
A CNF Class Generalizing Exact Linear
Formulas

Stefan Porschen and Ewald Speckenmeyer

Institut für Informatik, Universität zu Köln,
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Abstract. The fibre view on clause sets, previously introduced in [12],
is used in the present paper to define and investigate subclasses of CNF
that appear to be polynomial time solvable w.r.t. SAT. The most in-
teresting of these classes is a generalization of exact linear formulas,
namely formulas such that each pair of distinct clauses has all variables
in common or exactly one. By definition, in an exact linear formula each
pair of distinct clauses has exactly one variable in common. SAT-solving
for exact linear formulas was shown to be easy in [14]. Here we pro-
vide an algorithm solving the decision and counting variants of SAT for
the generalized class in polynomial time. Moreover we study some other
structurally defined formula classes on the basis of the fibre view. We
show that these classes have the property that their members all are
satisfiable or all are unsatisfiable.

Keywords: CNF satisfiability, exact linear formula, hypergraph, fibre-
transversal.

1 Introduction

Exploiting the fibre view on clause sets recently introduced in [12] we consider
some structurally defined subclasses of CNF regarding their behaviour w.r.t.
SAT. The most interesting of these classes yields a generalization of exact linear
formulas. The class of linear CNF formulas has recently been studied in [14] re-
vealing its general NP-completeness w.r.t. SAT. Each pair of distinct clauses of a
linear formula by definition has at most one variable in common. And requiring
that there should be exactly one variable in the intersection of the variable sets
of each pair of distinct clauses, one arrives at the subclass of exact linear formu-
las. SAT-solving was shown to be easy for exact linear formulas in [14]. Here we
consider the class of formulas where each pair of distinct clauses has all variables
in common or exactly one, thus extending exact linear formulas. The members
of this class are called exact linearly-based formulas. We design an algorithm
providing polynomial-time SAT-decidability for this class. Moreover, by a slight
modification we are also able to show that the counting variant #-SAT for exact
linearly-based formulas belongs to P . Furthermore, we study some other struc-
turally defined formula classes using the fibre view on clause sets, and show that

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 231–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



232 S. Porschen and E. Speckenmeyer

they behave trivially w.r.t. SAT meaning that its members always are satisfiable.
There are known several classes, for which SAT can be tested in polynomial time,
such as quadratic formulas, (extended and q-)Horn formulas, matching formulas
etc. [1,3,4,5,6,8,9,10,16,17]. The classes studied in this paper appear not to be-
long to one of these classes. On the other hand, mixing polynomial-time classes,
in general, yields classes for which SAT becomes NP-complete, as already is the
case for Horn and quadratic formulas [13], cf. also [8]. Closely related to some
of these classes is the classic theorem of Schaefer in [15]. That theorem classifies
satisfiability problems w.r.t. their complexity. The theorem does not automat-
ically apply if restrictions on the number of occurrences of variables in CNF
formulas are valid explicitly or implicitly. E.g. in [7] it is shown that whereas
unrestricted k-SAT is NP-complete, for k ≥ 3, it behaves trivially (i.e. all for-
mulas are satisfiable) if each clause has length exactly k and no variable occurs
in more than f(k) clauses; it gets NP-complete then if variables are allowed to
occur at most f(k)+1 times. Here f(k) asymptotically grows as �2k/(e ·k)�; this
bound has meanwhile been improved by other authors. However, it seems to be
unknown whether one can expect a dichotomy result like Schaefer’s regarding
the occurrence number. The classes studied in the present paper do not meet
the requirement that all clauses have a constant equal length, but seem to have
a hidden or implicit bound on the maximal number of occurences along with
additional structure.

The paper is organized as follows: The next section collects the notation and
some preliminaries. Section 3 describes the fibre view on clause sets, and elab-
orates a subclass only containing unsatisfiable members. Section 4 contains the
main part of the paper, namely showing that the decision, search and counting
variants of SAT for exact linearly-based formulas can be solved in polynomial
time. In Section 5 we apply the fibre view concept on some further CNF classes
showing that they behave trivially w.r.t. SAT. Finally, in Section 6 we collect
some conclusions and open problems.

