance, [11,21]). If we consider the classic Pawlak model we have that the lower
and upper (L and U, respectively) approximations satisfy very strong properties,
which are listed below.

(U1) U(H) = (L(Hc))c (L1) L(H) = (U(Hc))c

(U2) ∅ = U(∅) (L2) X = L(X)
(U3) U(H ∪ K) = U(H) ∪ U(K) (L3) L(H ∩ K) = L(H) ∩ L(K)
(U4) U(H ∩ K) ⊆ U(H) ∩ U(K) (L4) L(H ∪ K) ⊇ L(H) ∪ L(K)
(U5) H ⊆ K ⇒ U(H) ⊆ U(K) (L5) H ⊆ K ⇒ L(H) ⊆ L(K)
(U6) U(X) = X (L6) L(∅) = ∅
(U7) H ⊆ U(H) (L7) L(H) ⊆ H
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(U8) U(U(H)) ⊆ U(H) (L8) L(H) ⊆ L(L(H))
(U9) U(L(H)) ⊆ L(H) (L9) U(H) ⊆ L(U(H))

When analyzing generalized models, we loose some of these properties. For in-
stance, in tolerance rough sets [20] properties 8 and 9 do not hold. In VPRS [29],
instead of U3 and L3 we have the weaker forms U(H) ∪U(K) ⊆ U(H ∪ K) and
L(H ∩ K) ⊆ L(H) ∩ L(K). and also U7 is not satisfied. Moreover, when consid-
ering extended VPRS [13] or fuzzy rough sets [18], U1 and L1 are generally not
satisfied. Now, only properties 2, 4 and 6 are left. We could also go on and define
even weaker models. At the end, we could consider just two mappings l, u with
any further requirement. However, it will then be questionable whether to still
call them rough approximations. On the other hand, if we adopt an axiomatic
approach, we could assume these properties as defining a basic lower and upper
approximation mappings.

In the next section, we will define an algebraic structure with two mappings
whose intended meaning is exactly of lower and upper approximations and whose
behaviour is characterized by some basic properties, including the above quoted
ones. Let us note that this approach has been already followed in literature but
with stronger requirements and so less generality (see for instance [23,3]). Fi-
nally, in several rough set models more than a pair of approximation mappings
is defined on the same domain. In general, these approximations are linked by an
order relation such that one is better, i.e., closer to the object under approxima-
tion, than another. Here, we give some examples and define a general structure
to cope with them.

2 Rough Approximation Algebra

In this section, we give the main definitions: rough approximation algebra and
framework, together with some properties.

Definition 1. A rough approximation algebra is a structure 〈A, ∧, ∨, ′, l, u, 0, 1〉
where 〈A, ∧, ∨, 0, 1〉 is a bounded lattice; ′ is a de Morgan (or involutive) negation,
i.e., for all a, b it holds (N1) a = a′′ and (N2) (a ∧ b)′ = a′ ∨ b′; the lower and
upper approximation mappings l, u : A �→ A satisfy the following properties

(R1) ∀a ∈ A, l(a) ≤ u(a) (approximation property);
(R2) l(0) = u(0) = 0, l(1) = u(1) = 1 (boundary conditions);
(R3) a ≤ b implies l(a) ≤ l(b) and u(a) ≤ u(b) (monotonicity).

The negative mapping n : A �→ A is defined as n(a) := (u(a))′.

All the above properties (R1)–(R3) seem reasonable to us. In particular, (R1) just
says that the lower approximation must not be greater than the upper one and
this is coherent with the semantic we want to give to “lower” and “upper”. It is
even questionable if there should not hold the stronger property l(a) ≤ a ≤ u(a).
We preferred not to include this stronger version, since it does not hold in several
models. Boundary conditions (R2) require that 0 and 1 are known exactly.
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Now, given an element a ∈ A a rough approximation of a is just the pair lower-
upper approximation 〈l(a), u(a)〉, which due to the fact that ′ is involutive, is
equivalent to the lower-negative pair 〈l(a), n(a)〉. Further, we note that from
conditions (N1) and (N2) it follows the dual de Morgan law (a∨ b)′ = a′ ∧ b′ and
the contraposition law “if a ≤ b then b′ ≤ a′”.

Let us observe that in [24] two mappings l, u are called lower and upper
approximations if they are dual, i.e., satisfy property U1, and l(x) ≤ u(x). Here,
we consider operators which are not necessarily dual, a condition which is not
always guaranteed to hold (for instance, in fuzzy rough sets), but require also
monotonicity and boundary conditions.

Definition 2. A rough approximations framework is a collection of rough ap-
proximation algebras, i.e., for a family of indexes i ∈ I, we consider a collection
of rough approximations (li, ui) on the algebra 〈A, ∧, ∨,′ , 0, 1〉 such that (li, ui)
satisfy conditions (R1)–(R3). A rough approximation framework is said to be
regular if ∀a ∈ A, li(a) ≤ li+1(a) and ui+1(a) ≤ ui(a).

Let us remark that we do not tackle the problem of defining what an exact set
is [26]. Thus, l and u are mappings from A to A and not to the collection of
“exact” elements Ae ⊆ A. Indeed, in this general case, it is not well understood
what we mean by exact or definable. If we define exact elements the ones such
that l(a) = a (or u(a) = a), then we should have that l(l(a)) = l(a) (resp.,
u(u(a)) = u(a)) for all elements in A. But we did not consider this property as
a fundamental one. Further, in [4] a pair of fuzzy sets is used to approximate a
Boolean set, that is, even the condition Ae ⊆ A does not hold in that particular
model. Now, we prove some properties satisfied by l and u.

Proposition 1. Let 〈A, ∧, ∨, ′, l, u, 0, 1〉 a rough approximation algebra. The fol-
lowing hold for any a, b ∈ A.

(u1) u(a) ∨ u(b) ≤ u(a ∨ b) (l1) l(a ∧ b) ≤ l(a) ∧ l(b)
(u2) u(a ∧ b) ≤ u(a) ∧ u(b) (l2) l(a) ∨ l(b) ≤ l(a ∧ b)

(neg) n(a) ≤ l′(a)

In the next sections we will give some paradigmatic examples of rough approx-
imation algebras and frameworks. We will analyze the wide two categories of
Boolean and Fuzzy Rough Sets, showing that our rough approximation algebra
can be considered as an abstraction of all these models.

3 Boolean Rough Sets

We consider, now, all the rough approximations of Boolean sets through Boolean
sets. In other words, the collection of elements A of our algebra is the Boolean
algebra P(X), powerset of a given universe X . Of course, all the models known
in literature simply as rough sets (the term Boolean is not specified) belong to
this category. In this context the lattice operators are the intersection and union
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of sets, and the de Morgan negation, is the usual complementation of sets. In
this case, we will use the usual notation 〈P(X), ∩, ∪,c , ∅, X〉.

Since we are dealing with a Boolean algebra, if we define the boundary mapping
bnd : A �→ A as bnd(a) := u(a) ∧ (l(a))′, then, it easily follows that ∀a ∈
A, l(a) ∨ bnd(a) ∨ n(a) = 1. That is, the “union” of lower, boundary and
negative elements give the maximum 1.

We now consider two main streams of research about (Boolean) rough sets:
decision theoretic rough sets, which are based on a probabilistic setting, and
rough sets obtained by a general (not necessarily equivalence) binary relation.

3.1 Decision Theoretic Rough Sets

All the models of this field are based on an equivalence relation R on the universe
X , which partitions X in equivalence classes [x] := {y ∈ X : xRy}.

Now, let us define the conditional probability P (A|[x]) as the probability that
an element y is in A due to the fact that y ∈ [x]. Often, when dealing with finite
universes, it is assumed that the conditional probability P (A|[x]) is given by the
rough membership function [15,30]: |A∩[x]|

|[x]| .

Now, using this probability it is possible to define the decision theoretic rough
set model [28,27]. In this model, the lower and upper approximations are defined
according to the following equations:

lα(A) = {x ∈ X |P (A|[x]) ≥ α} uβ(A) = {x ∈ X |P (A|[x]) > β} (1)

where α, β ∈ [0, 1] are two parameters under the condition that α > β. Let us
note that this “reasonable” condition ensures that “the cost of classifying an
element into the boundary region is closer to the cost of a correct classification
than to the cost of an incorrect classification” [27]. Also in our approach this
condition is fundamental since it assures that for all A ⊆ X , lα(A) ⊆ uβ(A).

Proposition 2. For α, β ∈ [0, 1], α > β, let lα, uβ be defined as in equation 1.
Then, 〈P(X), ∩, ∪,c , lα, uβ, ∅, X〉 is a (Boolean) rough approximation algebra.

Now, if we consider the approximations given by different αs and βs, the following
properties hold [27]: α2 ≥ α1 implies lα2(A) ⊆ lα1(A) and β2 ≤ β1 implies
uβ1(A) ⊆ uβ2(A). Thus, for a set of parameters αi > βi depending on the
index i ∈ I and such that αi ≤ αi+1 and βi+1 ≤ βi, we have that {i ∈ I :
〈A, ∧, ∨,′ , lαi , uβi , 0, 1〉} is a regular rough approximations framework.

Finally, we underline that Variable Precision Rough Sets and hence Pawlak
rough sets can be obtained by an adequate choice of the parameters α and β [27].
Thus, as expected, one deduces that they are both a model of Boolean rough
approximation algebra.

3.2 Rough Sets under General Binary Relations

Pawlak rough sets are based on an equivalence relation R which partitions
the underlying universe in equivalence classes. By relaxing the properties that
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R must satisfy, several generalized approaches have been defined and stud-
ied [17,25,11]. Here, we recall the definition of rough sets based on a general
binary relation and see under which conditions we obtain a rough approxima-
tion algebra.

Let R be a binary relation on a universe U , R is said serial iff ∀x ∈ U, ∃y ∈
U : xRy. For any element x of the universe, the granule (generalization of the
equivalence classes of the classical model) generated by R is the set gR(x) :=
{y ∈ U : xRy}. Given a subset A ⊆ U the lower and upper approximations
given by R are respectively defined as:

LR(A) := {x ∈ U : gR(x) ⊆ A} UR(A) := {x ∈ U : gR(x) ∩ A �= ∅} (2)

Now, the following properties old for any relation R.

Lemma 1. [24] Let R be a binary relation on U . Then,

– LR and UR are monotonic and LR(U) = U , UR(∅) = ∅.
– The relation R is serial iff for all A ⊆ U it holds LR(A) ⊆ UR(A)
– If R is serial then UR(U) = U and LR(∅) = ∅

Thus, by these properties we can conclude that

Proposition 3. If R is a serial binary relation then 〈U, ∩, ∪, LR, UR, ∅, U〉 is a
(Boolean) rough approximation algebra.

Thus, according to our definition 1 we do consider as rough approximations only
the ones generated by a relation which is at least serial. That is, we exclude the
cases where there are objects which are not in relation with any object including
themselves.

Finally, let us note that this is not the only one way to define a rough ap-
proximation using a binary relation. Here, we just quote the one given in [2]
which gives rise to a regular rough approximations framework which can also be
generalized to the fuzzy case [9].

4 Fuzzy Rough Sets

In this section, rough approximations made of a pair of fuzzy sets are considered,
showing that they give rise to rough approximations algebras and framework.
First of all, we give some basic notions about fuzzy sets then define and analyze
fuzzy rough approximation spaces.

4.1 Preliminary Notions on Fuzzy Sets

Let X be the universe of investigation, a fuzzy set on X is represented by its
membership function f : X �→ [0, 1]. The collection of all fuzzy sets on X will
be denoted as [0, 1]X and a constant fuzzy set as a, for a ∈ [0, 1]. A fuzzy binary
relation is a mapping R : X×X �→ [0, 1], R is serial if ∀x, ∃y such that R(x, y) =
1; reflexive if ∀x ∈ X R(x, x) = 1 and symmetric if ∀x, y ∈ X R(x, y) = R(y, x).
For a fuzzy binary relation R on X and an element y ∈ X , the R-foreset of y is
defined as the fuzzy set Ry : X �→ [0, 1], Ry(x) := R(x, y).
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Definition 3. A triangular norm (t–norm) is a mapping ∗ : [0, 1] × [0, 1] �→
[0, 1], which is commutative, associative, monotonic and such that a ∗ 1 = a.

A function →: [0, 1]2 �→ [0, 1] is an implicator (or implication) if 1 → 0 = 0
and 1 → 1 = 0 → 1 = 0 → 0 = 1. Further, it is said a border implicator if
∀x ∈ [0, 1], 1 → x = x.

A typical example of border implicator is the residual of a left-continuous t-norm
∗, defined as a →∗ b := sup{c ∈ [0, 1] : a ∗ c ≤ b}.

In the sequel we will consider the fuzzy algebra 〈[0, 1]X , ∧, ∨,′ , 0, 1〉 where ∧, ∨
are the usual Gödel t–norm : a ∧ b := min{a, b}, a ∨ b := max{a, b} and ′ the
standard involutive negation: x′ = 1 − x. The order relation in this lattice is the
usual pointwise one: f ≤ g iff ∀x ∈ X : f(x) ≤ g(x).

4.2 Fuzzy Rough Approximations

Now, we have all the instruments to define a fuzzy-rough approximation.

Definition 4. A fuzzy approximation space is a pair (X, R) with R a binary
fuzzy relation on X. Given an implicator → and a t-norm ∗, a fuzzy rough
approximation for a fuzzy set f : X �→ [0, 1] is given by the pair of fuzzy sets
〈LR(f), UR(f)〉 defined pointwise as

LR(f)(x) := inf
y∈X

{R(x, y) → f(y)} UR(f)(x) := sup
y∈X

{R(x, y) ∗ f(y)}

In [21] an axiomatic approach to LR and UR is given and the properties arising
from different kinds of relation R analyzed. We give some results which are
relevant to the present work.

Proposition 4. Let (X, R) be a fuzzy approximation space. Then, LR and UR
satisfy the following properties

(F1) LR(1) = 1, UR(0) = 0
(F2) f ≤ g implies LR(f) ≤ LR(g) and UR(f) ≤ UR(g)
(F3) R is serial iff UR(1) = 1
(F4) If R is serial then LR(0) = 0
(F5) If → is a border implication and R is serial, then L(f) ≤ U(f).

Proof. Properties (F1)–(F3) are proved in [21].
(F4) If R is serial than forall x, there exists y such that R(x, y) = 1. For this
element y we have R(x, y) → 0(y) = 1 → 0 = 0.
(F5) The required property is satisfied if for all x there exists (at least) an
element y such that R(x, y) → f(y) ≤ R(x, y) ∗ f(y). If R is serial, then forall
x, there exists y such that R(x, y) = 1. Thus, by hypothesis we get 1 → f(y) =
f(y) ≤ f(y) = 1 ∗ f(y).

Proposition 5. Let (X, R) be a fuzzy approximation space. If → is a border
implication and R is serial, then 〈[0, 1]X , LR, UR, ∧, ∨,′ , 0, 1〉 is a rough approx-
imation algebra.
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Due to property (F3) we know that the requirement that R is serial is a necessary
condition. However, we do not know if this is also sufficient, since in order to
prove (F5) we also used the fact that → is a border implicator. Thus, a deeper
study is needed to understand which conditions are necessary and sufficient to
obtain a rough approximation algebra based on fuzzy rough sets.

Also in the case of fuzzy rough sets, there is the possibility to define a set of
rough approximations linked by an order relation, i.e., what we called a regular
rough approximations framework. This is mainly based on the work [9], but for
a lack of space, we cannot enter here into details.

Finally, we only mention the work [22] the only one case, to the best of our
knowledge, where the approximation of type-2 fuzzy sets is treated. Also in this
case, the lower and upper maps give rise to a rough approximation algebra.

5 Conclusions

Two new algebraic structures have been defined: rough approximation algebra
and rough approximations framework, in order to give an abstract approach to
rough sets models. Several paradigms have been investigated, showing under
which conditions they are a model of the introduced algebras. For the sake of
brevity, we did not consider the class of lattice-based approximations, which
are also a model of the new algebras [12,19,6,8,5,7]. This class will be surely
considered in a following study. Another open problem is the analysis of what
an “exact” set is in this abstract context.

We underline that, to the best of our knowledge, rough approximations frame-
work is the first tentative to study, in a general way, the situations where several
approximations are possible on the same element.
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Abstract. Replication is a useful technique for distributed database systems and 
can be implemented in a grid computation environment to provide a high 
availability, fault tolerant, and enhance the performance of the system. This 
paper discusses a new protocol named Diagonal Data Replication in 2D Mesh 
structure (DR2M) protocol where the performance addressed are data 
availability which is compared with the previous replication protocols, Read-
One Write-All (ROWA), Voting (VT), Tree Quorum (TQ), Grid Configuration 
(GC), and Neighbor Replication on Grid (NRG). DR2M protocol is organized 
in  a logical 2D mesh structure and by using quorums and voting techniques to 
improve the performance and availability of the replication protocol where it 
reduce the number of copies of data replication for read or write operations. The 
data file is copied at the selected node of the diagonal site in a quorum. The 
selection of a replica depends on the diagonal location of the structured 2D 
mesh network where the middle node is selected because it is the best location 
to get a copy of the data if every node has the equal number of request and data 
accessing in the network. The algorithm in this paper also calculates the best 
number of nodes in each quorum and how many quorums are needed for N 
number of nodes in a network. DR2M protocol also ensures that the data for 
read and write operations is consistency, by proofing the quorum must not have 
a nonempty intersection quorum. To evaluate DR2M protocol, we developed a 
simulation model in Java. Our results prove that DR2M protocol improves the 
performance of the data availability compare to the previous data replication 
protocol, ROWA, VT, TQ, GC and NRG.  

Keywords: Data replication, Grid, Data management, Availability, Replica 
control protocol.  

1   Introduction 

A grid is a distributed network computing system, a virtual computer formed by a 
networked set of heterogeneous machines that agree to share their local resources 
with each other. A grid is a very large scale, generalized distributed network 
computing system that can scale to internet size environment with machines 
distributed across multiple organizations and administrative domains [1, 2]. Ensuring 
efficient access to such a huge network and widely distributed data is a challenge to 
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those who design, maintain, and manage the grid network. The availability of a data 
on a large network is an issue [3, 4, 5, 6] because geographically it is distributed and 
has different database management to share across the grid network whereas 
replicating data can become expensive if the number of operations such as read or 
write operations is high. In our work, we investigate the use of replication on a grid 
network to improve its ability to access data efficiently.  

Distributed computing manages thousands of computer systems and this has 
limited its memory and processing power. On the other hand, grid computing has 
some extra characteristics. It is concerned to efficient utilization of a pool of 
heterogeneous systems with optimal workload management utilizing an enterprise's 
entire computational resources (servers, networks, storage, and information) acting 
together to create one or more large pools of computing resources. There is no 
limitation of users or originations in grid computing. Even though grid sometime can 
be as minimum one node but for our protocol the best number of nodes should be 
more than five nodes to implement the protocol. This protocol is suitable for large 
network such as grid environment.  

There are some research been done for replica control protocol in distributed 
database and grid such as Read-One Write-All (ROWA) [7], Voting (VT) [8], Tree 
Quorum (TQ) [9, 10], Grid Configuration (GC) [11, 12], and the latest research in 
year 2007 is Neighbor Replication on Grid (NRG) [13, 14, 15]. Each protocol has its 
own way of optimizing the data availability. The usage of replica is to get an optimize 
data accessing in a large and complex grid. Fig. 1 illustrates the usage of replica 
protocol in grid where it is located in the replica optimization component [16]. 

  

User Interface 

Resource Broker Information Service 

Network Monitor

Replica Optimization

Replica Location ServiceReplica Manager Client 

Storage 
Element 

Storage 
Element 
Monitor 

 

Fig. 1. Grid Components Interact with Replica Manager in Grid 

In this paper, we present a new quorum-based protocol for data replication that 
provides both high data availability and low response time [17]. The proposed 
protocol imposes a logical two dimensional mesh structure to produce the best 
number of quorums and obtain good performance of data availability. 

Quorums improved the performance of fault tolerant and availability of replication 
protocols [18]. Quorums reduce the number of copies involved in reading or writing 
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data. To address the availability, we replicate data on the selected node from the 
diagonal site of the 2D mesh structure, which has been organized in quorums. This is 
because it is easy to access the database because of its middle location in the quorum. 
We use Java to run this replication protocol.  

The paper is organized as follows. Section two introduces Diagonal Replication in 
2D Mesh (DR2M) protocol as a new replica control protocol. Section three, illustrates 
the DR2M algorithm. Section four discusses the results by comparing DR2M with the 
existing protocols and the paper ends with a conclusion.  

2   Diagonal Replication in 2D Mesh (DR2M) Protocol  

In our protocol, all nodes are logically organized into two dimensional mesh 
structures. We assume that the replica copies are in the form of data files and all 
nodes are operational meaning that the copy at the nodes is available. The data file is 
replicated to only one middle node at the diagonal site of each quorum.  

This protocol uses quorum to arrange nodes in cluster. Voting approach assigned 
every copy of replicated data object a certain number of votes and a transaction has to 
collect a read quorum of r votes to read a data object, and a write quorum of w votes 
to write the data object. In this approach the quorum must satisfy two constraints 
which are r + w must be larger than the total number of votes, v assigned to the copies 
of the data object and w > v/2 [8]. 

Quorum is grouping the nodes or databases as shown in Fig. 2. This figure 
illustrates how the quorums for network size of 81 nodes are grouped by nodes of 5 x 
5 in each quorum. Nodes which are formed in a quorum intersect with other quorums. 
This is to ensure that these quorums can read or write other data from other nodes 
which are in another quorum. The number of nodes grouped in a quorum, q must be 
odd so that only one middle node from the diagonal site can be selected such as site 
s(3,3) colored in black circles in Fig. 2. Site s(3,3) has the copy of the data file for 
read and write operation to be executed. 
 
Definition 2.1. Assume that a database system consists of n x n nodes that are 
logically organized in the form of two dimensional grid structures. All sites are 
labeled s(i,j), 1 ≤ i ≤ n, 1 ≤ j ≤ n. The diagonal site of s(i,j) is s(n,n), where n =  
1, 2, …, n. 
 
From Fig. 2, for q1, the nodes of the diagonal site, D(s) is {s(1,1), s(2,2), s(3,3), 
s(4,4), s(5,5)} in each quorum and the middle node s(3,3) has the copy of the data file. 
This figure shows that 81 nodes have four quorums where each quorum actually 
intersects with each other. Node e in q1 is actually node a in q2 and node e in q3 is 
actually node a in q4 and etc.  

Since the data file is replicated only on one node for each quorum, thus it 
minimizes the number of database operations. The selected node in the diagonal sites 
is assigned with vote one or vote zero. A vote assignment on grid, B, is a function 
such that, B(s(i,j)) ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ j ≤ n where B(s(i,j)) is the vote assigned to 
site s(i,j). This assignment is treated as an allocation of replicated copies and a vote 
assigned to the site results in a copy allocated at the diagonal site. That is,  
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1 vote ≡ 1 copy. Let LB = ∑ B(s(i,j)), s(i,j) ∈ D(s) 
 
where LB is the total number of votes assigned to the selected node as a primary 
replica in each quorum. Thus LB = 1 in each quorum.  
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. A grid organization with 81 nodes, each of the node has a data file a, b,…, and y, 
respectively 

Let r and w denote the read quorum and write quorum, respectively. To ensure that 
read operation always gets the updated data, r + w must be greater than the total 
number of votes assigned to all sites. To make sure the consistency is obtained, the 
following conditions must be fulfilled [8].  

i. 1  ≤ r ≤ LB, 1 ≤ w ≤ LB 

ii. r + w = LB + 1. 
 
These two conditions ensure that there is a nonempty intersection of copies 

between read and write quorums. Thus, these conditions ensure that a read operation 
accesses the most recently updated copy of the replicated data. 

Let S(B) = {s(i,j)| B(s(i,j)) = 1, 1 ≤ i ≤ n, 1 ≤j ≤ n} where i = j 
 

Definition 2.2. For a quorum q, a quorum group is any subset of S(B) where the size is 
greater than or equal to q. The collection of quorum group is defined as the quorum set.  
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Let Q(Bm,q) be the quorum set with respect to assignment B and quorum q, then 

Q(Bm,q) = {G| G ⊆ S(B) and |G| ≥ q}. 

For example, from Fig. 2, let site s(3,3) be the primary database of the master data file 
m. Its diagonal sites are s(1,1), s(2,2), s(3,3), s(4,4), and s(5,5). Consider an 
assignment B for the data file m, where Bm(s(i,j)) is the vote assigned to site s(i,j) and 
LB,m is the total number of votes assigned to primary database in each quorum which 
is (s(3,3)) for data file m, such that Bm(s(1,1)) = Bm(s(2,2)) = Bm(s(3,3)) = Bm(s(4,4)) = 
Bm(s(5,5)) = 1 and LB,m  = Bm(s(3,3)). Therefore, S(B) = {s(3,3)}.  

For simplicity, a read quorum for the data file m, is equal to write quorum. The 
quorum sets for read and write operations are Q(Bm,q1), Q(Bm,q2), Q(Bm,q3), and 
Q(Bm,q4), respectively, where Q(Bm,q1) = {s(3,3)}, Q(Bm,q2) = {s(3,3)}, Q(Bm,q3) = 
{s(3,3)}, and Q(Bm,q4) = {s(3,3)}. Therefore, the number of replicated data file  
m is four. 

3   DR2M Algorithm 

DR2M is developed using Java.  The algorithm of the model is as in Fig. 3, where it 
shows the flow of the protocol. For the development of the simulation some 
assumptions were made such as the network has no failure and nodes are accessible. 

To analyze the performance of read and write availability, below are the equations 
where n is the 2D mesh column or row size, example n is 7, thus 7 x 7 nodes of grid is 
the network size and p is the probability of data available which is between 0 to 1 
whereas, q is the number of quorum for a certain operation such as read or write 
operation. Eq. (1) is to calculate the data availability. 

Av, q = ))1(( ini
n

qi

pp
i

n −

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑  (1) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Algorithm of DR2M protocol 

Main 
Input number of row or column, N  

If N  is odd integer then  
 Find the number of quorum, Q 

 Q = 
⎥⎦
⎥

⎢⎣
⎢ −

10
n

n   

 Find number of nodes in each quorum, X 

 X = 
Q

n  

 Get the next odd integer after X   
 Select the middle replica, R  
 Copy the data file at R  

Else add one virtual column and row, Colnew + RowNew 
 N = Colnew * RowNew then  

Return N to Main. 
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A larger network has more quorums. The number of columns and rows in each 
quorum must be odd, to get the middle replica. DR2M protocol assumes all nodes 
have the same data access level and request number. Fig. 3 is the algorithm for DR2M 
protocol. It illustrates how the algorithm is designed and implemented. 

For Fig. 3, the number of nodes in the network must be odd and if it is an even 
number then a virtual column and row is added meaning an empty node of rows and 
column are located to make the selection of the middle node easier. To find the best 
number of quorum, Q, for the whole network size, n x n, Eq. (2) is used where n is the 
number of nodes for row or column.  

Q = 
⎥⎦
⎥

⎢⎣
⎢ −

10

n
n  (2) 

For obtaining the best number of nodes for each quorum, X, Eq. (3) is used where 
the number of nodes must be odd to make the selection of the middle node easy and if 
X is not odd then X will be the next odd number after n/Q.  

X = Q
n  (3) 

After the selected node is chosen, the data file is copied where it acts as a primary 
database for that particular quorum. Some protocol depends on the frequent usage of 
the data to select that particular node as the primary database. But for this protocol, an 
assumption is made where every node has the same level of data access and number 
of request.  

4   Results and Discussion 

In this section, DR2M protocol is compared with the results of read and write 
availability of the existing protocols, namely: ROWA, VT, TQ, GC, and NRG. Fig. 4 
shows the results of read availability in 81 nodes of network size. ROWA protocol 
has the higher read availability about average of 2.425% for probability of data 
accessing between 0.1 to 0.9 even when the number of nodes is increased. This is 
because only one replica is accessed by a read operation for all n nodes of network 
size but ROWA has the lowest write availability. 

Fig. 5 proves that the DR2M protocol has 4.163% higher of write availability for 
all probabilities of data accessing. This is due to the fact that replicas are selected 
from the middle location of all nodes in each quorum and by using quorum approach 
helps to reduce the number of copies in a large network. 

Fig. 5 illustrates the write availability for 81 numbers of nodes, where the 
probability is from 0.1 to 0.9.  
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Fig. 4. Read availability results for existing protocols 
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Fig. 5. Write availability results for existing protocols 

6   Conclusions 

In this paper, DR2M protocol selects a primary database from the middle location of 
the diagonal site where the nodes are organized in structure of 2D Mesh. By getting 
the best number of quorum and using the voting techniques have improved the 
availability for write operation compared to all protocols and has higher read 
availability compared to the latest technique, NRG. In the future, we will investigate 
the response time to access a range of data size in the grid environment and this 
investigation will be used to evaluate the performance of our DR2M protocol.  
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Università di Milano – Bicocca

Viale Sarca 336/U14, I–20126 Milano, Italia
{bianucci,cattang}@disco.unimib.it

Abstract. Some approaches to the entropy of coverings, generalizing
the case of the partition entropy, and some definitions of orderings and
quasi–orderings of coverings as extensions to the covering context of var-
ious formulations of the standard order on partitions. Unfortunately, we
here show that the problem of anti–monotonicity of non–pointwise en-
tropy of coverings is still open. On the other side, we will illustrate an
approach to generate a partition from a covering; we will then show
how we can indirectly compare the entropies of two coverings, that are
in a certain order relation, by comparing the entropies of the induced
partitions.

Keywords: Partitions, Coverings, Partial order, Quasi–order, Entropy,
Co–entropy, Monotonicity, Anti–monotonicity, Induced partition.

1 Introduction to Information Systems and Partition
Entropy

An information system, according to the original definition given by Pawlak [11],
is formalized as a triple 〈X, Att, F 〉, where X , called the “universe of discourse”,
is a finite collection of objects, Att a finite family of attributes, and F a mapping
defined on X × Att which assigns a value F (x, a) to each pair (x, a) ∈ X × Att
which is the value assumed by the object x relatively to the attribute a. An
information system can be represented by a table in which each row represents
an object x of X and each column represents an attribute a of Att [8, 13, 17].
An information system is said to be complete if it does not contain undefined
values, i.e., if for each pair (x, a) the mapping F assumes a well known value.
The information system is said to be incomplete if the “information” about some
pair (x, a) is missing, denoted by F (x, a) = ∗.
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On a complete information system we can define an equivalence relation,
called “indiscernibility” [12], which states that, chosen a subfamily A ⊆ Att of
attributes, two objects x and y are indiscernible with respect to A iff ∀ a ∈ A they
assume the same value, F (x, a) = F (y, a). Through this equivalence relation we
obtain a partition of the universe X . In the case of an incomplete information
system in which some values are missing we can use a generalization of the
indiscernibility relation, called “similarity” relation [9], for which we say that,
given a subset of attributes A ⊆ Att, two objects x and y are similar with
respect to A (denoted by x ∼A y) iff ∀ a ∈ A either they assume the same
value or one of the two objects (either x or y) assumes the undefined ∗ value.
Each object x ∈ X generates a similarity class through the similarity relation,
sA(x) = {y ∈ X : x ∼A y}, and the collection of all the similarity classes thus
induced constitutes a covering of the universe X .

We will first recall the main aspects and definitions involved in the parti-
tion situation. A partition of a finite universe X is a finite collection π =
{A1, A2, . . . , AN} of nonempty pairwise disjoint measurable subsets Ai of X
whose set theoretic union is X . Let us observe that, as previously briefly illus-
trated, if we deal with a complete information system, given a set of attributes A,
through the indiscernibility relation we obtain a partition of X depending from
A. On the collection Π(X) of all partitions of X we can introduce the following
binary relations [3, 1, 4, 6] defined for any pair of partitions π1, π2 ∈ Π(X) of
the universe X as follows:

π1 	 π2 iff ∀ A ∈ π1, ∃ B ∈ π2 : A ⊆ B; (1)
π1 � π2 iff ∀ B ∈ π2, ∃ {Ai1 , . . . , Aih

} ⊆ π1 : B = Ai1 ∪ . . . ∪ Aih
. (2)

π1 ≤W π2 iff ∀ Ai ∈ π1, ∀ Bj ∈ π2, Ai ∩ Bj �= ∅ implies Ai ⊆ Bj (3)

These three formulations are mutually equivalent on Π(X) and define the same
partial order, which in the partition context will be denoted by 	 in the se-
quel. This does not happen in their extensions to the covering case, where they
correspond to three different relations: the first two are quasi–order (reflexive,
transitive, but not anti–symmetric) relations, the latter is a standard ordering.

Let us now describe the main details and definitions regarding the entropy
and co–entropy for partitions. In the sequel we consider measurable universes
with a non-trivial finite measure, i.e., 0 �= m(X) < +∞. From the monotonicity
of m [16] we always have that for every measurable set A ⊆ X the inequality
m(A) ≤ m(X) holds . Hence p(A) = m(A)

m(X) define a probability measure repre-
senting the probability of occurrence of each elementary event A. In the case of
a finite measurable partition π the elementary events are the equivalence classes
A1, A2, . . . , AN . Let us observe that the vector p(π) = (p(A1), p(A2), . . . , p(AN ))
is a probability distribution since each p(Ai) > 0 and

∑N
i=1 p(Ai) = 1. The vec-

tor I(π) = (− log p(A1), . . . , − log p(AN )) is the discrete random variable of the
partition uncertainty. The resulting average uncertainty related to a partition π
of X is the information entropy defined, according to Shannon [15], as H(π) =
−

∑N
i=1 p(Ai) log p(Ai). When dealing with partitions the entropy can also be
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equivalently expressed by H(π) = log m(X) − 1
m(X)

∑N
i=1 m(Ai) log m(Ai). If

we consider the second term, i.e., E(π) = 1
m(X)

∑N
i=1 m(Ai) log m(Ai), we can

observe that it could be an average by itself of a discrete random variable
G(π) = (log m(A1), . . . , log m(AN )) furnishing a granularity measure of π. Thus
E(π) does not regard the average uncertainty of the events Ai, but it is the
average granularity related to π. This measure, complements the entropy with
respect to the fixed quantity log m(X) and for this reason it is here called co–
entropy of the partition π [3, 2, 4, 1, 6].

In the partition context the entropy (resp., co–entropy) behaves anti–mono-
tonically (resp., monotonically) with respect to the previously described partial
order on Π(X). Formally:

π1 	 π2 implies H(π2) ≤ H(π1) and E(π1) ≤ E(π2). (4)

This is of great interest and importance in the context of rough sets when deal-
ing with a complete information system and a partition induced by it through
the equivalence relation of indiscernibility [6]. Indeed, in a complete information
system given two sets of attributes B, A ⊆ Att, B ⊆ A implies π(A) 	 π(B),
and so the required and expected monotonic condition is satisfied. Thus, mak-
ing use of (4) the further monotonicities are true: B ⊆ A implies H(π(B)) ≤
H(π(A)) and E(π(A)) ≤ E(π(B)).

2 The Covering Case

In the concrete applications, the real information systems are often incomplete
and this is one of the reasons for which it is important to study the covering case.
As briefly illustrated in the introduction, given a family of attributes, through
the similarity relation we obtain a covering γ(A) of X constituted by the simi-
larity classes sA(x) generated by all the objects x of X . In the sequel we present
a survey of the state of the art about orderings and quasi–orderings on cover-
ings and about non–pointwise entropies of coverings, not making distinctions
between coverings induced by an incomplete information system via a similarity
relation, and generic coverings of a universe X , unless explicitly said. We will
then illustrate an important result: how to compare two generic coverings which
are in a certain order relation, by generating a partition from each of them and
computing their entropies.

Orderings and Quasi–Orderings of Coverings. In the previous section we
described some different formulations (1), (2) and (3) of the same partial order
relation on Π(X). The extension to coverings of these formulations generates
two different quasi–orderings, i.e., reflexive and transitive, but in general non
anti–symmetric relations. In the class Γ (X) of all coverings of the universe X ,
(1) and (2) become respectively:

γ 	 δ iff ∀ Ci ∈ γ ∃ Dj ∈ δ : Ci ⊆ Dj (5)

γ � δ iff ∀ D ∈ δ ∃ {C1, C2, . . . , Cp} ⊆ γ : D = C1 ∪ C2 ∪ . . . ∪ Cp (6)
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where γ and δ are coverings from Γ (X). These are both quasi–order relations in
Γ (X). If we consider the class of genuine coverings Γg(X) consisting of all those
coverings which do not contain redundant elements (formally: for any Ci, Cj ∈ γ,
Ci ⊆ Cj implies Ci = Cj , i.e., for any set Ci ∈ γ we have that there is no Cj ∈ γ
such that Ci ⊂ Cj - see [3] for more details and examples) and in which there
is no element equal to the whole X , then we have that (5) is a partial order
relation.

In the coverings case, in general these two quasi–orderings are different and no
general relationship exists between them (see example 5.1 in [3]), even when we
consider the restricted class of genuine coverings. Let us now illustrate a binary
relation introduced by Wierman (in the covering context in an unpublished work
which he kindly sent to us):

γ �W δ iff ∀ Ci ∈ γ ∀ Dj ∈ δ Ci ∩ Dj �= ∅ implies Ci ⊆ Dj (7)

This binary relation, that is the extension to coverings of (3), has the advantage
of being anti–symmetric on the whole Γ (X); but it presents the drawback (as
explained by Wierman himself) that it is not reflexive in the covering context
(it is easy to find examples). For this reason, in order to define an ordering on
coverings, Wierman added the further condition γ = δ in the following way:

γ ≤W δ iff γ = δ or γ �W δ (8)

So, we can see that in the covering case it is difficult to maintain the three
properties of reflexivity, transitivity and anti–symmetry at the same time un-
less one adds more conditions in the definition of the binary relation, or re-
stricts the applicability on a subclass of coverings, such as the class of all
genuine ones. Another advantage of (8) (as illustrated by Wierman himself)
is that the pair (Γ (X), ≤W ) is a poset lower bounded by the discrete partition
πd = {{x1}, {x2}, . . . , {xm(X)}}, which is the least element, and upper bounded
by the trivial partition πt = X which is the greatest element. Moreover, it is a
lattice.

Let us now illustrate how one can extract a partition π(γ) from a covering γ.
We thought of a method consisting in two main steps (see [5]): first we create
the covering completion γc, which consists of all the sets Ci of γ and of all the
corresponding complements Cc

i ; then, for each x ∈ X , we generate the granule
gr(x) =

⋂
(C ∈ γc : x ∈ C). The collection of all granules gr(x) is a partition.

The Wierman approach to generate a partition from a covering, presents a dif-
ferent formulation, i.e., gr(x) =

⋂
x∈C C \

⋃
x/∈C C, which is equal to the just

introduced granule. The following proposition is easy to prove:

Proposition 1. For any two coverings γ and δ the following holds:

γ ≤W δ implies π(γ) 	 π(δ)

This property, not described by Wierman, is important because it allows us to
compare two coverings through the entropies of their induced partitions, which
behave anti–monotonically with respect to the standard order relation (1) on
Π(X). Hence, the following can be proved:
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Proposition 2. For any two coverings γ and δ the following holds:

γ ≤W δ implies H(π(δ)) ≤ H(π(γ)) and E(π(γ)) ≤ E(π(δ))

As we can observe, by simply expressing in a third way the same order relation
on partitions, we have obtained an order relation on coverings with respect to
which the entropy (resp. co–entropy) of the partition induced by a covering
behaves anti–monotonically (resp. monotonically).

Entropies and Co–Entropies for Coverings. In [3] we introduced some
definitions of entropies with corresponding co–entropies for coverings, whose
restrictions to partitions induce the standard entropy and co–entropy. For lack
of space, we will here only recall the definitions of the entropies. More details
and considerations will be soon illustrated in a further paper.

Let us consider a covering γ = {B1, B2, . . . , BN} of the universe X . We
started from an entropy based on a probability distribution in which the proba-
bility of an elementary event was represented by p(Bi) = η(Bi)

m(X) , where η(Bi) =
∑

x∈X
1∑

N
i=1 χBi

(x)
χBi(x) (χ(Bi) being the characteristic functional of the set Bi

for any point x ∈ X) (see also [3, 1, 4, 6]). The resulting entropy is then:

H(γ) = −
N∑

i=1

p(Bi) log p(Bi) (9)

We then described a second approach to entropy and co–entropy for cov-
erings. We defined the total outer measure of X induced from γ as m∗(γ) :=
∑N

i=1 m(Bi) ≥ m(X) > 0. We illustrated an alternative probability of occur-
rence of the elementary event Bi from the covering γ as p∗(Bi) := m(Bi)

m∗(γ) ob-
taining that the vector p∗(γ) :=

(
p∗(B1), p∗(B2), . . . , p∗(BN )

)
is a probability

distribution since trivially: (1) every p∗(Bi) ≥ 0; (2)
∑N

i=1 p∗(Bi) = 1. Hence
we defined a second entropy of a covering as

H∗(γ) = log m∗(γ) − 1
m∗(γ)

N∑

i=1

m(Bi) log m(Bi) (10)

In the same work we illustrated a third approach to entropy and co–entropy
for coverings starting from the probability of the elementary event Bi defined
as pLX(Bi) := m(Bi)

m(X) (see [3, 1]). In this case we observed that the proba-
bility vector pLX(γ) := (pLX(B1), pLX(B2), . . . , pLX(BN )) does not define a
probability distribution since in general

∑N
i=1 pLX(Bi) ≥ 1. Keeping in mind

this characteristic, we defined the following pseudo–entropy (originally denoted
by H

(g)
LX):

H(g)(γ) = m∗(γ)
log m(X)

m(X)
− 1

m(X)

N∑

i=1

m(Bi) log m(Bi) (11)
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Anti–Monotonic Behavior. As for the behavior of the here illustrated co–
entropies with respect to the quasi–orderings for coverings (5) and (6), the reader
can find a deep analysis and various examples in [3, 1]. We here only recall that
the entropies H , H∗ and H(g) for coverings behave neither monotonically nor
anti–monotonically with respect to these two quasi–order relations, even in the
more favorable context of genuine coverings.

For what concerns the order relation ≤W on Γ (X) described in (8), we have
found examples in which the entropy H shows both behaviors, i.e., monotonic
in some cases and anti–monotonic in others, and so it does not present a general
behavior. We could find counterexamples to the behavior of anti–monotonicity
of the two entropies (10) and (11) with respect to the partial order relation (8)
in which the finest of the two coverings was a partition (for instance, the induced
partition).

The Case of Incomplete Information Systems. Let us now see what hap-
pens considering the partial order relation ≤W (8) in the case of coverings in-
duced from an incomplete information system. Unfortunately, it is easy to find
examples in which two coverings, γ(A) and γ(B), obtained via similarity relation
depending on two subsets of attributes, A and B, with B ⊆ A, are not in ≤W

relation. This means that given two families of attribute sets A and B, condition
B ⊆ A in general does not imply γ(A) ≤W γ(B). Let us recall that with respect
to the quasi–ordering (5) we always have that B ⊆ A implies γ(A) 	 γ(B).
On the coverings generated from an incomplete information system we can
use the following pointwise binary relation [10]; let us consider A, B ⊆ Att,
we define:

γ(A) ≤s γ(B) iff ∀ x ∈ X sA(x) ⊆ sB(x) (12)

This is a partial order relation, and we have that B ⊆ A always implies that
γ(A) ≤s γ(B). On the other hand, in this case we have that in general γ(A) ≤s

γ(B) does not imply π(γ(A)) 	 π(γ(B)). The same happens when considering
the quasi–orderings (5), (6): for instance, either γ(A) 	 γ(B) or γ(A) � γ(B)
in general do not imply π(γ(A)) 	 π(γ(B)).

On the other side, for a covering induced by a similarity relation from an in-
complete information system there exist some pointwise entropies as: HLSLW =
−

∑
x∈X

1
m(X) log m(sA(x))

m(X) [7], or also HLX = −
∑

x∈X
m(sA(x))

m(X) log m(sA(x))
m(X) [10,

3], in which each class generated by each x ∈ X is considered in the computation,
even in the case that some of the classes are the same. Moreover, we also have an
entropy for incomplete information systems based on pseudo–probability parti-
tions (see [2] for details). All these entropies behave monotonically with respect
to the set inclusion of subfamilies of attributes of an incomplete information sys-
tem. The drawback is that they are not directly applicable to generic coverings,
i.e., to those coverings not necessarily generated from an incomplete information
system through a similarity relation.
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3 Conclusions and Open Problems

We have analyzed some orderings and quasi–orderings on coverings resulting as
extensions to the covering case of different (but equivalent) formulations of the
standard order relation on Π(X). In particular, we have analyzed the partial
order relation ≤W of equation (8) and we have shown that if a pair of coverings
is in this relation, the pair of the induced partitions is in the partial order relation
on partitions 	 of equation (1); hence we can compare the two coverings through
the entropies of their induced partitions. This result is important for the context
of generic coverings, since at the moment there is no non–pointwise entropy
which allows a comparison between coverings.

We have observed that in the case of coverings induced by a similarity re-
lation on an incomplete information system, the set inclusion of subfamilies of
attributes implies the quasi–order relation 	 of equation (5) (or better the order
relation ≤s of equation (12)), but in general it does not imply the order relation
≤W of equation (8). This means that it is not possible in general to compare
the resulting coverings through the entropies of the partitions generated by the
coverings.

Then we analyzed some non–pointwise entropies of coverings defined in previ-
ous works and we have observed that in general they all seem to behave neither
monotonically, nor anti-monotonically with respect to the partial order relation
≤W of equation (8).

We have to stress that the only example of monotonic behavior for the en-
tropies H∗ of equation (10) and H(g) of equation (11) concerns the comparison
of a covering with its induced partition.

For what concerns the case of incomplete information systems, there exist
some entropies (one based on pseudo–probability partitions, and two pointwise
entropies) which behave anti–monotonically with respect to some orderings (for
instance, ≤s) and quasi–orderings (	 and �). Although they behave as expected,
in our opinion the pointwise entropies and co–entropies present a drawback: for
their computation it is necessary to consider all the similarity classes generated
by all the objects x ∈ X , and this can be seen as an excess of information,
apart from a possible problem of computational complexity. The entropy and
co–entropy based on the approach of pseudo–probability partitions (see [2]) do
not have this drawback.
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Abstract. The fuzzy knowledge plays an important role in many appli-
cations on the semantic web which faces imprecise and vague information.
The current ontology languages on the semantic web use description log-
ics as their logic foundation, which are insufficient to deal with fuzzy
knowledge. Comparisons expressions between fuzzy membership degrees
are frequently used in fuzzy knowledge systems. However, the current
fuzzy extensions of description logics are not support the expression of
such comparisons. This paper defines fuzzy comparison cuts to represent
comparison expressions, extends fuzzy description logics by importing
fuzzy comparison cuts and introducing new constructors. Furthermore,
the reasoning algorithm is proposed. It enables representation and rea-
soning for fuzzy knowledge on the semantic web.
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1 Introduction

Description logics (DLs) [1] are a family of knowledge representation languages
widely used in the semantic web as a logic foundation for knowledge representa-
tion and reasoning. It is often necessary to represent fuzzy knowledge in real-life
applications [2]. The fuzzy knowledge plays an important role in many domains
which faces a huge amount of imprecise and vague knowledge and information,
such as text mining, multimedia information system, medical informatics, ma-
chine learning, human natural language processing. However, classical DLs are
insufficient to representing fuzzy knowledge [3]. Fuzzy DLs import the fuzzy set
theory to enable the capability of dealing with fuzzy knowledge.

Many research work on fuzzy DLs have been carried out. Yen provided a fuzzy
extension of DL FL− [4]. Tresp presents a fuzzy extension of ALC, ALCFM [3].
Straccia presented fuzzy ALC and an algorithm for assertional reasoning [8].
There are many extensions of fuzzy ALC. Höldobler introduced the membership
manipulator constructor to present ALCFH [9]. Sanchez generalized the quantifi-
cation in fuzzy ALCQ [10]. Stoilos provided pure ABoxes reasoning algorithms
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for the fuzzy extensions of SHIN [11]. There are several works using the idea
of fuzzy cuts. Straccia transformed fuzzy ALC into classical ALCH [5]. Li pre-
sented a family of extended fuzzy DLs (EFDLs) [6]. Calegari showed the fuzzy
OWL [12] and Straccia presented a fuzzy SHOIN (D)[13].

It is a familiar description that “Tom is taller than Mike,” which can be
seemed as a comparison between two fuzzy membership degrees. We call such
descriptions comparison expressions on fuzzy membership degrees. However, the
current fuzzy DLs do not support the expression of comparisons between fuzzy
membership degrees. So it is necessary to extend fuzzy DLs with the ability of
expressing comparison expressions.

This paper defines fuzzy comparison cuts (cuts for short) to represent com-
parison expressions on fuzzy membership degrees. The reasoning algorithm is
proposed. It enables representation and reasoning for expressive fuzzy knowl-
edge on the semantic web.

2 Fuzzy DLs with Comparison Expressions

2.1 Represent Comparison Expressions

For an individual a and a fuzzy concept C, let a : C be the degree to which a
is an instance of C. Similarly, (a, b) : R is the degree to which two individuals
a and b has a role R. In fuzzy DLs, the degrees can have their values in [0, 1].
We can show ranges of degrees in a set of fuzzy assertions of the form 〈α �� n〉,
where α is a degree, n ∈ [0, 1] is a constant and �� ∈ {=, �=, <, ≤, ≥, >}.

It is often necessary to compare the fuzzy membership degrees. There can be
different kinds of comparisons between fuzzy membership degrees:

– A numerical comparison compares a degree to a constant. Tom : Tall > 0.8
means “Tom is quite tall.” Mike : Tall ≤ 0.9 means “Mike is not very tall.”

– An abstract comparison compares degrees of the same individual. Tom :
Absolutist < Tom : Liberalist means “Tom prefers liberalism to absolutism.”

– A relative comparison compares degrees between different individuals. Tom :
Tall < Mike : Tall means “Tom is taller than Mike.”

– A complex comparison is constructed from the above kinds of simple com-
parisons. If for any person x such that (Tom , x) : hasFriend > 0.9, it holds
Tom : Tall > x : Tall or Tom : Strong > x : Strong, then we can say “No
close friend (the degree of friendship is greater than 0.9) of Tom is taller and
stronger than him.”

Our idea is to define new elements to express the above kinds of comparisons,
and integrate them into the current fuzzy DLs. We call the new elements fuzzy
comparison cuts. In the fuzzy set theory[2], the cut sets are indeed classical sets,
but facilitate a normative theory for formalizing fuzzy set theory. The idea of
fuzzy cuts can also be used for fuzzy DLs. [5] use the idea of cut sets of fuzzy
concepts to transform fuzzy DL ALC to classical DL ALCH. [6] defined cuts of
fuzzy concepts for more expressive ability.
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2.2 Syntax and Semantics

The new languages with comparison cuts is called FCDLs. The syntax of FCDLs
starts from three disjoint sets: NI , NC and NR: NI is a set of individual names,
NC is a set of fuzzy concept names, and NR is a set of fuzzy role names. Com-
plex fuzzy descriptions can be built from them inductively with fuzzy concept
constructors and fuzzy role constructors.

Definition 1. The set of fuzzy role descriptions (or fuzzy roles for short) is
defined as: every fuzzy role name R ∈ NR is a fuzzy role; and for any fuzzy role
R, R− is also a fuzzy role (let (R−)− := R). For two fuzzy role R, S, R � S
is called a fuzzy role inclusion axiom. A finite set of role inclusions is called
a role hierarchy. For individual names a, b ∈ NI and a constant n ∈ [0, 1],
〈(a, b) : R �� n〉 is called a fuzzy role assertion.

If for any a, b, (a, b) : R = n iff (b, a) : S = n, then S is an inverse role of R,
written R−. The role inclusion is transitive and R � S implies R− � S−. For a
role hierarchy R, let �R be the transitive reflexive closure of � on R ∪ {R− �
S−|R � S ∈ R}. Beside the definition, NR consists both transitive and normal
fuzzy role names NR = NR+ ∪ NRP , where NR+ ∩ NRP = ∅. For a transitive
fuzzy role R, if (a, b) : R ≥ n and (b, c) : R ≥ n, then it must have (a, c) : R ≥ n.
Let trans(S, R) be true if for some R with R = S or R ≡R S such that R ∈ NR+

or R− ∈ NR+ , where R ≡R S is an abbreviation for R �R S and S �R R. A
role R is simple w.r.t. R iff trans(S, R) is not true for all S �R R. Simple roles
is required in order to avoid undecidable logics [1].

Definition 2. The set of fuzzy concepts is that

1. every fuzzy concept name A ∈ NC is a fuzzy concept,  and ⊥ are fuzzy
concepts,

2. if C, D are fuzzy concepts, o ∈ NI is an individual name, R is a fuzzy role,
S is a simple fuzzy role, and q ∈ N, then ¬C, C � D, C � D, ∀R.C, ∃R.C, ≥
qS.C, ≤ qS.C, {o} are also fuzzy concepts,

3. if R is a fuzzy role, S is a simple fuzzy role, P is a cut, and q ∈ N, then
∃R.P, ∀R.P , ≥ qS.P , ≤ qS.P are also fuzzy concepts.

For two fuzzy concept C, D, C � D is called a fuzzy concept inclusion. For
a ∈ NI and n ∈ [0, 1], 〈a : C �� n〉 is called a fuzzy concept assertion.

Definition 3. The set of fuzzy comparison cuts (or cuts for short) is defined
as: if C, D are fuzzy concepts, n ∈ [0, 1] and �� ∈ {=, �=, >, ≥, <, ≤}, then [C ��
n], [C �� D] and [C �� D↑] are cuts (and [C ��] is an abbreviation of [C �� C↑]);
if P, Q are cuts, then ¬P , P � Q and P � Q are also cuts. For any cut P and
a ∈ NI , P (a) is called an absolute cut. If a cut P contains no ↑, then P itself
is an absolute cut, and we do not distinguish P and P (a) for any a. For two
absolute cuts P, Q, P � Q is called a cut inclusion. For an absolute cut P (b)
and a ∈ NI , 〈a : P (b)〉 is called a cut assertion.
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Definition 4. A fuzzy interpretation I =
〈
ΔI , ·I

〉
consists a nonempty set ΔI

as its domain, and a function ·I maps every individual a ∈ NI to an element
aI ∈ ΔI, maps every fuzzy concept name A ∈ NC to a function AI : ΔI → [0, 1],
and maps every fuzzy role name R ∈ NR to a function RI : ΔI × ΔI → [0, 1].

The interpretation function is also extended to complex descriptions. It maps
every fuzzy concept C to a function CI : ΔI → [0, 1], maps every fuzzy role R
to a function RI : ΔI ×ΔI → [0, 1], maps every cut P to a function P I : ΔI →
2ΔI

, and maps every absolute cut P (a) to a set P I(aI) ⊆ ΔI .

The syntax and semantics of FCDLs are showed in Table 1. Table 1 does not
list all available constructors, but only selects the most common ones.

From the semantics, it is clear that the interpretation of [C �� n]I(s) and
[C �� D]I(s) do not depend on s. For any cut P and individual name a, P (a) is
an absolute cut, and (P (a))I = P I(aI). If a cut P contains no ↑, then P I(s) is
independent of s. So P itself is an absolute cut.

With the cuts and new constructors, FCDLs are more expressive than the
current fuzzy DLs. FCDLs support all kinds of comparison expressions. They
enable representation of expressive fuzzy knowledge on the semantic web.

2.3 Knowledge Bases and Reasoning

Definition 5. A knowledge base (KB) of FCDLs is consists of an ABox, a
TBox and a RBox:

An ABox is a finite set of concept assertions of the form 〈a : C �� n〉, role
assertions of the form 〈(a, b) : R �� n〉, and cut asserions of the form 〈a : P (b)〉.
An interpretation I satisfies an ABox A iff I satisfies each assertion in A; such
I is called a model of A. I satisfies 〈a : C �� n〉 iff CI(aI) �� n, I satisfies
〈(a, b) : R �� n〉 iff RI(aI , bI) �� n, I satisfies 〈a : P (b)〉 iff aI ∈ P I(bI).

An TBox is a finite set of concept inclusions of the form C � D, and cut
inclusions of the form P � Q. I satisfies a TBox T iff I satisfies each inclusion
in T ; such I is called a model of T . I satisfies C � D iff for any s ∈ ΔI,
CI(s) ≤ DI(s), I satisfies P � Q iff P I ⊆ QI(s).

An RBox (or called role hierarchy) is a finite set of role inclusions of the form
R � S. I satisfies an RBox R iff RI(s, t) ≤ SI(s, t) for each R � S ∈ R; such
I is called a model of R.

For a knowledge base K = 〈A, T , R〉, if I is a model of T , R and A, then I
is called a model of K
Definition 6. The basic inference problems of FCDLs include

– Satisfiability of concepts: a concept C is satisfiable w.r.t. a TBox T and a
RBox R to a given degree n, iff there exists a model I of T and R with
∃s ∈ ΔI , CI(s) ≥ n.

– Consistency of ABoxes: an ABox A is consistent w.r.t. T and R, iff there
exists a model of T , R and A.

ALCfc is the most basic FCDL. For any ALCfc-role R, R ∈ NRP ; and ALCfc-
concepts are C, D ::= A||⊥|¬C|C � D|C � D|∃R.C|∀R.C|∃R.P |∀R.P . The
ALCfc-cuts are P, Q ::= [C �� n]|[C �� D]|[C �� D↑]|¬P |P � Q|P � Q.
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Table 1. Syntax and semantics of FCDLs

Syntax Semantics Symbol

R RI(s, t) ∈ [0, 1]
R− (R−)I(s, t) = RI(t, s) I

R ∈ NR+ supti∈ΔI {RI(s1, ti) ∧ RI(ti, s2) ≤ RI(s1, s2) R+(S)

A AI(s) ∈ [0, 1]
� �I(s) = 1
⊥ ⊥I(s) = 0

¬A (¬A)I(s) = 1 − AI(s) AL(S)
C � D (C � D)I(s) = min(CI(s),DI(s)) AL(S)
C � D (C � D)I(s) = max(CI(s),DI(s)) U(S)

¬C (¬C)I(s) = 1 − CI(s) C(S)
∀R.C (∀R.C)I(s) = inft∈ΔI {max(1 − RI(s, t), CI(t))} AL(S)
∃R.C (∃R.C)I(s) = supt∈ΔI {min(RI(s, t), CI(t))} E(S)
≥ qR (≥ qR)I(s) = sup

t1,...,tq∈ΔI
minq

i=1{RI(s, ti)} N

≤ qR (≤ qR)I(s) = inf
t1,...,tq+1∈ΔI

maxq+1
i=1 {1 − RI(s, ti)}

≥ qR.C (≥ qR.C)I(s) = sup
t1,...,tq∈ΔI

minq
i=1{RI(s, ti), C

I(ti)} Q

≤ qR.C (≤ qR.C)I(s) = inf
t1,...,tq+1∈ΔI

maxq+1
i=1 {1 − RI(s, ti), C

I(ti)}

{o} {o}I(s) =
{

1 if s=oI

0 if s�=oI O
∀R.P (∀R.P )I(s) = inft∈P I(x){1 − RI(s, t)} AL(S)

∃R.P (∃R.P )I(s) = supt∈P I(x){RI(s, t)} E(S)

≥ qR.P (≥ qR.P )I(s) = sup
t1,...,tq)∈P I(x)

minq
i=1{RI(s, ti)} Q

≤ qR.P (≤ qR.P )I(s) = inf
t1,...,tq+1∈P I(x)

maxq+1
i=1 {1 − RI(s, ti)} Q

[C �� n] [C �� n]I(s) = {t|CI(t) �� n}
[C �� D] [C �� D]I(s) = {t|CI(t) �� DI(t)}
[C �� D↑] [C �� D↑]I(s) = {t|CI(t) �� DI(s)}

¬P (¬P )I(s) = ΔI\P I(s)
P � Q (P � Q)I(s) = P I(s) ∩ QI(s) AL(S)
P � Q (P � Q)I(s) = P I(s) ∪ QI(s) U(S)

R � S ∀s, t ∈ ΔI , RI(s, t) ≤ SI(s, t) H
(a, b) : R �� n RI(aI , bI) �� n

C � D ∀s ∈ ΔI , CI(s) ≤ DI(s)
a : C �� n CI(aI) �� n

P � Q P I ⊆ QI where P, Q are absolute cuts
a : P (b) aI ∈ P I(bI)

3 Reasoning Algorithm

Here presents an algorithm to decide the consistency for ALCfc ABoxes by
constructing completion graphs.
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Definition 7. A completion graph is T = 〈S, E, L, δ〉, where S is a set of nodes
in the graph. E is a set of edges (pairs of nodes) in the graph. L is a function:

R1 if ¬C ∈ L(x), and not C(x) =δ 1 − (¬C)(x)
then L(x) → L(x) ∪ {C}, and C(x) =δ 1 − (¬C)(x)

R2 if C � D ∈ L(x), and not min(C(x),D(x)) =δ (C � D)(x)
then L(x) → L(x) ∪ {C, D}, and min(C(x), D(x)) =δ (C � D)(x)

R3 if C � D ∈ L(x), and not (C � D)(x) =δ 1 − (¬C � ¬D)(x)
then L(x) → L(x) ∪ {C � D}, and (C � D)(x) =δ 1 − (¬C � ¬D)(x)

R4 if ∃R.C ∈ L(x), and there is y with R ∈ L(x, y)
but not X ≤δ (∃R.C)(x) for some X ∈ {R(x, y), C(x)}

then L(y) → L(y) ∪ {C}, and X ≤δ (∃R.C)(x)

R5 if ∃R.C ∈ L(x), and there is no y with X =δ (∃R.C)(x)
or X �δ (∃R.C)(x), for some X ∈ {R(x, y), C(x)}

then add a new node y with L(x, y) = {R}, L(y) = {C},
and X =δ (∃R.C)(x) or X �δ (∃R.C)(x)

R6 if ∀R.C ∈ L(x), and not (∀R.C)(x)δ = 1 − (∃R.¬C)(x)
then L(x) → L(x) ∪ {∃R.¬C}, and (∀R.C)(x) =δ 1 − (∃R.¬C)(x)

R7 if ∃R.P ∈ L(x), and there is y with R ∈ L(x, y)
but not R(x, y)δ ≤ (∃R.C)(x) nor ¬P (x)δ ∈ L(y)

then R(x, y) ≤δ (∃R.C)(x), or L(y) → L(y) ∪ {¬P (x)}
R8 if ∃R.P ∈ L(x), and there is no y with P (x) ∈ L(y),

R(x, y) =δ (∃R.C)(x) or R(x, y) �δ (∃R.C)(x)
then add a new node y with L(x, y) = {R}, L(y) = {P (x)},

and R(x, y) =δ (∃R.C)(x) or R(x, y) �δ (∃R.C)(x)

R9 if ∀R.P ∈ L(x), and not (∀R.P )(x) =δ 1 − (∃R.¬P )(x)
then L(x) → L(x) ∪ {∃R.¬P}, and (∀R.P )(x) =δ 1 − (∃R.¬P )(x)

R10 if [C �� n] ∈ L(x), and not C(x) ��δ n
then L(x) → L(x) ∪ {C}, and C(x) ��δ n

R11 if [C �� D] ∈ L(x), and not C(x) ��δ D(x)
then L(x) → L(x) ∪ {C, D}, and C(x) ��δ D(x)

R12 if [C �� D↑](y) ∈ L(x), and not C(x) ��δ D(y)
then L(x) → L(x) ∪ {C}, L(y) → L(y) ∪ {D}, and C(x) ��δ D(y)

R13 if (P � Q)(y) ∈ L(x), and not {P (y),Q(y)} ⊆ L(x)
then L(x) → L(x) ∪ {P (y),Q(y)}

R14 if (P � Q)(y) ∈ L(x), and {P (y),Q(y)} ∩ L(x) = ∅
then L(x) → L(x) ∪ {X} for some X ∈ {P (y), Q(y)}

R15 if C � D ∈ T , and there is x with no C(x) ≤δ D(x)
then L(x) → L(x) ∪ {C, D}, and C(x) ≤δ D(x)

R16 if C � D ∈ T , and there is x with no C(x) <δ D(x)
then L(x) → L(x) ∪ {C, D}, and C(x) <δ D(x)

R17 if C ∈ L(x) or R ∈ L(x, y), and let X = C(x) or R(x, y)
there is no i such that vi <δ X <δ vi+1, or X =δ vi

then vi <δ X <δ vi+1 for some vi, vi+1, or X =δ vi for some vi

Fig. 1. Expansion rules for ALCfc
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for every node x ∈ S, L(x) is a set of concepts or absolute cuts; for every edge
(x, y) ∈ E, L(x, y) is a set of roles. δ is a set of formulas of the form X ≤ Y ,
X �= Y or X � Y , where X, Y ::= n|C(x)|R(x, y)|1 − X such that n ∈ [0, 1], C
is a concept, R is a role, x, y ∈ S, and for any X, 1 − (1 − X) = X.

The completion graph T of an ABox A w.r.t. a TBox T initializes with: S = {a ∈
NI |a occurs in A}; for any 〈a : P (b)〉 ∈ A, P (b) ∈ L(a); for any 〈(a, b) : R �� n〉 ∈
A, R ∈ L(a, b) and R ��δ n. Let V0 = {v1, v2, . . . , vk} = {0, 1, 0.5}∪ {n ∈ [0, 1]|n
or 1 − n occurs in A or T }, where 0 = v1 < v2 < · · · < vk = 1. For any vi < vj ,
let vi <δ vj . Then the graph grows up by applying the expansion rules showed
in Fig. 1. If a rule applied to x creates a new node y, then y is a successor of
x. Let descendant be transitive closure of successor. Several abbreviations are
defined below:

X ≤δ Y =def X ≤ Y ∈ δ, or X ≤δ Y, Y ≤δ Z, or 1 − Y ≤δ 1 − X

min(X, Y ) =δ Z =def Z ≤δ X, Z ≤δ Y, W ≤δ Z for some W ∈ {X, Y };
X �=δ Y =def X �= Y ∈ δ; X �δ Y =def X � Y ∈ δ;

X ≥δ Y =def Y ≤δ X; X =δ Y =def X ≤δ Y, Y ≤δ X;

X <δ Y =def X ≤δ Y, X �=δ Y ; Xδ > Y =def Y ≤δ X, X �=δ Y.

The �δ relation is used to simulate the infinite supreme. For any a ∈ NI ,
lev(a) = 1. If lev(x) = i, y is a successor of x by updating �δ, then lev(y) = i+1.
For any X of the form C(x), 1 − C(x), R(y, x), or 1 − R(y, x), if lev(x) = i,
then X ∈ Vi. If X �δ Y and Y ∈ Vi, then for any Z ∈ Vj such that j ≤ i,
Z <δ Y → Z <δ X and Z >δ X → Z ≥δ Y . So X �δ Y means X is greater
than any Z < Y such that Z ∈ V0 ∪ V1 ∪ · · · ∪ Vi and Y ∈ Vi. It ensures that
for any given constant ε, we can assign values to the variables in V such that
X − Y < ε without inducing any conflict.

Since there are variables, the blocking condition in ALCfc is different from
classical DLs. It has to consider the comparisons between degrees. For any x, let
δ(x) = {X �� Y |X ��δ Y , X, Y are of the form C(x), 1−C(x), or vi. A node x is
blocked by y, iff x is an descendant of y, and δ(x) = [x/y]δ(y), where [x/y]δ(y)
means to replace any y in δ(y) by x. Then we call y blocks x. When x is blocked,
all descendants of x is also blocked. No rules in Fig. 1 can be applied to blocked
nodes. T is said to contain a clash if {X �=δ Y, X =δ Y } ⊆ δ, or X >δ 1, or
X <δ 0. T is said to be clash-free if it contains no clash. If none of the expansion
rules can be applied to T , then T is said to be complete.

From the blocking condition and the number of concepts in any L(x) is finite,
the algorithm terminates. An ALCfc ABox A is consistent w.r.t. TBox T iff a
complete and clash-free completion graph can be constructed from A w.r.t. T .

4 Conclusions

It is important to compare fuzzy membership degrees in representation of ex-
pressive fuzzy knowledge. This paper defines fuzzy comparison cuts to represent
comparison expressions on fuzzy membership degrees, and extends fuzzy DLs by
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importing them and introducing new constructors. They enable representation
and reasoning for expressive fuzzy knowledge on the semantic web. The future
work is to design reasoning algorithms for more expressive FCDLs, implement
reasoners for FCDLs and construct fuzzy knowledge systems based on FCDLs.
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Abstract. Molodtsov introduced the concept of soft sets. Recently,Aktaş
et al. generalized soft sets by defining the concept of soft groups. In this
paper, we present the definition of soft modules and construct some basic
properties using modules and Molodtsov’s definition of soft sets.

Keywords: soft sets, soft modules, soft submodules, soft homomorphism.

1 Introduction

At present, the complexities of modeling uncertain data in economics, engineer-
ing, environmental science and many other fields cannot be dealt with by classical
methods. Probability theory, fuzzy sets [9], rough sets [8], and other mathemat-
ical tools have their inherent difficulties. Consequently, Molodtsov [5] proposed
a new completely approach, which is so-called soft set theory.

Now, work on the soft set theory is progressing rapidly. Maji et al. described
the application of soft set theory [6] and have published a detailed theoretical
study on soft sets [4]; Molodtsov [7] demonstrated lots of potential applica-
tions in many different fields; Chen et al. [3] present a new definition of soft set
parametrization reduction; Aktaş et al. [1] introduced the basic properties of soft
sets, and compared soft sets with the related concepts of fuzzy sets and rough
sets. At the same time, Aktaş gave a definition of soft groups, and derived their
basic properties, using Molodtsov’s definition of the soft sets.

This paper begin with the basic concepts of soft set theory, and some simple
theories of modules.

The main purpose of this paper is to introduce a basic version of soft module
theory, which extends the notion of module by including some algebraic struc-
tures in soft sets. A soft module defined in this paper is actually a parameterized
family of submodules, and has some properties similar to those of modules.

2 Soft Sets

First let us recall some basic concepts of soft set theory ([1], [4]). Throughout
this section U refers to an initial universe, E is a set of parameters, P (U) is the
power set of U , and A ⊆ E.

Definition 1. A pair (F, A) is called a soft set over U where F is a mapping
given by F : A → P (U).

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 403–409, 2008.
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Definition 2. For two soft sets (F, A) and (G, B) over U , (F, A) is called a soft
subset of (G, B) if

(1) A ⊂ B and
(2) ∀ ε ∈ A, F (ε) and G(ε) are identical approximations.
This relationship is denoted by (F, A)⊂̃(G, B). Similarly, (F, A) is called a

soft superset of (G, B) if (G, B) is a soft subset of (F, A). This relationship is
denoted by (F, A)⊃̃(G, B).

Tow soft sets (F, A) and (G, B) over U are called soft equal if (F, A) is a soft
subset of (G, B), and (G, B) is a soft subset of (F, A).

Definition 3. Let (F, A) and (G, B) be two soft sets over U
(1) The intersection of (F, A) and (G, B) is the soft set (H, C), where C =

A∩B and ∀ ε ∈ C, H(ε) = F (ε) or G(ε) (as both are same set). This relationship
is denoted by (F, A)∩̃(G, B) = (H, C).

(2) The union of (F, A) and (G, B) is the soft set (H, C), where C = A ∪ B
and ∀ ε ∈ C

H(ε) =

⎧
⎪⎪⎨

⎪⎪⎩

F (ε) ε ∈ A − B.

G(ε) ε ∈ B − A.

F (ε) ∪ G(ε) ε ∈ A ∩ B.

This relationship is denoted by (F, A)∪̃(G, B) = (H, C).

Example 1. suppose that U ={h1, h2, h3, h4, h5, h6, h7}, A={expensive, middle,
cheap} and B = {beautiful, modern, cheap}. Let F (expensive) = {h2, h4},
F (middle) = {h1, h3, h5}, F (cheap) = {h6, h7}, G(beautiful) = {h2, h3, h4},
G(modern) = {h1, h5, h6}, G(cheap) = {h6, h7}.Then we have:

(F, A)∩̃(G, B) = (H, C), whereC = A ∩ B, H(cheap) = {h6, h7}.
(F, A)∪̃(G, B) = (H, C), whereC = A ∪ B,
H(expensive) = {h2, h4}, H(middle) = {h1, h3, h5}, H(cheap) = {h6, h7},
H(beautiful) = {h2, h3, h4}, H(modern) = {h1, h5, h6}.

3 Module

In this section we introduce some theories of modules ([2], [10]).

Definition 4. Let R be a ring with identity. M is said to be a left R-module if
left scalar multiplication λ : R × M → M via (a, x) 
→ ax satisfying the axioms
∀ r, r1, r2, 1 ∈ R; m, m1, m2 ∈ M :

(1) M is an abelian group (which we shall write additively);
(2) r(m1 + m2) = rm1 + rm2, (r1 + r2)m = r1m + r2m;
(3) (r1r2)m = r1(r2m);
(4) 1m = m.
Left R-module is denoted by RM or M for short. Similarly we can define right

R-module and denote it by MR.
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For RM and MS, M is said to be S-R-bimodule if the following conditions
are satisfied :

s(mr) = (sm)r ∀ s ∈ S, m ∈ M, r ∈ R.

Let M be a left R-module, then an abelian subgroup N of M is a left R-
submodule of M in case it is closed under scalar multiplication by R. This rela-
tionship will be denoted by N < M .

Proposition 1. A is a subset of M , then the following statements are equivalent
(1) N < M ;
(2) A is an abelian subgroup of M and ar ∈ A for all a ∈ A, r ∈ R;
(3) a1 + a2 ∈ A, ar ∈ A for all a, a1, a2 ∈ A, r ∈ R.

Definition 5. N is a non-trivial submodule of M
(1)if there is no submodule of M which contain N , we call N the maximal

submodules.
(2) if there is no non-zero submodule of M which contained in N , we call N

the minimal submodules.

Definition 6. Let {Mi | i ∈ I} be a nonempty family of submodules
(1) if {Mi | i ∈ I} is a family of maximal submodules, then

⋂

i∈I

Mi is a

submodule of M called Jacobson radical of module. This is denoted by radM .
(2) if {Mi | i ∈ I} is a family of minimal submodules, then

∑

i∈I

Mi is a

submodule of M called socle of module. This is denoted by socM .

Definition 7. Let {Mi | i ∈ I} be a nonempty family of R-modules, P =∏

i∈I

Mi = {(xi) | xi ∈ Mi} is a direct product set, if the operations on the product

are given by

(xi) + (yi) = (xi + yi) r(xi) = (rxi).

then P do induce a left R-module structure called direct product of {Mi | i ∈
I}, which will be denoted by

∏

i∈I

Mi.

Proposition 2. Let {Mi | i ∈ I} be a family of submodules of M , then
⋂

i∈I

Mi

and
∑

i∈I

Mi are all submodules of M .

Definition 8. All the elements (xi) in the direct product
∏

i∈I

Mi, where xi is

zero for almost all i ∈ I except finite one, establish a submodule of
∏

i∈I

Mi which

called direct sum of {Mi | i ∈ I}, will be denoted by
∐

i∈I

Mi or
⊕

i∈I

Mi.

Definition 9. The homomorphism sequence of R-modules · · · → Mn−1
fn−1−−−→

Mn
fn−→ Mn+1 → · · · is called exact sequence of modules if Imfn−1 = Kerfn
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for all n ∈ N , and we call the exact sequence of modules form as 0 → M
′ f−→

M
g−→ M

′′ → 0 the short exact sequence of modules.

4 Soft Modules

Throughout this section, let M be a left R-module, A be any nonempty set.
F : A → P (M) refer to a set-valued function and the pair (F, A) is a soft set
over M .

Definition 10. Let (F, A) be a soft set over M . (F, A) is said to be a soft module
over M if and only if F (x) < M for all x ∈ A.

Proposition 3. Let (F, A) and (G, B) be two soft modules over M .
(1) (F, A)∩̃(G, B) is a soft module over M .
(2) (F, A)∪̃(G, B) is a soft module over M if A ∩ B = ∅.

Proof. (1) From Definition 3 we know that (F, A)∩̃(G, B) = (H, C) is a soft set
over M , where C = A ∩ B and H(x) = F (x) < M or H(x) = G(x) < M for
all x ∈ C since (F, A) and (G, B) are soft module over M , so (F, A)∩̃(G, B) is a
soft module over M .

(2) We know (F, A)∪̃(G, B) = (H, C) is a soft set, where C = A ∪ B and

H(x) =

⎧
⎪⎪⎨

⎪⎪⎩

F (x) x ∈ A − B.

G(x) x ∈ B − A.

F (x) ∪ G(x) x ∈ A ∩ B.

x ∈ A − B or x ∈ B − A as A ∩ B = ∅, thus (H, C) is a soft module over M
by (F, A) and (G, B) are soft modules.

Definition 11. Let (F, A) and (G, B) be two soft modules over M . Then (F, A)+
(G, B) is defined as (H, A × B), where H(x, y) = F (x) + G(y)∀(x, y) ∈ A × B.

Proposition 4. Let (F, A) and (G, B) be two soft modules over M . Then (F, A)+
(G, B) is soft module over M .

Proof. This is easily obtained by Proposition 2.

Definition 12. Let (F, A) and (G, B) be two soft modules over M and N re-
spectively. Then (F, A)×(G, B) = (H, A×B) is defined as H(x, y) = F (x)×G(y)
for all (x, y) ∈ A × B.

Proposition 5. Let (F, A) and (G, B) be two soft modules over M and N re-
spectively. Then (F, A) × (G, B) is soft module over M × N .

Proof. This is easily obtained by Definition 8.

Direct product and direct sum are the same when the dimension is finite, so ”⊕”
can instead of ”×” in the above proposition.
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Definition 13. Let (F, A) and (G, B) be two soft modules over M . Then (G, B)
is soft submodule of (F, A) if

(1) B ⊂ A and
(2) G(x) < F (x), ∀ x ∈ B.
This is denoted by (G, B)<̃(F, A).

Proposition 6. Let (F, A) and (G, B) be two soft modules over M . (G, B) is
soft submodule of (F, A) if G(x) ⊆ F (x), ∀ x ∈ A.

Proof. straight forward.

Definition 14. Let E = {e}, where e is unit of A. Then every soft module
(F, A) over M at least have two soft submodules (F, A) and (F, E) called trivial
soft submodule.

Proposition 7. Let (F, A) be a soft module over M , and {(Gi, Bi) | i ∈ I} be
a nonempty family of soft submodules of (F, A). Then

(1)
∑

i∈I

(Gi, Bi) is soft submodule of (F, A).

(2)
⋂

i∈I

(Gi, Bi) is soft submodule of (F, A).

(3)
⋃

i∈I

(Gi, Bi) is soft submodule of (F, A), if Bi ∩ Bj = ∅ for all i, j ∈ I.

Proof. straight forward.

Proposition 8. Let (F, A) and (G, B) be two soft modules over M , and (G, B)
be soft submodule of (F, A). If f : M → N is homomorphism of module, then
(f(F ), A) and (f(G), B) are all soft modules over N , and (f(G), B) is soft sub-
module of (f(F ), A).

Proof. This is easy to proof as the image of a homomorphism of submodule is a
submodule.

Definition 15. Let (F, A) and (G, B) be two soft modules over M and N re-
spectively, f : M → N, g : A → B be two functions. Then we say that (f, g) is
a soft homomorphism if the following conditions are satisfied:

(1) f : M → N is homomorphism of module;
(2) g : A → B is a mapping;
(3) f(F (x)) = G(g(x)), ∀ x ∈ A.

At the same time, we say (F, A) is soft homomorphic to (G, B), which denoted
by (F, A)  (G, B).

In this definition, if f is an isomorphism from M to N and g is a one-to-one
mapping from A onto B, then we say that (F, A) is a soft isomorphism and that
(F, A) is a soft isomorphic to (G, B), this is denoted by (F, A) ∼= (G, B).

Definition 16. Let (F, A) and (G, B) be two soft modules over M , and (G, B)
be soft submodule of (F, A). We say (G, B) is maximal soft submodule of (F, A)
if G(x) is maximal submodule of F (x) for all x ∈ B. We say (G, B) is minimal
soft submodule of (F, A) if G(x) is minimal submodule of F (x) for all x ∈ B.
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Proposition 9. Let (F, A) be a soft module over M
(1) if {(Gi, Bi) | i ∈ I} is a nonempty family of maximal soft submodules of

(F, A), then
⋂

i∈I

(Gi, Bi) is maximal soft submodule of (F, A).

(2) if {(Gi, Bi) | i ∈ I} is a nonempty family of minimal soft submodules of
(F, A), then

∑

i∈I

(Gi, Bi) is minimal soft submodule of (F, A).

Proof. It is easy to prove.

Definition 17. Let (F, A) be a soft module over M , then
(1) (F, A) is said to be a null soft module over M if F (x) = 0 for all x ∈ A,

where 0 is zero element of M .
(2) (F, A) is said to be an absolute soft module over M if F (x) = M for all

x ∈ A.

Proposition 10. (1) Let (F, A) be a soft module over M and f : M → N be a
homomorphism. if F (x) = Kerf for all x ∈ A, then (f(F ), A) is the null soft
module over N .

(2) Let (F, A) be an absolute soft module over M and let f : M → N be an
epimorphism, then (f(F ), A) is an absolute soft module over N .

Proof. straight forward.

Proposition 11. Let (F, A) be a null soft module over module P and (G, B) be

an absolute soft module over module Q. if 0 → P
f−→ M

g−→ Q → 0 is a short

exact sequence, then 0 → F (x)
f̃−→ M

g̃−→ G(y) → 0 is a short exact sequence for
all x ∈ A, y ∈ B.

Proof. F (x) = 0, ∀ x ∈ A since (F, A) is a null soft module over P , so f̃ is a
monomorphism.

G(y) = Q, ∀ y ∈ B since (G, B) is an absolute soft module over Q. g : M → Q

is an epimorphism as 0 → P
f−→ M

g−→ Q → 0 is a short exact sequence, so g̃ is
an epimorphism.

Proposition 12. Let (F, A) be a null soft module over module P and (G, B)

be an absolute soft module over module M . if 0 → P
f−→ M

g−→ Q → 0 is a

short exact sequence, then 0 → f(F )(x)
f̃−→ M

g̃−→ g(G)(y) → 0 is a short exact
sequence for all x ∈ A, y ∈ B.

Proof. F (x) = 0, ∀ x ∈ A since (F, A) is a null soft module over P . Kerf = 0
so Kerf = F (x), ∀ x ∈ A, consequently (f(F ), A) is null soft module over M .

(G, B) is an absolute soft module over M and g : M → Q is an epimorphism,

so (g(G), B) is an absolute soft module over Q, thus 0 → f(F )(x)
f̃−→ M

g̃−→
g(G)(y) → 0 is a short exact sequence for all x ∈ A, y ∈ B by Proposition 11.
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5 Conclusion

This paper summarized the basic concepts of soft sets and modules. Then studied
the algebraic properties of soft sets in module structure. This work focused on
soft modules, soft submodules, and soft homomorphism, which extend soft sets.
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Abstract. This paper presents Privilege Calculus (PC) as a new ap-
proach of knowledge representation for Separation of Duty (SD) in the
view of process and intents to improve the reconfigurability and trace-
ability of SD. PC presumes that the structure of SD should be reduced
to the structure of privilege and then the regulation of system should be
analyzed with the help of forms of privilege.

1 Introduction

The Separation of Duty (SD) is a security principle that is used to formulate
multi-person control policies, which requires that two or more different people
be responsible for completion of a task or a set of related tasks [1]. The Role-
Based Access Control (RBAC) system is defined by a state machine model and
characterized by the fact that a user’s rights to access objects are defined by the
user’s membership to a “role” and by the roles’ permissions to perform operations
on those objects [2]. Hence, the role is a semantic referent of duty representation
and the structure of role is a division of rights in cross-organization systems.
With the help of assignment operation, the user-role assignment can be handled
by one while permission-role assignment is handled by another [3].

Because the permission assignment on role hierarchy is static, Sandhu [4] intro-
duced the Role Activation Hierarchy (RAH). RAH extends the permission-usage
hierarchy and makes the role activation governed by an activation hierarchy.
Sandhu argued that the administration of RBAC must itself be decentralized
and managed by administrative roles. Moreover, Ferraiolo [5] argued that static
separation of duty enforces constraints on the assignment of users to roles, and
dynamic separation duty places constraints on roles that can be activated within
or across a user’s session.

Although the delegation model [6] is helpful to resolve the temporal permission
assignment problem by the delivery of duty in trust, the permission delegated has
to crosscut two or more roles in RAH and the definition working to map between
them is not easy. Also, for the constraints in RBAC, there is an inconsistency
between the access control policy and the constraints that are specified to limit
this policy. One transform limit may preclude, by a constraint, the change in
� We are grateful for the supporting of the National Natural Science Foundation of

China (NSFC, Project No. 70401001).
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another transform limit even though the rights that embody the conflict have
not been assigned yet [7]. So extra mechanisms were integrated to detect [8] and
resolve [9] the conflict. Jaeger has argued that since fail-safety is often a goal of
secure systems, some form of conflict resolution may not be unreasonable, but
the trade-off is not clear-cut [7].

It is the question that how to keep change of condition predictable and how
control exists after reconfiguration in dynamic way, for which the essential chal-
lenge is, we believe , the representation of SD still. Our approach is enlightened
by π-calculus that makes process reconfigurable [10], and assumes that the duty
is composed of the interaction commitment of process, i.e. privilege(see section
3.3), and the result of SD is a collection of interaction commitments, i.e. regula-
tion(see section 2). The examples in section 5 show the flexibility and usefulness
of our approach.

2 Regulation

There are two synchronized complementary actions in an interaction [10]. The
guarded action is an action with one preceding action that has not been reduced.
We have two processors that execute these actions respectively. These actions
represent the semantics of this interaction of the two processors.

A component is featured with the composition of distinct functions and con-
sists of corresponding processors. One function features one processor in design,
and one processor runs one action in one process (runtime). The sequence of
observed action represents a process and reflects the implementation of function
intention. So the sequence of programmed action represents an interaction com-
mitment. Moreover, the intersection of interaction commitment involved in an
interaction are not empty.

Although component is neutral, system works in a conservative way. The
framework of system is a guarding processor and guards each interaction of
two managed components. The guarding interaction of framework precedes the
guarded interaction of component.

Regulation of system is a collection of interaction commitments, including
the interaction commitments of framework and of component. For the systems
based on privilege calculus, the result of separation of duty is regulation, i.e. a
collection of privilege.

3 Structure of Privilege

In this section, we give the structure of privilege with the help of notions, em-
ployment and condition. The notion of employment is the refined structure of
function intention.

3.1 Employment

Definition 1. The function-entity employment f/e means that function f is
employed on entity e.
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Proposition 1. There are employments, f1/e1 and f2/e2,

f1/e1 + f2/e2 = ∅ ⇐⇒ f1/e1 = ∅ ∧ f2/e2 = ∅
Then we introduce the left employment mergence of function-entity.

Proposition 2. There are employments, f1/e1 �= ∅ and f2/e2 �= ∅.

(f1/e1) ∗ (f2/e2) =

{
f/e, if f = f1 = f2 �= ∅ and e = e1 = e2 �= ∅;
∅, otherwise.

Definition 2. F is a collection of functions, and E is a collection of entities.
The employment F/E is a set {f/e|f ∈ F, e ∈ E}.
Let F , F1, and F2 be respectively a collection of functions, and let E, E1, and
E2 be a collection of entities. We have f1 ∈ F1, f2 ∈ F2, e1 ∈ E1, and e2 ∈ E2.
The mergence of employment is

F1/E1 ∗ F2/E2 = {f1/e1 ∗ f2/e2 �= ∅} . (1)

The composition of employment is

F1/E1 + F2/E2 = {f1/e1 �= ∅ ∨ f2/e2 �= ∅} . (2)

For the convenience of computation, we give F/∅ = ∅, ∅/E = ∅ and ∅/∅ = ∅.
If no confusion arises, these expressions,f/e, {f} /e and f/ {e}, are the same as
{f} / {e}. With definition 2 and equations 1 and 2, we prove that the employment
are associative, commutative and distributive.

3.2 Condition

Regulation is different from process, which we have discussed in section 2. The
condition acts as the connection with the state of “process world”. In this sub-
section, we propose the definition of condition.

Definition 3. The fact set T is a collection of subsets of statement collection
S. The fact set T on S has the following properties:

1. ∅ and S are in T .
2. The union of the elements of any sub-collection of T is in T .
3. The intersection of the elements of any finite sub-collection of T in T .

Definition 4. Fact set T on S, condition r is a function r : Ts → {1, 0} with
the property: ∀x1, x2 ∈ T and x1 ∩ x2 = ∅, r(x1 ∪ x2) = r(x1) ∨ r(x2).

The {1, 0} is the true value. If the fact x ∈ T , we call that the condition r is
supported on the fact x, or the fact x supports the condition r.

Proposition 3. For fact set T on S, ∀x1, x2 ∈ T and x1 ⊂ x2, r(x1) → r(x2) .

Definition 5. For fact set T on S and condition r, if r(x) is true, the fact
x ∈ T is the evidence to r.

Definition 6. For fact set T on S, ∃x∗ ∈ T and such that x∗ is the evidence to
the condition r, if �x ⊂ x∗ and such that x is the evidence to r, then the x∗ is
the minimum evidence to r.
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3.3 Privilege

Definition 7. For a collection of functions F , a collection of entities E and a
collection of conditions R, the privilege is (F/E, R).

For convenience, we define, (∅, r) = ∅.

Definition 8. The privilege space P is a collection of subsets of P with the
following properties:

1. (Privilege Mergence) For all privilege, u, v ∈ P, u = (f1/E1, R1), and v =
(f2/E2, R2),

u ∗ v = {(f1 ∗ f2/(E1 ∩ E2), R1 ∩ R2)} ;

2. (Privilege Composition) For all privilege, u, v ∈ P, u = (f1/E1, R1), and
v = (f2/E2, R2),

u + v = {(f1/E1, R1) ∪ (f2/E2, R2)} ;

3. For all privilege, u, v ∈ P, u ∗ v = v ∗ u;
4. For all privilege, u, v ∈ P, u + v = v + u;
5. For all privilege, u, v, w ∈ P, (u ∗ v) ∗ w = v ∗ (u ∗ w);
6. For all privilege, u, v, w ∈ P, (u + v) + w = v + (u + w);
7. For all privilege, u, v, w ∈ P, u ∗ (v + w) = u ∗ v + u ∗ w.

4 Normal Form of Privilege

Definition 9. The employment arrangement M is a finite collection of employ-
ment and such that ∀m, n ∈ M, m �= n ∧ m ∗ n = ∅.

Definition 10. To employment arrangement M , the normal form of privilege
p is

nfmM (p) =
M∑

i

mi =
M∑

i

(fi/Ei, ci) ,

where fi/Ei is an element of M and ci is a condition.

Proposition 4. To employment arrangement M , every privilege is structurally
equal to its normal form.

Definition 11. To employment arrangement M , the privileges are structural
equivalence, if and only if they have the same normal form,

u
M= v ⇐⇒ nfmM (u) = nfmM (v) .

When one condition has an evidence, these privileges that involve the condition
are pulsed. Corresponding to normal form of privilege, there is the pulsed form.



414 C. Lv et al.

Definition 12. To employment arrangement M , on the fact t ∈ T , the pulsed
form of privilege p is

pfmM (p, t) =
M∑

i

(fi/Ei, ci(t)) ,

where fi/Ei is an element of M and ci is a condition.

We have a sequence of fact Q = (t0, t1, . . . , tj , . . . ). We get the sequence of pulse
to privilege t,

pfmM (p, Q) = (pfmM (p, t0), pfmM (p, t1), . . . , pfmM (p, tj), . . . ) .

This sequence of pulsed form describes the trace of process about privilege p. The
trace matrix (ci,j) of privilege p is made from this sequence, where ci,j ∈ {1, 0} .

t0 t1 . . . tj . . .
f0/E0 c0,0 c0,1 . . . c0,j . . .
f1/E1 c1,0 c1,1 . . . c1,j . . .

...
...

...
. . .

...
. . .

fi/Ei ci,0 ci,1 . . . ci,j . . .
...

...
...

. . .
...

. . .
fn/En cn,0 cn,1 . . . cn,j . . .

For example, we have two operations (privileges) op1 and op2, and three people
(privileges) u1, u2 and u3. We want to know what will happen at time (facts) t0
and t1. So we define a gauging privilege, g = (u1 + u2 + u3) ∗ (op1 + op2). And
the sequence of pulse is (pfmM (g, t0), pfmM (g, t1)).

Definition 13. To employment arrangement M , privileges, u and v, are con-
gruent on fact t ∈ T , a

t∼ b, if and only if u and v have the same pulsed form.

Definition 14. To employment arrangement M , on fact t ∈ T , privilege p is
compliant to privilege q, p

t∗∼ q, if and only if (p ∗ q) t∼ q.

The congruence ∼ and the compliance ∗∼ are a function P × P × T → {1, 0}. So
they can be a condition in one high-order privilege. For a compliance example,
we have the privileges, g, p and q, and such that g = [p ∗∼ q]. We call that the
privilege g is a high-order privilege of p and q.

5 Discussion

In general, the role-based models, such as RBAC reference model [11,5], AR-
BAC [12], and T-RBAC [13], have constructs, such as, USERS, ROLES, OPS
(operations), and OBJS (objects), and relations, such as UA(user-to-role assign-
ment), PA(permission-to-role assignment), PRMS (set of permission), and RH
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(role inheritance relation). These constructs are able to be defined with privilege
and these relation with privileges. And these privileges are glued by privilege’s
operations, such as privilege mergence and privilege composition.

The following code is a demonstration written in PAL(Privilege Analysis Lan-
guage) that is a reference implementation based on privilege calculus. With this
demonstration we discuss cases about privilege representation.

namespace "example" {

let doc1 is TechDoc

reader := (read + list)/TechDoc
manager := (reader + write + remove)/TechDoc

bob := reader + write/TechDoc
may := manager

phone := read + list
officepc := read + list + write + remove

}

Shown by the above code, we have four operations, read, list, write, and
remove, two roles, reader and manager, two users, bob and may, and two termi-
nals, officepc and phone. The statement “let” declares that doc1 is a document
in the category TechDoc. The role reader can read any documents in TechDoc
and list entries of those, and the role manager can write and remove any one
in TechDoc and manager inherits all of reader’s privileges that are limited in
TechDoc. User bob plays the role reader and User may has the role manager.
The mobile phone, a terminal device, has a limitation to access, read and list.

