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Abstract. The study of random instances of NP complete and coNP
complete problems has had much impact on our understanding of the
nature of hard problems as well as the strength and weakness of well-
founded heuristics. This work is part of our effort to extend this line of
research to intractable parameterized problems. We consider instances of
the threshold dominating clique problem and the weighted satisfiability
under some natural instance distribution. We study the threshold behav-
ior of the solution probability and analyze some simple (polynomial-time)
algorithms for satisfiable random instances. The behavior of these sim-
ple algorithms may help shed light on the observation that small-sized
backdoor sets can be effectively exploited by some randomized DPLL-
style solvers. We establish lower bounds for a parameterized version of
the ordered DPLL resolution proof procedure for unsatisfiable random
instances.

1 Introduction

The theory of parameterized complexity and fixed-parameter algorithms is be-
coming an active research area in recent years [1,2]. Parameterized complexity
provides a new perspective on hard algorithmic problems, while fixed-parameter
algorithms have found applications in a variety of areas such as computational
biology, cognitive modelling, and graph theory. Parameterized algorithmic prob-
lems also arise in many areas of artificial intelligence and satisfiability search.
See, for example, the survey of Gottlob and Szeider [3].

Recently, some problems related to detecting backdoor sets for instances of
the propositional satisfiability problem (SAT) have been studied from the per-
spective of parameterized complexity [4,5,6]. In particularly, the issue of the
worst-case intractability versus the practical hardness of the backdoor detection
problem has been raised: while the backdoor detection problem is NP-complete
and/or fixed-parameter intractable for many types of backdoors, SAT solvers
such as SATZ can exploit the existence of small-sized backdoors quite effectively
[4,5,7].
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The study of the parameterized proof complexity of the satisfiability problem
has been initiated in [8] where lower bounds on the parameterized resolution
proof are established for CNF formulas that encode some first-order combinato-
rial principle.

The study of random instances of NP and coNP complete problems such as
SAT has had much impact on our understanding of the nature of hard prob-
lems, the strength of resolution proof systems, and the strength and weakness
of algorithms and well-founded heuristics [9,10,11,12,13,14,15].

This work is part of our effort to extend this line of research to intractable pa-
rameterized problems [16]. We discuss random instances of problems whose para-
meterized version is W[2]-complete, including instances of the dominating clique
problem from the Erdös-Renyi random graph and instances of the weighted CNF
satisfiability problem from a carefully-designed random distribution.

We establish lower and upper bounds on the threshold of the phase transition
of the solution probability, and show that in some region of the instance space,
satisfiable instances can be solved by simple algorithms in polynomial/fixed-
parameter time with high probability. Since finding a solution to a satisfiable
instance of the parameterized problems under our consideration can be viewed
as the task of detecting backdoor sets with respect to an (extremely) naive
sub-solver that simply checks whether the all-zero assignment is a satisfying
assignment, the behavior of these simple algorithms may help shed light on the
observation that small-sized backdoor sets can be effectively exploited by some
randomized DPLL-style solvers (See our discussion at the end of Section 3.2).

For random instances in the unsatisfiable region, we establish a lower bound
on the search tree size of the parameterized version of a basic resolution proof
procedure — the ordered DPLL algorithm.

In the next Section, we define necessary terminologies and notation. In Section
3, we discuss the random models and the main results. Sections 4 through 6
contain the proofs of the results.

2 Preliminaries

An instance of a parameterized decision problem is a pair (I, k) where I is a
problem instance and k is an input parameter. A standard example is the pa-
rameterized vertex cover problem where an instance (I, k) consists of a graph I
and a positive integer k, and the question is to decide whether the graph has a
vertex cover of at most k vertices. A parameterized problem is fixed-parameter
tractable (FPT) if any instance (I, k) can be solved in f(k)|I|O(1) time.

Parameterized problems are inter-related by parameterized reductions, result-
ing in a classification of parameterized problems into a hierarchy of complexity
classes FPT ⊂ W [1] ⊂ W [2] · · · ⊂ XP. At the lowest level is the class of FPT
problems. The top level XP contains all the problems that can be solved in time
f(k)ng(k). It is widely believed that the inclusions are strict and the notion of
completeness can be naturally defined via parameterized reductions.
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Domination-style problems such as the dominating set problem are represen-
tative W [2]-complete problems. However, the behavior of random instances of
the dominating set problem is not interesting. For sparse random graphs G(n, p)
with p ∈ o(1), the size of the minimum dominating set is larger than log n. For
dense random graphs G(n, p) with 0 < p < 1 a fixed constant, any vertex subset
of size log1/(1−p) n is a dominating set.