2 Notation and Preliminaries

To fix the notation, let CNF denote the set of duplicate-free conjunctive normal
form formulas over propositional variables x ∈ {0, 1}. A positive (negative) literal
is a (negated) variable. The negation (complement) of a literal l is l̄. Each formula
C ∈ CNF is considered as a clause set, and each clause c ∈ C is represented as a
literal set which in addition is assumed to be free of complemented pairs {x, x̄}.
For formula C, clause c, literal l, by V (C), V (c), V (l) we denote the variables
contained (neglecting negations), correspondingly. L(C) is the set of all literals
in C. The length of C is denoted as ‖C‖. For U ⊂ L(C), let C(U) := {c ∈
C|c ∩ U 	= ∅}; we simply write C(l), if U = {l}. The satisfiability problem
(SAT) asks, whether input C ∈ CNF has a model, which is a truth assignment
t : V (C) → {0, 1} assigning at least one literal in each clause of C to 1. For C ∈
CNF, let M(C) be the space of all models of C and let UNSAT := CNF − SAT.
It is convenient to identify truth assignments with |V |-clauses in the following
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simple way: Let x0 := x̄, x1 := x. Then we can identify t : V → {0, 1} with the
literal set {xt(x)|x ∈ V }, and, for b ⊂ V , the restriction t|b is identified with the
literal set {xt(x)|x ∈ b}. The collection of all literal sets obtained as just described
by running through all total truth assignments V → {0, 1} is denoted as WV .
We call WV the hypercube (hc) formula (over V ), since its clauses correspond
1:1 to the vertices of a hypercube of dimension |V |. E.g., for V = {x, y}, we
have WV = {xy, x̄y, xȳ, x̄ȳ} writing clauses as literal strings. For a clause c, we
denote by cγ the clause in which all its literals are complemented. Similarly,
let tγ = 1 − t : V → {0, 1} ∈ WV , Cγ := {cγ |c ∈ C}, and for C ⊆ CNF, let
Cγ := {Cγ |C ∈ C}. We call C asymmetric if for each c ∈ C we have cγ 	∈ C.
Asym ⊂ CNF, denotes the set of all asymmetric formulas.

3 The Fibre View on Clause Sets

The fibre view, as introduced in [12], regards a clause set C as composed of
fibres over a hypergraph: All clauses c of C projecting onto the same variable set
b = V (c), when negations are eliminated, form the fibre Cb over b, namely Cb =
{c ∈ C|V (c) = b}. The collection of these base elements b forms a hypergraph, the
base hypergraph H(C) = (V (C), B(C)) of C, where B(C) = {b := V (c)|c ∈ C}.
Hence, C is the disjoint union of all its fibres: C =

⋃
b∈B(C) Cb. Conversely,

we can also start with a given arbitrary hypergraph H = (V, B) serving as a
base hypergraph if its vertices x ∈ V are regarded as Boolean variables such
that for each x ∈ V there is a (hyper)edge b ∈ B containing x. Recall that, for
any b ∈ B, Wb is the hypercube formula over the set of variables in b. Then
the set of all clauses over H is KH :=

⋃
b∈B Wb, also called the total clause

set over H. Wb is the fibre of KH over b. For example, given V = {x1, x2, x3},
and B = {b1 := x1, b2 := x1x2, b3 := x1x3}, we have KH = Wb1 ∪ Wb2 ∪
Wb3 , where Wb1 = {x1, x̄1}, Wb2 = {x1x2, x̄1x2, x1x̄2, x̄1x̄2}, and Wb3 =
{x1x3, x̄1x3, x1x̄3, x̄1x̄3} are the hc formulas over b1, b2, and b3, respectively.