So far, we have defined these privileges: read, list, write, remove, reader,
manager, bob, may, officepc, phone, doc1, and TechDoc.

While user bob has logged in system at his officepc, and the system creates
his session, session1 = bob ∗ officepc. In session1, bob is able to read, list and
write any one in TechDoc.

Later bob uses his personal phone to navigate the system, the session2 is
created automatically, session2 = bob ∗ phone . The session2’s privileges are
different from session1’s. We set an employment arrangement, M = read +
list + write + remove. Thus,

session1
M= bob ∗ officepc

M= (reader + write/T echDoc) ∗ (read + list + write + remove)
M= read/TechDoc + list/T echDoc + write/T echDoc ,
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session2
M= bob ∗ phone

M= ((read + list)/TechDoc + write) ∗ (read + list)
M= read/TechDoc + list/T echDoc .

With the above computation, we know the session2 lacks the employment ‘write’
on TechDoc. It is interesting that the session in system can be created as a
privilege and these constructs, such as session, user, role, permission, group,
location etc., could be represented by privilege.

We continue the story. User bob wants to read the document doc1 that is a
TechDoc. The guard readguard to the action read is

readguard = read ∗ [session1 ∗∼ (read/doc1)] .

The readguard is the high-order privilege of session1 and read/doc1. The pulse
of readguard depends on the session1’s compliance to read/doc1.

User may has logged in, and her session is session3. She wants to write the
document doc1. The regulation does concern not only may’s privilege but also
the doc1’s. So the privilege doc1 is redefined, doc1 = readable+writable. Because
the doc1’s “writable” action and the may’s “write” action are complementary
in this synchronized interaction, writeguard and writableguard are defined,

writegurad = write ∗ [session3 ∗∼(write/doc1)] ,

writableguard = writable ∗ [doc1 ∗∼(writable)] .

Thus, we have the interaction guard interactionguard,

interactionguard = writeguard + writableguard .

Finally, the session3’s compliance and the doc1’s compliance consistently make
the pulse of interactionguard.

6 Conclusion

Separation of duty is critical not only in security control but also in modeling and
monitoring of business logic. For improving reconfigurability of representation
of duty, we propose privilege calculus. With the help of privilege’s normal form
and pulsed form, we are able to analyze the structure of privilege and to monitor
the change in process. We also have demonstrated that the access control model
based on privilege calculus is compatible with RBAC, ACL.

So far, we have only begun to explore the computation of privilege and rep-
resentation of regulation in access control logic. But we have little knowledge
about the relationship among regulation, business process and business rule. On
all accounts, we hope that the paper will throw some light on the knowledge
representation in separation of duty domain to facilitate the analysis of business
rules and business processes.
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Abstract. There are a very large number of beliefs in an agent gener-
ally. Now many researchers think that efficient belief revision should be
performed only in the part of its relevant states at a time. So Parikh
proposed relevance criterion and showed that AGM belief change oper-
ations do not always satisfy it. By introducing the notion of maximal
invariable partial meet contraction into AGM model, we obtain a class
of partial meet contractions that satisfy Parikh’s relevance criterion. It
benefits computing an update operator by a local update one. Together
with the notion of essential letter, an open problem which proposed by
Makinson was resolved.

Keywords: Belief change, Splitting language, Maximal invariable.

1 Introduction

Belief revision is a topic of much interest in theoretical computer science and
logic, and it forms a central problem in research into artificial intelligence (infer
to [5,10]). In the logic of belief revision, a belief state (or database) is often repre-
sented by a set of formulae. Its notable methodology is AGM model, formulated
by Alchourron, Gardenfors and Makinson in 1985 [1].

An agent in the world usually holds a very large number of beliefs and receives
new information from the exterior world. Thus it may be inconsistent when new
information is added into its beliefs. In order to deal with the contradictions,
some original beliefs must be given up accordingly. What was given up is the
motivation about why we introduce belief revision. Many works about belief
revision have proposed many useful methods to deal with it. The AGM model
provides a milestone work in belief revision. But it is possible to give up almost
all original beliefs in AGM model. Recently some researches formulated that
relevant beliefs should be affected only when beliefs are changed. For example,
Parikh proposed that a belief change operator which respects his relevance crite-
rion should protect any irrelevant formulae [8]. In that case, belief revision only
changes locally in original belief.
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In order to deal with the local change, Parikh defined splitting of any set
of formulates and irrelevant formulae in belief revision over a finite language
[8]. Kourousias and Makinson extended these definitions to an infinite language
and showed that any set K of formulae has a unique finest splitting [4]. Parikh
still formulated a relevance criterion in belief update and showed that AGM’s
operator dissatisfies it generally [8]. Many researches have been conducted to
attack this issue by exploring some postulates to ensure the relevance criterion.
These works are carried out by [2-4,8-9,11].

From the works above, more and more people think that belief revision should
be performed only in a local belief subset when belief was changed. By introduc-
ing the notion of maximal invariable partial meet contraction into AGM model,
we gain a subset M(K, x) of entire set of partial meet contraction over K by x
such that its each element satisfies parikh’s relevance criterion. In other words,
the set satisfies AGM postulates and relevance criterion. In general, there are
many belief change operators in AGM model for given K and x. We propose the
maximal invariable partial meet contraction to reduce the set of belief change
operators. Inducting belief revision into decision-making model, our method re-
duces the selective set and respects the relevance criterion. It benefits computing
an update operator by a local update one even if the language is infinite when
every element in the finest splitting of belief set is finite. Meanwhile essential
letter play a important role in the partial meet contraction based on splitting.

In the classic logic and some other logics, the essential letter of a set of formu-
lae is very important. For example, it reduces solver’s spaces in SAT generally.
Schlechta has observed that it is possible to generalize the notion of an essential
letter, making it relative to a set of valuations rather than to a set of formulae.
Makinson proposed a theorem(lemma 2.10) about the essential letter of a set of
formulae. He wants to formulate a theorem about the essential letter of a set of
valuations as lemma 2.10. But his idea does not finished by a counterexample in
[7]. He left it as an open problem. An results, no letter is essential to nonempty
set V of valuations on infinitely numberable letter set P iff V consists of some
union of {v : |{p ∈ X : v(p) = 1}| < ω & |{p ∈ P\X : v(p) = 0}| < ω} where
X ⊆ P , was formulated in the paper. So the open problem was resolved. Though
just now people start the research in essential letter of a set of valuations, I belief
the result will a base of future study in essential letter.

The rest of the paper is organized as follows: In section 2, we recall many pre-
liminaries. We discuss maximal invariable partial meet contraction in section 3.
In the next section, we answer an open problem. We compare our approach with
some related methods and discuss conclusion and future work in section 5.

2 Preliminaries

We review the preliminaries for the paper. We always assume a propositional
logic with set of infinite or finite letters including the zero-ary truth � among the
primitive connectives. We use lower case letters a, b, ..., x, y, z, α, β, ... to range
over formulae of classical propositional logic. Sets of formulae are denoted by
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upper case letters A, B, ..., X, Y, ..., reserving L for the set of all formulae, E
for the set of all elementary letters (alias propositional variables) of language.
For any formula α, we write E(α) to mean the set of the elementary letters
occurring in α; similarly for sets of formulae. Let F ⊆ E, L(F ) stands for the
sub-language generated by F , i.e. the set of all formulae x with E(x) ⊆ F .
Classical consequence is written as � when treated as a relation over 2L × L,
classical consequence operation is written as Cn when treated as an operation
on 2L into itself. The relation of classical equivalence is written ��. Set K of
formulae is a belief set if K = Cn(K). To lighten notation, v(A) = 1 is short for:
v(α) = 1 for all α ∈ A, while v(A) = 0 abbreviates: v(α) = 0 for some α ∈ A.

The following notations are needed in section 3. We write Cn(X) with an un-
derline under Cn, classical consequence over the entire language, is classical con-
sequence over the restricted language L(E(X)), i.e. Cn(X) = Cn(X)∩L(E(X)).
Let us recall the definition of the essential letter of a set of formulae and valu-
ations in [7]. Let F be an arbitrary set of formulae. We say that an elementary
letter p is essential to F iff there are two valuations that agree on all letters
other than p, but disagree in the value they give to F . Let W be an arbitrary set
of valuations. We say that an elementary letter p is essential to W iff there are
two valuations that agree on all letters other than p, but one in and the other
outside W . A formula y is an essential formula of x iff x �� y and for every
formula z with z �� x satisfy E(y) ⊆ E(z). It is clear that the essential formula
of a formula is not unique. But the essential formulae of a formula has the same
elementary letter by the least letter-set theorem [7].

For any belief set K, K ⊥ x is the set of all maximal subsets A of K such
that A � x. In other words, A ∈ K ⊥ x iff

(1) A ⊆ K,
(2) A � x,
(3) any ϕ ∈ K \ A, A, ϕ � x.
And γ is any function such that for every formula x, γ(K ⊥ x) is a nonempty

subset of K ⊥ x, if the latter is nonempty, and γ(K ⊥ x) = {K} otherwise.
Such a function is called a selection function for K. We say that γ is transitively
relational over K iff there is a transitive relation ≤ over 2K such that for all
x /∈ Cn(∅), ≤ marks off γ(K ⊥ x) in the sense the following identity, which we
call the marking off identity, holds:

γ(K ⊥ x) = {B ∈ K ⊥ x : B′ ≤ B for all B′ ∈ K ⊥ x}.
The operation ÷ defined by putting K ÷ x =

⋂
γ(K ⊥ x) for all x is called

the partial meet contraction over K determined by γ.
Note that the concept of partial meet contraction includes, as special cases,

those of maxichoice contraction and full meet contraction. The former is a partial
meet contraction with γ(K ⊥ x) a singleton; the latter is the partial meet
contraction with γ(K ⊥ x) the entire set (K ⊥ x).

Lemma 2.1 ([1]). Let K÷x be a function defined for belief set K and a formula
x. K÷x is a partial meet contraction operation over K iff K÷x satisfies AGM
postulates (÷1) − (÷6) for contraction over K.
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Lemma 2.2 ([1]). Let K be any belief set, and K ÷x a partial meet contraction
function over K, determined by a selection function γ. Then K ÷x is a transitive
relation over K if and only if K ÷ x satisfies AGM postulates (÷1) − (÷8).

Many matters relate to each other in the world, but only partial relations
between matters are essential. Parikh proposed the concept of splitting for set
of formulate. It allows us carve up a set of formulae into disjoint pieces about
different subject matters.

Definition 2.3 (Splitting [4]). Let E = {Ei}i∈I be any partition of the set
E of all elementary letters of the language. we say that E is a splitting of set
K of formulae iff

⋃
{Cn(K) ∩ L(Ei)}i∈I � K, equivalently, iff there is a family

{Bi}i∈I with each E(Bi) ⊆ Ei such that
⋃

{Bi}i∈I �� K.
Generally, people often hope to split a belief set as fine as possible such that

essential relation matters in same piece possibly.

Definition 2.4 (Fineness of a Partition[4]). Following customary terminol-
ogy, we say that a partition E = {Ei}i∈I of all elementary letters set E of the
language is at least as fine as another partition F = {Fj}j∈J of E, and we write
E � F, iff every cell of F is the union of cells of E. Equivalently, RE ⊆ RF, where
RE (resp. RF) is the equivalence relation over E associated with E (resp. F).

Parikh showed that there was a unique finest splitting of K for finite language
and Kourousias and Makinson proved the result for any language.

Lemma 2.5 ([4]). Every set K of formulae has a unique finest splitting.
The lemma says that there is a unique way to think of K as being composed

of disjoint information about certain subject matters.

Lemma 2.6 (Parallel interpolation theorem[4]). Let A =
⋃

{Ai}i∈I where
the letter sets E(Ai) are pairwise disjoint, and suppose

⋃
{Ai}i∈I � x. Then there

are formulae bi such that each E(bi) ⊆ E(Ai)∩E(x), Ai � bi, and
⋃

{bi}i∈I � x.
Parikh defined the irrelevant formulae in a belief change over a finite language.

Kourousias and Makinson extended the definition for an infinite language.

Definition 2.7 (Irrelevant formulae in a belief change [4]). Let K be any
consistent set of formulae, with x a formula that is a candidate for contracting
from K or integrating into K by a process of revision. Let E =

⋃
{Ei}i∈I be

the unique finest splitting of K. We say that a formula y is irrelevant to the
contraction or revision of K by x (briefly: y ∈ K is irrelevant to x modulo K) iff
E(y) is disjoint from

⋃
{Ej}j∈J , where

⋃
{Ej}j∈J is the subfamily of cells in E

that share some elementary letter with E(x). We denote the set of the irrelevant
formulae to x modulo K by IK,x and simply as Ix in contexts where the identity
of K is clear. Formally,

Ix = {y ∈ K|E(y) ∩
⋃

j∈J{Ej} = ∅ where Ej ∩ E(x) �= ∅ for all j ∈ J}.
The relevance criterion may be put as follows: whenever an element y ∈ K is

irrelevant to x modulo K, then it remains an element of the result of contracting
or revising K by x. In other words, Ix ⊆ K ÷ x or Ix ⊆ K ∗ x.

Lemma 2.8 ([11]). Let K ÷∗ x be a function defined for a belief set K and
a formula x. The partial meet contraction K ÷∗ x determined by a transitive
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relation γ∗ over K iff K÷∗x satisfies AGM postulates (÷1)−(÷8) for contraction
and also satisfies the relevance criterion.

The lemma formulated a representation theorem for the relevance criterion
and AGM postulates for contraction.

In the following, we will consider a special operator in belief contraction.

Lemma 2.9 ([12]). Let K ÷∗ x be any partial meet contraction function based
on splitting over belief set K. Then K ÷∗ x satisfies fullness postulate iff K ÷∗ x
is a maxichoice contraction function.

The following lemma discusses the essential letters of a set of formulae.

Lemma 2.10([7]). Let A be any set of formulae. Then A is contingent (neither a
tautology nor a contradiction) iff at least one of its elementary letters is essential
to it.

3 Maximal Invariable Partial Meet Contraction

In belief revision, some original beliefs are given up when a new belief enter
the belief set generally. People often care for the change in entire set of original
beliefs over a sub-language L1 with set E of letters. Specially, the original beliefs
in L1 unchange when belief revision, i.e. K ∩ L1 ⊆ K ÷ x or K ∩ L(E) ⊆ K ÷ x.

Naturally, we can define the invariable letter E
′
of a partial meet contraction

K ÷ x as (K ÷ x) ∩L(E
′
) = K ∩L(E

′
). But it seems not to be well-defined. For

example(Ex1), let K = Cn{p ↔ q, r ↔ s, t} and x = (p → q) ∧ (r → s) ∨ (p ←
q) ∧ (r ← s). Let a partial meet contraction K ÷ x = Cn{(p → q) ∧ ((r → s), t}.
Then {p} is an invariable letter set of K ÷ x since K ∩ L(p) = Cn(∅). But it is
clear that letter p occurring in q → p and q → p /∈ K ÷ x.

The splitting of a belief set carves up the belief set into many disjoint pieces
about different subject matters. Using the property of splitting, we definite an
invariable letter of a partial meet contraction based on splitting as follows.

Definition 3.1(Invariable letter set). Let K be a set of formulae and x a
formula in a language with set E of letters. Given any partial meet contraction
K ÷x, we say that a set E

′ ⊆ E is an invariable letter set of K ÷x if {E
′
, E\E

′}
is a splitting of K and K ∩ L(E

′
) = (K ÷ x) ∩ L(E

′
).

For example(Ex2), let K = Cn{p ↔ q, r ↔ s, t} and x = (p → q) ∧ (r →
s) ∨ (p ← q) ∧ (r ← s). Let K ÷1 x = Cn{p ↔ q, t}, K ÷2 x = Cn{r ↔ s, t}
and K ÷3 x = Cn{(p → q) ∧ ((r → s), t}. In the example, It is clear that ∅ and
{t} are the invariable letter set of K ÷3 x; ∅, {t} and {r, s, t} are the invariable
letter set of K ÷2 x; ∅, {t} and {p, q, t} are the invariable letter set of K ÷1 x.

Let K be a set of formulae and x a formula. Let E = {Ei}i∈I be the finest
splitting of K. Given any partial meet contraction K ÷ x, let MIL(K ÷ x) =⋃

{Ei ∈ E : K ∩L(Ei) = (K ÷x)∩L(Ei)}. given partial meet contraction K ÷x,
we prove that MIL(K ÷ x) is the maximal invariable letter set of K ÷ x.

Lemma 3.2 Let K be a set of formulae and x a formula in a language with set
E of letters. Given any partial meet contraction K÷x, MIL(K÷x) is invariable
letter set of K ÷ x.
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Lemma 3.3 Let K be a set of formulae and x a formula in a language with set
E of letters. Given any partial meet contraction K ÷x, MIL(K ÷x) is maximal
invariable letter set of K ÷ x.

By lemmas 3.2, 3.3, the following theorem is clear.

Theorem 3.4 Let K be a set of formulae and x a formula. Given any partial
meet contraction K ÷ x, MIL(K ÷ x) is the unique maximal invariable letter
set of K ÷ x.

From the above discussion, we can compute invariable letter set for any
partial meet contraction. Now we consider maximal element in the entire in-
variable letter set for all partial meet contractions over set K of formulae by
formula x.

Definition 3.5(Maximal invariable contraction). Let K be a set of formulae
and x a formula in a language with set E of letters. Given any partial meet
contraction K ÷ x, we say that K ÷ x is a maximal invariable partial meet
contraction if there is no partial meet contraction K÷1x such that MIL(K÷x) �

MIL(K÷1x). Equivalently, K÷x is maximal invariable partial meet contraction
iff MIL(K ÷ x) is an maximal element in set {MIL(K ÷ x) : K ÷ x is a partial
meet contraction }.

For the example in this section, K ÷1 x and K ÷2 x are maximal invariable
partial meet contraction. But K÷3x is not the one even if it satisfies the relevance
criterion. Now let set M(K,x) only contains all maximal invariable partial meet
contraction over K by x. In other words, M(K, x) = {K÷x : K÷x is a maximal
invariable partial meet contraction over K by x }.

Theorem 3.6 Let K be a set of formulae and x a formula. If K ÷x is a maximal
invariable partial meet contraction then K ÷ x satisfies relevance criterion.

Proof: Let Ex = E(Ix). It is clear that Ex =
⋃

{Ei ∈ E : Ei ∩ E(x) = ∅}
by definition of Ix where E = {Ei}i∈I is the finest splitting if K and x is
some essential formula of x. Now we suppose the theorem is dissatisfies. Then
Ix � K ÷ x for some maximal invariable partial meet contraction K ÷ x over
K and x. In other word, Ex � MIL(K ÷ x). Let E1 = Ex \ MIL(K ÷ x) and
E2 = MIL(K ÷ x) \ Ex. It is evident that E1 �= ∅ and {E1, E2, E \ (E1 ∪ E2)}
is a splitting of K. By K ÷ x � x and definition of MIL(K ÷ x), we have
(K ÷ x) ∩ L(MIL(K ÷ x)) � x, (K ÷ x) ∩ L(MIL(K ÷ x)) � x and K ∩
L(MIL(K ÷x)) � x where x is some essential formula of x. So K ∩L(MIL(K ÷
x))

⋃
(L(E1)∩K) � x by parallel interpolation theorem and splitting {E1, E2, E\

(E1 ∪ E2)} of K. Hence there is a belief contraction ÷′
over K and x such that

MIL(K ÷′
x) includes E1 and E2. It is evident that MIL(K ÷′

x) includes E1
and E2. This is a contradiction to K ÷ x is a maximal invariable partial meet
contraction.

We form a subset M(K, x) of entire set of partial meet contraction over K by
x such that every element in it satisfies relevance criterion. It benefits computing
an update operator by a local update one even if the language is infinite when
every element in the finest splitting of belief set is finite.
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4 Answer to an Open Problem

In [7], Makinson proposed lemma 2.10 about the essential letter of a set of
formulae. He wanted to formulate a theorem about the essential letter of a set of
valuations as the lemma 2.10. But it did not holds by a counterexample in [7].
He left it as an open problem. The theorem, no letter is essential to nonempty
set V of valuations on infinitely numberable letter set P iff V consists of some
unions of {v : |{p ∈ X : v(p) = 1}| < ω & |{p ∈ P\X : v(p) = 0}| < ω} where
X ⊆ P , was proved in the section. So we resolve the open problem.

In the section, let V be a set of valuations and V
′

entire sets of valuations
on a language with infinite numberable set P = {p1, p2, ...} of letters. Let X1

u =
{p ∈ P : u(p) = 1} and X0

u = {p ∈ P : u(p) = 0} when u ∈ V
′
.

Lemma 4.1 If no letter is essential to V and u ∈ V then {v : |{p ∈ X0
u : v(p) =

1}| < ω & |{p ∈ X1
u : v(p) = 0}| < ω} ⊆ V .

Proof: Suppose the contrary. We assume that there is a valuation x ∈ {v :
|{p ∈ X0

u : v(p) = 1}| < ω & |{p ∈ X1
u : v(p) = 0}| < ω} and x /∈ V .

Let u − x = {p ∈ P : u(p) �= x(p)}. By u, x ∈ {v : |{p ∈ X0
u : v(p) =

1}| < ω & |{p ∈ X1
u : v(p) = 0}| < ω}, we show that |u − x| < ω. Without

loss of generality (abbreviated to WLOG), let u − x = {r1, r2, ..., rn}. WLOG,
assume u(r1) = 0. Then u(r1/1) ∈ V since no letter is essential to V . WLOG,
assume u(r1/1)(r2) = 0. Then u(r1/1, r2/1) ∈ V since no letter is essential to V .
Similarly, we have u(r1/1, r2/1, ..., rn/1) = x ∈ V . It is a contradiction to x /∈ V .

Lemma 4.2 Let u ∈ V . No letter is essential to V iff no letter is essential to
V \{v : |{p ∈ X0

u : v(p) = 1}| < ω & |{p ∈ X1
u : v(p) = 0}| < ω}.

Theorem 4.3 No letter is essential to V (�= ∅) iff V consists of some unions of
{v : |{p ∈ X : v(p) = 1}| < ω & |{p ∈ P\X : v(p) = 0}| < ω} where X ⊆ P .

Though just now people start the research in essential letter of a set of valu-
ations, I belief the result will a base of future study in essential letter.

5 Comparison and Conclusion

Firstly, we compare maximal invariable partial meet contraction with the partial
meet contraction based on relevance [11].

By lemma 2.8, M(K, x) � K ÷∗ x when K is a belief set. But K ÷∗ x �

M(K, x) even when K is belief set by the example in section 3. K÷3x is a partial
meet contraction which satisfies relevance criterion. But it is not a maximal
invariable contraction since MIL(K ÷3 x) � MIL(K ÷1 x) or MIL(K ÷3 x) �

MIL(K ÷2 x). So K ÷∗ x � M(K, x) even when K is belief set.
Secondly, we compare maximal invariable partial meet contraction over belief

set with maxichoice contraction base on splitting [12].
The following examples show that there exists a maximal invariable partial

meet contraction K ÷ x is not maxichoice contraction. And there exists maxi-
choice contraction K ÷ x which satisfies relevance criterion such that it is not a
maximal invariable partial meet contraction.
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Example Ex3: Let p, q, r are distinct letters. Let K = Cn{p ↔ q, r} and
x = p ↔ q. Then K ÷ x = Cn{p → q, r} ∩ Cn{q → p, r} = Cn(r) is a maximal
invariable partial meet contraction. But it is not maxichoice contraction.

Ex4: Let p, q, r are distinct letters. Let K = Cn{p, q, r} and x = p ∧ q.
Then K ÷ x = Cn{p ↔ q, r} is maxichoice contraction which satisfies relevance
criterion. But it is not a maximal invariable partial meet contraction.

Finally, introducing the notion of maximal invariable update operation into
AGM model, we obtain a class of partial meet contraction operations that respect
Parikh’s relevance criterion. It benefits computing an update operator by a local
update one. Together with the notion of essential letter, we resolve an open
problem proposed by Makinson in 2005. In future, we want to give the syntax of
the maximal invariable partial meet contraction over belief K by new information
x and apply the essential letter of a set of valuations in other areas.
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Abstract. The theory of concept lattice is an efficient tool for knowl-
edge representation and knowledge discovery. One of the key problems of
knowledge discovery is attribute reduction. This paper presents a novel
approach to attribute reduction in formal concept lattices. The approach
employs all the extents of the meet-irreducible elements in the lattice.
Each of them determines a family of attribute sets common to the ob-
jects in the extent. By various combinations of minimal elements from
each family we can produce reducts of the formal context. Furthermore,
a related algorithm is developed, and an illustration example is employed
to perform the reduction process of the proposed method.

Keywords: Formal context, Concept lattice, Meet-irreducible element,
Attribute reduction.

1 Introduction

The theory of concept lattice [12], proposed by Wille in 1982, has emerged as
an important mathematical tool for dealing with uncertain information. Many
researches on concept lattices concentrate on the construction and pruning al-
gorithm of concept lattices, the relationship between concept lattices and rough
sets, knowledge reduction and acquisition [3,5,7,9,10,12,13,15]. As an efficient
tool for data analysis, the theory of concept lattice has potential applications in
many fields, such as decision making, information retrieval, data mining, knowl-
edge discovery and so on [1,2,4,6,11].

Attribute reduction is one of the key problems of the theory of concept lattice.
It is to search for a minimal attribute set which can determine all the formal
concepts and the structures of a concept lattice. That is, an optimal attribute
set should be able to replace the whole attribute set but still maintains the same
amount of information in the original concept lattice.

Recently, work on the attribute reduction of a concept lattice is progressing
rapidly. Zhang et al. [14,16] proposed the reduction theory of concept lattices,
obtained many judgment theorems of consistent sets, and analyzed the char-
acteristics of different attributes. They also presented an approach to attribute
reduction by using a discernibility matrix. Another version of attribute reduc-
tion was introduced in [10] which determines the same set of all meet-irreducible
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elements of the concept lattice as the one determined by all attributes. Shao [9]
studied the attribute reduction of two kinds of generalized concept lattice.

In this paper, we proceed this topic, and propose a new method of attribute
reduction in a formal concept lattice. The approach first employs all the extents
of the meet-irreducible elements in the concept lattice. Each of them determines a
family of attribute sets common to the objects in the extent. A combination of the
minimal elements from every family can produce a reduct of the concept lattice.
Finally, we develop a related algorithm and provide an illustration example is
employed to perform the reduction process of the proposed approach.

2 Preliminaries

To make this paper self-contained, the involved notions in formal concept analysis
and reduction of concept lattices are introduced in this section [5,16].

Definition 1. (see [5]) An element a of a lattice L is called meet − irreducible, if

a = b ∧ c =⇒ a = b or a = c

holds for any b, c ∈ L.

Proposition 1. (see [5]) Every element a of a finite lattice L can be represented
as the meet of some meet-irreducible elements.

A formal context is an ordered triplet T = (U, A, I), where U, A are finite
nonempty sets and I ⊆ U × A is a correspondence from U to A. The elements
in U are interpreted to be objects, elements in A are said to be attributes. If
(x, a) ∈ U × A is such that (x, a) ∈ I, then the object x is said to have the
attribute a. The correspondence I can be naturally represented by an incidence
table: the rows of the table are labelled by objects, columns by attributes; if
(x, a) ∈ I, the intersection of the row labelled by x and the column labelled by
a contains 1; otherwise it contains 0.

For a set B ⊆ A of attributes we define

ψ(B) = {x ∈ U | xIa for all a ∈ B}.

Correspondingly, for a set X ⊆ U of objects we define

φ(X) = {a ∈ A | xIa for all x ∈ X}.

Evidently, ψ(B) =
⋂

a∈X

ψ(a), and φ(X) =
⋂

x∈X

φ(x). Where φ(x) = φ({x})

and ψ(a) = ψ({a}) for short.

Definition 2. (see [5]) A formal concept of the context (U, A, I) is a pair
(X, B) with X ⊆ U, B ⊆ A, φ(X) = B and ψ(B) = X. We call X the extent
and B the intent of the concept (X, B). L(U, A, I) denotes the set of all concepts
of the context (U, A, I).
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From the above definition, the following proposition can be easily proved [16].

Proposition 2. Let (U, A, I) be a formal context, X, X1, X2 ⊆ U and B, B1,
B2 ⊆ A, then

(1) X1 ⊆ X2 =⇒ φ(X2) ⊆ φ(X1), B1 ⊆ B2 =⇒ ψ(B2) ⊆ ψ(B1).
(2) X ⊆ ψ(φ(X)), B ⊆ φ(ψ(B)).
(3) φ(X) = φ(ψ(φ(X))), ψ(B) = ψ(φ(ψ(B))).
(4) X ⊆ ψ(B) ⇐⇒ B ⊆ φ(X).
(5) φ(X1 ∪ X2) = φ(X1) ∩ φ(X2), ψ(B1 ∪ B2) = ψ(B1) ∩ ψ(B2).
(6) φ(X1 ∩ X2) ⊇ φ(X1) ∪ φ(X2), ψ(B1 ∩ B2) ⊇ ψ(B1) ∪ ψ(B2).
(7) (ψ(φ(X)), φ(X)) and (ψ(B), φ(ψ(B))) are formal concepts.

The concepts of a given formal context are naturally ordered by the subconcept-
superconcept relation defined by

(X1, B1) ≤ (X2, B2) ⇔ X1 ⊆ X2(⇔ B2 ⊆ B1).

The ordered set of all concepts in (U, A, I) is denoted by L(U, A, I) and called
the concept lattice of (U, A, I). In fact, L(U, A, I) is a complete lattice in which
the infimum and supremum are given by

(X1, B1) ∧ (X2, B2) = (X1 ∩ X2, φ(ψ(B1 ∪ B2))),

and
(X1, B1) ∨ (X2, B2) = (ψ(φ(X1 ∪ X2)), B1 ∩ B2).

Definition 3. (see [16]) Let L(U, A1, I1) and L(U, A2, I2) be two concept lattices.
If for any concept (X, B)∈ L(U, A2, I2), there exists (X

′
, B

′
)∈ L(U, A1, I1) such

that X = X
′
, then L(U, A1, I1) is said to be finer than L(U, A2, I2), denoted

by L(U, A1, I1) ≤ L(U, A2, I2). If L(U, A1, I1) ≤ L(U, A2, I2) and L(U, A2, I2)
≤ L(U, A1, I1), then the two concept lattices are said to be isomorphic to each
other, and denoted by L(U, A1, I1) ∼= L(U, A2, I2).

Let (U, A, I) be a formal context, for any set D ⊆ A of attributes, denote by
ID = I ∩(U ×D), then (U, D, ID) is also a formal context. For any X ⊆ U , φ(X)
is represented by φ

D
(X) in (U, D, ID). It is evident that φ

D
(X) = φ(X) ∩ D.

Proposition 3. (see [16]) Let (U, A, I) be a formal context, then

L(U, A, I) ≤ L(U, D, ID)

holds for any attribute set ∅ �= D ⊆ A.

Definition 4. (see [16]) B ⊆ A is called a consistent set of formal context
(U, A, I) if L(U, B, IB) ∼= L(U, A, I) holds. Furthermore, ∀b ∈ B, L(U, B \
{b}, IB\{b}) �∼= L(U, A, I), then B is called a reduct of the formal context (U, A, I).

Proposition 4. (see [16]) Let (U, A, I) be a formal context, ∅ �= D ⊆ A. Then

D is a consistent set of (U, A, I) ⇐⇒ L(U, D, ID) ≤ L(U, A, I).
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3 A Novel Approach to Attribute Reduction in Concept
Lattices

After analyzing the theory of attribute reduction in concept lattices presented in
[16], we propose in this section a novel approach to attribute reduction. Dislike
the approach in [16] which is based on the discernibility matrix, the proposed
method employs all the meet-irreducible elements in the lattice.

In what follows, let S = (U, A, I) be a formal context. Denote by F =
{

⋂

a∈B

ψ(a) : B ⊆ A} all the extents of L(U, A, I), and F0 = {X ∈ F| (X, φ(X)) ∈

L(U, A, I) is an meet-irreducible element of L(U, A, I)} = {X1, · · · , Xm}. Let
[Xp] = {B ⊆ A | ψ(B) = Xp}.

Proposition 5. ∀X ∈ F0, every minimal element of [X ], in the sense of set-
inclusion, is a singleton.
Proof. If E is a minimal element of [X ] with |E| > 1, suppose b1, b2 ∈ E. Then we
have X = ψ(E) = ψ(

⋃

b∈E

b) =
⋂

b∈E

ψ(b) = (
⋂

b∈{b1,b2}⊆E

ψ(b)) ∩ (
⋂

b∈E\{b1,b2}
ψ(b)).

If |E \ {b1, b2}| = 0, then X = (
⋂

b∈{b1,b2}⊆E

ψ(b)) ∩ U = ψ(b1) ∩ ψ(b2). Thus

(X, φ(X)) = (ψ(b1), φ(ψ(b1))) ∧ (ψ(b2), φ(ψ(b2))). Since (X, φ(X)) is an meet-
irreducible element, X = ψ(b1) or X = ψ(b2) holds. Hence, {b1} ∈ [X ] or
{b2} ∈ [X ]. Which means {b1} or {b2} is a minimal element of [X ], which is a
contradiction to the hypothesis. If |E\{b1, b2}| = 1, suppose E = {b1, b2, b}, then
X = (ψ(b1)∩ψ(b2))∩ψ(b). Since X ∈ F0, similar to the above proof we conclude
that X = ψ(b1) ∩ ψ(b2) or X = ψ(b). Clearly, X = ψ(b) means that {b} is a
minimal element of [X ], which is a contradiction to the hypothesis. Therefore,
E is a singleton. Since A is a finite set, we conclude the statement inductively.

Proposition 6. For every Xp ∈ F0, 1 ≤ p ≤ m, choose an arbitrary minimal

element Bp of [Xp]. Then
m⋃

p=1
Bp is a reduct of the formal context S.

Proof. Let C =
m⋃

p=1
Bp, first we prove that C is a consistent set of S.

∀(X, B) ∈ L(U, A, I), if X ∈ F0, then B ∈ [X ]. If B is a minimal element of
[X ], then B ⊆ C, and (X, B) ∈ L(U, C, IC). If B is not a minimal element of
[X ], then there exists a minimal element Bk of [X ] such that Bk ⊆ B. Which

implies that B∩C = B∩(
m⋃

p=1
Bp) = Bk ∪(

⋃

p�=k

(B∩Bp)). As a result, ψ(B∩C) =

ψ(Bk) ∩ (
⋂

p�=k

ψ(B ∩ Bp)) = X ∩ (
⋂

p�=k

ψ(B ∩ Bp)) ⊆ X . Clearly ψ(B ∩ C) ⊇ X ,

we then have ψ(B ∩C) = X . But φ
C
(X) = φ(X)∩C = B ∩C, we conclude that

(X, B ∩ C) ∈ L(U, C, IC).
If X /∈ F0, then (X, B) ∈ L(U, A, I) is not a meet-irreducible element of F .

By virtue of Proposition 2, there exist meet-irreducible elements (Xi1, φ(Xi1)),
· · ·, (Xil, φ(Xil)) (l ≤ m) of L(U, A, I) such that (X, B) = (Xi1, φ(Xi1)) ∧ · · · ∧
(Xil, φ(Xil)), thus we have X = Xi1 ∩ · · · ∩ Xil. Since each Xij (1 ≤ j ≤ l)
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belongs to F0, there exist a minimal element Bij of [Xij ] such that Bij ⊆ C.
Which implies that

X =
l⋂

j=1

Xij = ψ(
l⋃

j=1

Bij) = ψ(B).

Therefore,
l⋃

j=1

Bij =
l⋃

j=1

φ(Xij) ⊆ φ(
l⋂

j=1

Xij) = B.

Clearly,

φ
C
(X) = φ(X) ∩ C = B ∩ C = B ∩ (

m⋃

p=1

BP ) =
l⋃

j=1

Bij ∪ (
⋃

p�=i1,···,il
(B ∩ Bp)).

Thus,

X ⊆ ψ(φ
C
(X))=ψ(

l⋃

j=1

Bij)∩ψ(
⋃

p�=i1,···,il
(B∩Bp))=X∩(

⋃

p�=i1,···,il
ψ(B∩Bp)) ⊆ X.

Consequently, ψ(φ
C
(X)) = X and (X, φ

C
(X)) ∈ L(U, C, IC).

Combining the above, we conclude that C is a consistent set of S.
If there exists an element c0 ∈ C such that C \ {c0} is a consistent set of

S, then L(U, A, I) ∼= L(U, C \ {c0}, IC\{c0}), and thus L(U, C \ {c0}, IC\{c0}) ≤
L(U, C, IC). For c0 ∈ C, by virtue of Proposition 5 and the definition of C, there
exists an element X0 ∈ F0 such that {c0} is a minimal element of [X0]. Since
(ψ(c0), φC

(ψ(c0))) ∈ L(U, C, IC), there exists an attribute set E ⊆ C \ {c0} such
that (ψ(c0), E) ∈ L(U, C \ {c0}, IC\{c0}), which implies that ψ(E) = ψ(c0) and
E ∈ [X0]. Noticing that c0 �∈ E, it must have a minimal element F of [X0] such
that F ⊆ E. Of course, F �⊆ C, and thus E �⊆ C, a contradiction. Therefore,
C \ {c} is not a consistent set of S for any c ∈ C. That is to say, C is a reduct
of the formal context S.

By using Proposition 6, we can naturally develop an algorithm to calculate
reducts of a formal context.

Algorithm for attribute reduction

Input: formal context S = (U, A, I).
Output: reduct RED(A) of S.

(1) For all a ∈ A, compute ψ(a).
(2) Compute F : ∀B ⊆ A, compute

⋂

a∈B

ψ(a), then F is composed of all
⋂

a∈B

ψ(a), B ⊆ A.
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(3) Compute F0: let X ∈ F , if X �= Y ∩ Z holds for any Y, Z ∈ F , then
X ∈ F0. F0 is composed of all these X .

(4) ∀Xi ∈ F0(1 ≤ i ≤ |F0|), compute [Xi].
(5) ∀Xi ∈ F0, compute all the minimal elements of [Xi].

(6) Output RED(A) =
p⋃

i=1
Bi, where p = |F0|, Bi is a minimal element of [Xi].

The following example (quote from [16]) will illustrate our algorithm of at-
tribute reduction described above.

Example 1. A formal context T = (U, A, I) is shown in Table 1, where the
object set U = {1, 2, 3, 4}, the attribute set A = {a, b, c, d, e}.

Table 1. A formal context (U, A, I)

U a b c d e

1 1 1 0 1 1

2 1 1 1 0 0

3 0 0 0 1 0

4 1 1 1 0 0

Step1. For all x ∈ A, compute ψ(x).

ψ(a) = {1, 2, 4},
ψ(b) = {1, 2, 4},
ψ(c) = {2, 4},
ψ(d) = {1, 3},
ψ(e) = {1}.

Step2. Compute F .

F = {{1, 2, 4}, {2, 4}, {1}, {1, 3}, ∅}.

Step3. Compute F0.

F0 = {{1, 2, 4}, {2, 4}, {1, 3}}.

Step4. For any X ∈ F0, compute [X ].

[{1, 2, 4}] = {{a}, {b}, {a, b}},
[{2, 4}] = {{c}, {a, c}, {b, c}, {a, b, c}},
[{1, 3}] = {{d}}.

Step5. Compute the minimal elements of [X ], for any X ∈ F0.

{a} and {b} are two minimal elements of [{1, 2, 4}],
{c} is the only minimal element of [{2, 4}],
{d} is the minimal element of [{1, 3}].

Step6. C1 = {a, c, d} and C2 = {b, c, d} are reducts of S.
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By using the approach proposed in [16], we obtain the discernibility matrix
of formal context of S = (U, A, I) as shown in Table 2.

Table 2. The discernibility matrix

FC FC1 FC2 FC3 FC4 FC5 FC6

FC1 φ {c, d, e} {a, b, e} {d, e} {a, b, d, e} {c}
FC2 {c, d, e} φ {a, b, c, d} {c} {a, b, c} {d, e}
FC3 {a, b, e} {a, b, c, d} φ {a, b, d} {d} {a, b, c, e}
FC4 {d, e} {c} {a, b, d} φ {a, b} {c, d, e}
FC5 {a, b, d, e} {a, b, c} {d} {a, b} φ A

FC6 {c} {d, e} {a, b, c, e} {c, d, e} A φ

Where FC1 = ({1}, {a, b, d, e}), FC2=({2, 4}, {a, b, c}), FC3 = ({1, 3}, {d}),
FC4 = ({1, 2, 4}, {a, b}), FC5 = (U, φ), FC6 = (φ, A).

By discernibility formula in [15], we can easily obtain that C1 = {a, c, d} and
C2 = {b, c, d} are two minimal sets satisfying the condition Ci ∩D �= φ (i = 1, 2),
where D is arbitrary nonempty element in the discernibility matrix, therefore
C1 and C2 are two reducts of the formal context.

We can see that the results obtained by the two methods are the same.

4 Conclusion

The theory of attribute reduction in concept lattice is one of the important is-
sues in data mining. It makes the hidden knowledge more clear and precise,
and promotes wide-ranging application of concept lattice. In this paper, we have
proposed a new method of attribute reduction based on all the meet-irreducible
elements of the concept lattice. It is proved that the proposed method is equiv-
alent to the one in [15]. The related algorithm of attribute reduction has also
been provided.
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Abstract. This paper presents a novel method to reconstruct realistic
3D faces from a set of control points: (i) a local deformation approach is
proposed, which could effectively preserve the information when only a
few features are known; (ii) a Ternary Deformation Framework (TDF),
combining the strengths of both local modification and global calcula-
tion, is developed to accurately recover the face shape. Simulation results
show that TDF outperforms the conventional methods with respect to
the modeling precision and could generate realistic face models.

1 Introduction

Realistic face synthesis is one of the most fundamental and difficult problems in
computer graphics. The aim of this work is to provide an accurate solution of
modeling face shape from a few control points.

Actually, studies in modeling realistic faces and animating it date back to the
early 1970’s [1], with hundreds of research papers published. Current commercial
systems are commonly equipped with laser-based scanners, or project a pattern
on the subject’s face. The major drawback of such systems is the high cost of
hardware required. On the other hand, reconstruction from multiple view images
and video has produced a number of shape-from-motion techniques [2,3,4,5]. The
basic idea of these methods is to adjust a general model to match the key features
in the images (video frames). Although some of these methods [4,5] could create
3D faces realistically to a certain extent, but their computing cost is always high
and they are not stable enough. A 3D morphable model (3DMM) [6,7] is another
representative approach that could reconstruct human face automatically from
a single image. 3DMM has demonstrated the advantage of using linear class
model. However, the time-consuming procedure and instability are the main
shortcomings of this analysis-by-synthesis method.

Hence, modeling a 3D face from a few feature points on one image is poten-
tially providing a tradeoff between quality and speed. Some works have been
done in [8,9]. However, these approaches are always converged to a solution
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very close to the initial value, resulting in a reconstruction which resembles
the generic model rather than the particular face. The work presented here is
inspired by Knothe et. al. [10] who use Local Feature Analysis (LFA) to char-
acterize the coarse fitted results of a holistic method. However, the reshaped
surface is rugged due to the localization strategy. To overcome this shortcoming,
we propose a new localization strategy to reinforce the local property, and thus a
novel Weighted LFA (WLFA) is proposed. Consequently, we develop a Ternary
Deformation Framework (TDF), a combination of the strengths of both local
modifications and global calculations, to generate more precise models.

2 Localization Strategy

Addressing the problem of shape deforming by a set of control vertices, a local-
ization strategy has to guarantee that the interaction between controls is null.
And, each control attaches more influence to near-neighboring vertices than to
those far away, e.g. moving the nose tip should have less to do with vertices on
forehead. Deformations based on one control point are illustrated in Fig. 1.

Fig. 1. Deformations modeled by one control point using LFA

Voronoi Tessellation (VT) was used in [10] to compute the influence for each
control point. This is achieved by setting a weight value, decreasing linearly in
each tessellation, to 1 at the control point while to 0 at its boundary, as shown in
Fig. 2(a,b). However, the influence mask of this type encounters some problems
in deformation and even would lead to unexpected results. Three cases of curve
deformation by two control points are simulated in 2D cases (see Fig. 3(a)),
where bold fine lines are the original curves, and dashed ones are their reshaped
results, a and b are control points, c is an arbitrary point in T1, which under
the control of a, spline is fitted from these three points. We can see that the
deformations using this localization strategy are poor. The first case, especially,
has totally changed derivative of the original shape.

The main cause to VTś problem is that tessellation divisions make each point
be controlled by only one control point (as shown in Fig. 2(a,b)), ignoring oth-
ers which even may be near around. To compute the mask properly, a simple
Distance Measurement (DM) approach, here, is developed. Given k controls
C = {ct, 1 ≤ t ≤ k} on a surface, a vertex vj of the rest is adjusted by all
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(a) VT generated from 
16 control points

(b) A mask created by VT 
strategy

(c) A mask created by a control
 point using DM strategy

Fig. 2. Localization effects of VT and DM

controls at different weights wj = (wj,1, ..., wj,k) which are calculated by the
distance between ct and p, let rt = 1/d(ct, p) be the reciprocal distance, thus

wj,t = rj,t

/∑
rj,t, 1 ≤ t ≤ k. (1)

Eq. (1) tells that the new position of a vertex is determined by all controls,
the weights of which are changed gradually resulting in a smooth mask, as shown
in Fig. 2(c). An illustration shown in Fig. 3(b) has validated this point, too.

(a) VT strategy

1 12 3 2 3

a b
c

a b
c

a b
c

a b
c

a b
c

a b
c

T1 T2 T1 T2 T1 T2

(b) DM strategy

Fig. 3. Curves’ deformation based on two control points a, b

3 Face Reconstruction

In this section, we introduce the linear class model of human face at first. Then,
a local deformation method Weighted LFA (WLFA) is proposed on the basis of
the localization strategy. After that, we combine the global method DCDM (Dy-
namic Component Deforming Model) and local WLFA with a smooth function
RBFs (Radial Based Functions) to form a Ternary Deformation Framework.

3.1 Linear Class of Human Face

A face shape si can be denoted by a vector:

si = (x1, y1, z1, · · · , xj , yj , zj, · · · , xn, yn, zn)T ∈ �3n, 1 ≤ j ≤ n, (2)
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where (xj , yj, zj) is the coordinates of the j-th vertex vj , n is vertex number. A
group of m faces can be regarded as a linear class S = (s1, · · · , sm) ∈ �3n×m,
and then a novel face snew can be represented as a linear combination:

snew = S · α (3)

where α = (a1, · · · ai, · · · , am)T , ai ∈ [0, 1] and
m∑

i=1
ai = 1.

PCA is applied to get a compact representation: let Q = (q1, · · · , qm′) ∈
�3n×m′

be the eigenmatrix by concatenating prior m′(≤ m − 1) eigenvectors,
the corresponding eigenvalues are σ = (σ2

1 , · · · , σ2
m′), where σ2

1 ≥ · · · ≥ σ2
m′ .

With the scaled eigenmatrix [8], Eq. (3) can be rewritten as:

snew = s̄ + Qs · β = s̄ + Δs (4)

where Qs = (σ1q1, · · · , σm′qm′), s̄ = 1
m

m∑

i=1
si, and β = (β1, · · · , βm′)T ∈ �m′

.

Eq. (4) is a Reconstruction Function (RF) which indicates that a special face
can be deformed from an average face with a certain amount of changes Δs .

3.2 Local Modification

The traditional statistic methods, like PCA [8], is holistic and typically is not
topographic. To get a personalized face shape, as mentioned in section 2, a local
modification is needed to depict the personality trails. Based on DM, here, we
propose a method termed Weighted Local Feature Analysis (WLFA) that is
extended from another powerful statistic tool — Local Feature Analysis (LFA)
[11], which has local property and preserves topography.

Starting from an average face s̄, let v
′

t be a new position of a control point vt,
and Δvt = v

′

t−vt . The corresponding rows of Q are denoted by Qt ∈ �l×m′
(l=2

or l=3 depends on whether 2D or 3D coordinate is used). And,

Ω = diag (1/σi) ∈ �m′×m′
, 1 ≤ i ≤ m′, (5)

is a normalizing matrix of LFA kernel K = Q · Ω · QT , where, σi is standard
deviation of the i-th principal component, diag(.) means creating a diagonal
matrix for a vector. Then, the LFA-coefficients ct of the t -th control is

ct =
(
Qt · Ω−1 · QT

t

)−1 · Δvt. (6)

Thus, the total displacements Δst created by Δvt are

Δst = Q ·
(
Ω−1 · QT

t · ct

)
∈ �3n. (7)

WLFA uses the localization strategy DM when matching an average shape to
k controls. First, we construct a displacement matrix for all control points:

D =
(
Δs1, · · · , Δst, · · · , Δsk

)
∈ �3n×k. (8)
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Then, a weight map W for all vertices is created by:

W =
(
wT

1 , wT
1 , wT

1 , · · · , wT
j , wT

j , wT
j , · · · , wT

n , wT
n , wT

n

)
∈ �k×3n, (9)

where, wj is computed by Eq. (1). Thus, the WLFA based displacements are

L (Δs) = diag (D · W ) , (10)

with diag(.) forms a vector by extracting the diagonal elements of a matrix.

3.3 Ternary Deformation Framework

TDF is a combination of the global method DCDM, local WLFA and a smooth
function RBFs. In the following, we introduce DCDM and RBFs briefly at first,
and then use TDF to formulate the final deformation.

Different from the traditional PCA, DCDM is an effective tool [12] to alleviate
the over-fitting problem by eliminating useless information from training set.
Given k features on a novel face snew, let sf

new ∈ �l (l = 2k or l = 3k depends
on if 2D or 3D coordinate is used) be a sparse version of snew by concatenating
the features’ position. Likewise, the corresponding sparse eigenmatrix Qf

s =
(σ1q

f
1 , · · · , σm′qf

m′) ∈ �l×m′
. Hence, a sparse RF (see Eq. (4)) can be:

sf
new = s̄ + Δsf = s̄f + Qf

s · β. (11)

In this way, a coarse fitting coefficient can be achieved by using the approxima-
tion with regularization [8]:

β0 = V ·
(

λi

λ2
i + η

)

· UT · Δsf , (12)

with η ≥ 0 a weight factor controls a tradeoff between the precision of feature
point matching and prior probability, and, Qf

s = UΛV T , Λ = diag(λi) ∈ �l×m′
,

U ∈ �l×l, V ∈ �m′×m′
. The t-test is used to determine the significance of each

component according to the characteristics of a novel face. It concatenates the
most correlative ones to form a Personal EigenMatrix (PEM) and updates β0

to β1, hence the DCDM based displacements are calculated by

D (Δs) = Qs · β1. (13)

Radial Based Functions (RBFs), known as the most accurate as well as stable
interpolation method [13] that has been widely used in surface reconstruction
and modeling, is utilized to smooth the surface modeled by DCDM. The core of
RBFs is a smooth function f(v), defined as:

f(v) = p(v) +
k∑

t=1

λt · ϕ (d (v, vt)), (14)

where vt is the t-th feature, k is the number of features, d(·, ·) is the Euclidean
distance between two vertices. Polynomial p(v) = M · v + t represents the part
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of affine transformation, ϕ(‖r‖) = e−r/40. Substituting all feature points in Eq.
(14) to construct a linear system, which is then solved to get the parameters M ,
t, λ = (λ1, · · · , λk), thus, f(v) is fixed. So, the RBFs based displacements are

R (Δs) =
(
f(v1)T , · · · , f(vj)T , · · · , f(vn)T

)T
. (15)

In TDF, we use DCDM and RBFs to obtain an approximate and smooth
estimation of a face shape, and WLFA is utilized to depict the local details.
Hence, there is no need of a weight factor for WLFA displacements. Then, based
on Eq. (10), (13), (15), TDF is formulated as a weighted sum:

T (Δs) = μ1 · D (Δs) + μ2 · R (Δs) + L (Δs) ,
∑

μi = 1. (16)

4 Experiments and Discussion

400 laser-scanned faces are selected from the BJUT-3D Face Database [14], which
are then split into a training set and a testing set of m=200 faces each. From
training set, we compute 199 components which serve afterward as basic space.
Excessive uses of components may lead to over-fitting [12], we just use prior 50
of them in modeling. To evaluate reconstruction, we use the average Euclidean
distance [8] to measure two surfaces sr and st.

Fig. 4. Comparison of reconstruction errors

The advantage of the proposed TDF is evaluated on the testing set (use
2D coordinate), in which algorithms PCA+LFA (PL) [10], DCDM [12], and
DCDM+RBFs (DR) are assessed as counterparts. For PCA, the regularization
η = 0.0001. The significance level α used in DCDM is 0.05. For DR and TDF,
μ1 = μ2 = 0.5. The results (see Fig. 4(a)) reveal that the merit of TDF is
more evident when the features’ number is small. In previous work [12], we have
also argued that DCDM outperforms Sparse Deforming Model [9] and SRSD
(Surface Reconstruction from Sparse Data) [8]. Hence, TDF could be deemed
as the state-of-arts among the relative methods. Fig. 5 shows that TDF could
create a more realistic and smooth surface than that of PL method.
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To find out the contribution of DM for modeling improvements, we run the
algorithm PL twice with DM and VT respectively (use 3D coordinate). The
results shown in Fig. 4(b) reveals that DM performs better than VT. A visual
comparison is demonstrated in 2nd and 3rd images of Fig. 5.

Original PL+VT TDFPL+DM

Fig. 5. Demonstrations of reconstruction on testing face by various algorithm

To illustrate the performance of TDF in modeling face shapes from 2D pho-
tographs. Here, we apply it to a group of real photographs take from our lab. The
picture is projected orthogonally to create the textures. Using 9 salient features,
Fig. 6 shows that the generated 3D faces are realistic within a certain rotations.

Fig. 6. Reconstruction on real photographs by TDF

5 Conclusion

We propose a novel system to reconstruct 3D face shape from a few control
points. At first, a novel Weighted LFA is proposed to recover the local details of
a special face. Then, we develop a TDF to combine the strengths of local modi-
fication with global calculations to generate more accurate results. Experiment
results show that our method is quite effective and the 3D faces generated are
rather realistic.
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Abstract. A new approach to Pairwise Comparisons based Ranking is presented.
An abstract model based on partial orders instead of numerical scales is intro-
duced and analysed. The importance of the concept of indifference and the power
of weak order extensions are discussed.

1 Introduction

The Pairwise Comparisons method is based on the observation that while ranking the
importance of several objects is often problematic, it is much easier when to do re-
stricted to two objects. The problem is then reduced to constructing a global ranking
from the set of partially ordered pairs. The method could be traced to the Marquis de
Condorcet’s 1785 paper (see [1]), was explicitly mentioned and analysed by Fechner in
1860 [3], made popular by Thurstone in 1927 [13], and was transformed into a kind of
semi-formal methodology by Saaty in 1977 (called AHP, Analytic Hierarchy Process,
see [2,6,11]).

At present Pairwise Comparisons are practically identified with the controversial
Saaty’s AHP. On one hand AHP has respected practical applications, on the other it is
still considered by many (see [2,7,10]) as a flawed procedure that produces arbitrary
rankings. Due to a lack of space, the sources of the strange and contradictory examples
of rankings obtained by AHP will not be discussed. An interesting reader is referred to
[2,7,9,10]. However we believe that most of the problems mentioned in [2,7,9,10] and
others, stem mainly from the following two sources:

1. The final outcome is always expected to be totally ordered (i.e. for all a,b, either
a < b or b > a),

2. Numbers are used to calculate the final outcome.

Non-numerical solutions were proposed and discussed in [7,8,9]. The model presented
in this paper stems from [8], was highly influenced by [4], and is orthogonal to that of
[7]. The concept of “consistency”, crucial in [7] is not discussed in this paper at all.
Algorithms for automatic construction of a final ranking are the essence of this paper,
but they are not discussed in [7]. The model presented below uses no numbers and is
entirely based on the concept of partial orders.
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Fig. 1. Various types of partial orders (represented as Hasse diagrams). The total order ≺2 repre-
sents the weak order <2., The partial order <3 is nether total nor weak.

2 Total, Weak and Partial Orders

Let X be a finite set. A relation � ⊆ X × X is a (sharp) partial order if it is irreflexive
and transitive, i.e. if a�b ⇒ ¬(b�a) and a�b�c ⇒ a�c, for all a,b,c ∈ X . A pair
(X ,�) is called a partially ordered set. We will often identify (X ,�) with �, when X
is known.

We write a ∼� b if ¬(a�b)∧¬(b�a), that is if a and b are either distinctly incom-
patible (w.r.t. �) or identical elements of X . We also write

a ≈� b ⇐⇒ {x | x ∼� a} = {x | x ∼� b}.

The relation ≈� is an equivalence relation (i.e. it is reflexive, symmetric and transitive)
and it is called the equivalence with respect to �, since if a ≈� b, there is nothing in
� that can distinquish between a and b (see [4] for details). We always have a ≈� b ⇒
a ∼� b, and one can show that [4]:

a ≈� b ⇐⇒ {x | a � x} = {x | b � x}∧ {x | x � a} = {x | x � b}

A partial order is [4]

– total or linear, if ∼� is empty, i.e., for all a,b ∈ X . a � b ∨b � a,
– weak or stratified, if a ∼� b ∼� c ⇒ a ∼� c, i.e. if ∼� is an equivalence relation,

Evidently, every total order is weak. Weak orders are often defined in an alternative
way, namely [4],

– a partial order (X ,�) is a weak order iff there exists a total order (Y,≺) and a
mapping φ : X → Y such that ∀x,y ∈ X . x � y ⇐⇒ φ(x) ≺ φ(y).

This definition is illustrated in Figure 1, let φ : {a,b,c,d} → {{a},{b,c},{d}} and
φ(a) = {a}, φ(b) = φ(c) = {b,c}, φ(d) = {d}. Note that for all x,y ∈ {a,b,c,d} we
have x <2 y ⇐⇒ φ(x) ≺2 φ(y).

Following [4], in this paper a � b is interpreted as “a is less preferred than b”, and
a ≈� b is interpreted as “a and b are indifferent”.
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The preferred outcome of any ranking is a total order. For any total order �, both ∼�
and ≈� are just the equality relation. A total order has two natural models, both deeply
embedded in the human perception of reality, namely: time and numbers.

Unfortunately in many cases it is not reasonable to insist that everything can or
should be totally ordered. We may not have sufficient knowledge or such a perfect
ranking may not even exist [1]. Quite often insisting on a totally ordered ranking results
in an artificial and misleading “global index”.

Weak (stratified) orders are a very natural generalization of total orders. They allow
the modelling of some regular indifference, their interpretation is very simple and in-
tuitive, and they are reluctantly accepted by decision makers. Although not as much as
one might expect given the huge theory of such orders (see [4,6]).

If � is a weak order then a ≈� b ⇐⇒ a ∼� b, so indifference means distinct incom-
parability or identity, and the relation � can be interpreted as a sequence of equivalence
classes of ∼�. For the weak order <2 from Figure 3, the equivalence classes of ∼<2

are {a}, {b,c}, and {d}. There are, however, cases where insisting on weak orders may
not be reasonable. Those cases will not be discusses in this paper, the reader is referred
to [4,6] for more details.

3 Pairwise Comparisons Ranking, Ranking Problem and Data

A ranking is just a partial order Rank = (X ,<rank), where X is the set of objects to be
ranked and <rank is a ranking relation. We assume that <rank is a weak or total order.
The ranking relation <rank is unknown and the ranking problem is to construct <rank on
the basis of ranking data.

A pairwise comparisons ranking data is a pair PCRD = (X ,R ), where R is a total
function R : X × X → RV . The elements of set RV = {v0,v1, ...,vk}, k ≥ 1 are called
ranking values. The value v0 is interpreted as indifference, so we assume R (x,x) = v0

for all x ∈ X . The values v1, ...,vk are interpreted as preferences. We assume preferences
are totally ordered and vk ←↩ vk−1 ←↩ ... ←↩ v1. The total order ←↩ describes the degree
of preference represented by the elements of RS. If vi ←↩ v j then vi represents stronger
preference than v j (for example vi represents better and v j represents slightly in favour).
Usually we will write a vi b instaed of R (a,b) = vi, i = 0, ...,k.

The function R is constructed using the Pairwise Comparisons paradigm. For each
pair x,y ∈ X the value R (x,y) is decided based on the analysis of x and y only, indepen-
dently of the rest of X .

For example we may define RS (see [7]) as RV = {≈,�,⊂,<,≺}, with the following
interpretation a ≈ b : a and b are indifferent, a � b : slightly in favour of b, a ⊂ b : in
favour of b, a < b: b is better, a ≺ b : b is much better. The list �, ⊂, <, ≺ may be
shorter or longer, but not empty and not much longer (due to limitations of the human
mind[12]). In this case we assume: a ≺ b =⇒ a < b =⇒ a ⊂ b =⇒ a � c, i.e.
≺ ←↩ < ←↩ ⊂ ←↩ �.

Given pairwise comparisons ranking data PCRD=(X ,R ), with RV = {v0,v1, ...,vk},
we may define the relations Ri ⊆ X × X , i = 0, ...,k in the following manner:

xR0y ⇐⇒ R (x,y) = v0,
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xRky ⇐⇒ R (x,y) = vk,
xRiy ⇐⇒ R (x,y) ∈ {vi,vi+1, ...,vk}, i = 1, ...,k − 1.

Corollary 1. 1. R0 ∪R1 ∪ ...∪Rk = X × X
2. Rk ⊆ Rk−1 ⊆ ... ⊆ R1
3. vi ←↩ v j ⇐⇒ Ri ⊆ R j, i, j = 1, ...,k �

It is often useful to represent pairwise comparison ranking data PCRD as a tuple (X ,R0,
R1, ...,Rk) (see [7]) instead of a pair (X ,R ). Usually we use the same symbol to denote
both vi and Ri. For example (X ,≈,�,⊂,<,≺) is a pairwise comparison ranking data
(with the interpretation described above).

We may now describe the ranking problem as follows: “derive the ranking relation
<rank from given pairwise comparison ranking data PCRD”. Note that in the general
case, none of the relations Ri, i = 1, ...,k, might be even a partial order. The problem
is that X is believed to be partially or weakly ordered by the ranking relation <rank but
the data acquisition process may be so influenced by informational noise, imprecision,
randomness, or expert ignorance that the collected data R1,R2, ...,Rk are only some
relations on X . We may say that they give a fuzzy picture of ranking, and to focus it, we
must do some pruning and/or extension.

• For a given pairwise comparison ranking data PCRD = (X ,R ), the ranking relation
derived from PCRD will be denoted by <rank

PCRD, or <rank
(X ,R ).

The tools needed to solve the ranking problem will be presented in the next section.

4 Partial and Weak Order Approximations

Let X be a set, R and � be two relations on X such that � is a partial order and � ⊆ R.
The relation R may or may not be a partial order. Our goal is to find a relation <(R,�) on
X which could be interpreted as the “best” partial order approximation of R satisfying
� ⊆<(R,�). If R is a partial order then obviously <(R,�) equals R.

Suppose R is not a partial order. Without loss of generality we may assume that R
is irreflexive, i.e. (x,x) �∈ R, which means that R is not transitive. The “best” transi-
tive approximation of R can be defined as the smallest transitive relation containing
R. Such a relation is called transitive closure of R, and it is defined as R+ =

⋃∞
i=1 Ri,

where Ri+1 = Ri ◦ R (c.f. [4]). Evidently R ⊆ R+ and R+ is transitive. Even though R
is irreflexive, the relation R+ may not be irreflexive, but in such a case we can use the
following classical result.

Lemma 1 (Schröder 1895, see [8]). Let Q ⊆ X × X be a transitive relation. Define:

x <Q y ⇐⇒ xQy ∧¬yQx.

The relation <Q is a partial order. �
The following properties of <R+ can easily be proved.

Proposition 1. 1. The relation <R+ is the biggest partial order < that satisifes:
(a) x < y =⇒ xR+y
(b) x < y =⇒ ¬(yRx).
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2. If R is a partial order then <R+ equals R.
3. If R+ is a partial order then <R+ equals R+. �

From Proposition 1 it follows that the partial order <R+ is most likely the “best” partial
order approximation of R. If � ⊆<R+ we set <(R,�) as <R+ . It may happen however
that a�b and ¬(a <R+ b) for some a,b ∈ X , i.e. it is not true that � ⊆<R+ (see Figure
1 in [8]).

Let us define the relation <(R,�) as follows:

<(R,�)= (� ∪ <R+)+.

The below result suggests that <(R,�) could be regarded as the “best” approximation
of R that contains �.

Proposition 2. 1. <(R,�) is the smallest partial order < satisfying: � ∪ <R+⊆<,
2. � ⊆<(R,�),
3. x <(R,�) y =⇒ ¬(yRx),
4. if R is a partial order then <(R,�) equals R,
5. if R+ is a partial order then <(R,�) equals R+,
6. if � ⊆<R+ then <(R,�) equals <R+ (this includes the case � equal to /0). �

The relations <R+ and <(R,�) are usually not weak orders.
Let X be a set and let � be a partial order on X . The relation � may or may not be a

weak order. We are looking for the “best” weak order extension of �. It appears that in
this case the solution may not be unique.

Note that weak order extensions reflect the fact that if x ≈� y than all reasonable
methods for extending � will have x equivalent to y in the extension since there is
nothing in the data that distinguishes between them (for details see [4]), which leads to
the definition below (for both weak an total orders).

A weak (or total) order �w ⊆ X ×X is a proper weak (or total) order extension of �
if and only if : (x � y ⇒ x �w y) and (x ≈� y ⇒ x ∼�w y).

If X is finite then for every partial order � its proper weak extension always exists. If
� is weak, than its only proper weak extension is �w = �. If � if not weak, there are
usually multiple such extensions. Various methods were proposed and discussed in [4]
and especially in [5]. For our purposes, the best seems to be the method based on the
concept of a global score function [4], which is defined as (for every finite set X , ‖ X ‖
denotes its number of elements):

g�(x) =‖ {z | z� x} ‖ − ‖ {z | x � z} ‖ .

Given the global score function g�(x), we define the relation �w
g ⊆ X × X as

a �w
g b ⇐⇒ g�(a) < g�(b).

Lemma 2 ([4]). The relation �w
g is a proper weak extension of a partial order �. �

Some other variations of g� and their interpretations were analyzed in [8]. From Lemma
2 it follows that every finite partial order has a proper weak extension. The well known
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procedure “topological sorting”, popular in scheduling problems, guarantees that every
finite partial order has a total extension (the Szpilrain Theorem guarantees it for all par-
tial orders [4]), but even finite partial orders usually do not have proper total extensions.
Note that the total order �t is a proper total extension of � if and only if the relation
≈� equals the identity, i.e a ≈� b ⇐⇒ a = b. For example no weak order has a proper
total extension unless it is also already total. This indicates that while expecting a final
ordering to be weak may be reasonable, expecting a final total ordering is often unrea-
sonable. It may however happen, and often does, that a proper weak extension is a total
order, which suggests that we should stop seeking a priori total orderings since weak
orders appear to be more natural models of preferences than total orders.

5 Some Solutions to Ranking Problem

CASE 1. We start with the simplest and most likely the most common case, k = 1.
In this case R (a,b) = v0 means a and b are indifferent, and R (a,b) = v1 means b is
preferred over a. Since R0 ∪ R1 = X × X , the case is reduced to finding the best weak
order approximation of the relation R1. This case was analysed in the context of Social
Choice and Arrows’ axioms (see [1,6]) in [8] and in the context of traditional numerical
pairwise comparisons approach (but with Koczkodaj’s consistency [10], not the more
popular Saaty’s consistency [11]) in [9].

Using terminology and notation from the previous section, we need to calculate first
<(R1, /0), which equals <R+

1
, and then to find a proper weak extension of <R+

1
, preferably

(<R+
1
)w

g .

• We may then set the ranking relation <rank
(X ,R ) as (<R+

1
)w

g .

In this case we will often write <rank
R1

instead of <rank
(X ,R ). The outcome is a weak order,

and it may or may not be a total order.
The shape of the function R that is starting point in the process of creating <rank

R1
depends on what kind of preference is used. A stronger preference (for instance much
better instead of slightly better) results in a smaller relation R1 and bigger relation R0

(which represents indifference). On the other hand, since the data acquisition process
is imprecise(due to informational noise, imprecision, randomness, expert ignorance,
etc.), weaker preferences reflect smaller confidence and allow a greater chance for an
incorrect assement. That is, the chance that one has an assessment of “a is slightly better
than b” when in fact b is better than a or they are indifferent is much larger than the
chance that one has an assessment of “a is much better than b”, as if there is any doubt
one gets an indifferent assessment.

In other words, for stronger preferences we may expect that aR1b implies a <rank

b for all a,b ∈ X , and that R1 is also a partial order; while for weak preferences we
should rather be expecting aR1b and ¬(a <rank b) for some a,b ∈ X . Which approach is
better? Should we insist on finding a data acquisition process with strong discriminatory
power? This is usually expensive and the confidence level for the results is rather low.
Or, should we apply a discriminatory power for which we have a high confidence level
(but which might yield a relatively big indifference relation R0) and assume that the



448 R. Janicki

≺ A B C D E

A ≈ ≈ ≈ ≈ ≈
B ≈ ≈ � ≈ ≈
C ≈ ≺ ≈ ≈ ≈
D ≈ ≈ ≈ ≈ ≈
E ≈ ≈ ≈ ≈ ≈

< A B C D E

A ≈ < ≈ ≈ ≈
B > ≈ > ≈ ≈
C ≈ < ≈ < ≈
D ≈ ≈ > ≈ ≈
E ≈ ≈ ≈ ≈ ≈

⊂ A B C D E

A ≈ ⊂ ≈ ⊂ ≈
B ⊃ ≈ ⊃ ≈ ⊃
C ≈ ⊂ ≈ ⊂ ⊂
D ⊃ ≈ ⊃ ≈ ≈
E ≈ ⊂ ⊃ ≈ ≈

� A B C D E

A ≈ � � � �
B � ≈ � � �
C � � ≈ � �
D � � � ≈ �
E � � � � ≈

� �

�

�

�

�
A D E

C

B

The relation ≺

�

�

�

�

�

� �

�
�
���

A

D

E

C

B

The relation <

�

�

�

�

�

�
�
���

	
	
	
		
 �

	
		

�
�
�
���

A

D

E

C

B

The relation ⊂

� �

� �

�

�
�
�
�
���




�

�
�
�
��

�
�
�
�
���

�
�
�
���

�
�
��

�
�
��

�	
	
	�

A

CE

D

B

The relation �

�

�

�

�

�

�
���

�
��� �
�
���

�
�
���

�

�

�

�

�

�

�

�

�

A

C

E

D

B

A

C

ED

B

Identical partial orders <rank
< and <rank

⊂

(Hasse Diagram)(Hasse Diagram)

Identical partial orders <rank
≺ and <rank�

Fig. 2. Four pairwise comparisons ranking data (X ,≈,≺), (X ,≈,<), (X ,≈,⊂) and (X ,≈,�),
acquired for the same set of objects X = {A,B,C,D,E}, and the ranking relations they generate.
Results of one experiment conducted to justify some claims of [7]. The relations ≈, ≺, <, ⊂, �
are interpreted as described in Section 3. The wrong judgement of � is in two grey cells.

correction process (i.e. calculating the relation (<R+
1
)w

g ) presented above, will correctly

identify the relation <rank?
We were unable to find much in the literature on this subject for partial orders. How-

ever, to justify some of the claims presented in [7] the following experiment has been
conducted. A blindfolded person compared the weights of stones. The person put one
stone in their left hand and another in their right, and then decided which of the rela-
tions ≈, �, ⊂, <, or ≺ (interpreted as described in Section 3) held. The experiment
was repeated for the same set of stones by various people; and then again for different
stones and different number of stones; and again for various subsets of {�,⊂,<,≺} .
The results of one such experiment are presented in Figure 2. There were many similar
results but with more stones involved, so we presented only the smallest case.
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The stones were weighed and their weights created an increasing total order C, A, E ,
D, B, exactly the same as <rank

< = <rank
⊂ , but different than <rank

� - the result of using
the finest preference. In fact in this case, the most discrimatory preference �, and the
least discrimatory and very crude preference ≺ produced the same outcome, different
than actual ordering. On the other hand, the medium discrimatory preference ⊂ and the
relatively low preference < produced the correct ranking. The relations ≺, <, ⊂ were
partial orders included in the correct total ranking, but none of them was even a weak
order. The relation � was not a partial order and it was not transitive.

The weights difference among A, D, E were relatively small, so different persons
provided different relations �. For one person the �-preference beetween A and D
depended on which stone was put in which hand. On the other hand the outcomes for
≺, < and ⊂ were the same for all persons.

The experiments conducted to justify some claims of [7] have most likely prehistoric
roots. Our ancestors probably used this technique to decide which stone is better to kill
an enemy or an animal. However the experiments were rather one-sided and by no
means they covered all aspects of pairwise comparison techniques. No statistical data
were also provided. More experiments covering various different aspects of pairwise
comparison techniques are planned to be conducted soon. Nevertheless we believe the
general results will be close to those for “weighting with hands only”.

Summing up the case for k = 1, we conclude the following:

1. The order identification power of weak extension procedures is substantial and
vastly underestimated.

2. If the ranked set of objects is, by its nature, expected to be totally ordered, the weak
extension can detect it, even if the pairwise comparison process is not very precise,
and often results in “indifference”.

3. It is a serious error to attempt to find a total extension without going through a
weak extension process.

4. In general, admitting incomparability on the level of pairwise comparisons is better
than insisting on an order at any cost. The latter approach leads to an arbitrary and
often incorrect total ordering.

5. Using less fine but more certain preferences is better than finer but uncertain
preferences.

CASE 2. For a moment consider again the case k = 1 and the pairwaise comparison
ranking data (X ,R0,R1). Even if R1 may in general be imprecise, in most cases some
parts of R1 describe the precise ranking. For instance if R1 is the result of expert voting,
if all experts agree that aR1b, than we may assume that a <rank b (see Pereto’s principle
[6]). Similarly if a person a is both taller and heavier than b, we would rather say that a
is bigger than b, where “bigger” is a calculated ranking relation.

This leads us to Case 2, where k = 2, and the pairwaise comparison ranking data
PCRD = (X ,R0,R1,R2), where R2 is a partial order and R2 ⊆<rank. To be consistent
with section 3, we will write R instead of R1 and � instead of R2.

• In this case we set <rank
PCRD as (<(R,�))w

g , and denote it as <rank
(R,�).

An experiment illustrating this case is in Figure 3. The stone were weighted and their
weights created and increasing total order C, A, E , D, B, G, F . This order was not
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detected by neither the fine preference �, nor by “certain” preference �, but was cor-
rectly detected by combining � and �, i.e. by the pairwise comparisons ranking data
(X ,≈,�,�), where X = {A,B,C,D,E,F,G}.

• Note that in most cases deriving some � from R is rather easy and natural process.
Therefore our final comment for Case 2 is, transform first the case (X ,≈,�) into
the case (X ,≈,�,�) and deal with the latter one.

CASE 3. For arbitrary k, pairwise comparisons ranking data (X ,R ) can be defined as
a tuple (X ,R0,R1, ...,Rk) with Rk ⊆ Rk−1 ⊆ ... ⊆ R1. Without any loss of generality we
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Fig. 3. Three pairwise comparisons ranking data (X ,≈,�), (X ,≈,�) and (X ,≈,�,�), acquired
for the same set of objects X = {A,B,C,D,E,F,G}, and the ranking relations they generate.
Results of one experiment conducted to justify some claims of [7]. The relation ≈ is indifference,
� is interpreted as “slightly in favour” and � as “strongly better”. We assume a�b implies a � b.
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may assume that Rk is a partial order. If it is not we may construct <R+
k

, set new Rk as
<R+

k
, and modify respectively R0, ..., Rk−1.

Let j be the smallest number such that for all i ≥ j, Ri are partial orders. If k = 1, we
just set <rank

(X ,R ) as (R1)w
g . Otherwise define

R̂ j−1 = <(R j−1,R j), R̂ j−2 = <(R j−2,R̂ j)
, ... , R̂1 = <(R1,R̂2)

.

• We now set <rank
(X ,R ) = (R̂1)w

g .

The algorithm presented above is orthogonal to that from [7]. It worked well for
the “weighting with hands” experiment. In general the tuple (X , R̂0, R̂1, ..., R̂k), where
xR̂0y ⇐⇒ ¬(∃i ≥ 1. xR̂iy), may not satisfy the consistency rules proposed in [7], even
though for “weighting with hands” experiments it usually does. The algorithm presented
above is easy to program, while the method presented in [7] requires human intervention
(changing of preferences).

6 Final Comments

The concepts of ranking, ranking problem and pairwise comparisons ranking methods
have been defined and analysed in the partial orders setting. Some solutions have been
presented. No numbers were used whatsoever, which we believe is more fair and objec-
tive approach. The importance of the indifference relation and the power of the weak
order extension procedure have been emphasised.
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Abstract. The theory of concept lattices is an efficient tool for knowl-
edge discovery. To make the knowledge discovery of a larger formal con-
text easier, this paper discusses the combination and decomposition of
formal contexts when the attribute set is the same, and obtains the cor-
responding concept lattices. First, the methods how to obtain the whole
concept lattice from sub-contexts of a larger formal context is proposed.
Then, the converse situation is also studied, and the method how to ob-
tain a sub-lattice from the original formal context is given. At the same
time, the relationship between intension set of original context and that
of its sub-context is analyzed. Finally, the combination and decomposi-
tion theories are generalized when there are multiple sub-contexts.

1 Introduction

The theory of concept lattices was proposed by Wille R in 1982 [14]. A concept
lattice is an ordered hierarchical structure of formal concepts that are defined by
a binary relation between an object set and an attribute set. As an efficient tool
for data analysis and knowledge processing, the theory of concept lattices has
been applied to various fields, such as data mining, information retrieval, and
software engineering. Most of the researches on concept lattices focus on such
topics as: construction of concept lattices [2,7,9], pruning of concept lattices
[10], acquisition of rules [2,7,18], relationship with rough set [3,4,11,12,13,16],
reduction of concept lattices [13,15,17], and applications [1,5,8,10,18].

As we have known, information acquisition of a larger formal context is dif-
ficult. In this paper, we discuss the combination and decomposition of formal
contexts in the case of the same attribute set. It makes the discovery of implicit
knowledge in larger contexts easier.

The paper is organized as follows. Section 2 recalls basic definitions in for-
mal concept analysis. Section 3 proposes the combination and decomposition
theories of formal contexts based on the same attribute set, and also give corre-
sponding theorems. Section 4 discusses the relationship between intension set of
original context and that of its sub-context. Section 5 generalizes combination
and decomposition theories in the case of multiple sub-contexts. Section 6 gives
an example. Finally, Section 7 concludes the paper.
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2 Basic Definitions in Formal Concept Analysis

To make this paper self-contained, we introduce the involved notions in formal
concept analysis in this section [6].

Definition 1. A triple (U, A, I) is called a formal context, if U and A are sets
and I ⊆ U × A is a binary relation between U and A. U = {x1, . . . , xn}, each
xi(i = 1, ...n) is called an object. A = {a1, . . . , am}, each aj(j = 1, ...m) is called
an attribute.

In this paper, (x, a) ∈ I is denoted by 1, and (x, a) /∈ I is denoted by 0.
A pair of dual operators are defined in (U, A, I) for X ⊆ U and B ⊆ A by:

X∗ = {a ∈ A|(x, a) ∈ I for all x ∈ X} ,
B� = {x ∈ U |(x, a) ∈ I for all a ∈ B} .

Definition 2. Let (U, A, I) be a formal context. A pair (X, B) is called a formal
concept, for short, a concept, of (U, A, I), if and only if,

X ⊆ U, B ⊆ A, X∗ = B, and X = B�.
X is called the extension and B is called the intension of the concept (X, B).

The concepts of a formal context (U, A, I) are ordered by
(X1, B1) ≤ (X2, B2) ⇔ X1 ⊆ X2(⇔ B1 ⊇ B2) .

The set of all concepts can form a complete lattice, which is called the concept
lattice of (U, A, I), and is denoted by L(U, A, I). The infimum and supremum
are given by:

(X1, B1) ∧ (X2, B2) = (X1 ∩ X2, (B1 ∪ B2)�∗) ,
(X1, B1) ∨ (X2, B2) = ((X1 ∪ X2)∗�, B1 ∩ B2) .

With respect to a formal context (U, A, I), the following properties hold: for
all X1, X2, X ⊆ U and all B1, B2, B ⊆ A,

1. X1 ⊆ X2 ⇒ X∗
2 ⊆ X∗

1 , B1 ⊆ B2 ⇒ B�
2 ⊆ B�

1 .
2. X ⊆ X∗�, B ⊆ B�∗.
3. X∗ = X∗�∗, B� = B�∗�.
4. X ⊆ B� ⇔ B ⊆ X∗.
5. (X1 ∪ X2)∗ = X∗

1 ∩ X∗
2 , (B1 ∪ B2)� = B�

1 ∩ B�
2 .

6. (X1 ∩ X2)∗ ⊇ X∗
1 ∪ X∗

2 , (B1 ∩ B2)� ⊇ B�
1 ∪ B�

2 .
7. (X∗�, X∗) and (B�, B�∗) both are concepts.

3 Combination and Decomposition Theories of Formal
Contexts Based on the Same Attribute Set

In this section, we propose the combination and decomposition theories of formal
contexts based on the same attribute set.

If a formal context (U, A, I) can be combined by two contexts (U1, A, I1)
and (U2, A, I2) where U1 ∪ U2 = U , U1 ∩ U2 = ∅, and I = I1 ∪ I2, then we
can obtain the combination theorem to get all the concepts of the combined
one from the two small contexts. Conversely, if a formal context (U, A, I) can be
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decomposed into two sub-contexts (U1, A, I1) and (U2, A, I2), where U1∪U2 = U ,
U1∩U2 = ∅, I1 = I∩(U1×A), I2 = I∩(U2×A), we can obtain the decomposition
theorem. Whatever above cases, we say (U, A, I) is the direct sum of (U1, A, I1)
and (U2, A, I2), (U1, A, I1) and (U2, A, I2) are complementary. Which is denoted
by (U, A, I) = (U1, A, I1) + (U2, A, I2).

The lattices of (U, A, I), (U1, A, I1) and (U2, A, I2) are denoted by L, L1, and
L2 respectively, and we use ∗i (�i) in Li(i = 1, 2) and ∗ (�) in L respectively.

The following lemma can be obtained naturally.

Lemma 1. If (U, A, I) = (U1, A, I1) + (U2, A, I2), then, for i = 1, 2,
1〉. ∀B ⊆ A, B� = B�1 ∪ B�2; B�i = B� ∩ Ui.
2〉. ∀X ⊆ U , X∗ = (X ∩ U1)∗1 ∩ (X ∩ U2)∗2. Especially, ∀X ⊆ Ui, X∗i = X∗.

Definition 3. Let (U1, A, I1) and (U2, A, I2) be two formal contexts, and L1A,
L2A be their intension sets respectively, that is, LiA = {Bi|(Xi, Bi) ∈ Li}, i =
1, 2. Then we define their inner intersection of L1A and L2A as follows.

L1A � L2A = {B1 ∩ B2|(X1, B1) ∈ L1, (X2, B2) ∈ L2} . (1)

Theorem 1. (Combination theorem) Suppose (U, A, I) = (U1, A, I1) +
(U2, A, I2). Then, we have the following statements.
1〉. ∀(X1, B1) ∈ L1, (X2, B2) ∈ L2, ((B1 ∩ B2)�, B1 ∩ B2) ∈ L.
2〉. LA = L1A � L2A.

Proof. 1〉. We only need to prove that (B1 ∩ B2)�∗ = B1 ∩ B2.
Since (B1∩B2)�∗ = ((X1)∗1∩(X2)∗2)�∗ = ((X1)∗∩(X2)∗)�∗ = (X1∪X2)∗�∗ =

(X1 ∪X2)∗ = (X1)∗ ∩ (X2)∗ = (X1)∗1 ∩ (X2)∗2 = B1 ∩B2. Thus, the proposition
1〉 is concluded.

2〉. From the proof of proposition 1〉, we have L1A �L2A ⊆ LA. Thus, we only
need to prove its converse, i.e., LA ⊆ L1A � L2A.

Suppose C ∈ LA, that is, there exists (Y, C) ∈ L such that Y ∗ = C, C� = Y .
We prove the result from 3 cases.

If Y ⊆ U1, then, C = Y ∗ = Y ∗1 = Y ∗1 ∩ A ∈ L1A � L2A.
If Y ⊆ U2, then, C = Y ∗ = Y ∗2 = Y ∗2 ∩ A ∈ L2A � L1A = L1A � L2A.
If Y ⊆ U , Y �⊆ U1, Y �⊆ U2, then we assume Y = Y1 ∪ Y2, Y1 ⊆ U1, Y2 ⊆ U2.

Thus, C = Y ∗ = (Y1 ∪ Y2)∗ = Y ∗
1 ∩ Y ∗

2 = Y ∗1
1 ∩ Y ∗2

2 ∈ L1A � L2A.
Therefore, LA ⊆ L1A � L2A holds. Thus, proposition 2〉 is proved.

This theorem shows that all the concepts in the combined lattice L = L(U, A, I)
can be obtained by its two complementary sub-contexts.

Theorem 2. (Decomposition theorem) Suppose (U, A, I) = (U1, A, I1) +
(U2, A, I2). Then, we have the following statements.
1〉. ∀(X, B) ∈ L, there must be (X ∩ Ui, (X ∩ Ui)∗i) ∈ Li, i = 1, 2.
2〉. There must exist (X, B) ∈ L such that any concept in L1 and L2 can be
described as 1〉.

Proof. Suppose (X, B) ∈ L.
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1〉. We only prove the conclusion when i = 1, that is, (X∩U1, (X∩U1)∗1) ∈ L1.
The proof of the case i = 2 is similar.

It needs to be proved (X ∩ U1)∗1�1 = X ∩ U1. In fact, (X ∩ U1)∗1�1 = (B� ∩
U1)∗1�1 = ((B�1∪B�2)∩U1)∗1�1 = ((B�1∩U1)∪(B�2∩U1))∗1�1 = (B�1∪∅)∗1�1 =
B�1∗1�1 = B�1 = B� ∩ U1 = X ∩ U1.

2〉. We also prove it only in L1. That is, we need to show, ∀ (X1, B1) ∈ L1,
there exists (X, B) ∈ L such that X1 = X ∩ U1 and B1 = (X ∩ U1)∗1.

In fact, the existed (X, B) ∈ L is (X, B) = (X1 ∪B�2
1 , B1). Therefore, we need

to prove (X1 ∪ B�2
1 , B1) ∈ L, and X1 = (X1 ∪ B�2

1 ) ∩ U1.
Firstly, we have X1 ∪B�2

1 = B�1
1 ∪B�2

1 = B�
1 , and (X1 ∪B�2

1 )∗ = X∗
1 ∩B�2∗

1 =
X∗1

1 ∩ B�2∗2
1 = B1 ∩ B�2∗2

1 = B1, so, (X1 ∪ B�2
1 , B1) ∈ L holds.

Secondly, it is obvious that (X1 ∪ B�2
1 ) ∩ U1 = (X1 ∩ U1) ∪ (B�2

1 ∩ U1) =
X1 ∪ ∅ = X1.

Thus, the proof is completed.

This theorem says that if a large context can be decomposed to two sub-contexts
satisfying some conditions described in this theorem, then, any concept in the
sub-context can be obtained from the original context. Furthermore, concepts
obtained by this method are all of its concepts.

4 The Relationship between the Intension Set of a
Formal Context and That of Its Sub-contexts

This section discusses the relationship between the intention set of a formal
context and that of its sub-contexts.

Theorem 3. Let (U, A, I) be a formal context, and (U1, A, I1) be one of its sub-
context. Let L, LA be the lattice and intention set of (U, A, I), and L1, L1A be
the lattice and intention set of (U1, A, I1). Then, we have L1A ⊆ LA.

Proof. Suppose B ∈ L1A, that is, there exists (X, B) ∈ L1 satisfying X∗1 =
B, B�1 = X . It needs to be proved that (B�, B) ∈ L, i.e., B�∗ = B. In fact,
B�∗ = (X∗1)�∗ = X∗�∗ = X∗ = X∗1 = B. Therefore, L1A ⊆ LA is concluded.

Corollary 1. Let (U, A, I) be a formal context. If there exists one sub-context
(U1, A, I1) such that LA ⊆ L1A, then, L1A = LA.

Definition 4. Let L1 = L(U1, A, I1) and L2 = L(U2, A, I2) be two concept lat-
tices. If ∀(X2, B2) ∈ L2, there exists (X1, B1) ∈ L1 such that B1 = B2, then
we say L1 is finer than L2 with respect to the attribute set A, and is denoted by
L1 ≤A L2.

Theorem 4. Let (U, A, I) be a formal context, and (U, A, I) = (U1, A, I1) +
(U2, A, I2), L, L1, L2 and LA, L1A, L2A be their lattices and intention sets re-
spectively. Then, we have

LA = L1A ⇔ L1 ≤A L2. (2)



456 L. Wei and J.-J. Qi

Proof. Necessity. Suppose LA = L1A. It should be proved that ∀(X2, B2) ∈ L2,
there exists (X1, B1) ∈ L1 such that B1 = B2. Since LA = L1A, we only need to
prove that there exists (X0, B0) ∈ L such that B0 = B2. In fact, we can obtain
from Theorem 2 that there exists (X, B) ∈ L such that B2 = (X ∩U2)∗, and it is
obvious that ((X ∩ U2)∗�, (X ∩U2)∗) ∈ L, that is, the existed B0 = (X ∩ U2)∗ =
B2. Necessity is concluded.

Sufficiency. Since Corollary 1, we only need to prove that L1 ≤A L2 ⇒ LA ⊆
L1A. From Theorem 1, we know that ∀(X, B) ∈ L, there exist (X1, B1) ∈ L1
and (X2, B2) ∈ L2 such that X = (B1 ∩ B2)� = (X1 ∪ X2)∗�, B = B1 ∩ B2.
Since L1 ≤A L2, for the existed (X2, B2) ∈ L2, there must exist (Y, C) ∈ L1
such that B2 = C. Thus, B = B1 ∩ B2 = B1 ∩ C. Then, (B1 ∩ C)�1∗1 =
(X∗1

1 ∩ Y ∗1)�1∗1 = (X1 ∪ Y )∗1�1∗1 = (X1 ∪ Y )∗1 = X∗1
1 ∩ Y ∗1 = B1 ∩ C.

Therefore, ((B1 ∩ C)�1, B1 ∩ C) ∈ L1, i.e., B = B1 ∩ B2 = B1 ∩ C ∈ L1A.
Sufficiency is proved.

Theorem 5. If (U, A, I) = (U1, A, I1) + (U2, A, I2), and LA = L1A, then any
concept (X, B) ∈ L can be obtained by

X = X1 ∪ ( ∪
t∈τ

X2t), B = B1.

Where, (X1, B1) ∈ L1, B1 ⊆ B2t, (X2t, B2t) ∈ L2.

Proof. We need to show B� = X and X∗ = B, that is, (X1 ∪ ( ∪
t∈τ

X2t))� = B1,

and B∗
1 = X1 ∪ ( ∪

t∈τ
X2t).

Firstly, we show (X1 ∪ ( ∪
t∈τ

X2t))� = B1. Which is easy to be obtained since

(X1 ∪ ( ∪
t∈τ

X2t))∗ = X∗
1 ∩ ( ∪

t∈τ
X2t)∗ = X∗1

1 ∩ ( ∪
t∈τ

X2t)∗2 = B1 ∩ ( ∩
t∈τ

X∗2
2t ) =

B1 ∩ ( ∩
t∈τ

B2t) = B1.

Secondly, we show B�
1 = X1∪( ∪

t∈τ
X2t). We have B�

1 = B�1
1 ∪B�2

1 = X1∪B�2
1 =

X1 ∪ ( ∪
t∈τ

X2t) since B�2
1 = ( ∪

t∈τ
X2t). In fact, B1 ⊆ B2t ⇒ B�2

1 ⊇ B�2
2t = X2t ⇒

B�2
1 ⊇ ∪

t∈τ
X2t, and we can also prove B�2

1 ⊆ ∪
t∈τ

X2t. Assume that there exists

y ∈ B�2
1 , y �∈ ∪

t∈τ
X2t, i.e., ∀t ∈ τ , y �∈ X2t. Since X2t ⊆ B�2

1 , y �∈ B�2
1 is

concluded, which is contradiction to the assumption. Therefore, B�2
1 ⊆ ∪

t∈τ
X2t.

Thus, B�2
1 = ∪

t∈τ
X2t is obtained.

5 Generalization of Combination and Decomposition
Theories

If (U, A, I) = (U1, A, I1) + (U2, A, I2) + ... + (Ul, A, Il) satisfying Ui ∩ Uj =

∅(∀i �= j),
l
∪

i=1
Ui = U, Ii = I ∩ (Ui × A)(or I = I1 ∪ ... ∪ Il), that is, (U, A, I)

is the direct sum of (Ui, A, Ii), i = 1, ...l, then we can also obtain the following
generalized combination theorem and decomposition theorem. This theorem can
be concluded by using Theorem 1 and Theorem 2 repeatedly.
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Theorem 6. Suppose a formal context (U, A, I) can be described as the direct
sum of (Ui, A, Ii), i = 1, ...l. Let L and Li(i = 1, ...l) be their corresponding
lattices respectively, LA and LiA (i = 1, ...l) be their intention sets respectively.
Then we have the following propositions.
1〉 LA = L1A � L2A � ... � LlA.

2〉 ∀(Xi, Bi) ∈ Li, i = 1, 2, ...l, ((
l
∩

i=1
Bi)�,

l
∩

i=1
Bi) ∈ L.

3〉 ∀(X, B) ∈ L, (X ∩ Ui, (X ∩ Ui)∗i) ∈ Li, i = 1, ...l.

6 An Example

Table 1 shows a formal context (U, A, I). In which, U = {1, 2, 3, 4, 5, 6, 7, 8}, A =
{a, b, c, d, e}. In order to obtain its lattice, we take it as (U, A, I) = (U1, A, I1) +
(U2, A, I2), where, U1 = {1, 2, 3, 4}, I1 = I ∩ (U1 × A), U2 = {5, 6, 7, 8}, I2 =
I ∩ (U2 × A). Here, we use Theorem 1 to obtain the original lattice.

