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Abstract. We introduce an algorithm for finding a minimal unsatisfi-
able subset (MUS) of a CNF formula. We have implemented and evalu-
ated the algorithm and found that its performance is very competitive
on a wide range of benchmarks, including both formulas that are close
to minimal unsatisfiable and formulas containing MUSes that are only a
small fraction of the formula size.

In our simple but effective algorithm we associate assignments with
clauses. The notion of associated assignment has emerged from our work
on a Brouwer’s fixed point approximation algorithm applied to satisfi-
ability. There, clauses are regarded to be entities that order the set of
assignments and that can select an assignment to be associated with
them, resulting in a Pareto optimal agreement.

In this presentation we abandon all terminology from this theory
which is superfluous with respect to the recent objective and make the
paper self contained.

1 Introduction

Solvers for instances of the Boolean satisfiability problem, so called SAT solvers,
have found their way into numerous applications including electronic design au-
tomation (EDA) [1], formal verification [2,3] and artificial intelligence [4]. In
many of those applications we would like to have an explanation of the cause
of unsatisfiability in case a formula is unsatisfiable. For example if an FPGA
routing problem is translated to a Boolean formula a satisfying assignment cor-
responds to a valid routing, and unsatisfiability means no such routing exists [1].
In the latter case the user might want to know which part of the design caused
the unroutability.

An unsatisfiable subset or core of an unsatisfiable formula is a subset of clauses
from that formula the conjunction of which is unsatisfiable. A minimal unsatisfi-
able subset (MUS) is an unsatisfiable subset that becomes satisfiable if any of its
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clauses is removed. There can be multiple MUSes in one formula. An unsatisfiable
subset might help to understand at least one cause of a formula’s unsatisfiability
as the clauses that have been left out were not necessary to maintain unsatisfi-
ability. Multiple algorithms have been presented for finding unsatisfiable cores
that are not guaranteed to be MUSes (i.e. [5,6,7]). In this paper we present an
algorithm for finding a MUS in an unsatisfiable formula. Our algorithm does not
guarantee finding the minimum unsatisfiable core, which is the MUS with the
least number of clauses [8].

In [6] a nice example of a small unsatisfiable FPGA routing problem can be
found. It shows the use of finding multiple MUSes and is used to argue that the
minimum unsatisfiable core is not necessarily the most useful core for diagnostic
purposes. Other work has focused on algorithms for finding all MUSes [9,10]
or the minimum unsatisfiable core [8]. Even if finding all MUSes is not feasible
those algorithms might be very useful to find one or multiple MUSes under some
time constraint.

Important notions for our algorithm emerged from our work [11] on applying
a Brouwer’s fixed point approximation algorithm [12] to satisfiability. In that
work a clause is regarded to be an entity that can select an assignment from the
set of all 2n possible assignments on which it imposes a complete ordering in
which all satisfying assignments are preferred over all unsatisfying assignments.
Unsatisfiability is represented by the possibility to find a subset, or coalition, of
clauses that form a Pareto optimal agreement. In such an agreement all clauses
have chosen a unique assignment that does not satisfy themselves, while they
would all prefer the chosen assignment of all other clauses in the coalition and
there is no single assignment that all those clauses prefer over their own choice.
The existence of this agreement proves that the preferences of the clauses are
contradictionary from which the inconsistency of the formula follows. As the
clauses in the coalition prove unsatisfiability of the formula they form an unsat-
isfiable subset. We implemented an algorithm for finding unsatisfiable subsets
using this theory [11], but as it remains far from competitive we let go of most
of this background and present a simple and efficient algorithm.

2 Extracting a MUS

We will represent a CNF formula F by a sequence of clauses. Furthermore a
subscript will denote an element index in a sequence, so clause Ci from F =
〈C1, C2, ..., Cm〉 is the ith clause in the sequence.

The most straightforward approach to reducing a CNF formula of m clauses to
a MUS is given in Algorithm 1. This algorithm requires solving m SAT problem
instances to find a MUS in the unsatisfiable set of clauses F . In case the input
set F is a MUS itself all the SAT problem instances have m − 1 clauses.