We consider the dominating clique problem in the Erdos-Renyi random graph
G(n, p), hoping that due to the clique constraint, random instances will have a
much richer structure. The CNF formulas encoding the instances of the domi-
nating clique problem are interesting since their structure bears similarities to
that of the CNF formulas that encode instances of practical problems such as
planning and model-checking, making them potential good benchmarks for the
empirical study of satisfiability search algorithms [17]. Generalizing this observa-
tion, we further propose and study a random distribution defined by combining
a W[1]-complete problem and a W[2]-complete problem: the weighted 2-CNF
satisfiability and the general weighted CNF satisfiability.

2.1 The Threshold Dominating Clique Problem

Given a graph G(V, E), we use N(v) to denote the set of neighbors of a vertex
v ∈ V and use N(U) to denote the open neighbor of a subset of vertices U , i.e.,

N(U) = {v ∈ V \ U : N(v) ∩ U �= φ}.

The cardinality of a vertex set U is denoted by |U |. A clique is a subset of vertices
that induces a complete subgraph. A dominating set is a subset VD of vertices
such that N(v) ∩ VD �= φ, for all v ∈ V \ VD.

We use G(n, p) to denote the Erdös-Renyi random graph where n is the num-
ber of vertices and p is the edge probability. In G(n, p), each of the possible

(
n
2

)

edges appears independently with probability p. Throughout the paper when we
say “with high probability”, we mean that the probability of the event under
consideration is 1 − o(1).

Definition 1. Let G(V, E) be a graph. An α-threshold dominating clique of G
is a subset of vertices VD ⊂ V that induces a clique such that for all v ∈ V \VD,
|N(v) ∩ VD| ≥ α. A 1-threshold dominating clique is simply called a dominating
clique.

The dominating clique problem is NP-complete and W[2]-complete when para-
meterized by the size of the clique [1]. The α-threshold dominating clique can
also be shown to be W[2]-complete by a reduction from the threshold domi-
nating set problem (see the Appendix of [1] for the definition of the threshold
dominating set problem).

2.2 The Weighted CNF Satisfiability Problem

As in the theory of NP-completeness, the propositional satisfiability problem
also plays an important role in the theory of parameterized complexity. A CNF
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formula over a set of Boolean variables is a conjunction of disjunctions of literals.
A d-clause is a disjunction of d-literals. An assignment to a set of n Boolean
variables is a vector in {0, 1}n. The weight of an assignment is the number
of the variables that are set to 1 (true) by the assignment. A representative
W [1]-complete problem is the following weighted d-CNF satisfiability problem
(weighted d-SAT):

Problem 1. Weighted d-SAT
Instance: A CNF formula consisting of d-clauses and a positive integer k.

Question: Is there a satisfying assignment of weight k?

Unlike the traditional satisfiability problem, the weighted 2-SAT is already W[1]-
complete. The anti-monotone weighted d-SAT problem (the problem where each
clause contains negative literatures only) is also W[1]-complete. The weighted
satisfiability problem (weighted SAT) is similar to the weighted d-SAT except
that there is no restriction on the length of a clause in the formula. The weighted
SAT is a generic W[2] complete problem.

A formal definition of a parameterized tree-like resolution proof system for
weighted SAT is given in [8]. Basically, a parameterized resolution system can
be regarded as a classical resolution system that has access (for free) to all clauses
with more than k negated variables, where k is the parameter of the weighted
SAT.

The most widely-used algorithms for the traditional satisfiability problem are
variants of the Davis-Putnam-Logemann-Loveland (DPLL) procedure [18]. We
consider the parameterized version of the DPLL algorithm for weighted SAT. It
proceeds in the same way as the standard DPLL algorithm with the exception
that a node in the search tree fails if

1. either a clause has been falsified by the partial assignment, or
2. the number of variables assigned to true in the partial assignment has ex-

ceeded k.

