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Abstract. This paper gives an improved separation between regular
and unrestricted resolution. The main result is that there is a sequence
I, 115, ..., I1;,. .. of sets of clauses for which the minimum regular reso-
lution refutation of II; has size 2% (%i/(log Ri)7), where R; is the minimum
size of an unrestricted resolution refutation of I7;. This improves earlier
lower bounds for which the separations proved were of the form 2 VR)

and 22(VR/(og R)®)

1 Introduction

1.1 The Regularity Restriction

This paper proves an improved separation between the size of regular and unre-
stricted resolution refutations of sets of clauses. This provides a nearer approach
to an optimal separation between these two propositional proof systems than
earlier results.

The regularity restriction was first introduced by Grigory Tseitin in a ground-
breaking article [I], the published version of a talk given in 1966 at a Leningrad
seminar. This restriction is very natural, in the sense that algorithms such as that
of Davis, Logemann and Loveland [2] (the prototype of almost all satisfiability
algorithms used in practice today) can be understood as a search for a regular
refutation of a set of clauses. If refutations are represented as trees, rather than
directed acyclic graphs, then minimal-size refutations are regular, as can be
proved by a simple pruning argument [3] p. 436].

The main result of Tseitin’s paper [I] is an exponential lower bound for regular
resolution refutations of contradictory CNF formulas based on graphs. Tseitin
makes the following remarks about the heuristic interpretation of the regularity
restriction:

The regularity condition can be interpreted as a requirement for not
proving intermediate results in a form stronger than that in which they
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are later used (if A and B are disjunctions such that A C B, then A may
be considered to be the stronger assertion of the two); if the derivation
of a disjunction containing a variable £ involves the annihilation of the
latter, then we can avoid this annihilation, some of the disjunctions in
the derivation being replaced by “weaker” disjunctions containing &.

These remarks of Tseitin suggest that there is always a regular resolution
refutation of minimal size, as in the case of tree resolution. Consequently, some
researchers tried to extend Tseitin’s results to general resolution by showing
that regular resolution can simulate general resolution efficiently. However, these
attempts were doomed to failure.

The first example of a contradictory CNF formula whose shortest resolu-
tion refutation is irregular was given by Wenqi Huang and Xiangdong Yu [4].
Subsequently, Andreas Goerdt [5] gave the first super-polynomial separation be-
tween regular resolution and unrestricted resolution by constructing a family
of formulas that have polynomial-size resolution refutations, but require super-
polynomial size regular resolution refutations.

Goerdt’s results were improved to an exponential separation in a paper by
Alekhnovich, Johannsen, Pitassi and Urquhart [6]. The paper in fact contains
two separate proofs of an exponential separation. The first presents a sequence
GT;, , of sets of clauses that have general resolution refutations with size O(n?),
but require regular resolution refutations of size 2("). The second gives an
infinite sequence of sets of clauses Stone(G,S) based on a pebbling problem
that have general resolution refutations with size O(n*), but require regular
resolution refutations of size 22(n/(logm)*),

Hence, the best separations so far between regular and general resolution are
of the form ZQ(é/R), and 22(VR/(log R)3)7 where R is the size of the smallest
general resolution refutation of the set of clauses in question. It is natural to
ask whether we can improve these separations. In fact, we know that we cannot
do better than a 2?(ftloglog B/log R) genaration. This is because Ben-Sasson, Im-
pagliazzo and Wigderson [7] showed that if R is the size of a general resolution
refutation of a set of clauses, then there is a tree resolution refutation with size
20(Rloglog It/ log R) - Gince a tree resolution refutation of minimal size is regular,
it follows that the same upper bound holds for regular resolution.

The present paper makes a closer approach to a matching lower bound. The
main result is that there is a sequence of contradictory sets of clause I1;, with an
associated unbounded parameter n = n(i), so that IT; has a general resolution
refutation with size O(n(logn)7), but any regular resolution refutation has size
242(n/[(logn)* loglognl) The proof of this result is an amalgamation and extension
of ideas underlying the two previous separation results.