Table 1. A formal context (U, A, I)

a b c d e

1 1 1 0 1 1
2 1 1 1 0 0
3 0 0 0 1 0
4 1 1 1 0 0
5 1 0 1 0 1
6 1 1 0 0 1
7 0 1 1 1 0
8 0 1 1 1 0

The lattices of L(U1, A, I1) and L(U2, A, I2) are shown in Fig.1 and Fig.2
respectively. The combined one obtained by Theorem 1 is shown in Fig.3.

(1, )abde

( , )A

(24, )abc

(124, )ab

1
( , )U

(13, )d

Fig. 1. The concept lattice of (U1, A, I1)

(U2,Ø)

(56,ae) (678,b) (578,c)

(5,ace) (6,abe) (78,bcd)

(Ø,A)

Fig. 2. The concept lattice of (U2, A, I2)
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(U,Ø)

(Ø,A)

(12456,a) (12467,b) (24578,c) (1378,d)

(156,ae)

(1246,ab) (245,ac) (178,bd) (2478,bc)

(16,abe)

(1,abde) (24,abc) (5,ace) (78,bcd)

Fig. 3. The concept lattice of (U, A, I)

It is easy to see that obtaining the original lattice using the combination
method is easier than compute it directly. Similarly, if we have known the original
lattice L = L(U, A, I), then we can also obtain the lattices of any sub-context
using Theorem 2.

7 Conclusion

This paper has discussed combination and decomposition theories of formal con-
texts based on the same attribute set to obtain concept lattices. The theory pro-
posed in this paper can be applied to knowledge discovery when data updating
occurs. In parallel, Our next work will focus on the combination and decompo-
sition theories of formal contexts based on the same object set. Furthermore,
based on this theory, rules acquisition of whole lattice can be studied through
that of sub-lattices. All of these significance topics will be researched in the
future work.
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Abstract. Galois (concept) lattices and formal concept analysis have
been proved useful in the resolution of many problems of theoretical and
practical interest. Recent studies have put the emphasis on the need for
both efficient and flexible algorithms to construct the lattice. In this pa-
per, some equivalent conditions for an attributes subset to be a reduction
of a formal concept are presented. Further more, the structure of con-
cept lattice was analyzed and it is proved that each concept is the meet
of some single attribute generalized concepts. Based on the above re-
search, reduction-based approaches towards constructing concept lattice
was presented.

1 Introduction

Formal concept analysis(FCA) is a discipline that studies the hierarchical struc-
tures induced by a binary relation between a pair of sets. The structure, made up
of the closed subsets ordered by set-theoretical inclusion, satisfies the properties
of a complete lattice and has been firstly mentioned in the work of Birkhoff[1].
The term concept lattice and formal concept analysis are due to Wille[2], [3], [4].
Later on, it has been the subject of an extensive study with many interesting
results. As a classification tool, FCA has been used in several areas such as data
mining, knowledge discovery, and software engineering.

One of the important challenges in FCA is to get efficient and flexible algo-
rithms to construct the concept lattice from the formal context. The algorithms
can be mainly divided into two groups: algorithms which extract the set of
concepts[5], [7] only, and algorithms for constructing the entire lattice[8], [9],
[10] i.e., concepts together with lattice order. An efficient algorithm has been
suggested by Bordat[8] which generates both the concept set and the Hasse di-
agram of the lattice. The obvious drawback of the method is that a concept
is generated several times. The design of flexible algorithms was pioneered by
Godin et al.[9] who designed an incremental method for constructing the concept
lattices. The lattice is constructed starting from a single object and gradually in-
corporating new objects. Nourine and Raynaud[10] suggested a general approach
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towards the computation of closure structures and showed how it could be used
to construct concept lattices. Valtchev et al.[11] presents a novel approach for
concept lattice construction based on the apposition of binary relation fragments.
In[12], the concept of attribute reduction of formal concept was proposed with
its properties being discussed. The CL−Axiom and some equivalent conditions
for an attributes subset to be a reduction of a formal concept are presented.

In this paper, based on[12], some equivalent conditions for an attributes subset
to be a reduction of a formal concept are presented. Further more, the struc-
ture of concept lattice was analyzed and it is proved that each concept is the
meet of some single attribute generalized concepts. Based on the above research,
reduction-based approaches towards constructing concept lattice was presented.

2 Fundamentals of FCA

Definition 1. A formal context is an ordered triple T = (G, M, I) where G, M
are finite nonempty sets and I ⊆ G × M is an incidence relation. The elements
in G are interpreted to be objects, elements in M are said to be attributes. If
(g, m) ∈ G × M is such that (g, m) ∈ I, then the object g is said to have the
attribute m.

The incidence relation of a formal context can be naturally represented by an
incidence table.

Example 1. [6] T = (G, M, I) is a formal context, where G = {1, 2, 3, 4, 5, 6, 7, 8},
M = {a, b, c, d, e, f, g, h, i} and the table below describes incidence relation:

Table 1. The incidence relation of the formal context

a b c d e f g h i

1 x x x
2 x x x x
3 x x x x x
4 x x x x x
5 x x x x
6 x x x x x
7 x x x x
8 x x x x

To introduce the definition of the formal concept, Wille used two set-valued
functions, ↑ and ↓, given by the expressions:

↑: P (G) → P (M), X↑ = {m ∈ M ; ∀g ∈ X, (g, m) ∈ I},

↓: P (M) → P (G), Y ↓ = {g ∈ G; ∀m ∈ Y, (g, m) ∈ I}.
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Definition 2. A formal concept of a context T = (G, M, I) is a pair (A, B) ∈
P (G) × P (M) such that A↑ = B and B↓ = A. The set A is called its extent, the
set B its intent.

The subset L(G, M, I) of P (G)×P (M) formed by all the concepts of the context
is a complete lattice with the order relation:

(A, B) ≤ (C, D) if and only if A ⊆ C (or equivalently B ⊇ D).
This relation shows the hierarchy between the concepts of the context. The

lattice (L(G, M, I), ≤) is said to be the formal concept lattice of the context
(G, M, I) with LUB and GLB are given as follows:

n∨

i=1

(Ai, Bi) = ((
n⋃

i=1

Ai)↑↓,
n⋂

i=1

Bi),

n∧

i=1

(Ai, Bi) = (
n⋂

i=1

Ai, (
n⋃

i=1

Bi)↓↑).

For convenience reasons, we simplify the standard set notation by dropping
out all the separators (e.g., 124 will stand for the set of objects {1, 2, 4} and cd
for the set of attributes {c,d}). The concept lattice of Example 1 is showed in
Fig. 1.
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Fig. 1. Galois/concept lattice corresponding to Table 1

3 The Attribute Reduction of Formal Concepts

Let (G, M.I) be a formal context and (A, B) ∈ P (G) × P (M) a formal concept.
We introduce the notation ε(A,B) by

ε(A,B) = {Y ⊆ M ; Y ↓ = A}.
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For any Y ∈ P (M), (Y ↓, Y ↓↑) is a concept, it is said to be the concept generated
by the set Y of attributes. It follows that ε(A,B) is the family of subsets of
attributes which generate same concept as B does.

Theorem 1. [12] Let (G, M.I) be a formal context and (A, B) ∈ P (G)× P (M)
a formal concept.

(1) B is the greatest element in the poset (ε(A,B), ⊆).
(2) If Y1 ∈ ε(A,B) and Y1 ⊆ Y2 ⊆ B, then Y2 ∈ ε(A,B).

Definition 3. Let (G, M.I) be a formal context and (A, B) ∈ P (G) × P (M) a
formal concept.

(1) A minimal element in (ε(A,B), ⊆) is said to be an attribute reduction of
(A, B).

(2) If a ∈ B is such that (B − {a})↓ ⊃ A, then a is said to be a core attribute
of (A, B).

We denote by Core(A, B) the set of all core attributes of (A, B) and by Red(A, B)
the set of all attribute reductions of (A, B), that is

Core(A, B) = {a ∈ B; (B − {a})↓ ⊃ A}, (1)
Red(A, B) = {Y ; Y is an attribute reduction of (A, B)}. (2)

Theorem 2. [12] ∩Red(A, B) = Core(A, B).

Example 2. For the formal context in Example 1, (23, abgh) is a concept. It is
trivial to verify that

ε(23,abgh) = {bh, abh, bgh, abgh},

bh is the unique attribute reduction of (23, abgh) and Core(23, abgh) = {b, h}.
For the concept (6, abcdf),

ε(6,abcdf) = {bcd, bcf, bcdf, abcdf}.

It follows that Red(6, abcdf) = {bcd, bcf} and Core(6, abcdf) = {b, c}.

Theorem 3. [12] Let (G, M, I) be a formal context, Y ⊆ M, Y �= ∅. Y is an
attribute reduction of a concept if and only if

�(b) = {x ∈ G; I(x, b) = 0,
∏

a∈Y {b}
I(x, a) = 1} �= ∅

for each b ∈ Y .

Based on the above Theorem, the CL−Axiom for attribute subset Y ⊆ M is
introduced as follows:

CL-Axiom:
∑

b∈Y δ(�(b)) = |Y |, where

δ(�(b)) =
{

1, if�(b) �= ∅,
0, if�(b) = ∅.

(3)
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Theorem 4. [12] Let (G, M, I) be a formal context, Y ⊆ M, Y �= ∅. Y is an
attribute reduction of a concept if and only if Y satisfies CL−Axiom.

For each concept, there exist its attribute reduction. From Theorem 7, the con-
cept lattice L(G, M, I) with respect to formal context (G, M, I) can be con-
structed as follows:

(1) For each Y ⊆ M , check Y satisfies CL−Axiom or not and form the set:
λ(T ) = {Y ⊆ M ; Y satisfyCL-Axiom};
(2) For each Y ∈ λ(T ), compute the concept (Y ↓, Y ↓↑) and form the concept

lattice

L(G, M, I) = {(Y ↓, Y ↓↑); Y ∈ λ(T )}.

Theorem 5. Let (G, M, I) be a formal context, Y ⊆ M, Y �= ∅. Y does not sat-
isfy CL−Axiom if and only if there exist formal concept (A, B) and its attribute
reduction Z such that Z ⊂ Y ⊆ B.

Proof 6. Assume that (A, B) is a concept and Z its attribute reduction such
that Z ⊂ Y ⊆ B. Let b ∈ Y − Z. If there exist x ∈ G such that x ∈ �(b), then∏

a∈Y −{b} I(x, a) = 1 and hence
∏

a∈Z I(x, a) = 1, that is x ∈ Z↓. Consequently
I(x, b) = 1 by b ∈ B = Z↓↑, a contradiction with I(x, b) = 0. It follows that
�(b) = ∅ and Y does not satisfy CL−Axiom.

Conversely, assume that Y does not satisfy CL−Axiom. It follows that there
exist b ∈ Y such that �(b) = ∅. Consequently, for each x ∈ G, if

∏
a∈Y −{b}

I(x, a) = 1, then I(x, b) = 1. It follows that Y ↓ = (Y − {b})↓. We consider the
concept ((Y − {b})↓, (Y − {b})↓↑). It follows that there exist attribute reduction
Z of ((Y − {b})↓, (Y − {b})↓↑) such that Z ⊆ Y − {b}. Consequently,

Z ⊆ Y − {b} ⊂ Y ⊆ Y ↓↑ = (Y − {b})↓↑. (4)

Theorem 7. Let (G, M, I) be a formal context. If Y ⊆ M, Y �= ∅ is not attribute
reduction of any concept, then Z is not attribute reduction of any concept for
each Y ⊆ Z ⊆ M .

4 The Structure of Concept Lattice

In this section, we discuss the structure of concept lattice.
Let T = (G, M, I) be a formal context. It is trivial to verify that {a} satisfies

CL−Axiom for each a ∈ M − G↑. For each (A, B) ∈ L(G, M, I), M↑ ⊆ B and
B − M↑ �= ∅ if (A, B) is not the greatest element of L(G, M, I).

Theorem 8. Let T = (G, M, I) be a formal context and (A, B) ∈ L(G, M, I).
If B − M↑ �= ∅, then

(A, B) =
∧

a∈B−G↑

({a}↓, {a}↓↑) = (
⋂

a∈B−G↑

{a}↓, (
⋂

a∈B−G↑

{a}↓)↑).
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Proof 9. For each a ∈ B − G↑, {a} ⊆ B and it follows that {a}↓↑ ⊆ B↓↑ = B.
Consequently (A, B) ≤ ({a}↓, {a}↓↑) and hence

(A, B) ≤
∧

a∈B−G↑

({a}↓, {a}↓↑) = (
⋂

a∈B−G↑

{a}↓, (
⋂

a∈B−G↑

{a}↓)↑).

If (C, D) ∈ L(G, M, I) is such that (C, D) ≤ ({a}↓, {a}↓↑) for each a ∈ B−G↑,
then D ⊇ {a}↓↑ and hence D ⊇

⋃
a∈B−G↑{a}↓↑.

For each b ∈ B, if b ∈ B − G↑, then b ∈ {b}↓↑ ⊆
⋃

a∈B−G↑{a}↓↑. If b ∈ G↑,
we suppose that a0 ∈ B − G↑, it follows that b ∈ {a0}↓↑ ⊆

⋃
a∈B−G↑{a}↓↑.

Consequently, B ⊆
⋃

a∈B−G↑{a}↓↑.
By D ⊇

⋃
a∈B−G↑{a}↓↑ and B ⊆

⋃
a∈B−G↑{a}↓↑, it follows that D ⊇ B and

(C, D) ≤ (A, B).

By this theorem, each element of L(G, M, I) is the meet of a subset of {({a}↓,
{a}↓↑); a ∈ M − G↑} (we make the appointment that the greatest element
(G, G↑) of L(G, M, I) satisfies (G, G↑) = ∩∅). It follows that the concept lat-
tice L(G, M, I) with respect to formal context T = (G, M, I) can be constructed
as follows:

(1) Compute G↑;
(2) Compute α(T ) = {{a}↓; a ∈ M − G↑};
(3) Compute β(T ) = {

⋂
A; A ⊆ α(T )};

(4) Compute γ(T ) = {(A, A↑); A ∈ β(T )};
(5) γ(T ) ∪ {(G, G↑)} = L(G, M, I) is the concept lattice with respect to T .
It is worth noting that for A ⊆ α(T ),

⋂
A is just set-theoretical intersection of

elements in A. That is to say, β(T ) is the set of elements which is the intersection
of some elements in α(T ).

Example 3. For the formal context in Example 1,
(1) G↑ = {a};
(2) M − G↑ = {b, c, d, e, f, g, h, i} and

α(T ) = {12356, 34678, 5678, 7, 568, 1234, 234, 4};

(3) β(T ) = α(T ) ∪ {36, 56, ∅, 123, 23, 678, 68, 34, 3, 6};
(4) For each A ∈ β(T ), compute (A, A↑) and form the set γ(T ):
γ(T ) = {(12356, ab), (34678, ac), (5678, ad), (7, acde), (568, adf), (1234, ag),
(234, agh), (4, acghi), (36, abc), (56, abdf), (∅, abcdefghi), (123, abg),
(23, abgh), (678, acd), (68, acdf), (34, acgh), (3, abcgh), (6, abcdf)};
(5) γ(T ) ∪ {(12345678, a)} is the concept lattice with respect to T .

5 Conclusions

This paper is devoted to the discussion of constructing approach for concept
lattice. Based on[12], some equivalent conditions for an attributes subset to be a
reduction of a formal concept are presented. Further more, the structure of con-
cept lattice was analyzed and it is proved that each concept is the meet of some
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single attribute generalized concepts. Based on the above research, reduction-
based approaches towards constructing concept lattice was presented. We will
study the algorithm for constructing concept lattice based on the theory pre-
sented in this paper in our future works.
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Abstract. In data mining post-processing, which is one of important
procedures in a data mining process, at least 39 metrics have been pro-
posed to find out valuable knowledge. However, their functional prop-
erties have never been clearly articulated under the same condition.
Therefore, we carried out a correlation analysis of functional proper-
ties between each objective rule evaluation indices on classification rule
sets using correlation coefficients between each index. In this analysis,
we calculated average values of each index using bootstrap method on 34
classification rule sets learned based on information gain ratio. Then, we
found the following relationships based on correlation coefficient values:
similar pairs, discrepant pairs, and independent indices. With regarding
to this result, we discuss about relative functional relationships between
each group of objective indices.

Keywords: Data Mining, Post-processing, Rule Evaluation Index, Cor-
relation Analysis.

1 Introduction

In recent years, enormous amounts of data are stored on information systems
in natural science, social science, and business domains. People have been able
to obtain valuable knowledge due to the development of information technology.
Besides, data mining techniques combine different kinds of technologies such
as database technologies, statistical methods, and machine learning methods.
Then, data mining has been well known for utilizing data stored on database
systems. In particular, if-then rules, which are produced by rule induction algo-
rithms, are considered as one of the highly usable and readable outputs of data
mining. However, to large datasets with hundreds of attributes including noise,
the process often obtains many thousands of rules. From such a large rule set,
it is difficult for human experts to find out valuable knowledge, which are rarely
included in the rule set.

To support such a rule selection, many efforts have done using objective
rule evaluation indices such as recall, precision, and other interestingness mea-
surements [1,2,3] (Hereafter, we refer to these indices as “objective indices”).
Although their properties are identified with their definition, their functional
properties are not investigated with any promising method.

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 467–474, 2008.
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With regard to the above-mentioned issues, we present an correlation analy-
sis method to identify the functional properties of objective indices in Section
3. Then, with the 39 objective indices and classification rule sets from 34 UCI
datasets, we identified the following relationships based on the correlation anal-
ysis method: similar pairs of indices, contradict pairs of indices, and independent
indices. Based on the result in Section 4, we discuss about these relationships
and differences between functional properties and original definitions.

2 Interestingness Measures and Related Work

Many studies have investigated the selection of valuable rules from a large mined
rule set based on objective rule evaluation indices. Some of these works suggested
the indices to discover interesting rules from such a large number of rules [1,2,3].
These interestingness measures are based on two different approaches[4]: the
objective (data-driven) approach and the subjective approach.

To avoid confusing real human interest, the objective index, and the subjective
index, we clearly define these three items as follows: Objective Index : features
such as the correctness, uniqueness, and strength of a rule, which are calculated
mathematically. An objective index does not include any human evaluation cri-
teria. Subjective Index : The similarity or difference between the information
on interestingness given beforehand by a human expert and that obtained from a
rule. Although some human criteria are included in its initial state, the similarity
or difference is mainly calculated mathematically.

Focusing on interesting rule selection with objective indices, researchers have
developed more than forty objective indices based on number of instances, prob-
ability, statistics values, information quantity, distance or attributes of rules, and
complexity of rules. The behavior of each of these indices with respect to their
functional natures has been investigated in a number of studies[5,6,7].

However, there has been not yet done to analyze some functional relationships
among objective indices on any actually obtained classification rule set totally.

3 Correlation Analysis for the Objective Rule Evaluation
Indices

In this section, we describe a correlation analysis method to identify functional
properties of objective indices. To analyze functional relationships between ob-
jective indices, we should gather the following materials: values of objective
indices of each classification rule set learned from each dataset, and correlation
coefficients between objective indices with the values. The process of the analysis
is shown in Figure 1.

First, we obtain multiple rule sets from some datasets to get values of objective
indices. When gathering these values, we should care the statistical correctness of
each value. Therefore, the values are averaged adequately large number (> 100)
of values from bootstrap samples.
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Fig. 1. An overview of the correlation analysis method

Then, the following correlation coefficients r between indices, x and y, are
calculated for n datasets.

r =
1
n

∑n
i=1 (xi − x)(yi − y)

√
1
n

∑n
i=1 (xi − x)2

√
1
n

∑n
i=1 (yi − y)2

With these coefficient values, we identified similar pairs, contradict pairs, and
independent indices.

4 Analyzing the Objective Rule Evaluation Indices on
UCI Datasets

In this section, we describe the correlation analysis of the 39 objective indices
with twelve UCI datasets. Table 1 shows the 39 objective indices investigated
and reformulated for classification rules by Osaki et. al.[8].

As for datasets, we have taken the following 34 datasets from UCI machine
learning repository[20]: anneal, audiology, autos, balance-scale, breast-cancer,
breast-w, colic, credit-a, credit-g, diabetes, glass, heart-c, heart-h, heart-statlog,
hepatitis, hypothyroid, iris, ionosphere, kr-vs-kp, labor, letter, lymph, mush-
room, primary-tumor, segment, sick, sonar, soybean, splice, vehicle, vote, vowel,
waveform-5000 and zoo.
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Table 1. Objective rule evaluation indices for classification rules used in this research.
P: Probability of the antecedent and/or consequent of a rule. S: Statistical variable
based on P. I: Information of the antecedent and/or consequent of a rule. N: Number
of instances included in the antecedent and/or consequent of a rule. D: Distance of a
rule from the others based on rule attributes.

Theory Index Name (Abbreviation) [Reference Number of Literature]
P Coverage (Coverage), Prevalence (Prevalence)

Precision (Precision), Recall (Recall)
Support (Support), Specificity (Specificity)
Accuracy (Accuracy), Lift (Lift)
Leverage (Leverage), Added Value (Added Value)[2]
Klösgen’s Interestingness (KI)[9], Relative Risk (RR)[10]
Brin’s Interest (BI)[11], Brin’s Conviction (BC)[11]
Certainty Factor (CF)[2], Jaccard Coefficient (Jaccard)[2]
F-Measure (F-M)[12], Odds Ratio (OR)[2]
Yule’s Q (YuleQ)[2], Yule’s Y (YuleY)[2]
Kappa (Kappa)[2], Collective Strength (CST)[2]
Gray and Orlowska’s Interestingness weighting Dependency (GOI)[13]
Gini Gain (Gini)[2], Credibility (Credibility)[14]

S χ2 Measure for One Quadrant (χ2-M1)[15]
χ2 Measure for Four Quadrant (χ2-M4)[15]

I J-Measure (J-M)[16], K-Measure (K-M)[8]
Mutual Information (MI)[2]
Yao and Liu’s Interestingness 1 based on one-way support (YLI1)[3]
Yao and Liu’s Interestingness 2 based on two-way support (YLI2)[3]
Yao and Zhong’s Interestingness (YZI)[3]

N Cosine Similarity (CSI)[2], Laplace Correction (LC)[2]
φ Coefficient (φ)[2], Piatetsky-Shapiro’s Interestingness (PSI)[17]

D Gago and Bento’s Interestingness (GBI)[18]
Peculiarity (Peculiarity)[19]

For the above datasets, we obtained rule sets with PART[21] implemented
in Weka[22]. PART constructs a rule set based on information gain ratio. This
means the obtained rule sets are biased with the correctness of classification.

4.1 Constructing a Correlation Coefficient Matrix of the 39
Objective Indices

For the 32 datasets, we obtained the rule sets using PART. This procedure is
repeated 1000 times with bootstrap re-sampling for each dataset. As a repre-
sentative value for each bootstrap iteration, the average for a rule set has been
calculated. Then, we averaged the average values from 1000 times iterations.

With the average values for each dataset, we calculated correlation coefficients
between each objective index.

4.2 Identifying Characteristic Relationships between Objective
Indices Based on Correlation Coefficient Matrix Analysis

Based on the correlation coefficients, we identify characteristic relationship be-
tween each objective index. We defined the three characteristic relation ship as
follows:

– Similar pair: two indices has strong positive correlation r > 0.8.
– Contradict pair: two indices has strong negative correlation r < −0.8.
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– Independent index: a index has only weak correlations −0.8 ≤ r ≤ 0.8 for
the other indices.

Table 2 shows similar pairs of objective indices on the correlation analysis.
There are several groups having mutual correlations. The largest group, which
has correlation to Cosine Similarity and F-Measure, includes 23 indices. Relative
Risk and Odds Ratio make another group. χ2-M1, χ2-M4 and PSI also make
different functional group. These pairs indicate distinct functional property for
the rule sets.

Table 2. Similar pairs of objective indices on the correlation analysis

Corr. Coefficient Corr. Coefficient Corr. Coefficient

Coverage Precision 0.86 Leverage Added Value 0.91 YulesY Kappa 0.96

Recall 0.81 Jaccard 0.97 KI 0.96

Support 1.00 Certainty Factor 0.92 GOI 0.88

Leverage 0.88 YulesY 0.92 Laplace Correction 0.88

Added Value 0.82 Kappa 0.96 Gini Gain 0.90

Jaccard 0.91 KI 0.96 YLI1 0.94

Certainty Factor 0.84 GOI 0.89 YLI2 0.94

KI 0.84 Laplace Correction 0.87 YZI 0.90

BI 0.88 Gini Gain 0.97 Cosine Similarity 0.92

GOI 0.86 J-Measure 0.84 F-Measure 0.91

Laplace Correction 0.82 YLI1 0.81 Kappa KI 0.93

Gini Gain 0.83 YLI2 0.99 GOI 0.84

J-Measure 0.90 YZI 0.95 Laplace Correction 0.80

YLI2 0.82 Cosine Similarity 0.97 Gini Gain 0.95

Cosine Similarity 0.91 F-Measure 0.97 YLI1 0.90

F-Measure 0.92 Added Value Jaccard 0.91 YLI2 0.99

Precision Support 0.86 Certainty Factor 1.00 YZI 0.95

Leverage 0.91 YulesQ 0.80 Cosine Similarity 0.94

Added Value 0.99 YulesY 0.94 F-Measure 0.94

Jaccard 0.89 Kappa 0.89 KI GOI 0.96

Certainty Factor 0.99 KI 0.99 Laplace Correction 0.93

YulesY 0.83 BI 0.83 Gini Gain 0.91

YulesQ 0.91 GOI 0.99 YLI1 0.87

Kappa 0.85 Laplace Correction 0.93 YLI2 0.95

BI 0.98 Gini Gain 0.85 YZI 0.89

GOI 0.87 YLI1 0.86 Cosine Similarity 0.98

Laplace Correction 0.98 YLI2 0.90 F-Measure 0.97

Gini Gain 0.97 YZI 0.82 BI GOI 0.90

YLI1 0.83 Cosine Similarity 0.96 Laplace Correction 0.80

YLI2 0.87 F-Measure 0.94 K-Measure 0.92

Cosine Similarity 0.96 Relative Risk Odds Ratio 0.80 Cosine Similarity 0.82

F-Measure 0.94 Jaccard Certainty Factor 0.91 F-Measure 0.80

Recall Support 0.81 YulesY 0.90 GOI Laplace Correction 0.91

Leverage 0.89 Kappa 0.96 Gini Gain 0.81

Added Value 0.80 KI 0.94 YLI2 0.85

Jaccard 0.95 GOI 0.90 K-Measure 0.85

YulesY 0.85 Laplace Correction 0.83 Cosine Similarity 0.96

Kappa 0.93 Gini Gain 0.94 F-Measure 0.94

KI 0.84 J-Measure 0.85 Laplace Correction GiniGain 0.81

GiniGain 0.88 YLI2 0.97 YLI2 0.83

YLI2 0.91 YZI 0.94 CosineSimilarity 0.90

YZI 0.91 Cosine Similarity 0.98 F-Measure 0.87

Cosine Similarity 0.91 F-Measure 0.99 ChiSquare-one ChiSquare-four 0.96

F-Measure 0.92 Certainty Factor YulesQ 0.82 PSI 0.89

Support Leverage 0.88 YulesY 0.93 ChiSquare-four PSI 0.98

AddedValue 0.82 Kappa 0.88 Gini Gain J-Measure 0.82

Jaccard 0.91 KI 0.99 YLI2 0.98

Certainty Factor 0.84 BI 0.84 YZI 0.99

KI 0.84 GOI 0.99 Cosine Similarity 0.92

BI 0.88 Laplace Correction 0.95 F-Measure 0.92

GOI 0.86 Gini Gain 0.85 J-Measure Cosine Similarity 0.83

Laplace Correction 0.82 YLI1 0.84 F-Measure 0.84

Gini Gain 0.83 YLI2 0.89 YLI1 YLI2 0.85

J-Measure 0.90 YZI 0.81 YZI 0.80

YLI2 0.82 Cosine Similarity 0.96 Cosine Similarity 0.81

Cosine Similarity 0.91 F-Measure 0.95 YLI2 YZI 0.97

F-Measure 0.92 YulesQ BI 0.85 Cosine Similarity 0.95

GOI 0.85 F-Measure 0.95

J-Measure 0.81 YZI Cosine Similarity 0.90

K-Measure 0.92 F-Measure 0.91

Cosine Similarity F-Measure 1.00

Index Pair Index Pair Index Pair

As shown in Table 3, there are smaller number of discrepant pairs of objec-
tive indices on the correlation analysis. Accuracy and Prevalence has discrepant
property each other. Likewise, BI and BC also indicate discrepant property be-
cause of negative correlation between them. BC shows discrepant property to
several indices, which belong to the biggest group of similar pairs.
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Table 3. Discrepant pairs of objective indices on the correlation analysis

Corr. Coefficient

Accuracy Prevalance -0.98

YulesQ BC -0.92

BI GOI -0.92

BC -0.85

K-Measure BC -1.00

Index Pair

Figure 2 shows scatter plots of representative pair of each relationship. Where
r = 1.00 is not correctly 1. Also, r = −1.00 is not correctly −1.
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Fig. 2. Scatter plots of representative pairs. (Coverage vs. Support (r = 1.00), Credi-
bility vs. Mutual Information (r = −0.10) and K-Measure vs. BC (r = −1.00)).

5 Discussion

With regarding to Table 2, we can say that the following objective indices in-
dicate similar property: Coverage, Precision, Recall, Support, Leverage, Added
Value, Jaccard, Certainty Factor, YulesQ, YulesY, Kappa, KI, BI, GOI, Laplace
Correction, Gini Gain, J-Measure, YLI1, YLI2, YZI, K-Measure, Cosine Simi-
larity, and F-Measure. The other groups also show similar functional property to
the classification rule sets based on information gain ratio. Considering their def-
initions, although they have different theoretical backgrounds, their functional
property is to represent correctness of rules. This indicates that these indices
evaluate given rules optimistically.

On the other hand, looking at Table 3, BC indicates opposite functional prop-
erty comparing with the former indices. Therefore, the result indicates that BC
evaluate given rules not so optimistically. As for Accuracy and Prevalence, al-
though Accuracy measures ratio of both of true positive and false negative for
each rule, Prevalence only measures ratio of mentioned class value of each rule.
It is reasonable to indicate discrepant property, because accurate rules have high
Accuracy values irrespective of their mentioned class value.

As for the independent indices, GBI and Peculiarity suggested with the dif-
ferent theoretical background comparing with the other indices. Therefore, what
they have different functional properties is reasonable. However, Corrective
Strength, Credibility, Mutual Information and φ Coefficient indicate the differ-
ent functional property comparing with the other indices which have the same
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theoretical backgrounds (P,S and N). These indices evaluate given rules from
each different viewpoint.

6 Conclusion

In this paper, we described the method to analyze functional properties of ob-
jective rule evaluation indices.

We investigated functional properties of objective indices with 34 UCI datasets
and their rule sets as an actual example. With regarding to the result, several
groups are found as functional similarity groups in cross-sectional manner for
their theoretical backgrounds.

In the future, we will investigate functional properties of objective indices
to other kind of rule sets obtained from the other rule mining algorithms. At
the same time, we will investigate other rank correlation coefficients and other
correlations.
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Abstract. During the process of constructing data mining metadata,
the evolution of data mining techniques, the different experiences and
views of related organizations inevitably cause inconsistencies. However,
current data mining metadata lacks precise semantic due to their de-
scription with natural language and graphs, so the automatic consistency
checking upon them has not been resolved well. In this paper, a formal
logic DLRDM in the description logic family is proposed. Subsequently, a
formal reasoning method based on DLRDM is designed to automatically
check the consistency of data mining metadata. With the description
logic DLRDM, formalization upon the metamodel and metadata of data
mining is analyzed in detail. The reasoning engine Racer is applied into
the method to check the consistency upon the data mining metadata.
Results on the RacerPro reasoning system indicate the method is en-
couraging.

Keywords: Automated reasoning, Data mining, Metadata, Consistency
checking, Knowledge representation.

1 Introduction

Data mining is a process of knowledge discovery from a great deal of data. It has
attracted much attention since the relational database theory was proposed in
the last century. A lot of data mining algorithms were proposed, which involve
symbolic statistics, classification, clustering, association rules and other aspects.
More and more corporations brought their data mining products such as SPSS
Clementine, Oracle Data Miner and IBM DB2 Intelligent Miner.

With the constantly development of data mining techniques, the standardiza-
tion of data mining become a new focus problem in recent years [1]. Different
corporations look forward to common data mining metadata for the sharing,
exchanging, integration and standardization of their data mining products. The
data mining metadata provides unified criteria, rules, models and frameworks
for data mining. In recent years, some data mining oriented industry criteria are
proposed, for example, CRISP-DM1, PMML2 and CWM [2]. The CRISP-DM
1 CRoss Industry Standard Process for Data Mining. See http://www.crisp-dm.org
2 Predictive Modeling Markup Language. See http://www.dmg.org

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 475–482, 2008.
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gives a process criterion of whole data mining life cycle. Now it becomes the
standard method of data mining developing projects. However, it is described
with natural language and didn’t make exact criterion for data mining meta-
data. PMML is defined by the data mining group DMG, which aims to define a
unified XML format that saves the contents of mining models. So it benefits the
metadata exchanging of data mining products. However, it is hard to guaran-
tee the consistence of data mining metadata with the evolution of data mining
techniques.

Common warehouse metamodel, CWM for short, provides detailed and suffi-
cient graph description for data warehouse and data mining [2]. It is developed
by the OMG Group and focuses on business intelligence, which includes the
definitions of OLAP and data mining metadata. The aim of CWM is to solve
the integration and management problems of metadata, so different application
programs can integrate each other under different conditions. In the CWM cri-
teria, data mining metadata is defined in detail. However, different experiences
of different corporations, different views when describing data and continual de-
velopment of data mining techniques inevitably bring conflicts upon metadata.
However, the description with natural language and graphs in CWM make it
hard to automatically discover the conflict information through reasoning. How-
ever, this problem has not been resolved well up to now. In this research, we put
forward a description logic based formal reasoning method for the consistency
checking of data mining metadata.

2 Related Work

Zhao first proposed a formal logic DLid in description logic family to formalize
CWM based data warehouse metadata, which could automatically check the in-
consistency in data warehouse metadata [3]. However, this logic has following
deficiency. First, it lacks the description upon the whole CWM architecture such
as meta-meta model MOF. Second, it has not described the dependency in CWM
based metadata. So the logic easily lead to the missing of conflict information.
At the same time, the formalization upon association relation can be further
improved in the DLid. Therefore, the DLid has restriction when it formalizes the
CWM based metadata. Hauch et al expatiated on the conflict problems in con-
struction and integration of metadata and presented some strategies of resolving
the conflicts [4]. Cali et al proposed methods of formalizing and reasoning UML
class graphs, but they did not utilize the information in metamodel [5]. Zub-
coff et al constructed a data mining metamodel for classification analysis using
abundant semantic information supplied by CWM [6]. However, Up to now, lit-
tle research was paid upon the consistency checking on data mining metadata.
Based on Zhao’s research, we expand the functions of the description logic DLid

and construct more complete formal logic DLRDM, which is used to automati-
cally check the inconsistency in data mining metadata.
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3 Description Logic DLRDM

The idea of applying description logic into data mining metadata management
derives from that metadata pattern can be expressed by description logic repos-
itory, so reasoning upon description logic can detect the inconsistency problems
in data mining metadata. In this research, we extend the expressive ability of
DLid in terms of dependency relation, association relation and description in
meta-meta model. A novel formal logic DLRDM that belongs to the description
logic family is proposed. This logic is a subset of DLR which is proposed by Cal-
vanese [7] and a superset of DLid proposed by Zhao [3]. In the DLRDM, basic
elements include concept, role, individual and subsumption. From the standing
point of symbolic logic, they are unitary predication, binary predication, con-
stant and hierarchy relation respectively. Let A and P denote atomic concept
and atomic role respectively, then the syntax rules of any concept C or role R
are shown as follows.

C ::= �1|A|¬C|C1 � C2|(≤ k[i/2]R),
R ::= �2|P |(i/2 : C)|¬R|R1 � R2.

Here, k is a nonnegative integer; i denotes the i-th element, and i is either
1 or 2; ≤ k[i/2]R denotes that the multiplicity constraint of the i-th element
of the relation R corresponding to R; i/2 : C denotes that the i-th associated
concept of the role R is C, brief for (i : C). Differing from many other description
logic, we omit⊥, �, →, ≥ k[i]R, ∃[i]R and ∀[i]R. In fact, ⊥ ≡ ¬�,C1 � C2 ≡
¬(¬C1 �¬C2), C1 → C2 ≡ ¬C1 �C2, ≥ k[i]R ≡ ¬(≤ (k−1)[i]R), ∃[i]R ≡≥ 1[i]R
and ∀[i]R ≡ ¬∃[i]¬R .

The repository Σ of DLRDM is constituted by TBox and ABox. The TBox
is the set of axioms that describe the domain structure. The TBox contains
axioms of describing concepts and axioms of declaring subsumption relations,
denoted by A ≡ C and A � C respectively. Besides, DLRDM includes the
identification constrain and dependency constrain. The syntax of identification
constrain is (id C [i1]R1, ..., [in]Rn), whose meaning is that if a concept C is
the ij-th (ij ∈ {1, 2}) concept of the role Rj , then any two different instances
of C induce two different instances of Rj , here j ∈ 1, ..., n. In the dependency
constrain, the syntax is (fd R i1 → i2), i1, i2 ∈ {1, 2}, whose meaning is that
the value of the associated i2-th concept upon the role R depend on the value of
the associated i1-th concept. More semantics of the DLRDM are list as following
Fig. 1.

An interpretation of the repository Σ of DLRDM is denoted by I = (ΔI , ·I),
which is constituted by an interpretation domain ΔI and an interpretation func-
tion ·I . This function maps every concept C into a subset CI of the domain ΔI ,
and every role R into a subset RI of the Cartisian product (ΔI)2.

The ABox of DLRDM is the set of axioms that describe concrete status, which
includes concept declaration and roles declaration. The concept declaration de-
notes that whether or not an object belongs to a concept, marked with a :: C.
The role declaration denotes that whether or not two objects satisfy a role R,
marked with < a, b >:: R.
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�1
I=ΔI

  

A I⊆ΔI 
(¬C)I=ΔI \ CI 
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I=(ΔI)2 

PI⊆(ΔI)2 

(i/2:C)I={t∈�2
I | t[i]∈CI } 

(¬R)I = �2
I \ RI 

(R1�R2)I
 = R1

I∩R2
I 

(≤k[i/2]R)I={a∈ΔI | #{t∈ RI |t[i]=a}≤k } here # denotes cardinality of a set 

(id C [i1]R1,…,[in]Rn | ij∈{1,2})I={for ∀ a,b∈CI, and ∀t1,s1∈ R1
I,…,tn,sn∈Rn

I : {a=t1[i1]=…=tn[in]} 

∧{b=s1[i1]=…=sn[in]}∧{tj[i] = sj[i],for j∈{1,…,n},and for i≠ij} →{a =b}. } 

(fd R i1→ i2), i1 i2∈{1,2})I={for ∀t,s∈ RI : {t[i1]=s[i1],…,t[in] =s[in]} →{a =b}. } 

Fig. 1. Semantics of DLRDM

4 Formalization of Data Mining Metamodel

Metadata is the data about data. The CWM based data mining metamodel is
the metadata upon data mining systems and application data infrastructure.
Fig. 2 shows a CWM based data mining metamodel. In what follows, we analyze
the formalization of CWM based data mining metadata with the DLRDM.
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Fig. 2. Data Mining Metamodel

4.1 Meta Class

In the CWM based data mining models, metaclass is the description of a series
of objects with same attributes, operations and semantics. A metaclass could be
called class for short. For instance, the MiningModel class in the Fig. 2 is a meta-
class in the data mining metamodel. Since concepts of DLRDM and metaclasses
of CWM are both used to describe objects, we naturally conceive the idea that
describes the CWM based data mining metaclass with concepts of DLRDM.

A metaclass is graphically rendered as a rectangle divided into two parts.
The first part contains the name of the metaclass; the second part contains the
attributes of the metaclass, each denoted by a name with an associated class,
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which indicates the domain of the attribute values. Each “/” indicates that the
type of the attribute is a metaclass already included in the metamodel. i.e., the
metaclass to which the attribute belongs is associated with the metaclass that
is the type of the attribute.

A CWM based data mining metamodel attribute a of type C′ for a class C
associates to each instance of C, so we think of an attribute a of type C′ for
a class C as a binary relation between instances of C and instances of C′. We
capture such a binary relation by means of a role of DLRDM. To specify the
type of the attribute we use the assertion: C � ∀[1](a → (2 : C′)).

Such an assertion specifies precisely that, for each instance c of the concept
C, all objects related to c by a, are instances of C′. It also indicates that an
attribute name is not necessarily unique in the whole metadata, and hence two
different metaclasses could have the same attribute, possibly of different types.

4.2 Generalization and Inheritance

In CWM metamodel, one can use generalization between a parent class and
a child class to specify that each instance of the child class is also an in-
stance of the parent class. Hence the instances of the child class inherit the
prosperities of the parent class, but typically they satisfy additional proper-
ties that do not hold for the parent class. Generalization is naturally sup-
ported in DLRDM. In CWM based data mining metamodel, the metaclass
Element generalizes ModelElement, we can describe it by the DLRDM as-
sertion: ModelElement � Element.

Inheritance between DLRDM concepts works exactly as inheritance between
CWM metaclasses. This is an obvious consequence of the semantics of “ � ”
which is based on the subset notion. Indeed, in DLRDM, given an assertion
C1 � C2, every tuple in a role having C2 as i-th argument type may have
as i-th component an instance of C1, which is in fact also an instance of C2.
As a consequence, in the formalization, each attribute of C2, each aggregation
association and each ordinary association involving C2 are correctly inherited
by C1. Notice that the formalization in DLRDM also captures directly multiple
inheritances between metaclasses.

4.3 Association

Associations describe the relations of two classes. CWM based data mining as-
sociations includes ordinary associations, reflection associations and aggregation
associations. Ordinary associations are described as follows, if instances of the
metaclass C1 have components that are instances of metaclass C2 by association
A, the multiplicity on C1 is m1..m2, the multiplicity on C2 is n1..n2, then A is
formalized in DLRDM by means of a role A, and the following assertions are
added to the Tbox:

A � (1 : C1) � (2 : C2); C1 � (≥ n1[1]A) � (≤ n2[1]A); C2 � (≥ m1[2]A) � (≤
m2[2]A).
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The second assertion specifies that for each instance of C1, there can be at
least n1 and at most n2 instances of C2 related to it by role A. The reflection
association is actually a special ordinary association. Its two association sides
are the same element. The DLRDM description upon reflection associations need
the multiplicity of the two sides, however, the two sides is the same elements.

An aggregation association in data mining metamodel, graphically rendered
as a black diamond shown in Fig. 2, is a binary relation between the instances
of two metaclasses, denoting a part-whole relationship. Differing from ordinary
association, the aggregation association has restrictions upon the multiplicity.
That is, the multiplicity of the whole end must be 1 or 0..1. Following formulas
show the restrictions:

A � (1 : C1)�(2 : C2); C1 � (≥ n1[1]A)�(≤ n2[1]A); C2 � (≥ 0[2]A)�(≤ 1[2]A).

We add them into the TBox of DLRDM. In the Fig. 2, the aggregation associ-
ation of the metaclass ModelSignature and the metaclass SignatureAttritute
is formalized as follows: A � (1 : ModelSignature) � (2 : SignatureAttribute),
SignatureAttribute � (≤ 1[2]A),ModelSignature � (≥ 1[1]A).

4.4 Dependency

The dependency denotes a kind of relation of two elements. In the dependency
relations, the change of the independent element affects the dependent element.
For example, in CWM based data mining metamodel, Classification analysis
package depends on the Supervised analysis package and the MiningCore pack-
age. And the Supervised analysis package depend on the MiningCore package.
We naturally think of describing dependency relation in the data mining meta-
model with function dependency assertion in DLRDM.
fd Supervised-Classification Supervised → Classification
fd MiningCore-Supervised MiningCore → Supervised
fd MiningCore-Classification MiningCore → Classification

4.5 Formalization of MOF Meta-metamodel

Meta object framework MOF is a model driven distributed object management
framework used for specifying, constructing, managing, exchanging metadata in
an application system. It supports all kind of metadata. If necessary it can add
new metadata and delete old metadata. MOF, located on the highest layer of
the CWM based metadata architecture, is the meta-meta model of CWM based
data mining metamodel. The core elements of MOF are class, object, attribute
and operation. The core relations are association, aggregation, generalization,
dependency. Same as the metamodel, the class, association, aggregation, gener-
alization, inherence and dependency in the meta-meta model can be described
with DLRDM.

4.6 Formalization of Metadata

In the CWM based metadata architecture, CWM metamodel is the instance of
MOF meta-metamodel, so it is also called meta-metadata. The UML model is
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the instance of CWM metamodel, so it is also called metadata. The modeled
data mining system and application data is the instance of UML model, they
are ordinary data, NOT metadata. In the DLRDM, we describe CWM based
metadata and meta-meta data with ABox. Here, we don’t distinguish them. The
instances of metamodel and meta-metamodel are both called metadata. If the
metadata c is the instance of a metaclass C, then it is formalized with c : C or
C(c). If the element a and b of metadata have the ordinary association relation
A, then they are formalized with < a, b >: A.

5 Consistency Checking for Data Mining Metadata

Theorem 1. DLRDM is decidable, and it is exponent-time complete problem.

Proof. The reasoning algorithm tableaux of Basic ALC language is exponent-
time complete problem. DLRDM can be mapped into a subset of ALC. Therefore,
DLRDM is decidable, and it is exponent-time complete problem [8]. �
Now description logic has equipped with good reasoning engineer LOOM and
Racer. What’s more, the new version RacerPro of Racer has a platform of cre-
ating repository [9]. Compared with LOOM, its reasoning algorithm tableaux
is reliable and complete. So we construct a DLRDM repository with RacerPro,
then check the inconsistency with the reasoning mechanism of the RacerPro.

In the DLRDM repository, the metaclasses Classification and Clustering are
disjoint. Suppose that we should add new metaclass SVM, here SVM denotes
support vector machine, which is a classification technique essentially and does
not belong to the clustering. However, when adding dependencies of SVM upon
Classification and Clustering, the process would lead to conflicts. For example,
we add fd Classification-SVM Classification → SV M and fd Clustering-SVM
Clustering → SV M into TBox. The function dependency symbol → is defined
according to the semantic of DLRDM. Under the RacerPro query commands:
(In-knowledge-base data-mining-metadata)
;;=======T-box Reasoning=======
(tbox-conherent? data-mining-metadata)
;; Find all incoherent concept
We get following conflict information:
(TBOX-COHRENT? data-mining-metadata) −− > NIL. Concept(SVM) is in-
coherent in TBox data-mining- metadata. Error: ABox data-mining-metadata is
incoherent.

Therefore, that SVM depends on both Classification metaclass and Clustering
metaclass leads to the conflict. The method of resolving the conflict is deleting
the dependency of SVM upon the Clustering metaclass in the data mining meta-
data. Correspondingly, in the DLRDM repository, we delete this dependency,
import the repository again and rerun the reasoning, the conflict is resolved.
Besides, we can get some new conclusion from the results. For example, that
SVM metaclass depends on Supervised metaclass due to that the Classification
class depends on Supervised metaclass. Some further relation between metadata
can be acquired.
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6 Conclusion

During the process of constructing data mining metadata, it is usually hard to
discover the conflicts in the metadata. However, the automatically discovering
conflicts upon data mining metadata has not been resolved well up to now. The
main contributing of this paper is proposing a description logic based consistency
checking mechanism for data mining metadata. A formal logic DLRDM in the
description logic family is proposed to formalize the CWM based data mining
metadata. We prove the validity of DLRDM applied into consistency checking of
data mining metadata. Finally we construct a data mining metadata repository
with RacerPro. The reasoning results on the reasoning engineer Racer indicates
that DLRDM is correct and efficient when automatically discovering inconsis-
tency information of data mining metadata.

This research is helpful to develop conflict checking system of data mining
metadata, enhance the stability of data mining metadata criteria, and guaran-
tee the reliability of data mining metadata integration as well as data mining
products sharing. In the future, we will further investigate formal reasoning
based on other data mining metadata such as PMML. We will also research how
to automatically resolve conflicts based on inconsistency information discovered
by DLRDM upon data mining metadata.
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Abstract. The task of Text Classification (TC) is to automatically as-
sign natural language texts with thematic categories from a predefined
category set. And Latent Semantic Indexing (LSI) is a well known tech-
nique in Information Retrieval, especially in dealing with polysemy (one
word can have different meanings) and synonymy (different words are
used to describe the same concept), but it is not an optimal repre-
sentation for text classification. It always drops the text classification
performance when being applied to the whole training set (global LSI)
because this completely unsupervised method ignores class discrimina-
tion while only concentrating on representation. Some local LSI methods
have been proposed to improve the classification by utilizing class dis-
crimination information. However, their performance improvements over
original term vectors are still very limited. In this paper, we propose
a new local Latent Semantic Indexing method called ”Local Relevancy
Ladder-Weighted LSI” to improve text classification. And separate ma-
trix singular value decomposition (SVD) was used to reduce the dimen-
sion of the vector space on the transformed local region of each class.
Experimental results show that our method is much better than global
LSI and traditional local LSI methods on classification within a much
smaller LSI dimension.

Keywords: Data mining, Text classification, Latent Semantic Indexing
(LSI).

1 Introduction

Traditional text classification is based on explicit character, and the common
method is to represent textual materials with space vectors using Vector Space
Model (VSM) [3][4][5][6], finally, confirm the category of the test documents by
comparing the degree of similarity.

With more and more textual information available on the internet, conceptual
retrieval has become more important than word matching retrieval. Traditional
information retrieval system such as VSM retrieves relevant documents by lex-
ical matching with query. The drawback of VSM is that it cannot retrieve the
conceptually relevant documents with respect to query, and the semantic infor-
mation may lose during the process of VSM.

In order to overcome the drawbacks of VSM, we apply Latent Semantic In-
dexing (LSI), which is widely used as the information retrieval technique, in
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the proposed method. While LSI is applied to text classification, there are two
common methods. The first one is called ”Global LSI”, which performs SVD
directly on the entire training document collection to generate the new feature
space. This method is completely unsupervised, that is, it pays no attention to
the class label of the existing training data. It has no help to improve the dis-
crimination power of document classes, so it always yields no better, sometimes
even worse performance than original term vector on classification [3]. The other
one is called ”Local LSI”, which performs a separate SVD on the local region of
each topic. Compared with global LSI, this method utilizes the class information
effectively, so it improves the performance of global LSI greatly. However, due
to the same weighting problem, the improvements over original term vector are
still very limited.

Typically all documents in the local region are equally considered in the SVD
computation in local LSI. But intuitively, first, more relevant documents to the
topic should contributes more to the local semantic space than those less-relevant
ones; second, tiny less local relevant documents may be a little more global
relevant. So based on these ideas, we propose a new local LSI method ”Local
Relevancy Ladder-Weighted LSI (LRLW-LSI)”, which selects documents to the
local region in a ladder way so that the local semantic space can be extracted
more accurately considering both the local and global relevancy. Experimental
results shown later prove this idea and it is found LRLW-LSI is much better
than global LSI and ordinary local LSI methods on classification performance
within a much smaller LSI dimension.

2 Prelminaries

2.1 Singular Value Decomposition

SVD is one of the most important matrix decomposition in numerical linear
algebra. It has been applied in many fields such as image processing [1], neural
networks [2] and others. In this paper, we use matrix singular value decompo-
sition to reduce the dimension of the vector space and remove the influences of
synonymy and polysemy.

Let A denote an matrix of real-valued. Without loss of generality we assume
that m ≥ n, and rank(A) is r. The Singular value decomposition (SVD) of A is
its factorization into a product of three matrices

A = USV T (1)

Where U is an orthogonal matrix, V an orthogonal matrix, and S an matrix
and UT U = V T V = In, S = diag(σ1 · · · σn) σi > 0 for 1 ≤ i ≤ r and σj = 0
for j ≥ r + 1. The first r columns of the orthogonal matrix U and V define
the orthonormal eigenvectors associated with the r nonzero eigenvalues of AAT

and AT A, respectively. The columns of U and V are referred to as the left and
right singular vectors, respectively, and the singular values of A are defined as
the diagonal elements of S which are the nonnegative square roots of the n
eigenvalues of AAT [4].
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The following two theorems illustrate how the SVD can reveal important
information about the structure of a matrix.

Theorem 1: Let the SVD of A be given by Equation (1) and σ1 ≥ σ2 ≥ · · · σr >
σr+1 = · · · = σn = 0 let R(A) and N(A) denote the range and null space of A,
respectively. Then, (1) Rank property: rank(A) = r, N(A) ≡ span{vr+1, · · · , vn}
and R(A) ≡ span{u1, · · · , ur}, where U = [u1u2 · · ·um] and V = [v1v2 · · · vn].
(2) Dyadic decomposition:

A =
r∑

i=1

ui · σi · vT
i

(3) Norms: ‖A‖2
F = σ2

1 + · · · σ2
2 · · · + σ2

r and ‖A‖2
2 = σ1 Proof. See [4].

Theorem 2: Let the SVD of A be given by Equation (1) with and define

Ak =
k∑

i=1

ui · σi · vT
i (2)

Then we can get:(Proof. See [5]).

min
rank(B)=k

‖A − B‖2
F = ‖A − Ak‖2

F = σ2
k+1 + · · · + σ2

p

In other words, Ak which is constructed from the k-largest singular triplets
of A, is the closest rank-k matrix to A. In fact, Ak is the best approximation to
A for any unitarily invariant norm. Hence,

min
rank(B)=k

‖A − B‖2 = ‖A − Ak‖ = σk+1 (3)

2.2 Latent Semantic Indexing (LSI)

Firstly, we briefly describe the Vector space model (VSM). Vector space model
of text document is put forward by Salton [6] and used in SMART system. In
the vector space model, a document is represented by a vector of words. And a
word-by-document matrix A used to represent a collection of documents, where
each entry represents the occurrences of a word in a document, e.g., A = (awd)
where awd is the weight of the word w in the document d.

In order to implement Latent Semantic Indexing [7], a matrix of terms by
documents must be constructed. In this paper, we use Vector Space Model men-
tioned above to construct the original and rough matrix A for LSI. Since every
word does not normally appear in each document, the matrix A is usually sparse.
The matrix A is factored into product of three matrices using the singular value
decomposition. The SVD derives the latent semantic structure model from the
orthogonal matrices U and V containing left and right singular vectors of A
respectively, and the diagonal matrix, S, of singular values of A. These matrices
reflect a breakdown of the original relationships into linearly-independent vectors
or factor values. The use of k factors or k-largest singular triplets is equivalent to
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approximation the original term-document matrix by Ak in Equation (2). The
SVD captures most of the important underlying structure in the association of
terms and documents, yet at the same time removes the noise or variability in
word usage.

3 Proposed Algorithm

The most straightforward method of applying LSI for text classification is the
global LSI method as discusses in section 2.2, which performs SVD directly
on the entire training set and then testing documents transformed by simply
projecting them onto the left singular matrix produced in the original decompo-
sition. However, global LSI has many drawbacks which are discussed above. In
order to overcome the drawbacks of Global LSI, we proposed a local LSI method.
We name it ”Local Relevancy Ladder-Weighted LSI (LRLW-LSI)”.

In local LSI, each document in the training set is first assigned with a rele-
vancy score related to a topic, and then the documents whose scores are larger
than a predefined threshold value are selected to generate the local region. Then
SVD is performed on the local region to produce a local semantic space. This
process can be simply described as the jump curve in Figure 4.2. That is 0/1
weighting method is used to generate the local region where documents whose
scores are larger than the predefined threshold value are weighted with 1 and
others are weighted with 0. The 0/1 weighting method is a simple but crude
way to generate local region. It assumes that the selected documents are equally
important in the SVD computation. But intuitively, first, different documents
should play different roles to the final feature space and it is expected that more
relevant documents to the topic should contributes more to the local semantic
space than those less-relevant ones; second, less local relevant documents may be
more global relevant. So based on these ideas, we propose the local LSI method
”Local Relevancy Ladder-Weighted LSI (LRLW-LSI)”, which selects documents
to the local region in a ladder way. In other words, LRLW-LSI gives same weight
among a ladder-range and different weight located in different ladder-range to
documents in the local region according to its relevance before performing SVD
so that the local semantic space can be extracted more accurately considering
both the local and global relevancy and more relevant documents can be in-
troduced with higher weights, which make they do more contribution to SVD
computation. Hence, the better local semantic space which results in better
classification performance can be extracted to separate positive documents from
negative documents. Ladder-Curve is described in Figure 1.

LRLW-LSI Algorithm For each class, assume an initial classifier C0 has been
trained using training documents in term vector representation and here we use
SVM classifier. Then the training process of LRLW-LSI contains the following
six steps.

(1) The initial classifier C0 of topic c is used to assign initial relevancy score
RS0 to each training document.
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Fig. 1. Local Relevancy Ladder-Weighted LSI (LRLW-LSI)

(2) Each training document is first weighted according to equation (4). The
weighting function is a Sigmoid function which has two parameters a and b. Then,
assign the belonged average ladder weight according to the first raw weight. E.g.
if the first raw weight is 0.91, then we will assign 0.95 for the new weight, which
is the average of the top ladder.

(3) Top n documents are selected to generate the local term-by-document
matrix of the topic c.

(4) The SVD is performed to generate the local semantic space.
(5) All other weighted training documents are folded into the new space.
(6) All training documents in local LSI vector are used to train a real classifier

C of topic c.

−→
t = −→

t ∗ f(rsi), wheref(rsi) =
1

1 + e−a(rsi+b) (4)

Then the testing process of LRLW-LSI contains the following three steps. When
a testing document comes in,

(1) It is classified by the initial classifier C0 to get its initial relevancy score.
(2) It is weighted according to the equation (4) and then folded into the local

semantic space to get its local LSI vector.
(3) The local LSI vector generated in step 2 is finally used to be classified by

the classifier RC to decide whether it is belongs to the topic or not.

4 Experiment Results

In this section, we evaluate Local Relevancy Ladder-Weighted LSI method.
SVM light (http://svmlight.joachims.org) is chosen as the classification algo-
rithm, SVDPAKC/sis (www.netlib.org/svdpack) is used to perform SVD and
F-Measure is used to evaluate the classification results. Two common data sets
are used, including Reuters-21578 and Industry Sector.

Before performing classification, a standard stop-word list is used to remove
common stop words and stemming technology is used to convert variations of
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the same words into its base form. Then those terms that appear in less than 3
documents are removed. Finally tf*idf (with ”ltc” option) is used to assign the
weight of each term in each document.

4.1 Data Set

Two text collections, Reuters-215783 (www.daviddlewis.com/resources/test-
collections) and Industry Sector4 (www-2.cs.cmu.edu/afs/cs.cmu.edu), are used
in our experiment.

Reuters-21578 (Reuters) is the most widely used text collection for text clas-
sification. There are total 21578 documents and 135 categories in this corpus. In
our experiments, we only chose the most frequent 25 topics and used ”Lewis”
split which results in 6314 training examples and 2451 testing examples.

Industry Sector (IS) is a collection of web pages belonging to companies from
various economic sectors. There are 105 topics and total 9652 web pages in this
dataset. A subset of the 14 categories whose size are bigger than 130 is selected
for the experiments.

4.2 Experimental Results and Discussion

For local relevancy ladder-weighted LSI, we use SVM classifier as the initial clas-
sifier C0 to generate each document’s initial relevancy score. And the parameters
a and b of Sigmoid function are initially set with 5.0 and 0.2. The number of
ladder step is assigned 10.

Figure 2 and Figure 3 show the classification results on the data set, Reuters-
21578 and Industry Sector. The lines of term vector are displayed only as the
reference points in terms of performance comparison. From these figures, the
following observations can be made:

First, compared to term vector, LRLW-LSI improves the both F1 perfor-
mances greatly on both data. For example, using 20 dimensions on Reuters-
21578, the micro-averaging F1 is improved by 1.1% and the macro-averaging
F1 is improved by 3.7%; using 50 dimensions on Industry Sector, the micro-
averaging F1 is improved by 7.2% and the macro-averaging F1 is improved
by 9.8%.

Second, Figure 4 shows the run time of different LSI methods on a PC with
Pentium IV 1.7GHz and 256M memory. The runtime includes both training
procedure and testing procedure. As can be seen, term vector is the fastest and
it needs only hundred seconds. Global LSI needs much more time than term
vector due to the costly SVD computation on entire training set. Although SVD
computation on local region is very fast, the overall computation on all topics is
extremely high, so local LSI is not expected to be used in practice. Similar with
local LSI, LRLW-LSI has to perform a separate SVD on local region of each
topic, but such a low LSI dimension makes LRLW-LSI be extremely rapid. It
needs only less than 3 times of runtime of term vector, so it can be widely used
in practice.

Third, with the LSI dimension increases, the performances decrease slowly.
But even in a relatively high dimension, the performances are still above the
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performances of term vector. Using 150 dimensions, for example, on Reuters-
21578 the micro-averaging F1 is improved by 1.1% and the macro-averaging
F1 is still improved by 1.2%; on Industry Sector, the micro-averaging F1 and
the macro-averaging F1 are still improved by 3.7%. In this paper, we propose a
Local Relevancy Ladder-Weighted LSI (LRLW-LSI) method to help improve the
text classification performance. This method is developed from Local LSI, but

Fig. 2. Results on Reuters Figure

Fig. 3. Results on Industry Sector

Fig. 4. Run time of different methods
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different from Local LSI in that the documents in the local region are introduced
using a ladder-descending curve so that more relevant documents to the topic are
assigned higher weights and the global relevancy is also considered. Therefore,
the local SVD can concentrate on modeling the semantic information that is
actually most important for the classification task. The experimental results
verify this idea and show that LRLW-LSI is quite effective.
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1 Department of Computer Science
University of Pittsburgh at Johnstown

Johnstown, PA 15904, USA
sim@pitt.edu

2 Department of Computer Science
University of North Carolina
Charlotte, NC 28223, USA

ras@uncc.edu
3 Department of Electronics, Computer and Information Technology

North Carolina A&T University
Greensboro, NC 27411, USA

ltsay@ncat.edu

Abstract. This paper introduces the use of ERID [1] algorithm for
classification rule discovery at various levels of granularity. We use an
incomplete information system and attribute value hierarchy to extract
rules. The incomplete information system is capable of storing weighted
attribute values and the domains of those attributes are organized using
a hierarchical tree structure. The granularity of attribute values can be
adjusted using the attribute value hierarchy. The result is then processed
through ERID, which is designed to discover rules from partially incom-
plete information systems. The capability of handling incomplete data
enables to build more specific and general classification rules.

Keywords: knowledge discovery, incomplete information system, at-
tribute hierarchy, rough sets.

1 Introduction

Real world data are often collected from a wide variety of sources using different
methods, which makes data aggregation and analysis difficult. Attribute hierar-
chy (a.k.a. concept hierarchy or attribute taxonomy) provides a solution to the
problem by helping to organize such data into gradual levels of abstraction so
that data may be accessed and analyzed at multiple levels of granularity. For
example, suppose that users need an answer for flights departing around 10:00
AM on a day. Instead of searching for a flight departing at that particular time
a more general definition of 10:00AM (e.g. morning) is drawn from the attribute
value hierarchy to answer the query. The same principle can be used to build a
knowledge discovery system that is able to discover rules at different levels of
abstraction based on the user’s interest; e.g. finding out the dependency between
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the flight schedule and ticket sales to increase the profit. Such system also helps
to discover more precise rules from a distributed knowledge discovery system [6]
[7]. For example, the granularity of data (or knowledge) at remote sites may be
finer or coarser than that of local site. Then, data with similar semantics of com-
mon attributes but different granularity can be used jointly to discover hidden
knowledge. By using the notion of semantic bridge [7] [8] and attribute hierarchy
we will be able to adapt the discovered knowledge at remote sites for local use
so that data with the similar meanings are processed as a single property.

Multiple attribute values can be used to describe a single object property
when hierarchical attributes exist. Eye color {black} of a person (object) may
be described by {dark black or light black} if finer granularity of description
is required. The difficulty in providing a flexible ad-hoc classification rule dis-
covery lies in how to deal with those multi-valued objects in the rule discovery
process. In this paper, we describe and illustrate the use of ERID (Extracting
Rules from Incomplete Decision systems) [1] to discover classification rules from
an information system with hierarchical attributes. An incomplete information
system is suitable for storing data with attribute value hierarchies because it
enables to contain multiple weighted values as a single attribute value. ERID is
particularly designed to extract rules from such partially incomplete information
systems.

2 Incomplete Information System

We begin with the definition of an incomplete information system [8] which
is a generalization of an information system given by [4]. In the conventional
information system, the value of an object is either precisely known or not known
at all. This implies that either a single value of an attribute is assigned to an
object as its property or no value is assigned. However, it happens quite often
that users do not have exact knowledge about some objects, which makes it
difficult to determine a unique set of values describing them. The notion of an
incomplete information system was introduced to model such cases.

By an information system S, we mean S =(X, A, V ) where X ={x1, x2, . . . , xn}
is a finite set of objects, A = {a1, a2, . . . , am} is a finite set of attributes, and
V = {a1(x1), a2(x2), . . . , am(xn)} is set of their values. In particular, we say that
S is an incomplete information system of type λ if the following three conditions
hold:

– a(x) is defined for any x ∈ X , a ∈ A,
– (∀x ∈ X)(∀a ∈ A)[(a(x) = {(vi, wi) : 1 ≤ i ≤ k}) →

∑k
i=1 wi = 1],

– (∀x ∈ X)(∀a ∈ A)[(a(x) = {(vi, wi) : 1 ≤ i ≤ k}) → (∀i)(wi ≥ λ)].

The threshold value λ is used to determine the minimum confidence of an at-
tribute value that can be assigned to S.

Example 1. An attribute value for an object in an incomplete information system
can be {(dark black,0.5),(light black, 0.5)}, meaning that the object may be dark
black or light black with equal weight.
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Example 2. Suppose that {(v1, 0.2), (v2, 0.4), (v3, 0.4)} is being assigned as a sin-
gle attribute value in S with λ = 0.3. Then, it is automatically converted to
{(v2, 0.5), (v3, 0.5)} because the minimum confidence of v1 < 0.3, and sum of
the weights of vi is 1 by definition. Weights for v2 and v3 are calculated by the
ratio of its weight and the total wight after eliminating v1, that is p2 = 0.4

0.4+0.4 ,
p3 = 0.4

0.4+0.4

The capability of assigning a set of weighted values makes changing the gran-
ularity of data simpler and more effective, which will be discussed in the next
section.

3 Rule Discovery from Incomplete Hierarchical
Information System

3.1 Granularity Adjustment in Incomplete Information System

An incomplete hierarchical information system [5] is an incomplete information
system in which the domain of each attribute is defined as a tree-like structure,
called attribute value hierarchy (AVH ). A set of AVH s can be derived from
domain ontology [3] or independently defined by a domain expert before data
are collected.

For an incomplete information system St = (X, A, V ), we define a set of
attribute value hierarchies T = {ta1 , ta2 , · · · , tam}, where tai is the AVH for
ai ∈ A. For simplicity, we use the notation t = {(a[p])} to indicate the set of
node values in an AVH, where a is an attribute name and p is the path from
the root to the node. (e.g. a[1,1] is the value of the left most element at depth
2 in Figure 1). aε, where ε is the empty sequence, is equivalent to the attribute
name.

We assume that two values a[p] and a[p′] on the same path of t have the
same semantic type, but different semantic granularity. Therefore, it is possible
to replace one with another in St. We use the term generalization to denote
a replacement of a(x) with a value in coarser granularity, and specification to
denote a replacement of a(x) with a value in finer granularity. The following
definitions are used to determine the value and weight of the replaced attribute
value, a′(x).

1. The sum of the weights for a′(x) = 1 (unchanged by the definition of an
incomplete information system).

2. If ai(x) = {(v, w)} is generalized to level k, a′(x) = {(v′, w)}, where v′ is an
ancestor node of v at depth k, and w is carried over.

3. If ai(x) = {(v, w)} is specified to level k, each v is replaced by one or more
descendant nodes {v′1, v

′
2, ..., v

′
n}, and w′ for each v′ is 1

n , where n is the
number of sibling nodes at depth k.

4. If ti ∈ T is not balanced, and the granularity of ai(x) is given to a level
where no node exists, we choose the closest parent node.
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Data in the same granularity

a

a[1] a[2] a[n]

a[1,1] a[1,2] a[1,m] a[2,1] a[2,2] a[2,3]

a[2,1,2]a[2,1,1]

Fig. 1. An example of attribute value hierarchy

Example 3. If an attribute value {(a[2,1], 0.5), (a[2,2], 0.5)} is generalized to one
level higher in Figure 1, it becomes (a[2], 1). For instance, dark black and light
black are black for certain. If an attribute value {(a[1,1], 0.7), (a[2,1], 0.3)} is gen-
eralized to one level up, new attribute value is {(a[1], 0.7), (a[2], 0.3)}.

Example 4. If {(a[2], 1)} is specified to the values in depth 3, the attribute value
in S changes to {(a[2,1,1],

1
6 ), (a[2,1,2],

1
6 ), (a[2,3],

1
3 ), (a[2,3],

1
3 )}. This replacement

satisfies the definition of an incomplete information system because the sum of
the weights is 1 = (1

6 + 1
6 + 1

3 + 1
3 ).

a

a[1] a[2]

b

b[1] b[2]

b[1,1] b[1,2] b[2,1] b[2,2]

c

c[1] c[2]

c[1,1] c[1,2]

d

d[1] d[2]

d[1,1] d[1,2] d[2,1] d[2,2]

Fig. 2. Attribute value hierarchy for St

Now, let us consider the information system St shown in Table 1 and the
corresponding AVH set T given in Figure 2. Suppose that a user is interested
in discovering rules with granularity at (a = 1, b = 2, c = 2, d = 1) where
the number indicates the depth of the trees in (ta, tb, tc, td), respectively. Then,
S′

t (see Table 2) is the information system after granularity adjustment. For a
and c, all attribute values are at the desired granularity so no replacement was
performed. Note that a(x2) is not replaced with (a1, a2) because a null assigned
to an object is interpreted as an unknown value. For b, values b(x4) and b(x5)
remain unchanged. Other attribute values are replaced with the values in their
child nodes, and their weights are also adjusted based on the definition described
above. For d, all attribute values are generalized to the values in their parent
nodes.
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Table 1. Information System St

X a b c d

x1 (a[1],
1
2 )(a[2],

1
2 ) b[2] c[1,1] d[1,1]

x2 b[1] c[1,1] d[2,1]

x3 a[1] b[2] (c[1,1],
1
2 )(c[1,2],

1
2 ) d[2,2]

x4 a[1] b[1,1] c[1,1] d[1,1]

x5 a[1] b[1,1] d[1,2]

x6 a[2] b[2] c[1,1] d[2,1]

Table 2. Information System S′
t

X a b c d

x1 (a[1],
1
2 )(a[2],

1
2 ) (b[2,1],

1
2 )(b[2,2],

1
2 ) c[1,1] d[1]

x2 (b[1,1],
1
2 )(b[1,2],

1
2 ) c[1,1] d[2]

x3 a[1] (b[2,1],
1
2 )(b[2,2],

1
2 ) (c[1,1],

1
2 )(c[1,2],

1
2 ) d[2]

x4 a[1] (b[1,1], 1) c[1,2] d[1]

x5 a[1] (b[1,1], 1) d[1]

x6 a[2] (b[2,1],
1
2 )(b[2,2],

1
2 ) c[1,1] d[2]

3.2 ERID

Now, we run ERID algorithm [1] on S′
t to discover classification rules. ERID

has some similarities with LERS [2]. It initially generates sets of weighted ob-
jects having only one-value properties. Then, some pairs of those sets are used
for constructing classification rules if their support and confidence are higher
than given threshold values. This process is recursively continued by moving
to sets of weighted objects containing more properties. The distinctive feature
of ERID is the ability to discover rules from incomplete information systems in
which attribute values are incomplete or partially incomplete (multiple weighted
values).

Assume that the minimum support and confidence are given as 1 and 0.75.
The first step is to find the pessimistic interpretation in S of all attribute values
in V , as shown below. The resulting sets are called granules. The granule a[1]

∗

associated with attribute value a[1] in S is the set of objects having property a[1]

(e.g. objects {(x1,
1
2 ), (x3, 1), (x4, 1), (x5, 1)}).

a[1]
∗ = {(x1,

1
2 ), (x3, 1), (x4, 1), (x5, 1)}

a[2]
∗ = {(x1,

1
2 ), (x6, 1)}

b[1,1]
∗ = {(x2,

1
2 ), (x4, 1), (x5, 1)}

b[1,2]
∗ = {(x2,

1
2 )}

b[2,1]
∗ = {(x1,

1
2 ), (x3,

1
2 ), (x6,

1
2 )}

b[2,2]
∗ = {(x1,

1
2 ), (x3,

1
2 ), (x6,

1
2 )}

c[1,1]
∗ = {(x1, 1), (x2, 1), (x3,

1
2 ), (x6, 1)}

c[1,2]
∗ = {(x3,

1
2 )(x4, 1)}
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d[1]
∗ = {(x1, 1), (x4, 1), (x5, 1)}

d[2]
∗ = {(x2, 1), (x3, 1), (x6, 1)}

Next, recursively, we check the relationship between classification attributes and
the decision attribute from values in V [9]. For example, the relationship between
a[1]

∗ and d[1]
∗, which is the set-theoretical inclusion between objects from a[1]

∗

and objects from d[1]
∗, depends on how high is the support of the corresponding

rule a[1] → d[1]. We calculate the support of the rule a[1] → d[1] by calculating
the sum of the products of weights, (1

2 · 0) + (1 · 0) + (1 · 1) + (1 · 1). If support
is below 1, the corresponding relationship does not hold and it is not considered
in later steps (marked as ”-”). Otherwise, the confidence of the rule is checked.
If the confidence is greater than or equal the threshold value (0.75), the rule is
approved and the relationship is marked as ”+”. When the confidence is below
0.75, the relationship remains unmarked to be considered in later steps as shown
below.

a[1]
∗ ⊆ d[1]

∗ sup = 5
2 , conf = 0.72 +

a[1]
∗ ⊆ d[2]

∗ sup = 1, conf = 0.29
a[2]

∗ ⊆ d[1]
∗ sup = 1

2 −
a[2]

∗ ⊆ d[2]
∗ sup = 1, conf = 0.67

b[1,1]
∗ ⊆ d[1]

∗ sup = 2, conf = 0.8 +
b[1,1]

∗ ⊆ d[2]
∗ sup = 1

2 −
b[2,1]

∗ ⊆ d[1]
∗ sup = 1

2 −
b[2,1]

∗ ⊆ d[2]
∗ sup = 1, conf = 0.67

b[2,2]
∗ ⊆ d[1]

∗ sup = 1
2 −

b[2,2]
∗ ⊆ d[2]

∗ sup = 1, conf = 0.67
c[1,1]

∗ ⊆ d[1]
∗ sup = 3, conf = 0.67

c[1,1]
∗ ⊆ d[2]

∗ sup = 1
2 −

c[1,2]
∗ ⊆ d[1]

∗ sup = 2, conf = 0.8 +
c[1,2]

∗ ⊆ d[2]
∗ sup = 1

2 −

This process is performed recursively to build terms containing n + 1 ele-
ments from previous terms with n elements using unmarked ones1 (e.g. a[1]

∗ with
b[2,2]

∗). The relationship between 2-element terms and the decision attribute is
shown below.

(a[1] · b[2,1])
∗ ⊆ d[2]

∗ sup = 1, conf = 0.67,
(a[1] · b[2,2])

∗ ⊆ d[2]
∗ sup = 1, conf = 0.67,

(a[1] · b[2,2])
∗ ⊆ d[1]

∗ sup = 0, +
(a[1] · c[1,1])

∗ ⊆ d[2]
∗ sup = 1, conf = 1, -

(b[1,1] · c[1,1])
∗ ⊆ d[1]

∗ sup = 2, conf = 0.8, +
(b[2,1] · c[1,1])

∗ ⊆ d[2]
∗ sup = 1

2 , -

The process stops at this point because terms cannot be concatenated further.
The relations marked with + symbol are the rules satisfying the the minimum
support and confidence.
1 The motivation and detailed description of the algorithm can be found in [1].
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4 Implementation

The core algorithm (ERID and AVH program) was implemented in Matlab and
the graphic interface was coded in Visual Basic.NET. The program was executed
on a PC running Windows XP as shown in Figure 3. A sample table that contains
4884 objects with 12 selected attributes was extracted from the census bureau
database of the UCI Knowledge Discovery in Databases Archive [10]. A set of
AVH s with one to three levels of depth was built based on the description given
by the data provider (see Table 3).

Fig. 3. A snapshot of the implementation

Table 3. Levels of attribute granularity for the test dataset

Attribute # of Levels Attribute # of Levels

(1) age 3 (7) relationship 1
(2) employment 3 (8) race 1
(3) education 2 (9) gender 1
(4) years of education 2 (10) hours per week 2
(5) marriage 3 (11) country 2
(6) occupation 2 (12) income (decision) 1

Table 4. Number of rules at different attribute granularity

Exp # Attribute Granularity Min.Sup Min.Conf Num. of rules

1 2 2 2 2 2 2 1 1 1 1 1 1 10% 0.85% 6
2 3 3 2 2 3 2 1 1 1 2 2 1 10% 0.85% 5
3 1 1 1 1 1 1 1 1 1 1 1 1 10% 0.85% 8

To test the program for different attribute granularity (finer and coarser),
we first converted the data set to medium levels of granularity and extracted
rules as shown in the first experiment of Table 4, then, extracted rules using two
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different AVH granularity sets. For the sample data set, rule extraction using
coarser attribute granularity generated a few more rules due to the generalized
values in two attributes, age and hours per week.

5 Related Work

There have been many studies on the use of a concept hierarchy in data mining.
Srikant and Agrawal [16] discussed methods for generating generalized associa-
tion rules using a taxonomy. To improve the performance of the algorithm, higher
levels of association rules were acquired by filtering and pre-computing ances-
tors of transaction items in the taxonomy. In [17], authors proposed a method
that extracts classification rules at multiple levels of abstraction by incorporat-
ing ontological information into the rule discovery process. In [14], a method
called rule based attribute oriented induction was introduced. In their method,
generalization of data was performed along the direction provided by rules.

The authors in [18] discussed ontology-driven decision tree learning algorithm
to learn generalized classification rules. The authors in [12] also studied methods
for generating a multiple-level decision tree. They improved efficiency by remov-
ing some attributes if higher level concept did not exist and by applying the
relevance analysis to the generalized data. In [11], feature hierarchies were used
to discretize categorical values and to obtain compact bayesian network repre-
sentation. In [13], structured attributes were used to group continuous data into
discrete ranges. A method for constructing a decision tree using partially miss-
ing data was introduced in [15]. In their method, instances specified at different
levels of precision were considered as partially specified instances.

The main difference between our proposed method and the methods previ-
ously used is that our method is able to extract rules at more specific levels as
well as more abstract levels.

6 Conclusion

This paper described the use of ERID for discovering multi-granularity classi-
fication rules from an incomplete information system having attribute value hi-
erarchies. ERID is especially suitable to extract rules from information systems
containing multiple weighted values, and this feature enables to handle partial
incompleteness of attribute values when the levels of abstraction are changed.
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Abstract. In this paper, we perform Chinese text classification using
n-gram text representation on TanCorp which is a new large corpus spe-
cial for Chinese text classification more than 14,000 texts divided into 12
classes. We use different n-gram feature (1-, 2-grams or 1-, 2-, 3-grams) to
represent documents. Different feature weights (absolute text frequency,
relative text frequency, absolute n-gram frequency and relative n-gram
frequency) are compared. The sparseness of “document by feature” ma-
trices is analyzed in various cases. We use the C-SVC classifier which is
the SVM algorithm designed for the multi-classification task. We per-
form our experiments in the TANAGRA platform. We found out that
the feature selection methods based on n-gram frequency (absolute or
relative) always give better results and produce denser matrices.

Keywords: Chinese text classification, N-gram, Feature selection.

1 Introduction

In recent years, much attention has been given to the Chinese text classification
(TC) with the rapidly increasing quantity of web sources and electronic texts in
Chinese. The great difference between Chinese TC and Latin languages TC lies in
the text representation. Unlike most of the western languages, the Chinese words
do not have a remarkable boundary. This means that the word segmentation is
necessary before any other preprocessing. The use of a dictionary is necessary.
The word sense disambiguation issue and the unknown word recognition problem
limit the precision of word segmentation [1]. This makes Chinese representation
using words, phrases, meanings, and concepts more difficult.

In this paper, we use a method independent of languages which represents
texts with character n-grams. A character n-gram is a sequence of n consecutive
characters. The set of n-grams (usually, n is set to 1, 2, 3 or 4) that can be
generated for a given document is basically the result of moving a window of
n characters along the text. The window is moved one character at a time.
Then, the number of occurrences of each n-gram is counted [2]. There are several
advantages of using n-grams in TC tasks [3]. One of them is that by using n-
grams, we do not need to perform word segmentation. In addition, no dictionary

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 500–507, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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or language specific techniques are needed. However, n-gram extraction on a
large corpus will yield a large number of possible n-grams, but only some of
them will have significant frequency values in vectors representing the texts and
good discriminate power. Our contribution is twofold: first we present how to
choose the value of n in using n-gram to represent Chinese texts; and second the
most suitable kind of feature weight is proposed.

Usually, there are two steps in the construction of an automated text clas-
sification system. The first one is that the texts are being preprocessed into a
representation more suitable for the learning algorithm that is applied after-
wards. The second step regards the learning algorithm that is chosen. In this
work we focus on the first step. There are various ways of representing a text
such as by using word fragments, words, phrases, meanings, and concepts [4].
Different text representations have different dependence on the language used in
the text.

The reminder of this paper is organized as follows. Section 2 presents the text
representation forms in our work. Section 3 gives our feature choosing strate-
gies. Section 4 introduces the experiment dataset and the experiment scenarios.
Section 5 analyzes the experimental results and section 6 concludes.

2 Text Representation Using N-Grams Frequencies

We adopt the VSM (Vector Space Model), where each document is considered
to be a vector in feature space. Thus, given a set of N documents, d1, d2...dN ,
the table of “document by feature” is constructed such as that shown in table
1, where each document is represented by a core “wij”. Generally, wij has two
kinds of value:

i) wij = frequency of feature j in document i;
ii) wij = 0 or 1, wij = 1, if feature j appears in document i, otherwise, wij=0.

In our work, we choose the first form. In table 1, Fi is n-gram. Chinese texts
representation by using n-grams is concerned in some researches. [3] regards that
2-grams are best features for Chinese texts. [5] gives some experimental results
by using n-gram combination. In their papers, the best result is by using 1-, 2-,
3-, 4-grams, the second best is by using 1-,2-grams, the third best is by using
2-grams, the case of using 2-, 3-, 4-grams follow and the worst one is by using
1-grams.

In Chinese language, the most part of words are made of one character (for
example, some frequently used nous) or two characters. Some proper names or
scientific terms have more characters [1]. It seems that the combination of 1-, 2-,
3-, 4-grams even 5-gram, 6-gram will produce a better result. However, we should
not extract too many n-grams since it will produce a very large set of candidate
features for a corpus which includes more than 14,000 documents. As a result,
we choose the combination of 1-, 2-grams. We also do some experiments by using
1-, 2-, 3-grams in order to include some proper names or unknown words.
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Table 1. “Document by feature” vector table

D F1 F2 ... Fj ... FM Class Status

d1 w11 w12 ... w1M A Learning
d2 w21 w22 ... w2M B Learning
... ... ... Learning
di wi1 wi2 ... wij wiM C ...
... ... ... Testing
dN wN1 wN2 ... wNM A Testing

3 Feature Selection

Feature selection is a term space reduction method which attempts to select the
more discriminative features from preprocessed documents in order to improve
classification quality and reduce computational complexity. As many n-grams
are extracted from Chinese texts, we perform two steps of feature selection. The
first is reducing the number of features inter-class. The second is choosing the
more discriminate features among all the classes in training set.

3.1 Some Definitions

In text classification, the text is usually represented as a vector of weighted
features. The difference between various in text representations comes from the
definition of “feature”. This work explores four kinds of feature building methods
with their variations.

In the training set, each text in corpus D belongs to one class ci. Here, ci ∈ C,
C = {c1, c2...ci...cn}, C is the class set defined before classification.

- Absolute text frequency is noted as Text freqij ,which is the number of texts
which include n-gram j in class ci;

- Relative text frequency is noted as Text freq relativeij,which is got from
Text freqij/Ni, here, Ni is the quantity of texts in class ci in training set;

- Absolute n-gram frequency is noted as Gram freqij , which is the number
of n-gram j in all texts in class ci in training set;

- Relative n-gram frequency is noted as Gram freq relativeij , which is got
from Gram freqij/N

′
i , here, N ′

i is the total of occurrence of all n-grams in
all texts in class ci in training set.

3.2 Inter-class Feature Number Reduction

We extract all the 1-, 2-grams or 1-, 2-, 3-grams in all the texts of the corpus
and divide the corpus into training set and testing set. In our work, 70% texts in
each class are selected by random to constitute the learning set and the rest 30%
are used for the testing set. The following inter-class feature number reduction
algorithm is performed only on training set.
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Algorithm 1
Begin
For ci ∈ C, C = {c1, c2...ci...cn},
Term′

i = ∅, Term = ∅;
For n − gramj ∈ Termi,
If Text freq relativeij > α, then n − gramj ∈ Term′

i.
Term = {Term′

1, T erm′
2...T erm′

i...T erm′
n}.

End.

Here, Termi include all the n-grams extracted from the texts in class ci ,
Term′

i include all the n-grams selected in class ci and Term is n-gram set in
all classes selected by algorithm 1. We choose α = 0.02 as threshold in order to
keep as many as possible features in each class. After this selection, there are
7000 features in each class in average which are enough for text classification
task. In the case of Text freq relativeij < 0.03, there are only 4,000 features
left in each class in average. It is not enough for the further steps.

3.3 Cross-Class Feature Selection

We construct “feature by class” matrix (noted as Matrixcf ) by algorithm 2 to
select discriminative features.

Algorithm 2
Begin
For ci ∈ C, C = {c1, c2...ci...cn},
For n − gramj ∈ Term,
If n − gramj �∈ Termi, {Oij} = 0
Else {Oij = Text freqij or Text freq relativeij or
Gram freqij or Gram freq relativeij},
End.

In Matrixcf , each feature “j” is assigned a numeric score based on its occur-
rence within the different document classes ci. The choice of the scoring method
in this work is the CHI-Square test. There are many other tests available as
summarized in [6], but the CHI-Square is often cited as one of the best tests for
the feature selection. It gives a similar result as Information Gain because it is
numerically equivalent as shown by [7]. The score of n-gram “j” is:

∑

i

(Oij − Eij)2

Eij
(1)

Where “i” is the class, “j” is the n-gram and Oij is the observed value. Eij

represent the expectation value in the hypothesis of independence of classes and
features:

Eij =
Oi+ ∗ O+j

O++
(2)

Here, we define four kinds of values on Oij (as described in algorithm 2)
in different experiment scenarios. According to the result of CHI-Square, we
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separately perform the classification using the 200, 500, 800, 1000, 2000... 5000
features.

4 Experiment

We adopt TanCorp-12 corpus, a collection of 14,150 texts in Chinese language,
has been collected and processed by Songbo Tan [8]. It contains 12 categories
(art, car, career, computer, economy, education, entertainment, estate, medical,
region, science and sport). The biggest class contains 2865 texts (4.17M) and
the smallest class contains 150 texts (0.49M).

In order to test the results given from different kinds of methods in feature
selection, we set different experiment scenarios, as described in table 2. In the
following section, we use a short name (e.g. Ex1) and a long name (e.g. 1, 2 −
gram&ngram − re) to describe each experiment scenario. The first part of the
long name can be “1,2-gram” or “1,2,3-gram” and it notes the items extracted
from texts as features. The second can be “text-re”, “ngram-re”, “ngram-ab” or
“text-ab” notes the feature selection method cross-class.

Table 2. Experiment scenarios list

Experiment scenario N-gram combination Feature selection cross-class

Ex1: 1,2-gram&ngram-re 1+2-gram Relative n-gram frequency

Ex2: 1,2-gram&text-re 1+2-gram Relative text frequency

Ex3: 1,2-gram&ngram-ab 1+2-gram Absolute n-gram frequency

Ex4: 1,2-gram&text-ab 1+2-gram Absolute text frequency

Ex5: 1,2,3-gram&ngram-ab 1+2+3-gram Absolute n-gram frequency

Ex6: 1,2,3-gram&text-re 1+2+3-gram Relative text frequency

We use the C-SVC classifier which was introduced in LIBSVM [9]. It is the
SVM algorithm designed for the multi-classification task. We use a linear kernel.
Learning parameters are set to gamma = 0 and penaltycost = 1. We perform
our experiments in the platform TANAGRA which is a free data mining software
for academic and research purposes developed by Ricco Rakotomalala [10].

We use the F1 measure introduced by [11]. This measure combines recall and
precision in the following way for bi-class case.

Recall =
number of correct positive prediction

number of positive examples
(3)

Precision =
number of correct positive prediction

number of positive predictions
(4)

F1 =
2 ∗ Recall ∗ Precision

Recall + Precision
(5)

For more than 2 classes, the F1 scores are summarized over the different
categories using the Micro-averages and Macro-averages of F1 scores.
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1) Micro - F1 = average in documents and classes
2) Macro - F1 = average of within - category F1 values

5 Results and Discussions

5.1 Comparison of Macro-F1 and Micro-F1 in All Experiment Cases

Figure 1 show that Ex3 and Ex1 have the best performance, Ex5 has the sec-
ond best, Ex2 and Ex4 follow and the Ex6 has the worst results. The first three
best results are in the Ex3, Ex1 and Ex5 which are all using n-gram frequency
(relative or absolute) for feature selection. In the situation of absolute frequency
(Ex3) and relative frequency (Ex1), the results are similar. The results indicate
that using n-gram frequency for feature selection is better than using text fre-
quency. Also the relative frequency does not give better results than the absolute
frequency. We use 1-, 2-grams in Ex1, Ex2, Ex3 and Ex4 and use 1-, 2-, 3-grams
in Ex5 and Ex6. Fig.1 shows that the results produced by using 1-, 2-grams are
little better than those produced by using 1-, 2-, 3-grams.
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Fig. 1. Macro-F1 and Micro-F1 comparison on all experiment cases

Our experiments also indicates that the number of 2-grams and 3-grams in-
crease with the increasing of feature number. In the case of more than 3000
features, the percentage of 1-grams, 2-grams and 3-grams do not change greatly.
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Either in the case of using 1-, 2-, 3-grams or using 1-, 2-grams, 2-grams are always
the most important features. There are 1108 3-grams in 5000 features and 206
3-grams are words. Most of them are new words, scientific terms, proper names,
abbreviations and phrases which are very difficulties in Chinese word segmen-
tation. In this regard, the method based on n-gram can solve the problem of
unknown words recognition to some degree.

5.2 Sparseness Comparison

[12] shows that the computational time is more linked with the number of non-
zero values in the cross-table (document by feature) than with its number of
columns (features). Fig. 2 shows the non-zero value distribution in the “docu-
ment by feature” matrix for six experiment cases. Ex2 (1,2-gram&text-re) has
about two times less non-zero cells than Ex1 (1,2-gram&ngram-re), which indi-
cates that it will produce less dense matrices after cross-class feature selection, so
in this way the computation will be faster. Similarly, Ex4 (1,2-gram&text-ab)
has about two times less non-zero cells than Ex3 (1,2-gram&ngram-ab). Ex6
(1,2,3-gram&text-re) has two times less non-zero cells than Ex5 (1,2,3-gram&n-
gram-ab). The matrices are denser when we use an absolute frequency than a
relative frequency. For example, Ex3 has more non-zero cells than Ex1 and Ex4
has more non-zero cells than Ex2. The number of non-zero cells in the cases of
using 1-, 2-, 3-grams is less than that of using 1-, 2-grams.
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Fig. 2. Comparison of non-zero value in “text by feature” matrix on six cases

6 Conclusion

In this paper, we perform Chinese text categorization on a large corpus using
n-gram text representation and different cross-class feature selection methods.
Our experiments show that a combination of 1-, 2-grams is little better than
that of 1-, 2-, 3-grams for Chinese text classification.

The feature selection methods based on n-gram frequency (absolute or rela-
tive) always give better results than those based on text frequency (absolute or
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relative). Relative frequency is not better than the absolute frequency. Methods
based on n-gram frequency also produce denser “document by feature” matri-
ces. Our further work are exploring more excellent methods for feature selection
using 1-, 2-grams in Chinese text classification, for example, the methods based
on rough set.
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Abstract. Spatial outliers are spatial objects whose non-spatial
attributes are significantly different from the values of their neighbor-
hoods. Detection of spatial outliers will provide the user with meaningful,
interesting and potential information. Usually, algorithms for outlier min-
ing on traditional business-oriented datasets are no longer applicable to
spatial datasets. A new algorithm based on MST clustering is proposed
in this paper to identify spatial outliers. The algorithm organically inte-
grates the approach of minimum spanning trees and the density-based
mechanism for outlier mining. Basic spatial structure characteristics of
spatial objects are maintained by Delaunay Triangles and MST cluster-
ing is achieved by cutting off several most inconsistent edges. It turns out
that the algorithm can find true spatial outliers, and it doesnt require
any parameter for the algorithm be specified firstly. Experiments on real
application problems indicate that the proposed algorithm is feasible and
effective for identifying outliers from the large-scale spatial datasets.

Keywords: Spatial outliers, Outlier mining, MST Clustering, D-TIN.