This way of parameterizing a proof procedure was proposed in [8].
We will provide a lower bound on a weaker version of the parameterized

variants of the DPLL procedure — the parametric ordered DPLL. In the ordered
DPLL [10], the variables are given a fixed order (before the algorithm starts).
Except for the unit-propagation reduction steps, the variable selected to branch
on is always the first one in the order that has not been assigned a value.

3 Main Results

3.1 Random Instances of Dominating Clique Problem

We use DOMCn,p
α,k to denote a random instance of the α-threshold dominating

clique problem parameterized by the clique size k on the random graph G(n, p).
The exact threshold of the phase transition of the α-threshold dominating clique
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problem can be established for all α by extending the proof given in [17]. The
threshold for any constant α (or α up to ε log n with sufficiently small ε > 0)
turns out to be the same.

Theorem 1. Consider the random graph G(n, p). For any constant α ≥ 1,

lim
n

Pr{G(n, p) has an α-threshold dominating clique }

=

{
0, if p < 3−√

5
2

1, if p > 3−√
5

2 .
(1)

The size of an α-threshold dominating clique in G(n, p), if exists, turns out
to be in Ω(log1/p n). As a consequence, random instances of the parameter-
ized α-threshold dominating clique problem with a fixed parameter is with high
probability unsatisfiable for any DOMCn,p

α,k with p < 1. Due to this reason, the
discussions in this subsection, especially those for the satisfiable instances, are
in fact for the “LOGNP”-behavior of the problem. For future studies, one may
want to consider parameterized problems that ask for a dominating clique of size
k log1/ε n for some small constant ε. This difficulty largely motivates the random
weighted SAT distribution to be discussed in the next subsection.

The Unsatisfiable Instances

Two exact algorithms for the dominating clique problem have been proposed
[19,17]. The one proposed in [19] is shown to have a time complexity O(1.339n)
while the one studied in [17] empirically works well on random graphs (In fact by
adding a few simple cases, which never happen in random graphs, the algorithm
studied in [17] can be shown to have a time complexity O(1.383n) by a simple
analysis). In the following, we lower bound the search tree size of the ordered
DPLL algorithm which is weaker than the above two branch-and-reduce algo-
rithms, but is of interest in the study of proof complexity and logic inferences.

The parameterized dominating clique problem can be encoded as a weighted
SAT problem as follows. Given a graph G(V, E), we associate with each vertex
with a Boolean variable. Let {x1, · · · , xn} be the set of variables corresponding
to the set of vertices V = {v1, · · · , vn}. The CNF formula consists of two types
of clauses:

1. Anti-monotone 2-clauses. For each pair of vertices vi and vj such that (vi, vj)
�∈ E, there is a 2-clause xi ∨ xj. This set of clauses enforces the clique
constraint.

2. Monotone long clauses. For each vertex vi, there is a clause

xi ∨ xi1 ∨ · · · ∨ xil

where {xi1 , · · · , xil
} are the neighbors of vi. This set of clauses enforces the

domination requirement.

The following theorem provides a lower bound on the size of the search tree
of the parametric ordered DPLL resolution proof. Note that the result is more
general than needed — we allow k to be as large as ε log n.
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Theorem 2. For any parameter 0 < k < ε log n where ε > 0 is a small constant
and any 0 < p < 1, the size of the search tree of the parametric ordered DPLL
algorithm for DOMCn,p

k,α is nΩ(k) with high probability.

The Satisfiable Instances

On the positive side, we show that for any p > 1
2 , an α-threshold dominat-

ing clique of size Ω(log n) in G(n, p) can be found in O(n2) time with high
probability.

Theorem 3. There is an O(n2)-time algorithm that with high probability, finds
an α-threshold dominating clique of size Ω(log n) in G(n, p) with p > 1

2 .

We consider the following greedy algorithm, G-DOMC. Except for the first α-
steps, at any moment, the vertices of the graph are in one of the following groups:

1. VC : the clique obtained so far;
2. VW : vertices that are adjacent to every vertex in VC ;
3. Vi, 0 ≤ i ≤ α − 1: a vertex v is in Vi if it is adjacent to exactly i vertices in

VC .
4. Vα: vertices that have been dominated by at least α vertices in VC , but are

not in VW .