1.2 Preliminaries

A literal is a propositional variable x or its negation —z. A clause is a set of
literals, interpreted as the disjunction of the set. For clauses containing exactly
one positive literal, we use the implication p1,...,pr — q as alternative notation
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for the clause —py V ---V =pr V q. The resolution rule allows us to derive the
resolvent C'V D from the clauses C'V x and D V —x by resolving on the variable
x; a clause C'V D can also be derived from a clause C by weakening. A resolution
derivation of a clause C' from a set of clauses X' consists of a sequence of clauses
in which each clause is either a clause of X, or derived from earlier clauses by
resolution or weakening, and C'is the last clause in the sequence; it is a refutation
of X if C is the empty clause A. The size |R| of a refutation R is the number of
resolvents in it. We can represent it as a directed acyclic graph (dag) where the
nodes are the clauses in the refutation, each clause of F' has out-degree 0, and
any other clause has one or two arcs pointing to the clause or clauses from which
it is derived. Resolution is a sound and complete propositional proof system, that
is to say, a set of clauses X is unsatisfiable if and only if there is a resolution
refutation for Y.

A resolution refutation is reqular if on any path from A to a clause in F' (in the
directed acyclic graph associated with the refutation), each variable is resolved
on at most once along the path.

It is sometimes helpful to view a regular resolution refutation as a branching
program. Representing the refutation as a dag, let us say that a variable x is
queried at a node ¢ in the dag if ¢ is labelled with a clause C'V D, derived from
parent clauses C'Va and DV —x by resolving on x. Starting from the empty clause
A at the root of the dag, we can construct a path in the refutation by answering
the queries occurring in the path; the answers determine an assignment to the
variables queried along the path. The path is chosen so that the assignment
falsifies all the clauses in the path. Thus, if the variable x is queried at a node, and
the answer is “false,” then the next node in the path is labelled with the parent
clause containing the literal x; similarly for the answer “true.” If C'V D is derived
by weakening from C|, then the path continues to C. The path constructed in
this way must end with an initial clause falsified by this assignment.

An assignment (restriction) for a set of clauses is a Boolean assignment to
some of the variables in the set; the assignment is total if all the variables in
the set are assigned values. If C' is a clause, and o an assignment, then we write
C'| o for the result of applying the assignment to C, that is, Clo =1if o(l) =1
for some literal [ in C, otherwise, C'| o is the result of removing all literals set
to 0 by o from C. If X' is a set of clauses, then Y| ¢ is the set of clauses C| o,
C a clause in X.

If R is a resolution refutation of X', and o a restriction for X, then we define
the restriction R[o of R to be the sequence of clauses resulting from R by
replacing all of the clauses C' in R by C| o, and then removing all of the clauses
set to 1. It is easy to verify that R o is a resolution refutation of X[ o, and that
R is regular, if R is regular.

If X is a set of clauses, and x,y are variables in X, or the propositional
constant L, then we say that there is an implicational chain from x to y in X if
there is a sequence x = xy, ...,z = y of variables (or constants) and a sequence
Cq,...,Cy of clauses so that for all 7, 0 < ¢ < k, x;—1 occurs negatively and x;
positively in C;.
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The notation log = stands for the base two logarithm of z, and In x the natural
logarithm of x.

2 Pebbling Games and Pebbling Formulas

2.1 The Pebbling Game

A pointed graph G is a directed acyclic graph where all nodes have indegree at
most two, having a unique sink, or target node, to which there is a directed path
from all the nodes in G. It is binary if all nodes except for the source nodes have
indegree two. If v is a node in a pointed graph G, then G| v is the subgraph of
G restricted to the nodes from which there is a directed path to v.