1 Introduction

With the rapid development of technologies for spatial data processing since
1990s, spatial data mining has become a hot field in data mining[1]. Nowadays,
researches on spatial data mining are mainly concentrated on common rules
of spatial distribution, spatial clustering, spatial association, spatial division,
spatial evolvement, and so on[2]. They are concerned with the common rules
and the prevalent characteristics, but not the minority and abnormal feature of
spatial data. As a matter of fact, anomaly in spatial datasets may contain some
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surprising and useful information. Hence, how to detect the abnormal(spatial
outliers) from spatial datasets and to explain the reason that causes the anomaly
in specific application of geographic information system have become more and
more interesting to the researchers. Spatial outlier mining is of great significance
and can be used in many fields, such as the analysis of images gained from
remote-sensing, weather forecast, ecology, location based services, and so on.

Algorithms based on clustering are important ways to detect anomalies in a
dataset. The main idea is to define outliers as small clusters after clustering.
CLARANS, DBSCAN, BIRCH, STING, ROCK, OPTICS [3,4] are some typical
clustering algorithms that have the function of outlier detection. However, due
to the diversity of clustering algorithms, it is difficult to choose a proper one for
outlier mining. Furthermore, the main purpose of clustering is to discover the
principal features of the dataset and outliers are often the by-products of clus-
tering, but it hardly meets the real need. Therefore, when choosing a clustering
algorithm for outlier mining, it is better to choose one whose mechanism is much
more similar to the outlier mining’s so as to greatly cut down the computation
and reduce the complexity of the algorithm. In this paper, a new algorithm based
on minimum spanning tree(MST ) will be proposed to detect spatial outliers, and
it will be applied to the analysis of soil chemical elements data.

2 Related Works

As an important direction of outlier detection, Shekhar[2] is the first to bring
forward the definition of spatial outliers, that’s ”spatial outliers are the spatial
objects whose non-spatial attributes are obviously different from the others in
the neighborhood”, and now it is widely adopted by the researchers. Due to the
uniqueness of spatial data, if one wishes to find some meaningful information,
both spatial attributes and thematic attributes should be carefully considered,
such as the position, shape, geometric feature and the relationship of spatial
objects[5]. Therefore, spatial outlier mining is usually much more complicated
than outlier mining in relational databases.

As the deepening of research, different algorithms for spatial outlier mining were
proposed. According to the mechanism adopted by the algorithm, they were
generally divided into two categories, graphic approaches and multi-dimensional
quantitative tests[5,6]. Graphic approaches highlight spatial outliers based on vi-
sualization of spatial data; typical methods include variogramclouds, pocket plots,
scatterplot, and Moran scatterplot[7,8]. Quantitative methods provide tests upon
data attributes to identify spatial outliers based on statistical techniques, z-value,
Iterative z-value, Iterative z-ratio[9,10,11] are 3 representative one.

Targeted to the analysis of soil chemical elements data inspected by the project
Ecological Geochemical Survey of Fujian Coastal Economic Belt, we drew our
attention on the representation of spatial neighboring relationship and the pref-
erences for the algorithm, Delaunay Triangle Net(D-TIN ) was constructed and
method of density based was adopted, and finally, the goal of MST based spatial
outlier mining is achieved.
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3 MST-SOM Algorithm

3.1 Basic Ideas

Basic idea of MST-SOM algorithm rests on the full use of MST. Firstly, it
extracts the spatial attributes and translates them into feature space, during
the period, D-TIN is used to maintain the spatial structure characteristics; then
the algorithm constructs MST in the feature space and performs density-based
clustering[13] by cutting off the most inconsistent edges of MST ; finally, imposes
outlier detection on the small clusters left by clustering, and finds out potential
spatial outliers.

3.2 Implementation

In the algorithm MST-SOM, dataset is denoted as a spanning tree, and thus the
issue of multidimensional data clustering is translated into MST division. What
we should do is to perform a local clustering in the sub-tree. Given the connected
graph with weight G(V, E), whose spanning tree T is also with weight. The sum
of each edge’s weight is called T ’s weight, it is denoted as W (T ) =

∑
w(di, dj),

for every (di, dj) ∈TE, where TE denotes the set of edges and w(di, dj) denotes
the weight of edge(di, dj), the spanning tree with the smallest weight is called
minimum spanning tree.

Similarity denotes the degree of resemblance between two models, and it is
vital to choose a proper measurement of similarity in the clustering algorithm.
In this paper, it is supposed that spatial attributes are under standardization,
and Euclidean distance is used as the measurement of spatial object’s similarity.

3.2.1 D-TIN Construction Based on MST
Suppose that V = {x1, x2, . . . , xn} is a dataset with n scattered points in the
planar R2. If G(V, E) is a graph, where V is the set of vertexes and E is the
set of edges; then minimum spanning tree of G can be denoted as EMST (V );
eik = (vi, vk) and eij = (vi, vj) are two edges of G, and they are called a pair of
relative edges, the angle between vivk and vivj is the angle of the relative edges.

D-TIN construction based on MST can be divided into three major steps[14].
First of all, obtain MST according to the spatial similarity between objects; then,
construct triangle by inserting edge one by one until the last edge is added;
finally, perform local optimization procedure on the triangles according to the
principle of the largest minimum interior angle, until D-TIN is achieved. During
the process of adding a new edge to EMST (V ), there are 2 rules to be abided, the
first is never-intersected(there is not intersect between triangle), and the second
is never-included(any one triangle will not include another). If the information
of scatter points and triangles was stored in the data structure of D-TIN which
is denoted as TML, and the relative edges in EMST (V ) or the current graph is
denoted as IEPL(V ), then the procedure of D-TIN construction based on MST
is shown as follows:
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1. Specify each edge’s weight of graph to be the similarity between vertexes;
2. Gain minimum spanning tree EMST (V ) out of the point set V , where

method of Kruskal is adopted;
3. Gain the initial set of relative edges IEPL(V ) according to EMST (V );
4. Sort IEPL(V ) in an ascending order according to the angle of the relative

edges;
5. Initialize TML = null;
6. If there was a pair of edges left in the IEPL(V ), then select the pair of

edge (eik, eij) whose angle is the smallest, and mark it with 1; if triangle
�vivjvk composed by the vertexes of relative edge (eik, eij) satisfies the two
principles above, then �vivjvk is added to TML; new edge ejk = (vj , vk)
is added to EMST (V ); new edge ejk = (vj , vk) is inserted into the set of
IEPL(V ) in an ascending order in term of the angle;

7. Perform local optimization procedure according to the principle of the largest
minimum interior angle, and then gain D-TIN.

3.2.2 MST Clustering
Given a spatial dataset D ⊂Rd with n objects. Firstly, perform MST construc-
tion based on D-TIN gained in the former step.

Then, try to cut off the most M inconsistent edge that is obviously different
from the edges adjacent to it so as to gain M + 1 sub-tree T [m], where m =
1, 2, . . . , M + 1. Consequently, the dataset is divided into M + 1 local areas,
and similar objects are partitioned into a same cluster, which is well accordant
to the principle of clustering[15]. Presently, there are many ways to define the
most inconsistent edge, in the paper, the weightiest one or the lightest one is
simply seen as the most inconsistent edge. As to the parameter M , there was
little influence on the clustering result, if a small value was set, then the bigger
clusters would be subdivided.

Finally, the algorithm utilizes the idea of MST and density based clustering
algorithm[13], computes objects’s minimum number MinPts[m] and the area
T [m]’s radius Eps[m], based on which spatial data clustering is achieved. In this
paper, parameter MinPts[m] was set to sub-tree T [m]’s degree; and as to the
value Eps[m], it was usually gained according to the graph’s k-nearest-distance.
However, to get parameter Eps[m], a large amount of computation is required;
moreover, it has great impact on the result of clustering. If Eps[m] was too small,
then there would be a large amount of clusters; on the other side, the algorithm
would be unable to wipe off the noises. In this paper, to achieve a proper value
that is neither too big nor too small[11], according to the properties of MST,
Eps[m] is set to 2 w

N [m] , where N [m] is the number of edges in sub-tree T [m],
and w is the total weight of N [m] edges.

3.2.3 Spatial Outlier Mining Based on MST Clustering
Outliers usually fall on a sub-tree which is small, so when the algorithm finds
outliers from the datasets, only the sub-trees that are small should be detected.
As a result, time consumption on scanning of the whole dataset is reduced,
and the efficiency of outlier mining is greatly improved. In the paper, a simple
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mechanism Nested Loop was used to detect outliers from the fragment left by
clustering.

3.3 Performance

Given a spatial dataset D ⊂Rd with n objects, d denotes the number of spa-
tial objects’s attributes, then the average time complexity for translating spatial
objects into a feature space is O(nlogn)[14]; time complexity for MST construc-
tion is O(nlogn), if parallel computing was adopted, it would be improved to
O(nlog3/2n); If there is r spatial objects in the largest sub-tree T [m], then the
average time complexity for MST clustering in the sub-tree is O(rlogr), and
the total time complexity to clustering in M + 1 sub-tree is equal to O(nlogn);
outlier mining based on clustering merely detect those spatial objects in small
cluster, so the time complexity is approximate to a linear one O(n). Taking all
these steps together, the time complexity for MST-SOM algorithm is O(nlogn).

4 Application

MST-SOM algorithm is implemented in java and used in the analysis of soil
chemical elements data inspected by the project Ecological Geochemical Survey
of Fujian Coastal Economic Belt. There are 53 attributes totally in the soil
chemical elements data, including 2 spatial attribute known as longitude and
latitude, and many thematic attributes, such as As, Ag, Al2O3, Au, B, Ba, Be,
Bi, Br, CaO, Ce, Cl, Co, Cr, Cu, F , Fe2O3, Ga, Ge, Hg, I, K2O, La, Li,
MgO, Mn, Mo, Na2O, Nb, Ni, N , P , Pb, Ph, Rb, S, Sb, Sc, Se, SiO2, Sn,
Sr, Th, T i, U , V , W , Zn, Zr, Organic Carbon, sum of carbon.

In the real application on soil chemical elements data, spatial structure char-
acteristics of the soil are maintained by D-TIN, and the algorithm MST-SOM
processes MST clustering on the basis of D-TIN, then it implements density
based spatial outlier mining. According to the strategy adopted by MST-SOM
algorithm, the most 15 inconsistent edges were cut off, and the result of MST
clustering was shown as Fig.1.

Several small clusters are gained after MST clustering, which were seen as
the candidate. For the application on the soil chemical elements data analysis,
candidate outliers are shown in Table1, among which p* denotes the *th spatial
object in the datasets.

After a narrow examination on the candidate spatial outliers, object p75, p16,
p49, p133, p148 and p227 are considered to be the real spatial outliers, for their
outlier scores are much bigger than the other’s, which are shown in Table2.

Table 1. Candidate Spatial Outliers Left after MST Clustering (×105,unit:◦)

Point Coordinate Point Coordinate Point Coordinate Point Coordinate
p16 (7.03, 27.73) p26 (7.01, 27.63) p49 (6.73, 27.57) p217 (7.01, 27.71)
p75 (6.71, 27.33) p104 (6.89, 27.73) p55 (7.01, 27.69) p227 (6.87, 27.77)
p118 (6.71, 27.57) p131 (6.81, 27.55) p109 (6.91, 27.71) p199 (6.71, 27.31)
p148 (6.73, 27.45) p184 (7.02, 27.62) p133 (6.99, 27.55) p245 (7.03, 27.63)
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Fig. 1. Clusters Info of Soil Chemical Elements Data after MST Clustering

If combined with geographic layers, the distribution of spatial outliers in soil
chemical elements data can be shown as Fig.2.

As a matter of fact, soil outliers are mainly caused by human damage and
environmental contamination, so in this paper, much attention is paid on the
analysis of the harmful elements of soil. Detail information of harmful soil chem-
ical elements for the 6 spatial outliers was shown in Table3.

Through the comparison between the values inspected and the true of the
harmful chemical elements, object p16 becomes an outlier by the reason that
inspected values of chemical elements Cd, Cu, Pb, Zn, Cr, Ni are seriously
abnormal. Similarly, object p49 becomes an outlier by the reason that inspected
value of chemical elements As, Pb, Zn, Cr, Ni, Be are seriously abnormal;
object p75 becomes an outlier by the reason that inspected values of chemical
elements Hg, Pb, Cr, T l are seriously abnormal; object p133 becomes an outlier
by the reason that inspected values of chemical elements Zn, Cr are seriously
abnormal, etc. To sum up, abnormity of harmful soil chemical elements data
may be derived from exterior factor during the development of industry, such as

Table 2. Outlier Score of Candidate Spatial Outliers

Point Score Point Score Point Score Point Score
p16 0.952(2ed) p75 1.548(1st) p131 0.41(7th) p199 0.407(8th)
p26 0.116(16th) p104 0.358(10th) p133 0.73(4th) p217 0.348(12th)
p49 0.824(3rd) p109 0.333(13th) p148 0.695(5th) p227 0.498(6th)
p55 0.128(15th) p118 0.269(14th) p184 0.382(9th) p245 0.357(11th)

Table 3. Harmful Elements Values of Spatial Outliers

Item Cd Hg As Cu Pb Zn Cr Ni Sb Be Se T l Ag
p16 0.4 0.04 2.31 31.8 20.5 121.7 41.9 44 0.39 1.44 0.31 0.59 0.13
p49 0.08 0.09 7.59 14.5 46.9 92.3 33.5 17.7 0.43 2.84 0.27 0.91 0.1
p75 0.05 0.26 2.59 11 37.5 46.3 12.2 5.6 0.37 1.55 0.16 0.57 0.12
p133 0.06 0.10 2.07 9.6 33.7 52.3 11.6 5.7 0.42 2.14 0.12 0.89 0.08
p148 0.09 0.04 6.82 24.7 42.1 90.8 34 17.5 0.46 2.05 0.15 0.74 0.13
p227 0.10 0.06 8.31 23.1 37 120.9 64.6 31.2 0.54 2.67 0.2 0.8 0.09
Avg 0.08 0.11 2.47 10.5 32.87 50.91 17.59 7.81 0.33 1.9 0.17 0.82 0.09
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Fig. 2. Distribution of Spatial Outliers in Soil Chemical Elements Data

the stack of garbage; and it may also be derived from the internal factor during
the shaping of soil, like the enrichment of chemical elements.

5 Conclusion

In this paper, a new algorithm for spatial outlier mining based on MST clus-
tering is proposed and applied to harmful soil chemical elements detection. The
algorithm not only retains the inherent advantages of MST clustering, but also
maintains basic spatial structure characteristics of spatial objects in an effective
way, and it proved to be suitable for a complex situation of unsupervised spatial
outlier mining. Further work involves spatial data visualization and its appli-
cation on data mining, multi-resource spatial data outlier mining, multi-scale
spatio-temporal data outlier mining.
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Abstract. In this paper we present an algorithm for outlier detection in
high-dimensional spaces based on constrained particle swarm optimiza-
tion techniques. The concept of outliers is defined as sparsely populated
patterns in lower dimensional subspaces. The search for best abnormally
sparse subspaces is done by an innovative use of particle swarm optimiza-
tion methods with a specifically designed particle coding and conversion
strategy as well as some dimensionality-preserving updating techniques.
Experimental results show that the proposed algorithm is feasible and
effective for high-dimensional outlier detection problems.

1 Introduction

Outlier detection has now become a hot issue in the area of data mining with
numerous applications. Most of the existing algorithms for outlier detection use
concepts of proximity to define and detect outliers, such as the notion of distance-
based or density-based outliers [1]-[6]. However, as explained in [7], these algo-
rithms are not appropriate for high dimensional cases because the data are sparse
and the notion of proximity fails to retain effectiveness. Actually, the sparsity
of high dimensional data implies that every point is an almost equally good
outlier from the perspective of proximity-based definitions [6][7]. Given the fact
that most applications as mentioned above are high dimensional problems, it is
of significance to reasonably define outliers in a high dimensional space and to
design specific algorithms for their detection.

Recent research results indicate that mining outliers in lower-dimensional pro-
jections is feasible for high dimensional data. On one hand, it is in practice not
qualitatively meaningful to detect outliers in full dimensional space. On the other
hand, only the subsets of the attributes are affected in some applications, such as
credit card fraud, and so on. Along this line, Aggarwal and Yu [7] presented a new
way of defining outliers in a high dimensional space as well as a new technique for
their detection. The point is to observe the density distributions of projections
from the data that could be measured by the so called sparsity coefficients and a
data point is considered an outlier, if it is located in some abnormally low density
subspace. Hence, the outlier detection in this context boils down to finding those
combinations of dimensions with most abnormally sparse data. This turns out to
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be a very difficult combinatorial optimization problem since the combinations of
dimensions exponentially increase with increasing dimensionality and it is hard
to examine all possible subsets of dimensions. Actually, a brute-force algorithm
will become computationally untenable even for a problem with moderate di-
mensionality. To solve this problem, Aggarwal and Yu [7] developed an effective
evolutionary computation based algorithm, denoted hereafter as Geno, by mak-
ing an innovative use of genetic algorithms(GAs). The algorithm works no worse
than the brute-force(or exhaustive search) algorithm in terms of solution quality
but with much less computational effort. Chen and Ye [8] presented a modified
version of Geno that may possibly find more outlier patterns but requires many
extra computations.

The purpose of this paper is to develop another evolutionary computation
based algorithm for high-dimensional outlier detection problems. The idea is to
use particle swarm optimization(PSO) techniques in a specific and appropriate
way. A PSO method, featured by intuitiveness, simplicity, easy implementation,
and fast convergence, has turned out to be more competent than GAs on some
NP-hard optimization problems [9]-[13]. Therefore, it is quite natural to come up
with the idea of developing an effective PSO based outlier detection algorithm.
As we are going to see, this attempt of exploration is worthwhile.

The paper is organized as follows. In section 2, we review some basic concepts
and discuss some related work. In section 3, we describe some specific strategies
for both particle coding and dimensionality preserving search. In section 4, an
outlier detection algorithm based on constrained PSO techniques is presented.
Experimental results are given in section 5 and section 6 concludes.

2 Some Basic Concepts and Related Work

An abnormal projection is one in which the density of the data is exceptionally
lower than average. Aggarwal and Yu presented a definition of sparsity coefficient
to measure the density of a lower k-dimensional projection [7]. The coefficient is
a key to outlier detection and is hereby quoted below. Assume throughout the
paper that there is an n-dimensional data set having a total of N points. Each
attribute of the data is divided into Φ equi-depth ranges. Each range contains
a fraction f = 1/Φ of total points. The reason of using equi-depth instead of
equi-width has been well explained in [7]. If the data are uniformly distributed,
then the number of points in a cube is expected to be N × fk.

Definition 1. Let n(D) be the number of points in a k-dimensional cube D.
The sparsity coefficient S(D) of the cube D is defined as follows:

S(D) =
n(D) − N × fk

√
N × fk × (1 − fk)

(1)

Apparently, the number of points in k-dimensional cube D is lower than ex-
pected when S(D) value is negative. The most negative S(D) value means that
the cube D has least points. Cubes that are empty are considered infeasible and
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their sparsity coefficients are set to the very high value of 106 from an implemen-
tation perspective. Now, the problem of detecting outliers in high-dimensional
spaces in our context is to find the most sparse k-dimensional nonempty cubes
in which the points are considered outliers.

It is important to note that unlike problems such as frequent itemset detec-
tion, the problem of finding the most sparse k-dimensional nonempty cubes in
the data is of such nature that there are no upward-or downward closed prop-
erties in the set of dimensions that are unusually sparse [7]. It may be often the
case that although particular regions may be densely populated on certain sets
of dimensions, they can be very sparsely populated when such dimensions are
combined together. In general, it is very hard or even impossible to predict the
behavior of the data when two sets of dimensions are joined together. The best
projections (with the most negative sparsity coefficients) are often created by
an a priori unknown combination of dimensions, which can not be determined
by looking at any lower-dimensional projection. Moreover, subsets of dimensions
that are sparsely populated are scarce and finding these patterns is somewhat
like finding a needle in a haystack since one is looking for them in an exponen-
tially increasing space of all possible projections.

Aggarwal and Yu proposed an innovative use of genetic algorithms by intro-
ducing some specifically designed crossover and mutation operations [7]. In a
run of their algorithm, the search for the best projections is carried out in lower-
dimensional subspaces of a given dimensionality k. This dimensionality needs to
be kept in mind while performing crossover and mutation operations. That is,
the two children after recombination should also correspond to a k-dimensional
projection. To achieve this goal, they introduced a specific individual coding
strategy, an optimized crossover operation and a two-branch mutation opera-
tion with two mutation probabilities. For convenience of our later presentation
and comparison, we briefly describe this coding method. As assumed previously,
each attribute(dimension) of the data set is divided into Φ ranges. Thus, the
value of each attribute can be any of the values 1 through Φ, or the value ”*”,
which denotes a ”don’t care”. Hence, there are a total of Φ+1 values that any
dimension can take on. This defines the individual coding policy. That is, an in-
dividual string consists of n genes, each gene taking any of the values 1 through
Φ, or the value ”*”. For example, consider a 4-dimensional data set with Φ=10.
Then, individual ”*2*7” corresponds to a 2-dimensional projection whose second
and fourth dimensions are identified and the other dimensions are ”don’t care”s.

3 Particle Conversion and Updating Strategy

3.1 Basics of PSO Methods

The first PSO algorithm was introduced in 1995 by Kennedy and Eberhart [9]
for continuous optimization problems and since then many improved versions of
it have been presented [10]-[12]. It is a population-based optimization algorithm
inspired by the social behavior of birds and, like other algorithms of its kind, it is
initialized with a population of L possible solutions (called particles) randomly



A New Algorithm for High-Dimensional Outlier Detection 519

located in a d-dimensional solution space. A fitness function determines the
quality of a particle’s position. A particle at time step t has a position vector and
a velocity vector. The algorithm iterates updating the trajectories of the swarm
through the solution space on the basis of information about each particle’s
previous best performance and the best previous performance of its neighbors
until a stopping criterion is met. More precisely, it updates the positions xi(t)
and velocity vi(t) of particles according to the following equations:

vi(t + 1) = w(t)vi(t) + c1r1(t)(pbi(t) − xi(t)) + c2r2(t)(gb(t) − xi(t)), (2)

xi(t + 1) = xi(t) + vi(t + 1), i = 1, · · · , d, (3)

where pbi(t) is the previous best performance position of particle i and gb(t) is
the best previous performance position of the whole swarm; w(t) = T−t

T is the
inertia weight; c1 and c2 are the learning coefficients; r1(t), r2(t) are uniformly
randomized numbers in the interval [0,1].

One of important issues in designing a PSO based algorithm is the design
of a suitable particle coding strategy. As mentioned earlier, in each run, the
search for sparsely populated cubes is conducted within k-dimensional subspaces.
Therefore, updated particles should correspond to k-dimensional projections.
However, as the mechanism of generating offspring particles is quite different
from that in a genetic algorithm, the above mentioned coding strategy does not
directly apply to PSO case. Actually, if we use the said coding for a particle,
then it is easy to see that the update equation (3) will turn a particle into an
infeasible solution or even a solution that does not make any sense. Hence, some
adjustment is needed in the context of PSO. The idea is to take directly Rn

as the space of particles incorporated with a pattern conversion step so as to
establish a correspondence between a particle and a projection pattern.

3.2 Pattern Conversion Operation

The pattern conversion operates as follows: Let x = (x1, · · · , xn) be a particle,
define its conversion pattern cx = (cx1, · · · , cxn) by cxi = �xi�, i = 1, · · · , n,
where � � is the floor function. If for some i, cxi ≤ 0 or cxi > Φ, then set cxi

to * . Similarly, the positions with ”*” are called ”don’t care” ones and the
others are called ”identified” ones of both x and cx. Let m be the number of
”identified”s in cx, then cx corresponds to a m-dimensional cube in the data
space. We denote this number m by Dim(x). The sparsity coefficient of this
cube can then be calculated by definition and is used to determine the fitness
of the particle. For example, considering a 4-dimensional problem with Φ=10,
the conversion pattern of the particle (12.3,1.27,3.13,-2.32) is (*,1,3,*), which
corresponds to a 2-dimensional projection.

3.3 ModifyPSO Operation

Since the search for abnormally sparse lower dimensional projections in a run
should be conducted in subspaces of a given dimensionality, the traditional par-
ticle updating strategy needs to be modified. Given a particle x = (x1, · · · , xn)
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satisfying Dim(x) = k, let x′ = (x′
1, · · · , x′

n) be its updated particle by Equation
(3). Our goal is to modify x′ so as to get a new particle with Dim(x′) = k. We
distinguish 3 cases.

Case 1: Dim(x′) = Dim(x) = k. This means that after the pattern conversion,
cx′ still corresponds to a k-dimensional projection. Accept this updated particle
as a new particle.

Case 2: Dim(x′) = k1 < k. This means that values at some ”identified” positions
of x have gone beyond the range [1, Φ]. Let k2 be the number of such positions.
Then, k−k1 ≤ k2. Randomly choose k−k1 positions from among k2 ”identified”
positions. For each chosen position j, modify x′ as follows:

x′
j =

{
Φ, x′

j > Φ;
1, x′

j < 1.

After such modification, the new particle x′ satisfies Dim(x′) = k.

Case 3: Dim(x′) = k1 > k. If the sparsity coefficient of k1-dimensional cube cx′

is positive, then randomly set k1−k ”identified” positions of x′ to value ”*” to get
a new particle x′; Otherwise, select through enumeration k positions from among
k1 ”identified” positions such that the resulting k-dimensional conversion pattern
cube has the least sparsity coefficient. Although there are Ck

k1 possibilities, the
time cost is not expensive since k1, k are usually small. Therefore, in either case,
we will get a new particle x′ with Dim(x′) = k.

4 A Constrained PSO-Based Outlier Detection Algorithm

With the above mentioned pattern conversion and dimensionality preserving par-
ticle updating strategies, we are now in the position to outline our PSO-based
outlier detection algorithm as depicted in Fig.1. Since the updating of particles
is subject to the dimensionality preserving constraint, our algorithm can be re-
garded as a constrained PSO algorithm, denoted by CPSO.

The input parameters include the number m of the best solutions with most
negative sparsity coefficients, a given lower dimensionality k. Aside from this,
there are other parameters such as the range Φ, the size p of particle popu-
lation, the maximum allowed iteration number T and velocity. They are to be
set up depending on the data sets involved. In general, it is not an easy task
to get a suitable choice of values of k and Φ. If we pick too big a Φ, that will
result in many empty or sparsely populated subcubes; whereas if we pick too
small a Φ, then there would be rare outlier patterns. A desirable value for Φ
is such that there are sufficient numbers of intervals on each dimension that
corresponds to a reasonable notion of locality. As for a reasonable choice of the
values of k, [7] suggested using the relationship k = �logΦ(N/s2 + 1)� where
s = −3. We shall also follow this suggestion when running our outlier detection
algorithm. The algorithm will be terminated if either the m best solutions( de-
noted as BestSet in Fig.1) are found or the maximum allowed iteration number
is reached.
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The Constrained PSO based outlier detection algorithm
Algorithm CPSOOutlierSearch(Number: m, Dimensionality: k)
begin

S=Initial population of p n-dimensional particles
BestSet=null ;
while not(termination criterion) do begin
S=PSOUpdate(S)(using Equations (2) (3));
S=ModifyPSO(S);
Perform PatternConversion(S);
Update BestSet to be the msolutions in BestSet

⋃
PatternConversion(S) with

most negative sparsity coefficients;
end;
O=Set of data points covered by BestSet ;
return(BestSet,O);

end

Fig. 1. The constrained PSO based outlier detection algorithm

5 Experimental Results

In order to evaluate the performance of the proposed algorithm, we tested it on
some real data sets obtained from the UCI machine learning repository. In or-
der to make comparisons with the baseline algorithm Gen0, we picked the same
data sets as in [7] each only with continuously-valued attributes. The results are
given in Table 1. Both algorithms were implemented on a 1.6-GHz PC running
Windows XP with 256MB of main memory. Parameter settings were as follows.
For all data sets, we picked Φ = 7 and m =20 as in [7]. However, as the mutation
probabilities p1 and p2 were not explicitly given in [7], we just set both of them
to the value of 0.05 for Gen0 algorithm. The size p of particle population was
set to 30 and the maximum allowed number of iterations was set to 500. The
learning coefficients were picked as c1 = c2 = 2. In addition, the data sets were
cleaned in order to take care of categorical and missing attributes. For instance,
in the housing data set, 13 of 14 attributes were selected, eliminating the single
binary attribute.

In Table 1, we have reported the time cost(in second) as well as the av-
erage sparsity coefficients of the best 20 projections indicated under the col-
umn(quality). Note that we did not regain the results by using Gen0 as reported
in [7]. This could be partly because of our different choice of mutation proba-
bilities(as indicated earlier) and the sizes of populations, and partly because of
the differences in its implementations. It could also be because we only reported
the results in a run of the algorithm that are not necessarily the best possible
solutions. Nevertheless, the results in Table 1 show to some extent the perfor-
mance of both algorithms. We note that in four of the six data sets, the average
quality of the 20 best projections was the same(if truncated to the second deci-
mal) using either Gen0 or the CPSO algorithm. These cases are marked with a
”*”. For the other two data sets, our algorithm outperformed Gen0 in one data
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Table 1. Performance for different data sets

dataset Gen0(time) CPSO(time) Gen0(quality) CPSO(quality)

Breast cancer(14) 11 10 -3.28 -3.28(*)
Ionosphere(34) 87 80 -3.05 -3.05(*)

Segmentation(19) 13 11 -3.02 -3.02 (*)
Musk(160) 292 279 -2.63 -2.63(*)
Machine(8) 3 4 -3.25 -3.17
Housing(13) 24 21 -4.11 -4.18

set but was inferior to Gen0 in the other data set. Thus, our algorithm works
equally well as Gen0 on these data sets. When it comes to the time cost, it can
be observed that in most cases CPSO algorithm consumed less than Gen0 algo-
rithm. This advantage may be attributed to the fast local search ability of PSO
methods. To sum up, the experimental results show that CPSO, a constrained
PSO based algorithm may work equally well as or sometimes even better than
the baseline GA-based algorithm Gen0 in terms of computational efficiency and
outlier detection quality.

6 Conclusion

In this paper, we discussed the applicability of particle swarm optimization tech-
niques to the problem of detecting outliers in high dimensional spaces where the
outliers are defined as abnormally sparse lower dimensional patterns. A spe-
cific dimensionality preserving updating strategy for particles was introduced
to handle the subspace constraints. It turned out that PSO-based algorithms
can also be used to effectively detect such outliers in high-dimensional spaces
and can work equally well as or sometimes even better than the existing GA-
based detection algorithms with suitably modified particle updating and search
strategies.
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Abstract. Many present methods for dealing with the continuous data
and missing values in information systems for constructing decision tree
do not perform well in practical applications. In this paper, a new al-
gorithm, Decision Tree Construction based on the Cloud Transform and
Rough Set Theory under Characteristic Relation (DTCCRSCR), is pro-
posed for mining classification knowledge from the data set. The cloud
transform is applied to discretize continuous data and the attribute
whose weighted mean roughness under the characteristic relation is the
smallest will be selected as the current splitting node. Experimental re-
sults show the decision trees constructed by DTCCRSCR tend to have a
simpler structure, much higher classification accuracy and more under-
standable rules than C5.0 in most cases.

Keywords: Rough sets, Cloud transform, Decision trees, Weighted mean
roughness, Characteristic relation.

1 Introduction

Decision trees are considered as one of the most popular data-mining techniques
for knowledge discovery. It systematically analyzes information contained in a
large amount of data source to extract valuable rules and relationships [1]. Many
approaches for constructing decision trees have been presented. One of the rep-
resentative methods is ID3 algorithm, which is based on the information theory
and attempts to minimize the expected number of comparisons [2]. The basic
idea of the induction algorithm is that the attribute which has a maximum gain
value of information entropy will be chosen as the current splitting node. C4.5 [3]
and C5.0 [4], based on ID3, allow the use of missing data, continuous data and
� This work is partially supported by NSFC (No.60074014), the Research Fund for

the Doctoral Program of Higher Education (No.20060613007) and the Basic Science
Foundation of Southwest Jiaotong University (No.2007B13).
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improved techniques for splitting. For example, when a decision tree is built
by C4.5, continuous data are divided into ranges based on the attribute values,
while missing data are simply ignored. To classify a record with a missing at-
tribute value, the value for that item can be predicted based on the attribute
values for other records [1]. However, the existing algorithms for dealing with
the continuous data and missing values in information systems do not perform
well in real applications.

The classical rough set theory (RST), proposed by Pawlak in 1982, is a math-
ematical tool to deal with vagueness and uncertainty and has been applied suc-
cessfully in data mining [5,6,8,9]. The rough approximation-based algorithms
which can be used to select splitting node in the construction of decision trees
were discussed in [8,9]. However, these approaches are under the assumption
that information systems are complete. To deal with incomplete data directly,
an extension of classical rough sets, the characteristic relation-based rough sets,
was proposed in [5]. This extension better reflects real conditions of incomplete
information systems (IIS).

Cloud model that integrates the properties of fuzziness and randomness was
proposed in [12] for realizing the uncertainty transition between qualitative con-
cept and quantitative description. A method, called cloud transform, for dis-
cretization of the continuous data is introduced in [13] based on the cloud model,
which is especially suitable for processing a large amount of data. Cloud trans-
form can partition the domain of every continuous attribute into many concepts
represented by cloud models.

To overcome the difficulty in handling missing data and continuous data for
classification tasks, a novel mining algorithm, Decision Tree Construction based
on Cloud Transform and RST under Characteristic Relation (DTCCRSCR), is
proposed. The cloud transform is firstly applied to discretize continuous data
and then the attribute whose weighted mean roughness under the characteristic
relation is the smallest will be selected as the current splitting node. Experi-
mental results show that the decision trees constructed by DTCCRSCR tend to
have a simpler structure, higher classification accuracy and more understandable
rules than C5.0 in general.

The material of the paper is organized as follows. In Section 2, basic con-
cepts of characteristic relation-based rough sets and the cloud model as well as
the cloud transform are introduced. The DTCCRSCR method for constructing
decision trees in IIS is illustrated in Section 3. Experimental evaluation of the
proposed method compared with C5.0 is shown in Section 4. Section 5 concludes
the research work of this paper.

2 Preliminaries

2.1 Rough Set Theory under Characteristic Relation

The following basic concepts of rough sets under characteristic relation and their
extensions will be used in this paper.
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Definition 1. [7] An information system is defined as a pair < U, A > where
U is a non-empty finite set of objects, A = C ∪ D is a non-empty finite set of
attributes, C denotes the set of condition attributes and D denotes the set of
decision attributes, C ∩ D = ∅. Each attribute a ∈ A is associated with a set Va

of its value, called the domain of a.

Definition 2. [7] < U, A > is an IIS if there exists a in A and x in U that
satisfy that the value a(x) is missing. All the missing values are denoted by “?”
or “∗”, where the lost value is denoted by “?”, “do not care” condition is denoted
by “∗”.

In [7], Grzymala-Busse presented that the characteristic set and characteristic
relation can be determined by using the idea of blocks of attribute-values pairs
which is defined as follows.

Definition 3. [7] Let b be an attribute and v be a value of b for some cases. If
t = (b, v) is an attribute-value pair, v �=? and ∗, then a block of t, denoted [t],
is a set of all cases from U that attribute b have value v. If there exists a case
x such that v = b(x) =?, then the case x is not included in the block [(b, v)] for
any value v of attribute b. If there exists a case x such that v = b(x) = ∗, then
the case x is included in the block [(b, v)] for all value v of attribute b.

Definition 4. [7] Let B ⊆ A be a subset of attributes. The characteristic set
IC
B (x) is the intersection of blocks of attribute-value pairs (b, v) for all attributes

b from B for which b(x) is specified and b(x) = v.

Definition 5. [7] Let B ⊆ A be a subset of attributes. The characteristic rela-
tion, denoted by CB, is defined as: (x, y) ∈ CB ⇔ y ∈ IC

B (x).

The characteristic relation CB is reflexive but not symmetric nor transitive.
Obviously, it is a generalization of the indiscernibility, tolerance and similarity
relations in information systems [7].

Definition 6. [7] The lower and upper approximations of X with regard to
B under the characteristic relation are XC

B = ∪
{
IC
B (x)|x ∈ X, IC

B (x) ⊆ X
}

,

XB
C = ∪

{
IC
B (x)|x ∈ X, IC

B (x) ∩ X �= ∅
}

= ∪
{
IC
B (x)|x ∈ X

}
,respectively.

Similarly, we can define the concept of the weighted mean roughness in the
extension of RST under characteristic relation as that in [9].

Definition 7. Let < U, A > be an IIS. X ⊆ U , B ⊆ A, uB(X) = card(XC
B )

card(XB
C ) is a

precision of X with regard to B under the characteristic relation (0 ≤ uB(X) ≤
1). The weighted mean roughness of X with regard to B is defined as:

β(B) = 1 − (
m∑

j=1

ωjuB(Xj)) (1)

where j is the jth decision class of decision attributes, j = 1, 2, ..., m, m is the
number of decision class; Xj is the jth set of decision class; ωj, the percent of
Xj in U , is defined as: ωj = card(Xj)/card(U).



A New Decision Tree Construction Using the Cloud Transform 527

According to the definition of the weighted mean roughness under the charac-
teristic relation, we know the value of β(B) ranges from 0 to 1. When β(B) = 0,
there is no uncertainty. When β(B) = 1, this means the set B leads to the
greatest uncertain partition. As β(B) → 0, the uncertainty decreases.

2.2 Cloud Model and Cloud Transform

Cloud model integrates the properties of fuzziness and randomness for real-
izing the uncertainty transition between qualitative concepts and quantitative
descriptions. Let U = {u} be the universe of discourse and T be a linguistic term
associated with U . The membership degree of u in U to the linguistic term T ,
CT (u), is a random variable with a probability distribution. CT (u) takes values
in [0, 1]. A cloud is a mapping from the universe of discourse U to the unit in-
terval [0, 1] [12]. It is described with only three digital characteristics, expected
value Ex, entropy En and hyper entropy He. Ex is the position at the universe
of discourse, corresponding to the center of gravity of the cloud. En is a measure
of the fuzziness of the concept over the universe of discourse showing how many
elements in the universe of discourse could be accepted to the linguistic term.
He is a measure of the uncertainty of the entropy En. Close to the waist of the
cloud, corresponding to the center of gravity, cloud drops are most dispersed,
while at the top and bottom the focusing is much better [12].

Cloud transform is a method for discretization of continuous data based on
the cloud model which is especially suitable for processing a huge data. The
domain of every continuous attribute can be partitioned by the cloud transform
into many concepts represented by cloud models. The number of cloud produced
by the cloud transform is given by users. The cloud transform is expressed by
the following formula:

g(x) ≈
m∑

i=1

(ci∗fi(x)) 0 < MAX(|g(x) −
m∑

i=1

(ci∗fi(x))|) < ε (2)

where g(x) is the data distribution function, fi(x) is the expected function of the
cloud model, m is the number of cloud, ε is the error threshold. The course of
the cloud transform is to find out the expected value, entropy and hyper entropy
of every cloud [13].

3 A New Decision Tree Construction Using the Cloud
Transform and RST

3.1 Decision Tree Construction Based on RST

Based on the definition of rough sets under characteristic relation, we develop
the DTCRSCR algorithm which combines the characteristic relation-based RST
for mining classification knowledge from IIS [17]. It firstly computes the weighted
mean roughness of every condition attribute under the characteristic relation.
Then, the attribute whose weighted mean roughness is the smallest will be se-
lected as the splitting node. The algorithm is described as follows.
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Data: Data set sample (all of values of attributes are discrete), the collection of
condition attributes attribute list.

Result: decision tree.
Step1. With respect to sample, firstly compute the lower and upper
approximations of every condition attribute with regard to every partition set of
decision attributes. Then, calculate the weighted mean roughness of every
condition attribute.
Step2. The attribute B whose weighted mean roughness under the characteristic
relation-based rough sets is the smallest will be selected as the current splitting
node.
Step3. For every value of the selected attributes B, we obtain a data set Q of
corresponding branch by using test B.value = v.
Step4. For every branch Q, if it has not reached the leaf then call
DTCRSCR(Q, attribute list\{B}).
Step5. Return.

Algorithm 1. The DTCRSCR Algorithm

3.2 Decision Tree Construction Using the Cloud Transform and
RST

The proposed DTCRSCR algorithm cannot handle continuous data. Namely,
the attribute domain must be divided into categories at the beginning. Then a
new algorithm, Decision Tree Construction based on the Cloud Transform and
RST under Characteristic Relation (DTCCRSCR), is proposed which integrates
the cloud transform for dealing with continuous data (see Alg. 2).

Data: Data set sample (Not all attribute values are categorical data in sample.),
the collection of condition attributes attribute list.

Result: decision tree.
Step1. The cloud transform algorithm is applied to discretize continuous
attributes in sample and a new data set sample∗ which only contains categorical
data will be gained.
Step2. Call the DTCRSCR algorithm for data set sample∗.
Step3. Return.

Algorithm 2. The DTCCRSCR Algorithm

4 Experimental Evaluation

Experiments are performed on an 864MHz Pentium Server with 512MB of mem-
ory, running windows XP server and SQL server 2000. Algorithms are coded
in C#. Ten data sets, publicly available from the UC Irvine Machine Learning
Database Repository [14], are chosen as benchmark datasets for the performance
tests. The descriptions of experimental data are shown in Table 1.

Where E means the data set contains ‘?’ or ‘*’ and R means that we randomly
replace some data with ‘?’ or ‘*’ in the data set.
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Table 1. The Description Table of Experimental Data

Data set Tuples ? * Continuous Attribute(C/D)

monks-1 learn.tab 124 R R No 6/1
monks-1 test.tab 432 R R No 6/1
monks-2 learn tab 169 R R No 6/1
monks-3 learn.tab 122 R R No 6/1
monks-3 test.tab 432 R R No 6/1
breast-cancer.tab 286 E R Yes 9/1
hayes-roth learn.tab 132 R R Yes 5/1
flare1.tab 322 R R No 13/1
post-operative.tab 90 E R No 8/1
lymphography.tab 148 R R No 18/1

We first take experiments on the data set, breast-cancer.tab, to test whether
classification rules produced by DTCCRSCR is more understandable than those
of C5.0. Table 2 shows the episode of classification rules produced by C5.0.

Table 2. The episode of classification rules obtained by C5.0

ID of Rules Content of Rules

7 node caps=no, inv nodes=3-5, menopause=premeno, age<=46,
class=recurrence-events

18 node caps=no, inv nodes=0-2, irradiat=no, deg malig=3,
tumor size<=23, class=no-recurrence-events

29 node caps=no, inv nodes=0-2, irradiat=yes, deg malig=3, breast=right,
age>49, class=recurrence-events

Obviously, C5.0 does not handle continuous data well. The continuous domain
space is divided into some rectangular regions. It is uneasy to understand the
rules with continuous attributes in practical applications. Table 3 shows the
digital characteristics of five cloud models that represent concept “age”. They
are defined as the linguistic terms of low, middle-low, middle, middle-high and
high, while the episode of classification rules obtained by DTCCRSCR is listed in
Table 4. It can be observed that the decision trees constructed by DTCCRSCR
tend to have more understandable rules than C5.0.

Table 5 shows the result of the performance evaluation of DTCCRSCR com-
pared with C5.0 in constructing decision trees.

From Table 5, in most of data sets (7 out of 10 data sets), the decision trees
(here the number of leaves and nodes of the whole tree are listed) constructed
by DTCRSCR tend to have simpler structure and higher classification accu-
racy than C5.0. Only in the data set, “monks-1 test.tab”, the decision trees
constructed by DTCRSCR have a simpler structure than C5.0 and with the
same classification accuracy as C5.0. In these two data sets, “monks-3 test.tab”
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Table 3. The digital characteristics of the cloud model that represent a concept “age”

Linguistic term Ex En He

low 38 2.99 0.24
middle-low 42 1.49 0.56
middle 48 5.97 0.97
middle—high 59 4.48 0.98
high 65 2.99 0.43

Table 4. The episode of classification rules obtained by DTCCRSCR

ID of Rules Content of Rules

35 inv nodes=9-11, age=middle high, node caps=yes,
class=recurrence-events

23 inv node =3-5, deg malig=3, tumor size=middle big,
node caps=yes, irradiat=no, class=no-recurrence-events

15 inv nodes=0-2, breast=right, breast quad=left low
age=high, tumor size=middle, deg malig=2,
class=no-recurrence-events

Table 5. A performance evaluation of DTCCRSCR compared with C5.0

Data sets C5.0 C5.0 DTCCRSCR DTCCRSCR
(leaves/nodes) (accuracy) (leaves/nodes) (accuracy)

monks-1 learn.tab 50/59 91.87% 46/62 98.374%
monks-1 test.tab 220/371 50.926% 220/369 50.926%
monks-2 learn tab 146/255 90.374% 124/218 94.083%
monks-3 learn.tab 88/203 83.097% 86/161 86.066%
monks-3 test.tab 22/27 100% 25/34 100%
breast-cancer.tab 228/248 96.503% 90/135 97.902%
hayes-roth learn.tab 33/41 85.610% 29/40 96.212%
flare1.tab 64/132 84.290% 38/75 99.690%
post-operative.tab 61/104 90.412% 56/106 91.111%
lymphography.tab 47/138 98.649% 59/144 98.649%

and “lymphography.tab”, the decision tree constructed by DTCRSCR has more
complex structures than C5.0 but having the same classification accuracy.

5 Conclusions

Decision tree is one of the most significant classification methods in data mining.
However, most decision tree algorithms cannot handle missing data and contin-
uous data effectively. In this paper, a new algorithm, DTCCRSCR, based on the
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cloud transform and the characteristic relation-based rough sets for construction
of decision trees demonstrates that DTCCRSCR performs better than C5.0 in
most cases. But DTCCRSCR is quite time-consuming compared to C5.0 and
is thus unsuitable for data mining tasks in large data sets. Our future research
work is to study how to improve the DTCCRSCR algorithms.
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Abstract. In recent years, the network infrastructure has been im-
proved constantly and the information techniques have been applied
broadly. Because the misuse detection and anomaly detection methods
both have individual benefits and drawbacks, this paper supports the
point that combines these two methods to construct the whole intrusion
detection system by data mining technique. In this paper, we focus on
the improvement of the anomaly detection module in MINDS(Minnesota
Intrusion Detection System). By analysis, we use the method of multi-
dimension outlier point detection and adapt the connection score with
dynamic weight to improve the performance of intrusion detection sys-
tem. The improved unsupervised anomaly detection algorithm, also
named IUADA, is non-linear, and reduces both the response time and
the false alarm rate.

1 Introduction

The goal of intrusion detection is to discover intrusions in the computer or net-
work by observing various network activities or attributes. Here, the intrusion
refers to any set of actions that threaten the integrity, availability, or confiden-
tiality of a network resource. However, intrusion detection is not yet a perfect
technology, and gives the data mining technique the opportunity to make sev-
eral important contributions in the field of intrusion detection. It has becoming
a hot field and attracted some experts and researchers. The applications of data
mining in IDS consist of two directions:

Research in misuse detection has focused mainly on detecting network intru-
sions using various classification algorithms. Models of misuse with data mining
are created automatically, and can be more comprehensible and precise. But
they still can not detect unknown type attacks, and labeling data instances may
require a great deal of time and effort.

In supervised anomaly detection, given a set of normal data to train on, and
given a new set of test data, the goal is to determine whether the test data is normal
or anomalous. Recently, there have been several efforts in it, such as ADAM [1],

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 532–539, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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PHAD(Packet Header Anomaly Detection) [2],etc. The major benefit of anomaly
detection algorithms is to potentially detect the attacks of unknown type. The
limitation of anomaly detection systems is a possible high false alarm rate.

In the paper, we introduced an effective detection techniques namely MINDS
[3]. The basic features used in MINDS include source and destination IP
addresses, source and destination ports, protocol, flags, number of bytes and
number of packets, and the derived features include time-window and connection-
windows based on the basic features. The data is fed into the MINDS anomaly
detection module that uses an outlier detection algorithm to assign an anomaly
score to each network connection. Because the score is computed by the derived
features, MINDS has the drawbacks such as long response time and high false
alarm rate.

This paper focus on the unsupervised anomaly detection technique. In Section
2, the outlier detection method is introduced, and takes the option of combining
the misuse detection and anomaly detection, and MINDS is introduced in this
section, too. We present an improved unsupervised anomaly detection algorithm
(IUADA) in the following section. Then a set of experiments are taken in section
4, and the result show that our method has higher performance. Finally, we draw
the conclusions.

2 Anomaly Detection Techniques

2.1 Outlier Point Detection

In anomaly detection system, the data points are mapped into a feature space,
so we can determine what data points are outliers based on the position of the
points in the feature space. We label points which are in sparse regions of the
feature space as anomalous ones.

There are lots of outlier point detection algorithms and variant of them in [4].
Here, we introduce the Density Based Local Outliers approach.

The outlier factor of a data point is local in the sense that it measures the
degree of being an outlier with respect to its neighborhood. For each data exam-
ple, the density of the neighborhood is first computed. The LOF [5] of a specific
data example represents the average of the ratios of the density of its neighbors.
LOF requires the neighborhood around all data points be constructed. This in-
volves calculating pairwise distances between all data points, which is an O(n2)
process and makes it computationally infeasible for millions of data points. To
address this problem, we sample a training set from the data and compare all
data points to this small set, which reduces the complexity to O(n ∗ m), where
n is the size of the data and m is the size of the sample.

2.2 Combination of Misuse Detection and Anomaly Detection

In section 1, we have shown that misuse detection and anomaly detection both
have individual limitations: misuse detection systems can not detect unknown
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attack type and make network volatile easily, while anomaly detection systems
have high false alarm. So the combination of these two methods would contain
the individual benefits and avoid their drawbacks. There is an ideal solution for
intrusion detection. First, the misuse detection module can use its repository to
matching the attack connections of known type. Through this phase, system can
filter out some data to improve processing speed. It is more important that the
phase plays the role of data cleaning for following modules. Under the good con-
dition, the anomaly detection module can get good results by anomaly detection
algorithm such as outlier detection. Thus, the solution overcomes the individual
drawbacks of both modules. The incorporative system improves the speed and
accuracy, and can capture unknown intrusions. There are some systems proved
this point in [1] and [3].

3 Improved Unsupervised Anomaly Detection Algorithm

3.1 The Metrics of Evaluating Detection Systems

There are lots of metrics in [3] and [6]. The most common metrics include true
positive rate, false negative rate, false positive rate and true negative rate.

The metrics that were developed for evaluating network intrusions in our
method usually correspond to detection rate (true positive rate) as well as false
alarm rate (false positive rate).

Assume that a given network traffic in some time intervals, each connection
is assigned a score value which represented as a vertical line in Figure 1. This
score represents how anomalous the connection is. The dashed line represents
the real attack curve that is zero for normal network connections and one for
intrusive connections. The full line corresponds to the predicted attack curve,
and for each connection it is equal to its assigned score. These two curves allow
us to compute the error for every connection as the difference between the real
connection and the assigned score to the connection[3].

3.2 Improved Unsupervised Anomaly Detection Algorithm
(IUADA)

IUADA is based on MINDS, and we only focus on anomaly detection module
which uses an outlier detection algorithm to assign an anomaly score to each

Fig. 1. Assigning scores in network intrusion detection
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network connection. We select the algorithm of LOF approach which detects
outlier points in MINDS to compare with our method.

In Figure 1, we observe the features of the burst attack. The form of the real
attack curve is square-wave, while the predicted attack curve is a non-smooth
curve. At the left border of attack curve in a burst, we can find that there is
a large interval between the beginning of attack till the time when the first
network connection has the score value higher than the threshold. Because the
score in MINDS is computed by derived features partly, the score value will
increase slowly at the beginning of the burst, and the value will decrease slowly
in the end. According to the experiment result in MINDS[3], in proportion as the
width of burst increase the response time will rise nearly. Similarly, at the right
border of the real attack curve in a burst, the predicted attack curve falls slowly
and causes false alarms. So we present an idea to improve the performance of
unsupervised anomaly detection system by reduce the area between the predicted
attack curve and the real attack curve.

Fig. 2. Adapted scores in network intrusion detection

Thinking as follow, we increase the ascending speed by multiply the original
connection score by a weight greater than 1 at the ascending phase, while mul-
tiplying the original connection score by a weight less than 1 can increase the
descending speed at the descending phase. Fig.2 shows the adapted scores in
network intrusion detection. We can find that the response time and false alarm
rate are both reduced by comparing Figure 1 with Figure 2.

The attention focuses on how to construct the dynamic weight. The dynamic
weight should have such characteristics:

(1) When the score value increases, the weight value should be greater than
1, while the weight value should be less than 1 when the score value decreases.

(2) To increase the increasing speed, the weight value should growth
monotonously in ascending phase, while the weight value should decline
monotonously to increase the decreasing speed in the descending phase.

(3) The above two characteristics have a potential question that the score
value multiplied by weight may be more sensitive to noise during non-burst
periods. For solving this problem, the weight should change dynamically. The
change is small at the beginning, and then it enlarges with time elapse.

For these three reasons, we use the dynamic weight to get ideal result in
the experiment. To avoid the acute fluctuation of connection score, we apply
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the Gauss weight curve and the Reversed Gauss weight curve. In the detec-
tion, we need retain all of the original score value of connections to com-
pare. With time elapsed, we adapt the score value by changing the weight
dynamically.

The functions of two curves are expressed as follow:

f(x) = 1 + exp(−(
x − a

b
)2). (1)

g(x) = 1 − exp(−(
x − a

b
)2). (2)

The gauss function is dynamic because the width of bursts are not same as each
other. The parameter a in equality (1) and (2) increase in the detection process.

The algorithm IUADA is as Algorithm 1

Algorithm 1. IUADA
1: Repeat until the detection is over
2: Get the current original score OS2 and compare it with previous one OS2;
3: If OS2 > OS1 Then
4: If flag <> INCREASE Then
5: increase phase: weight = 1; flag = INCREASE; i = 1;
6: Else
7: weight = Gauss Increase(i + +);
8: If OS2 < OS1 Then
9: If flag <> DECREASE Then

10: decrease phase: weight = 1; flag = DECREASE; i = 1;
11: Else
12: weight = Gauss Decrease(i + +);
13: Adapted connection score MS = OS2 ∗ weight;
14: If MS >= threshold Then
15: The connection is intrusive;
16: Else
17: The connection is normal;
18: OS1 = OS2;

where the function Gauss Increase and Gauss Decrease are used to compute
the dynamic weight. Take the Gauss Increase function for example, parameter
i represents the detection schedule, the function adjust the curve function and
compute the weight value.

We apply the LOF approach to detect outlier data points in actual experiment.
To avoid the high time complexity, we sample a small data set namely referring
set from all of the data points. Outlier in this small set, would affect accuracy
of experiment. So we filter the outlier from the referring set before using LOF
approach.
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4 Experiments

We applied the improved unsupervised anomaly detection algorithm to 1998
DARPA Intrusion Detection Evaluation Data[6]. The DARPA’ 98 data contains
training data and test data. The training data consists of 7 weeks of network-
based attacks inserted in the normal background data. Attacks in training data
are labeled. The test data contained 2 weeks of network-based attacks and normal
background data. 7 weeks of data resulted in about 5 million connection records.
The data contains four main categories of attacks: Denial of Service (DoS), R2L,
U2R and Probing.

In our experiment, we built the environment like MINDS, and the system
consisted of three modules: feature abstraction, misuse detection and unsuper-
vised anomaly detection. In the anomaly detection module, we adapted the score
values of network connection using a dynamic weight algorithm. For comparing
with MINDS, we sampled sequences of normal connection records in order to
create the normal data set that had the same distribution as the original normal
data set. Then we used the sample data set to train our anomaly detection, and
examined how well the detection worked. We focus on response time and false
alarm rate to evaluate the performance of our algorithm.

We used the TCP connections from 5 weeks of training data (499,467 connec-
tions), where we sampled 1% records that correspond to the normal connections.
Also we considered a random sample of 1000 connection records that correspond
to normal data in order to determine the false alarm rate.

The first 3 columns in Table 1 show connection bursts of attack types and
their burst lengths., and the last 4 columns represent the experiment results.
The response time (t) represents the first connection for which the score value
is larger than the threshold. It is apparent from Table 1 that the method with
smaller response time is improved unsupervised anomaly algorithm since it uses
dynamic weight. The larger the number of burst length, the larger the difference
between the LOF and IUADA response time. It is the result of dynamic weight
working on connection scores.

We compared IUADA with the Nearest Neighbor(NN) and Mahalanbis Dis-
tance methods. For the NN method, the number of nearest neighbor is 1 and
the threshold is 2%; for the Mahalanbis Distance method, the threshold is 2%,
and for IUADA, the threshold is 60. Fig 3 show the roc results, the true alarm
rate of IUADA is better than NN and Mahalanobis methods, except when the
false alarm rate is 0.02.

Table 1 reports on another metric for evaluation of bursty attacks, namely false
alarm area. The smaller the false alert area between the real and the predicted
attack curve, the better the intrusion detection algorithm. The false alarm area
(FA) in Table 1 was normalized, such that the total surface area was divided by
the total number of connections from the corresponding attack burst. We can
see the improved unsupervised anomaly algorithm is better than LOF approach
from Table 1.
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Fig. 3. ROC Curve

Table 1. The connection bursts and results in experiment

Burst position Burst length Attack type
LOF IUADA

FA t FA t

Week1,burst1 15 neptune(DoS) 0.03 1 0.03 1
Week2,burst1 50 guest(U2R) 0.22 1 0.15 1
Week2,burst2 102 portsweep(probe) 0.5 20 0.33 14
Week2,burst3 898 ipsweep(probe) 0.61 2 0.4 2
Week2,burst4 1000 back(DoS) 0.3 3 0.2 3
Week3,burst1 15 satan(probe) 0.89 0 0.58 0
Week3,burst2 137 portsweep(probe) 0.8 30 0.52 14
Week3,burst3 105 nmap(probe) 0.3 2 0.2 2
Week3,burst4 1874 nmap(probe) 0.33 13 0.22 9
Week3,burst5 5 imap(R2L) 0.14 2 0.1 2
Week3,burst6 17 warezmaster(U2R) 0.08 1 0.06 1
Week4,burst1 86 warezclient(U2R) 0.56 1 0.37 1
Week4,burst2 6104 satan(probe) 0.12 10 0.09 7
Week4,burst3 1322 pod(DoS) 0.34 1 0.23 1
Week4,burst4 297 portsweep(probe) 0.48 17 0.32 12
Week4,burst5 2304 portsweep(probe) 0.2 1 0.14 1
Week5,burst1 3067 satan(probe) 0.06 21 0.05 14
Week5,burst2 5 ffb(R2L) 0.86 0 0.56 0
Week5,burst3 1021 portsweep(probe) 0.49 8 0.32 6
Total 18424

5 Conclusions

In anomaly detection, the task is to detect a lot of unknown network connec-
tions and recognize the outlier points from them, which are regarded as intrusive
behaviors. This task is base the hypothesis that the number of normal behaviors
is larger than that of anomalous behaviors, and anomalous behaviors are differ-
ent enough from normal ones. If the number of anomalous behaviors is large,
anomaly detection can not be effective. This paper emphasizes the combination
of misuse detection and anomaly detection, which has great benefits. The sys-
tem can filter some of intrusive behaviors by match-ing connections with known
attack types, so the unsupervised anomaly detection can be work effectively.
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Additionally, human experts can mining the attack model from the anomalous
behaviors and reinforce the known model detection.

MINDS uses a suite of data mining techniques to automatically detect attacks
against computer networks and systems. There are four modules in MINDS,
the most important one is anomaly detection module. The data is fed into the
MINDS anomaly detection module that uses an outlier detection algorithm to
assign an anomaly score to each network connection to determine if they are
actual attacks or other interesting behavior. But there are still the problems of
long response time and high false alarm rate in anomaly detection. In this paper,
we present the thinking to improve the performance of unsupervised anomaly
detection. The algorithm reduces the response time and false alarm rate by using
a dynamic weight to change the connection scores. Considering the DARPA 98’
data, performed experiment demonstrates that our algorithm is more successful
than anomaly detection module in MINDS.
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Abstract. Manifold learning has become a hot issue in the research
fields of machine learning and data mining. Current manifold learning
algorithms assume that the observed data set has the high density. But,
how to evaluate the denseness of the high dimensional observed data
set? This paper proposes an algorithm based on the average geodesic dis-
tance as the preprocessing step of manifold learning. Moreover, for a high
dense data set evaluated, we further utilize the average geodesic distance
to quantitatively analyze the mapping relationship between the high-
dimensional manifold and the corresponding intrinsic low-dimensional
manifold in the known ISOMAP algorithm. Finally, experimental results
on two synthetic Swiss-roll data sets show that our method is feasible.

1 Introduction

In recent years we observe intensive research in manifold learning. The purpose
is to map a set of data on a manifold in high-dimensional space to a lower-
dimension space. Moreover, manifold learning has been associated with human
visual perception [1]. It has important applications in areas such as pattern
analysis, data mining, and multimedia data processing. Some known manifold
learning algorithms have been proposed and fully researched [3][5]. ISOMAP
is a promising method because of the use of geodesic distances [8]. Intuitively,
geodesic distance between a pair of points on a manifold is the distance measured
along the manifold. Owing to geodesic distance reflects the underlying geometry
of data, data embedding using geodesic distance is expected to unfold highly
twisted data manifolds. But, in ISOMAP method, geodesic distance estimation
using a neighborhood graph constructed by using either K-NN or ε-neighbor ap-
proach has the following several problems [4][6]: a) Neither K-NN nor ε-neighbor
approach guarantees the connectivity of the neighborhood graph. In particular,
both approaches fail to build connected neighborhood graphs when the data
spread across multiple clusters. Most applications would require that geodesic
distance between every pair of data points is measurable. Using a disconnected
neighborhood graph, however, we cannot measure the graph distance between
every pair of data points. Consequently, the data cannot be embedded into a
single low-dimensional coordinate system. b) How to choose a proper value of
the parameter K or epsilon is a difficult problem. If it were chosen too small,

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 540–547, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Applications of Average Geodesic Distance in Manifold Learning 541

the neighborhood graph would be disconnected. If it were chosen too large, a
so-called ”short-circuit” problem [2] would occur and the constructed neighbor-
hood graph would not reflect the nature of the data manifold. This short-circuit
problem makes the constructed neighborhood graph sensitive to noise in the
data. c) The constructed neighborhood graph contains many holes and looks
like a Swiss cheese [7], which means that graph distances, especially the short
ones, may not be good estimations of the corresponding geodesic distances.

These problems motioned above have a great relationship with the density of
the observed data set. In practical applications of manifold learning, we assume
that the set of data is high dense and smooth [2][3]. But, whether the assump-
tion can be guaranteed or not, there isn’t a quantitative measure at present.
We proposed the limit of the average geodesic length between any two points as
the measure criterion of the density of data points. With the increasing of data
points, if the limit of the average geodesic length between any two points exists,
the data manifold is a sufficiently high density and manifold learning algorithms
output coordinate vectors in a lower-dimensional Euclidean space that can just
represent the intrinsic geometry of the data. In addition, how to quantitatively
analyze the mapping relationship between the intrinsic dimensions and the ob-
servation space still is a difficult problem [6]. The proportion of the average
geodesic length between the intrinsic lower-dimensional space and the observa-
tion space was discussed. The proportion may be thought as the magnification
factor from the observation space to the intrinsic low-dimensional space.

The rest of the paper is organized as follows. In Section 2, we discuss ISOMAP
algorithm and the density assumption of data set. In Section 3, the measure
criterion of the density of data points is proposed and analyzed. In Section
4, we briefly describe the opinion of using the average geodesic distance for
quantitatively analyzing the embedding relationship. In section 5, an algorithm
based on the average geodesic distance is put forward. Experimental results are
reported in Section 6. Finally, we give some concluding remarks and future works
in Section 7.

2 ISOMAP Algorithm

ISOMAP rests on an assumption. That is, as the number of data points increases,
the graph distances provide increasingly better approximations to the intrinsic
geodesic distances, and become arbitrarily accurate in the limit of infinite data
which has a sufficiently high density. Under this condition, ISOMAP algorithm
has three steps [2][3]. The first step determines which points are neighbors on
data manifold, based on Euclidean distance dX(i, j) between pairs of points (i, j)
in the input space X . There are two methods which connect each point to all
points of its K-nearest neighbors or to all within some fixed radius ε. These
neighborhood relations are represented as a weighted graph G over data points,
with edges of weight dX(i, j) between neighboring points. The second step is
to estimate the geodesic distances dM (i, j) between all pairs of points on the
manifold M by computing their shortest path distances dG(i, j) in the graph G.
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The final step applies classical MDS algorithm to the matrix of geodesic distances
DG = {dX(i, j)}, computing an embedding of the data in a lower-dimensional
space Y that best preserves the manifold’s estimated intrinsic geometry. The
simple illustration [4] of ISOMAP is shown in Fig. 1.

Fig. 1. Data embedding based on geodesic distances

For data points with a sufficiently high density, it can always choose a neigh-
borhood size (K or ε) large enough that the graph will (with high probabil-
ity) have a path not much longer than the true geodesic, but small enough
to prevent edges from ”short circuit” in the true geometry of manifold. In
literature [3], more precisely, given arbitrarily small values of λ1, λ2 and μ,
we can guarantee that, with probability 1 − μ at least, estimates of the form
(1 − λ)dM (i, j) ≤ dG(i, j) ≤ (1 + λ)dM (i, j) will hold uniformly over all pairs
of data points (i, j). But, how to know that a data set has a sufficiently high
density? We give a technique which can quantitatively resolve the problem.

3 The Average Geodesic Distance

Let Xn = {x1, x2, · · · , xn} be a compact data set in smooth manifold M . A
Riemann metric [9][10]is a mapping which associates each point x ∈ M to an
inner product g(•, •) between tangent vectors at x. Then, Riemann manifold
(M, g) is just a smooth manifold with a given Riemann metric g. As an example,
when M is a sub-manifold of the Euclidean space Rd, the natural Riemann metric
on M is just the usual dot product between tangent vectors. For any tangent
vector v at point x, we can define its norm as |v|gx = gx(v, v). Using this norm,
it is natural to define the length of a piecewise smooth curve Γ (t) on manifold
M as

L(Γ ) =
∫ s

0
| d

dt
Γ (t)|gxdt (1)

Then, the geodesic distance between points x1, x2 ∈ M is the length of the
shortest piecewise smooth curve between two points, that is:

dg(x1, x2) = inf
Γ

{L(Γ ) : Γ (0) = x1, Γ (s) = x2} (2)
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For compact data set Xn = {x1, x2, · · · , xn} on manifold M , we define the
sum of the geodesic distances between any two points as:

Ln =
∑

i<j

dg(i, j) (3)

Theorem 1. Let M be a smooth compact manifold, and Xn = {x1, x2, · · · , xn}
is a high-dense data set on M , then,

lim
n→∞

Ln

n(n − 1)
= lim

n→∞

∑

i<j

d̄g(xi, xj)

n(n − 1)
= constant (4)

where d̄g(xi, xj) is the approximation of dg(xi, xj) on M .

Proof. Set Xn = {x1, x2, · · · , xn} and Xn+1 = {x1, x2, · · · , xn, xn+1} be two
high dense data sets on manifold M which has boundary. Look for the nearest
neighborhood of xn+1 in {x1, x2, · · · , xn}. If xi is the nearest neighborhood,
then |xi − xn+1| is sufficiently small quantity because data set Xn+1 is high
dense. So,

Ln+1 = Ln +
∑

j=1,j �=i

d̄(xi, xj) + (n − 1)ε1 + ε2,

where ε1, ε2, are sufficiently small quantities. Then,
lim

n→∞

(
Ln+1

(n+1)n − Ln

n(n−1)

)
= lim

n→∞
(n−1)Ln+1−(n+1)Ln

(n+1)n(n−1)

= lim
n→∞

(n−1)(Ln+
∑

j=1,j �=i

d(xi,xj)+(n−1)ε1+ε2)−(n+1)Ln

(n+1)n(n−1) = 0

Corollary 1. Set Xn = {x1, x2, · · · , xn} and Ym = {x1, x2, · · · , xm} be any two
high dense data sets on the same manifold M which has boundary. Then

lim
n→∞

m→∞

(
Ln

n(n − 1)
− Lm

m(m − 1)

)

= 0 (5)

4 Analysis of the Embedding Relationship

In the section, we briefly describe the opinion of using the average geodesic dis-
tance for quantitatively analyzing the embedding relationship. In the field of
manifold learning, how to quantitatively analyze the mapping relationship be-
tween the intrinsic low-dimensional space and the observation space still is a
difficult problem. In literature [6], magnification factor is introduced and used
to describing the proportion of the changing trend between observed data man-
ifold and corresponding low-dimensional manifold. In some degree, it quanti-
tatively describes the curved degree in high-dimensional space. Magnification
factor is defined as the proportion of the ”micro-arc” between the intrinsic lower-
dimensional space and the observed space. But it is hard to present the micro-
arc. In this paper, we use the proportion of the corresponding average geodesic
distance between observed data manifold and corresponding low-dimensional
manifold to describe the magnification factor. This is a kind of simple and ad-
vantageous technique.
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5 Applications of Average Geodesic Distance

For high dense data set, any point has a best neighborhood point. When any
point is deleted, the average geodesic distance is hardly influenced. In sparse data
set, some points have large distances with their neighborhood points. When one
of these points is deleted, the average geodesic distance will have larger change.
So we propose a manifold learning algorithm based on average geodesic distance
which can distinguish whether the observed data set is highly dense or not. To the
data set of satisfying requirement, the algorithm can come out the low-dimension
presentation of all data points and a new presentation of magnification factor
for analyzing the embedding relationship. The detailed steps of our algorithm
are described as follows:
Step 1 ) Initialize K, ρ and set i = 1, g[1 · · ·n] = 0, (where K denotes the

number of the nearest neighborhood points of any point. ρ denotes the
compact degree boundary of the observed data set. i denotes the i-th
data point. The element g[i] of the array g[1 · · ·n] stores the average
geodesic distance after deleting the i-th point. n denotes the number
of points in data set).

Step 2 ) To every i = 1, ..., n, delete the i-th data point from the observed data
set. Then execute the following a-b-c steps:
a. Construct k-nearest neighborhood graph G.
b. Compute shortest paths between any two points. Then, get the

geodesic distance between them and the geodesic connected graph
G.

c. Compute the average geodesic distance g[i] of the graph G .
Step 3) To the full data set, construct the geodesic connected graph G and

compute the average geodesic distance f by a-b-c steps in step 2. If
there exists i and |f − g[i]| > ρ , the data set isn’t compact and exit
the program. Else run step 4.

Step 4 ) For the full data set, compute low-dimensional embeddings D by man-
ifold learning algorithm and compute the average geodesic distance fd

of the low-dimensional coordinates.
Step 5) Compute the magnification factor fd/f .

6 Experiment and Analysis

The proposed approach has been applied to two synthetic Swiss-roll data sets
containing 1000 and 500 data points which are respectively chose the fore part
from Swiss roll data.mat at http://isomap.stanford.edu/[2][3], named as A1-
DATA-SET and A2-DATA-SET. A1-DATA-SET containing 1000 points is ana-
lyzed by the algorithm motioned above. After deleting a point from A1-DATA-
SET, the average geodesic distance is calculated. Repeating 1000 times in the
second step of the algorithm, the errors between these average geodesic distances
and that of A1-DATA-SET change in the range of 0.1, as showed in Table 1.
When the given compact degree of data set is more than ρ = 0.1, A1-DATA-
SET is considered as a high dense data set. Under the condition of ρ = 0.1,
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A2-DATA-SET containing 500 points is tested and the result shows that A2-
data-set is considered as the relative sparse, as showed in Table 2. Of course,
when sampling from the whole manifold, any point may be interfere the degree
of the average geodesic distance depending on the density of data set and the
number of data points isn’t an absolute factor.

ISOMAP is a promising method because of the use of geodesic distances.
ISOMAP should not be applied to the sparse data set, such as A2-DATA-SET
tested above. To A2-DATA-SET, the K-nearest neighborhood graphs show in
Fig. 2. As K = 2, the K-nearest graph has disconnected components in Fig.2(a).
The K-nearest graph appears the obvious ’short-cut’ phenomenon when K ≥ 3,
as shown in Fig.2(b). That is, any K value can’t guarantee that the K-nearest
neighborhood graph is full connectivity which is not obvious ”short-cut” phe-
nomenon. The proposed algorithm has still been applied to A1-DATA-SET. The
results show that it is a high dense data set when the given dense degree of data
set is more than 0.01. In the case of K = 2 and 3, the K-nearest neighborhood
graphs aren’t the full connected graphs. Their largest connected components con-
tain respectively 185 and 985 data points. The K-nearest neighborhood graph
is full connected graph when K ≥ 4. Especially, for the 4-nearest neighborhood
graph, any path of two points is accessible, and it doesn’t appear obvious ”short-
cut” phenomenon in Fig. 3(a). The two-dimensional embedding which presents

Table 1. The change of average geodesic distance after deleted a point from A1-DATA-
SET (K = 5)

The i-th Deleting The Average Geodesic Distance g[i] The Error |f − g[i]|

· · · · · · · · ·
501 22.7426 0.0637
502 22.6614 0.0175
503 22.7115 0.0326
504 22.6621 0.0168
505 22.6746 0.0043
· · · · · · · · ·

Table 2. The change of average geodesic distance after deleted a point from A2-DATA-
SET (K = 5)

The i-th Deleting The Average Geodesic Distance g[i] The Error |f − g[i]|

· · · · · · · · ·
201 17.5094 0.0153
202 17.4791 0.0150
203 17.4860 0.0081
204 17.4666 0.0275
205 17.1675 0.3266
· · · · · · · · ·
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Fig. 2. The K-nearest neighborhood graph of A2-DATA-SET

Fig. 3. Experimental results of A1-DATA-SET

the geometric structure of A1-DATA-SET is showed in Fig. 3(b). In practical
application, the value of K is chose as a minimize integer which can guarantees
full access between any two points in K-nearest neighborhood graph. Finally, we
calculate the average geodesic distance of original A1-DATA-SET and the corre-
sponding distance of two-dimensional embedding. Their values are respectively
24.4536 and 19.7750. So, the magnification factor is equal to 0.8087. It shows
that the scale of the embedding manifold is almost 80.87% while the relationship
between the observed data points is preserved.

7 Conclusion

This paper proposes an algorithm based on the average geodesic distance as the
preprocessing step of manifold learning. Moreover, for a high dense data set eval-
uated, we further utilize the average geodesic distance to quantitatively analyze
the mapping relationship between the high dimensional manifold and the corre-
sponding intrinsic low dimensional manifold in the known ISOMAP algorithm.
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Finally, experimental results on two synthetic Swiss-roll data sets show that our
method is feasible. In practical application such as pattern analysis, data mining
and face recognition, we will generalize the novel algorithm and maybe further
to expand the promising ISOMAP algorithm. In addition, the part technique
may be used to pre-process the data set in LLE algorithm [5].
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Abstract. This paper introduces a variety of graph structures on data.
The properties of the local graphs around an instance are studied. A
fast approach for generating local graphs and classifying by structurally
connected instances is then sketched out.

1 Introduction

In recent years, the use of graph representations has gained popularity in data
mining and knowledge discovery[1][2]. These methods now have been successfully
applied in many areas, such as graphical symbol recognition, character recogni-
tion, shape analysis, biometric person authentication by means of facial images
and fingerprints, computer network monitoring, and Web document analysis
[1][3][4].

Pan et al. [5] showed that a variety of graph structures can be easily gener-
ated from relational data. For real-valued data, these graphs are generated from
order relations on each dimension. With these graphs, we can determine the
“nearest neighbors” of an input vector by collecting directly connected instance
of it, and then use the principle of structure similarity to classify input vectors.
Once structures are generated from data, we can be free of some restrictions
on original data. These restrictions include that data are relational or multi-
relational, that data attributes are real value or categorical value, that there are
domain knowledge about data or not, that there are missing values in data or
not. In most data mining methods, these restrictions lead to different algorithms
design.

But the computational complexity of the straightforward approach is very
high in classifying new vectors. In this paper, we provide a faster algorithm. The
rest of the paper is organized as follows. Section 2 introduces the definition of
Hasse graph and its application in classification. Some properties of local Hasse
graph are provided in Section 3. Section 4 presents a faster approach without
the dimensional effect on computation to refine the intuitive approach. Section
5 concludes the research work of this paper.

� This work is partly supported by the Natural Science Foundation of Sichuan
Province, China (05JY029-021-2).
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2 Hasse Graphs on Data

We consider the standard classification problem. Let 〈D, f, C〉 be the training
data, where D is a collection of n-dimension real-valued vectors in X1 × X2 ×
... × Xn, C is the set of labels, and f : D → C is a function which assigns each
vector in D a label in C. And C contains m classes Cj , j = 1, 2, . . . , m, where Cj

is a nominal data. But there will be different instances d1 and d2 in D are the
same vector 〈x1, x2, · · · , xn〉 in X1 × X2 × ... × Xn, and f (d1) and f (d2) are
equal or not equal in C. To differentiate instances in D, we add identity number
to instances in D such that each instance is represented as 〈k, x1, x2, · · · , xn〉,
where k(= 1, 2, · · · , l) is the id of the instance, and l is the size of D.

Now we can describe the process of generating structures from data. For each
Xi, i = 1, 2, · · · , n, we consider the ordered set Pi = 〈Xi, �〉, where � is the
order relation on domain of Xi – the set of real numbers. The Cartesian product
of two ordered sets P = 〈P , �〉 and P′ = 〈P ′, �〉 is naturally an ordered set
P × P′ =

〈
P × P ′, �P×P ′

〉
, where (P × P ′) is the Cartesian product of P and

P ′, and (x1, x2) �P×P ′ (y1, y2) iff x1�y1 and x2 �y2. Let P∗
i = 〈Xi, �〉 be the

dual ordered set of Pi = 〈Xi, �〉, P1 and P2 be the order sets on Xi and X2.
Then there are four ordered sets, P1 × P2, P∗

1 × P2, P1 × P∗
2 and P∗

1 × P∗
2, on

X1×X2. Similarly, let P0
i = Pi = 〈Xi, �〉, P1

i = P∗
i = 〈Xi, �〉, i ∈ {1, 2, · · · , n},

there are 2n order relations on X1 × X2 × ... × Xn:

Mj = Pj1
1 × Pj2

2 × · · · × Pjn
n =

〈
X1 × X2 × ... × Xn, �j

〉
(1)

where j = 0, 1, 2, · · · , 2n −1, and for i ∈ {1, 2, · · · , n}, ji is either 0 or 1, counted
from following equation:

ji =
(2n + j) mod 2i − (2n + j) mod 2(i−1)

2(i−1) (2)

This means that:

j =
n∑

i=1

ji·2(i−1) (3)

and the binary representation of j is

jnjn−1 · · · j2j1
︸ ︷︷ ︸

n

If we also write � as �0 and � as �1, then (x1, x2, · · · , xn)�j (y1, y2, · · · , yn)
iff xi�jiyi , i = 1, 2, · · · , n.

The order relation �j in Mj restricting on data set D may not lead to or-
der relation on D, for there may be two instances which have the same value –
they are duplicate vectors but may be labeled differently. This breaks the anti-
symmetric property of order relations. For dk ∈ D, dk = (k, xk

1 , xk
2 , . . . , xk

n), let
vk = (xk

1 , xk
2 , . . . , xk

n), dk is also written as (k, vk).
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Definition 1. A graph HD
j =

〈
D, Ej

〉
is called the Hasse graph on the instances

set D if and only if for any ds, dr ∈ D, (ds, dr) ∈ Ej, vs is a cover of vr

according to the order relation �j of ordered set Mj , or vs = vr.

If (ds, dr) ∈ Ej , we also write ds�jdr. The local graph of an instance d ∈ D is
considered as the subgraph of Hasse graph HD

j =
〈
D, Ej

〉
, in which only those

instances connected with d is contained, and we define it as

LocDj (d) =
〈
locj (d) , Ej (d)

〉
. (4)

where
locj (d) = {ds |(ds, d) ∈ Ej or (d, ds) ∈ Ej } ,

Ej (d) = {(ds, dr) |ds = d or dr = d} .

There are 2n local structures of the query instance d in D ∪{d}. Because of dual
of the order relation, we have locj (d) = loc2n−1−j (d) .

Let D be the training data set, Ci, i = 1, 2, · · · , m, be the class labels, and
λj (Ci, d) be the number of the instances in locj (d)−{d} whose class label is Ci.
The support of assigning the query instance d to class Ci, according to data
set D, is defined as

support (Ci, d) =

2n−1∑

j=0
λj(Ci, d)

2n−1∑

j=0
|locj (d) − {d}|

. (5)

The conceptually straightforward approach to predict the class label of d is to
assign the query instance d the class label Cd such that support

(
Cd, d

)
is the

maximum of all support (Ci, d), i = 1, 2, · · · , m. We use LGM(D, d) to denote
this predicted class label of d, then

LGM(D, d) = arg max
Ci∈{C1,C2,...,Cm}

support (Ci, d) (6)

3 The Properties of the Local Graphs

We can easily see that computational complexity of the above approach is very
high in classification of new vectors. For a feature space of n dimensions, there are
2n local graphs of the query instance d. Because of the dual of the structures, we
need to consider 2n−1 local structures. The straight forward approach is to search
2n−1 local structures from Hasse graphs HD∪{d}

j , j = 0, 1, 2, · · · ,2n−1 −1. Hence,
the computational complexity grows exponentially with the dimensionality of the
feature space. To consider faster algorithms we study the properties of the local
graphs first.
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Definition 2. For a query instance d, its total local points set is

loc(d) =
2n−1⋃

0

locj(d) =
2n−1⋃

0

locj(d),

where locj(d) is the set of vertices of the local graph around d in HD∪{d}
j .

Proposition 1. Let d′ = (k′, x′
1, x

′
2, . . . , x

′
n), d = (k, x1, x2, . . . , xn) and

J (d′ − d) =
n∑

i=1

2i−1sgn∗ (x′
i − xi) , (7)

where

sgn∗ (x) =
{

0, x � 0
1, x < 0 .

We have d′�J(d′−d)d.

Proof. For Mj = Pj1
1 × Pj2

2 × · · · × Pjn
n , by Equation (3), we have

j =
n∑

i=1

ji · 2(i−1).

Comparing this equation with Equation (7), we have

MJ(d′−d) = P
sgn∗(x′

1−x1)
1 × P

sgn∗(x′
2−x2)

2 × · · · × P
sgn∗(x′

n−xn)
n .

Hence d′�J(d′−d)d.

Theorem 1. (Eliminable instances theorem) If d′ /∈ locJ(d′−d)(d), then
for any j, d′ /∈ locj(d). Conversely, if for some j, d′ ∈ locj(d), then d′ ∈
locJ(d′−d)(d).

Proof. If d′ /∈ locJ(d′−d)(d), then d′�J(d′−d)d is not true. By Definition 1 of Hasse
graphs, there must be a path from d′ to d in Hasse graph HD

J(d′−d)
, that is, there

are d1, d2, · · · , dr such that

d′�J(d′−d)d
1�J(d′−d)d

2�J(d′−d) · · · �J(d′−d)d
r�J(d′−d)d.

Namely,
dr ∈ locJ(d′−d)(d),

and
dr �= d′.

Suppose for some j, d′ ∈ locj(d), then d′�jd or d�jd
′. If d′�jd, let

j =
n∑

i=1

ji · 2(i−1),
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and

J (d′ − d) =
n∑

i=1

ja
i · 2(i−1).

Let Mj = Pj1
1 × Pj2

2 × · · · × Pjn
n , and

MJ(d′−d) = Pja
1

1 × Pja
2

2 × · · · × Pja
n

n ,

we have
x

′

i �ja
i xr

i �ja
i xi

and
x

′

i �ji xi.

Then if for some i, ji �= ja
i , there must be

x
′

i = xr
i = xi.

Hence, for any i,
x

′

i �ji xr
i �ji xi,

is also true. Because d′�jd, This says that v′ = vr or vr = v. Similarly,
for any s ∈ {1, 2, · · · , r}, we have that v′ = vs or vr = v. Finally, we ob-
tain that

{
d′, d1, d2, · · · , dr

}
⊆ locJ(d′−d)(d), this is contrary to the condition

d′ /∈ locJ(d′−d)(d). If d�jd
′, it similarly leads to the contrary. Hence, the propo-

sition holds.

Corollary 1. Let

r (ds−dr) =
n∑

i=1

(1 − |sgn (xs
i − xr

i )|) , (8)

where

sgn (x) =

⎧
⎨

⎩

1, x > 0
0, x = 0

−1, x < 0
,

If for some ja �= jb, ds�jadr and ds�jbdr are both true, then r (ds−dr) �= 0
hold.

Corollary 2. Notation being as Proposition 1, if for some i�, x′
i� = x

i
� , let

J� (d′ − d) =

⎛

⎝
∑

i=1,2,··· ,n; i�=i�

2i−1sgn∗ (x′
i − xi) + 1

⎞

⎠ + 2i�−1. (9)

Then d′�J�(d′−d)d. Furthermore, d′�J(d′−d)d, d′�J�(d′−d)d, d′�
2n−J(d′−d)+1

d and
d′�

2n−J�(d′−d)+1
d are all true.
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Theorem 2. (Disjoint local graphs theorem) Let

d′ = (k′, x′
1, x

′
2, . . . , x

′
n) ∈ loc(d),

and

R (d′ − d) =
{

r (d′ − d) + 1, r (d′ − d) �= n
n, r (d′ − d) = n

Then there are a set
{

j1, j2, · · · , j2R(d′−d)
}

⊆ {0, 1, 2, · · · , 2n − 1} such that

d′ ∈ locjt (d), t = 1, 2, · · · , 2R(d′−d), and for any j
′

/∈
{
j1, j2, · · · , j2R(d′−d)

}
,

d′ /∈ locj′ (d).

Proof. We know there must be some j such that d′ ∈ locj(d). Theorem 1 says
that for any j, if d′ ∈ locj(d), then d′ ∈ locJ(d′−d)(d). Suppose we have listed

all i∗1, i
∗
2, · · · , i∗s such that sgn

(
x′

i∗
u

− xi∗
u

)
= 0, u = 1, 2, · · · , s. Thus by Corol-

lary 2 we can enumerate all j1, j2, · · · , j2R(d′−d)
such that d′ ∈ locjt (d), t =

1, 2, · · · , 2R(d′−d). Hence there are not any j
′
such that j

′
/∈

{
j1, j2, · · · , j2R(d′−d)

}

and d′ ∈ locj′ (d).

Theorem 3. (Support counting in total local structure points set) Let
〈D, f, C〉 be the training data, and C contains m labels Ci ∈ C, i = 1, 2, . . . , m;
r (d′ − d) is obtained by equation 8. We have

support (Ci, d) =

∑

d′∈loc(d),d′ �=d,f(d′)=Ci

2R(d′−d)

∑

d′∈loc(d),d′ �=d

2R(d′−d) . (10)

Proof. By Proposition 2, each d′ ∈ loc(d) will only appear in 2R(d′−d) local
structures. By Equation (5), Equation (10) holds.

4 Faster Generation of Local Hasse Graphs

In this section, we will present a faster algorithm for classification and do not
need to search 2n−1 times on D when classifying a new instance. By virtues of
above propositions, corollaries and theorems, we can reduce computational cost
of the presented method through using following tactics:

1. Instead of searching HD
1 to HD

2n , we only search local graphs LocJ(d′−d) (d)
of input instance d in Hasse graphs HD

J(d′−d)
for all d′ in D. By the eliminable

instances theorem, if for some j, d′ ∈ locj(d), then d′ ∈ locJ(d′−d)(d). So we
easily know

loc (d) =
⋃

d′∈D
locJ(d′−d) (d) .
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Table 1. The Training Data

D d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11
x value 0.2 −0.2 −2 1 0.5 −0.6 −0.7 −1 3 −2 −0.3
y value 2 3.5 2 1 0.5 0.2 0.2 −1 −2 −2.5 −3

label in C C1 C2 C1 C1 C1 C1 C2 C2 C2 C2 C1

2. By the eliminable instances theorem, for processing each HD
J(d′−d)

, we elimi-

nate all d∗ /∈ locJ(d′−d)(d) such that d∗ �J(d′−d) d or d �J(d′−d) d∗ since it
is not included in loc (d).

3. Once we get loc (d), we use Equation (10) to evaluate support (Ci, d), i =
1, 2, . . . , m.

Example 1. Assume the feature space is R2 and the training data 〈D, f, C〉 is
shown in Table 1, and the input point is d(0, 0).

For this case, there are four Hasse graphs, and the input point d(0, 0) has 4 local
structures. Initially start with d1. That is, we search LocJ(d1−d) (d) firstly. The
local points of (0, 0) are d1, d5, d7, d12. Because d4 �1 d, d �1 d8 and d �1 d10,
then d4, d8 and d10 are not considered for another search.

After first search, except d2, d3, d6 and d9, other elements are not consid-
ered for another search as just mentioned. Now we search LocJ(d2−d) (d) from
H{d2,d3,d6,d9,d}

J(d2−d) . The local points of (0, 0) is d2, d6, d9. Because d3 �2 d, then d3

is eliminated. Now d2, d3, d6 and d9 are deleted. Hence there are no instance to
search. The process finishes.

According to Equation (10),

Support(C1, d) =

∑

d′∈{d1,d5,d7,d12,d2,d6,d9},f(d′)=C1

2R(d′−d)

∑

d′∈{d1,d5,d7,d11,d2,d6,d9}
2R(d′−d) = 4/7

and

Support(C2, d) =

∑

d′∈{d1,d5,d7,d12,d2,d6,d9},f(d′)=C2

2R(d′−d)

∑

d′∈{d1,d5,d7,d11,d2,d6,d9}
2R(d′−d) = 3/7

Since Support(C1, d) > Support(C2, d), d(0, 0) will be labeled as C1.

Remark 1. In the most naive approach, k-nearest neighbor algorithm, we inspect
each stored point in turn, calculate its Euclidean distance to the input instance d,
retain the identity only of the current closest one. The complexity of calculating
each distance is O(n) (l = |D|), and thus the complexity of this search is O(lkn).
In above algorithm we need to search at most l Hasse graphs, and each local
graph contains at most l nodes, therefore the time complexity of our algorithm
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is O
(
l3n

)
. But the elements in loc (d) is always fewer than l. Moreover, through

eliminate some elements in searching process, we may only need search Hasse
graphs less than l. Therefore, the complexity of proposed algorithm may match
the naive k-nearest neighbor algorithm in solving real problems, though the
complexity of our algorithm seems worse than the naive k−nearest neighbor
algorithm.

5 Conclusions

In this paper, a variety of graph structures on data was introduced and the
properties of the local graphs around an instance are studied. A fast approach
for generating local graphs and classifying according to structurally connected
instances is then sketched out. Our future work is to study how to preconstruct
some data structures on training data beforehand and use the sampling technique
to eliminate the complexity of the proposed algorithm. Another future work is to
apply this approach to data mining tasks other than classification on real-valued
data.
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Abstract. This article offers a detailed computational algorithm used in that 
type of neural networks, extends their applications to fit and predict the data of 
wages time series, conducts experiments and indicates the gain of granular  
neural networks, specifically conducting experimentation using the classical 
(statistical) or econometric methods and conventional/soft RBF neural net-
works. Results are analysed and opportunities for future research are suggested. 

Keywords: Probabilistic time-series models, Fuzzy system, Classic and soft 
RBF network, Cloud models, Granular computing. 

1   Introduction 

As mentioned in Liao et al. [5] and  Zhang et al. [11] neural networks document com-
petitive performance on a larger number of time series, indicating the use of increased 
computational power to automate NN forecasting on a scale suitable for automatic 
forecasting. 

The scope of the paper is confined to some statistical forecasting methods and 
methods based on granular computing. According to Zadeh [10] granulation plays an 
essential role in human cognition and has a position of centrality in both granular 
computing and rough set theory. The exploitation of granular concept for forecasting 
purposes can be found in many works. In Yu et al. [9] a method is proposed based on 
information granulation model and the granular discretization method to form fuzzy 
rules from granular time series for a fuzzy forecasting system. In Yang et al. [8] 
methods of time series prediction based on cloud methods and on the different time 
(short term and long term granularities) were presented and described respectively. 
Lastly in Marcek et al. [6] a new approach of function estimation is shown for time 
series model of daily sales by means of a granular RBF neural network.  

In comparison with [6], this paper extends the application of granular network to fit 
and predict the quarterly data of wages time series, gives new calculating algorithm 
for the specific granular network and compares obtained results with those obtained 
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using statistical procedures. The organization of the paper involves 5 sections. Section 2 
outlines necessary prerequisites for predictors based on the fuzzy system and RBF neu-
ral network approach. In Section 3, we briefly offer a granular extension of RBF neural 
networks. In Section 4 we give the complete algorithm for weights updating in the 
granular RBF network and for calculating of the output values and the statistical sum-
mary measures of a model´s forecast accuracy. In Section 5 concluding remarks and 
opportunities for future work are given. 

2   Fuzzy and Neural Function Estimators 

In function estimation of complex input-output systems, the fuzzy systems and neural 
networks estimate a function without requiring a mathematical description of how 
output functionally depends on the output. The most popular centroidal defuzzifica-
tion technique uses all the information in the fuzzy distribution to compute the crisp y 
value as the centroid y~ . When the output membership functions are singletons, then, 

in the case of an kℜ →ℜ  function, the formula for the centroid calculation is 

∑∑
==

=
n

j
j

n

j
jj xxyy

11

)(/)(~ μμ  (1) 

where jy  stands for the centre of gravidity of the jth output singleton, the notation μ 

is used for a membership function and n denotes the number of rules. Next, we will 
show, how to obtain fuzzy rules and how to determine the weights wi for a fuzzy 
system using RBF networks. 

In Fig 1 (a), the classic RBF neural network structure and in Fig. 1 (b) its soft or 
fuzzy logic version is shown. The output layer neuron is linear and has a scalar output 
given by 

tŷ  = ),,( vcx tG  = ∑
=

s

j
jttjv

1
2, ),( wxψ  = ∑

=

s

j
tjj ov

1
,

,       t = 1, 2, ..., N (2) 

where N is the size of data samples, s denotes the number of the hidden layer neurons, 

jv  are the trainable weights connecting the component of the output vector o . The 

hidden layer neurons receive the Euclidian distances )( jcx −  and compute the scalar 

values 
tjo ,
 of the Gaussian function ),(2 jt cxψ  that form the hidden layer output 

vector to , where tx  is a k-dimensional neural input vector, jw  represents the hidden 

layer weights, 2ψ  are radial basis (Gaussian) activation functions. Note that for an 

RBF network, the hidden layer weights jw  represent the centres jc  of activation 

functions 
2ψ .  