Vertices in Vα are those that have been α-threshold dominated but cannot be
used to expand the current clique. Hence they play no role in the algorithm. It
is easy to see that after the first α steps, vertices in VW have been dominated by
more than α vertices in VC so that we do not need to worry about their domi-
nation. Since α is a fixed constant, it can be shown that with high probability,
the algorithm will not terminate within the first α steps.

The algorithm G-DOMC repeatedly picks a random vertex in VW to expand
the current clique and updates the vertex sets VW and Vi’s accordingly, as shown
in the following pseudo-code:

1. Initialization: VC = φ, VW = V , and Vi = φ, 0 ≤ i ≤ α;
2. Repeat until either Vi = φ, ∀i ≤ α or VW = φ

(a) randomly pick a vertex v in VW

(b) VC = VC ∪ {v}; VW = VW ∩ N(v);
(c) For each 0 ≤ i ≤ α − 1,

Vi = (Vi \ (N(v) ∪ {v})) ∪ (Vi−1 ∩ N(v))

Let X(t) be the size of VW after the t-th iteration and Yi(t) be the size of Vi

after the t-th iteration. Intuitively since p > 1
2 , each vertex is adjacent to more

than half of the vertices. If we construct the clique by greedily picking one of
the potential vertices, then the number of potential vertices that can be used to
expand the current clique decreases at a slower rate than the number of vertices
that still need to be dominated. Consequently, all the vertices will be dominated
before there is no way to expand the current clique.
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Formally, we will prove that

P
{
X(t) > nδ1 and Yi(t) = 0, ∀ 0 ≤ i ≤ α − 1

}
> 1 − O(

1
nδ

) (2)

where δ > 0 and δ1 > 0 are properly determined small constants and

t = − 1 + δ

log(1 − p)
log n,

which guarantees that the algorithm finds an α-threshold dominating clique at
step t with high probability. For the formal proof, see Section 5.

3.2 A Random Model for Weighted SAT

To have a random distribution that generates interesting instances for fixed
parameters of some dominating-style problem, we propose the following model
Mp1,p2,m

n,k for weighted SAT.

Definition 2. An instances of Mp1,p2,m
n,k consists of

1. a collection of anti-monotone 2-clauses. Each of the potential
(

n
2

)
anti-

monotone clauses is included independently with probability p1, and
2. m monotone clauses obtained independently in the following way: for each

clause, each of the n variables appear with probability p2.

The number of variables is n and the input parameter is k.

It is a concern that the monotone clauses generated in the above may be trivial,
either being empty or containing all the variables. This is not the case — it can
be shown that for the range of m we are considering, all the clauses contain
p2n + o(n) variables with high probability.

We have the following result on the threshold of the phase transition of the
solution probability.

Theorem 4. Assume that 0 < p1, p2 < 1 are fixed constants. Let b = (1 − (1 −
p2)k), and m = c log n. The probability that a random instance of Mp1,p2,m

n,k has
a solution is

lim
n

P

{
Mp1,p2,m

n,k has a solution
}

=

{
1, if c < − 1

log b

0, if c > − k
log b .

For the case of c log b > −1, the proof of the above theorem actually indicates
that the fraction of the satisfying assignments is in a “fixed-parameter” form.
As a consequence, by simply sampling the assignments of weight k, we can find
a satisfying assignment of weight k. The average number of samples needed is
in a “fixed-parameter” for a typical instance from Mp1,p2,m

n,k . (Note however that
the average is taken with respect to the sampling process only.)
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Corollary 1. Let m = c log n such that c log b > −1. There is a randomized
algorithm that solves the satisfiable instances of Mp1,p2,m

n,k in 2O(k2)nO(1) time.

Proof. Consider the algorithm that repeatedly and randomly picks an assign-
ment of weight k until a satisfying assignment is found.

Let a = (1−p1). From the proof of Theorem 4, we see that with high probabil-
ity, an instance of Mp1,p2,m

n,k has more than a(k
2)

(
n
k

)
nc log b satisfying assignments.

For a typical (but fixed) instance from Mp1,p2,m
n,k , the probability that a

randomly-picked assignment is satisfying is

a(k
2)

(
n
k

)
nc log b

(
n
k

) = a(k
2)nc log b.

Thus, the average number of samples (with respect to the sampling process)
required before a satisfying assignment is found is 2O(k2)n−c log b.