Given a CNF formula F Algorithm 2 finds a formula F ′ ⊆ F such that F ′

and F have the same set of satisfying assignments. The conditional addition of
the clauses from F to F ′ is performed one by one in the order of occurrence in
the sequence F = 〈C1, C2, ..., Cm〉. A clause Ci is added to F ′ iff there exists a
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Algorithm 1. naiveFindMUS(F)
1: F ′ := F
2: for i = 1 to |F| do
3: if F ′ \ {Ci} is UNSATISFIABLE then
4: F ′ := F ′ \ {Ci}
5: end if
6: end for
7: return F ′

Algorithm 2. findEquSubset(F)
1: F ′ := 〈〉
2: for i = 1 to |F| do
3: if ¬Ci ∧ F ′ is SATISFIABLE then
4: append Ci to F ′

5: end if
6: end for
7: return F ′

truth assignment that is satisfying all the clauses that have already been added
to F ′ while not satisfying Ci.

Lemma 1. The formula F ′ returned by Algorithm 2 has the same set of satis-
fying truth assignments as the input formula F .

Proof. Each clause Ci ∈ F is added to the initially empty sequence F ′ if there is
an assignment satisfying the clauses already added to F ′ while not satisfying the
clause Ci. If no such assignment exists then either F ′ is unsatisfiable or F ′ |= Ci.
If F ′ is unsatisfiable F must be unsatisfiable and thus both formulas have zero
satisfying truth assignments. If F ′ |= Ci then Ci does not restrict the number of
satisfying truth assignments in F as it implied by, and therefore can be derived
from, the subset of F that was already added to F ′. ��

Corollary 1. If the input F of Algorithm 2 is unsatisfiable so is the formula F ′

it returns

Although it is possible to use Algorithm 2 to reduce the number of clauses
in satisfiable formulas in this paper we limit ourselves to its applications for
unsatisfiable formulas.

Definition 1. A critical clause of an unsatisfiable formula F is a clause that
belongs to every unsatisfiable subset of the formula F .

Proposition 1. In a MUS every clause is a critical clause.

Note that an unsatisfiable formula does not have to contain any critical clauses.
An example of a formula without critical clauses would be a formula with two
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completely disjoint unsatisfiable subsets. A critical clause is called a necessary
clause in [13].

Lemma 2. The last clause appended to the sequence forming the unsatisfiable
formula F ′ = 〈C′

1, C
′
2, ..., C

′
m〉 which is a subset of the unsatisfiable formula F

returned by Algorithm 2 is critical for F ′.

Proof. By construction it holds for each clause C′
i in F ′ that there exists an as-

signment that satisfies all the clauses C′
j in F ′ with j < i. So without the clause

C′
|F ′| there is a satisfying assignment for the |F ′| − 1 other clauses in F ′. Conse-

quently, every subset of F ′ that does not contain clause C′
|F ′| is satisfiable. ��

Algorithm 3 reduces an unsatisfiable CNF formula to a MUS. It proceeds in
multiple rounds, proving one clause critical in every round. The lines 3 to 8
in this algorithm are similar to the pseudo code of Algorithm 2 except for the
addition of a sequence M to which F ′ is initialised. This sequence M consists of
all clauses that have already been proven to be critical for the unsatisfiability of
the MUS we are constructing.

Algorithm 3. reduceToMUS(F)
1: M := 〈〉
2: while |M | < |F| do
3: F ′ := M
4: for i = 1 to |F| do
5: if (Ci does not appear in M) and (¬Ci ∧F ′ is SATISFIABLE) then
6: append Ci to F ′

7: end if
8: end for
9: append last(F ′) to M

10: F := F ′

11: end while

Lemma 3. In each round of Algorithm 3 it finds a new critical clause unless
the set of critical clauses is unsatisfiable.

Proof. The first round proceeds just like Algorithm 2 would. At the end of the
round the last clause is added to M as according to Lemma 2 it is critical. In
every following round the sequence F ′ is initialised to contain the clauses in M ,
which are all clauses that have already been proven critical. If M is satisfiable at
the start of a round more clauses will be added to F ′ which will cause the last
clause added in that round to be a clause that was not yet in M . According to
Lemma 2 it is critical and as it was not proven critical before we have found a
new critical clause. If M is unsatisfiable at the start of a round then at the end
of the round F ′ will still be equal to M and the algorithm will end. ��

Instead of using a sequence M to keep track of the critical clauses one can also
reshuffle the sequence of clauses before each round in such a way that all the
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clauses already proven critical precede the other clauses in the sequence. One
might also want to add a preliminary exit to the for loop as soon as F ′ becomes
unsatisfiable but from experimental results this did not seem to result in an
overall performance gain.