A serious problem is how to determine the number of hidden layer (RBF) neurons. 
The most used selection method is to preprocess training (input) data by some cluster-
ing algorithm. After choosing the cluster centres, the shape parameters jσ  must be 
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(a)           (b) 

Fig. 1. Classic (a) and fuzzy logic (soft) (b) RBF neural network architecture 

determined. These parameters express an overlapping measure of basis functions. For 
Gaussians, the standard deviations jσ  can be selected, i.e. jσ ~ cΔ , where cΔ de-

notes the average distance among the centres. 
As mentioned in [3, 6], if in RBF neural networks, the scalar output values tjo ,  

from the hidden layer will be normalised, where the normalisation means that the sum 
of the outputs from the hidden layer is equal to 1, then the RBF network will compute 
the “normalised” output data set tŷ  as follows 

tŷ = ),,( vcx tG  =
∑

∑

=

=
s

j
tj

tj
s

j
tj

o

o
v

1
,

,

1
,

 = 
∑

∑

=

=
s

j
jt

jts

j
tj

cx

cx
v

1
2

2

1
,

),(

),(

ψ

ψ
, t = 1, 2, ..., N. (3) 

The graphical representation of the form of RBF neural networks which produce 
the output values according to the formula (3) is shown in Fig. 1 (b).  

The frequently used learning technique uses clustering to find a set of centres 
which more accurately reflect the distribution of the data points. For example by  
using K-means clustering algorithm, the member of K centres must be decided in 
advances. After choosing the centres w, the standard deviations σj can be selected as 
σj ~ Δcj where cj denotes the average distance among the centres wj. To train the 
weights vj, the first-order gradient procedure is used. These weights can be adapted by 
the error back-propagation algorithm. In this case, the weight update is particularly 
simple. If the estimated output for the single output neuron is 

tŷ , and the correct 

output should be 
t

y , then the error 
te  is given by 

te  = 
ty  - 

tŷ  and the learning rule 

has the form 

tjv , ← tjv ,  + η tjo , te ,        j = 1, 2, ..., s;     t = 1, 2, N (4) 

where the term η  is a constant called the learning rate, tjo ,  is the normalised output 

signal from the hidden layer. Typically, the updating process is divided into epochs. 
Each epoch involves updating all the weights for all the examples. 
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3   Granular RBF Network 

As we have already seen the goal of learning is to find a smooth mapping from x to y 
which captures the underlying systematic aspects of the data, without fitting noise or 
uncertainty on the data. If we now, in the soft RBF neural network, replace the stan-
dard Gaussian activation (membership) function of RBF neurons with functions based 
on the normal cloud concept [2], then the inherent uncertainty and randomness of the 
data are simultaneously included into estimation process. Then, in the case of soft 

RBF network, the Gaussian membership function .)/(. 2ψ  in Eq. (3) has the form 

),( 2 jt cxψ  = [ ]2)(2/)(E(exp nE
jt

′−− xx  = [ ]2)(2/)(exp nEc
jt

′−− x  (5) 

where nE ′  is a normally distributed random number with mean En  (the entropy as 
the uncertainty measurement of the qualitative concept) and standard deviation He  
(the hyper entropy) which represents the uncertain degree of entropy, E is the expec-
tation operator (for more details see [6]).  

4   Experiment Design and Results 

To illustrate the statistical or econometric modeling methodology, consider the quar-
terly wages time readings {yt} of the Slovak economy. The data were collected for the 
period January 1, 1991 to December 31, 2006 which provides total of 64 observations 
(displayed in Fig. 2 (a)). This time series shows an increasing trend with apparent 
periodic structure. To build a forecast model, we define the sample period for analysis 
y1, ..., y64, i.e. the training data set denoted as A, and the ex ante forecast period or the 
validation data set denoted as E.  

Firstly, in the case of statistical modeling we shall present the model based on Box-
Jenkins methodology [1]. Experimenting with this method, the following reasonable 
model formulation was found (B-J model, ARMA(1, 3) process) 

yt = -0.0016557 -0.4567yt-1 + εt + 0.90516εt-1 + 0.58768εt-2 + 0.36497εt-3;  
      MSEA = 0.014,  MSEE  = 0.048        (6) 

The forecast values of the ARMA(1, 3) model are seen in Fig. 2 (b). Secondly, the 
estimated appropriate econometric model based on the economic theory [7] has the 
following form 

yt  = 0.239347 + 1.04044 yt-4    MSEA = 0.0026,   MSEE  = 0.0033      (7) 

where εt  is the white noise disturbance term. 
In the classic and soft (fuzzy logic) RBF neural network representation of model 

(7), the non-linear function was estimated according to the expressions (2) and (3). 
The fuzzy logic RBF neural network was extended towards estimation with (a priori 
known) noise levels of the entropy. We select, for practical reasons, that the noise 
level is a multiple, say 0.015 of entropy. Then, the non-linear input – output approxi-
mation function was estimated according to the formula (3) by substituting the  
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(a)                                                              (b) 

Fig. 2. Nominal average wages (a) (January 1991 - December 2006) and forecasts of wages 
data - ARMA(1,3) model (b) 

Gaussian function ),(
2 jt

cxψ  with Eq. (5). In Table 1, we give the achieved results of 

approximation ability in dependence on various number of RBF neurons. The mean 
square error (MSEA) was used to measure the approximation ability.  

The detailed computational algorithm for the MSEA values in Table 1, the weight 
update rule for the granular network and detailed computational algorithm used for this 
type of neural networks are shown in Appendix. The mean (centre) and standard devia-
tion of clusters (RBF neurons) are computed using K-means algorithm. The accuracy 
of our one quarter forecasts is presented in Table 2.  

Comparing both approaches, i.e. econometric model and model based on the RBF 
network we see that both approaches give approximately identical results. As shown 
in Table 1, models that generate the “best” MSEA´s are soft RBF networks. 

The accuracy of our one quarter forecasts is presented in Table 2. As can be seen, 
RBF networks have worse forecasting power than econometric model. We show that 
too many parameters results in overfitting, i.e. a curve fitted with to many parameters 
follows all the small fluctuations, but is poor for generalisation. 

Table 1. Approximation results of various RBF´s networks related to the different number of 
clusters (RBF neurons)  

Neural network 
architecture 

Classic RBF  
network 

Soft RBF  
network 

Granular 
network  

Number of RBF 
neurons 

RBF network representation 
for model (7) 

MSEA 
3 0.202 0.079 0.018 
5 0.103 0.018 0.022 
10 0.097 0.002 0.007 
15 0.031 0.009 0.009 
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Table 2. Ex-ante prediction results of various RBF´s networks related to the different number 
of clusters (RBF neurons)  

Neural network 
architecture 

Classic RBF  
network 

Soft RBF  
network 

Granular 
network  

Number of RBF 
neurons 

RBF network representation 
for model (7) 

MSEE 
3 2.484 0.380 0.018 
5 2.111 0.299 0.008 
10 1.688 1.878 0.123 
15 1.799 0.180 0.262 

5   Conclusion 

To approximate the input-output function of a economic process, the RBF neural 
network approach was applied on the quarterly data of average nominal wages of the 
Slovak economy and compared with an approach based on the statistical procedures. 
For the sake of approximation abilities we evaluated 24 models. Two models were 
based on statistical (econometric) approach, and 24 models are based on the neural 
(fuzzy logic) methodology. Using the disposable data a very appropriate model is the 
soft RBF network with activation functions based on the granular concept. It is also 
interesting to note that the most computationally intensive models, the model based 
on the Box-Jenkins methodology, is newer considered “best”. The econometric model 
(8) apparently ignores some of the example points, but best fits out-of training data set 
(forecasts). 

In our view, this initial research step is only the beginning. Much of the cloud 
RBF neural networks, we still not understand. For instance, the empirical results sug-
gest that the granular network is indeed capable of discovering the basic structures 
underlying a set of noisy data. But how precisely does this relate to its sensitiveness to 
expectation when the number of clusters is increased. We were expecting that the 
accuracy of ex post forecasts increases when the number of clusters (RBF neurons) 
increases. This is not truth for Gaussian RBF network with normal cloud concept and 
soft RBF one with 15 RBF neurons. Does it means overfiting? Can we find minimal 
number of RBF neurons (i.e. minimal model complexity) that is able to represent real 
deterministic structure? This is generally a very hard problem. We shall continue our 
research in this direction. 
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Appendix 

The algorithm for updating weights in the granular RBF network and for calculating 
statistical summary measures (MSE) from Table 1. 

 
function MSE(granular_RBF_network, examples, η , s, jc , jσ , Hej) returns 

a network with the MSE value for Table 1  
 inputs: granular_RBF_network , MSE a Gaussian soft RBF network with normal 

cloud concept 
examples, a set of N input/output observed data pairs: x , y  
η , the learning rate 
s, the number of clusters (RBF neurons) 

jc , the center of the j-th cluster,  j =1, 2, ..., s 
jσ , the standard deviation j-th cluster,  j =1, 2, ..., s 

Hej, the hyper entropy 
 
 

- Initialize weights: jv , j = 1, 2, ..., s leading to the output neuron. 

- Initialize the learning rate: η . 
- Initialize the input values: s, cj, σj, Hej (see text for details) 
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  repeat 
     MSE ← 0 
   for each example x  in examples do 
      /* Generate normally distributed random numbers

jeH ′  with the   
means 

jσ  and the standard deviations Hej */ 
   

jeH ′ ← RUN-NORMAL-RANDOM-GENERATOR(
jσ , Hej) ,  j = 1, 2, ..., 

s 
       /* Calculate the outputs from the RBF neurons */ 
         oj ← ),(2 jcxψ ,    j = 1, 2, ..., s  

    /* where 
2ψ  is the Gaussian function: ))2/)(exp(2 jj eHcx ′−−=ψ  */ 

       /* Calculate the normalized outputs 
)( N

jo  */ 

   
      )(N

jo  ← ∑
=

s

j
jj oo

1

/ ,    j = 1, 2, ..., s 

       /* Calculate the output ŷ  from the output neuron */ 

    
      ŷ  ← ∑

=

s

j

N
jjov

1

)(   

       /* Calculate the output layer neuron´s error e */ 
         e  ← y - ŷ  

       /* Update the output layer weight 
jv  */ 

         
jv  ← 

jv  + 
)( N

jo e ,    j = 1, 2, ..., s 

   end 
       /* Calculate the mean square error */ 
   for each example x , y  in examples do 
   

      MSE = MSE + [y -
jv ∑

=
′−−

s

j
jj eHcx

1

)2/)(exp( ]2 

   end 
      MSE = MSE/N 
  until MSE has converged 
  return MSE, network   
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Abstract. Inspired by kernel matching pursuit (KMP) and support vec-
tor machines (SVMs), we propose a novel classification algorithm: kernel
matching reduction algorithm (KMRA). This method selects all training
examples to construct a kernel-based functions dictionary. Then redun-
dant functions are removed iteratively from the dictionary, according to
their weights magnitudes, which are determined by linear support vec-
tor machines (SVMs). During the reduction process, the parameters of
the functions in the dictionary can be adjusted dynamically. Similarities
and differences between KMRA and several other machine learning al-
gorithms are also addressed. Experimental results show KMRA can have
sparser solutions than SVMs, and can still obtain comparable classifica-
tion accuracies to SVMs.

Keywords: Kernel matching reduction algorithms, Kernel matching
pursuit, Support vector machines, Radial basis function neural networks.

1 Introduction

Kernel-based pattern classification techniques have been widely used, especially
during the past decade [1]. The SVM approach, proposed by Vapnik [2], is the
representative one, which can achieve state-of-the-art performance for many clas-
sification problems, and uses only a fraction of the set of all training examples
to form solutions. Although SVMs can get sparse expressions for classification,
some techniques have been proposed to make solutions much sparser. In [3],
Kernel matching pursuit (KMP) is introduced to learn a weighted sum of basis
functions from a kernel-based dictionary, and can produce much sparser models
than SVMs.

KMP appends functions to an initially empty basis sequentially, from a redun-
dant dictionary of functions, to approximate a classification function by using
a certain loss criterion. The basic matching pursuit algorithm, as well as its
two refinements: back-fitting and pre-fitting, are described in [3]. To make KMP
practical for large datasets, a stochastic version is proposed as an approximation
of the original KMP [4].

Different from KMP and its variants as mentioned above, kernel matching
reduction algorithms (KMRAs), are proposed to perform a reverse procedure
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in this paper. Firstly, all training examples are selected to construct a function
dictionary. Then the function dictionary is reduced iteratively by linear support
vector machines (SVMs). During the reduction process, the parameters of the
functions in the dictionary can be adjusted dynamically.

The rest of this paper is organized as follows. KMRAs are described in section
2. Compared are similarities and differences between KMRAs and other machine
learning algorithms, such as KMP, SVMs, hidden space SVMs (HSSVMs), and
radial basis function neural networks (RBFNN). Experimental results are pre-
sented in Section 4, then some conclusions and further thoughts are given in the
last section.

2 Kernel Matching Reduction Algorithms (KMRAs)

Inspired by KMP and SVMs, we propose kernel matching reduction algorithms.
The detailed procedures are expatiated through the following 2.1-2.3.

2.1 Constructing a Kernel-Based Dictionary

For a binary classification problem, assume there exist l training examples, which
form the training set S = {(x1, y1), (x2, y2), . . . , (xl, yl)}, where xi ∈ Rd, yi ∈
{−1, +1}, and yi represents the class label of the point xi, i = 1, 2, . . . , l.

Given a kernel function K : Rd × Rd → R, similar to KMP [3], we use kernel
functions, centered on the training points, as our dictionary: D = {K(x, xi)|i =
1, . . . , l}. Throughout this paper, the Gaussian kernel function,

K(x, xi) = exp(
−‖x − xi‖2

2σ2
i

) , (1)

is selected. The value of σi should be set to keep the influence of the local domain
around xi and prevent xi from having a high activation for the field far from xi.
Therefore, we adopt the heuristic method for σi from the reference [5], which is
used to design RBFNNs and can be represented as

σi = (
1
p

p∑

j=1

‖xi − x̂j‖2)
1
2 , (2)

where x̂j are p nearest neighbors of xi. Such, the receptive width of each point
is determined to cover a certain region in the sample space.

2.2 Reducing the Kernel-Based Dictionary by Linear SVMs

Using all the kernel functions from the kernel-based dictionary D =
{K(x, xi)|i = 1, . . . , l}, we construct a mapping from original space to fea-
ture space. Any training example xi in S is mapped to a corresponding point
zi in S

′
, where zi = (K(xi, x1), K(xi, x2), . . . , K(xi, xl)). Thus, the training
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set S = {(x1, y1), (x2, y2), . . . , (xl, yl)} in original space is mapped to S
′

=
{(z1, y1), (z2, y2), . . . , (zl, yl)} in feature space.

Subsequently, we design a linear decision function gl(zt) = sign(fl(zt)) in
feature space, and

fl(zt) = b +
l∑

i=1

wizti , (3)

which corresponds to the nonlinear form in original space:

fl(xt) = b +
l∑

i=1

wiK(xt, xi) , (4)

where w = (w1, w2, . . . , wl) represents weights of every dimension in z. Then we
can decide which kernel functions are important for classification, and which are
not, according to their weights magnitudes |wi| in (3) or (4), where |wi| denotes
the absolute value of wi. Those redundant kernel functions, which have lowest
weights magnitudes, can be deleted from the dictionary to reduce the model.

How do we create the decision function? If we use the usual least squares error
criterion to find this function, it is not practical, since the number of training
examples, at the beginning, is equal to, or near to, the dimension number of the
feature space S′, and we will confront the problem of the not-invertible matrix. In
fact, support vector machines (SVMs), based on the structural risk minimization,
are fit for solving supervised classification problems with high dimensions [2]. In
[6], a linear SVM is utilized to select genes from broad patterns of gene expression
data by recursive feature elimination. Moreover, feature scoring and selection,
based on weights from linear classification models for document classification,
is explored in [7], and experimental results show that feature selection using
weights from linear SVMs yields better classification performance than other
feature weighting methods. Illuminated by [6] and [7], we also adopt linear SVMs
to find the classification function in (3) or (4) on S′.

The optimization objective of linear SVMs is to minimize

τ(w, ξ) =
1
2
(w • w) + C

l∑

i=1

ξi , (5)

subject to the constraints

yi[(wi • zi) + b] ≥ 1 − ξi, and ξi ≥ 0, i = 1, 2, · · · , l ,

where C is a penalty factor, which can be determined by v-fold cross validation.
We can solve (5) by using its dual representation to get the result (3) (see [2]
for detailed procedures). wi denotes the contribution of zi to the classifier in
(3), and the higher the value of |wi|, the more contribution of zi to the model.
Consequently, we can rank zi according to the values of |wi| (i = 1, 2, · · · , l)
from large to small. We can also rank xi by |wi|, because xi is the preimage of
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zi in the original space. The xi with the smallest |wi| can be deleted from the
dictionary D, and D can be reduced to D′. Then we can continue this procedure
on the new dictionary D′. Thus, the process can be iteratively performed until
a given stop criterion is satisfied.

Note that, each σ should be computed again on the new dictionary D′, accord-
ing to (2), after D is reduced to D′ every time, such that the receptive widths
of kernel functions in D′ can always cover the whole sample space.

We can set a tolerant minimum accuracy δ for the training examples, as the
termination criterion of this procedure. Thus, we expect to gain the simplest
model under the condition of guaranteeing the satisfied classification accuracy
for all training examples. In fact, this accords with the principles of minimum
description length and Occam’s Razor [8]. Therefore, this algorithm can be ex-
pected to have a good generalization ability. In addition, different from KMP
which appends kernel functions to the last model gradually, this reduction strat-
egy can expect to avoid local optima, just due to deleting redundant functions
from the functions dictionary iteratively.

2.3 The Detailed Procedure of KMRAs

We present below the program of KMRAs.

Algorithm KMRA:
Step 1, Set the parameter p in (2), the cross validation fold num-

ber v for determining C in (5), and the required classification
accuracy δ on the training examples.

Step 2, Input training examples S = {(x1, y1), (x2, y2), . . . , (xl, yl)}.
Step 3, Compute each σ by the equation (2), and construct the

kernel-based dictionary D = {K(x, xi)|i = 1, . . . , l}.
Step 4, Transform S to S′ by the dictionary D.
Step 5, Determine C by v-fold cross validation.
Step 6, Train the linear SVM with the penalty factor C on S′, and

obtain the classification model, including wi, i = 1, 2, . . . , l.
Step 7, Rank xi by their weights magnitudes |wi|, i = 1, 2, . . . , l.
Step 8, If the classification accuracy of this model for training data

is higher than δ, delete from D the K(x, xi) which has the small-
est |wi|, then adjust each σ for new D by (2), and go to Step 4;
Otherwise go to Step 9.

Step 9, Output the classification model, which satisfies the accuracy
δ with the simplest structure.

The reduction step 8 can be generalized to remove more than one basis func-
tion per iteration for improving the training speed.

3 Comparing with Other Machine Learning Algorithms

Although KMRAs, KMP, SVMs, HSSVMs, and RBFNNs can all generate a
similar decision function shape as the equation (4), KMRAs have distinct char-
acteristics, in the essence, compared with several other algorithms.
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3.1 Differences with KMP

Both KMRA and KMP build kernel-based dictionaries, but they adopt different
ways to select basis functions for last solutions. KMP appends kernel functions
iteratively to the classification model. By contrary, KMRAs reduce the size of
the dictionary step by step, by deleting redundant kernel functions. Moreover,
different from KMP, KMRAs utilize linear SVMs to find solutions in the feature
space.

3.2 KMRA Versus SVM

The main difference between KMRA and SVM consists in the approaches of pro-
ducing feature spaces. KMRAs create the feature space by a kernel-based dictio-
nary, whereas SVMs by kernel functions. Kernel functions in SVMs must satisfy
Mercers theorem [2], while KMRAs have no restrictions on kernel functions in
the dictionary (no positive-definiteness constraint, could be asymmetrical, even
could include several different kernel shapes, etc.). The comparison between KM-
RAs and SVMs is similar to that between KMP and SVM, as addressed in [3]. In
fact, we select Gaussian kernel functions in this paper, which can have different
kernel widths obtained by the equation (2), but those Gaussian kernel functions,
for all support vectors of SVMs, have the same kernel width.

3.3 Linking with HSSVMs

Hidden space support vector machines (HSSVMs), proposed in [9], also map
input patterns into a high-dimensional hidden space by a set of nonlinear func-
tions, and then train linear SVMs in the hidden space. From this viewpoint of
constructing feature spaces and performing linear SVMs, KMRAs are similar to
HSSVMs. But we adopt an iterative procedure to eliminate redundant kernel
functions, until obtaining a condense solution. So, KMRAs can be considered as
an improved version of HSSVMs.

3.4 Relation with RBFNNs

Although RBFNNs also build feature spaces using usually Gaussian kernel func-
tions, they create discrimination functions in the least square sense. However,
KMRAs use linear SVMs, i.e. the idea of structural risk minimization, to find so-
lutions. In a broad sense, we can think of KMRAs as a special model of RBFNNs
with a new configuration design strategy.

4 Experiments

4.1 Description on Data Sets and Parameter Settings

Because SVM is a representative benchmark classification technique, we compare
KMRAs with SVMs, on four datasets: Wisconsin Breast Cancer, Pima Indians
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Diabetes, Heart, and Australian, in which the former two (Breast and Diabetes)
are from the UCI machine learning databases [10], and the latter two (Heart
and Australian) from the Statlog database [11]. In addition, we directly use the
LIBSVM software package [12] for performing the normal SVM.

Throughout the experiments:
1. All training data and test data are normalized to [−1, 1].
2. Two-thirds of examples are randomly selected as training exam-

ples, and the remaining one-third as test those.
3. Gaussian kernel functions are chosen for SVMs, in which the ker-

nel width σ and the penalty parameter C are decided by ten-fold
cross validation on the training set.

4. p = 2, in equation (2), is adopted, as suggested by [5].
5. v = 5, in Step 5 of algorithm KMRA, is set.
6. For any dataset, SVM is firstly trained, and then according to the

classification accuracy of SVM, we determine the stop accuracy
δ for KMRAs.

4.2 Experimental Results

We first illustrate the results from standard SVMs, including their parameters
C and σ in Table 1, and support vector numbers #SVs, and the prediction
accuracy in Table 2.

Table 1. Parameter settings of SVMs by 10-fold cross validation for 4 datasets

Dataset Breast Diabetes Heart Australian

C 8 2048 2048 3.125 × 10−2

σ 0.125 1.221 × 10−4 1.221 × 10−4 0.125

We set the termination accuracy δ = 0.97, 0.8, 0.8, and 0.9 in KMRAs for these
four datasets respectively, according to the classification accuracies of SVMs in
Table 2.

We perform KMRAs on these datasets, and record classification accuracies
for test datasets per iteration with algorithms running. Then we also show the
results in Fig. 1.

In Fig. 1, the accuracies of SVMs on test examples are expressed in the thick
straight lines, and the thin curves represent the classification performance of
KMRAs. The row axis denotes iteration times of KMRAs, that is to say, numbers
of kernel functions in the dictionary decrease gradually from left to right.

For Diabetes and Australian, we can find the prediction accuracies of KMRAs
are improved gradually with kernel functions in the dictionary reducing. At the
beginning of KMRAs’ runs, we can conclude that the overfittings happen. Before
KMRAs end, the performance of KMRAs approaches to, even is superior to, that
of SVMs.
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Fig. 1. Experimental results of KMRAs for every iteration on 4 datasets

Table 2. The last and the best experimental results from KMRAs, as well as the
results from SVMs, for 4 datasets

Dataset Breast Diabetes Heart Australian

The last #SVs 11 32 8 52
KMRA Accuracy 95.614% 73.8281% 75.5556% 86.5217%

The best #SVs 12 109 11 59
KMRA Accuracy 96.0526% 76.1719% 77.7778% 88.2609%

SVM #SVs 38 284 55 373
Accuracy 94.2982% 74.2188% 73.3333% 87.3913%

For Breast and Heart, from the beginning to the end, the curves of KMRAs
fluctuate up and down around the accuracy lines of SVMs.

We further illustrate, in the Table 2, the numbers of kernel functions (i.e.
#SVs), which appear in the last classification functions, as well as the corre-
sponding prediction accuracies, when KMRAs terminate. Moreover, we record
the best performance during the iterative process of KMRAs, and also list them
in the Table 2.

From Table 2, compared with SVMs, KMRAs use much sparser support vec-
tors, whereas they can obtain comparable results.

5 Conclusions

We propose KMRAs, which delete redundant kernel functions from a kernel-
based dictionary, iteratively. Therefore, we expect KMRAs can avoid local
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optima, and can have a good generalization ability. Experimental results demon-
strate that, compared with SVMs, KMRAs show comparable accuracies, but
with typically much sparser representations. This means that KMRAs can have
a fast classification speed for test examples than SVMs. In addition, analogous
to SVMs, we can extend KMRAs to solve multi-classification problems, though
we only consider the two-class situation in this paper.

We can also find, KMRAs gain sparser models at the expense of the long
training time. Consequently, future work should attempt to explore how to re-
duce the training cost. Clustering techniques are used in [13], and approximation
models are designed in [4], respectively, to facilitate the training of KMP. These
can also enlighten us to further improve KMRAs. In conclusion, KMRAs provide
a new problem solving approach for classification.
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Abstract. In the text literature, many topic models were proposed to
represent documents and words as topics or latent topics in order to pro-
cess text effectively and accurately. In this paper, we propose LDACLM
or Latent Dirichlet Allocation Category Language Model for text catego-
rization and estimate parameters of models by variational inference. As
a variant of Latent Dirichlet Allocation Model, LDACLM regard docu-
ments of category as Language Model and use variational parameters to
estimate maximum a posteriori of terms. Experiments show LDACLM
model to be effective for text categorization, outperforming standard
Naive Bayes and Rocchio method for text categorization.

Keywords: Latent Dirichlet Allocation, Variational Inference, Category
Language Model.

1 Introduction

In the text analysis, standard algorithms are unsatisfactory because terms often
were supposed independent, which was recognized as “bag of words” model.
However, the “bag of words” model offers a rather impoverished representation
of the data because it ignores any relationships between the terms.

In the recent past, a new class of generative models called Topic Model has
quickly become more popular in some text-related tasks. Topic Model supposes
documents and corpus composed of mixture topics and then documents can be
thought of “bag of topics”. Thus, these models can handle the problem effectively
about terms dependency. Topics can be view as a probability distribution over
words, where the distribution implies semantic coherence. For example, a topic
related to fruit would have high probabilities for the words “orange”, “apple”,
and even “juicy”. Wallach [10] demonstrated the “bag of topics” to surpass in
performance to “bag of words” in unigram and bigram schemas.

There are many Topic Models proposed by researchers in the past such as
Latent Semantic Analysis or LSA [3], the probabilistic Latent Semantic Indexing
or pLSI [6], Latent Dirichlet allocation or LDA [1] and so on.

Latent Semantic Analysis (LSA) [3] is an approach that combines both term
and document clustering. LSA usually takes a term-document matrix in the
vector space representation as input, and uses a singular value decomposition
of the input matrix to identify a linear subspace in the space of tf-idf features
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that captures most of the variance in the collection. Thus LSA can map text
elements to a representation in the latent semantic space and can capture some
aspects of basic linguistic notions such as synonymy and polysemy.

The probabilistic Latent Semantic Indexing (pLSI) model introduced by Hof-
mann [6], also known as the aspect model, was designed as a discrete counterpart
of LSI or LSA to provide a better fit to text data and to overcome deficiencies
of Latent Semantic Indexing (LSI). pLSI is a latent variable model that models
each document as a mixture of topics. Although there are some problems with
the generative semantics of pLSI, Hoffmann has shown some encouraging results
in Information Retrieval.

One of these models, Latent Dirichlet Allocation (LDA) has quickly become
one of the most popular probabilistic text modeling techniques in Information
Retrieval. LDA has been shown to be effective in some text-related tasks. Pro-
cessing fully generative semantics, LDA overcomes the drawbacks of previous
topic models such as probabilistic Latent Semantic Indexing (pLSI) which is a
MAP/ML estimated LDA model under a uniform Dirichlet distribution accord-
ing to Girolami and Kaban discovery [4]. Latent Dirichlet allocation represents
documents as mixtures over latent topics differentiated with pLSI, which each
topic is characterized by a distribution over words. In [11], Wei and Croft shown
the LDA-based document model had good performance in Information Retrieval.
Moveover, Griffiths and Steyvers [5] apply LDA model to find scientific document
topics.

Our goal in this paper is to address a variants of LDA and a extension of Lan-
guage Model [9], which is a novel model for text categorization as we known. This
generative model represents words set of each category with a mixture of top-
ics assumed independent, as in state-of-the-art approaches like Latent Dirichlet
Allocation [1], and extends these approaches to estimate maximum a posteriori
of category language model parameters by assuming that variance parameters
would be multinomial and dirichlet parameters of category language model.

In Section 2, we demonstrate our approaches on how to estimate parameters of
models and classify documents. In section 3, we evaluate accuracy of our model
on Reuters21578 and 20Newsgroups datesets. We conclude the paper with a
summary, and a brief discussion of future work in section 4.

2 Latent Dirichlet Allocation Category Language Model

In this section we introduce our model that extends Latent Dirichlet Alloca-
tion and Language Model called Latent Dirichlet Allocation Category Language
Model and manifest methods of inferring and estimating parameters.

2.1 Model Structure

Latent Dirichelt Allocation Category Language Model or LDACLM is a variant
of LDA, which is used as classifier of text documents. Rather, LDA descripted
in [1] used as dimension reducer in the discriminative framework of documents
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classification. The prominent feature of LDACLM is that the model assume each
word would be a independent topic that we called word topic and assume extra
topics other than word topics would be model the correlation among the words.
As we known, this distinguish to LDA and also tradeoff between effective and
time consuming. The following process similar to LDA generates documents in
the LDACLM model.

– For each category language model or words set w, pick multinomial distribu-
tion p(θw) from a symmetric Dirichlet distribution p (θw|α) with prior scalar
parameter α which is identity to all category language models.

– Pick a topic z ∈ {1, 2, . . . , K} from a multinomial distribution p (z|θw) with
parameter vector θw.

– Generate a word wt from a multinomial distribution p (wt|z, β) with param-
eter vector β, where each parameter βz in the vector β is related to specific
z respectively.

2.2 Inference

The maximum likelihood of category language model w with model parameter
vector β and model dirichlet parameter α may formulate as:

p (w|α, β) ∝
∫ (

K∏

k=1

θα−1
k

) ⎛

⎝
V∏

t=1

{
K∑

k=1

(θkβk,t)

}tft,w
⎞

⎠ dθ

Where words set w containing words form corpus D who has a vocabulary of
size V and tft,w stores the number of occurrences of a word wt in words set w.

Similar to LDA [1], We develop a variational approximation [8] for LDACLM
by defining an approximating family distribution q (θ, z|w, γ, φ), and choose the
variational Dirichlet parameter vector γ and variational multinomial parameter
vector φ which are different sets for each category language model to yield a tight
approximation to the true posterior. Suppose the factorized variational parame-
ters distribution is q (θ, z|w, γ, φ) = q (θ|w, γ)

∏V
t=1 q (zt|w, φt) with variational

Dirichlet parameter vector γ and variational multinomial parameter vector φ.
Especially, for each category language model, there is a different set of Multi-
nomial and Dirichlet variational parameter vectors. Thus, minimization of the
KL divergence D (q (θ, z|w, γ, φ) ‖p (θ, z|w, α, β)) we can derive approximation
of p (θ, z|w, α, β).

So, we can take decreasing steps in the KL divergence and converge to op-
timizing parameter by an iterative fixed-point method, bounding the marginal
likelihood of a document using Jensen’s inequality [8].

logp (w|α, β) ≥ Eq {logp (θ, z,w|α, β)} − Eq {logq (θ, z|w, γ, φ)} (1)

Letting L (γ, φ|w, α, β) denote the right-hand side of Eq.(1) and expand it,
we have
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L = logΓ

(
K∑

k=1

αk

)

−
K∑

k=1

logΓ (αk) +
K∑

k=1

(αk − 1)

⎛

⎝Ψ (γk) − Ψ

⎛

⎝
K∑

j=1

γj

⎞

⎠

⎞

⎠

+
V∑

t=1

K∑

k=1

φt,k

⎛

⎝Ψ (γk) − Ψ

⎛

⎝
K∑

j=1

γj

⎞

⎠

⎞

⎠ +
V∑

t=1

K∑

k=1

tft,wφt,klogβt,k

− logΓ

(
K∑

k=1

γk

)

+
K∑

k=1

logΓ (γk) −
K∑

k=1

(γk − 1)

⎛

⎝Ψ (γk) − Ψ

⎛

⎝
K∑

j=1

γj

⎞

⎠

⎞

⎠

+
V∑

t=1

K∑

k=1

φt,klogφt,k (2)

Where Γ is gamma function, Ψ is digamma function.
Firstly, we maximize Eq.(2) with respect to φt,k , the probability that the

word t was generated by latent topic z. This is a constrained maximization with
constraint

∑K
k=1 φt,k = 1. With βt,k reference to p (wt|zt = k, β), we form the

Lagrangian by isolating the terms which contain φt,k and adding the appropriate
Lagrange multipliers, so we have

Lw
[φt,k] = φt,k

⎛

⎝Ψ (γk) − Ψ

⎛

⎝
K∑

j=1

γj

⎞

⎠

⎞

⎠

+ tft,wφt,klogβt,k + φt,klogφt,k + λt

(
K∑

k=1

φt,k − 1

)

Taking derivatives with respect to φt,k and setting the derivative to zero yields
the maximized , we have

φt,k ∝ (βt,k)tft,w exp

⎛

⎝Ψ (γk) − Ψ

⎛

⎝
K∑

j=1

γj

⎞

⎠

⎞

⎠ (3)

Secondly, we maximize Eq.(2) with respect to γk, the kth component of the
posterior Dirichlet parameter. Take the derivative with respect to γk and setting
to zero yields a maximum:

γk = αk +
V∑

t=1

φt,k (4)

2.3 Estimating

Given a corpus of D = {w1, . . . ,wM} that w is a category language model, we
use a variational EM algorithm (EM with a variational E Step) [1] to find the
parameters and which maximize a lower bound on the log marginal likelihood:
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 (α, β) =
∑

w∈D
logp(w|α, β)

As we have described above, we can bound the log likelihood using

logp(w|α, β) = L (γ, φ|w, α, β) + D (q (θ, z|w, γ, φ) ‖p (θ, z|w, α, β)) (5)

Which exhibits L (γ, φ|w, α, β) as a lower bound because the KL term is positive.
We now obtain a variational EM algorithm that repeats the following two steps
until Eq.(5) converges:

– (E step) For each category language model, optimize values for the varia-
tional parameter vectors γ and φ, the update rules are Eq.(3) and Eq.(4).

– (M step) Maximize the resulting lower bound on the log likelihood with
respect to the model parameter α and parameter vector β. We can do this by
finding the maximum likelihood estimates with expected sufficient statistics
computed in the E-step.

Firstly, we maximize Eq.(2) with respect to βt,k. This is a constrained maxi-
mization with constraint

∑V
t=1 βt,k = 1 , so we form the Lagrangian by isolating

the terms which contain βt,k and adding the appropriate Lagrange multipliers,
so we have

L[βt,k] =
∑

w∈D

V∑

t=1

K∑

k=1

tft,wφt,klogβt,k +
K∑

k=1

λk

(
V∑

t=1

βt,k − 1

)

Taking derivatives with respect to βt,k and setting the derivative to zero yields
the maximized βt,k, we have

βt,k ∝
∑

w∈D
tft,wφt,k

Secondly, we maximize Eq.(2) with respect to α. Then, take first derivative
and second derivative with respective to α (α is a scalar dirichlet parameter).
So according Newton-Raphson formula, we can find the maximal α by iteration
as following:

αnew = α−
M (Ψ (Kα) − KΨ(α)) +

∑
w∈D

∑K
k=1

{
Ψ (γk,w) − Ψ

(∑K
k=1 γk,w

)}

M × K × (Ψ ′ (Kα) − Ψ ′(α))

where Ψ ′ is trigamma function.

2.4 Maximum a Posteriori of Multinomial Parameter

After model parameter α, model parameter vector β and variational parameter
vector φ converged, we can fit the variational parameter vector γ as Eq.(4) descrip-
tion. Hereafter, to specific category language model w, the maximum a posteriori
of multinomial parameter in vector θw can be computed approximately as

θMAP
k =

γk
∑K

k=1 γk

k = {1, 2, . . . K}
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Eventually, based on our model, we can derive maximum likelihood of docu-
ment d generating by category language model w as following formula:

p(d) ∝
∏

t∈d

{
K∑

k=1

(
θMAP

k βt,k

)
}tft,d

3 Experiments and Results

We have conducted experiments on two real-world datasets, Reuters21578 and
20newsgroups, to evaluate the effectiveness of our proposed model for text cat-
egorization.

The Reuters21578 dataset contains documents collected from Reuters
newswire articles are assigned to 135 categories. However, some categories are
empty and thus there are only non-empty 118 categories, among which the 10
most frequent categories called R10 by Debole [2] contain about 75% of the
documents as Table 1 show. There are several ways to split the documents into
training and testing sets: ‘ModLewis’ split, ‘ModApte’ split, and ‘ModHayes’
split. The ‘ModApte’ train/test split is widely used in text classification re-
search. We followed the ModApte split in which the 10 most frequent categories
and the numbers of documents are used for training and testing.

Table 1. Number of Training and Test documents About R10

Category name Num Train Num test

earn 2877 1087
acq 1650 719
money-fx 538 179
grain 433 149
crude 389 189
trade 369 118
interest 347 131
wheat 212 71
ship 197 89
corn 182 56

The 20Newsgroups(20NG) dataset is a collection of approximately 20,000 doc-
uments that were collected from 20 different newsgroups. This collection consists
of 19,974 non-empty documents distributed evenly across 20 newsgroups and we
selected 19,946 non-empty documents which are all the same after feature se-
lection . We use the newsgroups to form categories, and randomly select 70% of
the documents to be used for training and the remaining 30% for testing.

On the “Gerneral Text Toolkit” developing by our laboratory, We have tried
our proposed LDACLM with 100 topics modeling the relationship among words,
NaiveBayes with Laplace smoothing, and Rocchio algorithm [7] with TF-IDF
scheme to these datasets respectively. Furthermore, We apply to Information
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Table 2. Experimental results on the 20NG dataset

NaiveBayes LDACLM Rocchio

macro-averaging precision 0.809 0.824 0.736

macro-averaging recall 0.808 0.813 0.739

macro-averaging F1 0.808 0.818 0.738

micro-averaging accuracy 0.803 0.813 0.736

Table 3. Experimental results on the Reuters21578 R10

NaiveBayes LDACLM Rocchio

macro-averaging precision 0.662 0.660 0.647

macro-averaging recall 0.616 0.714 0.661

macro-averaging F1 0.638 0.686 0.654

micro-averaging accuracy 0.804 0.840 0.787

Gain [12] feature selecting method to the documents of both 20NG and Reuters-
21578 R10 datasets with threshold 0.055 to 20NG and 0.3 to Reuters. The results
of macro-averged and micro-averaged to 20NG and Reuters datasets are shown
in Tables 2 and 3 for LDACLM, NaiveBayes and Rocchio respectively.

Specially, All results are averaged across 5 random runs for 20NG datatset.
According experimental results, LDACLM outperform NaiveBayes with Laplace
smoothing and Rocchio algorithm.

4 Conclusion and Future Work

This paper proposed Latent Dirichlet Allocation Category Language Model, a
novel model based on LDA model. We have presented variational inference ap-
proach, and parameters estimation method which is similar to LDA [1] in cat-
egory language model. As Results on 20NG and Reuters21578 datasets shown
above, LDACLM cannot significantly improve performance. In our opinion, we
think that it was because the topics modeling the relationship among words is
not abundant which constraint by computer memory. In the future work, we
will try use topics by collection from Wordnet based on Gibbs sample, and this
maybe create many topics which approximate words dependency than variational
inference do.
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Abstract. Time series data abound and analysis of such data is chal-
lenging and potentially rewarding. One example is financial time series
analysis. In time series analysis there is the issue of time dependency,
that is, the state in the nearer past is more relevant to the current state
than that in the more distant past. In this paper we study this issue by
introducing time weighting into similarity measures, as similarity is one
of the key notions in time series analysis methods.

We consider the generic neighbourhood counting similarity as it can
be specialised for various forms of data by defining the notion of neigh-
bourhood in a way that satisfies different requirements. We do so with
a view to capturing time weights in time series. This results in a novel
time weighted similarity for time series. A formula is also discovered for
the similarity so that it can be computed efficiently.

Keywords: time series analysis, time dependency, time weighting, neigh-
bourhood counting.

1 Introduction

A time series is a sequence of observations, representing the measurements of
one or more variables at (usually) equal time intervals [1]. When more than
one variable are involved we get a multidimensional time series (MTS). Exam-
ples of MTS include: stock price movements, volume of sales over time, daily
temperature readings and ECG data [1].

Time series forecasting and analysis (TSFA) is challenging but potentially
very rewarding, especially in financial TSFA. Most of the intelligent data anal-
ysis methods can be applied in principle, but the classical methods for TSFA
are auto-regressive moving average model, exponential smoothening and spec-
tral decomposition, etc [1,2]. More recently evolutionary computing is becoming
increasingly popular for TSFA as well as financial modelling [3].
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In time series analysis there is the issue of time dependency, that is, the state
in the nearer past is more relevant to the current state than that in the more
distant past. In this paper we study this issue by introducing time weighting into
similarity measures, as similarity is one of the key notions in time series analysis
methods.

Euclidean distance is perhaps the most widely used measure of distance/
similarity in any distance related tasks, including TSFA. Other measures that
are often used in TSFA include: longest common subsequences [4,5], dynamic
time warping [6], normalization of sequences [7] and landmarks [8]. These
measures are originally defined or extended for one dimensional time series,
but need generalisation for use in multidimensional time series. Unfortunately
time weighting is not considered in the above mentioned distance/similarity
measures. The need for time weighting is mentioned in [9,10] but this prob-
lem has not been adequately addressed in the literature, to the best of our
knowledge.

We start with the generic neighbourhood counting (NCM) similarity [11,12],
which measures similarity of two data items by counting their common neigh-
bourhoods. NCM needs specialised by defining the notion of neighbourhood in
a way that carries or encodes the desired or intended characteristics. NCM has
been specialised for multivariate data [12,11] as well as sequence data [13], re-
sulting in novel and competitive similarity measures.

We define neighbourhood by taking into account both the time dimension and
space dimension of multidimensional time series data, thus we specialise NCM
as a time weighted similarity for multidimensional time series – TWNCM. We
derive formulas by which the number of such neighbourhoods can be efficiently
calculated, with a computational complexity in the same order as the Euclidean
distance.

The rest of the paper is organised as follows. In the next section we review
some of the well known similarity measures for time series. In Section 2 we
present our time weighted similarity for time series in the neighbourhood count-
ing framework. The final section concludes the paper.

2 Neighbourhood in the Space of Multidimensional Time
Series

We consider a system that is characterised by a set of attributes R =
{a1, a2, · · · , an}, where the domain of attribute ai ∈ R is dom(ai). The state
of the system evolves over time, but is observed and recorded at fixed intervals
(e.g., every hour or day), indexed by T = {0, 1, 2, · · · , }. This results in a multi-
dimensional time series (d(0), d(1), · · · , d(t), · · · ), where d(t) is the state at time
t and is described by the values of the attributes valid for the system at time
t, written as d(t) =< v1, v2, · · · , vn >. A multidimensional time series can be
understood as a set of n time series aligned by time. Such an MTS reflects the
underlying operational mechanism of the system.
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An attribute can be in either categorical or numerical scale1. We assume that,
if attribute ai is categorical then dom(ai) is finite; if it is numerical then there is a
lower bound and an upper bound, denoted by min(ai) and max(ai) respectively,
and its domain is quantized and then mapped to the natural numbers.

At any time instant, the state of the system is a data point in the n dimensional
space defined by Ω

def=
∏n

i=1 dom(ai). The system can be observed over any
length of time, giving rise to time series of any length. A time series of length k
is a data point in the k-MTS space defined by Ωk =

∏k
t=1 Ω, and a time series

of any length is thus a data point in the MTS space Ωmts =
∑

k Ωk. We call a
data point in an MTS space, an mts. The period of time when a time series is
observed is called a window, and k is then the window size.

Consider an mts of length k, which consists of states over k consecutive time
instants. We write such an mts by d = (d(t), d(t − 1), · · · , d(t − k + 1)), where
d(i) ∈ Ω and {t, t − 1, · · · , t − k + 1} are time indexes. Since Ω is defined by
n attributes, d(i) is a vector or simple tuple < d(i)1, d(i)2, · · · , d(i)n > where
d(i)j ∈ dom(aj).

A premise for time series analysis based on historical data is that the state of
system at time t is dependent on states at past times t − i for i = 1, 2, · · · , k.
In this paper we consider the time dependency relevance assumption that the
degree of dependence is a function of how far a past state is to the current. More
specifically d(t) depends on d(t − 1), d(t − 2), · · · , d(tk); but d(t) depends more
on d(t − 1) than on d(t − 2) and, in general, d(t) depends more on d(t − a) than
on d(t − b) when a ≤ b. In other words the influence of the past states on the
current is weighted. The difficult question is: how to determine weighting?

In this section we present a similarity for multidimensional time series, which
gives the past states varying weightings, the closer to the current state the higher
the weighting. This similarity is derived from the generic NCM similarity [11]
under a specialisation of the general notion of neighbourhood.

In the following sections we first of all discuss how neighbourhood should
be defined from both the time and space aspects, which captures the intended
time weighting. We then discuss how neighbourhoods are counted based on this
definition, in order to provide formulas for the time weighted NCM similarity.

1 Scale of measurement of an attribute (variable) describes how much information
the values of the attribute contain. Different operations on values are meaningful for
different scales. There are four recognised scales [14]: nominal scale, where values are
names or labels and the only operations are ’equality’ and ’inequality’; ordinal scale,
where values represent the rank order (1st, 2nd, 3rd etc) of the objects measured
and, in addition to ’equality’ and ’inequality’ operations, the ’greater than’ and
’less than’ operations are meaningful; interval scale, where intervals of values can be
meaningfully compared and additional operations are ’addition’ and ’subtraction’;
and ratio scale, where ratios between arbitrary pairs of values are meaningful and
additional operations are ’multiplication’ and ’division’. Most physical quantities,
such as mass, length or energy are measured on ratio scales. In data mining we
usually consider two scales: categorical (nominal) and numerical (ratio). So all the
above operations can be meaningfully applied.
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2.1 Time Dependent Neighbourhood for Multidimensional Time
Series

The notion of neighbourhood used in [11] is the same as that in the mathematical
study of topology. Loosely speaking a neighbourhood is a region in a data space
and a region of a data point x is a region that covers x.

We consider a simple mts of length 3, α = (d(t), d(t−1), d(t−2)), where d(i) ∈
Ω is a simple tuple2. A shorter mts α′ = (d(t), d(t − 1)) can be understood as
(d(t), d(t−1), ?), where ? means the position can be any value, which represents
a set of mts of length 3. When ? is taken to be d(t − 2), (d(t), d(t − 1), ?)
becomes (d(t), d(t− 1), d(t− 2)). Therefore (d(t), d(t− 1)) is a neighbourhood of
α. Similarly (d(t)) is also a neighbourhood of α. By time dependency relevance
assumption, d(t) depends the most on d(t) itself, then on d(t−1) and the least on
d(t−2) – such dependency needs to be weighted. To accommodate this weighted
dependency, we need to break the symmetry of generating neighbourhoods from
both ends of an mts. Therefore we do not regard (d(t−1), d(t−2)) and (d(t−2))
as neighbourhoods of α.

In general we consider an mts of length k, α = (d(t), d(t−1), d(t−2), · · · , d(t−
k + 1)). Any mts (d(t), d(t − 1), d(t − 2), · · · , d(t − k + m)), for 1 ≤ m ≤ k, is a
neighbourhood of α. Such neighbourhoods are due to time.

2.2 Space Dependent Neighbourhood for Multidimensional Time
Series

In addition to the time related aspect of neighbourhood, there is another aspect
to consider. Any d(t) in an mts is a data point in the multidimensional space Ω,
therefore it has neighbourhoods as regions in Ω. Such neighbourhoods can be
defined by distance/similarity in the usual sense or as hypertuples, as adopted
in [11]. A hypertuple [15] is a vector 〈s1, s2, · · · , sn〉 where si ⊆ dom(ai) for
i = 1, 2, · · · , n. Such neighbourhoods are due to space.

To sum up, a neighbourhood is simply one set of neighbours satisfying the
same set of conditions. A neighbourhood of an mts has two aspects: time and
space. The combination of them characterises or defines all neighbourhoods of
an mts. The generic NCM similarity seeks to find the number of all common
neighbourhoods. Later in this paper we will discuss how many common neigh-
bourhoods there is for a pair of mts.

2.3 An Example

Example 1. To illustrate the notions of MTS and neighbourhood, we consider
a data space Ω which is defined by three attributes a1, a2, a3. a1 and a2 are
numerical with the same domain of {1, 2, 3, 4, 5} and a3 is categorical with a

2 A simple tuple is a data tuple in the traditional sense, i.e., a vector of values. The
adjective ‘simple’ is used in order to differentiate it from the notion of hyper tuple
[15], which is a vector of sets.
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Table 1. A toy example

t t-1 t-2
ID

a1 a2 a3 a1 a2 a3 a1 a2 a3

α1 3 2 + 2 2 + 2 1 +
α2 2 3 + 1 3 + 1 2 +
α3 4 4 - 3 4 - 3 3 +
α4 5 4 - 4 4 - 4 3 -
α5 4 5 - 3 5 - 3 4 -

Table 2. All neighbourhoods of α1 due to time

t t-1 t-2
a1 a2 a3 a1 a2 a3 a1 a2 a3

3 2 + 2 2 + 2 1 +
3 2 + 2 2 +
3 2 +

Table 3. Some neighbourhoods of α1 due to space

t t-1 t-2

a1 a2 a3 a1 a2 a3 a1 a2 a3

[3] [2] {+} [2] [2] {+} [2] [1] {+}
[3, 5] [2, 4] {+, −} [2, 3] [2, 5] {+} [2, 4] [1, 3] {+, −}
[1, 3] [1, 3] {+} [1, 3] [1, 5] {+, −} [1, 4] [1, 4] {+}

domain of {+, −}. The time window under consideration is k = 3. Table 1 is
a sample of 5 mts. Consider α1 for an example, and we want to see what its
neighbourhoods are. Table 2 lists all neighbourhoods of α1 due to time, while
Table 3 lists some neighbourhoods of α1 due to space.

2.4 Number of Common Neighbourhoods

The neighbourhood counting similarity is simply the number of all common
neighbourhoods of two data points. Now that we have defined neighbourhoods
for multidimensional time series we need to see how neighbourhoods can be
counted efficiently.

Space Aspect. Consider two mts α =< x(k − 1), x(k − 2), · · · , x(0) > and
β =< y(k − 1), y(k − 2), · · · , y(0) >. According to [11], the number of common
neighbourhoods of α and β at time t is

N(t)(α, β) =
n∏

i=1

C(x(t)i, y(t)i), (1)
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where

C(x(t)i, y(t)i) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(max(ai) − max({x(t)i, y(t)i}) + 1) × (min({x(t)i, y(t)i})
− min(ai) + 1),
if ai is ordinal

2mi−1, if ai is nominal and x(t)i = y(t)i

2mi−2, if ai is nominal and x(t)i �= y(t)i

(2)
where mi = |dom(ai)| is the domain size of categorical attribute ai, and max(ai)
and min(ai) are the maximal and minimal values of numerical attribute ai. For
simplicity we will write N(t) when α and β are obvious from the context.

When Time Aspect is Considered. Consider two simple mts of length 3,
α = (x(t), x(t − 1), x(t − 2)) and β = (y(t), y(t − 1), y(t − 2)). Suppose there
are N(t), N(t − 1) and N(t − 2) space-based common neighbourhoods for the
three time instants respectively. Without the time aspect considered, there are
N(t) ∗ N(t − 1) ∗ N(t − 2) common neighbourhoods.

Consider one common neighbourhood c(i) for each of the three time instants.
When time aspect is considered, we have the following common neighbourhoods
for α and β:

(c(t), c(t − 1), c(t − 2))
(c(t), c(t − 1))
(c(t))

Correspondingly we have the following number of common neighbourhoods re-
spectively:

N(t) ∗ N(t − 1) ∗ N(t − 2)
N(t) ∗ N(t − 1)
N(t)

Therefore the total number of common neighbourhoods is

N(t) ∗ N(t − 1) ∗ N(t − 2) + N(t) ∗ N(t − 1) + N(t)

In general we assume the length of α and β is k. The total number of common
neighbourhoods, or the time weighted NCM similarity (TWNCM), is

TWNCM(α, β) = NCMmts(α, β) =
k∑

i=1

i∏

j=1

N(t − j + 1) (3)

Note that N(i) is the number of common neighbourhoods due to state at time
i. This number is used a various number of times, thus giving varying weightings
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to states at different times. The closer a past state is to the current, the higher
its weighting is. We therefore call the number of times N(i) is used the weighting
index of state i. More precisely, let k be the size of the time window, t be the
time index of the current state, and i be the time index of a past state. Then
the weighting index of i is: k − t + i. Clearly, when a past state is the current
state, i.e., i = t, its weighting index is k; when a past state is the last one in the
time window, i.e., i = t − k + 1, its weighting index is 1.

2.5 Example

To illustrate the TWNCM similarity we consider Table 1 again. Let β = (<
2, 4, − >, < 1, 4, + >, < 1, 3, + >) be another mts. We want to calculate the
TWNCM similarity between β and each mts in the table. Consider α1 first.
Following Eq.(1) we have

N(t)(β, α1) = 2 ∗ 3 × 2 ∗ 2 × 1 = 24
N(t − 1)(β, α1) = 1 ∗ 4 × 2 ∗ 2 × 2 = 32
N(t − 2)(β, α1) = 1 ∗ 4 × 1 ∗ 3 × 2 = 24

According to Eq.(3) we have

TWNCM(β, α1) = 24 ∗ 32 ∗ 24 + 24 ∗ 32 + 24 = 19224

Similarly we have

TWNCM(β, α2) = 48 ∗ 60 ∗ 60 + 48 ∗ 60 + 48 = 175728
TWNCM(β, α3) = 64 ∗ 24 ∗ 54 + 64 ∗ 24 + 64 = 84544
TWNCM(β, α4) = 32 ∗ 16 ∗ 18 + 32 ∗ 16 + 32 = 9760
TWNCM(β, α5) = 32 ∗ 12 ∗ 18 + 32 ∗ 12 + 32 = 7328

3 Conclusion

Time dependency is a problem in time series forecast and analysis. The premise
of this problem is that the current state of a system is dependent on the state of
the same system in the past and, furthermore, the state of a system is dependent
more on the nearer past than the more distance past.

In this paper we study this problem by introducing time weighting in the
definition of a new similarity measure. We consider the generic NCM similar-
ity as it can be specialised for various forms of data. We define the notion of
neighbourhood so that both the space and time aspects are separately taken
into account. This results in a novel concept of time weighted NCM similarity
for time series, TWNCM, as well as a formula by which the similarity can be
computed efficiently.
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Abstract. The distributed fuzzy ontologies play an important role in semantic
web. Most current solutions are proposed respectively on one of these two as-
pects. To represent distributed fuzzy ontology, we combine fuzzy description log-
ics and E-connections, and present distributed extended fuzzy description logic
(DEFSHOIN ). This novel logical approach couples both fuzzy and distributed
features within description logics. The main contribution of this paper is to pro-
pose a combined tableau to achieve reasoning within DEFSHOIN .

Keywords: ontology; distributed; fuzzy; description logic.

1 Introduction

Description logics (DLs) [1] are widely used in the semantic web as a logic founda-
tion for knowledge representation and reasoning. The most popular ontology language
OWL uses DLs as their underlying formalism. The fuzzy ontologies play an important
role in many web applications such as text mining and multimedia information system.
To represent fuzzy ontologies, many fuzzy DLs have been presented. Straccia presented
a fuzzy extension of typical ALC (FALC), and gave a constraint propagation calcu-
lus for reasoning with empty TBoxes [2]. Some reasoning techniques for FDLs were
discussed in [3, 4]. Calegari developed a suited plug-in of the KAON Project in order
to introduce fuzziness in an ontology, which is based on corresponding fuzzy ontology
and Fuzzy-OWL notions [5]. However, to some degree, Straccias fuzzy framework only
brings limited fuzzy expressive power in some complex fuzzy cases. To overcome its in-
sufficiency, we pointed out a new family of extended fuzzy description logics (EFDLs),
in which cut sets of fuzzy concepts and fuzzy roles are considered as the atomic con-
cepts and atomic roles [6]. Some complexity results and reasoning techniques in EFDLs
were proposed in [6, 7], and in these papers, expressive advantages of our framework
were detailed discussed.

For the number of independently developed ontologies increases rapidly in cur-
rent semantic web, many research works on distributed description logics have been
presented. Borgida proposed distributed description logics (DDLs), in which multiple
description logic knowledge bases are combined by inter-ontology bridge rules [8].
E-connection is another popular technique for coupling different ontologies [9]. Cuenca
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integrated the E-connections formalism into OWL by defining links that stand for the
inter-ontology relations [10]. He also pointed out that the extension is strictly more ex-
pressive than C-OWL. Parsia made some more expressive extension of links and gave
tableau calculus for reasoning within such links [11].

The extensions of description logic in fuzzy and distributed aspects respectively have
done a lot, however, only a few published works have considered on both of these
two extensions. We combined EFDLs and E-connection, and got the distributed EFDL
(DEFDL) [12]. However, we have not yet proposed the reasoning method for DEFDL.

In this paper, we combine the extended fuzzy description logic EFSHOIN and
E-connections, thus getting Distributed EFSHOIN (DEFSHOIN ). The remainder
of this paper is organized as follows: a brief introduction of EFSHOIN is given in
section 2; by introducing cut links that couple different EFSHOIN knowledge bases
(KBs), we propose a general definition of syntax, semantics in section 3; section 4 gives
a combined tableau for DEFSHOIN ; finally section 5 concludes this paper.

2 Extended Fuzzy Description Logic

Let NC and NR be two disjoint and countable infinite sets of atomic fuzzy concepts
(denoted B) and of atomic fuzzy roles (denoted R, S). For any B ∈ NC , R ∈ NR and
0 < n ≤ 1, we call B[n] an atomic cut concept and R[n] an atomic cut role, where B
and R are the prefixes of n, and n is the suffix of B and R. The semantics of atomic
fuzzy concepts and roles, and their cut sets are defined in terms of a fuzzy interpretation
I = 〈ΔI , ·I〉. The domain ΔI is a nonempty set and the interpretation function ·I
maps every fuzzy atomic concept B into a membership function BI : ΔI → [0, 1] ,
and every fuzzy atomic role R into a membership function RI : ΔI × ΔI → [0, 1].
Additionally, ·I maps B[n] and R[n] into n-cuts of BI and RI , which are subsets of ΔI

and ΔI × ΔI :

BI
[n] = {d|BI(d) ≥ n} (1)

RI
[n] = {(d, d′)|RI(d, d′) ≥ n} (2)

Obviously B and R are fuzzy sets w.r.t ΔI and ΔI × ΔI , while their cuts B[n] and
R[n] are actually crisp sets.

Starting with atomic cut concepts B[n] and atomic cut roles R[n], cut concept descrip-
tions and cut role descriptions (cut concepts and cut roles, for short) can be inductively
defined by applying concept and role constructors in classical description logics. The
syntax and semantics of these constructors are summarized in Table 1.

An EFSHOIN knowledge base (KB for short) K(T , R, A) contains terminologi-
cal axioms about cut concepts and roles in TBox T and RBox R, and assertions about
individuals in ABox A.

A TBox T is a finite set of cut concept axioms of the form C[n1,...,nk] � D[m1,...,ml],
where for any 1 ≤ i ≤ n, 1 ≤ j ≤ l, ni, mj ∈ (0, 1]. Any interpretation I satisfies
C[n1,...,nk] � D[m1,...,ml] iff CI

[n1,...,nk] ⊆ DI
[m1,...,ml]. I is a model of TBox T iff I

satisfies all axioms in T .
An RBox R is a finite set of cut role axioms of the form R[n] � S[m] , where

n, m ∈ (0, 1], R[n] and S[m] are cut roles. An interpretation I satisfies the above cut
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Table 1. Concept and role constructors

Name Syntax Semantics

Top concept � ΔI

Bottom concept ⊥ Ø

Conjunction C[n1,...,nh] � D[nh+1,...,nk ] CI
[n1,...,nh] ∩ DI

[nh+1,...,nk ]

Disjunction C[n1,...,nh] � D[nh+1,...,nk ] CI
[n1,...,nh] ∪ DI

[nh+1,...,nk ]

Complement ¬C[n1,...,nk] ΔI − CI
[n1,...,nk]

Value restriction ∀R[n].C[n1,...,nk] {d|∀d′, (d, d′) ∈ RI
[n] → d′ ∈ CI

[n1,...,nk]}

Existential restriction ∃R[n].C[n1,...,nk] {d|∃d′, (d, d′) ∈ RI
[n] ∧ d′ ∈ CI

[n1,...,nk]}
Unqualified number ≥ NR[n] {d|#{d′|(d, d′) ∈ RI

[n]} ≥ n}
restriction ≤ NR[n] {d|#{d′|(d, d′) ∈ RI

[n]} ≤ n}

Inverse role Inv(R[n]) {(d, d′)|(d′, d) ∈ RI
[n]}

Transitive role Trans(R[n]) RI
[n] = (RI

[n])
+

Nominal {o} {o}I(d) = 1 iff d = oI

role axiom, iff RI
[n] ⊆ SI

[m] holds. I is a model of TBox R iff I satisfies all axioms in
R. And we introduce �∗ as the transitive-reflexive closure of � on R ∪ {Inv(R[n]) �
Inv(S[m])|R[n] � S[m] ∈ R}.

An ABox A is a finite set of cut concept assertions of the form a : C[n1,...,nk], cut role
assertions of the form (a, b) : R[n] and individual assertions of the form a �= b, where a
and b are individuals and their interpretation aI and bI are elements in ΔI . mathcalI
satisfies an assertion a : C[n1,...,nk], (a, b) : R[n] or a �= b, iff aI ∈ CI

[n1,...,nk],

(aI , bI) ∈ (R[n])I or aI �= bI . I satisfies an ABox A iff I satisfies any assertion in A,
such I is called a model of A.

I satisfies an EFSHOIN KB K(T , R, A) (written I |= K) iff I is a model of T ,
R and A; such I is also called a model of K.

3 Distributed Extended Fuzzy Description Logic

A Distributed EFSHOIN (DEFSHOIN for short) KB is a pair
∑

= (KS , LS),
where KS is a set of EFSHOIN KBs: KS = {Ki(T i, Ri, Ai)|1 ≤ i ≤ s}, and LS is
a set of LBoxes that connect two KBs in KS: LS = {Lij|1 ≤ i, j ≤ s and i �= j}.

In any LBoxes Lij , we introduce fuzzy links(denoted Eij ,F ij) and cut links (denoted
Eij

[n], F ij
[n]), and we propose cut link axioms Eij

[n] � F ij
[m] to describe constraints among

cut links, where 0 < n, m ≤ 1. The semantics of fizzy links, cut links and cut link
axioms are defined in terms of a link fuzzy interpretation Iij = 〈ΔIij , ·Iij 〉. Let Ii and
Ij be the fuzzy interpretations of Ki and Kj , Iij are constructed based on Ii and Ij :
ΔIij = ΔIi × ΔIj . And the interpretation function ·Iij maps Eij and Eij

[n] as:

(Eij)Iij : ΔIi × ΔIj → [0, 1], (Eij
[n])

Iij = {x|(Eij)Iij (x) ≥ n} (3)
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A link interpretation Iij satisfies a cut link axiom Eij
[n] � F ij

[m], iff (Eij
[n])

Iij ⊆ (F[m])Iij .

Iij satisfies Lij , iff it satisfies any axiom in Lij .
Additionally, for any cut concept Cj

[n1,...,nk] in Kj and any cut link Eij
[n] in Lij , the

following expressions ∀Eij
[n].C

j
[n1,...,nk] and ∃Eij

[n].C
j
[n1,...,nk] are also considered as cut

concepts in Ki.
A combined interpretation of a DEFSHOIN KB is also a pair I = 〈{Ii}, {Iij}〉,

where Ii is an interpretation of Ki and correspondingly Iij is an interpretation of Lij .
The interpretation of cut concepts, cut roles and cut links are inductively defined as:

1. for any cut concept Cj
[n1,...,nk] in Kj , (Cj

[n1,...,nk])
I = (Cj

[n1,...,nk])
Ij ;

2. for cut role Rj
[n] in Kj , (Rj

[n])
I = (Rj

[n])
Ij ;

3. for any cut link Eij
[n] in Lij , (Eij

[n])
I = (Eij

[n])
Iij ;

4. for any individual aj in Kj , (aj)I = (aj)Ij ;
5. for ∀Eij

[n].C
j
[n1,...,nk] and ∃Eij

[n].C
j
[n1,...,nk], their interpretation are defined as:

(∀Eij
[n].C

j
[n1,...,nk])

I = {d|∀d′, (d, d′) ∈ (Eij
[n])

Iij → d′ ∈ (Cj
[n1,...,nk])

Ij }

(∃Eij
[n].C

j
[n1,...,nk])

I = {d|∃d′, (d, d′) ∈ (Eij
[n])

Iij and d′ ∈ (Cj
[n1,...,nk])

Ij }

A combined interpretation I is a combined model of
∑

= (KS , LS), iff I satisfies
any Ki in KS and any Lij in LS.

4 Combined Tableau

The combined interpretation of DEFSHOIN contains a set of domains and inter-
pretation functions, where the interpretation function describes the relations between
elements in the domain and cut concepts, cut roles, cut links and individuals. In the
following definition of combined tableau, the nonempty set Si corresponds to each do-
main; Li, Mi and Ni describe the relations between elements in the domain and cut
concepts, cut roles and individuals respectively; Mij describes the relations between
cut links and elements in Si and Sj .

Before expressing the tableau, here we introduce some notations. Assume that the cut
concepts appearing in tableau algorithms are written in NNF. The set of sub-concepts
of a concept is denoted as sub(C). For a DEFSHOIN KB Ki, we define sub(Ki) as
the union of all sub(C), for any concept C appearing in Ki, and finally, define the set
of relevant sub-concepts of Ki as follows:

cl(Ki) =sub(Ki)
⋃

{nnf(¬C[n1,...,nk])|C[n1,...,nk] ∈ sub(Ki)}
⋃

{∀S[m].C[n1,...,nk]|C[n1,...,nk](nnf(¬C[n1,...,nk])) ∈ sub(Ki)}
(4)

Definition 1. (Combined Tableau). Let Ri and NI
i be the sets of cut roles and in-

dividuals appearing in Ki, and Eij be the set of cut links appearing in Lij . A com-
bined tableau T for DEFSHOIN KB Σ = (KS , LS) is a tuple: T = 〈Ti, Mij〉,
Ti = 〈Si, Li, Mi, Ni〉,i �= j, 1 ≤ i, j ≤ s, i �= j, where
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– Si: a nonempty set of nodes, with Si ∩ Sj = ∅;

– Li: Si → 2cl(Ki), maps each node to a set of concepts;
– Mi: Ri → 2Si×Si ,maps each cut role in Ri to a set of pairs of nodes in Si;
– Ni: N i

I → Si,maps any individual in NI
i into a corresponding node in Si;

– Mij : Eij → 2Si×Sj maps each cut link in Eij to a set of pairs of nodes, where the
first element of the pair is an element of Si and the second an element of Sj .

In any Ti, for any x, y ∈ Si, a, b, o ∈ N i
I , Ci

[n1,...,nk], D
i
[m1,...,mk] ∈ cl(Ki), and

Ri
[n], S

i
[m] ∈ Ri, the following conditions must hold:

1. There does not exist ≥ NRi
[n] and ≤ (N −1)Ri

[n] in Li(x), where 0 ≤ m ≤ n ≤ 1;
2. There does not exist B[n] and ¬B[m] in Li(x), where 0 ≤ m ≤ n ≤ 1;
3. if Ci

[n1,...,nk] � Di
[m1,...,ml] ∈ T i,∀x ∈ Si, ¬Ci

[n1,...,nk] � Di
[m1,...,ml] ∈ Li(x);

4. if Ci
[n1,...,nh] �Di

[m1,...,ml]
∈ Li(x), Ci

[n1,...,nh] ∈ Li(x) and Di
[m1,...,ml]

∈ Li(x);
5. if Ci

[n1,...,nh] � Di
[m1,...,ml] ∈ Li(x), Ci

[n1,...,nh] ∈ Li(x) or Di
[m1,...,ml] ∈ Li(x);

6. if ∀Ri
[n].C

i
[n1,...,nk] ∈ Li(x) and (x, y) ∈ Mi(Ri

[n]), Ci
[n1,...,nk] ∈ Li(y);

7. if ∃Ri
[n].C

i
[n1,...,nk] ∈ Li(x), there is some y ∈ Si such that (x, y) ∈ Mi(Ri

[n]) and

Ci
[n1,...,nk] ∈ Li(y);

8. if ∀Si
[m].C

i
[n1,...,nk] ∈ Li(x) and (x, y) ∈ Mi(Ri

[n]) for some Ri
[n] �∗ Si

[m] with

Trans(Ri
[n]) =True, ∀Ri

[n].C
i
[n1,...,nk] ∈ Li(y);

9. if ≥ NRi
[n] ∈ Li(x), #{y|(x, y) ∈ Mi(Ri

[n])} ≥ N ;

10. if ≤ NRi
[n] ∈ Li(x), #{y|(x, y) ∈ Mi(Ri

[n])} ≤ N ;

11. if (x, y) ∈ Mi(Ri
[n]), (x, y) ∈ Mi(Ri

[m]), where 0 < m ≤ n ≤ 1;

12. if (x, y) ∈ Mi(Ri
[n]) and Ri

[n] �∗ Si
[m], (x, y) ∈ Mi(Si

[m]);
13. (x, y) ∈ Mi(Ri

[n]) iff (y, x) ∈ Mi(Inv(Ri
[n]));

14. if {o} ∈ Li(x) ∩ Li(y) for some o ∈ N i
I , x = y;

15. for each o ∈ N i
I , there is some x ∈ Si with {o} ∈ Li(x);

16. if a ∈ Ci
[n1,...,nk] ∈ Ai, Ci

[n1,...,nk] ∈ Li(Ni(a));
17. if (a, b) ∈ Ri

[n] ∈ Ai, (Ni(a), Ni(b)) ∈ Mi(Ri
[n]);

18. if a �= b ∈ Ai, Ni(a) �= Ni(b);

Condition 1 ensures the tableau contains no clash. Condition 2 deals with TBoxes.
Conditions 3-15 are necessary for the soundness of combined tableaux. Conditions 16-
18 ensure the correctness of individual mapping function Ni().

Additionally, we add some constraints to deal with cut links. For any x ∈ Si, w ∈ Sj ,
Eij

[n], F
ij
[m] ∈ Eij and Cj

[n1,...,nk] ∈ cl(Kj), the following conditions hold:

19. if (x, w) ∈ Mij(E
ij
[n]) and Eij

[n] � F ij
[m] ∈ Lij , (x, w) ∈ Mij(F

ij
[m]);

20. if ∀Eij
[n].C

j
[n1,...,nk] ∈ Li(x) and (x, w) ∈ Mij(E

ij
[n]), Cj

[n1,...,nk] ∈ Lj(w);

21. if ∃Eij
[n].C

j
[n1,...,nk] ∈ Li(x), there is some w ∈ Sj such that (x, w) ∈ Mi(E

ij
[n])

and Cj
[n1,...,nk] ∈ Lj(w);
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Condition 19 guarantees that the combined tableau satisfies the restriction of LBoxes.
Conditions 20-21 are distributed extensions of classical conditions to deal with forall
and restrictions.

Theorem 1. For any DEFSHOIN KB
∑

= (KS ={Ki〈T i, Ri, Ai〉}, LS ={Lij}),
has a combined model iff it has a combined tableau T.

Proof. ⇒) Let I = 〈{Ii}, {Iij}〉 be a combined model of
∑

. We can create a com-
bined tableau T = 〈Ti, Mij〉, Ti = 〈Si, Li, Mi, Ni〉 from I in the following steps:

Si: Si = ΔIi ;
Li: ∀x ∈ Si, Li(x) = {Ci

[n1,...,nk]|x ∈ (Ci
[n1,...,nk])

Ii};

Mi: ∀Ri
[n] ∈ Ri, Mi(Ri

[n]) = {(x, y)|(x, y) ∈ (Ri
[n])

Ii};

Ni: ∀a ∈ N i
I , Ni(a) = aIi ;

Mij : ∀Eij
[n] ∈ Eij , Mij(E

ij
[n]) = {(x, w)|(x, w) ∈ (Eij

[n])
Iij , x ∈ Si, w ∈ Sj}

Now, we prove T is a combined tableau for
∑

, that means T satisfies the 21 restric-
tions:

3. if Ci
[n1,...,nk] � Di

[m1,...,ml]
∈ T i, for Ii satisfies T i, then ΔIi = (¬Ci

[n1,...,nk] �
Di

[m1,...,ml]
)Ii . For any x ∈ Si, x ∈ Si = ΔIi = (¬Ci

[n1,...,nk] � Di
[m1,...,ml]

)Ii .

Therefore ¬Ci
[n1,...,nk] � Di

[m1,...,ml] ∈ Li(x);
4. if Ci

[n1,...,nh]�Di
[m1,...,ml]

∈ Li(x), from the construction of Li, x ∈ (Ci
[n1,...,nh]�

Di
[m1,...,ml]

)Ii . Then x ∈ (Ci
[n1,...,nh])

Ii and x ∈ (Di
[m1,...,ml]

)Ii . Therefore

Ci
[n1,...,nh] ∈ Li(x) and Di

[m1,...,ml] ∈ Li(x);
14. if {o} ∈ Li(x) ∩ Li(y) for some o ∈ N i

I , then x = oIi = y;
15. for each o ∈ N i

I , there must exist an element x such that x = oIi . From the
definition of Li, {o} ∈ Li(x);

16. if a ∈ Ci
[n1,...,nk] ∈ Ai, for Ii satisfies Ai, Ni(a) = aIi ∈ (Ci

[n1,...,nk])
Ii . From

the definition of Li, Ci
[n1,...,nk] ∈ Li(Ni(a));

19. if (x, w) ∈ Mij(E
ij
[n]) and Eij

[n] � F ij
[m] ∈ Lij , (x, w) ∈ (Eij

[n])
Iij ⊆ (F ij

[m])
Iij . We

can get (x, w) ∈ Mij(F
ij
[m]);

⇐) Let T = 〈Ti, Mij〉 be a combined tableau for
∑

, We can create a combined
model I = 〈{Ii}, {Iij}〉 from T in the following steps:

1. the local domain ΔIi is defined as: ΔIi = Si

2. for any individual a that occurs in Ai, aIi = Ni(a);
3. for any atomic cut concept Bi

[n] and atomic cut role Ri
[n] in Ki,

(Bi
[n])

Ii = {x|(Bi
[n]) ∈ Li(x)}, (Ri

[n])
Ii = {(x, y)|(x, y) ∈ Mi(Ri

[n])};

4. for any cut link Eij
[n] ∈ Eij , (Eij

[n])
Iij

= {(x, y)|(x, y) ∈ Mij(E
ij
[n])};

5. the interpretations of complex cut concepts in Ki are inductively defined based on
3 and 4.

Now we prove that I is a combined model of
∑

.
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1. According to tableau’s conditions 4-15 and 20-21, it is easily verified that for any
Ci

[n1,...,nk], Ci
[n1,...,nk] ∈ Li(x), x ∈ (Ci

[n1,...,nk])
I ;

2. Consider Ci
[n1,...,nk] � Di

[m1,...,ml] ∈ T i, we can get for any x ∈ Si, ¬Ci
[n1,...,nk]�

Di
[m1,...,ml]

∈ Li(x). And from 1, x ∈ (¬Ci
[n1,...,nk] � Di

[m1,...,ml]
)I , then from

the definition of ΔIi , (¬Ci
[n1,...,nk] � Di

[m1,...,ml]
)I = ΔIi , Therefore I satisfies

Ci
[n1,...,nk] � Di

[m1,...,ml];
3. we can follow the similar steps to prove I satisfies axioms in every RBox, ABox

and LBox.

From theorem 1, an algorithm that constructs a combined tableau of can be considered
as a decision procedure for the consistency of DEFSHOIN . Unfortunately, there is
no practical reasoning algorithm supporting reasoning within DEFSHOIN . A cal-
culus for satisfiability of concepts in SHOIQ [13] can be considered as a referenced
solution. This algorithm exhibits a ”pay as you go” behavior: if an input TBox, RBox
and concept do not involve any one of inverse roles, number restrictions or nomimals,
then the NN-rule will not be applied, and the corresponding non-deterministic guessing
is avoided. For deciding the consistency of DEFSHOIN KBs, this algorithm needs
improving by ”replacing” classic concepts and roles with cut concepts and roles, and
adding rules applied to cut links. Because the cut links used in current DEFSHOIN
are not transitive, adding the related rules is not difficult. However, the technique ”inter-
nalization” [14] used in SHOIQ is not available for DEFSHOIN . No believable ev-
idences guarantee that these translations can also be straightforwardly used in our fuzzy
cases. Therefore, the present proposing DEFSHOIN doesn’t include very complex
concept axioms in TBoxes.

5 Conclusion

By development of the semantic web, fuzzy and distributed extensions of ontology lan-
guages attract more and more attention. This paper proposes a novel logical approach to
couple fuzzy and distributed features. By integrating E-connection into EFSHOIN ,
we point out DEFSHOIN and give a combined tableau for DEFSHOIN KBs. The
main direction for future work involves the computational aspect. We are now address-
ing the issue to develop a calculus for reasoning within DEFSHOIN . Another direc-
tion is in extending DEFSHOIN with more expressive forms. Currently, the cut links
are not transitive, but the cut concept in one KB may have relations with another con-
cept in other KBs through the transitivity of cut links. So we will extend the transitive
closure of � on LS to achieve this expression. Finally, We believe that DEFSHOIN
is of great interest to the Semantic Web community, as it can be considered as a logical
foundation to support reasoning with distributed fuzzy ontologies.
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Abstract. This paper presents a data based kernel selection approach,
which utilizes the geometry distribution of data. Once the approximate
distribution can be confirmed as a special one like circle, cirque, sphere
cylinder, et al, some known kernel functions corresponding to the spe-
cial distribution can then be used. Four datasets are used to verify the
presented approach, and simulation results demonstrate the rationality
and effectiveness of the presented approach.

1 Introduction

Support vector machine (SVM), developed by V. Vapnik [12-13], is a general
powerful tool for solving classification, regression and time series prediction prob-
lems, et al [2,6,10-11]. SVM is a kernel based approach and the generalization
performance of SVM is largely dependent on the used kernel function. In case
when we have some prior knowledge of smoothness of the input data space, we
can utilize them to choose a good kernel [3]. However, for most applications, prior
knowledge about input data are very difficult to be obtained because the data
often originated from unknown areas or the prior knowledge are uneasy to be
extracted and formulated. Therefore, prior knowledge based approach for kernel
selection is limited and constrained. Some alternative approaches can then be
used for kernel selection in practical applications. At present, the common used
methods include leave-one-out or cross validation [4], bootstrapping [1], estima-
tion of VC dimension derived from statistical learning theory [8,4] and Bayesian
learning [7] etc. Leave-one-out and bootstrapping are available and effective but
with heavy computational burden because more training iterations are needed
for each specific parameter, and they are not practical especially for large data
sets. For the approach of VC dimension estimation, the kernel parameter is de-
termined by minimizing the upper bound of VC dimension, while the radius of
hypersphere enclosing the data in nonlinear feature space must be estimated.
Because upper bound estimation of VC dimension is loose and empirical risk
may not thought over, the obtained optimal parameter may be less accurate
than leave-one-out. Bayesian methods interpret SVM as maximizing a posteriori
solutions to inference problems with Gaussian Process priors. This probabilistic
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interpretation can provide intuitive guidelines for choosing a good SVM kernel,
which is shown to define a Gaussian process prior over functions on the input
space. This method relates kernel selection to prior assumptions about the kinds
of learning problem at hand, i.e., it is actually the prior based approach.

Data dependent method is another way to select the optimal kernel, which is
only related to the given training samples. Based on these empirical data, kernel
and relative parameters can be optimized in advance or adjusted during learn-
ing but with limit iterations. It only needs less computational expense than data
independent methods like leave-one-out. Therefore, data dependent method is
general without additional prior assumption about input data and can be used
to any area and any problem.

This paper presents a data based kernel selection strategy, which well utilizes
the information embedded in data, i.e., approximate geometry distribution of
data (for high dimension data, they need to be firstly projected to a low dimen-
sion like two or three dimension so as to determine their geometry distribution
easily). If the data distribution is a special one like circle, cirque, sphere or cylin-
der et al, some known kernel functions corresponding to the special data distri-
bution can be used. This paper provides an approach to determine some special
distributions and appropriate kernels corresponding to these distributions. For
an uninterpretable distribution data set, the most common used Gaussian or
polynomial kernel may be a good choice.

2 The Proposed Approach

For a real world problem, all the usable information to guide kernel selection is
usually originated from the given data, and the most direct clue may be the ge-
ometry distribution of the data. This paper focuses on utilizing data distribution
to determine the most appropriate kernel function for a given problem. The ap-
proach judges the approximate geometry distribution firstly, and then it selects
an appropriate kernel function based on the distribution. Because kernel selec-
tion is accomplished before SVM is trained, the computation cost can be largely
decreased. Moreover, the features contained in data can be incarnated as well.

Since majority data are high-dimensional, the data need to be firstly projected
to a lower dimension space so as to determine their distribution easily. Here, two
common used methods, principle component analysis (PCA) [9] and multidi-
mensional scaling (MDS) [5] are utilized. As we know, PCA can be applied in
various areas but with many loss of information, so its performance may be at a
discount especially for nonlinear high dimensional data. While, MDS takes the
relations among the original data into account, so the loss of information em-
bedding in the data is less after data are projected to a lower dimensional space.
The experiments with both methods in next section also support the contention.

In the sequel, the proposed approach decides the distribution of the projected
data. Four kinds of special data distribution, circle, cirque, sphere and cylinder,
can be determined, and some transmutations of these distributions can be judged
as well. Corresponding to these special distributions, polar kernel Kpolar, sphere
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kernel Ksphere and cylinder kernel Kcylinder can be regarded as the optimal
kernel, respectively. For those uninterpretable data, Gaussian and polynomial
kernels can be adopted alternatively.

The main idea of the proposed approach is concluded as follow:

Step 1: Decide whether the given dataset needs to be projected to a lower
dimensional space. For a given dataset G, if the dimension of data vec-
tor is higher than three, the dataset G will be projected to a two or three
dimensional space by PCA or MDS. The new dataset is denoted as G

′
.

Step 2: Determine whether the approximate distribution of G
′
is the spe-

cial one, i.e., circle, cirque, sphere or cylinder.
Step 3: Select an appropriate kernel for the given dataset from a candi-

date kernel class K(Σ) (Theoretically, K(Σ) can be finite or infinite,
and it is often finite for a practical application):
K(Σ) = {Kgau, Kpol, Kspl, Knn, Kpolar, Ksphere, Kclinder, · · ·}
Where,
Gaussian kernel: Kgau(σ) = exp(−‖x − y‖2/2σ2);
Polynomial kernel: Kpol(d) = (〈x, y〉 + c)d;
Spline kernel: Kspl(τi, ρ) =

∑ρ=l
τ=0 xryr +

∑N
s=1(x − τs)

ρ
+(y − τs)

ρ
+ ;

Neural network kernel: Knn(ρ, θ) = tanh(ρxT y + θ);
Polar kernel: Kpolar(α) = α tan(x2/x1) · α tan(y2/y1) + ‖x‖‖y‖;
Sphere kernel:
Ksphere(α)=α cos(x3/‖x‖)·α cos(y3/‖x‖)+α tan(x2/x1)·α tan(y2/y1)
+ ‖x‖‖y‖;
Cylinder kernel:
Kclinder(α) = x3y3+α tan(x2/x1)·α tan(y2/y1)+

√
(x2

1 + x2
2)(y2

1 + y2
2);

If the distribution approximates to circle or cirque, the polar kernel
Kpol will be selected. If it approximates to sphere or cylinder, the
sphere kernel Ksphere or cylinder kernel Kclinder will be selected, re-
spectively. While, when the distribution can not be determined, the
Gaussian kernel Kgau and the polynomial kernel Kpol may be com-
mon adopted.

The proposed approach takes the approximate distribution of dataset into ac-
count, and regards it as a guide to select an appropriate kernel for the given
data. In so doing, the generalization performance of SVM may be improved.

3 Simulation Results

To evaluate the proposed approach, four datasets are adopted. In the experi-
ments, the classification error, the number of support vectors and CPU time are
discussed for different kernels. For each dataset, Gaussian and/or polynomial
kernels are used as comparison conferences.

3.1 Dataset D1

In the experiments, 96 data are generated randomly including 30 training data
for each class and others take as testing data. Fig 1 shows the respective
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Fig. 1. Classification results on dataset D1 with approximate circle distribution. (The
first one is the distribution of D1, the second one is the distribution of D1 in the
feature space with polar kernel. The last three are the classification results with polar,
Gaussian and polynomial kernels.)

distributions of dataset D1 in the original and feature space, classification results
with different kernels.

Table 1 compares the classification error, the number of support vectors and
CPU time by three different kernels, i.e., polar, Gaussian and polynomial kernels.
From Fig. 1 and Table 1, it can be observed that the polar kernel is the optimal
for dataset D1.

Table 1. Comparisons of training and testing results on D1 by three kernels

Kernel error #SVs CPU time(second)

Polar 0 3 1.5
Gaussian 0 12 2.5

Polynomial 27 56 36

3.2 Dataset D2

In the experiments, 120 data are generated randomly including 40 training data
for each class and others take as testing data. Fig 2 shows the respective dis-
tributions of dataset D2 in the original and feature space, classification results
with different kernels.

Table 2 compares the classification error, the number of support vectors and
CPU time by polar, Gaussian and polynomial kernels. From Fig. 2 and Table 2,
it can be observed that the polar kernel is the optimal for dataset D2.
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Fig. 2. Classification results on dataset D2 with approximate cirque distribution. (The
first one is the distribution of D2, the second one is the distribution of D2 in the
feature space with polar kernel. The last three are the classification results with polar,
Gaussian and polynomial kernels.)

Table 2. Comparisons of training and testing results on D2 by three kernels

Kernel error #SVs CPU time(second)

Polar 0 7 1.4
Gaussian 2 17 3.8

Polynomial 56 78 50

3.3 Dataset D3

In the experiments, 100 data are generated randomly including 30 training data
for each class and others take as testing data. Fig 3 shows the respective dis-
tributions of dataset D3 in the original and feature space, classification results
with different kernels.

Table 3 compares the classification error, the number of support vectors
and CPU time by sphere, Gaussian and polynomial kernels. From Fig. 3 and
Table 3, it can be observed that the sphere kernel is the optimal for dataset D3.

Table 3. Comparisons of training and testing results on D3 by three kernels

Kernel error #SVs CPU time(second)

sphere 0 4 1.5
Gaussian 3 15 2.9

Polynomial 25 34 39
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Fig. 3. Classification results on dataset D3 with approximate sphere distribution. (The
first one is the distribution of D3, the second one is the distribution of D3 in the feature
space with sphere kernel. The last three are the classification results with sphere,
Gaussian and polynomial kernels.)

3.4 Dataset D4

In the experiments, 100 data are generated randomly including 30 training data
for each class and others take as testing data. Fig 4 shows the respective dis-
tributions of dataset D4 in the original and feature space, classification results
with different kernels.
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Fig. 4. Classification results on dataset D4 with approximate circle distribution. (The
first one is the distribution of D4, the second one is the distribution of D4 in the feature
space with cylinder kernel. The last three are the classification results with cylinder,
Gaussian and polynomial kernels.)
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Table 4 compares the classification error, the number of support vectors and
CPU time by cylinder, Gaussian and polynomial kernels. From Fig. 4 and Table 4,
it can be observed that the cylinder kernel is the optimal for dataset D4.

Table 4. Comparisons of training and testing results on D4 by three kernels

Kernel error #SVs CPU time(second)

cylinder 0 4 1.5
Gaussian 2 15 2.9

Polynomial 25 34 39

4 Conclusion

This paper presents a kernel select strategy, which takes data distribution into
account. Some special distributions and corresponding appropriate kernels are
provided as well. The experiment results on four datasets support the rational-
ity and effectiveness of the proposed approach. Although the data distributions
of practical problems may be diverse, some new algorithms for verifying data
distribution can be easily appended. Therefore, the proposed approach has prac-
ticability and extensity, and it can be regarded as an assistant tool for kernel
selection.
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Abstract. This paper focuses on clustering of leaf-labelled trees. As op-
posed to many other approaches from literature it is suitable not only for
trees on the same leafset, but also for trees where the leafset varies. A new
dissimilarity measure, constructed on the frequent subsplit term is used
as the fundament of clustering technique. The clustering algorithm is de-
signed to maximize the clustering quality measure. The computational
time saving improvements are used. The initial results on phylogenetic
and duplication trees are presented.

Keywords: Clustering, Leaf-labelled trees, Phylogenetic trees, Frequent
subsplits.

1 Introduction

Comparing phylogenetic trees and clustering of phylogenetic trees are one of
important issues in phylogenetic analysis. One of the important problems of ex-
isting approaches is that they are mainly applicable for tress on the same leafset.
Measuring similarity or distance between phylogenetic trees is a key step for ap-
proaches like tree clustering. Many distance measures were proposed, however
the Robinson Foulds distance is especially often used, because of its simplicity
and intuitive interpretation. In this paper we propose a new dissimilarity measure
for leaf-labelled trees. Unlike the Robinson Foulds distance, it is also suitable for
trees where the leafset varies (trees on a free leafset). Moreover, it produces even
more intuitive results than R-F for the trees on the same leafset and it is also
easy to interpret. The measure is based on the strict maximal split set, which is
a technique for extracting common information in trees where the leafset varies.
It represents this information as maximal subsets of taxa connected with the
same relations. In the next part we extend the quality-maximization approach
presented in [1] in such way it is applicable for trees, where the leafset varies,
and does not apriori discard any taxa like in [2].We also propose a time-saving
improvement of proposed algorithm. This paper is closed by the initial results
of clustering of phylogenetic and duplication trees.
� The research has been partially supported by grant No 3 T11C 002 29 received from

Polish Ministry of Education and Science.
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2 Basic Notions

Leaf-labelled trees are very often represented as a set of splits [3] . Split (or
Bipartition) A|B (of a tree T with leafset L), corresponding to an edge e is a pair
of leafsets A and B, which originated in splitting tree T into two disconnected
trees whilst removing an edge e from a tree T ,A ∪ B = L. In this paper we will
refer to the leafset of a given split s as L(s).

Definition 1 (Restricted Split Equality(z-equality)). Splits s1 and s2 are
restrictedly equal on the leafset z, if those two splits after removing leaves not in
z are equal:

s1 =z s2 ⇐⇒ sz
1 = sz

2.[2] (1)

For example, splits abcd|efxy and abcd|efwz are z-equal on leafset {abcdef}.

Definition 2 (Subsplit and supersplit). Split s1 is a subsplit of s2 , and s2
is a supersplit of s1 , iff s1 is restrictedly equal to s2 on the leafset of s1 , and
leafset of s1 is a subset of the leafset of s2:

s2 ⊆ s1 ⇐⇒ (s1 =z s2) ∧ z = L(s1) ∧ (L(s1) ⊆ L(s2)), (2)

it can also be presented alternatively:

s2(A|B) ⊆ s1(C|D) ⇐⇒ (A ⊆ D ∧ B ⊆ C) ∨ (A ⊆ C ∧ B ⊆ D). (3)

For example abcd|ef is a subsplit of abcd|efxy.
Various distance measures were proposed for leaf-labelled trees, among others

Robinson-Foulds [4], (the most popular), Jaccard [5], nearest neighbour inter-
change (NNI), bisection and reconnection (TBR), subtree prune and regraft
(SPR) [6]. The distances are suitable for only leaf-labelled trees on the same
leafset, and the last three are NP-hard. As the R-F distance is the most popular
and easy to interpret we will correspond to this measure in our paper.

R-F Distance - The most popular distance measure for the trees on the same
leafset is R-F distance. R-F distance [4] between two trees T1 and T2 with set of
splits S1 and S2 respectively is defined as follows:

dR−F (T1, T2) = |S1 ∪ S2| − |S1 ∩ S2|. (4)

Frequent subsplit s with support minsup in a profile of trees is a split
that is a subsplit of at least one split in at least minsup of trees. The minsup
parameter is called minimal support. It may be an absolute value which denotes
the minimal number of trees the split is supposed to be found in (as a subsplit).
It can also be given as the relative value, given as a minimal percentage of tree
the split is supposed to be found in.

Maximal Strict Frequent Split Set (SFS) - a set that contains maximal
frequent subsplits with minsup=100%. In other words, it contains subsplits s
that occur in all input trees and there is no other frequent subsplit r that occurs
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in all input trees that is also a supersplit of s. More formally, the SFS can be
represented as follows:

SFS(T1, . . . , Tn) = {s : (∀i∈{1...n}s∈̃Ti) ∧ (∼ ∃r(∀i∈{1...n}r∈̃Ti) ∧ s ⊂ r)}, (5)

where
s∈̃T ⇐⇒ (∃r∈T s ⊆ r). (6)

The SFS has a very good interpretation, as it returns different, maximal sets
of taxa that are connected with the same relations in the input trees. It can
be visualized as the profile of trees or the one tree based on the intersection of
leafsets. More details about SFS and it’s interpretation can be found in [7].