The pebbling game played on a pointed graph G is a one-player game in the
course of which pebbles are placed on or removed from nodes in G. The rules of
the game are as follows;

1. A pebble may be placed on a source node at any time.

2. If all predecessors of a node u are marked with pebbles, then a pebble may
be placed on node u.

3. A pebble may be removed from a node at any time.

A mowve in the game consists of the placing or removing one of the pebbles in
accordance with one of the three rules. The configuration at a given stage in the
game is the set of nodes in G that are marked with a pebble. The goal of the
game is to place a pebble on the sink node ¢, while minimizing the number of
pebbles used (that is, minimizing the number of pebbles on the graph at any
stage of the game). Thus a successful play of the game can be presented as a
sequence of configurations Cy, ..., Ck, where Cy = () and t € Cj.

A strategy for the game is a sequence of moves following the rules of the
game that ends in pebbling the target node. The cost of such a strategy is the
minimum number of pebbles required in order to execute it, that is to say, the
size of the largest configuration in the sequence of configurations produced by
following the strategy. The pebbling number of G, written as §G, is the minimum
cost of a strategy for the pebbling game played on G.

2.2 Pebbling Formulas

We associate a contradictory set of clauses with every pointed graph G. Each
node in G except the target ¢ is assigned a distinct variable; to simplify notation,
we identify a node with the variable associated with it, and use the notation
Var(G) for the set of these variables. We associate the constant L (falsum) with
the target node ¢, and make the identification ¢ = L.

Definition 1. If G is a pointed graph, Peb(G) is a set of clauses expressed in
terms of the variables Var(G), so that Peb(G) = { Clause(v) : v € G\ {t}}.

1. If v is a source node of G, then Clause(v) = v.
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2. If v is a node in G, with predecessor u, then Clause(v) = u — v.
3. If v is a node in G, with predecessors u,w, then Clause(v) = u,w — v.

If we set some variables in Peb(G), then the resulting set of clauses is not nec-
essarily of the form Peb(G’), where G’ is a subgraph of G. We shall focus on
a family of special assignments, called pebbling assignments, that preserve this
property. If v € G, v # t, then we define the assignment [v := 1] to be the
assignment defined by first setting the variable v to 1, and then setting to 1 any
variable u for which there is no implicational chain from u to L in the resulting
clause set. The assignment [v := 0] is defined as follows: first, choose a directed
path 7 = (v,...,t) from v to the target ¢, set all the nodes in the path to 0, and
in addition set any node from which v is not reachable, but not in the path m,
to 1. The assignment [v := 0] is not uniquely determined by this construction,
since it depends on the path chosen — however, this is not important, since the
set of clauses Peb(G)[ [v := 0] resulting from the restriction is independent of
the path. A pebbling assignment results from a sequence of restrictions of the
form [v := 0] and Jw := 1].

The effect of the restrictions just defined can be described directly as an
operation on the underlying graph. If G is a pointed graph, and v € G, v # t,
G[v := 1] is the graph resulting from G by first removing v, together with all
edges entering or leaving v, and then restricting the resulting graph to the nodes
from which the target node ¢ is accessible. G[v := 0] is the pointed graph G| v.

Lemma 1. 1. Forb=0,1, Peb(GQ)| v :=b] = Peb(G[v := b]).
2. If G is a pointed graph, and v € G, then

1G < max{#G[v := 0], §G[v := 1] + 1}.

Proof. The first part of the lemma follows straightforwardly from the definitions.
For the second part, we employ the following strategy in the pebble game on G.
First, follow a minimum cost strategy to pebble v in G[v := 0]. Second, leaving a
pebble on v, but removing all other pebbles, follow a minimum cost strategy in
the pebbling game on G[v := 1] to pebble the target node in G, using the extra
pebble for any moves where a pebble is needed on v to justify a placement. The
cost is at most max{f{G[v := 0], 1G[v := 1] + 1}. |

If X is a set of clauses, then a C-critical assignment is an assignment to the
variables in X' that makes all the clauses true, except C. In the case of Peb(G),
we are interested in a particular family of critical assignments. Let v be a vertex
in G, and 7 = (v,...,t) a directed path in G from v to the target node t. Set
all the nodes in the path 7 to 0, and all other nodes in G to 1. This assignment
makes all of the clauses in Peb(G) true, except for Clause(v). An assignment
determined by the path 7 we shall call a v-critical assignment, since the clause
that it falsifies is associated with the node v. Since we have assumed that G is a
pointed graph, such v-critical assignments exist for all the nodes v in G, so that
Peb(G) is minimally inconsistent.