Example 1. Consider the following unsatisfiable CNF formula.

(x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x1 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (¬x1) . (1)

algorithm end of end of end of algorithm
start round 1 round 2 round 3 finished

x1 ∨ x2 x1 ∨ x2 ¬x1 x1 ∨ ¬x2 x1 ∨ ¬x2

x3 ∨ x4 → x3 ∨ x4 → x1 ∨ x2 → ¬x1 → ¬x1

x1 ∨ ¬x2 x1 ∨ ¬x2 x3 ∨ x4 x1 ∨ x2 x1 ∨ x2

x1 ∨ x2 ∨ x3 ¬x1 x1 ∨ ¬x2

¬x1

Fig. 1. Finding a MUS in Formula (1)

Each of the rectangles in Fig. 1 show the contents of the sequence F at some
point in the execution of Algorithm 3 with the example formula as input.

– After the first round the clause x1∨x2∨x3 is removed as there is no satisfying
assignment to ¬(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x1 ∨ ¬x2). This is
because clause x1 ∨ x2 ∨ x3 subsumes (is a superset of) clause x1 ∨ x2 which
has already been added to the sequence. After this round the clause ¬x1 is
proven to be a critical clause.

– The first clause in the rectangle in Fig. 1 holding the contents of the sequence
F after the second round is separated from the other clauses by a horizontal
line because it is a critical clause and F is therefore initialised to hold that
clause at the start of this round. In this round no clauses are removed from
the sequence. After this round clause x1 ∨ ¬x2 is proven to be a critical
clause.

– At the start of the third round the sequence F is initialised to hold the two
clauses that were proven to be critical so far. Clause x1 ∨x2 can be added to
the sequence as ¬(x1 ∨x2)∧ (x1 ∨¬x2)∧¬x1 is satisfiable. After adding that
clause the sequence F becomes unsatisfiable and therefore clause x3 ∨x4 will
not be added. After this round the clause x1 ∨ x2 is proven to be a critical
clause. As all clauses in F are now proven to be critical we have found a
MUS. �

We will now describe a way to find more than one critical clause per round of
the algorithm. This will reduce the number of rounds the algorithm needs to
find a MUS and therefore the number of SAT problem instances that need to
be solved. Recall that in each round a clause Ci from F is only added to the
sequence F ′ if there is a satisfying assignment for what is already in F ′ that is
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not satisfying Ci. To find multiple critical clauses in one round we store that
satisfying assignment with each clause C′

i ∈ F ′ with F ′ = 〈C′
1, C

′
2, ..., C

′
m〉 and

name it the associated assignment of the clause C′
i. This associated assignment

does not have to define a truth assignment for all variables in F .

Definition 2. The associated assignment of a clause C′
i ∈ F ′ is an assignment

that satisfies all C′
j ∈ F ′ with j < i and does not satisfy C′

i.

Lemma 4. If the associated assignment of a clause C′
i ∈ F ′ satisfies all clauses

C′
j ∈ F ′ with j > i then clause C′

i is critical for F ′.

Proof. By definition the associated assignment of a clause C′
i ∈ F ′ satisfies all

clauses C′
j ∈ F ′ with j < i. If it also satisfies all clauses C′

j ∈ F ′ with j > i
then it is a satisfying assignment for all C′

j in F ′ with j 
= i and therefore every
subset of F ′ not containing C′

i is satisfiable. ��

Example 2. Let us reconsider the unsatisfiable Formula (1) and feed it to the
improved version of the algorithm. Figure 2 is constructed similarly to Fig. 1
with the exception that it shows the associated assignments for the clauses in F
after round one. Let us assume that the associated assignments define a truth
assignment for all variables in Formula (1). In this example the first, third and
fourth clause are proven to be critical after the first round as their associated
assignments satisfy all clauses succeeding them in the sequence. At the start of
the second round F ′ is initialised to contain those three clauses and therefore
it becomes unsatisfiable right away. This means that clause x3 ∨ x4 will not be
added and we have found a MUS as all clauses in F ′ are critical.