To relate Corollary 1 to the backdoor set detection problem, consider the (ex-
tremely) naive sub-solver that simply checks whether the all-zero assignment is
a satisfying assignment. Corollary 1 says that such a backdoor set can be found
by sampling the

(
n
k

)
possibilities 2O(k2)n−c log b times, and thus provides a the-

oretical support to the observation that the existence of samll-sized backdoor
sets can be effectively exploited by randomized DPLL-style solvers with random
restarts such as SATZ [7].

Similar to the case of the threshold dominating clique problem, a lower bound
on the parametric ordered DPLL algorithm for unsatisfiable instances can be
established.

Theorem 5. Let m = c log n such that c log b < −k. Then with high probabil-
ity, the size of the search tree of the parametric ordered DPLL for instances of
Mp1,p2,m

n,k is nΩ(k).

4 Proof of Theorem 2

Proof. We focus on the case of 1-threshold dominating clique. Let V ={v1, · · · , vn}
be an ordering of the vertices and assume without loss of generality that this is
also the order used by the order DPLL algorithm. Let i = βn where β > 0 is a
constant, V0 = {v1, · · · , vi}, and U = V \ V0.

Let D be the collection of subsets of vertices in V0 of size k
2 and denote by

N (D) the set of vertices in U that are adjacent to every vertex in the vertex set
D ∈ D, i.e.,

N (D) = {u ∈ U | ∀w ∈ D, (u, w) is an edge}.

We say that a vertex set D in D is promising if

1. D induces a clique in G(n, p), and
2. N(v) ∩ N (D) �= φ for any vertex v ∈ V \ (D ∪ N (D)).
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We claim that the size of the DPLL search tree is lower bounded by the number
of promising vertex sets in D. To see this, consider a subset of vertices

D = {vi1 , · · · , xi k
2
} ⊂ V0

and a path of length βn in the ordered DPLL search tree along which variables
in D are assigned to true and the other variables on the path are assigned to
false. Since D induces a clique, no anti-monotone clause has been falsified by the
partial assignment. Since the variables in N (D) are those that have not been
forced by the assignment to the variables in D, the fact that N(v) ∩ N (D) �= φ
implies that the monotone long clause enforcing the domination of vertex v is not
empty yet. Therefore, this path will be explored by the ordered DPLL algorithm.
This proves the claim.

To proceed, we first show that the size of N (D) is large with high probability.
Since a vertex u is in N (D) if and only if it is adjacent to every vertex in D, the
expected size of N (D) is

E [|N (D)|] = (1 − β)np
k
2 .

Let ID(u) be the indicator function of the event that u is in N (D). Due to the
independence of the edges in G(n, p), the variables {ID(u), u ∈ U} are indepen-
dent Bernoulli variables with mean p

k
2 . By the Chernoff bound (see, for example,

[20]), we have

P

{
|N (D)| >

1
2
(1 − β)np

k
2

}
≥ 1 − 2e−

1
2 (1−β)np

k
2 . (3)

To complete the proof of the theorem, we show that with high probability,
there are nΩ(k) promising vertex sets. From Equation (3), we have for a fixed
vertex set D ∈ D,

P {D is promising |D induces a clique}

≥ O(1)
(

1 − (1 − p)
1
2 (1−β)np

k
2

)n

≥ O(1) (4)

since p is a fixed constant.
Let X be the number of vertex subsets in D that are promising. The expec-

tation of X satisfies

O(1)
(

βn

k/2

)
p(k/2

2 ) ≤ E [X ] ≤
(

βn

k/2

)
.

Therefore E [X ] is in nΩ(k) as long as k < ε logn for some ε = ε(p) > 0. To
complete the proof, we apply Chebyshev’s inequality

P

{
|X − E [X ] | >

1
2

E [X ]
}

≤
4E

[
(X − E [X ])2

]

(E [X ])2
. (5)
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and show that

E
[
(X − E [X ])2

]
= E

[
X2] − (E [X ])2 = o(E [X ])2,

which can be established by estimating the probability that two overlapping
vertex sets D1, D2 in D are both promising. We omit the lengthy detail due to
space limit.