Lemma 2. If G is a pointed graph with §G = p, then there are at least p vertices
v in G for which there is a v-critical assignment for Peb(G).
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Proof. Every pebbling strategy for G must contain a configuration with p peb-
bles, so there must be at least p vertices in G. For every vertex v in G, we can
construct a v-critical assignment for Peb(G) by choosing a path from v to the
target node. a

If G is a binary pointed graph, then the clause set Peb(G) contains both 3-
literal clauses and unit clauses. It is convenient, in view of a later construction,
to convert it into a set of 3-literal clauses.

Definition 2. Let X be a set containing both 3-literal clauses and unit clauses.
Then X* is the set of clauses obtained from X by the following construction.
First, introduce for each unit clause | in X', a pair of new auziliary variables
x; and y;. Second, replace the unit clause 1 by the set of four 3-literal clauses
{l\/acl\/yl,l\/ml\/yhl\/xl\/yl,l\/ml\/yl}.

We write Peb*(G) for Peb(G)*. Let G be a binary pointed graph. If v is a node in
G that is not a source node, then we write Clauses(v) for {u, w — v}, where u, w
are the predecessors of v, and if v is a source node, then Clauses(v) is defined to be
the set of four clauses {vV Xy, VYyy, VV Ty V Yy, VT, VY, UV T, VY . I X is a subset
of the nodes in G, then Clauses(X) is defined to be [ J{Clauses(v) : v € X }.

3 Constructing Hard Problems

3.1 Earlier Constructions

In this section, we construct the problems that produce our improved separation
between general and regular resolution. The overall approach is derived from the
first separation result described above in §I} the proof of this result is based on
the following idea. The construction begins with a sequence of problems GT,,
that are hard for tree resolution but not for regular resolution. The set of clauses
G, asserts that there is a directed acyclic ordering on n nodes that has no sink;
these problems were introduced in the proof complexity literature by Krishna-
murthy [§], who conjectured that they require superpolynomial-size resolution
refutations. That conjecture was refuted by Stalmarck, who showed that they in
fact have linear size resolution refutations [9]. However, Bonet and Galesi [10]
showed that they require exponentially large tree resolution refutations, thus
showing an exponential separation between general and tree resolution.

The exponential lower bound for tree resolution shows that any tree refutation
for GT, must contain exponentially many paths starting from the root of the
tree. Although this fact does not force regular resolution refutations to be large,
as Stalmarck showed, nevertheless we can convert the GT,, examples into hard
problems for regular resolution by making a small modification. The idea is to
add new literals to certain clauses in such a way as to force the exponentially
many paths in a tree refutation not to overlap, at least in their initial segments.
The new sets of clauses GTA , require exponentially large regular resolution
refutations, though the general resolution size remains linear, as in the case of
the original GT,, problems.
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The construction in the present paper follows the outline above, but this time
starting from the pebbling formulas. The second lower bound proof in [6] also
began from the pebbling formulas, but used a somewhat different construction
to convert them into hard examples for regular resolution. The present result
combines features of both proofs; the construction proceeds in two stages.

3.2 Xorification of Clause Sets

The construction starts from Peb(G), for G a pointed graph. The first stage
applies to Peb(G) a construction of Alekhnovich and Razborov.

Definition 3. Let X be a set of clauses, and k > 1 a positive integer. For each
variable x in X, introduce a set of k distinct variables {1, -+ ,xr}. Then the set
of clauses XF® | the k-xorification of X, is defined as follows: first, substitute the
formula x1 & - D xi for all of the variables x occurring in X, second, convert
the resulting formula into conjunctive normal form.

If C' is a clause containing m literals, then {C'}*® contains 2™(*~1) clauses, each
of length mk. Hence, when G is a binary pointed graph with n nodes, Peb* (G)*®
contains nk variables, and n2°( =1 clauses, each of length 3k.