algorithm end of associated end of algorithm
start round 1 assignment round 2 finished

x1 ∨ x2 x1 ∨ x2 ¬x1 ¬x2 x3 x4 x1 ∨ x2 x1 ∨ x2

x3 ∨ x4 → x3 ∨ x4 x1 x2 ¬x3 ¬x4 → x1 ∨ ¬x2 → x1 ∨ ¬x2

x1 ∨ ¬x2 x1 ∨ ¬x2 ¬x1 x2 x3 x4 ¬x1 ¬x1

x1 ∨ x2 ∨ x3 ¬x1 x1 x2 x3 x4

¬x1

Fig. 2. Finding a MUS in Formula (1), using improved algorithm �

The associated assignment a of a clause C′
i ∈ F ′ is the result of solving a SAT

problem instance that only contained those literals that occurred in the clauses
C′

j ∈ F ′ with j ≤ i. This means that the associated assignment a of C′
i might

not include a truth assignment for a literal in a clause C′
k ∈ F ′ with k > i. It

is possible that none of the literals of C′
k are satisfied by the truth assignments

defined in a but there is a literal in C′
k for which no truth assignment is defined

in a. In an implementation of the algorithm one must either always regard such a
as an unsatisfying assignment or extend a to hold a satisfying truth assignment
for at least one of the literals of C′

k for which no truth assignment was previously
defined in a.
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Consider the case where this algorithm is given a MUS of m clauses as input
for which the algorithm manages to find only one critical clause per round.
In this worst case mm+1

2 SAT problem instances must be solved to prove all
clauses critical, whereas the naive strategy of Algorithm 1 only requires solving
m problem instances. However, first of all these SAT problem instances are
varying in size from 1 to m clauses so a large number of them are easy to
solve, or even trivial, while all the instances that need to be solved using the
naive approach have m clauses and thus will often all be hard. Secondly, it is
possible to implement all of the SAT solver calls performed in one round in
one incremental problem, thus requiring only m incremental problems. This can
be implemented easily. Adding a clause to F ′ in the pseudo code is adding a
clause to the problem instance in the solver. Satisfying ¬Ci without having to
add it to the solvers problem instance can be guaranteed by forcing the solver
to assign all literals from Ci the value false. Using the SAT solver MiniSat [14]
such assignments can be passed as so called assumptions. Thirdly, our technique
for finding multiple critical clauses per round will usually reduce the number
of required rounds to significantly less than m as will become clear from the
experimental results further on in this document.

3 Implementation

In order to obtain an efficient implementation of our algorithm we have merged
it with the code of the state of the art SAT solver MiniSat 2.0 [14] without the
optional simplifier [15]. The simplifier is not used as we are interested in finding a
MUS consisting of the original input clauses. It might be possible to modify the
simplifier for our application but we will not discuss that here. Our MUS finder is
called MiniUnsat. Each round is handled as one incremental SAT problem.

The problem mentioned earlier of an assignment that might not be complete
for a succeeding clause is handled by extending the assignment with a satisfying
truth assignment for a literal of the clause. In case there are multiple literals in
the clause for which no truth assignment is defined by the assignment the literal
that occurs last in the clause is chosen.

As the algorithm is greedy in the sense that it adds a clause to the subset unless
it is proven to be unnecessary clause sorting has a great effect on performance in
terms of speed, but also on which MUS the algorithm finds. By manually sorting
the clauses before executing the program the user might give preference to one
clause over the other and can thereby influence which MUS is found.

Two simple optional automatic clause sorting methods are also implemented.
The first automatic sorting method, sort by weight, sorts clauses by the sum of
the number of occurrences in the formula of all of the literals of the clause. This
sorting method is by default enabled as it has positive influence on the speed
with which MUSes are found.