For example from the Figure 1:
T1:a|bcd, b|acd, c|abd, d|abc, ab|cd
T2:a|bcdxywz, b|acdxywz, c|abdxywz,d|abcxywz, abxy|cdwz, x|abcdywz,
y|abcdxwz, w|abcdxyz, z|abcdxyw
SFS: a|bcd, b|acd, c|abd, d|abc, ab|cd (tree T3 is the visualisation of the SFS).

Fig. 1. Two trees on different leafset, together with the visualisation of their SFS

A more difficult example, where SFS produce more then one tree, is presented
on the Figure 2.
T1: cd|abefghi, bcd|aefghi, abcd|efghi, hi|abcdefg, ghi|abcdef,
fghi|abcde, a|bcdefghi, b|acdefghi, c|abdefghi, d|abcefghi, e|abcdfghi,
f |abcdeghi, g|abcedfhi, h|abcdefgi, i|abcdefgh
T2: bc|adefghj, abc|defghj, abcd|efghj, hj|abcdefg, ghj|abcdef,
fghj|abcde, a|bcdefghj, b|acdefghj, c|abdefghj, d|abcefghj, e|abcdfghj,
f |abcdeghj, g|abcedfhj, h|abcdefgj, j|abcdefgh
SFS of the input trees is as follows:abcd|efgh, gh|abcdef, fgh|abcde,
bc|aefgh, h|abcdefg, a|bcdefgh, b|acdefgh, c|abdefgh, d|abcefgh, e|abcdfgh,
f |abcdegh, g|abcedfh,

3 Clustering of Trees Using Frequent Splitset Approach

Various clustering techniques suitable for leaf-labelled trees were presented. Au-
thors of paper [8] examined a few algorithms like agglomerative clustering or
k-mean-like algorithms for a partitioning set of phylogenetic trees with respect
to R-F distance. This approach was limited to leaf-labelled trees. The more
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Fig. 2. Two input trees (T1 and T2) and trees built on their SFS (SFS1 and SFS2)

general, quality optimization approach was presented in [1]. In [2] we extended
the techniques in the way it could be used for leaf-labelled trees on the free
leafset. The methods, although simple and efficient, were only a partial problem
solution for trees with a different leafset. Here we provide a clustering solution
not only suitable for trees with a free leafset, but also providing better results for
trees with the same leafset. Our approach aims to divide the trees into clusters in
such a way, that it maximizes the quality of clustering which is dependent on the
size of a frequent splitset of particular clusters. This way, we maximize common
knowledge extractable from a cluster, which is usually the aim of clustering.

3.1 Dissimilarity Measure

At first, we would like to define a new dissimilarity measure between two trees (or
splitsets) with the help of the frequent itemset term. Here we present a measure
that is not only applicable for trees with different leafsets but also gives more
intuitive results for trees with the same leafset:

d(T1, T2) = 1 − |SFS|
|S1∪̃S2|

. (7)

Where SFS is a strict-frequent splitset and S1∪̃S2 is the modified sum of
both splitsets, making that, if for splits s1 ∈ S1, s2 ∈ S2 , s1 is a supersplit of
s2 only supersplit (s1) is included in result. Formally it can be represented as
follows:

S1∪̃S2 = {s : (s∈̃S1 ∨ s∈̃S2) ∧ (∼ ∃r((r∈̃S1 ∨ r∈̃S2) ∧ s ⊂ r))}. (8)

Such a measure determines dissimilarity on the basis of how many subsplits
they share in common. Let us compare this measure to the most popular: R-F
distance. Consider the example from the Figure 3:

SFS(T1, T2) = trivial(5) + ab|cd, SFS(T1, T3) = trivial, SFS(T2, T3) =
trivial
dRF (T1, T2) = 4, d(T1, T2) = 1 − 6/9 = 4/9
dRF (T2, T3) = 4, d(T2, T3) = 1 − 5/9 = 5/9
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Fig. 3. Three different trees on the same leafset

It is clear that R-F distance states that T1 and T2 are the same dissimilar
as T2 and T3 whilst our measure states differently, which is an intuitive result
as both T1 and T2 share common non-trivial subsplit ab|cd. For trees on the
different leafset, the R-F distance does not work at all whilst our measure does.

As for example from the Figure 1: d(T1, T2) = 1 − 5/9 = 4/9.
As for example from the Figure 2: d(T1, T2) = 1 − 12/30 = 18/30 = 3/5.

3.2 Quality Measure

For assessing the clustering quality, we use the method which bases on the cluster
information loss, i.e. the amount of information that is lost while removing a
cluster of trees with any chosen representative tree:

IG =
ΔIC0 − ΔIC

ΔIC0

, (9)

where ΔIC is the sum of information loss for each cluster ΔICk
, given with

expression:
ΔICk

=
∑

C(i)=k

d(Ti, TR). (10)

ΔIC0 is the information loss of one-cluster clustering and TR is a represen-
tative tree or split-set of given cluster, here we use SFS. For comprehensive
explanation of motivations and characteristics of such quality measure see [1]
[2]. In this approach we take a strict frequent splitset as a representative set and
the dissimilarity measure presented in previous section.

3.3 Clustering of Leaf Labelled Trees, Maximizing Quality Measure
for Strict Frequent Splitset as a Representative Set

Here we present the algorithm that attempts to maximize the proposed quality
measure. It is based on agg-inf proposition given in [1]. As the base of algorithm
the hierarchical agglomerative clustering is chosen, however as a merging condi-
tion we choose such two clusters to merge, so that they minimize the information
loss after the merging. The following properties hold:
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Property 1
SFS(S1, SFS(S2, S3)) = SFS(S1, S2, S3). (11)

Proof. At first we will show that

s ∈ SFS(S1, S2, S3) ⇒ s ∈ SFS(S1, SFS(S2, S3)), (12)

which is equivalent to:

s ∈ SFS(S1, S2, S3) ⇒
s∈̃SFS(S1, SFS(S2, S3))∧ ∼ ∃r(r∈̃SFS(S1, SFS(S2, S3)) ∧ s ⊂ r). (13)

a) s ∈ SFS(S1, S2, S3) ⇒ s∈̃SFS(S1, SFS(S2, S3))
is true according to SFS definition.
b) s ∈ SFS(S1, S2, S3) ⇒∼ ∃r(r∈̃SFS(S1, SFS(S2, S3)) ∧ s ⊂ r), assume

that it is not true then:

∃r(r∈̃SFS(S1, SFS(S2, S3)) ∧ s ⊂ r) ⇒ r∈̃S1 ∧ r∈̃SFS(S2, S3)
⇒ r∈̃S1 ∧ r∈̃S2 ∧ r∈̃S3 ⇒ s �∈ SFS(S1, S2, S3),

(14)

which is a contradiction because according to the assumption s∈̃SFS(S1, S2, S3).
Now we will show that:

s ∈ SFS(S1, SFS(S2, S3)) ⇒ s ∈ SFS(S1, S2, S3), (15)

which is equivalent to:

s ∈ SFS(S1, SFS(S2, S3))
⇒ s∈̃SFS(S1, S2, S3)∧ ∼ ∃r(r∈̃S1 ∧ r∈̃S2 ∧ r∈̃S3 ∧ s ⊂ r). (16)

a) s ∈ SFS(S1, SFS(S2, S3)) ⇒ s∈̃SFS(S1, S2, S3) is true according to SFS
definition.
b) s ∈ SFS(S1, SFS(S2, S3)) ⇒∼ ∃r(r∈̃S1 ∧ r∈̃S2 ∧ r∈̃S3 ∧ s ⊂ r),

assume that it is not true then:

∃r(r∈̃S1r ∧ ∈̃S2r ∧ ∈̃S3 ∧ s ⊂ r)
⇒ r∈̃SFS(S1, SFS(S2, S3)) ∧ s ⊂ r ⇒ s �∈ SFS(S1, SFS(S2, S3)),

(17)

which is a contradiction because according to the assumption s ∈ SFS(S1,
SFS(S2, S3))

The implication: r∈̃S1r ∧ ∈̃S2r ∧ ∈̃S3 ∧ s ⊂ r ⇒ r∈̃SFS(S1, SFS(S2, S3)),
can be explained as follows:

r∈̃S2 ∧ r∈̃S3 ⇒ r∈̃SFS(S2, S3)
r∈̃SFS(S2, S3) ∧ r∈̃S1 ⇒ r∈̃SFS(S1, SFS(S2, S3)).

(18)

Property 2. For any splitset X:

S∪̃SFS(S, X) = S. (19)
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Proof. According to SFS definition, ∀s(s ∈ SFS(S, X) ⇒ s∈̃S ⇒ ∃r∈Ss ⊂ r)
Now according to the modified sum definition:

S∪̃SFS(S, X)={s : (s∈̃S∧s∈̃SFS(S, X))∧(∼∃r(r∈̃S∧r∈̃SFS(S, X)∧s ⊂ r))},
(20)

From the definition of SFS it follows: s∈̃SFS(S, X) ⇒ s∈̃S, therefore

S∪̃SFS(S, X) = {s : s∈̃S ∧ (∼ ∃r(r∈̃S ∧ r∈̃SFS(S, X) ∧ s ⊂ r))} = S. (21)

We take the information loss minimization criteria as the merging condition:

ΔI ′ − ΔI =
∑

C(i)=z

d(Ti, SFSz)−
∑

C(i)=x

d(Ti, SFSx)−
∑

C(i)=y

d(Ti, SFSy), (22)

due to the properties 1 and 2 we can transform this to:

ΔI ′ − ΔI =
∑

C(i)=x(1 − |SFSx|−|SFS(SFSy,SFSx)|
|Si| )

+
∑

C(i)=y(1 − |SFSy|−|SFS(SFSy,SFSx)|
|Si| ).

(23)

Where C(i) = x selects trees assigned to cluster x, C(i) = y selects trees assigned
to cluster y, and C(i) = z selects trees assigned to cluster z, which originated from
merging cluster x and cluster y. Such a condition can be effectively counted as it
does not require counting all possible information losses. The merging decision is
based only on the frequent splitsets and the size of the splitset of trees assigned
to clusters, which significantly reduces time required for computation.

4 Results

Here we present the results of clustering of leaf-labelled trees with the proposed
approach(agg-inf-fs). We choose the phylogenetic trees datasets (Camp and the
Caesal), which contain leaf-labelled trees on the same leafset. We compare it to
the classical agg-inf approach as proposed in [1], by counting the quality measure
based on a frequent subsplit approach. The other dataset contains duplication
trees which are leaf-labelled trees on a free leafset. Here we compare the result
to the z-restricted version of agg-inf [2], on the common leafset. The results are
presented in Table 1.

Table 1. Value of IG parameter for clustering leaf-labelled trees with agg-inf and
agg-inf-fs approach

k Camp Caesal Dupl-trees

Agg-inf Agg-inf-fs Agg-inf Agg-inf-fs Agg-inf Agg-inf-fs

5 0.14 0.19 0.58 0.58 0.09 0.18
7 0.16 0.21 0.57 0.57 0.10 0.19
8 0.18 0.23 0.54 0.54 0.12 0.21
9 0.20 0.25 0.53 0.53 0.13 0.22
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The results presented above show that the proposed algorithm, based on fre-
quent splitset approach can give at least not worse (Caesal) and up to 31%
(Camp) and 56% (Dupl-trees) better results then the classical split-based ap-
proach. This proves that the proposed methods are reasonable.

5 Discussion

In this paper we have presented a new method of clustering leaf-labelled trees
where the leafset varies, which is a novel approach. The presented method is
also suitable for trees with the same leafset, and for such it provides better
results than other known methods. Presented algorithm is based on the dis-
similarity measure derived from frequent subsplitset which is a novel method
of extracting common knowledge from trees. The presented results prove that
proposed method is reasonable. Future work is needed to further improve the
performance. The studies on possible metrics derived form frequent subplitset
are also challenging.
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Abstract. This study considers the construction of a multicriteria
model to assist in the diagnosis of Alzheimer’s disease. This disease is
considered to be one of the most frequent of the dementias and it is
responsible for about 50% of the cases. Due to this fact and the therapeu-
tical limitations in the most advanced stage of the disease, the diagnosis
made of the correct way is extremely important and it can provide better
life conditions to patients and their families. For the application of the
model two scenarios: 1) The battery of standardized assessments devel-
oped by The Consortium to Establish a Registry for Alzheimer’s disease
(CERAD) and 2) The questionnaire with 120 questions that was used in
a study realized in the city of Sao Jose dos Campos, SP, Brazil were used.

Keywords: Diagnosis, Alzheimer’s, Multicriteria, MACBETH,
HIVIEW.

1 Introduction

Demographic studies in developed and developing countries have showed a pro-
gressive and significant increase in the elderly population in the last years [9].

Alzheimer’s disease is the most frequent cause of dementia and is responsible
(alone or in association with other diseases) for 50% of the cases in western
countries [9]. According to [8], despite its high incidence, doctors fail to detect
dementia in 21 to 72% of their patients.

Considering the few alternative therapies and greater effectiveness of treat-
ments after diagnosis, identifying the cases that are high-risk for becoming de-
mentia take on capital importance [8].

The main focus of this work is to develop a multicriteria model for aiding in
decision making for the diagnosis of Alzheimer’s disease.

In this work, the modeling and evaluation processes have been conducted
with the aid of a medical expert and bibliographic sources. Data sets can be
used during the validation of the model, but achieving these data sets can be
difficult. An example of a data set is the battery of standardized assessments

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 612–619, 2008.
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developed by the Consortium to Establish a Registry for Alzheimer’s disease
(CERAD). Another example is the questionnaire with 120 questions that was
used in a study realized in the city of Sao Jose dos Campos, SP, Brazil. We
have sought to discover which questions are most relevant for the diagnosis of
Alzheimer’s disease by using these data sets.

We have provided a ranking with the classification of these questions. This
ranking is composed of the construction of judgment matrixes and constructing
value scales for each Fundamental Point of View already defined. The construc-
tion of cardinal value scales was implemented through MACBETH multicriteria
methodology. At the end of this study, a comparison was made of the results
obtained in the application of the model in both data sets.

2 Diagnosis of Alzheimer’s Disease

Diagnosis of Alzheimer’s disease is carried out in several steps. Initially, syn-
dromic diagnosis is defined, which informs whether the patient presents the di-
agnostic criteria for dementia. After Dementia is confirmed, etiological diagnosis
follows, which informs which disease is causing the dementia. In this case, we
are looking for Alzheimer’s disease [8] and [9].

3 Definition of the Multicriteria Model

In studies developed by [3] and [4] the application of the multicriteria model for
aiding in diagnosis of Alzheimer’s disease was presented. A substantial reading
on MCDA methods can be found in [1], where the authors address the definitions
and the problems that are involved in the decision making process.

In the present study, we sought to develop a multicriteria model that helps in
the decision making related to the diagnosis of Alzheimer’s disease. This model
consists of several steps that will be described below.

Initially were defined the problem value tree corresponding to the Funda-
mental point of view (FPV) that are used in evaluation of the diagnosis. The
evaluation process is composed of the construction of judgment matrixes and
constructing value scales for each FPV already defined. The construction of car-
dinal value scales will be implemented through the MACBETH methodology
developed by [1]. We used the MCDA tool to help in the construction of ma-
trixes: M-MACBETH (http : //www.m − macbeth.com).

From the family of FPVs it is possible to evaluate the attractiveness of the
options for each interest. Although the definition of the describers of impact is
a difficult task, its decisiveness contributes for a good formation of judgments
and a justified and transparent evaluation.

3.1 Describers

An FPV is operational in the moment that has a set of levels of associated
impacts (describers). These impacts are defined for Nj, that can be ordered in
decreasing form according to the describers [1].
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In this step of construction of the describers, the decisions were made during
the meetings with the health professional involved in the process.

Each FPV was operationalized in such a way as to evaluate the influence of
the questions evaluated in the elderly patients that correspond to each criterion
during the definition of the diagnosis of Alzheimer’s disease.

For the evaluation of each FPV, the possible states were defined. Each FPV
has a different quantity of states. These states were defined according to the
exams or questions involved for each describer.

Its important remember that the describers has a structure of complete pre-
order, otherwise, a superior level is always preferable a least level.

3.2 Analysis of Impacts

In this step, the analysis of impacts is carried out, according to each FPV: (i)
the lowest and highest values of the impacts; and (ii) the relevant aspects of the
distribution of the impacts in each one.

In this work, for each describer, the same values were considered to get the
value function for each FPV. Therefore, scores higher than 60, obtained through
the judgments matrixes were considered risk describers during the evaluation
of diagnosis, in other words, the elderly person that has a great number of
answers considered right in the definition of the diagnosis, becomes part of the
group of people with a great probability of developing Alzheimer’s Disease. This
perception was defined by the health professional.

3.3 Evaluation

After the definition of the FPVs family and the construction of the describers,
the next step is the construction of the cardinal value scales for each FPV. The
evaluations of the judgments matrixes were made according to the opinion of
the decision maker, the health area professional.

After evaluating the alternatives of all the FPVs individually, an evaluation
of the FPVs in one matrix only was carried out. For this, a judgment matrix
was created in which the decision maker’s orders are defined according to the
preference of the decision maker. The decision maker defined the order based on
what he judged to be more important in deciding on a diagnosis.

3.4 Results

In this step we show the final result of the model, the contribution of the criterion
for the diagnosis of Alzheimer’s disease. We can see the describer values for each
criteria. With these values we can conclude that the questions that are part of
these describers should be preferentially applied during the definition of diagnosis
of Alzheimer’s disease.
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3.5 Evaluation Results

In this step the value analyses of the sensitivity and the dominance of potential
actions in the process of evaluation to discover which questions are most relevant
for diagnosis of Alzheimer’s disease by using data sets. HIVIEW software [6] was
used to carry out these analyses. It is one of the instruments used in the decision
support processes, essentially for evaluation of models obtained through Multi-
criteria Methodologies for decision support, in virtue of the fact that it is used
as a function of additive aggregation, yet it is compatible with the procedures
developed in this study.

4 Application of the Multicriteria Model

The application of the model in multicriteria defined in this study was realized
through the use of two scenarios that we describe in subsections 4.1 and 4.2. We
gave a brief explanation in the two applications of the model. More information
about the steps of the scenarios is shown in [5].

4.1 Scenario 1

The original mandate of the Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD) in 1986 was to develop a battery of standardized assessments
for the evaluation of cases with Alzheimer’s disease who were enrolled in NIA-
sponsored Alzheimer’s Disease Centers (ADCs) or in other dementia research
programs [7]. Despite the growing interest in clinical investigations of this ill-
ness at that time, uniform guidelines were lacking as to diagnostic criteria, test-
ing procedures, and staging of severity. This lack of consistency in diagnosis and
classification created confusion in interpreting various research findings. CERAD
was designed to create uniformity in enrollment criteria and methods of assess-
ment in clinical studies of Alzheimer’s Disease and to pool information collected
from sites joining the Consortium.

CERAD developed the following standardized instruments to assess the
various manifestations of Alzheimer’s disease: Clinical Neuropsychology, Neu-
ropathology, Behavior Rating Scale for Dementia, Family History Interviews
and Assessment of Service Needs.

According to the definition of the model, we first defined the problem value
tree in figure 1. Next, we defined the describers. Each FPV has a different quan-
tity of states. The FPV1 has 3 states. The FPV2 has 5 states. The FPV3 has 3
states. The FPV4 has 3 states. The FPV5 has 3 states. The FPV6 has 3 states.
The FPV7 has 13 states. Next, the evaluation of the FPVs was made through
the construction of the judgment matrixes.

After the evaluation we can see the final result of the model, the contribution
of the criteria for the diagnosis of Alzheimer’s.

Analyzing the FPV1 (History), we can see that only one describer achieved a
value above that which was defined in the impact analysis. It is describer N03
with a value of 87.50. In FPV2 (Gross Examination), two describers achieved a
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Fig. 1. Problem value tree

value above that which was defined in the impact analysis. They are describers
N04 and N05 with values of 69.23 and 92.31 respectively.

In FPV3 (Cerebral Vascular Disease: Gross Findings), only one describer
achieved the defined minimum value. It is describer N03 with a value of 88.89. In
FPV4 (Microscopic Vascular Findings), only one describer achieved the defined
minimum value. It is describer N03 with a value of 88.89.

In FPV5 (Microscopic of Evaluation of Hippocampus and Adjacent Regions),
only one describer achieved the minimum value. Describer N05 achieved a value
of 92.86.

In FPV6 (Assessment of Neuro-histologic Findings) only one describer
achieved the minimum value. Its value is 87.50. In FPV7 (Neuro-pathological
Diagnoses), there were 10 describers which achieved the minimum value in im-
pact analysis. They were describers N04 to N13, with values of 70.13, 80.52,
90.26, 91.56, 92.86, 94.16, 95.45, 96.75, 98.05 and 99.35.

In the last step of the application of the model we made the global evaluation
of the actions when they are confronted with the seven FPVs. It was found that
FPV1 to FPV7 have a total participation of 20%, 14%, 18%, 11%, 1%, 18% and
19%. Thus, action N03 proved to be potentially better with 85 points and the
action N01 proved to be potentially least.

4.2 Scenario 2

In scenario 2 we used information obtained from the study realized in 2005 with
235 elderly people in the city of Sao Jose dos Campos, SP, Brazil. In this study
a questionnaire with 120 questions that supplied demographic-social data, ana-
lyzed the subjective perception of the elderly, their mental and physical health
(cognitive and emotional aspects), day-to-day independence, in addition to fam-
ily and social support and the use of services [2].

According to the data collected with the application of the questionnaire we
sought to carry out a study that showed among the people interviewed which
have the possibility of being diagnosed with Alzheimer’s disease. It’s important
to consider that at no time were questions answered by anyone that had already
been diagnosed with the disease.

According to the definition of the model, we first defined the problem value
tree in figure 2. Next, we defined the describers. Each FPV has a different
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Fig. 2. Problem value tree

quantity of states. The FPV1 has 4 states. The FPV2 has 6 states. The FPV3
has 7 states. The FPV4 has 8 states. The FPV5 has 6 states. The FPV6 has 4
states.

After the evaluation we can see the final result of the model, the contribution
of the criteria for the diagnosis of Alzheimer’s.

Analyzing the FPV1 (Memory), we can see that two describers achieved a
value above that which was defined in the impact analysis. It is describer N03
with a value of 77.78 and N4 with a value of 94.44. In FPV2 (Orientation), three
describers achieved a value above that which was defined in the impact analysis.
They are describers N04 with a value of 68.75, N05 with a value of 87.50 and
N06 with values of 93.75.

In FPV3 (Judgment and Problem Solving), three describers achieved a value
above that which was defined in the impact analysis. They were describers N05
to N07, with values of 69.57, 78.26 and 95.65. In FPV4 (Community Affairs),
there were six describers which achieved the minimum value in impact analysis.
They were describers N03 to N08, with values of 60.98, 80.49, 90.24, 92.68, 95.12
and 97.56.

In FPV5 (Home and Hobbies), five describers achieved a value above that
which was defined in the impact analysis. They are describers N02 to N06, with
values of 60.00, 80.00, 85.00, 90.00 and 95.00.

In FPV6 (Personal Care), two describers achieved the minimum value. It is
describer N03 with a value of 72.73 and N04 with a value of 90.91.

In the last step of the application of the model we made the global evaluation
of the actions when they are confronted with the seven FPVs. It was found that
FPV1 to FPV6 have a total participation of 23%, 14%, 18%, 11%, 1% and 18%.
Thus, action N04 proved to be potentially better with 84 points and the action
N01 proved to be potentially least.

5 Comparation of the Results

Analyzing the results obtained with the application of the model in the two
scenarios we can make several comparations. In scenario 1 we have the FPV7
(Neuro-pathological Diagnoses) as the criterion with the largest number of de-
scribers which obtained the minimum values required by the model. This result
shows the importance of the definition of the diagnosis of Alzheimer’s. Many
studies show the importance of the definition of the diagnosis of dementia that
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should be carried out before the definition of the diagnosis of Alzheimer’s dis-
ease [10], because many diseases can be confused with dementias and as a
consequence, be confused with Alzheimer’s disease. This is merely to underline
the importance of this criterion for the solution of this problem. In scenario 2
we have FPV4 (Community Affairs) as the criterion with the largest number
of describers which obtained the minimum values required by the model. This
criterion has the characteristic of social integration with and without family
members and also the execution of the daily activities. This criterion also con-
tain factors related to health (problems of hearing, difficulty to speak and so on.),
and mental health (satisfaction with life, sense of loneliness, and headaches, are
some examples). Analyzing the characteristics of these two criteria, we see that
despite being in different scenarios, they have similarities, as both the FPV7
in scenario 1 and FPV4 in scenario 2 are related primarily, the possible mental
health problems that may occur with the patient and that may cause confusion
in the definition of the diagnosis of Alzheimer’s disease. The first result was
obtained from the judgment of matrixes through the M-MACBETH software.

6 Conclusion

The diagnosis of Alzheimer’s Disease is made up of many steps. The first step is
to discover if the patient has dementia and then the patient is assessed to see if
he has Alzheimer’s.

Due to these limitations, this study sought to find the best way possible in the
decision making process of defining this diagnosis. By using two data sets during
the validation of the model: 1) The battery of standardized assessments devel-
oped by Consortium to Establish a Registry for Alzheimer’s disease (CERAD)
and 2) The questionnaire with 120 questions that was used in the study realized
in the city of Sao Jose dos Campos, SP, Brazil. We attempted to select the main
questions involved in diagnosis of Alzheimer’s.

The MACBETH multicriteria method was used to aid in decision making.
The criteria were defined according to the CERAD areas of assessment. In the
questionnaire applied in the Brazilian study we defined the criteria based on to
demographic-social data, analyzed the subjective perception of the elderly, their
mental and physical health.

The questions that make up the battery of assessments and in the question-
naire were defined as the describers of the problem. With this information, the
judgment matrixes were constructed using M-MACBETH software.

After evaluating the matrixes, a ranking was obtained showing all the ques-
tions, from most important to least important with respect to the diagnosis of
Alzheimer’s. At the end of this study, a comparison was made of the results
obtained in the application of the model in both data sets.

An extension of the model is in the submission process [5] using Bayesian
Networks. We defined the mapping of the questions of CERAD and in the
questionnaire applied in the Brazilian study and through these mappings we
can observe the questions of the biggest decisive impact for the diagnosis. In
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addition, with this Bayesian Network, we structured a multicriteria model that
shows the questions of the biggest decisive impact for the diagnosis. Were show-
ing the percentage of elderly people that presented the symptoms of Alzheimers
disease.

As a future project, this model can be extended with the inclusion of new
criteria or new models which can be developed using other data sets [2].
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Abstract. In this paper, a new complexity metric based on cognitive
informatics is proposed for object oriented(OO) code. This is the single
metric, which covers cognitive complexity of the OO system, method
complexity and complexity due to inheritance together. The proposed
metric was evaluated against Weyuker set of measurement principles. It
was found that seven Weyuker properties are satisfied by this measure.
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1 Introduction

Cognitive Informatics (CI) [11] is an interdisciplinary area that tackles the prob-
lems related to modern informatics, computation, software engineering, artificial
intelligence and cognitive science. The cognitive complexity measures the human
effort needed to perform a task or the difficulty in developing software and is
based on CI. Many software complexity measures based on cognitive informatics
have been proposed in the last few years [5], [7], [8], and [12]. However, they all
belong to procedural languages.

OO approach is characterized by its classes and objects, which are defined
in terms of attributes (data) and operations (methods). Understandability of a
code is mainly based on the operations of the code, which is closely related to
its cognitive process and hence to cognitive complexity. Numbers of researchers
have proposed variety of metrics for OO software development [2], [3], [4], [6].
These metrics generally do not involve the cognitive characteristics. On the other
hand, the metrics on operation level like cyclomatic number, line of code etc.,
do not capture the features of object-oriented systems like polymorphism and
inheritance.

In this study, we propose a cognitive complexity metric in terms of cognitive
weights. It suggests that the complexity is not only due to operations in methods,
but also due to an important feature of OO Programs (OOP): Inheritance. The
proposed metric also includes the complexity caused by message calls between
classes and, therefore, gives valuable information for coupling.

In the next section the proposal of the new complexity measure is introduced.
Evaluation of the proposed metric through Weyuker properties is given in section
3. Conclusions constitute the last section.
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2 Complexity Metric for Object Oriented Programming

The cognitive weights of software are defined as the extent of difficulty or relative
time and effort to comprehend the given software, modeled by a number of
BCS [9], [12]. They measure the complexity of logical structures of the software.
These logical structures reside in the method (code) of OOP and are classified
as sequence, branch, iteration and call, whose weights are one, two, three and
two, respectively [12].

The proposed measure first calculates the weight of individual method in a
class by associating a number (weight) with each member function (method),
and then it simply adds all the weights of all methods. This gives the com-
plexity (weight) of a single class. There are two cases for calculating the whole
complexity of the entire system depending on the architecture:

1. if the classes are in the same level then their weights are added.
2. if they are subclasses or children of their parent classes then their weights

are multiplied (Inheritance).

If there are m level of depth in the OO code and level j has n classes then
the class complexity (CC) of the system is given by,

Class Complexity = CC =
m∏

j=1

[
n∑

k=1

Wcjk

]

(1)

where Wc is the weight of the concerned class. The weight of a single operation
is given by

We =
q∑

j=1

[
m∏

k=1

n∑

i=1

Wc(j, k, l)

]

(2)

where total cognitive weight of a software component Wc is defined as the sum of
cognitive weights of its q linear blocks composed in individual BCS’s. Each block
consists of m layers of nested BCS’s and each layer has n linear BCS. A higher
weight indicates a higher level of effort required to understand the software
and reduced maintainability. The Class Complexity Unit (CCU) of a class is
defined as the cognitive weight of the simplest software component (having a
single class which includes single method and also the method include only a
linear structure). This corresponds to sequential structure in BCS and hence its
cognitive weight is taken as 1.

The proposed complexity metric given by equation 1, is demonstrated with the
programming example whose class diagram is shown in figure 1. This program
(appendix 1) processes a person of a university system.

In this example, the main class Person has two subclasses Employee and
Student. The class Employee is also a class with two subclasses Faculty and
Administrative. As given in the following equation CC value of Person is 8
CCU since it has six methods. Similarly, the CC values of Employee, Student,
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Fig. 1. Class diagram of program example

Faculty, and Administrative classes are found as 3, 6, 2 and 3 CCU
respectively.

CC =
∑

Wc = Wp1+Wp2+Wp3+Wp4+Wp5+Wp6 = 1+1+3+1+1+1 = 8CCU

It can be seen from figure 1 that Faculty and Administrative classes are on
the same level and they inherit their properties from Employee. Therefore, the
CC of Faculty and Administrative is 2 + 3 and CC of Employee is (2 + 3) ∗ 3.
Similarly, Employee and Student are subclasses of Person and inherit their
properties from Person. Therefore, total complexity of the system is:

CC = CC of class Person ∗ ((CC of class Employee ∗ (CC of class Faculty +
CC of class Administrative) + CC of class Student)

= 8 ∗ (3 ∗ (3 + 2) + 6) = 168CCU

It is important to note that, in the case of a message passing between two
classes, the complexity of the method is the sum of the weight of the called
method and the weight due to that call (i.e. two). This means the proposed
approach includes the complexity of the class due to messages and hence provides
some indication of level of coupling. In other words, if the number of messages
between the classes/objects increases, the overall complexity increases. This,
clearly, indicates that a high complexity value represents high coupling between
classes.
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3 Proposed Metric Against Weyuker Criteria

Weyuker [13] suggested nine properties to provide a formal approach to de-
termine the effectiveness of various software complexity measures. Number of
researchers evaluated the object-oriented metrics by using these properties [1],
[4], [10]. These properties were also employed to evaluate the proposed measure
by using the example given in Appendix 1 when applicable.

Property 1. (∃P ) (∃Q) (|P | = |Q|), where P and Q are the two different
classes. This property states that a measure should not rank all classes as equally
complex. For the proposed measure, numbers of classes exist whose weights may
vary. Therefore, the proposed measure is satisfied by this property. For example,
CC values of Student and Employee are 6 and 3 respectively.

Property 2. Let c be a non-negative number, and then there are only finite
number of classes and programs of complexity c.

This property states that there are only a finite number of classes of the same
weight. A possible largest number can be assumed, without harm, to be the
upper bound for the number of BCSs in a program since the total complexity
is defined as the sum of cognitive weights of all the methods (operations) in a
program. Therefore, for a given number of BCSs, there are only finitely many
programs having that many BCSs. Hence, the proposed complexity metric does
hold this property.

Property 3. There are distinct classes P and Q such that |P | = |Q|.
This property states that there are multiple classes of the same complexity.

The proposed measure is satisfied by this property since total weights for a class
may be the same for many different classes. For example, the class complexity
for both of the objects Administrative and Employee is 3.

Property 4. (∃P ) (∃Q) (P ≡ Q & |P | �= |Q|).
This property states that even if two classes have the same functionality, they

may differ in terms of details of implementation. Since the cognitive weights
depend on the internal architecture, then the cognitive weights for two classes
with the same output may be different. Therefore, the proposed measure is
satisfied.

Property 5. (∀P ) (∀Q) (|P | ≤ |P ; Q| & |Q| ≤ |P ; Q|), where, P + Q are the
concatenation of P and Q.

This property states that if the combined class is constructed from class P
and class Q, the value of the class complexity for the combined class is larger
than the value of the class complexity for class P or class Q. For the proposed
measure, the class complexity is given by the associated cognitive weight, which
is an integer, then

(∀P )(∀Q)(P ≤ P + Q) and (Q ≤ P + Q).

This property and Weyuker property 5 are analogous. This implies that
the proposed measure is satisfied by property 5. For example, Student,
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Administrative, Faculty, Employee, and Person are the classes whose CC
values are 6,3,2,3 and 8 respectively, which all are less than CC value (i.e.168)
of entire code.

Property 6

a : (∃P )(∃Q)(∃R)(|P | = |Q|). and |P ; R| �= |Q; R|)
b : (∃P )(∃Q)(∃R)(|P | = |Q|). and |R; P | �= |R; Q|)

This property states that if a new class is appended to two classes which have
the same class complexity, the class complexities of two new combined classes are
different or the interaction between P and R can be different than the interaction
between Q and R resulting in different complexity values for P+ R and Q + R.
The cognitive weights of methods are fixed. Therefore, joining program R with
P and Q adds same amount of complexity. This means property 6 is not satisfied
by the proposed measure.

Property 7. There are program bodies P and Q such that Q is formed by
permuting the order of the statements of P and (|P | �= |Q|)

The intent is to ensure that metric values change as a result of permutation
of classes. In any class, changing the order in which methods or attributes are
declared does not affect the order in which they are executed. Thus, the proposed
measure does not satisfy this property.

Property 8. If P is renaming of Q, then |P | = |Q|.
This property requires that when the name of a class changes it will not

affect the complexity of the class. It means, even if the member function or
member data name in the class changes, the class complexity should remain
unchanged. For the proposed complexity measure, there is no effect in complexity
by renaming, so this property is also satisfied.

Property 9. (∃P )(∃Q)(|P | + |Q|) < (|P ; Q|).
This property states that the class complexity of a new class combined from

two classes is greater than the sum of two individual class complexities. In gen-
eral, two classes can have a finite number of identical methods with some cog-
nitive weights. A combination of two classes would result in one class version
of the identical methods becoming redundant. Therefore, the complexity of the
combined classes in terms of cognitive weight reduces. Therefore, the proposed
complexity measure is satisfied by this property. For example, the sum of indi-
vidual class complexities of Student, Administrative, Faculty, Employee, and
Person is 22 (|P |+ |Q| = 22), which is less than the CC value of their combined
form (i.e. |P ; Q| = 168).

4 Conclusion

In this paper, a new complexity measure for object-oriented programming is
presented. It calculates the cognitive complexity due to inheritance for OO sys-
tems. It also considers internal architecture of the methods and message passing
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between the classes. It is language independent since it uses cognitive weights,
which are the same in all programming languages. It is also robust because it
compasses all the major parameters that have a bearing on the difficulty of
comprehension. The proposed metric is validated by evaluating it against nine
Weyuker properties. It satisfies seven properties out of nine. Therefore, this met-
ric established itself as a good and comprehensive measure for OOP.
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A Appendix

#include <iostream>
#include <string>
using namespace std;
/*Person Class is base class. Student and Employee both
inherits Person Class

******** PERSON CLASS ********** */
class Person{

string name; int age; char sex;
public:

Person(string="" ,int=0, char=’\0’); // WP1=1
Person(const Person &person); // WP2=1
void print()const; // WP3=WP31+WP32=2+1=3
string getName(){return name;} // WP4=1
int getAge(){return age;} // Wp5=1
char getSex(){return sex;} // Wp6=1

};
//Person-default constructor
Person :: Person(string in, int ia, char is){

name = in; age = ia; sex = is;}
Person :: Person(const Person &p){name=p.name; age=p.age; sex=p.sex;}
void Person :: print()const{

cout<<"Name\t : "<<name<<"\nAge\t : "<<age<<’\n’ ; //Wp31=1
if (sex==’F’) //Wp32=2

cout<<"Sex\t : Female" <<’\n’ ;
else

cout<<"Sex\t : Female" <<’\n’ ;
}
/* ******** STUDENT CLASS ********** */
class Student: public Person{int sid; float gpa;
public:

Student(const Person &p,int student_id,float igpa): Person(p)
{ sid = student_id; gpa = igpa; } //WS1=1

void print()const; //WS2=Ws21+Ws22*Ws23=1+2*2=5
};
void Student :: print()const{

Person :: print();
cout<<"S.ID\t:"<<sid<<"\nGPA\t:"<<gpa<<endl; //Ws21=1
if (gpa>=2.0) //Ws22=2

cout<<" Student is successful"<<endl;
else { if (gpa>=1.7) //Ws23=2

cout<<"Student must improve GPA"<<endl;
else cout<<"Student must repeat" <<endl; }

}
/* ******** EMPLOYEE CLASS ********** */
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class Employee: public Person{float salary;
public:

Employee(const Person &p,float sal):Person(p),salary(sal){} //WE1=1
Employee(const Employee &employee):Person(employee)
{salary=employee.salary;} //WE2=1
void print()const; //WE3=1

};
void Employee::print() const{

Person::print();
cout<<"salary: "<<salary<<endl;}

/* ******** FACULTY CLASS ********** */
class Faculty: public Employee{

string branch; //Physics,Math,, etc .
public:

Faculty(const Employee &e, string b):Employee(e),branch(b){} //WF1=1
void print()const; //WF2=1

};
/* ******** ADMINISTRATIVE CLASS ********** */
class Administrative: public Employee{

string duty; //Secretary, Accountant
public:Administrative(const Employee &e,string d="\0"):Employee(e)
{ duty=d; } //WA1=1

void print()const; //WA2=1
void sendMessage(string msg,Faculty&fac){ //WA3=1

cout<<"The incoming message :"<<msg<<"\nMessage to ";
cout<<fac.getName(); }

};
/* ********************* MAIN ********************** */
int main(void)
{ Person * per[3];

per[0]=new Person ("Aysegul",27,’f’); per[1]=new Person ("Remzi",23,’m’);
per[2]=new Person ("Ali",30,’m’); Person person1("fatmagul",27,’f’);

/* Calculate average age */
int sum=0, average=0, i;
for (i=0; i<3;i++) sum=per[i]->getAge();
average=sum/i;
cout <<"Average personnel age : "<<average<<endl;
Employee employee1(* per[0],1000); employee1.print();
Student student1(* per[1],9299,3.5); student1.print();
Employee employee2(*per[0],2000);
AdministrativeadmEmployee(employee1,"Secretary ");
Faculty facEmployee(employee2,"Computer");
admEmployee.sendMessage("Today there is a seminarat
your university. You are invited",facEmployee);

}
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Abstract. A combined analysis by integrating the resting-state func-
tional magnetic resonance imaging (fMRI) and diffusion tensor imaging
(DTI) is presented in this paper to investigate the structure-function rela-
tionship in early-onset schizophrenia. After fractional anisotropy in white
matter was assessed, functional connectivity was analyzed with regions
of reference which was defined according to the regions showed lower
fractional anisotropy values. We found significant decreased functional
connectivity in early-onset schizophrenia correlated with the regions of
anisotropy changes. Our results demonstrated that the white matter le-
sions may disrupt the anatomical connectivity and inflect the functional
connectivity between the frontal regions and other brain regions.

Keywords: Functional connectivity, Anatomical connectivity, Resting
fMRI, Fractional anisotropy, Early-onset schizophrenia.

1 Introduction

Neuroimaging techniques such as functional magnetic resonance imaging (fMRI)
and diffusion tensor imaging (DTI) provided more advantages and details about
brain abnormalities in schizophrenia research [1]. In the previous studies, fMRI
was utilized to determine the brain function correlated with behavior by identi-
fying the brain regions that become “active” during the performance of specific
tasks. Recently, resting-state fMRI attracted more attentions. Some investiga-
tors reported that activity of distributed regions were spontaneously increasing
and decreasing in functional-anatomic networks during resting state. And they
thought the resting activity patterns would reflect functional activity as impor-
tant as the activity evoked by tasks [2, 3]. Furthermore, self-generated mental
� Corresponding author.
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activity at rest is thought to be possibly relevant to the neuropathologic mech-
anisms, which cause schizophrenia [4].

DTI, which is a non-invasive technique derived from diffusion magnetic
resonance imaging, has been increasingly applied to study the pathways of
anatomical connectivity in vivo [5]. To describe the anisotropy of diffusion,
Basser proposed the commonly used indices that included relative anisotropy
(RA), fractional anisotropy (FA), and volume ratio (VR) [6]. FA is a measure of
the fraction of the magnitude of the tensor that can be ascribed to the anisotropic
diffusion. It provides information about myelination, density, coherence, and in-
tegrity of fibers. Alteration in diffusion anisotropy may be as the result of various
disease processes or abnormal development [7].

Studies have used the combining measure of the task-related fMRI and DTI
to investigate the function-structure relationships in healthy subjects and pa-
tients with brain diseases [8, 9, 10]. Toosy et al. found the mean FA in the optic
radiations by tractography algorithm were correlated with fMRI meature in vi-
sual cortex activity [8]. Another study from Baird et al. explored the reaction
time related to cortical activity and the integrity of the fibers [9]. Some reports
also revealed the correlation between white matter abnormalities and brain ac-
tivation in schizophrenia with the working memory task [10]. These previous
investigations indicated the dynamic development of function and structure and
the relevance of the combining method.

Early-onset schizophrenia is defined as schizophrenia with onset of psychosis
before the age of 18 years and has shown a lot of the same neurobiological ab-
normalities observed in adult-onset schizophrenia [11]. The review from Nicolson
indicated that early-onset schizophrenia was clinically and biologically contin-
uous with adult-onset schizophrenia [12]. However, some studies of early-onset
schizophrenia have reported that patients with early-onset schizophrenia tended
to be more severe form of the disorder than adult patients [11, 13]. The under-
lying pathology of early-onset schizophrenia remains little known.

The purpose of the present study is to investigate that the changes in white
matter structure are related to altered patterns of functional connectivity in
gray matter during resting state in patients with early-onset schizophrenia by
combining fMRI and DTI.

2 Methods and Materials

2.1 Subjects

The study included 24 patients with early-onset schizophrenia with the DSM-IV
psychiatric diagnoses (9 girls, 15 boys; ages 14-18 years, mean=15.80, SD=1.10).
All the patients were recruited from outpatient departments and inpatient units
at the department of Psychiatry, Second Xiangya Hospital of Central South
University of China, between October 2006 and March 2007. Thirty-first normal
control subjects were recruited from advertisements and community centers (18
girls, 13 boys; ages 14-18 years, mean=16.26, SD=1.00). All the participants
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were right-handedness. During the scanning, subjects were instructed simply to
keep their eyes closed, remain awake and perform no specific cognitive exercise.

2.2 Data Acquisition

Images were acquired on a 1.5T GE Signa System (GE Signa, Milwaukee, Wis-
consin, USA). Subject’s head was fixed by using foam pads with a standard bird-
cage head coil. Functional MRI images were collected by using a gradient-echo
EPI sequence (TR=2000ms, TE=40ms, FOV=24cm, FA=90◦, matrix=64×64,
slice thickness=5mm, gap=1mm, a volume=20 axial levels, 180 volumes).
Then diffusion tensor images were acquired by a diffusion weighted single-shot
echo planar imaging sequence with the following parameters: TR=12000ms,
TE=105ms, FOV=24cm, NEX=5, matrix=128×128×30.

2.3 Diffusion Tensor Image Analysis

The raw diffusion tensor imaging (DTI) data were realigned for head motion
correction. Then the diffusion tensor matrix was calculated according to the
Stejskal and Tanner equation [14], and the matrix were diagonalized for obtaining
eigenvalues λ1, λ2, λ3 and eigenvectors ε1, ε2, ε3. FA maps separately for each
subject were computed in a voxel-based way using the following formula:

FA =

√
3[(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2]

2(λ2
1 + λ2

2 + λ2
3)

λ =
λ1 + λ2 + λ3

3
(1)

We proposed a method called quasi-OVBM to normalize FA images on the
basis of optimized voxel-based morphometry (OVBM) [15], where the raw non-
diffusion-weighted image (b0 image) of each subject was used as T1 structure
image. The procedure contained two steps. One step was to create the user-
template as follows: (a) The raw b0 images of the subjects were segmented into
gray matter, white matter, and cerebrospinal fluid. (b) White matter images were
normalized by using the standard white matter template. Then the transforma-
tion matrix was applied to normalize the raw b0 image. (c) The normalized b0
images were segmented and the segmented images were smoothed with an 8mm
full-width half-maximum(FWHM) Gaussian kernel. Thus the user-template had
been created. The other was to normalize the FA images by using 12-parameter
affine transformation. The optimum 12-parameter affine transformation was ob-
tained by normalizing the white matter images to the user white matter tem-
plate, which resulted from the repeated segmentation of the raw b0 images.
Further, each FA image was smoothed with a Gaussian kernel of 8mm FWHM.

In statistical analysis, a two-sample t -test framework was used to contrast the
FA maps. The statistical significance was evaluated between patients with early-
onset schizophrenia and normal healthy subjects. FA reductions were tested in
patients across the entire volume (at p <0.005, uncorrected).
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2.4 Functional Connectivity Analysis

The Corresponding functional MRI data sets were first preprocessed by the
statistical parametric mapping software package (SPM2, Wellcome Department
of Cognitive Neurology, London, UK). The volumes were realigned to the first
volume by registering and reslicing for head motion correction. All the subjects
in this study had less than 1mm translation in x, y, or z axis and 1◦ of rotation
in each axis. Then the volumes were normalized to the standard EPI template
and spatially smoothed with a 8mm FWHM Gaussian kernel.

In DTI analysis, two clusters that showed FA reductions in early-onset schizo-
phrenia patients related to normal subjects were medial frontal gyrus and sub-
gyral of right frontal region. We defined respectively these two regions of gray
matter as the two regions of reference by using the software developed in
the Functional MRI Laboratory at the Wake Forest University School of
Medicine [16]. Then, two separate correlation analyses were performed. Cor-
relations between the reference time course and time courses in other regions of
the brain were computed by using Pearson’s correlation coefficients method:

cc =
∑

(r − r)(R − R)
√∑

(r − r)2
√∑

(R − R)2
(2)

where R is the reference time course, and r denotes one of the time courses of
other voxels. R and r are the time average of R and r respectively. Correlation
maps were converted to z values using Fisher’s z -transform for improving the
normality of correlation coefficients: z = (1/2) × loge[(1 + cc)/(1 − cc)].

Differences between the schizophrenia group and the normal group were ex-
amined by two-sample t -tests at each voxel on the corrected z values. Voxels
that t value greater than 3.27 (p <0.001, uncorrected) and a spatially contigu-
ous cluster size of 10 voxels or greater were considered to be significant.

3 Results

3.1 Comparison of Mean Fractional Anisotropy between Patients
and Controls

Mean fractional anisotropy between two groups were compared, and the results
showed significantly lower FA values in the right frontal lobe of the patients.
Two cluster were included the right medial frontal gyrus {peak coordinate(MNI)
[x=10, y=56, z=-16], t level=3.57}, and the subgyral of right frontal area {peak
coordinate(MNI) [x=12, y=44, z=-16], t level=3.44}.

3.2 Comparison of Functional Connectivity between Patients and
Controls

Two seed regions and their associated correlation maps were compared between
early-onset schizophrenia patients and healthy subjects. Results revealed that
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Fig. 1. SPM{t} of right medial frontal gyrus maps statistically significant differences
in brain functional connection between patients with early-onset patients and healthy
controls during resting state

Table 1. Reduced brain regions of patients with early-onset schizophrenia relative to
normal subjects in right medial frontal gyrus maps

MNI coordinates
Anatonmical structure BA area x y z t level

Precentral gyrus BA6(R) 40 -8 32 4.48
Inferior occipital gyrus BA18(L) -36 -88 -16 3.95

Cerebellum, posterior lobe L -10 -54 -50 3.77
Cerebellum, posterior lobe R 56 -56 -26 3.91
Cerebellum, posterior lobe R 12 -74 -48 3.77

Note. (L), left hemisphere; (R), right hemisphere.

Fig. 2. SPM{t} of right subgyral maps statistically significant differences in brain
functional connection between patients with early-onset patients and healthy controls
during resting state
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Table 2. Reduced brain regions of patients with early-onset schizophrenia relative to
normal subjects in right subgyral maps

MNI coordinates
Anatonmical structure BA area x y z t level

Inferior occipital gyrus BA17/BA18(R) 30 -88 -20 5.30
Inferior occipital gyrus BA17/BA18(L) -38 -94 -8 4.37
Superior frontal gyrus BA6(R) -4 4 74 4.69
Middle frontal gyrus BA6(L) -44 2 54 4.05

Middle temporal gyrus BA21/BA39(R) 68 -14 -10 3.80
Middle temporal gyrus BA21(L) -64 -16 -6 3.69
Inferior temporal gyrus BA20(L) -54 -2 -34 3.66

Anterior cingulate BA24/BA32(L) -6 20 -4 4.34
Cerebellum, posterior lobe L -20 -70 -50 4.27
Cerebellum, posterior lobe R 24 -80 -44 3.98

Note. (L), left hemisphere; (R), right hemisphere.

there are decreased functional connections in patients compared with controls,
respectively. Fig. 1 and Table 1 showed the abnormal regions of functional con-
nection in right medial frontal gyrus maps between groups. These regions were
mostly distributed over frontal lobe, occipital lobe and the cerebellum. Signif-
icant reduced connection in the right subgyral maps was shown in Fig. 2 and
Table 2, which displayed the abnormal regions in frontal lobe, occipital lobe,
temporal lobe, limbic lobe and the cerebellum.

4 Discussion

In the present study, we compared the significance of the mean FA and found the
significant reduced FA in two white matter regions of the right frontal lobe. Then,
the correlation in low-frequency fluctuations at rest between the two correspond-
ing regions of reference in gray matter and other brain regions were analyzed for
exploring the differences of functional connectivity between patients and con-
trols. Unlike the former study combining DTI and fMRI on schizophrenia [10],
we analyzed the resting-state functional connectivity patterns of the early-onset
schizophrenia from a functional integration perspective, and selected the ROI
based on the results from DTI. To our knowledge, no functional connectivity
analysis with resting-state fMRI and DTI measures had been combined in the
assessment of schizophrenia. This is the first study that DTI and resting-state
fMRI measures have been combined to explore the early-onset schizophrenia.
Three major contributions were generated from this study.

First, comparison of FA maps between early-onset schizophrenia patients and
matched controls revealed reduced FA distributed in the frontal areas by us-
ing the quasi-OVBM analysis. This method would offer advantages, such as
independence of user bias, in comparison of anatomically variable structures in
voxel-based way. Two brain regions of the right frontal lobe [5, 17], which are
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medial frontal gyrus and subgyral in right frontal lobe, showed significantly lower
FA values in the patients than in the controls. Reduced FA implied the differ-
ences of fibre architecture or the differences in myelinization of the fibres [10].
Our results indicated disruption of the white matter integrity in frontal areas of
the patients and suggested that the white matter deficit might affect anatomical
connectivity in a network.

Second, several regions showed relatively decreased functional connectivity
with the two regions of reference in early-onset schizophrenia patients compared
with that of normal controls. A number of studies have applied resting-state
fMRI to explore the functional connectivity in normal subjects as well as in pa-
tients with various diseases [4,18]. And Spontaneous low-frequency fluctuations
observed in resting state have been attributed to spontaneous neural activity [18].
Our results are consistent with the opinion of dysfunction of the frontal-cerebellar
network, frontal-temporal network, and frontal-occipital network in schizophre-
nia patients demonstrated in the previous studies [19]. Connection abnormalities
during resting state found in early-onset patients as similar as in adult patients
in this study suggest that early brain developmental disturbance in early-onset
schizophrenia patients may led to the premonition of adult disorder [13].

Third, anatomical connectivity and functional connectivity are two funda-
mental issues in neuroscience research. We explored the relationship between
them in early-onset schizophrenia. The findings in this study revealed that re-
duced FA in two frontal clusters was related with the abnormal brain functional
connectivity between frontal region and other separate brain regions. Utilized
fMRI and DTI to make population level inferences could analyze, both macro-
scopically and quantitatively, the relationship between anatomical connectivity
and cortex function [8]. Our results demonstrated that altered functional pat-
terns were relative to specific white matter changes in early-onset schizophrenia.
It suggests structural deficit might affect connectivity within the network and
functional activity in remote areas [10].

In summary, our analyses not only demonstrate the relationship of changes
in white matter and alterations in functional connection, but also enhance
the understanding of the mechanism of underlying pathology in early-onset
schizophrenia. Further studies should investigate the longitudinal studies of pa-
tients through their disease courses and predict the severe course of illness.
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Abstract. A basic principle of pattern recognition is presented in this paper, 
by which a qualitative mapping model of pattern recognition can be induced, 
and an example of pattern recognition based on qualitative mapping model is 
discussed. 
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1   Introduction 

In recently years, many methods for recognizing some different kinds of patterns have 
been developed by computer scientists and artificial intelligent experts, but some of 
basic and very important problems in pattern recognition, such as “why does a com-
puter can recognize a pattern?” or “What is the principle of pattern recognition?” have 
not been solved yet. 

In [1, 2, 3], an intelligent fusing model, called the qualitative mapping, in which 
some methods such as Expert System, Artificial Neural Network and Support vector 
can be fused and unified together, has been proposed, and a logic circuit, called At-
tribute Network Computing can be constructed by the relationship between the input 
and the output of qualitative mapping. Some application of qualitative mapping model 
and its implementation of attribute network computing has been given. But it is not 
clear yet that why does a pattern can be recognized by the qualitative mapping? In 
other words, what is the basic principle of pattern recognition using qualitative map-
ping and attribute computing network? A mathematical discussion about these prob-
lems will be given in this paper.  

2   Qualitative Mapping Unit and Attribute Computing Network 

Definition 1 Let ai(u), i=1,2, be an attbirute of object u, xi∈Xi a quatity of attribute 
ai(u), pij(u)∈Pu jth quality of ai(u), j=1,2,3, [αij,βij]⊆Xi qualitative criterion  
of pij(u), Γ={[αij,βij]} collection of qualitative criterion, and satisfying 

that:[αij,βij]∩[αil,βik]= ∅, k=1,2,3, k≠j, and U
3

1
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=
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ijijiX βα . Let )()(
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conjunction attribute of attributes a1(u)and a2(u), x=(x1,x2) ∈X= X1×X2⊆R2 quantity 

of attributr of a(u). Let ],(
lklk jiji βα  be the qualtative criterion of the jl-th property 

)(up
lk ji  of attrbibutes )(ua

ki
, ik∈{1,2}, jl∈{1,2,3}, let 
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jl≠js, (ikjl,itjs) be a combination of subscripts ikjl and sand itj, v=v(ikjl,itjs) the order 
number of the combination of (ikjl,itjs). Because for each ik and it,there are 3 different 
choices jl, the tatol number of diffrent combination is 3×3=32=9,and 

v(ikjl,itjs)∈{1,…,9=32}. Let ],(],( ),(),(,, stlkstlkstlkstlk jijijijijijijiji νν βαβα = , and 
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Then called (1) is the qualitative mapping that judging wherter the object u with 
vector x propose theproperty pv(u), and (2) is a qualitative mapping whose qualitative 

criterion is 2
3],[ vv βα , or a factor mapping of mapping (1), and also noted it as 

τp(x,[αv,βv]).  
The input-output of qualitative mapping (1) whose criterion is the 3×3 grid, and 

its corresponding Electro-Circuit Unit of Attribute Computing Network[1,2]  are 
respectively shown in Fig.1. 
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Fig. 1. The relation between input-output of qualitative mapping and its Electro-Circuit Unit 

3   A Mathematical Principle of Pattern Recognition 

In general, since the recognition of some patterns that varies with time t or one vari-
able x, such as Electrocardiograph, stocks and etc, can be considered as the recogni-
tion of graph of one variable function y=f(x), it is a very basic and important problem, 
whether the recognition method and model of the graph of function y=f(x) could be 
found out or not.  

Furthermore, If some complex patterns that vary with two or more then two vari-
ables could be discomposed into a series of simple functions, so that their recognition 
can be discomposed into a combination of some recognitions for one variable func-
tion y=f(x), then the recognition method or model of the graph of function y=f(x) will 
be a foundation for pattern recognition. 

First of all, in order to conveniently, Let us give some relevant definitions. 

Definition 2. Let X,Y be two set, if for each x∈X, there is a rule f and an element 
y∈Y, such that y=f(t), then the rule f is a function from set X to set Y, noted by 
f:X→Y, X is called domain of function f, {y|y=f(x),x∈X}⊆Y is called co-domain of f. 

A function f is called an one to one corresponding function from domain [a,b]⊆X 
to co-domain [c,d]⊆Y, f:X→Y, if there two x1,x2∈[a,b]⊆X, such that y=f(x1)=f(x2), 
then x1=x2. 

Let xj∈[a,b], j=1,…,m, be m+1 points which is selected by a computer program, 
y’(xj) the computing value of function y=f(x) at point xj. Let {(xj,y’(xj)} be the set of 
the pair of variables xj and their computing values y’(xj), P({(xj,y’(xj)}) the pattern 
constructed by set {(xj,y’(xj)} in the 2 dimension coordinate system X-Y. Because the 
number of memory for any computer is finite, but the number of x∈[a,b] are infinite, 
not only there exist infinite x(≠xj)∈[a,b] that never been selected by the program, so 
that their function value f(x) could not be computed by computer, but also at least 
there exist q points {xk}⊆{xj}, k=j1…, jq, whose computing values y’(xk) equals not 
their function values f(xk), i.e,.  y’(xk)≠f(xk). In the case, the pattern P({(xk,y’(xk)}) is 
not the graph of function y=f(x), denoted by P({xk,y’(xk)})≠P(f(xk)), as show in fig.1. 

In despite of y’(xk)≠f(xk), we always consider y’(xk) as to be f(xk), and take 
P({(xj,y’(xj)}) as the graph of function f(x). Why we can do so? We are doing what is  
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Fig. 2. The competition between pattern of computing values of one variable function y=f(x) 
and graph of y=f(x) 

the principle? Obviously, If the principle could be found out, then a model of pattern 
recognition based on the principle could be established. 

From the program design, we show that the step long Δxj= xj+1-xj must be designed, 
before the computing of values of function y=f(x). If the step Δxj is too long to fine 
the result of function, then it must be shorted. Second, an error θ that stops the opera-
tion of computer must be selected by designer, so that if |y(n)(xj)- y

(n-1)(xj)|<θ, after the 
n-th computing, and we get |y’(xj)-f(xj)|<ε, here ε>0 is a arbitrary small position num-
ber, then let y’(xj)=y(n)(xj), and the machine stop. 

From the above description, the basic principle or theorem about why the comput-
ing value y’(xj) equal to the function value f(xj): y’(xj)=f(xj)? And the pattern 
P({xj,y’(xj)}) can be considered to be the graph of f(x), can be shown as following 

          y 3 | x = x 3            

                                           y 2 | x = x 2  

 

 

 

            y ’ ( y ’ 0 , y ’ 1 ,  y ’ 2 )  

f ( x 2 ) + ε 2                      y ( f ( x 0 ) , f ( x 1 ) , f ( x 2 ) )  

y ’ ( x 2 ) ∈ N ( f ( x 2 ) , ε  2 )                               

f ( x 2 )           f ( x 1 ) + ε 1           y ’ ( y ’ 1 , y ’ 2 )   

f ( x 2 ) -ε 2   y ’ ( x 1 ) ∈ N ( f ( x 1 ) ,ε  1 )              y ( f ( x 0 ) , f ( x 1 ) )  

           f ( x 1 )  ε 1                 

                           

                                  

O            f ( x 0 ) -  ε 0  y ’ ( x 0 )  f ( x 0 )  f ( x 0 ) + ε  0     y ’ ( x 0 ) ∈  N ( f ( x 0 ) , ε  0 )      y 0 | x = x 0  

 

Fig. 3. The qualitative criterion N(f(x),ε)=N(f(x0),ε0)×…×N(f(xm),εm) constructed by the  
projection x=xj  to be an axes yj|x=xj 

Basic Principle or Theorem. For two given arbitrary small position number  

δ>0 and ε>0, and all j, j=0,…m, if there exist |}{|max 1
0

jj

m

j
m xx −= +

=
δ and 
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|})()('{|max
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j
m xfxy −=

=
ε , such that when |xj+1-xj|<δm<δ  and |y’(xj)-f(xj)|<εm <ε, we 

get the following limit 

)())(,),(())(',),('(),('lim 000 xyxfxfxyxyxxy mmm
m

===
∞→

LLL  (3) 

Proof. Let }|{
jxxjy = be a m+1 dimension coordinate system as shown in Fig.3, its 

axis 
jxxjy =|  respectively is the line x=xj from the 2 dimension coordinate system 

X-Y as shown in Fig.2. Let N(f(xj),εj) on the axis 
jxxjy =| be the neighborhood 

whose center is f(xj), the radial is εj, and it come from the interval [f(xj)-εj,f(xj)-εj] on 
the line x=xj in X-Y, then a m+1dimension hypercube N(f(xj),ε)= N(f(x0),ε0)×…× 
N(f(xm),εm)) is got as show in Fig.3. 

Then, a qualitative mapping in new system }|{
jxxjy = can be given as follow 
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(4) 

If let 
m

ab
m

δ
−= , or 

m

ab
m

−=δ , and |x1-x0|=…=|xm-xm-1|=δm, then the interval 

or domain [a,b] could be divided into m subintervals, so that [a,b]=[x0,x1]∪(x1,x2] 
∪…∪(xm-1,xm]. When m→∞, since δm→0, the number of element of set {xj} and the 
computing values of function {y’(xj)} will go to (countable) infinite. If let the number 
of memory of computer also be infinite, and let the point {xj} run all over the rational 
number in [a,b], then, expect the function value at the irrational number {(xs} 
{y’(xs)}, the set {(xj,y’(xj))} will be over all rational number point {xj}. 

On the other hand, since set {xj} run over all rational number, [a,b] will be divided 
into countable infinite subintervals, such that [a,b]=[x0,x1]∪(x1,x2]∪…∪ (xm-1,xm]…, 
whose divided points are all rational number {xj}. In the case, similarly, the coordi-
nate system }|{

jxxjy =  will be became an infinite dimension Hilbert space, and the 

qualitative criterion N(f(x),ε)= N(f(x0),ε0)×…×N(f(xm),εm))…, will also became an 
infinite dimension hypercube. 

According to the program, when the n-th computing value |y(n)(xj)- y(n-1)(xj)|<θ, 
then let y’(xj)=y(n)(xj), and we get |y’(xj)-f(xj)|<ε. Therefore, when the machine stop, 
in despite of the qualitative criterion of qualitative mapping is a finite hypercube, but 
the different between y’(xj) and f(xj), y’(xj)-f(xj) is smaller then any small given posi-
tion number ε. So we get the following limit 

)())(,),(())(',),('(),('lim 000 xyxfxfxyxyxxy mmm
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From (3) we can get the following 

))(())(',(,)),(',(()})(',({(lim 00 xfPxyxxyxxyxP mmjj
m

==
→∞

L  (6) 

Then the proof is got. 
It is shown, from the proof, that because a new coordinate system whose axes 

jxxjy =| come from the line x=xj in X-Y coordinate system, not only a m+1 dimen-

sion hypercube N(f(x),ε)= N(f(x0),ε0)×…×N(f(xm),εm)) can be constructed, but also a 
qualitative mapping model (4) for pattern recognition can be given. 

4   A Example of Pattern Recognition Using Qualitative Mapping 

Let’s discuss the applications of qualitative mapping model of pattern cognition by a 
example of Electrocardiograph detection. 

 

Fig. 4. The Top and Down of sampling tj of EGR [αj,βj] 

Let ECGu be the Electrocardiograph of u, since it could be considered as a function 
from interval [t0,tm] to current set Y y:[t0,tm]→Y, for any t∈[t0,tm], there is a yu∈Y, 
such that t→yu(t), the coordinate of any point of ECGu is (t,yu(t)). 

Let t=tj∈[t0,tm],j=0,…,m, be a serial of samplings, yu(t0,…, tm)=(yu(t0),…,yu(tm)) a 
m+1dimansion vector, (yu(tj) the j-th values of function y=yu(tj).In 2 dimension coor-
dinate system T-Y, let P({(tj,yu(tj))})=((t0,yu(t0)),…, (tm,yu(tm)) be the pattern con-
structed by the set {(tj,yu(tj))} whose a component are respectively m+1 points of 
ECGu=yu(t), as shown in Fig.4. 

From the basic principle or theorem, we know that when m go to infinite, the vec-
tor yu(t0,…, tm) will be trend to yu(t), i.e,. yu(t0,…, tm)=(yu(t0),…,yu(tm))≈yu(t), and the 
pattern P({(tj,yu(tj))}) will approximately equal to the electrocardiograph ECGu, then 
we get  ECGu≈P({(tj,yu(tj))})=((t0,yu(t0)),…, (tm,yu(tm)).This is mean that each point of 
ECGu can be considered as a pair of t and yu(t), (t,yu(t)). 

Let E={ECGi,i=1,…,n} be a set of all normal ECGi, Top(ECGi)=Max{ECGi} and 
Down(ECGi)=Min{ECGi} respectively the upper limit of n {ECGi} and the lower 
limit one, and N(ECGi) the neighborhood which boundaries are respectively 
Top(ECGi) (red line in Fig.4 ), Down(ECGi)(green line), t=t0 and t=tm. If let (tj,αj) and  
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(tj,βj) be respectively Top(ECGi) and Down(ECGi) of current value at the time t=tj, 
then [αj,βj] is the qualitative criterion judging whether the value ECGu (tj) of ECGu  is 
normal or not. And we get a qualitative mapping as following 
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Fig. 5. The qualitative Criterion [α,β]=[α1,β1]×…×[αm,βm] in m dimension coordinate System 

Let }|{
jttjy = be the new coordinate System or the Hilbert space, whose axis re-

spectively sampling y|t=tj, as show In fig.5, because the hypercube [α,β]=[α1,β1]×… 
×[αm,βm] is the qualitative criterion judging whether the vector ((t0,yu(t0)),…, 
(tm,yu(tm)) belongs to the Normal neighborhood N(ECGi) or not, when m go to infi-
nite, we get the qualitative mapping to detect whether the ECGu is normal or not as 
follow 
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The following is an example of application of qualitative mapping model of 
pattern recognition in ECG detection. 

Example A training algorithm and the recognition algorithm based on qualitative 
mapping model for detecting cardiograph are proposed by Xuguang Liu. First of all, 
taking 600 normal cardiograms as training examples, 1000 amplitudes Aj(cari) for 
eeach cardiograph cari, i=1,…, 600, j=1,…1000, are samplinged, let αj=min{Aj(cari)}, 
noteed the down threshold of 600 normal cardiograph, and βj=max{Aj(cari)}, noted 
the top threshold of 600 normal cardiograph, then a strip between two red lines which 
is discribed respectively by 1000 qualitative criteion [αj,βj], as shown in fig 4. 

Second, as shown in fig 5, a qualitative criterion, the 1000 dimension 
parallelepiped [α,β]=[α1,β1]×…×[α1000,β1000] for detecting of the normal cardiograph 
is created by the transfomation from criterion [αj,βj] in the sampling space into the 
1000 dimension Space.Thereupon, a normal cardiograph that sandwiching in the strip  
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Fig. 6. One point of deviant cardiograph breaks through the strip of the cardiograph 

of qualitative criterion be transfomed as a point in the 1000 dimension parallelepiped 
[α,β]=[α1,β1]×…×[α1000, β1000], As shown in fig 5. But one poin of a deviant 
cardiograph breaks through the strip of qualtative criterion, as shown in fig 6. And the 
fig7 shows that the deviant cardiograph is identified as abnormality by the qualitative 
mapping model. 

 

Fig. 7. The result of detection of deviant cardiograph using qualitative mapping model 
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Abstract. LPI is not efficient in time and memory which makes it difficult to be 
applied to very large data set. In this paper, we propose a optimal algorithm 
called FLPI which decomposes the LPI problem as a graph embedding problem 
plus a regularized least squares problem. Such modification avoids eigen 
decomposition of dense matrices and can significantly reduce both time and 
memory cost in computation. Moreover, with a specifically designed graph in 
supervised situation, LPI only needs to solve the regularized least squares 
problem which is a further saving of time and memory. Real and synthetic data 
experimental results show that FLPI obtains similar or better results comparing 
to LPI and it is significantly faster. 

Keywords: Locality preserving indexing (LPI), Latent semantic indexing 
(LSI), Document indexing, Dimensionality reduction. 

1   Introduction 

Recently, Locality Preserving Indexing (LPI) is proposed to discover the discriminant 
structure of the document space. It has shown that it can have more discriminative 
power than LSI[1]. However, the computational complexity of LPI is very expensive 
because it involves eigen-decompositions of two dense matrices. It is almost 
infeasible to apply LPI on very large data set.  

Given a set of documents }x{ i
m

1i= ⊂R
n
, which can be represented as a term-

document matrix X =[x1, x2, …, xm]. Suppose the rank of X is r, Latent Semantic 
Indexing(LSI) decompose the X by using SVD as follows: 

∑= VUX T  , (1) 

where ∑= diag(σ1, … , σr) and σ1 ≥σ2 ≥…≥σr  are the singular values of X, U =  
[u1, … , ur] and ui’s are called left singular vectors, V = [v1, … , vr] and vi’s are called 
right singular vectors.  

Given a similarity matrix W, LPI can be obtained by solving the following 
minimization problem: 

aXXLaminargW)xaxa(minarga TT

1aTXDT
ij

m

1i

m

1j

2

1aTXDT

*

Xa
j

T
i

T

Xa == ==
=∑ ∑ −= , (2) 
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where D is a diagonal matrix whose entries are column sums of W (Dii = ∑j Wji) and 
L = D−W is the graph Laplacian [2]. LPI constructs the similarity matrix W as: 

)x(Nxor)x(Nxif,

.otherwise,0
||x||||x||

xx
W ipjjpiji

j
T

ij

i

∈∈
⎪
⎩

⎪
⎨

⎧

= , (3) 

where Np(xi) is the set of p nearest neighbors of xi. Thus, the objective function in 
LPI incurs a heavy penalty if neighboring points xi and xj are mapped far apart [5]. The 
basis functions of LPI are the eigenvectors associated with the smallest eigen values 
of the following generalized eigen-problem: 

.aXXDaXXL TT λ=  

Since we have L = D−W, it is easy to check that the minimization problem in  
Eqn. (1) is equivalent to the following maximization problem: 

aXXWaminarga TT

1aTXDT

*

Xa =
= , (4) 

and the optimal a’s are also the maximum eigenvectors of eigen-problem: 

aXXDaXXW TT λ= , (5) 

which in some cases can provide a more numerically stable solution [3]. To get a stable 
solution of the above eigen-problem, the matrix XDXT is required to be non-singular 
[3].When XDXT is singular, SVD can be used to solve this problem [1]. 

Suppose we have the SVD decomposition of X shown in Eqn.(1). Let X
~ = UTX = 

∑V T and b = UT a, we have 

bX
~DX

~
baUDVVUaaXXDa

TTTTTTT =∑ ∑= . 

and 

bX
~LX

~
baULVVUaaXXLa

TTTTTTT =∑ ∑= . 

Now, the objective function of LPI in (4) can be rewritten as: 

bX
~WX

~
bminargb

TT

1bTDX
~T

*

X
~b =

= . 

and the optimal b’s are the maximum eigenvectors of eigen-problem: 

bX
~DX

~
bX

~WX
~ TT λ= , (6) 

It is easy to check that X
~ D X

~ T is nonsingular and the above eigen-problem can be 

stably solved. After we get b∗, the a∗ can be obtained by solving a set of linear 

equations systems UT a = b∗.  
In this paper, we propose a new algorithm called FLPI. FLPI decomposes the LPI 

problem as a graph embedding problem plus a regularized least squares problem. 
Such modification avoids eigen decomposition of dense matrices and can 
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significantly reduce both time and memory cost in computation. Moreover, with a 
specifically designed graph in supervised situation, the graph embedding problem in 
FLPI becomes trivial and FLPI only needs to solve the regularized least squares 
problem which is a further saving of time and memory. 

2   Algorithm for FLPI  

2.1   FLPI Algorithm Design 

In order to solve the eigen-problem in Eqn. (5) efficiently, we use the following 
theorem: 

Theorem 1. Let y be the eigenvector of eigen-problem 

DW yy λ=  , (7) 

with eigen value λ . If XT a = y, then a is the eigenvector of eigen-problem in Eqn. 
(5) with the same eigenvalue λ . 

Proof. We have Wy = λ Dy. At the left side of Eqn. (5), replace XT a by y, we have 

aXXDDXDXWXaXXW T
yyy

T λλλ ==== . 

Thus, a is the eigenvector of eigen-problem Eqn. (5) with the same eigen value λ . □ 
 

Theorem 1 shows that instead of solving the eigen-problem in Eqn.(5), the LPI basis 
functions can be acquired through two steps: 

1. Solve the eigen-problem in Eqn. (7) to get y. 
2.  Find a which satisfies XT a = y. A possible way is to find a which can best fit the 

equation in the least squares sense: 

∑ −=
=

m

1i

2

a
)yxa(minarga ii

T , (8) 

where yi is the i-th element of y.  
We may have infinite many solutions for the linear equations system XT a = y (the 

system is underdetermined).The most popular way to solve this problem is to impose 
a penalty on the norm of a [4]: 

∑ +−=
=

m

1i

22

a
||a||)yxa(minarga ii

T α , (9) 

The α ≥ 0 is a parameter to control the amounts of shrinkage. 

Given a set of documents }x{ i
m

1i= ⊂ Rn, the algorithmic procedure of FLPI is stated 

as below: 

Step 1. Adjacency graph construction: Let G denote a graph with m vertices, each 
vertex represents a document. Let W be a symmetric m×m matrix with Wij having the 
weight of the edge joining vertices i and j. 
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)x(Nxor)x(Nxif,

.otherwise,0
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⎪
⎨

⎧

= , (10) 

where Np(xi) is the set of p nearest neighbors of xi. 

Step 2. Eigen decomposition: Solve the eigen-problem  

DW yy λ= , (11) 

where D is a diagonal matrix whose entries are column (or row, since W is 
symmetric) sums of W, ∑= j jiii WD . Let {y0, y1, … , yd} be the d + 1 eigenvectors 

with respect to the d + 1 maximum eigen values λ 0 ≥λ 1 ≥ … ≥ λ d. It is easy to 
check that λ 0 = 1 and y0 is a vector of all 1 [2]. 

Step 3. Regularized least squares: Find d vectors a1, …, ad ∈Rn, where aj (j = 1, … , 
c − 1) is the solution of regularized least squares problem: 

∑ +−=
=

m

1i

22

a
j ||a||)yxa(minarga j

ii
T α , (12) 

where y i
j is the i-th element of yj . 

Step 4. FLPI Embedding: Let A = [a1 , … , ad], the embedding is as follows: x → z 
= AT x, where z is a d-dimensional representation of the document x and A is the 
transformation matrix. 

2.2   FLPI in Supervised Situation 

Suppose the m documents }x{ i
m

1i= belong to c classes. Let mj be the number of 

documents in the j-th class, ∑ =
c

1j jm  = m. With label information available, a natural 

way to define graph W can be: 

⎩
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=
.otherwise,0
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W
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ij , (13) 

To simplify our exposition, we assume that the documents }x{ i
m

1i=  are ordered 

according to their labels. It is easy to check that the matrix W defined in Eqn. (13) has 
a block-diagonal structure 
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where W(j) is a mj × mj matrix with all the elements equal to 1. We also have the D as 
the diagonal matrix. Thus, the eigen values and eigenvectors of Wy = λ Dy are the 
union of the eigen values and eigenvectors of its blocks (the latter padded 

appropriately with zeros) [3]: yDyW
)j()j()j()j( λ= . 

It is straightforward to show that the above eigen-problem has the eigenvector  
e(j) ∈Rmj associated with the eigen value 1, where e(j) = [1, 1, … , 1]T [2]. Also  
Rank(W(j)) = 1, there is only one non-zero eigen value of W(j). Thus there are exactly  
c eigenvectors of eigen-problem Wy = λ Dy. They are 

43421321321
∑ +=∑ −

=

=
c

1ji i

T

j1j
1i i

j

mmm

]0,...,0,1,...,1,0,...,0[y  , 
(15) 

These eigenvectors correspond to the same eigen value 1. Since 1 is a repeated eigen 
value, we could just pick any other c orthogonal vectors in the space spanned by {yj} 
in Eqn. (15), and define them to be our c eigenvectors [3]. The vector of all ones is 
naturally in the spanned space. This vector is useless since the corresponding 
projective function will embed all the documents to the same point. In reality, we can 
pick the vector of all ones as our first eigenvector and use Gram-Schmidt process to 
get the remaining c−1 orthogonal eigenvectors. The vector of all ones can then be 
removed. 

The above analysis shows that with the W defined as in Eqn.(13) in supervised 
case, the first two steps of FLPI become trivial. We can directly get the y’s which is a 
significant saving of both time and memory for FLPI computation. It makes FLPI 
applicable for very large scale supervised learning tasks. 

3   Experiments Results and Analysis 

3.1   Unsupervised Experiments 

The following six methods are compared in the experiment: 

• K-means on original term-document matrix, which is treated as our baseline 
(denoted as Baseline) 

• K-means after LSI (denoted as LSI) 
• K-means after LPI (denoted as LPI) 
• K-means after FLPI (denoted as FLPI) 
• Clustering using Probabilistic Latent Semantic Indexing (denoted as PLSI) [6].  
• Nonnegative Matrix Factorization-based clustering (denoted as NMF-NCW[9]).  

In this experiment, we use the same graph for LPI and FLPI and the parameter p 
(number of nearest neighbors) was set to 7. The parameter α in FLPI was set to 0.1. 

All these algorithms are tested on the TDT2 corpus[1]. In this experiment, those 
documents appearing in two or more categories were removed, and only the largest 30 
categories were kept, thus leaving us with 9,394 documents in total. 

 



 FLPI: An Optimal Algorithm for Document Indexing 649 

  

Fig. 1. Performance comparisons on clustering 

Two metrics, the accuracy (AC) and the normalized mutual information metric 
( MI ) are used to measure the clustering performance [1], [9].  

Fig. 1 shows the average accuracy and average mutual information of the six 
algorithms. Both LPI and FLPI achieve significant improvements over other four 
algorithms. Fig. 2 shows the processing time of the six algorithms. Consider both 
accuracy and efficiency, FLPI is obviously the best among the six compared 
algorithms for document clustering. 

   

Fig. 2. Processing time on TDT2 

3.2   Supervised Experiments 

The following three classifiers are used in the experiment: 

• k Nearest Neighbor (kNN). The only parameter in kNN is the number of nearest 
neighbors k. 

• Support Vector Machine (SVM) (http://www.csie.ntu.edu.tw/~cjlin/libsvm). There 
is a parameter C to control the trade-off between large margin and the training 
error.  

• Nearest Centroid (NC). There is no parameter in this method.  

All the three classifiers are performed in original document space (Baseline) as 
well as LSI (PLSI, LPI and FLPI) subspace. The dimension of the LSI (PLSI and LPI) 
subspace is the number of categories c(= 20) and the dimension of the FLPI subspace 
is c-1(= 19). The value of parameter α in FLPI is also set to 0.1. The parameter k in 
kNN and C in SVM are tuned to achieve the best Baseline performance. 
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Fig. 3. Performance comparisons on classification 

We use 20Newsgroups(bydate version) as a data set [7]. The original split is 
separated in time, with 11,314 (60%) training documents and 7,532 (40%) testing 
documents. The classification results of the three classifiers on five document 
representation methods are listed in Fig. 3. Table 1 shows the dimensionality 
reduction time of the four algorithms.  

Table 1. Computational time 

Train Set Size LSI PLSI LPI FLPI
5% 3.84 2.33 2.97 9.560

10% 4.08 86.05 73.83 12.01
20% 5.43 131.7 − * 16.37
30% 6.35 173.4 − * 20.97
40% 7.51 214.5 − * 26.22
50% 9.02 254.3 − * 32.38

60% (Orig. Split) 9.75 294.1 − * 39.52
*LPI can not be applied due to the memory limit 

4   Conclusions 

We have proposed a novel algorithm for document indexing and representation based 
on LPI called FLPI which avoids the expensive computation. FLPI can be computed 
by a sparse matrix eigen-decomposition followed with a regularized least squares. 
Moreover, with a graph designed specifically in supervised case, the eigen-
decomposition becomes trivial and FLPI only needs to solve a set of regularized least 
squares problems. Such property makes FLPI can be efficiently computed even for a 
large scale data set.  
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Abstract. Semantic web and ontology are the key technologies of Ques-
tion Answering system. Ontology is becoming the pivotal methodology
to represent domain-specific conceptual knowledge in order to promote
the semantic capability of a QA system. In this paper we present a QA
system in which the domain knowledge is represented by means of Ontol-
ogy. In addition, a Chinese Natural Language human-machine interface
is implemented mainly through a NL parser in this system. An initial
evaluation result shows the feasibility to build such a semantic QA sys-
tem based on Ontology, the effectivity of personalized semantic QA, the
extensibility of ontology and knowledge base, and the possibility of self-
produced knowledge based on semantic relations in the ontology.And
experiments do prove that it is feasible to use the method to develop a
QA System, which is valuable for further study in more depth.

Keywords: WWW, Ontology, Semantic Web, Question Answering.

1 Introduction

Semantic web technologies bring new benefits to knowledge-based Question An-
swering system. Especially, Ontology is becoming the pivotal methodology to
represent domain-specific conceptual knowledge in order to promote the seman-
tic capability of a QA system.Specific research in the areas of QA has been
advanced in the past couple of years particularly by TREC-QA [1]. The QA com-
petitions focus on open-domain systems that can potentially answer any generic
question.In contrast, a QA system working on a specific technical domain can
make use of the specific domain-dependent terminology to recognize the true
meaning included in a segment of natural language text. So we realize that the
terminology plays a pivotal role in a technical domain such as Java program-
ming. A great deal of work has been done representing domain-specific concepts
and the terminology by means of Ontology [2]. Recent research advancements on
Knowledge Representation with Semantic Web and Ontology have proved that
this methodology is able to promote the semantic capability of a QA system.

The Semantic Web is a Web that includes documents, or portions of docu-
ments, describing explicit relationships between things and containing semantic
information intended for automated processing by our machines. It operates on

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 652–659, 2008.
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the principle of shared data. When you define what a particular type of data is,
you can link it to other bits of data and say ”that’s the same”, or some other
relation. Although it gets more complicated than this, which is basically what
the Semantic Web is all about, sharing data through ontologies, and processing
it logically. Trust is also important, as the trust of a certain source is fully in the
hands of the user. Although the Semantic Web is a Web of data, it is intended
primarily for humans; it would use machine processing and databases to take
away some of the burdens we currently face so that we can concentrate on the
more important things that we can use the Web for.For example, recent research
in information processing has focused on health care consumers [3]. These users
often experience frustration while seeking online information, due to their lack of
understanding of medical concepts and unfamiliarity with effective search strate-
gies. We are exploring the use of semantic relationships as a way of addressing
these issues. Semantic information can guide the lay health consumer by sug-
gesting concepts not overtly expressed in an initial query. We present an analysis
of semantic relationships that were manually extracted from questions asked by
health consumers as well as answers provided by physicians. Our work concen-
trates on samples from Ask-the-Doctor Web sites. The Semantic Network from
the Unified Medical Language System (UMLS) [4] served as a source for semantic
relationship types and this inventory was modified as we gained experience with
relationship types identified in the texts.A semantic relationship associates two
concepts expressed in text and conveys a meaning connecting those concepts. A
large variety of such relationships have been identified in several disciplines, in-
cluding linguistics, philosophy, computer science, and information science. Some
researchers have organized hierarchies of semantic relationships into meaningful
but not formal structures.

2 Semantic Web and Agent-Based Semantic Web
Services Query

Making the Web more meaningful and open to manipulation by software appli-
cations is the objective of the Semantic Web initiative. Knowledge representa-
tion and logical inference techniques form the backbone. Annotations expressing
meaning help software agents to obtain semantic information about documents
[5]. For annotations to be meaningful for both creator and user of annotations,
a shared understanding of precisely defined annotations is required. Ontologies
– the key to a semantic Web – express terminologies and semantic properties
and create shared understanding. Web ontologies can be defined in DAML+OIL
– an ontology language based on XML and RDF/RDF Schema.Some effort has
already been made to exploit Semantic Web and ontology technology for the
software engineering domain [6]. DAML-S is a DAML+OIL ontology for de-
scribing properties and capabilities of Web services, which shows the potential of
this technology for software engineering. Formality in the Semantic Web frame-
work facilitates machine understanding and automated reasoning. DAML+OIL
is equivalent to a very expressive description logic [7]. This fruitful connection
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provides well-defined semantics and reasoning systems. In the conventional Web
Services approach exemplified by WSDL or even by DAML Services, the com-
municative intent of a message is not separated from the application domain.
This is at odds with the convention from the multi-agent systems world, where
there is a clear separation between the intent of a message, which is expressed
using an agent communication language. This separation between intent and do-
main is beneficial because it reduces the brittleness of a system. If the character
of the application domain changes, then only that component which deals with
the domain-specific information need change; the agent communication language
component remains unchanged.

When the service in the QA example is invoked, the value of the input pa-
rameter should be an instance of the class restriction that is given as the input
parameter types in both the profile and the process descriptions. For the various
query performatives, this input parameter contains the query expression that
would be contained in the message content in a conventional agent-based sys-
tem. However, there is as yet no standard query language for RDF, DAML+OIL
or OWL, although there are several under development, including DAML Rules
[8,9].As an example, the domain ontology that we have designed for this appli-
cation is centred on events and reports of events. We have taken the approach
that communication in the system will be about these events and reports, so the
queries can be expressed using the anonymous resource technique by specifying
the properties that the report must possess. It should be noted, however, that we
did not specifically design the ontology in this report to circumvent the expres-
sive limitations of our chosen query language, but rather that the query language
was chosen because it was appropriate for use with the domain ontology that we
had already designed.

3 The Stochastic Syntax-Parse Model Named LSF of
Knowledge-Information in QAS

Local environment information is regarded as an important means to WSD in
sentence structure all along [10]. But in some lingual models, which are assigned
by probability on the basis of rules traditionally, the probability of grammar-
producing model is only decided by non-terminal, while is independent of glos-
sarial example in analyzing tree. This quality of non-vocabulary makes lingual
phenomena description inadequate for probability model. Therefore, QAS adopts
the stochastic syntax-parse model named LSF.

Here, we describe a sort of basic probability depending model. It is named
lexical semantic frame (LSF for short [11]) in order to be put easily. LSF is
supposed as a result of character string s = wi. . . wj , SR(R, h, wi) denotes
that wi among LSF relies on the word h through semantic relation, thus we can
write down the function SR(i)=SR(R, h, wi). Analyzing semantic probability
p(SR(i)|h, wi)among words is on the basis of this model. The model supposes
that there exists high conjunction between depending relation R and Hyponym
node, the contradiction of data sparsely is less. So we can give LSF the analyzing
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probability from wi. . .wj . Unlike rules probability model, the probability model
parameter based on vocabulary association is usually gained from supervised
training as well as using tagged corpus. In fact, The reasons that we use both
the words in corpus and their Hyponym POS information to estimate P(LSF
|wi. . . wj) are:

(1) Vocabulary information plays a vital role on QA system.
(2) Considering the limit to corpus scale, words repetition has little probability

in sentence analysis, we must deal with statistic result smoothly [12]. Vocabulary
information is needed to “magnify” to reduce the degree of data sparseness
with the help of Hyponym part of speech. But the close word class such as
preposition or adverb uses statistic information of words. We may use parameter
smoothing technology. In analysis course, dynamic scheming pruning process
and probability computing process are similar to rules probability model. If the
analysis of the two parts in one cell case having the same attribute structure,
then the analysis result of the part which has lower probability will be cast aside
and will not participate in the following analyzing-combining process.

Supposing that we inputting a sentence in QAS: “She eats pizza without
anchovies”, now we have:

P(T1)=P(AGT|eat, she)P(OBJ|eat, pizza)P(MOD | pizza, anchovies) (1)

P(T2)= P(AGT|eat, she)P(OBJ|eat, pizza)P(MOD|eat, anchovies) (2)

Supposing that we can gain the correlative model parameter through corpus
statistics such as Table 1, then:

P(T1)=0.0025×0.002×0.003=1.5×10−6P(T2)=0.0025×0.002×0.0001=5×10−8

T1may be chosen to be the right result according to this. If we convert “an-
chovies” to “hesitation”, then P(T1)=5×10−8, P(T2)=4×10−7. We find that lan-
guage model may also help us to choose sound analysis result with the change
of words in sentence. This is just about its merit.

Table 1. Interrelated model parameters

PFUNC(X) Value

P(AGT|eat, she) 0.0025
P(OBJ |eat, pizza) 0.002
P(MOD|pizza, anchovies) 0.003
P(MOD|eat, anchovies) 0.0001
P(MOD|pizza, hesitation) 0.0001
P(MOD|eat, hesitation) 0.0008

4 Explaining Answers from the Semantic Web

Semantic Web aims to enable applications to generate portable and distributed
justifications for any answer they produce. Users need to decide when to trust
answers before they can use those answers with confidence. We believe that the
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key to trust understands. Explanations of knowledge provenance and derivation
history can be used to provide that understanding [13]. In one simple case, Users
may need to inspect information contained in the deductive proof trace that was
used to derive implicit information before they trust the system answer. Some
users will decide to trust the deductions if they know what reasoner was used
to deduce answers and what data sources were used in the proof. Other users
may need additional information including how an answer was deduced before
they will decide to trust the answer. Users may also obtain information from
hybrid and distributed systems and they may need help integrating answers and
solutions. Inference Web addresses the issues of knowledge provenance with its
registry infrastructure called Semantic Web Ontology [14]. It also addresses the
issues concerned with inspecting proofs and explanations with its browser. It
addresses the issues of explanations with its language axioms and rewrite rules.

In order to present the findings, the analyst may need to defend the conclu-
sions by exposing the reasoning path used along with the source of the infor-
mation. In order for the analyst to reuse the previous work, s/he will also need
to decide if the source information and assumptions used previously are still
valid. Inference Web includes a new explanation dialogue component that was
motivated by usage observations. The goal is to present a simple format that is
a typical abstraction of useful information supporting a conclusion. The current
instantiation provides a presentation of the question and answer, the ground
facts on which the answer depended, and an abstraction of the metal informa-
tion about those facts. There is also a follow-up action option that allows users
to browse the proof or explanation, obtain the assumptions that were used, get
more information about the sources; provide input to the system, etc.

5 Implement of QAS

Our Automatic Question Answer System includes three models: question’s se-
mantic comprehension model based on Ontology and Semantic Web, FAQ-based
question similarity match model, document warehouse-base automatic answer
fetching model. The question’s semantic comprehension model combines many
natural language processing techniques, including Ontology and Semantic Web,
Segmentation and Part-Of-Speech Tagging, the confirmation of the question
type, the extarction of keywords and extending, the confirmation of the knowl-
edge unit, Through these works, the intention of the user is held, which greatly
helped the last work of this system. The FAQ-based question similarity match
model is implemented by semantic sentence similarity computation, which is
improved by our system, this model can answer frequently-asked question fast
and concisely. The document warehouse-base automatic answer fetching model
firstly deal with the document warehouse beforehand and construct inversed in-
dex, then use high efficient information retrieval model to search in the base and
return some relevant documents, lastly, we use answer extraction technique to
get the answer from these relevant documents and present it to users. For the
question that cannot be answered by FAQ base, this model can automatically
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return exact answer fast. The document repository pre-processing module includ-
ing Web pages crawlering, HTML format filtering, segmentation and Tagging
etc. we receive a term-document matrix by computer the word frequency. This
matrix is then analyzed to derive our particular latent semantic structure model
for later document retrieval and passage retrieval. Question analysis module is
important to QA system. Given a question, the system generates a number of
weighted rewrite strings. And then, transform the query into a vector by those
weighted rewrite strings. In this module, lay emphasis on question classifica-
tion. Systems classifies a query into the predefined classes based on the type
of answer it is looking for, and then use the question types to identify a candi-
date answer within the retrieved sentences. Answer extraction module including:
document retrieval, passage retrieval and answer matching. System provides a
varying method to calculate weight and sort the answer by the weight. Finally,
the answer been restricted within 50 words long and returned to user.

The QAS focuses on the key techniques of pattern knowledge based ques-
tion answering [15]. We design and implement the question answering system
and take part in the evaluation of Text Retrieval Conference. We also apply
the pattern matching technique to a new related research area Reading Com-
prehension, and a satisfied result is acquired. The key task to implement the
pattern matching technique is to construct a perfect pattern knowledge base.
We put forward a novel question classification hierarchy that is based on answer
type and question pattern. It retains the semantic and structured information
of questions. We make use of the questions on FAQ base as our training and
test data. The answer patterns to different question types are studied and eval-
uated automatically. We have implemented pattern learning to questions with
complex structure. It is more effective and reliable to extract the correct answer
with answer patterns containing multiple question terms. For higher precision,
we give semantic restriction to candidate answers that are extracted by answer
patterns. We adopt generalization strategy to answer patterns using named en-
tity information. It makes the answer patterns have better extending ability; the
constituent elements of answer pattern contain both morphological and seman-
tic information with better robustness. We evaluate all the answer patterns by
the concept of Confidence and Support, which are borrowed from data mining.
Answer patterns with higher confidence lead to choose the answer with greater
reliability. Table 2 is the experimental results of QAS.