The special case of Definition [l where k = 2 is the original construction of
Alekhnovich and Razborov [IT]. They observed that it could be used to produce
hard problems for resolution from clause sets requiring refutations of large width.
Let Width(X) be the size of the largest clause in X, and Width(X F 0) the
minimum width of a resolution refutation of X.

Theorem 1. (Alekhnovich and Razborov) If X is contradictory, then any
resolution refutation of X*® has size exp[Q2( Width(X + 0) — Width(X))].

More important in the present context is the fact that the construction can be
used to produce examples that separate tree resolution from general resolution.

Theorem 2. If G is a pointed graph with n nodes and pebbling number p, then
the set of clauses Peb(G)*® has general resolution refutations of size O(n), but
every tree resolution refutation of Peb(G)*® has size 29(P)

Proof. The theorem can be proved by imitating the proof of Ben-Sasson, Im-
pagliazzo and Wigderson [7]. Their result involves clause sets that are the “ori-
fication” Peb(G)Y of Peb(G) rather than the xorification Peb(G)?®; however,
the steps in their proof can be imitated almost word for word in the case of
Peb(G)?® to produce essentially the same result as their main theorem. O

An assignment  for Peb*(G)*® is defined to be full if whenever v is a vertex in G,
and p assigns a value to some variable v; associated with v, then all the variables
attached to v are assigned values by pu. If p is such a full assignment, then we can
construct an assignment for Peb(G) from p by setting o(v) = p(v1®---Pvg). In
this case, we say that the constructed assignment is the projection of p, written
7(1). We shall say that an assignment u for Peb*(G)*® is a pebbling assignment
if its projection 7(u) is a pebbling assignment for Peb(G).
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Lemma 3. Let G be a binary pointed graph. If o is a v-critical assignment for
Peb(@), v € G, and C is in Clauses(v)k®, then there is a C-critical assignment
 for Peb*(G)*® so that n(p) = o.

Proof. If v is a source node in G, and D is a clause in Clauses(v), then we can
construct a D-critical assignment for Peb*(G) by giving the appropriate values
to the auxiliary variables x; and y;. If v is not a source node, then o is already
a v-critical assignment for Peb™(G).

Starting from a v-critical assignment for Peb*(G), we can construct an assign-

ment p that assigns values to uq, ..., ug, for all nodes v € G, so as to make C'
false, but all other clauses in Peb*(G)*® true, and in addition, this assignment
 satisfies w(u) = o. O

3.3 Adding Random Literals

The second stage of the construction starts from Peb*(G)*®, for a binary pointed
graph G and suitable k, and replaces each clause C in the set with a pair of
clauses, C'V p(C) and C V —p(C), where p(C) is a variable associated with C'
by the function p. For the second stage to work (that is to say, for the resulting
sets of clauses to require exponentially large regular resolution refutations), it is
essential that p have a special property, namely that the image of a large set of
clauses has a large intersection with a large set of variables. The easiest way to
construct such a function is by a probabilistic argument, given in the following
lemma.

Lemma 4. If G is a binary pointed graph with n nodes, 6 = 5/3 and k =
[61loglogn] + 1, define X = Peb*(G)*®, and V = Var(X). Then for sufficiently
large n, there exists a map p from X toV satisfying the condition: For all A C G
with |A| = |n/4logn|, and B CV, with |B| = |n/4logn], |p(Clauses(A))NB| >
n/8logn.

Proof. If A C G with |A| = |n/4logn], and x € A, then Clauses(x) con-
tains 23(k—1) = 95[leglognl > (Jogn)® clauses, so that |Clauses(A)| contains
O(n(logn)?) clauses, | X| = O(n(logn)®), and |V| = nk = n([§loglogn] + 1) <
2nloglog n, for sufficiently large n.

Consider the space R of all random maps from X to V; that is to say, for
each C' € X, a variable p(C) € V is chosen uniformly at random. For A C G
with |A| = |n/4logn], and B C V, with |B| = [n/4logn], we say that p is bad
for A and B if |p(Clauses(A)) N B| < n/8logn.