The second automatic sorting method, sort by length, sorts the clauses with the
shortest ones first and thereby focuses on removing subsumed clauses. A subsumed
clause is a clause that is a superset of another clause in the formula. If the clauses



298 H. van Maaren and S. Wieringa

are sorted using this method then the conditional addition of the shorter subsumed
clauses will always precede the conditional addition of the subsuming clauses. The
latter will never be added as the shorter clause implies the longer clause. Note that
it is possible that a formula contains a MUS in which a clause Ci subsuming a
clause Cj occurs as long as Cj does not, and that MUSes that have this property
will not be found if clauses are sorted in this way. Sorting by length is also by
default enabled and if both described clause sorting methods are used together
then sorting by length has priority over sorting by weight.

To improve the speed with which the SAT problems are solved a heuristic was
added which influences MiniSat’s branch direction heuristic. At each variable
decision MiniSat branches to the negative side by default. In the first round
of the algorithm this is left untouched. After the first round every clause that
has not been removed has had an associated assignment in the previous round.
As the clauses will remain in the same order in each round apart from the new
critical clauses moving to the front this assignment can be seen as an estimate
to the assignment we are looking for. Our program therefore sets the variable
branch directions to those that would lead the solver in the direction of the
associated assignment found in the previous round when it is looking for a new
assignment.

4 Related Work

The argument of Lemma 2 is also used in work on finding subsets of infeasi-
ble linear programmes [16,17] and in recent work on the Constraint Satisfaction
Problem (CSP), which is more generalised than SAT. In the latter work it is
credited to [18]. The constraint that is critical due to Lemma 2 is called the
transition constraint in the work on CSP, as it is on the transition from satisfi-
ability to unsatisfiability.

Where we have focused on proving more clauses critical than only this tran-
sition constraint, or transition clause in our case, they focused on more efficient
approaches to finding the transition constraint. Instead of adding a constraint
to a sequence until it becomes unsatisfiable they do a binary search for the
transition constraint.

The authors call their approach the dichotomic approach. It has the advan-
tage of a logarithmic, rather than linear, worst case number of required SAT
problems to solve per round. The authors applied this algorithm successfully to
instances of CSP. Although its worst case required number of SAT problems to
be solved is lower we reckon it has some disadvantages as an incremental SAT
implementation is not immediate, at least not without adding clause selector
variables that will make the problems considerably harder. Besides that only
one critical clause will be found per round. Still, their approach is interesting
and might perform well when implemented efficiently for SAT problems or even
combined with some of the ideas presented here.

Another approach to finding an unsatisfiable core is applied by zcore [5]. It
records which clauses are necessary to derive the empty clause in a resolution
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proof of unsatisfiability generated using a SAT solver (zchaff in this case).
Those clauses form an unsatisfiable subset, but it might be far from minimal. To
approximate a MUS closer the authors suggest to iterate zcore until the size of
the unsatisfiable subset no longer reduces. We will refer to this approach by the
name of the script supplied with zchaff for this purpose, which is zruntillfix.
For finding a guaranteed MUS the authors of zcore supply zminimal which is
an implementation of the naive MUS finding algorithm (1).

In a recent publication [7] an unsatisfiable core extractor called Approximate
One MUS (AOMUS) was introduced. Our experimental results support the claim
of the authors that it has good performance at the useful task of reducing bench-
marks that describe FPGA routing problems. As the name indicates the “ap-
proximated MUSes” found by AOMUS are not guaranteed to be MUSes. The
algorithm OMUS, which does guarantee the output of exactly one MUS, is the
AOMUS algorithm with the addition of a post processor with the slightly under-
stated name “fine tune”. This procedure is in fact an implementation of the
naive MUS finding algorithm (1).

The core extractor AMUSE [6] is best suited for use with formulas that contain
unsatisfiable cores that are small compared to the formula size. It does not
guarantee finding a MUS. AMUSE’s preference for small cores is supported by our
experimental results and caused by the fact that it builds up the unsatisfiable
subset by adding clauses to a satisfiable subset until it becomes unsatisfiable.

In [19] an approach for finding a MUS by using the resolution proof of the
unsatisfiability of the input formula is presented. The algorithm presented there
tests for every clause in the input formula whether the empty clause can still
be derived from the original resolution proof after removing that clause and all
clauses derived from it.