A formula over H (or a H-based) formula is a subset C ⊆ KH such that
Cb := C ∩ Wb 	= ∅, for each b ∈ B. Given a H-based formula C ⊆ KH with
the additional property that C̄b := Wb − Cb 	= ∅ holds, for each b ∈ B, then
we can define its H-based complement formula C̄ :=

⋃
b∈B C̄b = KH − C with

fibres C̄b. For example, given H = (V, B) with V = {x1, x2, x3}, and B =
{x1x2, x1x3}, let C = {x1x̄2, x1x2, x1x̄3, x̄1x̄3} then KH = C ∪ C̄ where C̄ =
{x̄1x2, x̄1x̄2, x1x3, x̄1x3}. A fibre-transversal (f-transversal) of KH (not to be
confused with a hitting set) is a H-based formula F ⊂ KH such that |F∩Wb| = 1,
for each b ∈ B. Hence F is a formula containing exactly one clause of each fibre
Wb of KH; let that clause be refered to as F (b). For convenience let F(KH) be the
set of all f-transversals of KH. An important type of f-transversals F are those
containing each variable of V as a pure literal, that is, occurring in F with a single
polarity only. Such f-transversals are called compatible and have the property
that

⋃
b∈B F (b) ∈ WV . Let Fcomp(KH) be the collection of all compatible f-

transversals of KH. As a simple example for a compatible f-transversal, consider
the base hypergraph H = (V, B) with variable set V := {x1, x2, x3} and B :=
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{b1 := x1x2, b2 := x1x3, b3 := x2x3}. Then, e.g., the clauses c1 := x̄1x2 ∈ Wb1 ,
c2 := x̄1x̄3 ∈ Wb2 and c3 := x2x̄3 ∈ Wb3 , denoted as literal strings, form
a compatible f-transversal of the corresponding KH, because c1 ∪ c2 ∪ c3 =
x̄1x2x̄3 ∈ WV . In a certain sense orthogonal to compatible f-transversals are
the diagonal f-transversals. By definition, a diagonal f-transversal F meets each
compatible f-transversal F ′ of KH in at least one clause; formally: for each
F ′ ∈ Fcomp(KH) we have F ∩ F ′ 	= ∅. Let Fdiag(KH) be the collection of all
diagonal f-transversals of KH.

As for the total clause set KH we can define f-transversals for a H-based
formula C ⊂ KH: An f-transversal F of C contains exactly one clause of each
fibre Cb of C. The collection of all f-transversals of C is denoted as F(C). We
also define compatible and diagonal f-transversals of C via Fcomp(C) := F(C)∩
Fcomp(KH), and Fdiag(C) := F(C) ∩ Fdiag(KH).

The following result characterizes satisfiability of a formula C in terms of
compatible f -transversals in its based complement formula C̄ (cf. [12]):

Theorem 1. For H = (V, B), let C ⊂ KH be a H-based formula such that
C̄ is H-based, too. Then C is satisfiable if and only if C̄ admits a compatible
f-transversal, i.e. Fcomp(C̄) 	= ∅.

Proof. Suppose C is satisfiable and let t ∈ WV be one of its models. Then for
each base point b ∈ B = B(C) = B(C̄), the restriction t|b of t to b satisfies all
clauses of the fibre Wb of KH except for the clause tγ |b obtained from t|b via
complementing all literals. Hence Ft(b) := tγ |b is a member of C̄ and therefore
Ft := {Ft(b)|b ∈ B} is a compatible f-transversal of C̄ because C̄ is H-based and⋃

Ft =
⋃

b∈B tγ |b = tγ .
Conversely, let F be a compatible f-transversal of C̄. Then, by definition of

compatibility and because V has no isolated variables t :=
⋃

b∈B F (b) ∈ WV is
a truth assignment. And we claim that via complementing all assignments we
obtain a model tγ of C. Indeed, suppose the contrary, meaning that there is a
base point b and a clause c over b belonging to C that is not satisfied by tγ . Then
this clause must have the form c = t|b ∈ C, but this means a contradiction to
F (b) = t|b ∈ C̄ as F was assumed to be an f-transversal of C̄. 
�
Whereas compatible f-transversals always exist, it is not clear whether diagonal
transversals exist in KH. However, if there are diagonal transversals, then each
fixed compatible transversal meets all diagonal transversals in KH. We have
some more easy observations regarding f-transversals.