We establish the existence of the map p by a probabilistic argument; to accom-
plish this, we need to prove exponentially small upper bounds on the probability
that a random map is bad for some sets A and B. In proving this, it helps to
view the construction of a random map as resulting from a series of independent
experiments, each of them consisting in the construction of a random map from
a subset of Y.

We partition Clauses(x) as Zi(z),...,Z,(z), where ¢ = |(logn)3|, so that
each set =;(z) in the sequence contains at least (logn)? clauses. For fixed j,
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1 < j < g, let X; be the union of all the =j(x), for x € G, and for A C G,
|A| = [n/4logn], let Clauses;(A) be the union of all the =(x), for z € A. Then
Clauses;(A) contains @(nlogn) clauses. Let p; be a random map from X; to V;
we take p to be the union of the sequence p1, ..., pq of independently constructed
random maps.

For a given j, where 1 < j < ¢, let Z be the random variable representing the
number of variables in B not in the image of Clauses;(A) under p;:

Z(p;) = [{x € Bl & p,(Clauses; (4)) } .

For B = {b1,ba2,...,b;,...,b;n}, where m = |n/4logn]|, define an indicator
random variable ©; by:

Oi(p;) = 1,if b; & p;(Clauses;(A))
i) = 0 0,if b € pj(Clauses;(A)),

so that Z = @1 4+ --- + ©,,. We estimate the expected value of ©; by

1 |Clauses, (4)|
£e)=(1- )

1 O(nlogn)
<(1-
- ( 2nlog logn)

<exp (-0 logn ’
loglogn

E(Z) <m-exp (-(z (log’i’;n» = m-o(1).

showing that

It follows that for any given positive v, E(Z) < «ym, for sufficiently large n. For
the remainder of the proof, we assume that n is chosen sufficiently large so that
E(Z) <m/8.

We need to show that the random variable Z is tightly concentrated around its
mean. To do this, we employ a large deviation bound for martingales, following

Order Clauses;(A) as {C1,...,Cp}. For pe R, and 1 < j < p, define p[j to
be the restriction of p to the set {C1,...,C;}. Define an equivalence relation =
on R by setting

P =y U:’PU :O—rja

for 1 < j < p, and let =¢ be the universal relation on R. Let F; be the finite
Boolean algebra whose atoms are the blocks of the partition of R induced by
=;, for 0 < j < p. Now define a sequence of random variables Zy, ..., Z, by
setting Z; = E(Z|F;). Then Zy = E(Z), Z, = Z, and the sequence Zy,...,Z,
forms a martingale, with |Z;; — Z;| < 1. Consequently, by the martingale tail
inequality of Hoeffding and Azuma [13], p. 221],
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P(Z >m/2) < P(Z — E(Z) > 3m/8)
< exp(—(3m/8)*/2p)
< exp(—=92(n/(logn)*)).

Let W be the random variable representing the number of variables in B not
in the image of Clauses(A) under p:

W(p) = |{x € Bl & p(Clauses(4)) }|.
Since the maps p1, ..., p, are constructed independently, it follows that
P(W > m/2) < exp(—2(n/(logn)*))]* = exp(—2(n)).

We can now complete the proof of the existence of a map p satisfying the
condition of the lemma. The probability that a random map p € R is bad for
some A and B is bounded by

(Ln/ﬁog nJ) ([jzl/oflfgg,@ exp(—2(n)).

Let H(z) = xzlog(l/z) + (1 — z)log(1/(1 — x)) be the binary entropy function.
Then the first binomial coefficient above can be bounded by

( n ><exp(0(nH(n/Ln/410gnJ))

[n/4logn]
— exp(O(nH(1/1ogn))
= exp(O(nloglogn/logn)).

A similar computation shows that the second binomial coefficient has the same
upper bound. Hence, the probability can be bounded above by

exp(O(nloglogn/logn))exp(—2(n)) = exp(—2(n)).