The minimal unsatisfiability prover (MUP) [20] is targeted at proving the input
formula to be a MUS rather than at extracting MUSes from the input formula.
It is meant as a post processor to core extractors that are able to give close
approximation of MUSes, like AMUSE, AOMUS or zruntillfix.

5 Results

We have tested our implementation using a computing cluster with 20 nodes that
each have 2 Intel Xeon 5130 (2Ghz) Dual Core processors, making up for a total
of 80 processor cores. None of the tested MUS finders is based on a parallelised
algorithm so each run was executed on a single processor core. All tests were
run with an 1800 seconds time limit and a 2GB memory limit.

We used benchmarks describing various sorts of problems. We generated ran-
dom 3-SAT formulas with 50 variables and 215 clauses, 100 variables and 430
clauses and 200 variables and 860 clauses. From each of the three sets we took
50 unsatisfiable formulas. We also added all unsatisfiable instances found in the
DaimlerChrysler benchmark set which describes problems from automotive prod-
uct configuration1. In the DaimlerChrysler benchmarks the unsatisfiable cores
1 http://www-sr.informatik.uni-tuebingen.de/∼sinz/DC

http://www-sr.informatik.uni-tuebingen.de/~sinz/DC
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are only a small fraction of the formula size. Next we added the Bevan family
from the handmade category of the SAT Competition2 held in 2003. All bench-
marks in the Bevan family are already MUSes. Finally, we put the benchmark
set used in the paper presenting AOMUS together3 we will refer to that set as
FPGA+Various. Note that some FPGA routing problems occur both in original
form and shuffled in that set [21].

Besides testing the MUS extraction qualities of MiniUnsatwe have also tested
it as a post processor to the output of AMUSE, AOMUS and zruntillfix. Those
three programs were also tested using the naive MUS proving approach as a post
processor. For AMUSE and zruntillfix a naive MUS prover implementation was
found in zminimal. OMUS is the implementation of AOMUS followed by an internal
naive MUS prover.

Although AOMUS outputs a core that is only an approximation to a MUS it may
prove some clauses of that core critical. Those clauses are not tested again by the
post processor implemented in OMUS. With permission of the author of AOMUS we
have modified it to pass the information about those clauses to MiniUnsat when
we used it with AOMUS.

We also tested MUP as a post processor to the three core extractors. We do not
present the results here as MUPdoes not seem to be robust enough.The dtree gener-
ator supplied with MUP for generating the required binary decision diagram (BDD)
often crashes. Fortunately, the c2d generator [22], which was suggested as an alter-
native by the author of MUP in a personal communication, works better. However,
the number of successful runs using MUP with either of the two generators is much
smaller than that of the other tested approaches, and where it is succesful it is not
significantly faster either. The author of MUP uses a BDD variable reordering tool
called MINCE [23] as a preprocessor for some of his benchmarks results, which might
explain the difference between his and our results.

The results presented in Table 1 are meant to give a general impression of the
performance of different approaches. Please note that only those benchmarks in
which a MUS was found using all seven presented approaches were included in
the calculations of the average MUS sizes. The run times and MUS sizes for each
tested benchmark on all tested approaches, including MUP, are available on the
internet4. Table 2 shows the average number of clauses that are proven critical in
one round by making use of the associated assignment technique we described.
From the results in this table one can easily see that checking if a clause is critical
by testing if its successors are satisfied by its associated assignment leads to a
significant reduction in the number of required rounds.

The six scatter plots that together form Fig 3 give an impression of the run
times in seconds of the various approaches to extracting a MUS. Each scatter
plot compares two program versions. In each scatter plot there is a data point for
every benchmark, with the position along the horizontal axes indicating the run
time of the approach labelled on the horizontal axis, and the vertical position

2 http://www.satcompetition.org
3 SAT Competitions and http://www.aloul.net/benchmarks.html
4 http://www.tcs.hut.fi/∼swiering/musfinding

http://www.satcompetition.org
http://www.aloul.net/benchmarks.html
http://www.tcs.hut.fi/~swiering/musfinding
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Table 1. Results summary