Table 2. Experimental results of QAS

number of questions Answer correctly Answer mistakenly no responsion Accuracy recall

2000 1641 198 161 82.05 91.95

6 Conclusions

An initial evaluation is performed on our QA system, focusing on 4 aspects:
the feasibility to build such a semantic QA system based on not traditional



658 Q. Guo and M. Zhang

natural language text but Ontology, the effectivity of personalized semantic QA,
the extensibility of ontology and knowledge base, and the possibility of self-
produced knowledge based on semantic relations in the ontology. The test set
includes 100 questions sampled from a set of questions asked by the students
in a one-semester programming lesson, excluding the questions about reading a
segment of program, writing a small program to finish a function and so on, which
is beyond the ability of a QA system. At the same time, all these 100 questions
are ensured within the covering scale. For the scale of the initial evaluation, we
don’t distinguish the situations between no answer and a false answer. These
two situations are regarded as the same - no answer.

The initial evaluation result shows the feasibility of building a semantic QA
system based on Ontology and Semantic Web. The personalized answering based
on a user model benefits to focusing the user’s more attentions on fresh learning
material. A user can get the direct answers about some questions based on se-
mantic QA, which shows the effectivity of the system. In no answer situation, the
system takes a big proportion, which shows the good extensibility, for the answer
can be easily supplied into the knowledge ontology without conflicting with the
semantic relations defined in the ontology. At last, the system takes a small pro-
portion, in which the ontology needs to be expanded and ontology consistency
must be ensured. How to prove the possibility of self-produced knowledge based
on semantic relations in the ontology? A simple example is that the property re-
quire is a transitive property, so if the fact that document A requires document B
and document B requires document C is stated in the knowledge ontology, a new
document relation, document A requires document C, would be self-produced
based on the system inference. Afterwards, the update of inter-dependency be-
tween documents would bring new answer for a question. And experiments do
prove that it is feasible to use the method based on Ontology and Semantic Web
to develop a Question Answering System, which is valuable for further study in
more depth.
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Abstract. Web sources are open, dynamic, and autonomous. They contain a
great deal of incomplete, imprecise, and unqualified information. These issues
result in unacceptable Web source quality. Evaluating and selecting high qual-
ity Web source/information is a key for the success of Web-based applications. In
this paper, Web quality is modeled by using a Web quality model, WebQM. Fuzzy
TOPSIS (FTOPSIS) is applied to evaluate and screen Web sources for advanced
Web applications, such as data warehousing, OLAP, and data mining. In addition,
an expert-average group evaluation strategy is combined with FTOPSIS to obtain
more objective and more precise results. To illustrate our evaluation process, an
example is discussed.

Keywords: Web source/information quality assessment, WebQM, fuzzy TOP-
SIS, group evaluation.

1 Introduction

Web has already become the richest information resource of the world. The develop-
ment of Web-based applications more and more depends on the high quality of Web in-
formation, but Web source/information quality is not optimistic. Web sources are open,
dynamic, and autonomous. They contain a great deal of incomplete, imprecise, and
unqualified information. These issues result in unacceptable Web source quality. Evalu-
ating and selecting high quality Web source/information is a key for a successful Web-
based application. The objective of our work is to evaluate Web source/information
quality and select the high quality Web data for advanced applications, such as, Web
data warehousing, data mining, and Web-based decision making.

Web quality evaluation is a MCDM (multi-criteria decision making) problem. In
classical MCDM [1], the performance rating values of each alternative and the weight
of each criterion are certain and precise. Web information may be incomplete and uncer-
tain due to its particular features. Evaluating Web quality using crisp values is difficult.
In addition, the criteria weights assigned directly by evaluators can not be estimated
precisely. Fuzzy logic is a kind of solutions for dealing with uncertainty and inaccuracy

� This work is supported by the Natural Science Foundation of China (Grant No. 60573165) and
the Development Foundation of Southwest Jiaotong University (No. 2007A14).

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 660–667, 2008.
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of real world problems. Therefore, the fuzzy logic and MCDM techniques should be
combined for improving the Web quality evaluation.

Another issue we must consider is subjective biases in the Web quality assessment.
The criteria weights and the quality rating values of each Web source in terms of the
criteria are two key quality parameters. Because they are mostly assigned by evaluators
directly, subjective biases may be produced due to the wrong or inaccurate rating of the
evaluators. To solve this problem, we apply a group assessment solution, furthermore
we improve the group evaluation process by combining expert- and average-decision
making strategies.

The main contributions of this paper are:

– A comprehensive and feasible Web quality assessment system based on WebQM is
constructed;

– Fuzzy logic and MCDM approaches are combined for reducing the uncertainty and
inaccuracy of Web quality data;

– Expert- and average-group evaluation solutions are studied and combined with FM-
CDM to reduce the subjective influence to the evaluation process.

Web source quality assessment is crucial for all successful Web-based applications,
however, researches in this area is very insufficient so far. The related work can be
roughly divided into two groups. One group [2,3,4,5] focuses on the utilization and mod-
ification of group fuzzy MCDM approaches for conventional products, but it doesn’t
take Web sources as assessment candidates into account. Another group deals with the
challenge of Web quality [6,7], but has not given a complete Web quality evaluation
system yet.

Different from the work of the above two groups, the Web quality features and
MCDM approaches are intensively analyzed in our work, and a comprehensive Web
quality assessment system based on WebQM is constructed in this paper. In this sys-
tem, several techniques are studied and combined not only for evaluating Web quality,
but also for tackling the particular issues in the assessment and for improving the relia-
bility of the evaluation.

2 The Web Quality Model and Group Evaluation Techniques

Web quality model (WebQM) introduced in our former work [8,9] defines the static and
dynamic features of Web quality as 3 quality dimensions: Web source quality (WebSQ),
Web information quality (WebIQ), and application specific quality (WebAQ). Each di-
mension can be specified by a set of subdimensions, which are the assessment criteria.
WebQM is the basis of the Web quality evaluation system and covers several key aspects
of Web quality evaluation. The details of the 12 criteria can be found in [8]. Figure 1
illustrates the structure of WebQM.

Group evaluation techniques from Group Decision Support Systems (GDSS) [10]
are the techniques of arriving at a judgment based on the opinions of a decision team.
The main advantage is to obtain a sound solution that may not be gained by an indi-
vidual alone or to make a decision based on information as unbiased as possible. There
are 7 methods in GDSS. Each method has its strengths and weaknesses. For example,
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Fig. 1. The Structure of WebQM

group average decision is a method that each group member is asked his/her opinion
separately and the judgments are averaged to obtain a consistent result. The advantages
are to filter out the extreme opinions, remove typical errors, and integrate the viewpoints
of all group members. However, the opinions of the experienced members are treated
the same as those of their inexperienced coworkers. As matter of fact, the experts can
understand the goal and approaches better and can make decisions efficiently. There-
fore, the experienced persons are selected as the group members in this work. Their
opinions are averaged to the group rating scores, which as initial values are integrated
into a synthetical quality score for each Web source.

3 Fuzzy Evaluation of Web Quality

3.1 The Web Quality Evaluation System

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)[11] is a clas-
sic approach of MCDM. In TOPSIS, two extreme points, the positive-ideal solution
(PIS) and the negative-ideal solution (NIS) are built, PIS represents a virtual alternative
with a set of possibly best performance scores in terms of each criterion, while NIS
is a virtual alternative with a set of worst scores. The performance of each alternative
is evaluated and compared with PIS and NIS. If the alternative is closest to PIS and
farthest to NIS, it is the best choice.

FTOPSIS extends TOPSIS with fuzzy logic, where the criteria weights and the qual-
ity rating scores of an alternative in terms of each criterion are specified using linguistic
terms. These linguistic terms are then transformed to the fuzzy numbers by means of a
triangular fuzzy membership function in this paper.

In the Web quality evaluation system, Web sources are first preselected by their rel-
evance to the application domain, then the Web source candidates are input to the eval-
uation process. In the process, FTOPSIS is applied to obtain final integrated quality
scores, based on which the Web sources are ranked. The top Web sources are the qual-
ified selections for the advanced applications. The Web quality evaluation system is
shown in Figure 2.
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Fig. 2. The Fuzzy Evaluation System of Web Source/Information Quality

3.2 FTOPSIS with Group Evaluation Technique

Assume that there are M alternatives and N criteria in a quality fuzzy evaluation prob-
lem. An evaluation group consists of P equal-weighted experts. Each group member
defines the criteria weights and the quality rating scores of M alternatives, which con-
struct a fuzzy weight vector W̃ k and a fuzzy evaluation matrix X̃k, separately. The data
of all group members is integrated into corresponding comprehensive group results, W̃
and X̃ , by using the following formulas.

W̃ =
1
P

(w̃1
j

⊕
w̃2

j · · ·
⊕

w̃p
j )N (1)

X̃ =
1
P

(x̃1
ij

⊕
x̃2

ij · · ·
⊕

x̃p
ij)M×N (2)

where w̃k
j is the weight of the jth criterion assigned by kth group member, x̃k

ij denotes
the rating value of the ith alternative in terms of the jth criterion by kth decision maker,
and

⊕
is the fuzzy arithmetic addition. i = 1, · · · , M, j = 1, · · · , N .

The remaining evaluation steps are:

1. Normalizing the fuzzy weight vector W̃ .
The normalized weight vector Ṽ is obtained as follows:

Ṽ = [ṽj ]N = [w̃j(÷)
∑

j

(w̃j)] (3)

where w̃j is the weight of jth criterion in W̃ ,
∑

denotes the fuzzy arithmetic
addition, (÷) is fuzzy arithmetic division, and 0 ≤ ṽj ≤ 1.

2. Normalizing the fuzzy decision matrix X̃:
The normalized decision matrix Ỹ is calculated as follows:

Ỹ = [ỹij ]M×N = (
x̃ij1

x̃+
ij3

,
x̃ij2

x̃+
ij2

,
x̃ij3

x̃+
ij1

), x̃+
ijk = maxj(x̃ijk) (4)

where 0 ≤ ỹij ≤ 1.
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3. Constructing the weighted normalized fuzzy decision matrix R̃

R̃ = Ṽ
⊗

Ỹ = [r̃ij ]M×N (5)

where
⊗

denotes the fuzzy arithmetic multiplication.
4. Determining PIS (S̃+) and NIS (S̃−)

S̃+ = max(r̃ij), S̃− = min(r̃ij) (6)

The most common PIS and NIS are S̃+ = (1, 1, 1), S̃− = (0, 0, 0)
5. Finding the Euclidean distance of each alternative to PIS and NIS

The Euclidean distances of an alternative to S̃+ and S̃− represent the similarities
between this alternative and PIS or NIS. According to [2,12], the distance between
two positive triangular fuzzy numbers, ã = (a1, a2, a3) and b̃ = (b1, b2, b3), is
calculated as:

d(ã, b̃) =

√
(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2

3
(7)

The Euclidean distances of M alternatives are calculated as:

D+
i =

N∑

j=1

(d(r̃ij , s̃
+
j )), D−

i =
N∑

j=1

(d(r̃ij , s̃
−
j )), (8)

where i = 1, 2, · · · , M .
6. Calculating the relative closeness of each alternative to PIS

Ci =
D−

i

D+
i + D−

i

, 0 ≤ Ci ≤ 1, i = 1, 2, 3, ..., M (9)

The Web sources are ranked according to the value of C. If an alternative itself
is PIS, C = 1; if an alternative itself is NIS, C = 0. The synthetical rates of all
alternatives fall into the interval [0,1]. The larger the relative closeness value (C) is,
the closer a Web source to the ideal solution and the farther to the negative solution
is, and the higher the quality of this Web source is.

4 An Evaluation Example

In the example, a 3-person-group will evaluate 4 Web sources about discount computer
book information. The Web sources are identified as A,B,C, and D. Two criteria per
dimension, total 6 criteria, are selected for assessment to simplify the calculation. The
triangular fuzzy number representation of the linguistic terms used in this example is
shown in Figure 3. The criteria weights assigned by all group members using the fuzzy
values are shown in Table 1, data in this table will be computed as an integrated weight
vector using Eq. 1. Each group member rates the quality performance of 4 Web sources
in terms of 6 criteria, separately. Table 2 is one of the evaluation matrices.

Applying Eq. 2 - Eq. 5, we obtain the group-synthetical weighted normalized fuzzy
decision matrix in Table 3. The value of PIS and NIS is (1,1,1) and (0,0,0). Applying
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Fig. 3. The Triangular Fuzzy Values of the Lingustic Evaluation Scale

Table 1. Fuzzy Weights of the Quality Criteria by the Group Members

Criteria Fuzzy weights and their linguistic terms
group member 1 group member 2 group member 3

availability high (0.5, 0.75, 1) medium (0.25, 0.5, 0.75) high (0.5, 0.75, 1)
accessibility medium (0.25, 0.5, 0.75) high (0.5, 0.75, 1) medium (0.25, 0.5, 0.75)
correctness high (0.5, 0.75, 1) medium (0.25, 0.5, 0.75) medium (0.25, 0.5, 0.75)
completeness medium (0.25, 0.5, 0.75) high (0.5, 0.75, 1) low (0.0, 0.25, 0.5)
relevance very high (0.75, 1, 1) high (0.5, 0.75, 1) high (0.5, 0.75, 1)
presentation medium (0.25, 0.5, 0.75) very high (0.75, 1, 1) medium (0.25, 0.5, 0.75)

Table 2. The Rating Scores of 4 Web Sources in Terms of Criteria by Group Member 1

�������criteria
sources

A B C D

availability (0.25,0.5,0.75) (0.5,0.75,1) (0.25,0.5,0.75) (0.25,0.5,0.75)
accessibility (0.5,0.75,1) (0,0.25,0.5) (0.5,0.75,1) (0.25,0.5,0.75)
correctness (0.25,0.5,0.75) (0.25,0.5,0.75) (0.5,0.75,1) (0,0.25,0.5)
completeness (0.75,1,1) (0.5,0.75,1) (0.25,0.5,0.75) (0,0.25,0.5)
relevance (0,0.25,0.5) (0.75,1,1) (0.25,0.5,0.75) (0.5,0.75,1)
presentation (0.5,0.75,1) (0.5,0.75,1) (0,0.25,0.5) (0,0.25,0.5)

Table 3. The Group-Synthetical Weighted Normalized Fuzzy Decision Matrix

�������criteria
sources

A B C D

availability (0.03,0.12,0.48) (0.04,0.13,0.52) (0.02,0.12,0.59) (0.02,0.12,0.59)
accessibility (0.03,0.10,0.44) (0,0.04,0.24) (0.03,0.15,0.71) (0.02,0.10,0.54)
correctness (0.02,0.08,0.36) (0.02,0.08,0.36) (0.03,0.14,0.65) (0,0.05,0.36)
completeness (0.04,0.13,0.43) (0.02,0.10,0.43) (0.02,0.10,0.54) (0.02,0.12,0.54)
relevance (0,0.05,0.29) (0.08,0.22,0.57) (0.03,0.14,0.64) (0.06,0.22,0.86)
presentation (0.04,0.13,0.48) (0.04,0.13,0.48) (0,0.06,0.36) (0.01,0.10,0.48)
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Eq. 6 - Eq. 9 to Table 3, the results are: D+ = (5.03, 4.95, 4.79, 4.85) and D− = (1.47,
1.56, 2.06, 1.98). The relative closeness of each Web source is: CA=0.23, CB=0.24,
CC=0.30, CD=0.29. The quality rank of 4 Web sources are C, D, B, A. Thus, C and D
are of high quality.

The result shows that the synthetical quality of C and D is quite proximate and better
than A and B, while A and B are also similar on their quality results. Such a result
corresponds to the real state of the 4 Web sources. Both C and D are global computer
book shops. They have approximate business goal and scope and mainly provide the
discount computer books. While A and B are two computer book stores appertaining
to a computer organization or a publisher, discount computer book selling is not their
major business. Their source quality related to discount computer books is not as good
as that of C and D.

5 Conclusion and Future Work

Web source quality is a key for the success of all Web-based applications. To this end,
this paper discusses a fuzzy evaluation system of Web source/information quality and
the key assessment approaches. The fuzzy multi-criteria group evaluation approach is
detailed, where the expert- and average-group evaluation solutions are combined for
improving evaluation performance. FTOPSIS algorithm is analyzed and carried out for
integrating into the comprehensive quality scores of Web sources based on the group
decision. The approach in this paper is easy understood and feasible. The evaluation
results are reasonable. A prototype of the Web source quality evaluation has been im-
plemented.

As future work, the sensitivity of evaluations, the suitability of different group de-
cision models, as well as their combination will be analyzed. Different fuzzy MCDM
approaches will be studied and compared in the system to obtain better assessment
performance.
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Abstract. With the popularity of Web 2.0 websites, online social net-
working has thriven rapidly over the last few years. Lots of research atten-
tion have been attracted to the large-scale social network extraction and
analysis. However, these studies are mostly beneficial to sociologists and
researchers in the area of social community studies, but rarely useful to
individual users. In this paper, we present a “friends ranking” system -
visoLink which is a personal social network analysis service based on
user’s reading and writing interest. In order to provide a better under-
standing to user’s personal network, a weighted personal social repre-
sentation and visualization are proposed. Our system prototype shows a
much more user friendly design on personal networks than the classical
node-edge distance based network visualization.

Keywords: Web mining, Social network, User centric.

1 Introduction

Writing blogs, sharing photos and videos are the most popular user behaviors
on the Web. In the past two years, Web 2.0 brought lots of user participation
onto Internet, especially in the area of social networking. Millions of users are
contributing contents including texts, pictures and videos to the social network
sites. These huge amounts of contents and user activity patterns on the Web
become a great source for social network analysis and Web data mining. Re-
cently, researchers from computer science and sociology have been attracted to
computational social networking study [2] [4] [5].

With the number of participants in online social networks increasing dra-
matically, for managing social relationships online, a common feature from the
current online social networking sites is to provide users a linear “Friend List”.
The problem with this list is that while the number of contacts increases, users
hardly find out the most important friends in the list. One proposed solution
from Anthony Dekker is to define the distance function between network entities
based on the frequency of the communications of the user with other friends [1].
However, traditional daily communications is hard to be captured and recorded
without a mechanism.

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 668–675, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Blog-based social networking sites are content intensive. Most of the content
reflects author’s opinions and interests. From the computer science perspective,
it contains much less noise data to mine user’s interest. Our research motiva-
tion is to employ the latest Web Mining techniques to provide users a better
way to manage their online social relationships. The proposed framework ranks
user’s friends based on their online reading and writing interest. In our system
prototype, visoLink also provides a user friendly graphical interface to present
personal network.

2 Related Work

Social network analysis mainly analyzes the relationships between people or
groups of people within the social networks. Generally, a social network is com-
putationally represented by a node-edge undirected graph. Most of the study in
social network analysis use binary relationship representation. In [1], conceptual
distance is considered in the social network analysis. The edge distance between
every two entities in the social network, represents the closeness between two
entities in the network. The link value is simply obtained by times of commu-
nication between two entities from daily life. For example, the value is assigned
to 1.0, if the communication occurs every day; 0.6, if occurs once per week. It
can be easily seen that the frequency of daily life communication is hard to be
captured without a mechanism.

Because of the popularity of blog, interest similarity measure between blog-
gers has attracted researchers’ attentions. [6] proposed an author-topic model
to compute the similarity between authors over topics distributed on documents
of their writings. Most of recent research works just focus on this kind of Web
content analysis aspect using content mining techniques, but not on user’s online
activities pattern. The Web Mining technology opens the opportunity to mine
relationships among users on the Web [7]. Times of online communications can
be simply found from server log file. [2] evaluated the author-topic model and
proposed their two-step method which combines probabilistic topics similarity
in first step and finer content similarity measure in second step. The second step
measuring considers the temporal factor of published post entries, since people’s
interest could be changed while time passes. The second step measure demon-
strates the improvement by considering the time intervals related to author’s
interest. However, all of these methods are only based on author’s writing in-
terest. There are still lots of users surfing on the Web only being readers rather
than writers. How to analyze user’s reading interest? Web usage mining tech-
nique provides a possibility to find the solution. Web Usage Mining techniques
are used to analyze user’s behavior on a Website [7] [8] [14]. The study from
[8] shows a proposed approach combining content and usage together to mea-
sure the similarity of behaviors between two visitors. In [10], authors introduce
a model to find patterns between visitors in order to build an effective recom-
mender system. Nevertheless, those studies are only classifying users based on
their behaviors, but not their real interest.



670 L. Fan and B. Li

3 The Proposed User-Centric Personal Network

In order to start our social network analysis, the proposed personal network is
defined as follows:

– Each actor has his or her own network which is represented as a weighted
graph G = (V, E, W ). In this network, a centric user represents the root
node of the graph.

– Vertices V represent the friends of the centric user in the social network. The
interest of each centric user is reflected by all the related content, including
his or her own blog entries, and also other blog entries he or she browsed or
read.

– Edges E represent the relationships between different users in the network.
– W denotes the weight of a relationship Rel(i, j) = Wij , Rel(i, j) denotes the

relationship between user i and user j. Wij indicates the closeness between
two users.

According to our review study, there is nearly no previous research providing
a mechanism to weight users social relationships. As a result, our study only
focuses on personal network. Firstly, personal network is much less complex than
the entire network. Secondly, personal network analysis is designed to be more
user-oriented. Additionally, our proposed network design also considers that one
relationship could have different values based on different centric-user. In other
words, Rel(i, j) �= Rel(j, i). The importance of the relationship is different from
each actor in the network.

4 User Interest Mining

In order to weight different relationships for centric user, two basic principles
for interest mining are needed to design. First one is: if two share more similar
interest, these two contacts should consider to have a closer relationship. The
second principle: More times one spending or more frequently visiting the other
one’s website indicates that the later one’s site owner or site content is more
interesting and important. Thus, based on these two principles, our task here is
converted to user interest similarity measure.

4.1 Writing Content Analysis

Writing content analysis concentrates on mining centric-user’s self-generated
content. Blog content mining has been studied in some recent research works
[2] [3] [4] [5]. One of the two main approaches in the previous works is to utilize
topic distribution model based on probabilistic theory. Another method uses the
statistical term frequency content-based approach which is mainly used in the
area of information retrieval.

Each blog entry from blog websites may contain several topics. All the text
corpus from each user is viewed as a combination of different topics. Each topic
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occurring in a content corpus produces a probability value. With the help of
entropy-based technology, such as KL-divergence, probabilities on the topics
shared by two writers is able to be obtained. Topic model for learning the inter-
est of authors from text corpus was introduced in [6] [8], and Rosen-Zvi proposed
Author-Topic model to extend the basic LDA model [6]. Both of these two meth-
ods need to learn the parameters in estimation approach. In our study, the topic
probability distributions are directly obtained from tags (keywords) distribution,
since tags are inserted by authors themselves. Similar to the approach in [6], the
similarity measure between user i and j is shown in Equation 1,

D(i, j) =
T∑

t=1

[θit log
θit

θjt
+ θjt log

θjt

θit
], (1)

where T denotes the set of topics, and θit denotes the probability of topic t from
user i. This method applies KL-divergence to compute the similarity between
user i and j.

The term-frequency model is well studied in the area of text document classi-
fication. After stop-word removal, spamming and low frequency terms removal,
the terms in the text occurring more frequently contribute more importance to
the whole document. According to [2], in its second stage of similarity com-
putation, temporal factors are considered to affect the similarity. For example,
the topics of two different pieces of content are very similar, but the interest
similarity value is still low if the time interval between two published dates is
large.

According to [2], the similarity function is defined in Equation 2, where entryk

denotes a blog entry from the entry set Eit of user i, |m(k) − m(l)| denotes the
month difference of published date between entryk and entryl. Additionally,
in Equation 2, λ takes the value “1”, if it is set to consider time difference;
otherwise, it takes “0”. In order to take average similarity value from all the
entry content, the sum of similarity values are divided by the numbers of total
entries from user i and j which denote as ni and nj .

Sim(i, j) =

∑
k∈Ei

∑
l∈Ej

S(entryk, entryl) · e−λ|m(k)−m(l)|

ni · nj
(2)

4.2 Reading Interest Analysis

Measuring user interest based on blog entry content, however, only considers
user’s writing content on the Web. Although large number of Web users are
contributing contents, the majority of the Web users are still readers. Based on
this reality, detecting reading interest of users is highly necessary.

Web log analysis is to study the access patterns of user’s online activities. In
the context of social networking, the browsing history of user i on j’s website
indicates user j’s content is interested to user i. Therefore, if user i stays on
page p longer than a threshold time length l, where p is not in Ei. Ei denotes the
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pages of user i’s personal website. It can be concluded that user i is interested
in the content of page p.

In the first stage of Web usage analysis, the raw data for usage analysis is ex-
tracted from the Web server log files. Since no user identities in Web Server log
files which recorded IP address as client identification, problem encounters when
multiple users logon using a same machine. Fortunately, In social networking
websites, users log in and start their online social life with their own account.
In our project, the logging history is extracted from application level, HTTP
sessions. Once one logs in, the application would create a session for each user.
Privacy issue may arise, if users do not want their browsing history being ma-
nipulated. As a result, in order to handle this situation, our proposed framework
consider that browsing history is denied to be processed. A set of visited pages
from browsing history for user i is denoted as Ri. Ri could be an empty set, if
history data is denied to be processed.

4.3 Our Proposed Framework Combining Reading and Writing
Interest

Two set of pages are defined in our proposed framework. One is a set of pages
of which are centric-user generated content. The second set of pages is from
content which the centric user has read. Based on these two sets of content, the
system tries to analyze the content not only what users write, but also what
users read. It attempts to address the problem that some users prefer reading
other’s content rather than writing his/her own blog content, which is a very
common phenomenon on the Web.

The main task is to measure the similarity between centric-user i and a friend
j. Due to the privacy issue needs to be considered, the whole measuring process
is divided into five stages as follows:

– The similarity S1 between user i and j based on their writings is computed
using the Equation 3. The content data in this phase is from blog entries of
user i and j. The result is multiplied by the weight factor β0.

– Since users log data from both i and j is collected, the similarity S2 be-
tween the content of i’s writing and j’s reading is able to be computed. The
similarity result is multiplied by a weight factor β1.

– Same to the process in phrase two, the similarity S3 between the content of
i’s reading and j’s writing is computed. The result is multiplied by a weight
factor β1.

– Similarly, the similarity S4 between the content of i’s reading and j’s reading
is computed. The result is multiplied by a weight factor β2.

– Finally, we sum up S1, S2, S3 and S4 and then multiplies it with another
weight factor α. alpha is a factor that considers how often user i visits j’s
website. If i visits j’s website. User j means more important to user i.

S1 = Sim(Wi, Wj) · β0, (3)
S2 = Sim(Wi, Rj) · β1, (4)
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S3 = Sim(Ri, Wj) · β1, (5)
S4 = Sim(Ri, Rj) · β2, (6)

Similarity(i, j) = (S1 + S2 + S3 + S4) · α, (7)

where Sim() function is content similarity measure function from Equation 2,
weight factors β0 > β1 > β2, Wi denotes the writing content from user i. Ri

denotes the reading content of user i, and Wj does not belong to Ri.
If user i denies the application to process log data, S3 will take value 0.

Similarly, if user j denies, S2 takes 0. The values of weight factors β0, β1 and β2
are defined as follows: β0 > β1 > β2, because writing interest has more impact
on reflecting personal interest than reading which could occur arbitrarily. α is
the weight factor that indicates how often user i visits j’s website.

In section 4.1, in equation 1, the content analysis model is introduced. By
replacing Sim(i, j) in equation 3 with equation 1, the similarity value between
two users i and j is able to be obtained. After applying equation 3 to each
relationship between each friend and centric-user, the values of ranking criteria
for the friend list are generated. As a result, the system is able to rank the friend
list based on the common sharing interest.

5 System Prototype Implementation

In order to evaluate our ranking method, the system prototype, namely visolink,
has been under development. This prototype system provides the similar services
as the current online social networking sites, such as blog service, photo sharing
and friendship management. Experimental data is collected when users are using
the site. For example, topic probabilities are extracted from the user’s blog post
tagging annotation. User’s reading behaviors are extracted from the server Web
logs. As shown in Figure 1, the personal interest are mainly represented by his
or her writing content of his blog-based personal website, such as blog posts,
photo titles, descriptions and comments on the other’s website.

The final goal of the system is to present the ranking of social relationships.
Actually showing the order of the ranking is more important than the actual
ranking scores. As a result, system prototype visolink provides an enhanced view
of friends ranking. Based on our principle system design concept, it is useful to
show the order of online social relationship ranking, instead of show meaningless
individual ranking score.

As shown in Figure 2, the personal social network of centric-user “Anson” is
generated from an automatic graph drawing algorithm. The main contact “An-
son”, is placed into the center of the graph. Unlike the classical graph drawing
using length of edges representing the distance between two entities, visoLink
visualizes the network by using vector-based graphical technique which allows
those less important nodes being smaller and more transparent. This kind of
representation of the network with criteria of clearness and node size is much
better for users to judge which nodes are more important, rather than letting
users to measure the distance or length between nodes by using their eyes. We
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Fig. 1. A screenshot from a user’s blog-based personal website of system prototype
visoLink

Fig. 2. A screenshot of our proposed visualization of personal network ranking result

design our visualization component to provide users a better understanding on
their own personal networks. Most important contacts should be emphasized,
and others that have low similarity values should be ignored. A “fake” 3D view
of personal network is generated to end user as shown in Figure 2.

visoLink includes personal network friends ranking and recommendation. In
the current phase, we have proposed a framework to generate ranking automat-
ically. The prototype website has started to collect experimental user data.

6 Conclusions and Future Work

In this paper, an approach combining content and usage analysis for user inter-
est mining of online social networks has been proposed. It measures user’s inter-
ests based on both users’ writing and reading interests. This similarity measure
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between online users provides a fundamental support for personal social network
visualization and the personalized recommendation.

The existing dataset online available for our system to perform experiment
is hard to be found. Because both blog content and application logging data
are needed. In the next phase of the project, we will perform evaluation experi-
ments to examine the accuracy and effect of the ranking method from our own
site visolink.com. A recommendation system based on online social relationship
ranking will be explored in the future.
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Abstract. Decision theoretic framework has been helpful in providing
a better understanding of classification models. In particular, decision
theoretic interpretations of different types of the binary rough set clas-
sification model have led to the refinement of these models. This study
extends the decision theoretic rough set model to supervised and unsu-
pervised multi-category problems. The proposed framework can be used
to study the multi-classification and clustering problems within the con-
text of rough set theory.

Keywords: Rough sets, Web usage mining, Rough approximation,
k-means cluster algorithm.

1 Introduction

Probabilistic extensions have played a major role in the development of rough
set theory since its inception. Recently, Yao [10] explained a list of probabilistic
models under the decision theoretic framework. The models included in the
overview were: rough set-based probabilistic classification [7], 0.5 probabilistic
rough set model [4], decision-theoretic rough set models [8,9], variable precision
rough set models [11], rough membership functions [4], parameterized rough set
models [5], and Bayesian rough set models [6]. The study of such a variety of
models under a common framework also helps understand the similarities and
differences between the models. Such a comparison can help in choosing the right
model for the application on hand. It can also help in creating a new model that
combines desirable features of two or more models. Finally, it can also lead to a
unified model that can be moulded to a given application requirement. Yao [10]
described how the decision theoretic framework exposed additional issues in
probabilistic rough set models.

Rough set theory - like many other classification techniques - was originally
developed for binary classification. That is, an object either belongs to a given
class or does not. Many classification techniques are not easily extendible to a
multi-class problem. The objective of a multi-class problem is to assign an object
to any of the k possible classes. Whenever a technique cannot be easily extended
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to the multi-class problem, researchers have generally chosen two approaches,
namely one-versus-one or one-versus-rest [1].

This paper describes how rough set theory does not need to use either the one-
versus-one or one-versus-rest technique for extending the binary classification.
The framework described in this paper uses the term category instead of class to
emphasize the fact that it can be used in supervised and unsupervised learning.
Conventionally, the classification techniques refer to only supervised learning.
When the objects are categorized without the help of a supervisor, the categories
are usually called clusters. The proposed multi-category framework is applicable
to both classification and clustering problems.

The paper further extends the binary decision theoretic rough set framework
for a multi-category problem. The extended framework is shown to reduce to
Yao’s binary classification approach when the number of categories is equal to
two. Moreover, the framework is also shown to be applicable to rough clustering
techniques. Finally, it is shown that the decision theoretic crisp categorization
is a special case of the rough set based approach. The paper concludes with
a discussion on the implications of introducing decision theoretic framework in
further theoretical development, especially in the rough clustering area.

2 Literature Review

Due to space limitations, we assume familiarity with the rough set theory [5].

2.1 The Bayesian Decision Procedure

The Bayesian decision procedure deals with making decision with minimum risk
based on observed evidence. Let Ω = {ω1, . . . , ωs} be a finite set of s states, and
let A = {a1, . . . , am} be a finite set of possible m actions. Let P (ωj |x) be the
conditional probability of an object x being in state ωj given that the object is
described by x. Let λ(ai|ωj) denoted the loss, or cost for taking action ai when
the state is ωj . For an object x with description x, suppose action ai is taken.
Since P (ωj |x) is the probability that the true state is ωj given x, the expected
loss associated with taking action ai is given by:

R(ai|x) =
s∑

j=1

λ(ai|ωj)P (ωj |x) (1)

The quantity R(ai|x) is also called the conditional risk.
Given a description x, a decision rule is a function τ(x) that specifies which

action to take. That is, for every x, τ(x) takes one of the actions, a1, . . . , am.
The overall risk R is the expected loss associated with a given decision rule,
defined by:

R =
∑

x
R(τ(x)|x)P (x) (2)

If the action τ(x) is chosen so that R(τ(x)|x) is as small as possible for every
object x. For every x, compute the conditional risk R(ai|x) for i = 1, . . . , m
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defined by equation (1) and select the action for which the conditional risk is
minimum. If more than one action minimizes R(ai|x), a tie-breaking criterion
can be used.

Yao proposed probabilistic rough set approximations in [10], which applies the
Bayesian decision procedure for the construction of probabilistic approximations.
The classification of objects according to approximation operators in rough set
theory can be easily fitted into the Bayesian decision-theoretic framework. Let
Ω = {A, Ac} denote the set of states indicating that an object is in A and not
in A, respectively. Let A = {a1, a2, a3} be the set of actions, where a1,a2 and a3
represent the three actions in classifying an object, deciding POS(A), deciding
NEG(A), and deciding BND(A), respectively. The probabilities P (A|[x]) and
P (Ac|[x]) are the probabilities that an object in the equivalence class [x] belongs
to A and Ac, respectively. The expected loss R(ai|[x]) associated with taking the
individual actions can be expressed as:

R(a1|[x]) = λ11P (A|[x]) + λ12P (Ac|[x]), (3)
R(a2|[x]) = λ21P (A|[x]) + λ22P (Ac|[x]), (4)
R(a3|[x]) = λ31P (A|[x]) + λ32P (Ac|[x]), (5)

where λi1 = λ(ai|A), λi2 = λ(ai|Ac), and i = 1, 2, 3. The Bayesian decision
procedure leads to the following minimum-risk decision rules:

If R(a1|[x]) ≤ R(a2|[x]) and R(a1|[x]) ≤ R(a3|[x]), decide POS(A) ;
If R(a2|[x]) ≤ R(a1|[x]) and R(a2|[x]) ≤ R(a3|[x]), decide NEG(A) ;
If R(a3|[x]) ≤ R(a1|[x]) and R(a3|[x]) ≤ R(a2|[x]), decide BND(A).
Tie-breaking criteria should be added so that each object is classified into

only one region. Since P (A|[x]) + P (Ac|[x]) = 1, the rules to classify any object
in [x] can be simplified based on the probability P (A|[x]) and the loss function
λij (i = 1, 2, 3 ;j = 1, 2).

Based on the general decision-theoretic rough set model, it is possible to
construct specific models by considering various classes of loss functions. In fact,
many existing models can be explicitly derived from the general model. For
example, the 0.5 probabilistic model can be derived when the loss function is
defined as follows:

λ12 = λ21 = 1, λ31 = λ32 = 0.5, λ11 = λ22 = 0. (6)

A unit cost is incurred if an object in Ac is classified into the positive region or
an object in A is classified into the negative region; half of a unit cost is incurred
if any object is classified into the boundary region. The 0.5 model corresponds
to the application of the simple majority rule.

3 Extension to the Multi-category Problem

Many classification techniques are originally designed for binary classification.
Examples include Decision trees, Perceptrons, and Support Vector Machines.
These techniques tend to classify objects into two classes such as the positive
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or negative regions in rough set theory. Some of these techniques have natural
extensions for multi-class problems. Others use either the one-versus-one or one-
versus-rest technique [1]. Let C = {c1, . . . , ck} be a set of categories. We will
use the terms category, classes, and clusters interchangeably whenever it is ap-
propriate in the context. In the one-versus-one approach, a binary classification
model is created for every pair of classes (ci, cj). The training of such a model
uses only the subset of those objects, which were classified as either ci or cj . It
can be easily seen that there will be a total of k× (k−1) such models. Assuming
uniform distribution, there will be n

k objects belonging to each class, where n is
the size of the complete training set. While it would require significant compu-
tational effort to train k × (k − 1) models, on an average each model will have
only 2×n

k objects. The one-versus-rest technique, on the other hand, creates a
binary model for each class ci by classifying objects as either belonging to ci or
not belonging to ci. There are only k such models. However, the training set for
each model is the same size as the complete training set, i.e. n. Moreover, the
training set is biased towards objects not belonging to the class. For example,
for any given class ci there will be n

k objects belonging to ci and (k−1)×n
k ob-

jects not belonging to ci. Therefore, the chances of a classification model erring
towards predicting that an object does not belong to ci are higher. As a result,
studies have shown that the one-versus-one approach tends to be more accurate
than the one-versus-rest approach. However, one-versus-one multi-classification
creates a large number of models and works with a small amount of training data
for each model. Smaller training data can lead to over-fitting and may explain
the relative accuracy of the one-versus-one approach.

Given the inadequacies of both one-versus-one and one-versus-rest models, a
classification technique that has a natural multi-class extension is more desirable.
Rough set theory has such a natural extension. In this section, the multi-class
extension of rough set is described. It should be noted that many implementation
of rough set theory use similar philosophy for multi-classification. This section
provides a formal framework that can be used with both supervised and unsu-
pervised rough categories. We will start with formal definitions for the proposed
framework.

Objects: Let X = {x1, . . . , xn} be a finite set of objects.

Categories: Let C = {c1, . . . , ck} be a finite set of k states given that C is the
set of categories and each category is represented by a vector ci (1 ≤ i ≤ k).
Furthermore, let C partition the set of objects X .

Object and category similarity: For every object, xl, we define a non-empty
set Tl of all the categories that are similar to xl. Clearly, Tl ⊆ C. We will use
xl → Tl to denote the fact that object xl is similar to all the elements of set Tl.
Let us further stipulate that object xl can be similar to one and only one Tl.
The definition of the similarity will depend on a given application. Later on we
will see an example of how to calculate similarity using probability distribution.
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Upper and lower approximations: If an object xl is assigned to a set Tl,
then the object belongs to the upper approximations of all categories ci ∈ Tl. If
| Tl |= 1, then xl belongs to the lower approximation of the only ci ∈ Tl. Please
note that when | Tl |= 1, {ci} = Tl. Therefore, upper (apr) and lower (apr)
approximation of each category ci can be defined as follows:

apr(ci) = {xl|xl → Tl, ci ∈ Tl}, (7)
apr(ci) = {xl|xl → Tl, {ci} = Tl}. (8)

Since we do not define upper and lower approximations of all the subsets of
X , we cannot test all the properties of rough set theory. However, it can be
easily shown that the resulting upper and lower approximations in fact follow
important rough set theoretic properties given the fact that C is a partition of
X specified by Lingras and West [2].

– An object can be part of at most one lower approximation (P1)
– xl ∈ apr(ci) ⇒ xl ∈ apr(ci) (P2)
– An object xl is not part of any lower approximation (P3)

�
xl belongs to two or more upper approximations.

4 Loss Functions for Multi-category Problem

Following Yao [10], we define a set of states and actions to describe the decision
theoretic framework for multi-category rough sets.

States: The states are essentially the set of categories C = {c1, . . . , ck}.

An object is said to be in one of the categories. However, due to lack of infor-
mation we are unable to specify the exact state of the object. Therefore, our
actions are defined as follows.

Actions: Let B = {B1, . . . , Bs} = 2C −{∅} be a family of non-empty subsets of
C, where s = 2k−1. We will define a set of actions b = {b1, . . . , bs} corresponding
to set B, where bj represents the action in assigning an object xl to the set Bj .

Note that some of the sets Bj ’s will be the same as the set Tl’s defined
in previous sections. The reason we choose to use a different notation is to
emphasize the fact that we do not specify any similarity between xl and Bj as
we do in case of xl and Tl. Note that there will be a total of n Tl’s, one for each
object, and they may not be distinctly different from each other. That is, two
objects may be similar to the same subset of C. On the other hand, there will
be exactly s = 2k − 1 distinct Bj ’s.

Now we are ready to write the Bayesian decision procedure for our multi-
category rough sets as follows.

Let λxl(bj |ci) denote the loss, or cost, for taking action bj when an object
belongs to ci. Let P (ci|xl) be the conditional probability of an object xl being
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in state ci. Therefore, the expected loss R(bj|xl) associated with taking action
bj for an object xl is given by:

R(bj|xl) =
k∑

i=1

λxl(bj |ci)P (ci|xl) (9)

For an object xl, if R(bj|xl) ≤ R(bh|xl), ∀ h = 1, . . . , s, then decide bj .
We generalize the loss function for the 0.5 probabilistic model [3] given by

Yao [10] as follows:

λxl(bj |ci) =
|bj − Tl|

|bj|
if ci ∈ bj ;

λxl(bj |ci) =
|bj − ∅|

|bj|
if ci /∈ bj . (10)

When ci belongs to bj, the loss for taking action bj corresponds to the fraction
of bj that is not related xl. Otherwise, the loss for taking action bj will have the
maximum value of 1.

It can be easily seen that when k is equal to 2, C = {c1, c2}. Therefore,
B = {{c1}, {c2}, {c1, c2}}. Without loss of generality, we can designate c1 to be
the positive class, c2 to be the negative class, and {c1, c2} to be the boundary
region. Then one can easily verify that λxl({c1}|c1) = 0, λxl({c2}|c1) = 1,
and λxl({c1, c2}|c1) = 1

2 , which corresponds to the loss function described by
Yao [10] for the 0.5 probabilistic model [3].

Let us illustrate the proposed rough multi-category expected loss function
with the following example.

Example 1. Let C = {c1, c2, c3, c4} and B = 2C −{∅} (|B| = 24 −1 = 15). For
an object xl, let {P (c1|xl), P (c2|xl), P (c3|xl), P (c4|xl)}={0.15, 0.2, 0.25, 0.4}.
We will define the set Tl such that xl → Tl as: Tl = {ch|P (ch|xl) > 0.2} =
{c3, c4}. The expected loss associated with taking action bj is shown in Table
1. The values of the expected loss seem quite reasonable. The lowest value is
obtained for the set Tl = {c3, c4}. It is highest for the sets that do not contain
either c3 or c4. Since the probability of P (c4) > P (c3), the sets containing c4
tend to have lower loss than those containing c3.

Example 2. One can also obtain a crisp categorization from the proposed for-
mulation by stipulating that all the Tl’s in our formulation are singleton sets.
We can demonstrate this by using the same probability function, but changing
the criteria for defining the set Tl such that xl → Tl as: Tl = {ch} such that
P (ch|xl) is maximum. If more than one such ch have the same (maximum) value,
we arbitrarily choose the first ch. This ensures that Tl is a singleton set. In our
example, with {P (c1|xl), P (c2|xl), P (c3|xl), P (c4|xl)} = {0.15, 0.2, 0.25, 0.4},
Tl = {c4}. The resulting expected loss function in this example is shown in
Table 2.
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Table 1. Expected loss for all the actions from Example 1

The expected loss R(bj |xl) Action

0.35 {c3, c4}
0.433 {c2, c3, c4}
0.467 {c1, c3, c4}
0.5 {c1, c2, c3, c4}
0.6 {c4}
0.7 {c2, c4}

0.725 {c1, c4}
0.75 {c3}, {c1, c2, c4}
0.775 {c2, c3}
0.8 {c1, c3}, {c1, c2, c3}
1 {c1}, {c2}, {c1, c2}

Table 2. Expected loss for all the actions from Example 2

The expected loss R(bj |xl) Action

0.6 {c4}
0.75 {c3}
0.8 {c2}
0.85 {c1}

5 Concluding Remarks

This paper describes an extension of the Bayesian decision procedure described
by Yao [10] for multi-category rough sets. The proposal is a natural extension of
the conventional binary rough set classification. Unlike some other classification
techniques such as Perceptrons and Support Vector Machines, it is not necessary
to create a multiple binary classifiers using either the one-versus-one or one-
versus-rest approaches. This is a significant advantage of rough set theory as
both one-versus-one and one-versus-rest approaches can be difficult to implement
in practice. The one-versus-one approach can lead to large number of binary
classifiers, which may overfit the training data. On the other hand, the one-
versus-rest approach tends to have lower classification accuracy.

In addition to extending the Bayesian decision process from binary rough
set classifiers to rough set multi-classifiers, the approach can easily be applied to
unsupervised rough set classifiers. The definition of probability used in this paper
is abstract as opposed to the frequency based values used in various probabilistic
rough set models, including the unified framework proposed by Yao [10]. By
changing the definition of the probability one can easily adopt the Bayesian
decision process to rough set based clustering. Such an adoption can be useful in
further theoretical development in rough clustering. Results of such development
will be reported in future publications.
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Abstract. Driver fatigue is an important reason for traffic accidents.
To account for the temporal aspect of human fatigue, we propose a
novel method based on dynamic features to detect fatigue from image
sequences. First, global features are extracted from each image and con-
catenated into dynamic features. Then each feature is coded by the means
of training samples, and weak classifiers are constructed on histograms of
the coded features. Finally AdaBoost is applied to select the most crit-
ical features and establish a strong classifier for fatigue detection. The
proposed method is validated under real-life fatigue conditions. The test
data includes 600 image sequences with illumination and pose variations
from thirty people’s videos. Experiment results show the validity of the
proposed method and the average recognition rate is 95.00% which is
much better than the baselines.

Keywords: Computer vision, human fatigue, PCA, AdaBoost.

1 Introduction

Driver fatigue is an important reason for traffic accidents. In China, driver fatigue
resulted in 3056 deaths in vehicular accidents in 2004, and caused 925 deaths
in highway accidents which amounted to about 14.8%. Many computer vision
based approaches have been proposed for fatigue detection.

The frequency and time of eye closed all increase when driver fatigue. Much
attention is paid to eye features for fatigue detection. Based on the study by
the Federal Highway Administration, percentage of eyelid closure (PERCLOS)
[1] has been found to be the most reliable and valid measure of a person’s alert-
ness level among many drowsiness detection measures. Rangben Wang et al. [2]
used Gabor wavelet to extract texture features of drivers’ eyes, and used Neural
Network classifier to identify drivers’ fatigue behavior. Wenhui Dong et al. [3]
decided whether the driver was fatigue by detecting the distance of eyelids. Fei
Wang et al. [4] combined gray scale projection, edge detection with Prewitt op-
erator and complexity function to judge whether the driver had his eyes closed.
Yawning is also an important character of fatigue. Mouth features are extracted
to detect fatigue in [5,6]. Rongben Wang et al. [5] took the mouth region’s geo-
metric features to make up an eigenvector as the input of a BP ANN, and they
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acquired the BP ANN output of three different mouth states that represent nor-
mal, yawning or talking state respectively. Tiesheng Wang et al. [6] represented
the openness of the mouth by the ratio of mouth height to width, and detected
yawning if the ratio was above 0.5 in more than 20 frames.

Most of these methods are spatial approaches, and they do not model the
dynamics of fatigue and therefore do not utilize all of the information available
in image sequences. In facial expression recognition, according to psychologists,
analyzing an image sequence produces more accurate and robust facial expression
recognition, and facial motion is fundamental to facial expression recognition.
Fatigue is a cognitive state that is developed over time. It is our belief that
dynamic features which capture the temporal pattern should be the optimal
features to describe fatigue just as facial expression recognition[7].

To account for the temporal aspect of human fatigue, Qiang Ji et al. [8] in-
troduced a probabilistic framework based on dynamic Bayesian networks for
modeling and real-time inferring human fatigue by integrating information from
various sensory data and certain relevant contextual information spatially and
temporally, leading to a more robust and accurate fatigue modeling and infer-
ence. However, in summary, there is little research in extracting dynamic features
for fatigue detection. Achieving high accuracy in fatigue detection is still a chal-
lenge due to the complexity and variation of facial dynamics.

In this paper, to account for the temporal characteristic of human fatigue,
we propose a novel dynamic feature from image sequences. The framework of
the proposed approach is illustrated in Fig. 1. First, each image in the input
face image sequence is processed by face detection, geometric normalization and
cropping. Then, PCA coefficients are extracted by PCA projection from each
image and concatenated into a feature sequence as the dynamic features. In-
spired by [7], The dynamic features are thresholded into binary codes and the
histograms of the coded dynamic features are computed. Finally, weak classifiers
are constructed on the histogram features and AdaBoost is applied to select the
most discriminate features and build a strong classifier for fatigue detection.

Fig. 1. Framework of the Proposed Approach

The paper is organized as follows. Section 2 introduces dynamic facial feature
extraction. Dynamic Feature coding and Histogramming are showed in section
3. In section 4, feature selection and classifier learning are presented. Finally,
experiments with analysis and conclusions are presented in section 5 and 6.
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2 Dynamic Facial Feature Extraction

We extract facial features based on PCA projection from image sequences, and
combine them into a sequence as the dynamic facial feature for fatigue detection.

2.1 Preprocessing

Before we extract PCA coefficients from face areas, original face images are
preprocessed so that they are aligned in a predefined way. Face images in our
experiments are gray scale and normalized into the size of 64*64.

2.2 Dynamic Facial Features

Feature extraction using PCA entails to represent an image in a low dimensional
space, and receives considerable attention in the computer vision area. To obtain
the dynamic feature, we first extract PCA coefficients from each image in the
sequence, and then the same PCA coefficients in the consecutive images are
combined into a sequence as the dynamic features (Fig. 2).

Fig. 2. Dynamic Facial Feature Extraction

Given one image sequence with n images, we label each image with Ii, where i
is the index of the image. We set G as the PCA coefficient set which includes all
the PCA coefficients in one face image. We label each PCA coefficient in image
Ii with gi,j , where j is the index of the PCA coefficient in the coefficient set
G. Based on each PCA coefficient gi,j , we obtain a dynamic feature unit sj as
{g0,j, g1,j, . . . , gn−1,j}. The temporal variation of driver fatigue can be effectively
described by all the dynamic feature units.

3 Histograms of the Coded Dynamic Features

3.1 Dynamic Feature Coding

A dynamic feature unit is composed of a sequence of PCA coefficients. Thus,
each dynamic unit is a feature vector. Considering weak learner construction for
AdaBoost learning with one feature is much easier than with a feature vector,
we further threshold each dynamic feature unit into a binary code sequence.
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Fig. 3. Histograms of the Coded Dynamic Features

Thresholding is based on the means of dynamic features. First, we extract
features from the training samples, and then the means for fatigue state and
normal state can be computed. Based on the means, we can map each feature
gi,j to {1, 0} codes by the following formula.

Ci,j =
{

1 , if Dn,j − Df,j ≥ 0,
0 , if Dn,j − Df,j < 0. (1)

Where Df,j = |gi,j − mf,j |, Dn,j = |gi,j − mn,j | and mf,j is the means of features
in fatigue state and mn,j is the means in normal state.

3.2 Histograms of the Coded Dynamic Features

We can map a dynamic feature unit sj to a code sequence Sj based on Eq. 1.

Sj = { C0,j , C1,j , ..., Cn−1,j} (2)

Histograms of the codes are computed over each code sequence, each his-
togram bin being the number of occurrences of the corresponding code in one
code sequence. Finally, all the histograms estimated from all the code sequences
are concatenated into a single histogram sequence to represent the given face
image sequence (Fig. 3).

A histogram of a code sequence Sj can be defined as

Hc,j =
∑n−1

i=0
I{Ci,j = c}, c = 0, 1 (3)

Where n is the number of images in one sequence and

I{A} =
{

1 , A is true,
0 , A is false. (4)

There are 2 bins for one code sequence. A histogram of a code sequence is
considered as a set of 2 individual features. When one bin is known, the other
can be computed easily in the proposed approach. Therefore, we only select the
bin for code 1. The resulting histograms on each code sequence are combined
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yielding the histogram for an image sequence. Assuming a face image is projected
on m eigenfaces, the number of total histogram features will be m. In our case,
there are 600 eigenfaces, and therefore, there are 600 histogram features for one
image sequence. The histogram to descript an image sequence can be defined as

H = { H1,0, H1,1, ..., H1,m−1}, m = 600 (5)

In this histogram, we effectively have a description of a face sequence on
spatial and temporal levels.

4 Feature Selection and Classifier Learning

4.1 Weak Classifiers

Weak classifiers are the basis of AdaBoost. In our case, they are decision trees
(Fig. 4) based on the histogram features. Decision tree is a tree graph, with leaves
representing the classification results and nodes representing some predicates.
Branches of the tree are marked with true or false.

Fig. 4. Decision Tree with Two Splits

4.2 AdaBoost Learning

AdaBoost method[9] provides a simple yet effective stage-wise learning approach
for feature selection and nonlinear classification at the same time. Due to its good
generalization capability, fast performance and low implementation complexity,
AdaBoost has achieved great success in face detection and other applications[7].
In the proposed approach, AdaBoost is used both to select a small set of features
and train the classifier.

The final hypothesis of AdaBoost algorithm is

H(x) =

⎧
⎨

⎩

1 , if
∑T

t=1 αtht(x) ≥ 1
2

∑T
t=1 αt,

0 , otherwise.
(6)

The strong classifier is a linear combination of the T weak classifiers. The
AdaBoost learning procedure is aimed to derive αt and ht(x).
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5 Experiments and Analysis

To validate the proposed approach, we conducted experiments on a fatigue face
database that we built.

5.1 Data Set

There is no public database to test methods of fatigue detection. The test sets
in a lot of researches are often very small with only several subjects. To test
the fatigue detection methods, we built a fatigue face database. We used web
cameras to catch videos of about forty persons. The videos of each person last
several hours which are caught indoors without directions to the subjects.

Fig. 5. Examples of (a) Normal and (b) Fatigue Image Sequences in the Database

Totally, we got about 50GB videos in AVI format compressed by MPEG-4.
We selected thirty subjects’ face fatigue videos from the original ones. Then we
extracted the fatigue image sequences from the videos and made up the fatigue
face database. There are 600 image sequences of ten female subjects and twenty
male subjects. Each subject has 20 image sequences (10 normal and 10 fatigue).
There are 5 images in each image sequence, and each image in the sequences
is gray scale with a resolution of 320*240 (Fig. 5). Randomly, we select 300
sequences of 15 persons for the gallery set and the other 300 sequences of 15
persons for the probe set.

5.2 Baselines

We present two statistical learning methods, one based on LDA (PCA+LDA
classifier) and one on HMM (PCA+HMM classifier) as baselines. PCA+HMM
employs HMM to classify the sequence of PCA coefficients extracted from a face
image sequence. PCA+LDA employs LDA to classify the PCA coefficients of
face images. Two experiments were made on the LDA based classifier. In the
first one, LDA is used to classify the PCA coefficients from a single image. In
the other, PCA coefficients from an image sequence are combined into a feature
vector and classified by LDA.
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Fig. 6. Means of PCA Coefficients

Table 1. Confusion Matrix for Fatigue Detection

Method Normal Fatigue

PCA+HMM Normal 88.00% 12.00%
Fatigue 31.33% 68.67%

PCA+LDA Normal 86.40% 13.60%
(Single) Fatigue 21.60% 78.40%
PCA+LDA Normal 83.33% 16.67%
(Sequence) Fatigue 23.33% 76.67%
Proposed Normal 95.33% 4.67%
Approach Fatigue 5.33% 94.67%

5.3 Results and Analysis

From the training samples, we get the means of the PCA coefficients for the
normal state and the fatigue state. Based on the means, we code the coefficient
sequences. The means are showed in Fig. 6.

The recognition results of each classifier are listed in table 1. The classi-
fiers include PCA+HMM, PCA+LDA (single), PCA+LDA (sequence) and the
proposed approach. It becomes obvious that the proposed method enjoys a sig-
nificant performance advantage on the data set. The average correct rates are
78.33%, 82.40%, 80.00% and 95.00% respectively. Our approach is much better
than the other methods. PCA+LDA (single) is slightly better than PCA+LDA
(sequence) in performance. This may be account for the not enough training
samples. LDA is specifically optimized for discriminability but is susceptible to
overfitting the training data.

6 Conclusions

We propose a novel dynamic feature to account for the spatial and temporal
aspects of human fatigue in image sequences. A statistical learning algorithm
is used to extract the most discriminative features and construct a strong clas-
sifier. The proposed approach is tested in a real-life fatigue environment with
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30 human subjects of different poses and illuminations. The experiment results
show that the proposed approach can achieve a much better performance than
the baselines. In addition, this method can be easily extended to video based
facial expression recognition. Future efforts will be focused on how to improve
the dynamic feature extraction and get better performance. A hybrid of dynamic
features and static features is the topic of our future research.
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Abstract. Structural analysis is an important step in mathematical formula 
recognition system. In this paper, an approach of structural analysis based on 
baseline strategy is proposed in which two strategies are employed to improve 
the robustness of the system. Firstly, a converse-matching algorithm is 
employed to solve the problem in traditional baseline method. Secondly, the 
feedback mechanism is built to correct the errors coming from the recognition 
result. The experiments show that the approach can obtain favorable results.  

Keywords: Formula recognition, Structural analysis, Baseline, Converse 
Matching. 

1   Introduction 

With the high-speed of science and technology at full speed in our country, the 
literature of science and technology to which a large amount of mathematical 
formulas are applied in more and more fields. Current OCR (Optical Character 
Recognition) system shows high accuracy in recognizing the characters in printed 
documents, but has no way to handle the mathematical formulas among them. 
Therefore, it is necessary to develop the method of mathematical formula recognition 
to extend the application fields of traditional OCR technique. 

This paper is focused on the structural analysis and comprehension of printed 
mathematical formulas. The problem has attracted the attention of several earlier 
workers. Anderson [1] adopted a purely top-down approach for parsing mathematical 
expressions. Chan and Yeung [2] designed on-line system to recognize mathematical 
expressions by using of structure and the syntax method. Zanibbi [3] etc. used a 
transformable technique called tree transform, where the information was represented 
as an attributed tree. This method consisted of three stages. In the first stage, an 
original Baseline Structure Tree (BST) was constructed to mainly describe the two-
dimensional arrangement of input symbols. In the second stage, the Lexical pass 
produced a Lexed BST from the initial BST by grouping tokens comprised of 
multiple input symbols. At last, Lexed BST is translated into an Operator Tree, which 
describes the order and scope of operations in the input expression.  

But the above-mentioned method is confined to some certain special type of 
mathematical formula only. In order to resolve the structural analysis problem based 
on baseline method, this paper proposes a converse matching method with syntax 
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rules and carries out a post-processing on the mathematical formula analysis. The 
experiment has indicated this method that can improve the accuracy of the structural 
analysis effectively. 

This paper is organized as follows. In Section 2, the concepts of baseline are 
introduced and some shortcomings of the baseline method are discussed. In section 3, 
the proposed method is described in detail. The test result is presented in the final 
Section. 

2   Overview of Structural Analysis 

Usually, a formula recognition system can be divided into two steps: symbol 
recognition and structural analysis. Structural analysis stage is to parse the logical and 
spatial relationships of the symbols according to the codes and their correlative 
information obtained from the character recognition module, moreover, to represent 
the relationship by a formula grammar tree. A structural analysis method based on 
baseline consists of three phases: (1) To seek the dominant baseline of the formula; 
(2) To find the other nested baseline according to the control rules and get the nested 
relationship of each symbol; (3) To describe the information of parsing by a grammar 
tree, in which a node [4] represents a symbol as shown in Figure 1. According to the 
symbol operating ranges [3] of mathematical formula, namely symbol dominance, 
seven kinds of mathematical relations are taken into account: up, superscript, right, 
subscript, down, inclusion and left up. 

 

Fig. 1. The Node of Grammar Tree 

2.1   Baseline  

A baseline in mathematical formula is a linear horizontal arrangement of symbols, 
intended to be perceived as adjacent [4]. Generally, a formula includes the dominant 
baseline and the nested baseline, the former is a baseline in which the symbols are not 
nested relative to any other symbols in the mathematical formula. In this paper, we 
defined the dominant baseline is that baseline of the leftmost symbol of the 
mathematical formula which lies within a region. The latter is to have deflected some 
symbol on vertical direction or the baseline in which some symbols are surrounded by 
other symbols. Sometimes, the symbol located in nested baseline are controlled  
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2 3x y z=
 

Fig. 2. Dominant Baseline and Nested Baseline 

direct or indirect by other character. The instance containing two baselines in 
formula 2 3x y z+ = , is shown in Figure 2. One baseline contains the symbols ("x", "y", 

"=", "z") and the other contains ("2", "3"). And the symbol "x" is a nested relationship 
with the symbol "2", which lies in nested baseline. 

2.2   The Problem Suspended in the Baseline Method 

In a mathematical formula, characters and symbols can be spatially arranged as a 
complex two-dimensional structure, possibly of different character and symbol sizes 
[5]. However, sometimes mathematical formulas are prone to ambiguities [6] 
especially when they are not typeset or scanned properly. Hence, there exist a lot of 
shortcomings when using the baseline method. Some of them are summarized and 
briefly discussed:  

1) When building a baseline, baseline method often relies on the use of thresholds. In 
practice, threshold values cannot be chosen to work well on all of possible 
symbols. 

2) In mathematical formula, the spatial relationship is determined based on the 
relative positions of symbols. It involves all the associated attributes of a symbol, 
especially the center of the symbol, which often refers to the typographical center. 
Sometimes, different typographical center of symbol will lead to the wrong 
relative positions of symbols. 

3) A few special mathematical symbols, such as "-"(fraction), "∑", "∫", "∏", etc. 
which dominate their neighboring sub-formula. These symbols usually are called 
"structural symbol" [7]. Sometimes operand overlaps the confine of structural 
symbol, hence, the method of baseline can not be able to accurately allocate the 
dominant baseline for this type of mathematical formula. (As shown in figure 4). 

4) In mathematical formula the type of spatial operators between symbols is 
determined based on the relative positions of symbols. It will affect the analysis 
result if the images were inclined. For example, as shown the first formula in 
Figure 3, symbol "x" in the last part of the longer formula should have a 
superscript "2", but digits "2" deviated the baseline which should belong to it self. 

5) Some nodes of the tree may be missing in the list of objects obtained from the 
previous phase due to the existence of spatial operators in mathematical formulas. 
Typical failure example is shown in Figure 3 of the lower formula. 
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Fig. 3. The Wrong Results after Structural Analysis 
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Fig. 4. Operand Overlap the Confine of Symbol 

3   The Method of Post-processing 

The massive experiment indicates structural analysis based on baseline strategy is 
able to achieve quite satisfactory results for the one-dimension formula. Moreover, it 
has the dissatisfactory with the nested formula and the complex formula. Against the 
above problem, this article proposed the system of post-processing using the reversion 
matching and the semantics regular method. So far, to the best of our knowledge, 
papers on error detection and correction in mathematical formula recognition are 
relatively rare [8]. In most cases, it is still at detection level [9]. In this paper, we will 
correct some simple errors with semantics regular. 

 

Fig. 5. System Flow Diagram for Post-processing 
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3.1   The Design of Post-processing System 

The major steps in the system of post-processing are as follows. In the first step, a grammar 
tree has been constructed for each mathematical formula when in structural analysis 
step. This step of post-processing system will detect the formula which have structural 
symbol. If the analysis result is not accepted by the following rules, the result of the 
analysis step is corrected according to the rules. In the second step, we called the 
symbol matching, all nodes of the grammar tree by the analysis step are matched with 
the initial array which transmission is from symbol recognition step. In the third step, 
we revised some which did not conform to the semantic of mathematical formula 
according to following rule. The system block diagram is shown in Figure 5. 

3.2   Concrete Step 

Step 1. To search symbol of the grammar tree and detect whether it contains the 
structural symbol or not, such as "-"(fraction), "∑", "∫", "∏". Its algorithm is as 
follows: 

if (Ssymbol.up==True && Ssymbol.down==True) then break; 

if (Ssymbol.up==False && Ssymbol.down==True) or 
(Ssymbol.up==True && Ssymbol.down==False)then 
center=(Ssymbol.cx,Ssymbol.cy); 

Return BuildBS( ). 

1: Search Structural Symbol Alg. 

Ssymbol.up , Ssymbol.down is the up point and down point of the structural symbol 

respectively. The structural symbol center coordinate is ( )Ssymbol.cx,Ssymbol.cy . 

BuildBS (center) expresses build baseline which is take center in the regions 

Step 2. Symbol/Character matching 
Some symbols/characters center coordinate which (centry_x,centry_y)  locates 

neither in dominant baseline scope nor in the nested baseline scope for different 
typesetting. It is very easy to leak such symbol which we have discussed above. We 
use the method of converse matching to search the missing symbol and redistribute 
these symbols. 
1) Matching the symbol of the grammar tree with the symbol in the initial array 

which is arranged according to min_x, and if matching is successful, this symbol 
will be deleted from the initial array. 

2) We detect the initial array whether it is an empty until searching the grammar 
tree is finished. We will assign the rest of symbol according to the nearest 
neighbor rule (NNR) if the initial symbol is not an empty. Here we make use of 
a Euclidean distance that uses two-dimensional statistics to fix the symbol 
position result.  ( , )jS centriodX centriodY  is the center coordinate of missing 
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         symbol,  Let 1 2( , , )nS s s s= L be the set of symbol in initial array. The NN rule is 

defined as follows: 

2 2
min

1

( , ) [ ( ) ( )] [ ( ) ( )] ( )
n

i j i j i j
i

d s s centerx s centerx s centery s centery s i j
=

= − − − ≠∑ . (1) 

Step3. According to following rules, we correct the situation where it did not conform 
to the semantic relations of mathematical symbol by searching the point of symbol in 
grammar tree respectively. However, the following tiny rules, show the basic 
corrected idea of the revision step. 

Rule1. There are no symbols in the superscript or subscript position of a 
numerical, left bracket, and so on. Suppose the set of 1 2, , nS S SL  is in the 

formula symbol, Let 1 2 , nE E EL is the symbol set which has not the 

superscript or subscript, the match ( , )i jS E  is a function of two symbols 

matching, and correct ( )iS carries on error correction of the symbol iS   

if  match( , )==True then  correct( )i j iS E S  

Rule2. It is impossible that a symbol has the subsc point and the down point 
simultaneously. Suppose the set of 1 2, , nS S SL  is in the formula symbol, “subsc” is 

the point of subscript, “down” expresses the point of down of the symbol iS . The 

function of correct ( )iS  carries on error correction of the symbol iS . 

 if ==True&& ==True

 then  correct( )

i i

i

S .subsc S .down

S
 

4   Experimental Results and Conclusion 

In our experiments, we used more than 20 kinds of documents which are scanned at a 
resolution of 600dpi to test our method and the method described was implemented in 
the VC++ workstation. The experiment was focused on the ability of the post-
processing on detecting the failures at the analysis step. The experimental results are 
shown in Table 1 and Table 2. 

Figures 6-8 show several results of the proposed method. In each of those figures, 
analysis results without post-processing (left) and their analysis results with post-
processing (right) are shown. The correction results are represented as formula 
synthesized by applying LATEX complier. 
 

Table 1. The results without post-processing 

Formula type The number of 
formulas 

The number of 
formulas analysis 

Accuracy of 
analysis 

Normal formula 2567 2189 85% 

Special formula 1967 1561 79% 
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Table 2. The results with post-processing 

Formula type The number of 
formulas 

The number of formulas 
analysis 

Accuracy of 
analysis 

Normal formula 2567 2243 87% 

Special formula 1967 1590 81% 

 

 
(a)Wrong result       (b)Right result 

Fig. 6. Formula whose baseline errors were corrected by the post-processing 

Figure 6 shows the results of the failure of dominant baseline at the structural 
analysis step. In the above example, dominant baseline was considered as the baseline 
which was decided by the leftmost symbol “k”. 

 
(a) Lost character   (b)Find lost character     

Fig. 7. Formula of missing character were corrected by the post-processing 

Figure 7 shows that how the post-processing step could detect the loss character of 
the mathematical formula. In the first example of this figure, the subscript "i" of 
character "x" of the mathematical symbol ("∑") is lost. 

 

Fig. 8. Operand overlaps the confine of fraction 
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In Figure 8, the upper example is failure at the analysis step because denominator 
surpass the area of fraction. The lower examples that operand overlaps the area of 
fraction were successfully corrected by the post-processing. 

In the future, our research will include: (1) finding new methods to choose proper 
thresholds that make a dominant baseline robust in mathematical formula, (2) adding 
syntax to analysis of the mathematical formula. 
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Abstract. A new approach for inspection of fabric defects based on
Principal Component Analysis (PCA) and Fuzzy C-Mean Clustering
(FCM) Based on Particle Swarm Optimization (PSO) is proposed. First,
the PCA is used to reduce the dimension of the original image and com-
putation complexity. The dimension-reduced image features, which can
best describe the original image without unnecessary data, are recognized
by FCM based on PSO next. The recognition is carried out by the merits
of the overall optimizing and higher convergent speed of PSO combined
with FCM algorithm, which makes the algorithm have a strong over-
all searching capacity and avoids the local minimum problems of FCM.
At the same time, it reduce the degree of sensitivity of FCM that de-
pends on the initialization values. The results show that the method is
more effective than the traditional one with BP neural networks based
on wavelet[1,2].

Keywords: Fabric Defects Inspection; Principal Component Analysis
(PCA); Particle Swarm Optimization (PSO); Fuzzy C-Mean Clustering
(FCM).

1 Introduction

Fabric defects inspection is a technology of fabric quality inspection, which use
image sensor to get the defect fabric images and consider them as a template
to recognize the defect fabric. Though the production efficiency of actual textile
increases tremendously, fabric defects are still inspected with manual work. This
method has many disadvantages, such as low speed, high mistakes and leaks,
wrong result due to the inspector’s subjective consciousness, and so on. On
account of this, the technology of fabric defects inspection is a urgent need for
improvement in weave industry.

Since the 70s of the 20th century, many domestic and foreign experts have
done some researches about fabric defects inspection and educed some effective
methods. However, it is on the stating stage, and most of them are reported
as algorithm, patent and sample machine. Until now, adult fabric defects auto-
inspection system begin to enter into market[3]. With the wider and wider use
of image sensor, adoption of image information for fabric defects inspection be-
comes one of the head methods. The image method has two species: one is

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 700–706, 2008.
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processed in time domain directly, like eigenvalue picking-up from spatial tex-
ture features. Another is in frequency domain just as Fourier transform, Gabor
filter or wavelet transform[4]. In our paper, a new approach for fabric defects
inspection based on Principal Component Analysis (PCA) and Fuzzy C-Mean
Clustering (FCM) Based on Particle Swarm Optimization (PSO) is presented.

2 Principal Component Analysis

Principal Component Analysis is a common, simple and effective linear analy-
sis method, which is proposed by Turkm and Pentland in the 90s of the 20th
century[5]. It transforms the images by Karhunen-Loeve method based on their
statistical speciality, then considers feature matrix that is composed of eigen-
vector of covariance matrix of random variable X in original space as transform
matrix. Lastly it transforms the vectors of original space, changing the high-
dimension and complex vectors into low-dimension and simple ones in feature
space.

The transform has follow trait: the new transformed components are orthog-
onal or irrelevant; part new components are used to show the minimum of mean
square error of original component; the transformed vectors, whose energy is
more concentrated, are more stable.

Transforming the original space of fabric image by Karhunen-Loeve method is
to construct the covariance matrix of the image’s data sets, transform the matix
orthogonally to get its eigenvectors, and order them according to the eigenvalue’s
size. Among these eigenvectors, everyone show a vector with different numbers
in fabric images. They show a feature gather, all of which express a fabric image
together. This method is in common use in face recognition, and a new test in
fabric defects inspection.

The material algorithm is as follows: suppose that there are N training fabric
images, and the dimension of everyone is P × Q. Then, they can be figured as
L1, L2, L3, . . . , LN , while their mean image f and the distances di between every
image and mean image is:

f =
1
N

N∑

i=1

Li (1)

di = Li − f (2)

If matrix A = {d1, d2, d3, . . . , dN}, we must extract the eigenvector of ma-
trix AAT to obtain the dimension-reduced image describe feature. At the same
time, AAT is a (P × Q) × (P × Q) high-dimension matrix that need a tremen-
dous computation complexity. We can consider the Karhunen-Loeve transform
make the energy concentrated correspondingly, and the eigenvalues related to
the eigenvectors have follow speciality: λm ≤ λm−1 ≤ . . . λ2 ≤ λ1.

Hence, get the eigenvalues related to the first m features to transform the
vectors in original space, and obtain the minimum of the transformed mean
square error. A lesser m eigenvectors is enough to recognize.
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We firstly get the eigenvalues λj and the eigenvectors u′
j to obtain the first m

eigenvectors uj of AAT :

uj = Au′
jλ

− 1
2

j (j = 1, 2, 3 · · · , m) (3)

In above formula, u′
j is the eigenvectors of AAT , while λj is the eigenvalues

of AAT . And uj is the eigenvectors we need. Then, reduce the dimension of the
training image to pick up features. A projective matrix composed of uj can be
showed as W = {u1, u2, u3, . . . , uN} . All the dimension-reduced vectors of fabric
images are as follows:

gi = WT di (i = 1, 2, 3, · · · , N) (4)

With PCA, we can extract the eigenvectors to obtain the dimension-reduced
image features from the original image for the next recognition by FCM based
on PSO, which will reduce the computation complexity to improve the speed.

3 Fuzzy C-Mean Clustering (FCM) Algorithm Based on
Particle Swarm Optimization (PSO)

In our paper, we consider the Fuzzy C-Mean Clustering as a measurement
method of comparability. Confirm the comparabilities among the eigenvectors
to recognize the kinds of fabric image.

3.1 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) , which is an evolution calculate technology,
is proposed by Kenney and Eberhart in 1995[6]. For the optimization problem,
every particle in PSO is a possible solution. In the swarm the best position
every particle has passed in the iterative process is the best solution found by
the particle itself. The same, the best position that all the particles have passed
is the best solution found by all. The former is called individual extremum, and
the latter is overall extremum. Every particle refreshes itself according to the
two extremum above continuously to produce a new particle. In this process,
the whole swarm searches the solution domain roundly.

The position of the ith particle in the swarm is xi, whose individual extremum
is pBesti. If vi shows speed and gBest shows overall extremum, a particle i will
refresh its speed and position like this:

vi(t + 1) = ωvi(t) + c1r1(t)(pBesti(t) − xi(t)) + c2r2(t)(gBest(t) − xi(t)) (5)

xi(t + 1) = xi(t) + vi(t + 1) (6)

In the formula, r1 and r2 are random numbers in the domain of (0, 1), and the
three weights ω, c1, c2 decide the ability of searching space of the particle. Firstly,
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the inertia weight ω is to keep the particle moving, which reacts on the capability
of overall balance and part searching. Secondly, the acceleration coefficient c1,
as the cognitive part, brings the cognitive capacity and strong overall searching
ability to the particles, avoiding that the search fell in one of the minimums.
Lastly, another acceleration coefficient c2 describes information share among the
particles as the society part.

As is known to all, the speed value vi of every particle is limited to be less
than a maximum vmax(vmax > 0), which is a adjustable parameter. With time
passed, the inertia weight ω could be reduced linearly.

The refresh formula of individual extremum and overall extremum of every
particle is as follows:

pBesti(t + 1) =

{
xi(t + 1) xi(t + 1) ≥ pBesti(t)
pBesti(t) xi(t + 1) < pBesti(t)

(7)

gBest(t + 1) = max(pBesti(t + 1)) (8)

3.2 Fuzzy C-Mean Clustering (FCM)

FCM is presented by Bezdek in 1981[7]. Suppose that finite the sample space
X = {x1, x2, x3, . . . , xn}, while xi is a vector with arbitrary dimensions. Divide
the samples into C clusters, the gather of whose center is V = {v1, v2, v3, . . . , vC}.

Define a criterion function Jm for a fuzzy C-mean cluster like this:

Jm(Ũ , v) =
n∑

k=1

C∑

i=1

(uik)m(dik)2 (9)

dik = d(xk − vi) =

⎡

⎣
m∑

j=1

(xkj − vij)2

⎤

⎦

1
2

(10)

In the formula, uik is the Membership value of the kth data point in the ith
cluster, whereas dik is Euclid Distance between the ith cluster’s center and the
kth data sets. Besides, m is a weighting parameter and in a limit area as m ∈
[1, ∞]. This parameter controls the size of ambiguity in the clustering process.
The value of function Jm is variational. Thus the minimal one is correspond to
the best clustering.

The Center Coordinate of every cluster can be calculated as follows:

vij =

n∑

k=1

um
ikxkj

n∑

k=1

um
ik

(j = 1, 2, 3, · · · , m) (11)
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And the new formula of membership matrix is:

u
(r+1)
ik =

⎡

⎣
C∑

j=1

(
d
(r)
ik

d
(r)
jk

)2/(m−1)
⎤

⎦

−1

(12)

FCM is to calculate the clustering solution that make the criterion function Jm

minimal.

3.3 FCM Algorithm Based on PSO

Though every iteration process of the FCM follows the better solution, this
method that is based on gradient descent algorithm is a local search algorithm
essentially and inclined to fall in one of the minimums. This situation is more
obvious with increasing clustering samples. What is more, the best solution
calculated by FCM depends a lot on initial values, such as the initial clustering
affects the final solution deeply. Therefore, it is necessary for FCM to test initial
solution many times in order to obtain better one, which is wasting time and
low efficient. But the initial value of PSO that based on the swarm operation is
any possible solution on the uniform distributed solution space. It has powerful
ability of overall searching, and is not apt to fall in one of the minimums. Its
convergence speed is also very fast. Combine the two algorithms will possibly
produce a better one.

FCM is finally concluded a process of minimizing the criterion function. To
process this problem, PSO has strong advantages. Thus, we prefer to use PSO
instead of the iteration process in FCM.

The core algorithm of FCM is to make sure the clustering center. So PSO
is used to optimize the clustering center., which is considered as the particle
swarm. The fitness function is:

f(x) =
1

J(Ũ , v) + 1
(13)

The better the clustering solution is, the smaller the criterion function J(Ũ , v)
is. Then the fitness function f(x) is higher.

Because every particle shows a choice of a kind of clustering center, the high
value of every fitness explain the good solution, while the low explain the bad.
So estimate the fitness function is the way to estimate the efficiency of clustering
solution. Choose the individual extremum and the overall extremum according
to the fitness function f(x) that corresponds to the clustering center and stop
iterating on the same condition with FCM.

The detailed step of the algorithm is as follows:

1) Choose the number of the clustering center C(2 ≤ C ≤ n) and parameter
m. Initialize the membership matrix Ũ (0) , and define a termination error
ε(ε > 0). Suppose the iterating step is t = 0 and maximal step is iter_max.
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2) Calculate the C clustering centers according to formula (11), and consider
these centers as the particle swarmxi(t). Then refresh every particle’s speed vi.

3) Calculate the fitness of every particle according to fitness function, and re-
fresh individual extremum pBesti and the overall extremum gBest according
to every fitness and formula (7) and (8). Then refresh every particle’s speed
vi to produce a new particle xi(t + 1). Finally, calculate the membership
matrix Ũ (t+1) correspond to new particles according to formula (12). Thus,
the criterion function Jm comes out.

4) If ||Ũ (t+1) − Ũ (t)|| ≤ ε or Jm = min Jm, stop iterating. Else, let t = t+1 and
return to step (2). When t ≥ iter max, end the algorithm.

4 Experimental Simulation

Experiment adopt DVT Lengend510 intelligent image sensor to collect fabric
image, whose size is 640 × 480. Four classes of images are collected, including
normal, weft-lacking, warp-lacking and oil stain that exhibited in Fig. 1–4. Every
class can have more than one defect, like Fig 5. In our experiment, 5 images of
every class are considered as training images, and 50 images are testing samples.

Fig. 1. Normal Fig. 2. Weft-lacking Fig. 3. Warp-lacking Fig. 4. Oil stain

The experimental steps are as follows:

1) Choose training images from collected ones.
2) Normalize the images and transform them with PCA to get their features.
3) Cluster the features with the algorithm of FCM based on PSO to obtain the

best sulotion. We can call it Detection-Template.
4) Input the testing images,transform it with PCA, and calculate the member-

ship value from its feature description to every cluster. Then, we can judge
the kind of the testing image.

This method is programmed with Matlab 7.0. It reduces the dimension of
image to 20 × 20. The experimental result proves that the algorithm of FCM

Fig. 5. warp-lacking2
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Table 1. Result compare of different recognition methods

Method recognition rate Training time(s) Recognition mean time(s)

FCM 84% 140.156 4.844

PSO+FCM 94% 137.157 4.672

PCA+FCM 90% 116.141 3.375

PCA+PSO+FCM 98% 105.500 2.343

based on PSO presented in this paper is efficient. It produces higher recognition
rate and searching speed than others, which is shown in Table 1.

To obtain higher recognition rate, we can add the numbers of the training
image to get more precise template. Before we detect on line, the Detection-
Template must be trained firstly. So, adding the training images just adds the
training time. It will not reduce the recognition time to affect detection on line.

5 Conclusion

This method can not only be used in the four classes above, but also in any
other class. In this case, what we should do is to add some training images of the
class you want to recognize into the training processing(Experimental step 1–3).
Therefore, it’s still available in many other fields of recognition. Comparing with
the traditional method[1,2], the algorithm presented in this paper reduces the
dimension of inputting images and computation complexity, improving the in-
spection speed and making it easier to inspect on line. It also enhances the
searching ability, reducing the possibility of falling in one of the minimums.
Finally, it get a better clustering solution, increasing recognition rate.
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Abstract. The paper proposes a hybrid feature selection approach
based on Rough sets and Bayesian network classifiers. In the approach,
the classification result of a Bayesian network is used as the criterion
for the optimal feature subset selection. The Bayesian network classifier
used in the paper is a kind of naive Bayesian classifier. It is employed
to implement classification by learning the samples consisting of a set
of texture features. In order to simplify feature reduction using Rough
Sets, a discrete method based on C-means clustering method is also pre-
sented. The proposed approach is applied to extract residential areas
from panchromatic SPOT5 images. Experiment results show that the
proposed method not only improves classification quality but also re-
duces computational cost.

Keywords: Rough Sets, Feature Selection, Naive Bayesian Network
Classifier.

1 Introduction

Feature selection is the problem of choosing a small subset of features that is
necessary and sufficient to describe target concept. The importance of feature
selection is due to the potential for speeding up the processes of both concept
learning reducing the cost of classification, and improving the quality of classi-
fication. Feature selection has been the key research issue in many fields such
as pattern recognition, image understanding and machine learning. In general,
the existing methods can be classified into two categories: open-loop or filter
method and close-loop or classifier feedback method. The open-loop method
does not consider the effect of selected features on a whole processing algorithm
performance. The classifier feedback method is a kind of feature selection method
which uses a classification rate as the criterion for a feature subset selection. The
classifier feedback method has more advantages than the open-loop ones due to
directly improving the classification results. The feature selection approach pro-
posed in this paper is an instance of classifier feedback approach. It takes the
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classification results of naive Bayesian network classifier as the criterion function
for feature subset selection using Rough Sets.

The existing methods for feature selection based on Rough Sets have many
types. For example, ROSETT is a software systems based on searching for short
reductions or reduction approximations [1,2]. The other methods are based on
genetic algorithm with the fitness function measuring the quality of the selected
reduction approximation [3,4]. However, the classification quality for these meth-
ods is still not good enough. In this paper, Bayesian network classifier is intro-
duced as the classifier. Since Bayesian network classifiers can combine multiple
source features, they have become an attractive approach to solve the problem
of image classification. In this paper, we take use of a simple case of Bayesian
network called naive Bayesian classifier for learning the samples and inferring
about unknown regions. The samples used here are a set of texture features
extracted from a large number of remote sensing sample images. Each texture
feature vector is labeled by the C-means clustering method. The decision table
used in Rough Sets is made up of feature values and related categories of sam-
ples. According to the classification rate of naive Bayesian network classifier,
useless features or condition attributes are eliminated. At last, the optimal fea-
ture subset is found and used to extract interested objects from remote sensing
images.

This paper is organized as follows: Section 2 presents the algorithm for the fea-
ture selection based on Rough Sets. Section 3 describes the classification method
using a naive Bayesian network classifier. Section 4 shows experimental results
and conclusions are given in Section 5.

2 The Feature Selection Based on the Rough Sets

Feature selection is a process of finding a subset of features from the original
set of features according to the given criterion. In this paper, the classification
rate of naive Bayesian network classifier is defined as the criterion of the feature
selection based on Rough sets.

For an image with size p × q, it is constituted with M-feature patterns. Let
all M-features of a pattern generate a whole original feature set:

Ttotal = {t1, t2,··· tm}

The feature selection is a process to search for a subset

Tsub = {t1, t2,··· tn} (Tsub ⊆ Ttotal, n < m)

under a given criterion, which guarantees to obtain better classification results.
Generally, an image can be classified into different parts according to color,
size, etc. Hence, assume that there is a family of indicernibility relationship
I = {I1, I2,··· ID} over the universe U, which is equal to the whole original fea-
ture set Ttotal = {t1, t2,··· tm}. In Rough Sets, if minimal subset Ismall of I can
determine knowledge about the universe, ∩Ismall = ∩I will be called a reduc-
tion of I,where ∩Ismall is equal to a feature subset Tsub = {t1, t2,··· tn}. So the
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process of feature selection is to find minimal feature . In this paper, N samples
are selected firstly, where the M features of each sample are calculated and con-
verted into the discrete values by C-Means clustering method. The decision table
consists of feature values and categories of selected samples. In the traditional
Rough Sets, the process of reducing features mainly depends on the compati-
bility of the decision table. In other words, if there is a conflict of the rules in
the decision table (DT) when one attribute or feature is deleted, the decision
table is not compatible and the attribute should not be eliminated. Otherwise,
the decision table is compatible and the attribute may be eliminated. There-
fore, it is very important how to define the compatibility of the decision table
.We take the classification results a Bayesian network classifier as the criterion
of the decision table. If the correct classification ratea using the feature subset
Tsub = {t1, t2,··· tn} is equal to or greater than a given threshold, the decision ta-
ble is compatible and the selected subset features Tsub = {t1, t2,··· tn} is effective.
As a result, the optimal subset has minimum features and the best classification
results. Table 1 shows an original decision table, where {SAM1, SAM2···SAM5}
denote five samples, {CON1, CON2···CON9} denote nine features or condition
attributes and DES is the sample categories or the decision attribute. Reduced
decision table also shown in Table 1 only includes two condition attributes, and
{CON1, CON2} is the optimal feature subset. The feature selection algorithm
is described as follows:

Algorithm1: Feature selection algorithm using Rough Sets.
Given: DT =< U, C ∪ D, V, f >

where DT is a decision table and U is the universe that is a family of indicerni-
bility relationship of the all features. C is a set of condition attributes, which
expresses a set of texture features. D is a set of decision attributes, which repre-
sents a set of sample categories. V = ∪q∈C∪DVq, V represents a set of attributes
which denote a set of sample texture feature values. f : U × (C ∪ D) → V is a
decision function, which describes the relationship of texture feature values.

Assume DX ∈ U × C → V is a rule of a decision table based on condition
attribute C, in which the rule is made of texture features of samples. DX ∈ U ×
C → V is a rule of a decision table based on decision attribute D, which not only
includes the texture features of the samples, but also the categories of samples.

Step1: Eliminate one feature or attribute r(r ⊆ C), if the classification rate of
the Bayesian network classifier using the rest feature subset Tsub = {t1, t2,··· ti}
and DX(i) is equal to greater than before, the decision table is compatible.
Otherwise, the decision table is not compatible. For a compatible decision table,
continue to eliminate another feature or attribute. For a non-compatible decision
table, the previous deleted feature or attribute should be reserved firstly, then
continue to eliminate another feature or attribute. Repeat above operations until
all attributes or features are scanned.

Step2: Output final feature subset and decision table DTSUB =< U, C′ ∪
D, V ′, f ′ > where C′ ⊆ C V ′ ⊆ V f ′ ⊆ f . The feature subset is the optimum
feature subset.
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Table 1. An original decision table(left) and its reduced decision table(right)

NO CON1 CON2 ... CON9 DES

SAM1 Value11 Value12 ... Value19 Class1
SAM2 Value21 Value22 ... Value29 Class2
SAM3 Value31 Value32 ... Value39 Class3
SAM4 Value41 Value42 ... Value49 Class4
SAM5 Value51 Value52 ... Value59 Class5

NO CON1 CON2 DES

SAM1 Value11 Value12 Class1
SAM2 Value21 Value22 Class2
SAM3 Value31 Value32 Class3
SAM4 Value41 Value42 Class4
SAM5 Value51 Value52 Class5

3 The Bayesian Networks Approach for Image
Classification

3.1 The Overview of Bayesian Networks Classifiers

A Bayesian network (BN) represents a joint probability distribution over a set of
discrete and stochastic variables [7,8,9,10]. It is to be considered as a probabilis-
tic white-box model consisting of a qualitative part specifying the conditional
dependencies between the variables and a quantitative part specifying the con-
ditional probabilities of the data set variables. Formally, a Bayesian network
consists of two parts B =< G, W >.The first part G is a direct cyclic graph
consisting of nodes and arcs. The nodes are the variables X1···Xn in the data set
and the arcs indicate direct dependencies between the variables. The graph G
encodes the independence relationships in the domain under investigation. The
second part of the network, W , represents the conditional probability distribu-
tions. It contains a parameter θxi/wxi = p(wj/xi) for each possible value xi of
Xi , given each combination of the direct parent variables of Xi, wj denotes the
set of direct parents of Xi ,in G. The network W then represents the following
joint probability distribution:

PB(X1,··· , Xn)
n

=
∏

i=1

PB(Xi/wxi) =
n∏

i=1

θXi/Wxi (1)

The first task of learning a Bayesian network is to find the structure G of the
network. Once the network structure G is known, the parameters W need to be
estimated. In general, these two estimation tasks are performed separately. In
this paper, the empirical frequencies from training data D is used to estimate
these parameters:

θxi/wxi
= p̂

D
(xi/wxi) (2)

The simplifying assumption behind a Bayesian network classifier assumes
that the variables are independently given the class label. In this paper, the
naive Bayesian network classifier is used for image classification task. The global
structure of the classifier, includes two classes {W1, W2} and some textures
features {x1, x2, x3, x4,··· , xn}. W1 and W2 represent residential area class and
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non- residential area class respectively. These features are independent each other
and the conditional probability is calculated by

P (x1,··· , xn/wj)
n

=
∏

i=1

P (xi/wj) (3)

According to the Bayesian theory, a posterior probability for a set of feature
{x1, x2, . . . , xn} from a pixel in an image is obtained by:

P (Wk|x1, x2,··· , xn) = P (W )
n∏

i=1

P (xi/W )
P (xi)

k = 1, 2 (4)

Based on the values of the posterior probabilities, a pixel can be classified as
a residential area class or a non-residential area class.

3.2 Image Classification Using Naive Bayesian Network Classifier

The classification procedure of naive Bayesian network classifier consists of two
steps. The first step is to learn all parameters of the Bayesian classifier from the
training data, which include the positive and negative samples. Learning provides
a list of prior probabilities and a list of conditional probabilities. The second step
is to test unknown images. According to the conditional probabilities of samples,
the posterior probabilities of tested images are calculated. Then, a threshold of
posterior probability is given to segment interested objects and background. We
adopt discrete variables in the Bayesian model where continuous features are
converted into discrete attribute values using an unsupervised clustering stage
based on the C-Means algorithm. The whole procedure of algorithm is listed as
follows:

Algorithm2: The classification algorithm using naive Bayesian network
classifier.

Given: The collected positive negative samples, and tested images.
Step1. Training samples.
• The texture features of all samples are calculated. In this paper, twenty

texture features from co-occurrence matrix and four texture features from four
Law’s energy templates are collected.

• The continuous texture features are converted into discrete values label
using the C-Means algorithm, where the label of clusters is set for each feature.

•The frequencies of different labels for each feature are counted and calculated
as

CON =
Frequn

Nub
(5)

where CON denotes the conditional probabilities of each features, Frequm
and Nub denotes the frequency of different labels and theamount of samples
respectively.
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• According to formula 3, calculate a list of conditional probabilities P (x1, x2
· · · xi/wj).

Step2. Tested images classification
• For each pixel of tested images, a 50 × 50 neighbor window is selected to

calculate its texture feature. Then, discretize these texture features values using
the C-Means clustering algorithm.

• According to the label of each pixel in tested images, the conditional prob-
ability is computed.

• The posterior probability p of each pixel in tested images is obtained by
formula 4.

• Based on calculated posterior probability of a pixel, a threshold of posterior
probabilities is given to classify the pixel as a residential area pixel or a non-
residential area pixel.

4 Experiment Results

We test proposed approach on panchromatic SPOT5 to extract residential areas.
Firstly, we collect positive and negative training samples from different resolution
and scale panchromatic remote sensing images. The naive Bayesian classifier al-
lows subjective definitions to be described in terms of easily computable objective
attributes, which are based on texture, shape, spectral values, etc. In this paper,
twenty texture features from gray level Co-occurrence matrix and four texture
energy features from law’s templates are used to describe residential areas and
non-residential areas, which represent rough texture objects and non-rough tex-
ture objects respectively. The total number of samples is 500,inwhich300 samples
are used to train Bayesian network classifier and 200 samples are used as tested
images for features selection. Each sample has the size of 50 × 50 pixels. These
samples are divided into two classes. One belongs to residential areas (positive
samples), the others belong to non-residential areas (negative samples).