Consequently, the probability that a random map p is bad for some A and B
is exponentially small for sufficiently large n, showing that a map satisfying the
condition of the lemma must exist. O

3.4 Construction of the Hard Problems

Let’s say that for X = Peb*(G)*®, a map p is good for X if it satisfies the
condition of Lemma[l This lemma states that for 6 =5/3, k = [6loglogn] +1,
and sufficiently large n, there is a map that is good for & = Peb*(G)*®. This
enables us to construct our set of hard problems for regular resolution. The
construction is based on the following result of Paul, Celoni and Tarjan.

Theorem 3. [I])] There is a sequence of binary pointed graphs G1,Ga, ..., Gy, . ..
with pebbling number 2(n(i)/logn(i)), where n(i) = |G;| = O(i2%).
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We construct our sequence Iy, Il5, ..., II;,... by applying the earlier construc-
tions to G1,Ga, ..., Gy, .. ..

Definition 4. Let G1,Gs, ..., Gy, ... be the sequence of graphs of Theorem [3,
k(i) = [6loglogn(i)] + 1, and p; a map that is good for X; = Peb*(G;)*)®,
Then II; is defined to be the set of clauses

{CVpi(C):Ce X }Uu{CV-p(C):Ce X}

The set of clauses II; contains ©(n(logn)®) clauses, and ©(n loglogn) variables,
where n = n(i) is the size of the pointed graph G;. By a “pebbling assignment
for IT;” we mean a pebbling assignment for ¥; = Peb*(G;)*V®.

4 Lower Bound for Regular Resolution

4.1 Destroying Large Clauses by Restrictions

In this section, to avoid notational clutter, we adopt the following conventions.
We assume that we are dealing with the set of clauses II = II;, for sufficiently
large i, write G for G;, and n for n(i) = |G;|. Define a clause to be large if it
contains at least n/8logn literals.

Lemma 5:2 If X is a set of clauses in the language of II, containing fewer than
on/[64(logn)loglognl clqyses, then there is a pebbling assignment p so that:

1. YT contains no large clauses.
2. G| m(u) has pebbling number at least n/2logn.

Proof. There are at most 2n loglogn variables in I, and so at most 4n loglogn
literals involving those variables. If we choose a literal at random and set it to
1, then the probability this assignment sets a large clause C' to 1 is at least 1/r,
where r = 32logn loglogn. Hence, the average number of large clauses in X set
to 1 is at least |X|/r.

Choose a literal [ achieving at least this average, and set it to 1. Suppose that
[ contains a variable v;, where v € G. Set the remaining variables in the set of
variables {v1, ..., v} so as to maximize §G[v := b], where b = v1 @ - - - D vi,. Now
extend this assignment to produce a pebbling assignment for IT whose projection
to Peb(G) is [v := b]. Then the set X’ resulting from this restriction contains at
most (1 —1/7)|X| large clauses, and by Lemma (Il #G[v := b] is at most one less
than fG.

If we repeat this procedure [n/2logn| times, resulting in a restriction p, then
the set contains at most

(1 _ 1/7,) [n/2logn] 2n/[64(10g n)? log log n]
large clauses. However, this last expression is bounded above by

o n 09—In2 <1
«p | —
P (logn)? \ 64loglogn ’

showing that X' ;1 contains no large clauses. By construction, the pebbling num-
ber of G| w(u) is at least n/2logn. O
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4.2 Large Clauses

Lemma 6. Let R be a regular resolution refutation of II] p, where p is a peb-
bling assignment, and G| w(p) has pebbling number > n/2logn. Then R contains
a clause with at least n/8logn literals.

Proof. Viewing R as a branching program, we describe a strategy for con-
structing a path in R, starting with the root, and concurrently constructing a
full assignment to certain variables in 7. The strategy is as follows. We suppose
that the path has been constructed as far as a node p, and that o is the current
full assignment. We extend the path and the assignment according to these rules:

1. If the clause labelling p is derived by weakening, then continue the path to
the unique parent node; the assignment remains unchanged.

2. If the variable queried at p is already assigned a value by o, answer the query
according to o, and continue the path according to this answer.