5 Proof of Theorem 3

We prove the theorem by showing that with high probability, G-DOMC termi-
nates with an α-threshold dominating clique of size Ω(log n). Recall that in the
algorithm G-DOMC, after the first α steps, the vertices of the graph are in one
of the following groups: VC (the current clique), VW (vertices adjacent to every
vertex in VC), Vi (vertices dominated by exactly i vertices in VC), and Vα (the
finished vertices).

Let Xt be the size of VW after the t-th iteration and Y i
t be the size of Vi be

the size of Vi after the t-th iteration. First, we have the following lemma

Lemma 1. The number of vertices in VW after the first α steps satisfies

P

{
Xα >

1
2
pαn

}
≥ 1 − O(e−n).

Due to the above lemma, we will assume that Xα > 1
2pαn, which further implies

that Y i
t ≤ (1 − 1

2pα)n for any 0 ≤ t ≤ α.
Due to the assumption p > 1

2 , there exist small constants δ > 0 and ε > 0
such that

(1 − ε)p > (1 − p)
1

1+δ .

Let

t = − 1 + δ

log(1 − p)
log n, and

δ1 = 1 − 1 + δ

log(1 − p)
log(1 − ε)p > 0.

We will show that

P
{
Xt > nδ1 and Y i

t = 0, ∀ 0 ≤ i ≤ α − 1
}

> 1 − O(
1
nδ

) (6)

which indicates that with high probability, the algorithm G-DOMC terminates
in t steps and finds an α-threshold dominating clique. We first consider the
probability of the event {Xt > nδ1}.

Lemma 2.
P

{
Xt > nδ1

}
≥ (1 − c

n
)t.

for some fixed constant c > 0.
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Proof. Recall that Xt = |VW | is the number of white vertices after step t. After
the first α steps, the set of white vertices “evolve” on its own — no vertex in
Vi’s can become a white vertex and vertices in VW have been α-dominated.

In step t, a vertex v in VW is randomly selected, and the new VW is formed as
VW = VW ∩N(v). Since in G(n, p), the edges appear in the graph independently,
by the “deferred decision” argument, we see that {Xt, t ≥ α} is a Markovian
chain.

Write at = (1 − ε)tptn = nδ1 . We have

P
{
Xt > nδ1

}
= P {Xt > at}

≥ P {Xs > as for all α ≤ s ≤ t}

=
t∏

s=α

P {Xs > as | Xs−1 > as−1}

We claim that

P {Xs > as | Xs−1 > as−1} ≥ P {Bin(p, as−1) > as} .

where Bin(p, as−1) is a random variable that has a binomial distribution with
parameters p and as−1, i.e., Bin(p, as−1) is the sum of as−1 Bernoulli random
variables with mean p. To see this, recall that Xs−1 is the number of vertices
in VW after step s − 1 of G-DOMC. In step s, each of the white vertices sur-
vives with probability p, and the events that white vertices survive are mutually
independent.

By the Chernoff bound on the tail probability of Bernoulli variables, we have

P {Xs > as | Xs−1 > as−1}
= P {Xs > (1 − ε)pas−1 | Xs−1 > as−1}

≥ 1 − e−
ε2p2

2 a(s−1)

Since at = (1 − ε)tptn and by the choice of t, ε, we see that e−
ε2p2

2 as−1 ≤ e−nδ
1 ∈

O( 1
n ). The Lemma follows.

We now bound the conditional probability that Y i
t > 0 given that Xt > nδ1 .

Lemma 3. Given that Xt > nδ1 (i.e., the algorithm does not terminate due to
the lack of vertices to expand the clique), we have

P
{
Y i

t > 0 for some 0 ≤ i ≤ α − 1
}

≤ O(
α

nδ
).

Proof. Recall that after the first α steps, there will be no vertex-exchange be-
tween VW and the Vi’s. Therefore, the probabilistic behavior of the system of
vertex sets {Vi, 0 ≤ i ≤ α − 1} is independent of the specific choice of the vertex
in VW (given that |VW | = Xt > 0 so that there is always a vertex to pick).
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In step t, some vertices in Vi move to Vi+1 because they are connected to the
vertex just added to the clique. Due to the same reason, there are also vertices
moving from Vi−1 to Vi. Therefore, the expectation of Yi(t) is

E
[
Y 0

t

]
= (1 − p)E

[
Y 0

t−1
]
,

E
[
Y i

t

]
= (1 − p)E

[
Y i

t−1
]
+ pE

[
Y i−1

t−1

]
.