A+zmin AMUSE + zminimal
A+M AMUSE + MiniUnsat
z+zmin zruntillfix + zminimal
z+M zruntillfix + MiniUnsat
O OMUS
AO+M AOMUS + MiniUnsat
M MiniUnsat

Number of formulas a MUS was extracted from within 1800 seconds
Set # A+zmin A+M z+zmin z+M O AO+M M
3-SAT 50 vars 50 50 50 50 50 50 50 50
3-SAT 100 vars 50 48 50 50 50 50 50 50
3-SAT 200 vars 50 6 50 8 50 48 50 50
DaimlerChrysler 84 84 84 84 84 84 84 84
Bevan 56 29 29 31 31 43 41 56
FPGA+Various 36 21 24 20 25 28 29 23
Sum 326 238 287 243 290 303 304 313

Average MUS size for formulas a MUS was extracted from by all approaches
Set # A+zmin A+M z+zmin z+M O AO+M M
3-SAT 50 vars 50 101.4 96.2 95.2 94.8 92.4 92.3 101.3
3-SAT 100 v. 48 268 243.1 247.6 233.7 234 232.2 252.9
3-SAT 200 v. 3 624 563.3 639.3 576.3 546.3 546.7 578.3
DaimlerChr. 84 78.4 78.4 76.8 76.8 77.8 76 76.4
Bevan 28 186.4 186.4 186.4 186.4 186.4 186.4 186.4
FPGA+Various 15 225.5 220.4 231.9 217.3 226.4 220.6 221.5

Table 2. Average number of clauses proven critical per round

3-SAT 50 vars 2.6
3-SAT 100 vars 2.7
3-SAT 200 vars 2.8
DaimlerChrysler 10.2
Bevan 45.1
FPGA+Various 4.6

indicating the run time of the approach labelled on the vertical axis. Note that
in all six plots both axes have a logarithmic scale. A value of 1800 seconds
corresponds to a timeout.

The first three scatter plots show the gains the core extractors AMUSE (a),
zruntillfix (b) and AOMUS (c) have from using MiniUnsat rather than a naive
MUS proving approach as a post processor. The improvement caused by using
MiniUnsat when regarding the combination of core extractor and prover as one
program is quite remarkable, especially for the random 3-SAT formulas with 200
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Fig. 3. Results

variables. While AMUSE+zminimal and zruntillfix+zminimal are not capable
of extracting a MUS in half an hour from the majority of those formulas that
goal can always reached when using MiniUnsat instead of zminimal.
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The other scatter plots show how the three core extractors combined with
MiniUnsat and regarded as one program perform against MiniUnsat without a
preprocessor. From those scatter plots it can be seen that for the set of Daim-
lerChrysler benchmarks it pays off to use AMUSE (d) or zruntillfix (e) as a
preprocessor. However, for the Bevan benchmarks using those preprocessors will
mean most benchmarks will not be solved because the preprocessor times out.
The performance of the AOMUS core extractor (f) as a preprocessor for the Be-
van benchmarks is, unsurprisingly, similar to the other two tested preprocessors.
However, in AOMUS’s scatter plot, on the horizontal line indicating a timeout for
MiniUnsat we see a number of benchmarks from the set FPGA+Various. The
benchmarks from that set that MiniUnsat fails to extract a MUS from without
the help of AOMUS are FPGA routing problems, a domain in which AOMUS excels.

6 Conclusion

Although over the last years attention has been paid to the development of
tools for extracting unsatisfiable subsets from unsatisfiable Boolean formulas
most existing tools do not guarantee that the extracted unsatisfiable subsets are
minimal. The MiniUnsat MUS finder we presented is capable of extracting a
MUS from a wide range of unsatisfiable formulas at very competitive speeds.

In case the user wants to tune performance for a specific set of benchmarks
several interesting combinations with existing software are recommendable. For
example, if the program is applied in a setting were a MUS is often only a small
fraction of the size of the formula it is extracted from, it is wise to use AMUSE as a
preprocessor to MiniUnsat. For finding minimal unsatisfiable subsets in FPGA
routing problems the use of AOMUS as a preprocessor is recommended.

Acknowledgements. Thanks to all developers of the tested tools for making
their software available, either on the web or at request. Thanks to all colleagues
that supported this work by showing their interest or commenting. Special thanks
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