3. If the variable queried at p is not assigned a value by o, then it must be
associated with a node v € G| (o). Extend o to a pebbling assignment o’
so that 7(o’) = [v := b], choosing b so as to maximize the pebbling number
of (Gl w(uUo))] [v:=0b]). Then extend the path in accordance with o”.

Continue according to these rules until [n/4logn]| nodes in G have been
queried (that is to say, variables attached to the nodes have been queried), let
C be the clause at the end of the resulting path, and 7 the resulting assignment.

By Lemmal[2] there are at least n/4logn vertices v € G| w(7) for which there
is a wv-critical assignment for Peb(G|m(7)). If ¢ is such a critical assignment,
then 7(7) U ¢ is a v-critical assignment for Peb(G). Let A be the set of all nodes
in G satisfying this condition, and B the set of variables assigned values by 7.
Since |A|, |B| > [n/4logn], by Lemma [l |p(Clauses(A)) N B| > n/8logn.

Let x be a variable in p(Clauses(A)) N B. We claim that x must occur in C.
Suppose not. By assumption, there is a D € Clauses(v), for some v € A, so that
p(D) =z, and DV x, DV € II. Let’s assume that 7(z) = 0 (the case 7(z) =1
is symmetrical). By Lemma[3] there is a D-critical assignment ¢ for Peb*(G)*®
that extends 7, and so is a D V az-critical assignment for II. Extend the path in
R from C by answering queries in accordance with ¢. This path must terminate
in a node labelled with D Vv z. But since « does not occur in C, it follows that
it must have been resolved on twice along the path, violating regularity. This
contradiction proves that x must occur in C, showing that C' contains at least
n/8logn literals. O

4.3 Lower Bound

Theorem 4. Let II1,1l5,...,11;,... be the sequence of contradictory sets of
clauses based on the pointed graphs G1,Ga, ..., G4, ... of Paul, Celoni and Tar-
jan, where n = n(i) is the size of the graph G;. Then:

1. There are resolution refutations of II; with size O(n(logn)7).
2. BEvery reqular resolution refutation of II; has size 2("/[(log n)? loglog n))



Regular and General Resolution 289

Proof. The set of clauses Peb(G) has a refutation using unit resolution (where
at least one of the premisses in every resolution step is a unit clause), with O(n)
steps and in which every clause contains at most three literals. We can imitate
this refutation to produce a refutation of Peb(G)*®; in this refutation, a single
resolution step in the original refutation corresponds to multiple resolution steps
in the new refutation. Let us suppose that in the original refutation of Peb(G),
the clause bV ¢ was inferred from a and a V bV ¢, where a, b, ¢ are literals. Then
in the new refutation, we infer {bV c}*® from {a VbV c}*® and {a}*®. The set
of clauses {a}*® U {a}*® consists of all the clauses in a fixed set of k variables,
so it takes O(2%) = O((logn)®?) steps to deduce the empty clause from this
set. Hence, a single clause in {bV c}*® can be derived in O((logn)5/3) steps.
It follows that the derivation of {bV ¢}*® takes O((logn)®(logn)®/3) resolution
steps, showing that the entire refutation has size O(n(logn)?%/3). By adding
some extra resolution inferences, we can produce a resolution refutation of II;
with the same size bound.

For the second part of the theorem, let us assume that R is a regular resolu-
tion refutation of IT;, with size less than 27/[64(og n)? loglogn] By Lemma[Q] there is
a pebbling assignment p so that R p contains no large clauses, but G;| w(u) has
pebbling number at least n/2 logn. However, LemmalGlshows that R | x4 must con-
tain a large clause, showing that a regular refutation of this size cannot exist. 0O

It is interesting to ask how close Theorem [l comes to the optimum. We al-
ready observed in {I] that if R is the minimum size of a resolution refutation
of a set of clauses, then the size of a regular refutation is bounded above by
90(Rloglog B/log R) Tf we express the lower bound in these terms, then we find
that the lower bound on regular refutations has the form 2(%/(log R)"), So, the
separation we have proved is certainly much closer to the optimum than previous
bounds, but there is definitely room for improvement.
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