Write yi
t = E

[
Y i

t

]
. By induction, we have

yi
t ≤ Cti(1 − p)tn

for some constant C > 0. Consequently by Markov’s inequality, we have

P
{
Y i

t > 0
}

≤ yi
t ≤ 1

nδ
.

Therefore,
P

{
Y i

t > 0 for some 0 ≤ i ≤ α − 1
}

≤ α

nδ
.

The lemma follows.

Combining Lemma 2 and Lemma 3, we see that Equation (6) holds. This proves
Theorem 3.

6 Proof of Theorem 4

Let S be the set of assignments of weight k. For each s ∈ S, let Is be the
indicator function of the event that s satisfies Mp1,p2,m

n,k . Consider the random
variable X =

∑

s∈S

Is, the number of assignments in S that satisfy Mp1,p2,m
n,k . Write

a = 1 − p1 and b = 1 − (1 − p2)k, and recall that m = c logn. We have

E [X ] =
(

n

k

)
a(k

2)nc log b.

The case of c > − k
log b follows from Markov’s inequality. For the case of

c < − 1
log b , we consider the variance V(X) of X =

∑

s∈S

Is. We say that two

assignments in S have i overlaps if there are exactly i variables that are set to
true by both of the two assignments. Let S(i) be the set of (ordered) pairs of
assignments in S that have i overlaps. V(X) can be written as

V(X) = E
[
(X − E [X ])2

]

≤ E [X ] +
k∑

i=0

∑

(s1,s2)∈S(i)

(E [Is1Is2 ] − E [Is1 ] E [Is2 ]). (7)

For any (s1, s2) ∈ S(0), it is easy to see that

E [Is1Is2 ] − E [Is1 ] E [Is2 ] = 0.
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Consider (s1, s2) ∈ S(i) with i > 0. We have

E [Is1Is2 ] − E [Is1 ] E [Is2 ] = (1 − p1)(
2k−i

2 )(1 − 2(1 − p2)k + (1 − p2)2k−i)m

−(1 − p1)2(
k
2)(1 − (1 − p2)k)2m

For sufficiently large n, the above can be upper bounded by

C(1 − p1)(
2k−i

2 ) (
1 − 2(1 − p2)k + (1 − p2)2k−i

)m

≤ C(1 − p1)(
2k−i

2 ) (
1 − (1 − p2)k

)m
.

where C > 0 is a fixed constant. Therefore, we have
k∑

i=1

∑

(s1,s2)∈S(i)

(E [Is1Is2 ] − E [Is1 ] E [Is2 ])

≤ Ck

(
n

2k − 1

)
(1 − p1)(

2k−1
2 ) (

1 − (1 − p2)k
)m

.

It follows that

V(X)
(E [X ])2

≤
E [X ] + Ck

(
n

2k−1

)
δ(1 − p1)(

2k−1
2 ) (

1 − (1 − p2)k
)m

n2k(1 − p1)2(
k
2) (1 − (1 − p2)k)2m

∈ O(
1

n1+c log b
).

For the case c < − 1
log b , write 0 < ε = −c log b < 1. We have by Chebyshev’s

inequality

P

{
|X − E [X ] | > n

1−ε
4

1

n
1−ε
2

E [X ]
}

≤ 1
n(1−ε)/2 .

Recall that E [X ] =
(
n
k

)
a(k

2)(1 − (1 − p2)k)m. It follows that with probability
1 − O( 1

nε/2 ), we have

X ≥ a(k
2)nk−ε − o(nk−ε). (8)

This completes the proof.

7 Conclusions

In this paper, we have studied the behavior of random instances of two W[2]-
complete problems. The threshold behavior of the solution probability under the
proposed random models is studied. Lower and upper bounds on the complexity
of satisfiable and unsatisfiable instances are established.

It is interesting to see if the dominating clique problem on random graphs
with 3−√

5
2 < p < 1

2 can be solved in polynomial time with high probability. Es-
tablishing lower bounds on the proof complexity of more general parameterized
resolution proof system is a challenging future task.

There is a gap between the lower and upper bounds on the threshold of
the solution probability of the random weighted SAT model. Closing the gap
is interesting. Identifying more scenarios that lead to fixed-parameter tractable
class of instances is perhaps even more interesting.
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