For each sample, twenty four texture features are calculated and converted
into discrete values using C-means clustering method. Based on original texture
features, the first decision table or feature list is built, then the compatibility of
the decision table is calculated using naive Bayesian network classifier when a
condition attribute or a feature is deleted in first decision table. According to
the Algorithm 2, the first step is to learn positive and negative samples and ob-
tain all parameters of Bayesian network classifier. Secondly, tested samples are
classified and the classification rate is calculated. If the correct classification rate
is greater than given threshold , it is proved that the eliminated condition at-
tribute or feature is unnecessary and should be deleted .Otherwise the condition
attribute or the feature should be reserved. A reduced decision table is obtained
once a condition attribute is deleted. Based on the reduced decision table, Al-
gorithm1 is used to find the optimal feature subset until all features is scanned.
Fig 1 and Fig 2 show two image segmentations examples of panchromatic SPOT5
using the optimal feature subset and original feature set. The number of clusters
in C-means clustering method is empirically set to 6. The posterior probability
threshold for the segmentation process is set to 0.5. Fig 1 shows one original
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Fig. 1. Segmentation results using the optimal feature subset and the original
feature set

Fig. 2. Another segmentation results using the optimal feature subset and the original
feature set

Table 2. The comparison results of proposed method and GA

Methods Learning time(s) Number of optimum features Classification rate

GA 150 5 90.2%

Proposed method 15 5 91%

SPOT5 image including residential areas. The residential area extraction re-
sults using the optimal feature subset and origimal feature set are also shown in
Fig 1. The other original SPOT5 image is shown in Fig 2. The residential area
extraction results using the optimal feature subset and the original feature set
are also shown in Fig 2. It can be seen that the correct classification rates using
the optimal subset feature are more than 90%, while the correct classification
rates based on original feature sets are less than 85%. This is because some disad-
vantage features in the original texture feature set influence classification results.
In addition, the classification time using optimal subset feature and original set
feature is 3 seconds and 5 seconds respectively. From our experiment results,
it can be concluded that proposed approach not only improve the classification
quality, but also reduce the computational cost of the classification.

In order to evaluate the performance of proposed method, genetic algorithm
(GA), which is one of popular methods for the feature selection, is employed to
select optimum features using same training samples. The comparison results with
proposed method are listed in Table 2. From Table 2, it can been seen that both
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methods are able to find optimum features and reach good classification rate. How-
ever, the learning speed of proposed method is 10 times faster than that of GA.

5 Conclusions

The main study of this paper is to investigate how to optimize features using a
Bayesian network classifier and Rough Sets. In this paper, a hybrid approach for
feature selection is presented to reduce feature amount. In the approach, the crite-
rion function of feature selection is defined by the correct classification rate from
naive Bayesian network classifier. The naive Bayesian classifier is used for texture
image classification by learning the positive and negative samples. Rough Sets is
used to implement feature reduction with the correct classification rate from naive
Bayesian network classifier. Experiment results on SPOT5 images show that the
proposed method is feasibility and practical.
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Abstract. Over the last decade, workflow management has become a
significant tool in the effort of organizations to improve the efficiency of
their processes. However, the scope for its adoption has been constrained
by the variability, uncertainty and impreciseness that is inherent in busi-
ness process execution. A number of attempts have been made by the
workflow community to address this weakness, but no clear winner has
emerged. In this paper, we consider the potential for applying Rough Set
theory. One widely used modelling language for workflows is that offered
by Petri Nets. In any process, the focal points of uncertainty are when
decisions have to be taken. In the Petri Net model, this is represented by
resolving, for each transition, whether it should fire or not. In particular
at each OR-split (conditional branch) in a process instance, one has to
decide the route to be taken by the tokens in the Petri Net. In our paper,
therefore, we point out the potential of rough sets to resolve cases where
contradictory information is available - or where information is miss-
ing. We introduce the concepts of rough places, rough tokens and rough
transitions, and show how they can be utilized for workflow management.

Keywords: Uncertainty, Soft Computing, Rough Sets, Petri Nets, Work-
flow Management.

1 Introduction

On the one hand a central challenge in real life problems is how to deal with
uncertainty and vague information. Therefore several concepts to describe un-
certainty and vagueness have been suggested. The most established and oldest
is probability theory which goes back to the 17th and 18th century when it was
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introduced by Bernoulli, Laplace, Pascal and others. In 1965 probability theory
was joined by fuzzy set theory [1] and some 25 years ago Pawlak [2] suggested
rough sets as tool to deal with uncertain information. And finally, for a few years
Zadeh [3] has been promoting a general theory of uncertainty that provides a
holistic framework to describe any kind of uncertainty.

On the other hand workflow management [4] has become well accepted ap-
proach to help to improve efficiency in companies. Unlike many semi-formal
modelling languages, Petri Nets [5,6] are regarded as a precise and fully mathe-
matically founded method to design and manage the primary control flow per-
spective of workflow systems. In Petri Nets the focal points of uncertainty are
when decisions have to be taken. In general this is at each transition where one
has to decide whether it should fire or not. In particular at each OR-split a de-
cision has to be taken to specify the route in the Petri Net. So the decisions at
OR-splits are of particular interest and importance in the context of our paper.

The objective of this paper, therefore, is to utilize rough set theory to ef-
fectively deal with uncertain and vague situations at OR-splits in Petri Nets.
In particular we will suggest the concepts of rough places, rough tokens and
rough transitions and show their potential use for the management of workflow
systems.

The remainder of the paper is organized as follows. In the next section we
give a short introduction to rough set theory. In Section 3 we use the concept
of rough sets to make incomplete visible in Petri Nets. Section 4 discusses how
these ideas might be applied to workflow systems. The paper ends with a short
conclusion in Section 5.

2 Fundamentals of Rough Sets

Basic Properties of Rough Sets. Rough sets were introduced by Pawlak [2,7]
in 1982. Since then they have gained increasing importance. Today they can be
considered as important concept within the framework of soft computing. The
fundamental idea of rough set theory is that there are two kinds of objects.
While some objects are clearly distinguishable from each other some objects are
indiscernible. The indiscernibility of the objects is normally caused by missing
or incomplete information. To deal with such situations, Pawlak suggested the
idea of describing a set by two approximations: a lower and an upper approx-
imation of the set. While an object in a lower approximation of a set surely
belongs to this set, an object in an upper approximation only may belong to the
corresponding set.

Rough Decision Tables. In the context of our article the application of rough
set theory to decision tables is of special importance. Consider the following
example [8] dealing with a decision table of eight patients showing different
symptoms (Table 1). Four of the patients are well (decision {Flu=no}) while the
remaining four patients suffer from flu (decision {Flu=yes}).

The pair of patients #4 and #5 on the one hand and the pair of patients
#6 and #8 on the other hand share the same symptoms {high, yes, yes} and
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Table 1. Patient’s Decision Table

# Temperature Headache Nausea Decision: Flu

1 high yes no yes
2 very high yes yes yes
3 high no no no
4 high yes yes yes
5 high yes yes no
6 normal yes no no
7 normal no yes no
8 normal yes no yes

{normal, yes, no} respectively. However, the diagnosis differs, so the decision
table does not lead to an unique result. Let us consider patients #4 and #5.
While patient #4 suffers from flu patient #5 is well although the patients are
indiscernible with respect to their symptoms. Therefore, in the terms of rough
set theory, these patients belong to the upper approximations of both the sets
{Flu=yes} and {Flu=no}. The same applies to the pair of patients #6 and
#8. The diagnoses of the remaining patients do not cause the same problems
as described above. Their symptoms lead to a clear diagnosis. While patients
#1 and #2 are ill, #3 and #7 are well. So #1 and #2 belong to the lower
approximation of the set {Flu=yes} while the patients #3 and #7 are members of
the lower approximation of the set {Flu=no}. The implication for the diagnoses
of new patients is straightforward; new patients with symptoms equal to #1, #2,
#3 and #7 can be treated immediately while patients who have the symptoms
{high, yes, yes} and {normal, yes, no} need to have some more detailed physical
examination.

Rough Petri Nets. The potential of rough set theory to Petri Nets has al-
ready been investigated by J.F. Peters et al. who suggested rough Petri Nets
[9,10,11,12]. Basically in rough Petri Nets transitions function as rough gates.
J.F. Peters et al. applied this idea to, for example, sensor and filter models.

3 Making Incomplete Information Visible in Petri Nets

3.1 Some Notational Remarks

In Petri Net theory places are passive elements - containers storing tokens. In
contrast to that transitions are active in the sense that only transitions can
change the state of the net when they ”fire”: this means they consume tokens
from their input places and produce tokens for their output places. Therefore
transitions are the only elements in a Petri Net that have the capability to make
decisions.

At an OR-split the Petri Net diverges and the transitions decide on the further
path the case takes. The OR-split can be modelled in an explicit or implicit
form [4]. In the implicit form the decision and the action are located in the same
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transition. In contrast to that the explicit OR-split separates the decision from
the following action: the decision and the following action are modelled in two
separate transitions.

In the following sections we - of course - do not question this concept. However,
we graphically mark input places and/or tokens on input places to indicate
whether one or more corresponding transitions can fire or not. The decision
rules still remain in the only active elements of the Petri Net, the transitions.

3.2 Rough Places and Tokens

We propose the application of rough sets to OR-split in Petri Nets. Therefore let
us consider the example given in the previous section again. The rules derived out
of the decision table can be designed as a simple Petri Net consisting mainly of
an OR-split. The patients are symbolized by tokens (see Figure 1 - for simplicity
we only show the patients #1 and #2).

Fig. 1. Diagnosis Decision Tree as Part of a Petri Net

First Case: Rough Places. Obviously the decision rule at this place is insuffi-
cient to deal with all tokens. So some tokens get stuck on the input place of the
OR-split. To indicate this we say that the place belongs to the upper approxi-
mations of both sets {Flu=yes} and {Flu=yes}. We indicate this by a ”dashed
circle” place notation as depicted in Figure 2.

Second Case: Rough Tokens. Now consider a patient phoning a General
Practitioner (GP). The patients reports that she/he suffers from headache and
nausea, However, she/he has not been able to check her/his temperature before
phoning the GP. Formally the information provided can be described as: {?, yes,
yes}. Since information is missing the GP cannot continue his treatment. In such
a case we assign the token to the upper approximation. To graphically distinguish
between tokens (patients) belonging to a lower or upper approximations we
suggest their representation as shown in Figure 2, namely a ”hollow” token for
those in the upper approximation.
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Relationship between Rough Places and Rough Tokens. The main differ-
ence between the rough places and rough tokens is related to who is responsible
when a token gets stuck at a OR-split. In the first case discussed above the token
carries all the required information. However, the firing rules at the OR-split are
insufficient to take a decision. Therefore the responsibility is at the OR-split.
Please note, the definition of a rough place depends on a token. Therefore rough
places are no structural properties of Petri Nets.

Fig. 2. Rough Places and Tokens

In the second case the token cannot provide the requested information. There-
fore the token is accountable for its inability to proceed further, so it can be
regarded as token in an upper approximation.

3.3 Rough Transitions

A token can only proceed when both the token as well as the place the token is
assigned to belong to lower approximations. In this case the decision rule at the
OR-split has sufficient information and a transition is enabled to fire.

However, when a token belongs to an upper approximation and/or the place
belongs to an upper approximation then the token gets stuck. It is not defined
which of the transitions may fire. This leads to the concept of rough transitions.

Let us define the following decision sets {fire=yes} and {fire=no}. Transitions
which will surely fire belong to the lower approximation of the set {fire=yes}
while transitions that surely won’t fire belong to the lower approximation of the
set {fire=no}. The remaining transitions belong to the upper approximations of
both sets {fire=yes} and {fire=no}.

As an example, consider the Petri Net given in Figure 31. Black solid-lined
transitions will surely fire. Therefore they belong to the lower approximation

1 Since the effects on the capability of making a decision are the same for rough tokens
and places (in both cases a token cannot proceed) we will, for simplicity, only display
rough places in the example.
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Fig. 3. Rough Transitions, an Example Process

of the set {fire=yes}. The grey transition surely won’t fire2, consequently they
belong to the lower approximation of the set {fire=no}. The status of remaining
dashed transition is unclear: they may or may not fire. So they belong to both
upper approximations of the sets {fire=yes} and {fire=no}.

Please note, that rough transitions, like rough places, depend on the cases
(tokens). Therefore they are no structural properties of Petri Nets.

4 Applications to Workflow Systems and Related Work

Potential Applications to Workflow Systems. There are several possible
areas of application for the proposed method to workflow systems:

(1) Rough places: incomplete decision rule. The appearance of incomplete deci-
sion rules (rough places) may have two reasons. First, incomplete decision rule, in-
dicated by the appearance of places in upper approximations of both sets
{fire=yes} and {fire=no}, can be interpreted as a poorly designed workflow sys-
tem. The system has to be improved to run properly without any further interrup-
tion. Second, a decision rule can intentionally be designed incomplete. Then, for
example, the normal cases would pass the decision gate (OR-split) undisturbed.
The exceptions would intentionally be ”caught” in the upper approximation of a
place and presented to the end user for further special treatment.

(2) Rough tokens: incomplete case information. A possible area of application
of the proposed method is to provide early warning of potential delays within
a workflow system that could be caused by incomplete information in certain
business cases. The aim would be to get the workflow system to alert the end user
when a choice is waiting on more information. If only the immediate decision is
considered, the next transition will be held up. If the complete process including
all potential downstream activities is considered, the alert is a warning that
further down the track, a transition may be held up. Ideally, the workflow system
2 The selected path is indicated by a normal arrowhead while the path that is not

selected is indicated by a dot in Figure 3.
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should monitor the arrival of the required extra data, so that transitions can be
automatically enabled without user intervention. This may well involve facilities
to set up software agents that an talk to the applications that manage this data.
If, however, it can be seen in advance that certain combinations of case attributes
mean that a choice cannot be resolved, the workflow template should probably
be altered to allow for a ”don’t know” branch. The process owner would need to
define how long cases can be left in this state, and what should happen to them
when time runs out.

(3) Rough transitions: incomplete path information (resource management).
Resource management is a crucial task in any company. The concept of rough
transitions supports to more efficiently manage resources in the following way.
As depicted in Figure 3 there are three categories of transition3, (1) transition
that will be performed surely, (2) transitions that will not be performed, (3)
transition that may be performed. While in the first case resources have to be
allocated to the transitions, in the second case any allocated resources can be
released. Uncertainty is reduced to the third case in which it is unclear whether
resources are needed to perform the transitions or not.

Related Work. In the workflow management literature, there has been some
movement towards addressing the problems of handling the variability of individ-
ual process instances or ’cases’, but rough set concepts have not generally been
considered to date. Examples are case handling proposed by van der Aalst et
al. [14] and mixed-initiative management (i.e. bringing in temporal and resource
perspectives), as proposed by Rubinstein et al. [15]. Although the objective (ef-
ficiently handling process cases) is much the same as for introducing rough set
theory, the emphasis in these other approaches is more on addressing the ”non
control flow” perspectives such as data and resource availability for performing
tasks and for completing cases in a timely manner.

5 Conclusion

In this paper we have presented the potential use of rough sets for the manage-
ment of missing or incomplete information in Petri Nets. We have suggested the
concepts of rough places, rough tokens and rough transitions.

The main purpose is to utilize rough set theory to make incomplete informa-
tion visible in order to deal with such a situation efficiently. In the first case, i.e.
too much information, the rough concept of reducts can be applied. In the later
case we identified three different occurrences: (1) incomplete decision rules, (2)
incomplete case information and (3) incomplete path information.

The central advantage of the application of rough sets is that we can draw
from a rich theoretical concept to efficiently manage such situations. Our future
3 In Petri Nets transitions are only regarded as active entities in the sense that they

can change the state of the net. So, generally, business activities can be mapped to
transitions and places as well. However, in our context we follow the conventions of
leading business process notations, like the EPC [13], where business activities can
only be assigned to active entities (”functions”).
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research will concentrate on a more formal incorporation of these concepts into
Petri Net theory and workflow management.
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14. van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for

business process support. Data and Knowledge Engineering 53, 129–162 (2005)
15. Rubinstein, Z., Corkill, D.: Mixed-initiative management of dynamic business pro-

cesses. In: Proceedings 2003 IEEE International Workshop on Soft Computing in
Industrial Applications, Binghamton, New York, USA, pp. 39–44 (2003)



Optimization on OLSR Protocol for Lower

Routing Overhead

Yong Xue, Hong Jiang, and Hui Hu

Southwest University of Science and Technology,
Mianyang 621010, Sichuan, P.R. China

belat@163.com

Abstract. The optimized link state routing (OLSR) designed by the
IETF’s mobile ad hoc networks (MANET) working group is one of the
four base routing protocols for ad hoc networks. This protocol is a table
driven, proactive protocol. It is particularly suitable for large and dense
mobile networks with less latency. However, high routing overhead is
a dominant disadvantage as comparing with reactive protocols. In this
paper, an optimizing scheme on OLSR by reducing the average size of
HELLO messages, as well as the size and the amount number of TC
messages is proposed. After analyzing and computing the overhead of
the optimized OLSR protocol, which is implemented and simulated on
NS-2 in different scenarios, the simulation results indicate that its routing
overhead is reduced; meanwhile, the latency and the average end-to-end
delay are still maintained in a low level without any change.

1 Introduction

Mobile ad hoc networks are infrastructure-less networks where mobile nodes
communicate wirelessly and the network topology changes constantly. The nodes
organize themselves to route packets in a multi-hop fashion from a source to a
destination. Reactive and proactive routing protocols have been proposed in the
literature. On the one hand, proactive protocols find and maintain paths to every
destination before they are actually required, which creates additional overhead.
On the other hand, reactive protocols find paths only when they are actually
required, without creating additional overhead [1]. Moreover, there are other
protocols, such as, hybrid protocols, combining the benefits of both protocols
by working proactive in the local neighborhood of a node and reactive for nodes
further away [2].

OLSR is a proactive protocol and has higher overhead than reactive protocols
and most other proactive protocols, although it has advantages in large and dense
network with less latency and average end-to-end delay, which characteristic
is shown by figures in section 2. Studying the routing protocols overhead is
necessary, especially in large and dense ad hoc networks, while many theoretical
analysis on overhead and performance have been done for OLSR.

In this paper, we present an approach specifically designed to minimize rout-
ing overhead of the OLSR, it differs from existing literature on the study per-
formance of the OLSR in which some performance of latency and delay were
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partial sacrificed for minimizing routing overhead. Fish Eye approach is adapted
to large networks in which the amount number of TC (Topology Control) mes-
sage is reduced by defining three zones encircled one node with deferent radius
and broadcasting frequency, but the number of invalid routes increases such
that more time must be spent on updating topology message list and found
new routes [3]. Hierarchical OLSR need select some node to build up backbone
subnet supporting point-to-point wireless [4].

In this paper, some novel approaches are presented for enhancing the perfor-
mance of OLSR which mainly comprises three ways to optimize OLSR protocol.
At first, the size of HELLO message is shorted by comparing the link-states of
neighbor set with the current ones so that only changed links and MPRs (Multi
Point Relays) are transmitted. Second, the first TC message is no longer gener-
ated by node N, but is calculated and generated by its MPRs, so the amount
number of TC message is decreased. Last, in the original protocol a node broad-
casts link-state information between itself and its MPR selectors, in which TC
message has redundant information when two nodes are selected as MPR by
each other. The one link-state information is broadcasted by TC message twice
times, so we select one of those nodes to advertise it.

For the experiments, the latest release of NS-2 (NS-2.29) is used. NS-2 is a
discrete event simulator widely used in the networking research community. In
general, the NS-2 installation will include all software extensions. It contains
a detailed model of the physical and link layer behavior of a wireless network
based on the 802.11 specifications and allows arbitrary movement of nodes within
a network area. The new scheme presented in this paper is implemented and
simulated on NS-2, several performance metrics were measured by varying the
maximum speed of mobile hosts, routing overhead, latency and average end-to-
end delay, etc., those performance metrics are analyzed and compared between
original OLSR protocol and optimized one.

This paper is organized as follows. In Section 2, we give a brief description of
OLSR’s main operations. In Section 3, we illustrate the new optimization scheme
for reducing the overhead of OLSR protocol, and how to compute the overhead
of OLSR. The performance of optimized protocol is validated in Section 4 by
confrontation with simulation results. Finally, we conclude in Section 5.

2 The OLSR Protocol

The protocol is an optimization of the classical link state algorithm tailored
to the requirements of a mobile wireless LAN. In the protocol, MPRs are se-
lected nodes which forward broadcast messages during the flooding process.
This technique substantially reduces the message overhead as compared to a
classical flooding mechanism, where every node retransmits each message when
it receives the first copy of the message. In OLSR, link-state information is gen-
erated only by nodes elected as MPRs. Thus, a second optimization is achieved
by minimizing the number of control messages flooded in the network. As a third
optimization, an MPR node may chose to report only links between itself and its
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MPR selectors. Hence, as contrary to the classic link state algorithm, partial link
state information is distributed in the network. This information is then used for
route calculation [5]. The two main OLSR functionalities, Neighbor Discovery
and Topology Dissemination, are now detailed as follows.

2.1 Neighbor Discovery

A node must perform link sensing on each interface, in order to detect links be-
tween the interface and neighbor interfaces. Furthermore, a node must advertise
its entire symmetric 1-top neighborhood on each interface in order to perform
neighbor detection. Hence, for a give interface, a HELLO message will contain a
list of links on that interface (with associated link types), as well as a list of the
entire neighborhood. In principle, a HELLO message serves three independent
tasks: Link sensing, Neighbor detection, MPR selection signaling.

Three tasks are all based on periodic information exchange within neigh-
borhood nodes, and serve the common purpose of ”local topology discovery”.
A HELLO message is therefore generated based on the information stored in
the Local link Set, the Neighbor Set and the MPR Set form the local link
information base.

The major improvement on OLSR in our work is focused on optimizing the
format of HELLO message and the tactics of operating mode, so the more knowl-
edge should be introduced about HELLO message format in detail. The proposed
format of a HELLO message is shown in RFC 3626 (omitting packet, IP and
UDP headers).

The data-portion of the general packet format with the ”Message Type” set
to HELLO MESSAGE. Reserved field must be set to ”0000000000000” to be in
compliance with this specification. HTime field specifies the HELLO emission
interval used by the node. Willingness field specifies the willingness of a node to
carry and forward traffic for other nodes. Link Code field specifies information
about the link between the interface of the sender and the following list of
neighbor, the analysis and the improvement will be show more detailed in section
3. Link Message Size counted in bytes and measured from the beginning of
the ”Link Code” field and until the next ”Link Code” field. Neighbor Interface
Address is the address of an interface of a neighbor node.

2.2 Topology Dissemination

Each node of the network maintains topological information about the network
obtained by means of TC messages. The nodes which were selected as a MPR by
some of the neighbour nodes broadcast the TC message at every ”TC interval”.
The TC message originated from one node to declare the set of nodes which
having been selected as MPR. The TC messages are flooded to all network
nodes and take advantage of MPRs to reduce the number of retransmissions.
To optimize flooding, the OLSR forwarding rule is used: Any node forwards a
broadcast message only if it is received for the first time from anode having been
selected as MPR.
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Thus, a node is reachable either directly or via its MPRs. The neighbor infor-
mation and the topology information are refreshed periodically, and they enable
each node to compute the routes to all known destinations. These routes are
computed with Dijkstra’s shortest path algorithm. Hence, they are optimal as
concerns the number of hops.

3 Optimization on OLSR Protocol

The optimization schemes presented in this paper mainly comprise three aspects
by reducing the size of HELLO message, the amount number and the average
size of TC message.

3.1 A Novel Operating Tactics about HELLO Messages

In HELLO interval a list of the entire neighborhood is transmitted periodically,
because the HELLO message contains a lot of link-states and generated in high
frequency, which results very high overhead, especially, in high density of nodes
scenarios. For reducing the size of HELLO messages we present a novel ”neighbor
tuples” by which it is not necessary for HELLO messages to transmit the entire
neighborhood in every HELLO interval.

In OLSR a node records a set of ”neighbor tuples” (N neighbor main addr,
N status, N willingness), describing neighbors. N neighbor main addr is the
main address of a neighbor, N status specifies if the node is NOT SYM or SYM.
N willingness in an integer between 0 and 7, and specifies the node’s willing-
ness to carry traffic on behalf of other nodes. The new ”neighbor tuples” adds
a field named N modified which is a signal for indicating whether the link-state
is modified between the two periods.

Based on the mended neighbor tuples the generating and processing of HELLO
message can be designed as below operations:

HELLO Message Generation. A node N broadcasts its link-states once per
“HELLO interval”, but not the entire neighborhood, just only include the links
and neighbor nodes information which have modified in a “HELLO interval” by
checking the field of N modified in the neighbor tuples.

HELLO Message Processing. When a node received a HELLO message from
its neighbor node, at first, search the field of Original Address of the packet to
find whether the node of sender has been added in the neighbor set. If the
information of sender do not exist in the table, then attaches a item and fills
the every field with neighbor information, which means the node is a new joined
neighbor node, and transmits the entire neighborhood messages to the node of
sender. Otherwise, for an older neighbor it is not necessary to transmit the entire
Neighbor set, but just the information of node which link-state or attribute of
MPR has changed.

When any link-state between the node N and its neighbors is changed in a
slot of broadcasting the HELLO messages, the corresponding N modified field of
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“neighbor tuples” would be modified to one, which means the link-state should
be updated and advertised to its neighbors. As soon as the changed link-states
are broadcasted, the corresponding N modified field would be reseted to zero.

3.2 Reduction of the Amount Number of TC Messages

An advertised link set is put in a TC message and transmitted to all neighbors
of a node, only the nodes which were selector as a MPR by the sender node are
responsible for forwarding control traffic. In actually, the entire information of
link-states of one node and its MPR Selector has been gotten by MPRs through
HELLO message excepting which link-states are between neighbor node and its
MPR Selector, if we can indicate it by the Link Code field of HELLO message,
then the first TC messages which broadcasts by a node to its all neighbors can be
abolished , in result, the MPRs replace their MPR Selectors to disseminate the
TC messages by mining the related information form HELLO messages, because
the refreshing frequency of HELLO messages is higher than TC messages at least
twice times, which can ensure that the link-state information is up to date.

For achieving the goal, we add a new Neighbor Types to Link Code field of
HELLO message, which named SEL NEIGH for indicating whether the sender
is a MPR selected by its neighbor node. Then every MPR can build up the TC
messages including the link-states between its MPR selectors and themselves
MPR selectors, of course, the Original Address of TC messages must be the
MPR selectors’.

3.3 Reduced on the Size of TC Messages

Through the ”link types” a node can get whether it and its neighbor nodes are
mutual MPR, if two node select its neighbor node as MPR each other, when
the TC messages is building just one node which is chose to disseminate the
link-state between themselves. The choice of node can simply be decided by
comparing their address, although the effect on the whole overhead of routing
protocol is small, but it has not any side effect also.

3.4 The Overhead Computation of Optimized OLSR Protocol

At first, we compute the overhead of original OLSR protocol, define some input
parameters which characterize the ad hoc network configuration and can be seen
as specifications.

The OLSR protocol configuration and scenario parameters include:

1. hdrHello, hdrTC , hdrmsg, hdrpck: size of OLSR message header and packet
header.

2. fH , fTC : frequency of sending HELLO and TC.
3. N : total number of nodes.
4. M : total number of MPR nodes.
5. S: average number of retransmissions per TC message, including the first

transmission by the originator.
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6. n, m: average number of neighbor per node and MPR selectors per MPR,
respectively.

The overhead of OLSR is defined as the average bandwidth, in bytes/s, the
bandwidth can be decomposed to, on one hand, the bandwidth used for send-
ing and receiving HELLO messages: OsendH , OrecvH ; on the other hand, the
bandwidth used for sending and receiving TC messages: OsendTC , OrecvTC . Let
szH , szTC and respectively be the average HELLO and TC packet sizes. As each
OLSR packet only has one OLSR message:

OsendH = fH · szH

OsendTC = OrecvTC = fTC · S · szTC

OrecvH = fH · n · szH

Thus, the overhead of the OLSR protocol is equal to:

OOLSR = fH (N + 1) szH + 2 · fTC · S · szTC

Let szaddr, szlinkcode, respectively be the address size and link code size. The
link code is either symmetric, asymmetric, multipoint relay or lost. When the
simulated network comes to a stable state, it should only have two kinds of link
type (in the optimized protocol it adds to three kinds): symmetric and MPR
links [3]. Thus the average number of link codes advertised in each HELLO
messages is 2.

In OLSR protocol minimizes the overhead of TC message by using Message
Grouping, through this means many TC messages are grouped into one single
OLSR packet. Therefore, only one packet header is needed for many TC messages
instead of one packet header for each TC message. The packet header and IP
header are less but number of TC messages exchanged is unchanged, thus the
overhead of due to HELLO and TC messages is:

OTC = 2 · fTC · S · (m · szaddr + hdrTC + hdrmsg) + 2 · f ′
TC · S · (hdrpck + hdrIP )

OH = fH (n + 1) (n · szaddr + 2 · szlinkcode + hdrH + hdrmsg + hdrpck + hdrIP )

f ′
TC is a coefficient related to the number of TC message received by one node

in period of 1/fTC , which is smaller than fTC .
In the optimized OLSR protocol the first TC message is constructed and

broadcasted by the MPR instead of MPR selector, so the S in the overhead of
OTC decreases to S−1, and the items of n ·szaddr of 2 ·szlinkcode will be removed
in a relatively stabile network scenario, but when the node move constantly it
maybe reach to 3 · szlinkcode.

Now we can give the reduced overhead of the optimized protocol in a relatively
stabile network scenario by putting the values of size of different packet headers
into above equations:

OTC reduce 2 · fTC · (4m + 16) bytes for one node in every period of 1/fTC .
OH reduce fH ·(n + 1) (4m + 16) bytes for one node in every period of 1/fTC .

Mostly, fH would be chose by 2 seconds, and fTC by 5, thus, the gain brought
by OH is always several times than OTC ’s by a simply computation.
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4 Simulation Results

Every scenario, static and mobile, was generated using the node-movement gen-
erator setdest, provided with NS-2. In order to allow for fair performance com-
parisons, the same scenarios were always utilized when evaluating each strategy.
Each experimental stage is described next. We compute the overhead generated
by OLSR as the number of bytes per second sent or received by an OLSR node
at the IP level.

Simulation parameters of ship nodes are adopted as follows:
Network Type: 802.11, Transmission range: 250m, Field Size: 1500 × 1500,

Node Type: Static, HELLO message rate: Every 2 seconds, TC message rate:
Every 5 seconds, Throughput: 2Mbps.

The density of nodes should have a significant influence on the routing proto-
cols performance. In general, low density may cause the network to be frequently
disconnected and high density increases the contention, resulting in a low per-
node throughput. In simulations, the number of nodes per simulation area is
increased from 100 to 180 nodes with the rest of the simulation parameters re-
main unchanged. The goal is to study how the optimized protocol improves the
overhead comparing to the original protocol in different node densities.

Fig. 1. Results of comparing routing overhead of two protocols

Fig.1.(a) shows the result of simulation, as a whole, the average routing over-
head of the optimized protocol decrease to 83% approximately according to the
original protocol, which verified the validity of the optimization approach for
OLSR protocol. From the another Fig.1.(b), it can be seen that result is not
very good comparing with the last figure’s in mobile scenario, especially, when
the node moving with speed of 25m/s, the overhead of new protocol just de-
creases 4% approximately, obviously, the cause is the average size of HELLO
messages increasing as a result of the neighborhood changing more frequently.
In the whole process of simulation the average end-to-end delay and latency have
not almost any different between two protocols.
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5 Conclusion

In this paper, We have presented an optimizing approach to reduce the overhead
through rebuilding the format and operating tactic of HELLO and TC messages.
In the most case, it can decrease the routing overhead about 17% , and some
extreme case, maybe less than that greatly. But we just studied an especial
application of OLSR in which have not considered any redundancy, in fact OLSR
protocol designed many schemes which have various information redundancy,
such as number of MPRs and more link-states information encapsulated into
TC message [6], in that case, the overhead problem is become more prominent.
Through the reference [3] we can know in a large network with high density,
the proportion of OH in whole overhead is become preponderant, because in our
optimization the gain brought by OH is larger than OTC greatly, the optimized
OLSR protocol must more suitable to large network.

Although so many works have been done for reducing the overhead of OLSR
protocol, Comparing to the other routing protocol, which still cost much width
for routing; maybe using more advanced technology to construct backbone net
in ad hoc network is a feasible approach.

This paper is supported by Defense Basic Research project under grant
A3120060264 and SWSUT project under grant 06zx3106
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Abstract. A tripartite authenticated key agreement protocol is designed
for three entities to communicate securely over an open network partic-
ularly with a shared key. Password-authenticated key exchange (PAKE)
allows the participants to share a session key using a human memorable
password only. In this paper, A password-based authenticated tripartite
key exchange protocol(3-PAKE) is presented in the standard model. The
security of the protocol is reduced to theDecisional Bilinear Diffie-Hellman
(DBDH) problem, and the protocol provides not only the properties of for-
ward secrecy, but also resistance against known key attacks. The proposed
protocol is more efficient than the similar protocols in terms of both com-
munication and computation.

Keywords: Password-based tripartite authenticated key exchange, For-
ward secrecy, Known key attacks.

1 Introduction

A key agreement protocol is defined as a mechanism in which a shared secret key,
often known as session key, is derived by two or more protocol entities as a func-
tion of information contributed by each of these parties such that no single entity
can predetermine the resulting value. This secret key, usually established over a
public network, can then be used to create a confidential or integrity-protected
communication channel among the entities. In general, a key agreement proto-
col is called authenticated if the protocol is able to ensure that the session key
is known only to the intended entities in a protocol run. Without authentica-
tion, a key agreement protocol would turn out to be insecure as an adversary
can easily intrude the scheme by using the man-in-the-middle attack as well as
other cryptographic attacks. The situation where three or more parties share a
secret key is known as conference keying. The three-party (or tripartite) case is
of most practical importance because it is the most common size for electronic
conferences et al.

Joux[1] has initiated the development of one-round pairing-based tripartite
Diffie-Hellman key agreement protocol in 2000. However, Shim[2] has pointed out
that Joux’s protocol does not provide authentication and therefore, it cannot re-
sist the man-in-the-middle attack. Some researchers have further investigated the
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scheme and proposed four tripartite authenticated key agreement protocols[6],
which provided authentication using ideas from MTI[3] and MQV[5]. They used
certificates of the parties to bind a party’s identity with his static keys. The
authenticity of the static keys provided by the signature of CA assures that only
the parties who possess the static keys are able to obtain the session key. How-
ever, since the participants involved in the protocol should verify the certificate
of the parties, a huge amount of computing time and storage is needed. In [4],
Nalla et al. proposed authenticated tripartite ID-based key agreement protocols.
The security of the protocol is discussed under the possible attacks. However,
their protocol is not secure as they have claimed. Chen[9] showed the flaw of
the protocol. Zhang et al.[14] designed an ID-based one round authenticated
tripartite key agreement protocol and provided heuristic security analysis.

In practice, one finds several favors of key exchange protocols, each with its
own benefits and drawbacks. Among the most popular ones is the 3-party Ker-
beros authentication system[10]. Another one is the 2-party SIGMA protocol[11]
used as the basis for the signature-based modes of the Internet Key Exchange
(IKE) protocol. Yet another favor of key exchange protocols which has received
significant attention recently are those based on passwords. Compared to the
protocols ID-based or PKI/CA-based, to the password-based protocols, a hu-
man is only required to remember a low entropy password shared between the
participants. In fact, password-based schemes are suitable for implementation
in many scenarios, especially those where no device is capable of securely stor-
ing high-entropy long term secret key, specially, password-based key agreement
protocol has been extensively studied in the last few years [7,8,12,13]. Recently,
Wen et al.[16] proposed a provably secure three-party password-based authen-
ticated key exchange (three-PAKE) protocol using Weil pairings, unfortunately,
Chien[18] point out the protocol can not resist to impersonation attack. In this
paper, we present a password-based tripartite key agreement protocol using pair-
ings, it seem that in the standard model. It allows three parties to negotiate a
common session key via a shared password over an adversary controlled channel.

2 Preliminaries

In this section, we review some cryptographic assumptions that will be used
throughout the paper.

2.1 Pseudorandom Function

Let F : Keys(F ) × D → R be a family of functions, and f : D → R a random
function. A is an algorithm that takes an oracle access to a function and returns
a bit. We consider two experiments:

Expprf−1
F,A : {K

R← Keys(F ), d ← AFK(·), return(d)}
Expprf−0

F,A : {g
R← RandD→R, d ← Af(·), return(d)}

The advantage of an adversary A is defined as follows:

Advprf
F,A(κ, t, q) = |Pr[Expprf−1

F,A = 1] − Pr[Expprf−0
F,A = 1]| (1)
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where A is any adversary with time complexity t making at most q oracle queries.
The scheme F is a secure pseudo random function family if the advantage of any
adversary A with time complexity polynomial in κ is negligible.

2.2 The Bilinear Maps and Assumption

Let G1 and G2 be finite cyclic groups of prime order q. We assume that the
discrete logarithm problems (DLP) in both G1 and G2 are hard to solve, and an
efficient bilinear map ê : G1 × G1 → G2.

Decisional Bilinear Diffie-Hellman (DBDH) problem. The decisional BDH
problem is to distinguish between tuples of the form (g1, g

a
1 , gb

1, g
c
1, ê(g1, g1)abc)

and (g1, g
a
1 , gb

1, g
c
1, ê(g1, g1)d) for random g1 ∈ G1, and a, b, c, d ∈ Z∗

q . An algo-
rithm A is said to solve the DBDH problem with an advantage of ε if

| Pr[A(g1, g
a
1 , gb

1, g
c
1, ê(g1, g1)abc) = 0] − Pr[A(g1, g

a
1 , gb

1, g
c
1, ê(g1, g1)d) = 0] |≥ ε

(2)

Definition 1. We say that the DBDH assumption holds in G1 if no polynomial
time algorithm has advantage at least ε in solving the DBDH problem in G1.

2.3 Security Notions

The model described in this section is based on model in [15]. Assume that the
network is a broadcast network and a malicious adversary may intercept the
broadcast messages and substitute his own messages for some of them. Assume
that the users in set U = {U1, U2, U3} that shares a password pw uniformly
distributed in a password space of size PW will negotiate a session key using
the key exchange protocol. An instance of Ui is represented by an oracle Πs

i , for
any s ∈ N . Let sids

i be the concatenation of all (broadcast) messages that oracle
Πs

i has sent and received. Let a partner identifier pidi
s for instance Πs

i be a set
of the identities of the users with whom Πs

i intends to establish a session key,
pidi

s includes Ui itself. The oracles Πs
i and Πt

j are partnered if:

- Πs
i = Πt

j and sids
i = sidt

j .
An attacker can make following queries.
- Execute(U): This query models passive attacks, where the adversary gets

the instances of honest executions of a protocol by U .
- Send(Πs

i , m): This query is used to send a message m to Πs
i and get the

response from Πs
i . The number of on-line dictionary attacks can be bounded by

the number of Send queries.
- Reveal(Πs

i ): This query models the adversarys ability to obtain session keys
(known-key attacks). If a session key skΠs

i
has previously been constructed by

Πs
i , it is returned to the adversary.
- Corrupt(Ui): This query models the adversarys ability to obtain long-term

keys of parties (forward secrecy). We restrict that on Corrupt(Ui) the adversary
only can get the password pw, but cannot obtain any internal data of Ui.
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- Test(Πs
i ): This query is used to define the advantage of the adversary. This

query is allowed only once by the adversary A, and only to fresh oracles, which
is defined later. On this query a simulator flips a coin b. If b is 1, then the
session skΠs

i
is returned. Otherwise a string randomly drawn from a session key

distribution is returned.
PAKE Security. Consider a game between an adversary A and a set of oracles.

A asks the above queries to the oracles in order to defeat the security of a protocol
P , and receives the responses. At some point during the game a Test query is
asked to a fresh oracle, and the adversary may continue to make other queries.
Finally the adversary outputs its guess b′ for the bit b used by the Test oracle,
and terminates. We define CG to be an event that A correctly guesses the bit
b. The advantage of adversary A must be measured in terms of the security
parameter k and is defined as follows:

AdvP,A(k, t) = 2 · Pr[CG] − 1.

where A is any adversary with time complexity t which is polynomial in k.
Freshness. An oracle Πs

i is fresh if the following conditions hold:
- Πs

i has computed a session key sk �= NULL and neither Πs
i nor Πt

j have
been asked for a Reveal query, where Πs

i nor Πt
j are partnered.

- No Corrupt query has been made by the adversary since the beginning of
the game.

Definition 2. A protocol P is a secure password-authenticated key exchange
protocol if the following two properties are satisfied:

- Validity: if all oracles in a session are partnered, the session keys of all oracles
are same.

- Key secrecy: AdvP,A(k, t) is bounded by qse/PW + ε(k), where ε(k) is neg-
ligible, qse is the number of Send queries, and PW is the size of the password
space.

(1) A protocol P is a secure PAKE protocol if validity and key secrecy are
satisfied when no Reveal and Corrupt queries are allowed.

(2) A protocol P is a secure PAKE-KK protocol if validity and key secrecy
are satisfied when no Corrupt query is allowed.

(3) A protocol P is a secure PAKE-FS protocol if validity and key secrecy are
satisfied when no Reveal query is allowed.

(4) A protocol P is a secure PAKE-KK-FS protocol if validity and key secrecy
are satisfied.

3 Password-Based Tripartite Key Exchange Protocol
(3-PAKE)

In this section, we propose a 3-PAKE protocol which achieves forward secrecy,
and is secure against known-key attacks. 3-PAKE is designed without using the
random oracle model and its security is proved under the DBDH assumption.
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Public information: Let Ui, Uj, Ul(1 ≤ i, j, l ≤ 3, j �= l �= i) be the identities
of 3 users, UID = U1 ‖ U2 ‖ U3, U = {U1, U2, U3}, and let H be a cryptographic
hash function with target collision resistant from {0, 1}∗ → Zp, we throughout
assume that Ui is the protocol initiator. Prior to the protocol execution, each
user Ui computes g = H(pw ‖ UID ‖ x)modp and x > 0 is the smallest integer
that makes g a generator of a multiplicative subgroup G1 of order q in GF (p)∗.
F is a pseudo random function family.

Stage 1 Message transfer.
User Ui chooses a random number si(0 ≤ si ≤ q − 1), computes Di = gsi . Ui

broadcasts Di ‖ Ui.
Stage 2 Key exchange and key confirmation.
After receiving Dj and Dl, Each user Ui computes Ki = ê(Dj , Dl)si , Ui then

broadcasts its key confirmation message Ci:
Ci = FKi(sid ‖ Ui), where sid = U1 ‖ D1 ‖ U2 ‖ D2 ‖ U3 ‖ D3.
Stage 3 Key Computation.
After receiving Cj , Cl, user Ui checks whether the following equations holds:

Cj
?= FKi(sid ‖ Uj) and Cl

?= FKi(sid ‖ Ul). If the checks succeed, Ui computes
its session key as: ski = FKi(UID ‖ sid). Otherwise, Ui terminates the protocol
execution as a failure.

4 Analysis of the Proposed Protocol

4.1 Security Analysis

We now present that the proposed protocol is secure against known-key attacks,
and provides forward secrecy.

Theorem 1. Let F is a secure pseudo random function family. Then 3-PAKE
is a secure 3-PAKE-KK-FS protocol under the DBDH assumption. Concretely,

Adv3PKF
P (k, t, qex, qse) ≤ 3·(qex+qse)2

2q + Advprf
F (t) + qse

PW + Ns · AdvDBDH
ê,G1,G2

(t)
(3)

where 3PKF denotes 3-PAKE-KK-FS, t is the maximum total game time includ-
ing an adversarys running time, and an adversary makes qex Execute queries and
qse Send queries. Ns is the upper bound of the number of sessions that an ad-
versary makes, and PW is the size of the password space.

Proof. Consider an adversary A attacking the 3-PAKE in the sense of forward
secrecy and security against known-key attacks. In this proof, we prove that the
best strategy A can take is to eliminate one password from the password dictio-
nary per initiated session. An adversary may get information about a particular
session key if a collision appears on the transcripts (for the same set of users)
during the experiment; i.e., there exists a user Ui ∈ U and t, s(t �= s) such that
the transcript used by instance Πs

i is equal to the transcript used by instance
Πt

i . The other cases allow us to solve the DBDH problem and break a pseudo
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randomness of a pseudo random function family with probability related to the
adversary’s success probability. We now proceed with a more formal proof.

Case 1. Let Col be the event that a transcript is used twice by a particular
user. The advantage with the event Col is bounded by the birthday paradox:

Adv3PKF
P (k, t, qex, qse) = 2Pr[CG ∧ Col] − 1 ≤ 2Pr[Col] ≤ 3·(qex+qse)2

q
(4)

where q is the size of the group G1.

Case 2. The advantage without the event Col is from the following two cases:
(Case2.1) For the Test oracle Πs

i , all parties in pids
i have a partner oracle.

(Case2.2) For the Test oracle Πs
i , there exists at least one party Uj(j �= i ∧

Uj ∈ pids
i ) such that Uj does not have a partner oracle. For i ∈ {1, 2}, let

Adv3PKF−C2.i
P (k, t, qex, qse) be the advantage of an adversary from Casei. Then

we have

Adv3PKF
P (k, t, qex, qse) = Adv3PKF −Col

P (t) + Adv3PKF −Col
P (t)

= Adv3PKF −Col
P (t) + Adv3PKF −C2.1

P (t) + Adv3PKF −C2.2
P (t)

(5)

Case 2.1. If the advantage of an adversary is from Case2.1, the password of
the parties may be revealed by Corrupt queries. Although Corrupt queries are
allowed by the definition of freshness, for the Test oracle Πs

i , all instances in
pids

i are executed by Execute queries. This case can be seen that there is no the
password in the protocol, and thus we may ignore Corrupt queries, the protocol is
the same as Joux’s[1] tripartite key exchange from bilinear. Therefore, computing
the upper bound of the advantage from Case2.1 is equal to that of Joux’s protocol
and hence we have:

Adv3PKF−C2.1
P (t) ≤ Ns · AdvKE

P−Joux(k, t, qex) ≤ Ns · AdvDBDH
ê,G1,G2

(t) (6)

Case 2.2. To compute the upper bound of the advantage from Case2.2, we as-
sume an adversary A gets the advantage from Case2.2. In this case, the password
of the parties is not revealed by freshness conditions. Informally, there are only
two ways an adversary can get information about a particular session key: ei-
ther the adversary successfully breaks the authentication and key confirm parts
of the protocol by guessing attacking; or correctly guesses the bit b involved in
the Test query. let Adv3PKF−C2.2

P (k, t, qex, qse) be the advantage of an adversary
from Case2.2. The attack game is simulated by the challenger as follows:

Initialize. Given a security parameter, k, the challenger generates a password
pw ∈ PW , computes g = H(pw ‖ UID ‖ x)modp, U = {U1, U2, U3}, and the
public system parameters:

param = {U, UID, q, ê, G1, G2, H, F}.

Challenge. The attacker A runs the protocol on the input of param. At some
point, A terminates by outputting a guessed password pw∗. During its execu-
tion, A can make the following kinds of queries: Execute(U), Send(Πs

i , m) and
Reveal(Πs

i ). The challenger makes corresponding answer.



Password-Based Tripartite Key Exchange Protocol with Forward Secrecy 737

Without loss of generality, suppose A replaces Di sent to Πs
j (1 ≤ j ≤ 3, j �= i)

with D∗
i , where D∗

i = g
s∗

i∗ = (H(pw∗ ‖ UID ‖ x∗))s∗
i is computed based on a

guessed password pw∗, and x∗(x∗ > 0) is the smallest integer that makes g∗
a generator of a multiplicative subgroup G1 of order q in GF (p)∗, and s∗i is
randomly chosen by A.

Then A computes K∗
i = ê(Dj , Dl)s∗

i = ê(gsj , gsl)s∗
i = ê(g, g)s∗

i ·sl·sj . Simi-
larly, the user Uj(resp.Ul) computes K∗

j = ê(D∗
i , Dl)sj = ê((H(pw∗ ‖ UID ‖

x∗))s∗
i , gsl)sj = ê(g∗, g)s∗

i ·sl·sj (resp. K∗
l = ê(D∗

i , Dj)sl = ê((H(pw∗ ‖ UID ‖
x∗))s∗

i , gsj )sl = ê(g∗, g)s∗
i ·sj ·sl). However, this is only way the adversary A can get

information about K∗
j (resp. K∗

l ) from C∗
j (resp. C∗

l ), namely, A test the guessed
password by checking whether Cj = FK∗

i
(sid ‖ Uj) and Cl = FK∗

i
(sid ‖ Ul) hold,

where sid = Ui ‖ D∗
i ‖ Uj ‖ Dj ‖ Ul ‖ Dl. Therefore, in this case the advantage

that A can obtain is:

Adv3PKF−C2.2
P (t) ≤ Advprf

F (t) + qse

PW
(7)

From Equations(4) to (7) lead to Equation(3).

4.2 Computational Overhead and Bandwidth

Our proposed protocol is similar to Ma et al.’s[17], in which the three users share
a common password without a trusted server. Now we give a comparison with
Ma et al.’s from the bandwidth and computational overhead of the protocols.

Table 1. Protocol Comparison

Protocol Band-Width Computation-Overhead

Ma et al[17] 3|E| 5PA + 5EX + 7HA

Our protocol |E| + |ID| + |HA| PA + 2EX + 5HA

Let Band-Width denote bandwidth per user, Computation-Overhead denote
computation overhead per user, E denote a element of G1, ID denote a user’s
identity, PA denote pairing, EX denote modular exponentiations, and HA hash-
ing. The comparison of our protocol and Ma et al.’s is illustrated in Table 1. We
can see that our protocol is more efficient than Ma et al’s in terms of bandwidth
and computational overhead.

5 Conclusions

A provably-secure protocol using ideal functions may be insecure if the ideal func-
tions are implemented by the real-world functions. Thus a protocol without using
ideal functions in proving its security is more desirable. In this paper, without us-
ing any ideal function, we design a password-based secure tripartite key agreement
protocol that is suitable for the user who has no place to store the high-entropy
long-term secret key or has not support from public key infrastructure.
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Abstract. Corporate credit rating is a very important issue in finance
field. A lot of methods such as neural networks, genetic algorithm and
support vector machine have been proposed to solve this problem. The
credit rating is a complex problem which includes some determinate cri-
teria and other uncertain criteria associating with human judgement
which may be vague or linguistic. Therefore, it includes both quanti-
tative value and qualitative value in credit rating. Furthermore, even for
the same kind of determinate or uncertain criteria, or in other words, for
the same quantitative or qualitative criteria, the assessment domain and
scale are also diverse. Some traditional methods transform all the eval-
uation domain and scale to a uniform one. Accordingly, it may lead to
the loss of information so much as the final total departure of the assess-
ment result. A method dealing with heterogeneous information proposed
by F. Herrera and L. Martinez et al. is a good solution for this problem
which includes various assessment domain and scale. Based on the above,
we take the corporate credit rating process as a multi-criteria evaluation
problem with heterogeneous information in this paper. And we propose a
corporate credit rating method based on multi-criteria evaluation model
with heterogeneous information on 2-tuple fuzzy linguistic model. And
we give a case study of an auto-manufacture corporate credit rating. The
case study shows that the method is feasible for corporate credit rating.

Keywords: Credit Rating, Numerical Information, Linguistic Informa-
tion, Heterogeneous Information.

1 Introduction

A credit rating assesses the credit worthiness of an individual, corporation, or
even a country. Earlier credit ratings are calculated from financial history and
current assets and liabilities. A credit rating tells a lender or investor the prob-
ability of the subject being able to pay back a loan.It usually includes personal
credit ratings, corporate credit ratings and sovereign credit ratings. In this paper,
we will focus on corporate credit rating.

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 739–746, 2008.
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Credit-risk evaluation decisions are important for the financial institutions and
investors involved due to the high level of risk associated with wrong decisions.
Credit rating can provide an decision support tools to manage credit risk and
reduce loan losses for involved financial institution or investors. Because of the
importance of credit rating, a lot of methods such as neural networks [1,25,20,21],
genetic algorithm [19,11], fuzzy set [22,24,23] , support vector machine [10,16]
and hybrid mining approaches in [10,13,12]have been proposed to solve this
problem.

The corporate credit rating is a complex problem. With the development of
finance market and credit rating system and methods, the credit rating involves
not only financial conditions, but also management measure and competitions
of the evaluated enterprises. Besides the determinate numerical indexes such
as profitability ratios and efficiency ratios etc. financial indexes, there are other
factors related to management measure such as administrator’s experience which
are usually linguistic and vague need to be dealt with in corporate credit rating.

We will deal with the credit rating problem from a different point of view in
this paper. In our proposed method, we recognize the corporate credit rating as
a multi-criteria evaluation problem with heterogeneous information.

2 Problem Formulation

The credit rating system and criteria may be different for various evaluated
object and purpose. CAMELS rating system is an international bank-rating
system with which bank supervisory authorities rate institutions according to the
following six factors: C - Capital adequacy, A - Asset quality, M - Management
quality ,E - Earnings, L - Liquidity, S - Sensitivity to Market Risk. However, the
credit rating system for nonfinancial corporation is different from “CAMELS”
rating system. But both CAMELS and other credit rating system include the
heterogeneous information. We will illustrate an Chinese industry corporation
credit rating model as an example in this section. Based on experts’ opinion,
we acquire the following credit rating criteria system and representation form of
every criterion for industry corporation credit rating.

1. Financial Conditions
– Profitability ratios

• Operating margin (Percentage)
• ROA, return on assets (Percentage)
• ROE, return on equity (Percentage)

– Efficiency ratios
• Inventory turnover (time)
• Receivable turnover (time)
• Assets turnover (time)

– Liquidity ratios
• Quick ratio (Percentage)
• Current ratio (Percentage)
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– Leverage ratios
• Times-interest-earned (times)
• Total debt to assets (percentage)
• Debt to equity ratio (Percentage)

2. Management Measure
– administrator’s management experiences (Fuzzy or Linguistic value)
– stockholders structure type (Fuzzy or Linguistic value)
– average sale growth rate during the last three years (Percentage)
– conditions of capital increment during the last three years (Percentage)

3. Characteristics and Perspectives of the products and competitions
– equipment and technologies (Fuzzy or Linguistic value)
– product marketability (Fuzzy or Linguistic value)
– economic conditions of the industry in the next year (Fuzzy or Linguistic

value)

The assessment value which is percentage, time and times can be given in nu-
merical value. However, other evaluation value which is related to human judge-
ment is fuzzy or linguistic nature. Therefore, it is necessary to introduce some
“appropriate” tool to deal with the vague and linguistic information relating to
human judgement in credit rating.

Fuzzy linguistic variable and its corresponding approaches is one of the vague
or imprecise information processing methods. The fuzzy linguistic variable and
its related approach is presented by L. A. Zadeh in 1975 in [28]. After L. A.
Zadeh’s work in 1975, a lot of fuzzy linguistic approaches have been proposed and
applied with very good results to different problems, such as, “education [15]”,
“information retrieval [2]”, and ”decision-making system [3,4,5],[6,7,9] [26,27]”
etc. In addition, fuzzy approaches also can be used to deal with the vagueness
or linguistic nature in credit rating problem in [22,24,14,23].

In fact, besides the existence of numerical evaluation value such as percentage,
time and times, the fuzzy or linguistic value also exists in the above industry
corporation credit rating system.

3 Credit Rating Method with Heterogeneous Information

A method which can deal with heterogeneous information in credit rating will
be proposed in this section based on based on 2-tuple fuzzy linguistic model and
the method proposed in [9,17],.

The following set T = {sk|k = 1, 2, · · · , 7} = {s0 : None (abbr. to N), s1 :
Very Low (abbr. to VL), s2 : Low (abbr. to L), s3 : Medium (abbr. to M), s4 :
High (abbr. to H), s5 : Very High (abbr. to VH), s6 : Perfect (abbr. to P) }
is used to represent the credit grades. We take triangular fuzzy set to denote
sk, sk = (ak, bk, ck), where ak denotes the left limit of the definition domain of
the triangular membership function, ck denotes the right limit of the definition
domain of the triangular membership function, bk denotes the value in which
the membership value is 1. Its corresponding semantic is describe as in figure 1.
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Fig. 1. Semantic of Set of Linguistic Fuzzy Sets

The credit rating method includes two main steps: transformation and aggre-
gation. To prevent loss of information during value transformation, we will first
introduce the following definitions to complete the transformation procedure.

Definition 1. [18] The numerical values includes percentage, time and times
which is absolute value and based on different scale. Actually, the credit evalu-
ation value involved in aggregation should be a relative one based on industry
background. We define the following transformation function as follows in order
to prevent the loss of information. Let max be industry maximal value, min be
industry minimal value, ave be industry average value, x is the evaluation value,
define a function f which transform the absolute numerical value nv to a relative
value f(nv) ∈ [0, 1] as follows:

f(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − max − x

max
, x > avg,

0.5, x = avg,

x − min

min
, x < avg,

(1)

Definition 2. [18] Let T = {sk|k = 1, 2, · · · , 7} = {s0 : None (abbr. to N), s1 :
Very Low (abbr. to VL), s2 : Low (abbr. to L), s3 : Medium (abbr. to M), s4 :
High (abbr. to H), s5 : Very High (abbr. to VH), s6 : Perfect (abbr. to P) } be
credit grades set, define transformation function τ from numerical value in [0,
1] into fuzzy sets in T as follows:

τ : [0, 1] → F (T ),
τ(v) = {(s0, γ0), (s1, γ1), · · · , (sg, γg)}, si ∈ T, ri ∈ [0, 1]

γi = μsi(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if v /∈ Support(μsi(v)),
v − ai

bi − ai
, if ai < v < bi,

1, if v = bi,

ci − v

ci − bi
, if bi < v < ci

(2)

For different evaluated criteria in credit rating, the linguistic term set may be
different from the credit grades set T , we define the following function ψ to
transform all linguistic term into a unifying set T .
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Definition 3. [18] Let S be a evaluation linguistic term set, T be credit grades
set and lv ∈ S be a linguistic term provided by experts. We define the transfor-
mation function ψ from S to T as follows:

ψ : S → T :
ψ(lv) = {(s0, γ0), (s1, γ1), · · · , (s7, γ7)},

γi = maxymin{μlv(y), μsk(y)},

(3)

Definition 4. [17] Transform the fuzzy sets in Ss into the 2-tuples in Ss:

X : F (Ss) → Ss × [−0.5, 0.5),

X (τ(v)) = X ({(sj , γj), j = 0, 1, · · · , g}) = �(
g∑

j=0

j · γj/

g∑

j=0

γj)
(4)

Concretely, the transformation procedure is as follows:

– For numerical value x,
1. We transform every numerical evaluation value nv to a relative value

f(nv), where f(nv) ∈ [0, 1] as in definition 1;
2. Transform the relative value f(nv) into fuzzy sets τ(f(nv)) in T as in

definition 2;
3. Transform fuzzy sets in T to X (τ(f(nv)))linguistic 2-tuples in T as

in definition 4.
– For linguistic value v,

1. Transform the linguistic value lv into fuzzy sets in T as ψ(lv) as in
definition 3 ;

2. Transform fuzzy sets in T to linguistic 2-tuples in T as Xψ(lv) as in
definition 4.

The transformed value can be aggregated as in definition 5.

Definition 5. [8] Let x = {(r1, α1), (r2, α2), · · · , (rn, αn)} be a set of 2-tuples
and W = (ω1, ω2, · · · , ωn) be their associated vector. Then the weighted aggrega-
tion operator on 2-tuple is defined as:

x ◦ W = �(
∑n

i=1 �−1(ri, αi) · ωi∑n
i=1 ωi

) = �(
∑n

i=1 βi · ωi∑n
i=1 ωi

) (5)

4 Case Study

In this section, we will choose two auto-manufacture enterprises “XX” and “YY”
as the case study. All the assessment value is given in table 1. Most data is based
on http://www.cnlist.com and http://mcin.macrochina.com.cn. Some linguistic
evaluation value is the consensus of involved experts’ evaluation.

By using the above proposed method, the credit rating result for XX and YY
is (High, 0.7), (Medium, 0.8)respectively.
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Table 1. Corporate Credit Rating Basic Data Set of Two Corporate

Year 2005 2005

Corporation XX YY

Profitability ratios Operating margin(percentage) 19.5372 13.1393
ROA, return on assets(percentage) 1.42 3.8434
ROE,return on equity(percentage) 3.52 19.45

Efficiency ratios Receivable turnover(time) 42.6851 38.6153
Inventory turnover(time) 4.453 9.2347
Assets turnover(time) 1.1497 2.8768

Liquidity ratios Current ratio(times) 1.1172 1.0541
Quick ratio(times) 0.6977 0.6695

Leverage ratios Total debt to assets(percentage) 55.0177 71.9188
Debt to equity ratio(percentage) 36.092 13.7952
Times-interest-earned(times) -26.7096 21.7646

administrator’s management experiences pretty good pretty good

stockholders structure type pretty good good

average sale growth rate during the last
three years(percentage)

25.94 70.28

conditions of capital increment during the
last three years(percentage)

47.24 9.69

equipment and technology very good very good

product marketability pretty good pretty good

economic condition of the industry in the
next year

rapid increase slow increase

The value of time-interest earned of XX is negative because interest revenue is more
than interest expense during 2005.

Table 2. Linguistic Term Set for Linguistic Evaluated Criterion

Evaluated Criterion Linguistic Term Set

administrator’s management experience {very good, good, pretty good, medium,
bad, pretty bad, very bad}

equipment and technology {very good, good, pretty good, medium,
bad, pretty bad, very bad}

product marketability {very good, good, pretty good, medium,
bad, pretty bad, very bad}

economic condition of the industry in the
next year

{rapid increase, slow increase, fixed, slow
decrease, rapid decrease}

stockholders structure type {good, pretty good, bad}

5 Conclusions and Future Works

In this paper, a credit rating method with heterogeneous information is pro-
posed.We perform an industry corporation credit rating case study based on the
proposed method. and the case study shows that the method is feasible. It should
be pointed out that we focus on proposing a credit rating method dealing with
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heterogeneous information other than establishing a general industry corpora-
tion credit rating system in this paper. Further result on constructing a general
corporation credit rating system based on multi-criteria evaluation framework
will be given in our future research.
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Abstract. The public transit route choosing problem is the key technol-
ogy of public transit passenger information system. Considering travel
time variety caused by uncertainty traffic congestion condition, firstly
this paper designs the least transfer times algorithm and the K shortest
transit paths algorithm in the stochastic transit network. On the basis
of travel psychology analysis, transfer times, travel time and cost of each
transit path plan are taken into account. By changing link travel time re-
liability, the algorithms generate different K shortest transit path plans
under different traffic conditions. Computational experiments demon-
strate the efficiency of the model and algorithm in stochastic transit
network.

Keywords: K-shortest path, stochastic transit network, time reliability,
least transfer times.

1 Introduction

Public transit system is an important part of city transportation system. As its
high efficient utilization of resources, vigorously developing public transit and
bus priority become an inevitable choice to ease the worsening traffic congestion
status. Public transit paths choosing problem has been widely studied during
the past decades [1,2,3,4]. All these studies are based on the average travel time
value.

However, a lot of random factors change the state of traffic network, such as
traffic accidents, weather conditions, road maintenance and even traffic jams.
These random factors will lead directly to the variety of travel time. The relia-
bility of travel time has become an important factor when traveler makes transit

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 747–754, 2008.
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path choice. The low reliability of transit travel time has become a common
phenomenon in many cities. This is also the main reason that makes bus less
competitive.

To give a more reasonable description of the transit paths choice, transit
link travel time is thought to follow normal distribution according to Bell and
Iida’s study [5]. The concept of travel time reliability is introduced. To predict
travel time in the stochastic network, the expected reliability value is presented
according to road traffic congestion status and different personal preference.
During traffic peak time, the transit travel time is longer, and we set bigger
reliability to predict, while in the low peak time, a smaller reliability value is
set. There are always three factors impacting traveler make transit path choice:
transfer times, travel time and cost. The research on passenger psychology (see
[6]) shows that transfer times is the first considered factor, followed by cost and
time.

This paper is organized as follows. First, the impacts on transit path choice
are formulated including transit travel time in stochastic network and the least
transfer times matrix. The improved Dijkstra algorithm is then introduced to
compute the least transfer times. The K shortest transit path algorithm (see
[7,8,9]) is designed based on the stochastic travel time. A numerical stochastic
network example is provided. Conclusion follows in the last section.

2 Impacts on Transit Route Choosing

A public transit network is composed by some nodes (bus stop), the links
connecting two nodes and bus lines. Define a public transit network as G,
G = {N, E, R}, where N = {1 ≤ i ≤ n} denotes the set of all nodes, andnis the
number of nodes; the origin node and the destination node is O, D respectively.
E = {1 ≤ e ≤ m} is the set of all transit links, and m is the number of links;
R = {1 ≤ r ≤ u} is the set of all bus lines, and u is the number of links.

In this paper, we consider three factors: transfer times, travel time and cost.
Transfer times are the most important factor. If there are some nonstop paths
between the origin O and destination D, we choose the path with the least
travel time and cost. If there is no nonstop path existing, then consider one time
transfer paths. The method of determining travel time in stochastic network and
transfer times is discussed follow.

2.1 Time Determination in Stochastic Network

First let’s see the deficiency of the Previous Average Travel Time. The transit
link travel time is thought to follow normal distribution.

The previous method, determining optimal route according to the average
travel time, does not meet our need. For example, in Figure 1, the mean time
of route 1 is less than route 2, so route 1 will be chosen in previous average
time method. However, route 1 with bigger standard deviation, which means
the travel time will fluctuate largely for frequent traffic congestion phenomenon.



The K Shortest Transit Paths 749

Fig. 1. Transit Path Normal Distribution Comparison

On the contrary, the travel time on route 2 has less fluctuation. In the traffic
peak period, it would happen that route 1 takes 60 minutes for serious congestion
while route 2 just needs 50 minutes. In this condition, route 2 will be a better
choice. To solve this uncertainty circumstance, we adopt reliability theory to
describe.

Transit travel time contains two parts: link travel time and transfer time.
Transfer time generates when there is no nonstop bus route existing between
origin and destination. In stochastic network, we suppose both follow normal
distribution. Te: N(te,(σe)2), Tc: N(tc,(σc)2) where t is the mean andσis the
standard deviation.

Definition 1. Reliability of Link Travel Time
The reliability of link travel time can be defined as (see [10]): considering the
uncertainty and randomness of the travel time, the probability of the link travel
time to be less than some given time t0: ρ = P (Te ≤ t0), ρ ∈ [0, 1].

teρ : travel time on link e under reliability ρ, P (Te ≤ teρ) = ρ. Set φe(x) =
P (Te ≤ x) be distribution function of Te, then teρ = φ−1

e (ρ). So we can calculate
teρ if know Te and ρ.

trijρ : The estimated travel time from node i to j on bus line r, which is the
sum of travel time teρ of passed links.

tcρ : The transfer times under reliability ρ.

During traffic peak time period, travel time is generally long, high reliability
value will be appropriate, ρ> 0.5. In the low peak time, we set ρ < 0.5. If users
belong to risk taking categories, they will tend to choose path with lower travel
time, less reliability value will be set. The risk avoiding categories will tend to
choose the route with higher reliability will be adopted.

2.2 The Least Transfer Times

Definition 2. The Adjacency Matrix
We denote δ = {δri|r ∈ R, i ∈ N} as the adjacency matrix between bus line r
and node i. If the bus line r passes node i, then δri = 1, otherwise 0.
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Definition 3. Nonstop Matrix
Nonstop matrix is defined as A = {aij |i, j ∈ N}, if there exist nonstop bus line
passing from node i to j , then aij = 1; otherwise aij = +∞,aii = 0. We can get
aij by the correlation matrix: if maxr δri · δrj = 1, then aij = 1; and aij = +∞
when maxr δri · δrj = 0.

Definition 4. Least Transfer times
We define the least transfer times matrix as: W = {wij |i, j ∈ N}, where wij is
the least transfer times from node i to j . wiD denotes the least transfer times
from node i to D . If node i can’t reach node j in the transit network, then
wij = +∞.

3 K Shortest Transit Paths Algorithm

The K shortest transit paths algorithm contains two parts. The first is the least
transfer times matrix algorithm, which provides a heuristic value to the second
algorithm, the K shortest transit paths search algorithm.

3.1 The Least Transfer Times Algorithm

In transit shortest algorithm, the least transfer times has been widely researched
(see [11,12,13]). In this paper, we put forward an improved Dijkstra algorithm
according to the nonstop matrix to calculate the least transfer times from all
nodes i to the destination D: wiD. The algorithm 1 is shown as follow.

Step1: ∀i ∈ N , construct the correlation matrix δ and nonstop matrix A,
initialize wiD = +∞, wDD = 0, put all notes in queue Q.

Step2: If Q is not empty, then do {y} ← {i|wiD = min wjD, j ∈ Q}, Q ←
Q − {y}; otherwise, the algorithm ends.

Step3: For all nodes i ∈ N , y and wiD is finite, if wiD > wyD + aiy, then
wiD = wyD + aiy, if not, go to Step2.

3.2 The K Shortest Transit Paths Search Algorithm

The past transit path search algorithms are mostly the shortest path algorithm
(see [14,15]). In the shortest path problem there is a single label assigned to each
node j, while in the K shortest paths problem we may have K labels for each
node which can record K paths. The label of node j is formed by five K-tuple:
πj , σj , ξj , ηj and θj . While πk

j , σk
j , ξk

j , ηk
j and θk

j is the kth respective component.
πk

j and σk
j , respectively denotes the travel time and transfer times of a path from

original node O to node j; ξk
j and θk

j means the node i before j in that path
and its position in ξi , respectively. ηk

j is the bus line connecting node j and the
previous node i.

To improve the efficiency of search algorithm, we set a maximum tolerant
transfer times Y from the origin O to the destination D, such that σk

j +wjD ≤ Y .
It means that the sum of the transfer times from original node O to node j and
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the least transfer times from node j to destination D must be less or equal to
the maximum tolerant transfer times. If this condition isn’t satisfied, there is no
need to search any further. In this way, unnecessary calculations are effectively
avoided. The general form of the K shortest transit paths search algorithm is
given in Alg.1. The value of wiD can generate in Algorithm 1. Q is a first-in-
first-out queue.

Data: tr
ijρ,tcρ,wiD;

{π1
i , ..., πK

i } ← {+∞, ..., +∞}, ∀i ∈ N ;
ξ1

O, η1
O ← null;

π1
O , σ1

O ← 0, Q ← {O}
while Q �= ∅ do

i ←the top node of queue Q;
Q ← Q − {i};
for bus linerthat passes nodei do

for nodejthat follows nodeion the bus liner do
for k ∈ {1, ..., K}such that πk

i is unused and finite do
l ←order of max{π1

j , ..., πK
j } in {π1

j , ..., πK
j }

while ηl
j �= r, σk

i + wiD ≤ Y ,and πk
i + tn

ij + tc < πl
j do

πl
j ← πk

i + tr
ijρ + tcρ;

σl
j ← σk

i + 1;
ξl

j ← i;
ηl

j ← r;
θl

j ← k;
while j /∈ Q do

push node j into queue Q;
end

end
end

end
end

end
The k shortest paths can be built with label ξj , ηj and θj by recursive function.

1. The K Shortest Transit Paths Search Algorithm

4 Computational Experiments

Figure 2 is an instance of transit network, including 15 nodes , 22 links and 6
one-way bus lines, R1, R2. . . R6. The origin and the destination are node1, 15,
respectively.The travel time on links in stochastic network show in Table 1, and
the transfer time follows:N(5,3).

As the principle of setting reliability, we give three reliability valueρ=0.5,0.2,0.9
to see the different choices in the three traffic condition, respectively: the general
traffic condition, the low peak time traffic, and the serious traffic congestion con-
dition. The results of the algorithm 1 and 2 are shown as the following to different
reliability.
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Fig. 2. Transit Network Example

Table 1. Link Travel Time Normal Distribution

Link 1, 2 3 4, 10, 14, 15 5, 6, 19 7, 9
T ime N(10, 1) N(10, 0.5) N(8, 4) N(9, 0.8) N(8, 1)
Link 8 11, 12 13, 18, 17, 21, 22 16 20
T ime N(7, 1) N(7, 0.8) N(8, 0.8) N(9, 1.2) N(6, 0.8)

Table 2. The K Shortest Paths under General Traffic Condition

Rank T ime Cost T ransfer Paths
1, 2 50 3 2 1, R4, 5, R1, 7, R6, 151, R4, 5, R3, 7, R6, 15
3,4 51 2 1 1,R4,7(6),R6,15;
5 55 2 1 1,R1,2,R2,15

Status 1. The general traffic condition, we set ρ=0.5.
In Table 2, Rank means the ranking of paths’ travel time, and Transfer means
the transfer times of paths. The path, taking [ 1,R4,7(6),R6,15 ] for example,
means starting from node 1 to node 7 or 6 by bus line R4, then transfers for bus
line R6 to the destination node 15.

The least transfer times is 1, which means nonstop bus line doesn’t exist from
node 1 to 15. If the transfer times (according to passenger’s psychology analysis)
take priority over other factors, then the best route is : [ 1,R4,7(6),R6,15 ]. If we
prefer shorter travel time, then [ 1,R4,5,R1,7,R6,15 ] and [1,R4,5,R3,7,R6,15]
will be chosen.

Status 2. Traffic low peak time period, we setρ=0.2.
The best route in the low peak time is [ 1,R1,2,R2,15 ], while the best path [
1,R4,7(6),R6,15] in Status 1, which takes more time here, ranks 11th (and 12th ).
The influence of traffic condition is obvious here.
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Table 3. The K Shortest Paths under Traffic Low Peak Condition

Rank T ime Cost T ransfer Paths
1 37.5 2 1 1,R1,2,R2,15
2 40 2 1 1,R4,5,R2,15
3,4 40.4 4 3 1,R1,2,R2,12,R5(R3),11,R6,15
5 41 4 3 1,R1,2,R2,5,R1,7,R6,1
11,12 43.9 2 1 1,R4,7(6),R6,15

Table 4. The K Shortest Paths under Serious Traffic Congestion Condition

Rank T ime Cost T ransfer Paths
1,2 61.8 2 1 1,R4,7(6),R6,15;
3,4 63.3 3 2 1,R4,5,R1(R3 ),7,R6,15
5 64.9 2 1 1,R1,3,R6,15
6 66.1 2 1 1,R1,7,R6,15
15 81.7 2 1 1,R1,2,R2,15

Status 3. Traffic peak time period, with serious traffic congestion, we setρ=0.9.
In traffic peak time, paths [ 1,R4,7(6),R6,15 ] are the best choices being composed
of links ( 2,7,8,11,13,20 ) with small standard deviation (see Table 1). There is
little fluctuation on travel time. It means that in traffic peak time, paths with
less time-variety are more likely to be chosen. Nevertheless, the best path [
1,R1,2,R2,15 ] in Status 2 contains links ( 1,4,10,14,15,21 ) with big standard
deviation, the travel time is really long in the traffic congestion condition and it
ranks the 15th here.

The demonstration shows that in the traffic peak time, the path with low
fluctuation on travel time is more likely to be chosen. But during the low peak
time, people will choose the path with wide time-variety for less travel time.

5 Conclusion

The result of the demonstration shows that the K shortest transit paths search
algorithm based on the stochastic transit network can effectively provide best
choice under different traffic condition by setting different reliability value to link
travel time. The running time and the results of the least transfer times algorithm
and the K shortest transit paths choosing algorithm are satisfactory. In this
paper, we propose the method of setting reliability value by the understanding
of the traffic status. However, it’s so hard to hold the entire road information
that there must be some errors. How to set a right reliability being closer to
practical situation should be further studied.

The factors of transit path choosing include travel time, cost and transfer
times. In fact, there are a lot of factors working on the passengers’ decision
for complicated transit network, such as the bus departure frequency, transfer
walking distance, the feasible walking range and individual preference. These
facts should be taken into consideration to meet the needs of different users.
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Abstract. Compared with extracting rules from complete data, it is
more difficult to obtain rules from incomplete data for fault diagnosis.
In this paper, based on the rough set theory, a method is proposed to
directly extract optimal generalized decision rules from incomplete a de-
cision table for fault diagnosis (IDTFD). The discernibility matrix prim-
itive is defined and characterized to simplify the computing process. A
definition of object-oriented discernibility matrix in IDTFD is also pro-
posed. Using these concepts, an object-oriented discernibility function is
constructed. With the basic equivalent forms in proposition logic such as
distribution laws, absorption laws, a method is proposed to compute the
minimal object-oriented reductions and to extract the optimal general-
ized decision rules in IDTFD. The proposed method is applied in fault
diagnosis of operational states of an electric system. The effectiveness of
this method is shown in our experiments.

Keywords: Fault diagnosis, Incomplete decision table, Discernibility
matrix primitive, Rule extraction.

1 Introduction

Incompleteness, an important characteristic of fault in complex system, is a key
research area in the study of the intelligent fault diagnosis theory and method
[1]. Human experts mostly make decisions based on incomplete data. There-
fore, intelligent fault diagnosis should be able to diagnose and infer in the same
situation.

In fault diagnosis, a method is needed so that even when the data is incom-
plete, diagnosis decision rule can still be extracted for inference, decision-making
and providing maximum probable solution. Doubtlessly, the research of rule ex-
traction from incomplete data has practical value.

By using the Rough Set (RS) theory proposed by Pawlak [2] in 1982, the
imprecise, inconsistent, incomplete and uncertain information can be effectively
analyzed and handled. The hidden knowledge and latent rules can then be dis-
covered. Therefore, this theory has been widely applied in machine learning,
data mining, artificial intelligence etc.[3].

G. Wang et al. (Eds.): RSKT 2008, LNAI 5009, pp. 755–762, 2008.
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The research on incompleteness plays a key role in the study of rough set.
Many researchers have studied incomplete data in knowledge acquisition. Chmie-
lewski [4] processed data by changing incomplete data set into complete one
through removing objects with null values or replacing null values with the most
common values. Kryszkiewicz [5,6] expanded the equivalence relations in the tra-
ditional rough set theory and proposed similarity relation, which acquired rules
in incomplete data set without the necessity of obtaining the null attributes-
value. Leung [7] put forward a knowledge discovering method which combined
the maximal consistent block technology and rough set method in the rule ac-
quisition from incomplete data. Yin [8] described the object relationship in the
incomplete information system through controlling non-symmetric similarity re-
lations so that the categorization of the object generated was more reasonable.
Leung [9] have proposed the concept of similarity classes in incomplete informa-
tion system, which was used in mining certain and association rules in incomplete
decision tables, and have also given the new quantitative measures.

For the incomplete data in fault diagnosis, Li [10] replaced each attribute
of the example having incomplete attribute value with all the possible values
that appeared in other observations with the same concept as the example.
However, for data set with too many incomplete data, adoption of the method
may drastically increase the scale. To solve this problem, based on the similarity
relations forwarded by Kryszkiewicz, this paper proposes a rough set method
which can extract optimal generalized diagnostic decision rule directly without
changing the scale of the table.

2 Incomplete Decision Table for Fault Diagnosis

Definition 1. [11] A incomplete decision table for fault diagnosis (IDTFD)
can be denoted by a triplet IDTFD =< U, M ∪ {d}, f >, in which,
(1) U is finite nonempty set, called fault object domain;
(2) M , the finite nonempty set, is called fault symptom attributes set, where d is
another attribute distinguished from the attributes in set M , which is called fault
decision attribute. Then, d �∈ M . VM = ∪a∈MVa is the set of attribute-value,
where Va is the domain value of symptom a.
(3) For every a ∈ M , there is a mapping fa : U → Va.
(4) For at least one attribute a ∈ M , Va contains null value (∗), and ∗ �∈ Vd.

In Definition 1, the null value only occurs in the value domain of symptom
attribute, while the value domain of decision attribute contains no null value.
This paper considers the example in which the decision attribute-value contains
null value as mistakes, which are then deleted.

In the following section, we will take the central database of electric power
control center [11]. Its IDTFD is shown in Table 1, in which each row represents
one type of operational points usually pre-designated by experts (operators or
engineers), while the last column is the value of generalized decision function
calculated from data object.



Rule Extraction Method in IDTFD Based on Discernibility Matrix Primitive 757

Table 1. The IDTFD and its generalized decision function

U k c1 c2 c3 c4 c5 c6 c7 c8 d ∂M (xi)

x1 2 M M L N H N 1 1 S {S}
x2 1 ∗ M ∗ N H ∗ 1 1 S {S, U2}
x3 3 M L L ∗ H ∗ ∗ 1 S {S, U1}
x4 2 ∗ ∗ M N N N 0 1 S {S}
x5 1 M ∗ L ∗ H N 1 1 S {S, U1}
x6 1 ∗ M ∗ N ∗ ∗ 1 1 S {S, U2}
x7 3 L ∗ L ∗ ∗ H ∗ 1 U2 {S, U1, U2}
x8 2 L ∗ M H L ∗ 0 1 U2 {U1, U2}
x9 1 ∗ M M ∗ L H ∗ 1 U2 {S, U1, U2}
x10 1 L M ∗ H N ∗ 0 1 U2 {U1, U2}
x11 1 H ∗ M L H L ∗ 1 U2 {U2}
x12 4 ∗ M ∗ H ∗ H ∗ 1 U1 {U1, U2}
x13 2 L H M ∗ N H 0 1 U1 {U1}
x14 1 M ∗ ∗ L ∗ ∗ 1 1 U1 {S, U1, U2}

Fault symptom attribute set M = {c1, c2, c3, c4, c5, c6, c7, c8}, where c1, c2, c3
are the ratios of real power flows in transmission lines according to its nominal
capacity, Vci = {L, M, H}, where i = 1, 2, 3, L, M, and H mean that the ratios
are lower than 40%, larger than 40% but lower than 70%, and larger than 70%,
respectively. c4, c5 and c6 represent the normalized values of actual voltage in
transmission line, Vci = {L, N, H}, i = 4, 5, 6, L, N, and H are the normalized
value of actual voltage in transmission line, which are lower than 0.85, larger
than 0.85 but lower than 1.05 and larger than 1.05, respectively. c7 and c8 are
the states of circuit-breaker, Vci = {0, 1}, 0 means “on ”, while 1 means “off
”, i = 7, 8. The decision attributes are d, Vd = {S, U1, U2}, which correspond
to the three operational states: safe (S), unsafe level 1 (U1), and unsafe level 2
(U2). k signifies the number of the points at the same state.

Obviously, in IDTFD, the indiscernibility relation in the traditional rough
set is not valid anymore. Therefore, the similarity relation [5] is adopted in this
paper to describe the object relation in fault state domain U .In IDTFD , let
B ⊆ M , then, the similarity relation in U is denoted as: S(B) = {(x, y) ∈
U × U | ∀a ∈ B, fa(x) = fa(y) or fa(x) = ∗ or fa(y) = ∗}.

Let SB(x) be object set {y ∈ U | (x, y) ∈ S(B)}. SB(x) describes all the
objects similar to x in domain U for symptom attribute set B. Let U/S(B) =
{SB(x) | x ∈ U}, which represents all the similarity classes of objects classified
from domain U according to the symptom attribute B.

3 Optimal Generalized Diagnosis Decision Rules

In actual instance of fault diagnosis, the raw data acquired from equipment are,
to some extent, usually inconsistent. In order to deal with the inconsistency, the
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generalized decision rule proposed by Kryszkiewicz,M. [6] is adopted to describe
the inconsistency.In IDTFD , let B ⊆ M , for any x ∈ U , then the function that
satisfies the following function,∂B(x) = {fd(y) | y ∈ SB(x)},is the generalized
decision function of IDTFD.

∂B(x) defines the usable information, where object x is possibly classified
in the decision class. If card(∂M (x))=1, then, x can be definitely classified in
the decision class which includes only one decision value, card(·) denotes the
cardinality of set. In Table 1, the generalized decision function of every object
is shown in the last column.

The knowledge hidden in IDTFD can be discovered and expressed in the
form of decision rules: t → s, where t = ∧(a, v), a ∈ B ⊆ M, v ∈ Va \ {∗}, s =
∨(d, w), w ∈ Vd. Henceforth, t and s stand for the condition and decision part
of the rule t → s, respectively. ∧ and ∨ are the conjunction and disjunction in
the logic calculation. In addition, the attribute-value pair (a, v) satisfies object
set, then, {xi ∈ U | fa(xi) = v}, which is denoted as ‖ (a, v) ‖. Let ‖ t ‖ be
the object set that satisfies the condition part t and ‖ s ‖ be the object set that
satisfies the decision part s of the decision rule.

In IDTFD, x ∈ U , it is denoted that object x supports a fault diagnosis
decision rule t → s, if and only if x simultaneously satisfies the condition part t
and the decision part s.

In IDTFD , the decision rule t → s is denoted as generalized , if and only if
{x ∈ U | SB(x)∩ ‖ t ‖�= ∅} ⊆‖ s ‖,where B are all the symptom attributes that
occur in the condition part t of decision rule.

In IDTFD, if a decision rule t → s is the generalized decision rule, then,
the decision rule is regarded as consistent. In addition, if the conjunction of
the decision rule obtained from IDTFD is generalized, then, IDTFD is called
consistent, or else, it is inconsistent. The consistency of IDTFD means that
diagnosis decisions can be made based on the condition provided by IDTFD
without contradiction.

In IDTFD, a fault diagnosis rule t → s is called optimal generalized rule. If
and only if it is generalized, then, the rules, formed by any proper subset of
conjunction and disjunction occurring in t or s, are not generalized. IDTFD is
consistent, if and only if for any x ∈ U , card(∂M (x))=1.

The example xi in Table 1 and the corresponding row can all be denoted
as decision rules. Then, it can be inferred that decision rule in Table 1 can be
further reduced by deleting the attribute-value of condition part to form the
optimal generalized decision rule.

4 Discernibility Matrix Primitive

In the fault diagnosis based on rough set, usually, the original decision table
undergoes the symptom reduction and value reduction process to extract the
concise diagnosis rule. In order to improve the efficiency of decision rule acqui-
sition, this paper combines the symptom reduction and value reduction, and
proposed an object-oriented reduction method. The method is used to extract
the optimal generalized diagnosis decision rule from IDTFD.
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Definition 2. In IDTFD =< U, M∪{d}, f >, the subset of symptom attributes
B ⊆ M is the reduction of the object-oriented x ∈ U , if and only if

∂B(x) = ∂M (x) and ∀B′ ⊂ B, ∂B′(x) �= ∂M (x). (1)

In IDTFD, some objects contain unknown symptom attribute-values, so the clas-
sical equivalence relation is expanded to similarity relation, and the discernibility
matrix for complete system needs to be expanded too. In the following part, the
concept of discernibility matrix primitive in IDTFD is given first.

Definition 3. [11] In IDTFD =< U, M ∪ {d}, f >, where (xi, xj) ∈ U × U .
βM (xi, xj), the discernibility matrix primitive is denoted as

βM (xi, xj) =

{
{a ∈ M | fa(xi) �= ∗, fa(xj) �= ∗, fa(xi) �= fa(xj)}, fd(xj) �∈ ∂M (xi)
∅, fd(xj) ∈ ∂M (xi)

(2)

From the Definition 3, it can be seen that the discernibility matrix primitives
may not be symmetrical, i.e., βM (xi, xj) and βM (xj , xi) are not always equal.
The following properties give the equivalent condition of the discernibility matrix
primitive [12].

Property 1. In IDTFD=< U, M ∪ {d}, f >, (xi, xj) ∈ U × U . βM (xi, xj) is
the discernibility matrix primitive. If ∂M (xi) ∩ ∂M (xj) = ∅, then βM (xi, xj) =
βM (xj , xi).

Property 2. In IDTFD=< U, M ∪ {d}, f >, (xi, xj) ∈ U × U . βM (xi, xj) is
the discernibility matrix primitive. If ∂M (xi) = ∂M (xj), then βM (xi, xj) =
βM (xj , xi) = ∅.

Property 3. In IDTFD=< U, M ∪{d}, f >, (xi, xj) ∈ U ×U . βM (xi, xj) is the
discernibility matrix primitive. If ∂M (xj) ⊂ ∂M (xi), then βM (xi, xj) = ∅.

From Properties 1, 2 and 3, the calculation process of discernibility matrix prim-
itive can be simplified as follows: for two objects whose intersection of the gener-
alized decision function value sets are null, since discernibility matrix primitives
βM (xi, xj) and βM (xj , xi) are equal, only one of them needs to be calculated.
When the two generalized decision function value sets are completely equal, the
discernibility matrix primitives are null. For discernibility matrix primitives, if
the generalized decision value set of column elements is the proper subset of
the generalized decision value set of row element, then, the discernibility matrix
primitive is null.

5 The Extraction of Optimal Generalized Decision Rule

According to Definition 3, the following part defines the object-oriented dis-
cernibility matrix in IDTFD, which then can be used to construct the object-
oriented discernibility function so as to obtain the object-oriented reduction in
the IDTFD.
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Table 2. The object-oriented discernibility matrix of examples

xi \ xj x1 x2 x3 . . . x13 x14

x1 ∅ ∅ ∅ . . . c1, c2, c3, c5, c6, c7 c4

x2 ∅ ∅ ∅ . . . c2, c5, c6 c4

x3 ∅ ∅ ∅ . . . ∅ ∅
...

...
...

...
...

...
...

x12 c4, c6 c4 c2 . . . ∅ ∅
x13 c1, c2, c3, c5, c6, c7 c2, c5, c7 c1, c2, c3, c5 . . . ∅ ∅
x14 ∅ ∅ ∅ . . . ∅ ∅

Definition 4. In IDTFD =< U, M ∪ {d}, f >, card(U) = n, let βM (xi, xj)
be the discernibility matrix primitive, where xi, xj ∈ U . The n × n matrix
[βM (xi, xj)]n×n formed by discernibility matrix primitives is the object-oriented
discernibility matrix, where i, j = 1, 2, . . . , n. �(xi) = ∧ ∨ βM (xi, xj), i, j =
1, 2, . . . , n, which is seen as the object-oriented discernibility function of xi. If
βM (xi, xj) = ∅, then, let ∨βM (xi, xj) = 1, or else, ∨βM (xi, xj) is the disjunctive
variable corresponding to the symptom attributes included in βM (xi, xj).

According to Definition 4, the object-oriented discernibility matrix correspond-
ing to Table 1 is obtained and shown in Table 2.

In IDTFD, the object-oriented discernibility function object �(xi), of the
object xi, is a conjunctive normal form. When it is converted to its equivalent
disjunctive normal form, conjunctive normal forms of the disjunctive normal
form define all the object-oriented reduction of object xi. According to the defi-
nition of minimal reduction, it can be easily known that the conjunctive normal
forms with the least symptom attributes are the minimal object-oriented reduc-
tions of xi, denoted as Rmin(xi). The proved calculation for the acquisition of
minimal reduction is a problem of NP-hard. Therefore, combined with the basic
equivalent forms of proposition logics, this paper proposes a method to calculate
the minimal object-oriented reduction. The method is given below.

(1) The discernibility function �(xi) of object-oriented xi is denoted as the
conjunctive normal form of several disjunctive normal forms.

(2) For every disjunctive normal form, starting from the one with the least
symptom attributes, the absorption law of proposition logic is used to get rid of
the superset of the disjunctive normal form.

(3) The number of occurrence of every symptom attribute is obtained. Then,
the symptom with the highest number of occurrence (at least twice) is extracted
as the common factor. The distribution law in the proposition logic is used to
realize equivalent conversion.

(4) Repeat processes (2) and (3) until the absorption law cannot be applied.
After the conversion, the conjunctive normal forms with the least symptom at-
tributes in the disjunctive normal forms are the object-oriented reduction of
object xi.
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Table 3. The optimal generalized diagnosis rule set of examples

Number Optimal generalized diagnosis rule Support Support

degree object

r1 (c4, N) ∧ (c6, N) → (d, S) 4 x1, x4

r2 (c2, M) ∧ (c4, N) → (d, S) ∨ (d, U2) 4 x1, x2, x6

r3 (c4, N) ∧ (c5, H) → (d, S) ∨ (d, U2) 3 x1, x2

r4 (c4, N) ∧ (c7, 1) → (d, S) ∨ (d, U2) 4 x1, x2, x6

r5 (c1, M) ∧ (c2, L) → (d, S) ∨ (d,U1) 3 x3

...
...

...
...

r18 (c2, M) ∧ (c4, H) ∧ (c6, H) → (d, U1) ∨ (d, U2) 4 x12

r19 (c2, H) ∧ (c3, M) ∧ (c5, N) ∧ (c6, H) → (d,U1) 2 x13

After the object-oriented reduction of all the objects are obtained, the gener-
alized fault diagnosis decision rule for IDTFD can be determined consequently.
Then, the decision part and the condition part of the generalized diagnosis deci-
sion rule supported by every object in IDTFD are combined. The support degree
(the number of examples supported by the rule) and the support object of the
decision rule are taken as the evaluation criteria [11] for the optimal generalized
diagnosis decision rule set supported by IDTFD, as shown in Table 3.

The diagnosis decision rule of Table 3 is the concise summary and direct
demonstration in Table 1. It can provide decision support in the follow-up recog-
nition of security state of the operation point for operators in the control center
of electric power system. The rules provide a sound base for the follow-up con-
struction of fault diagnosis knowledge base.

6 Conclusion

In this paper, the fault diagnosis from incomplete data was analyzed. The fault
data provided by similarity relation in IDTFD was utilized and the concepts
of optimal generalized decision rule in IDTFD were proposed. The consistency
of the fault diagnosis was also studied. Some concepts such as the discernibility
matrix primitive, object-oriented discernibility matrix and discernibility function
were proposed. The two processes of symptom reduction and value reduction in
the existing rough-set-based fault diagnosis method were combined. Along with
the basic equivalent forms in the proposition logics, minimal object-oriented re-
duction method was proposed, which was used to directly obtain concise optimal
generalized diagnosis decision rule in IDTFD. The fault decision rule contained
incomplete data which made it convenient to infer or make decisions facing new
fault state. This paper provided the application steps of diagnosis method based
on a real example of the security status of operation point in an electric power
system. The proved effectiveness showed that the method could also be used in
the fault diagnosis in engineering field such as in mechanical equipments.
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