Proposition 1. (1) Fcomp(KH) ∼= WV (means isomorphism),
(2) Fdiag(KH) = {F ∈ F(KH)|∀t ∈ WV ∃b ∈ B : F (b) = t|b},
(3) Fcomp(KH)γ = Fcomp(KH),
(4) Fdiag(KH)γ = Fdiag(KH),
(5) Fdiag(KH) ∩ Fcomp(KH) = ∅,
(6) F ∈ Fdiag(KH)⇔F ∈ UNSAT,
(7) F ∈ Fcomp(KH) ⇒ F ∈ SAT.

Proof. Assertion (1) follows from Theorem 1. Assertion (2) says that each diag-
onal f-transversal meets each clause in WV and thus follows from (1) immediately.
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Assertion (3) is obvious. Let F ∈ Fdiag(KH) and assume there is F ′ ∈ Fcomp(KH)
such that F ′(b) 	= F γ(b), for all b ∈ B, equivalent to F ′γ(b) 	= F (b), for all
b ∈ B, contradicting that F is diagonal, so yielding (4). Assume there is F ∈
Fdiag(KH) ∩Fcomp(KH), then with (3) also F γ ∈ Fcomp(KH) holds, but we have
F γ(b) 	= F (b), for each b ∈ B, therefore F 	∈ Fdiag(KH) yielding a contradiction
implying (5). According to Theorem 1, we have F ∈ UNSAT iff Fcomp(F̄ ) = ∅ iff,
∀F ′ ∈ Fcomp(KH), there is b ∈ B such that F ′(b) = F (b) ∈ F iff F ∈ Fdiag(KH),
hence (6). (7) is implied by (6) according to (5); moreover for F ∈ Fcomp(KH),⋃

F ∈ WV specifically satisfies F . 
�
Thus, we have three types of f-transversals composing F(KH), namely compat-
ible f-transversals which are always satisfiable, diagonal ones which (which do
not exist in each case but) are always unsatisfiable, and finally, f-transversals
that neither are compatible nor diagonal but are always satisfiable.

Definition 1. A formula D ⊆ KH is called a diagonal formula if, for each
F ∈ Fcomp(KH), F ∩ D 	= ∅ holds.

Obviously each F ∈ Fdiag(KH) (if existing) is a diagonal formula. Since a diag-
onal formula D contains a member of each compatible f-transversal the comple-
ment formula D̄ cannot have a compatible f-transversal. Therefore D ∈ UNSAT
according to Theorem 1, and we have:

Proposition 2. A formula is unsatisfiable iff it contains a diagonal subformula.

Consider a simple application of the concepts above: Recall that a hypergraph is
called Sperner if no hyperedge is contained in another hyperedge [2]. Similarly,
we call a formula C ∈ CNF simple if no clause is contained in another one. A
non-simple formula C can easily be turned into a SAT-equivalent simple one by
removing each clause c′ ∈ C that properly contains another clause. If C is simple
its base hypergraph H(C) = (V (C), B(C)) can either be Sperner or non-Sperner.
Assuming H(C) = H(C̄) we have that H(C) Sperner implies that C̄ is simple. The
case that H(C) = H(C̄) is non-Sperner, but both C and C̄ are simple is illustrated
by the following example (where clauses and edges are represented as strings):

C = {xy, xȳz, x̄yz, x̄ȳz, xȳz̄, x̄yz̄, x̄ȳz̄}
C̄ = {xȳ, x̄y, x̄ȳ, xyz, xyz̄}

B(C) = {xy, xyz}

Theorem 2. Let C ∈ CNF be such that H(C) = H(C̄) is non-Sperner, but both
C and C̄ are simple. Then C and C̄ are unsatisfiable.

Proof. For proving that C is unsatisfiable, it is sufficient to show that C̄ cannot
have a compatible f-transversal according to Theorem 1. Since H(C) is non-
Sperner there are b, b′ ∈ B(C) with b ⊂ b′. Now, for each f-transversal F ∈
F(C̄), we have F (b) 	= F (b′), and F (b) 	⊆ F (b′) because C̄ is assumed to be
simple. That means there is x ∈ b such that x ∈ F (b), x̄ ∈ F (b′) or vice versa,
hence F (b) ∪ F (b′) ⊃ {x, x̄} is not compatible implying that C ∈ UNSAT. By
exchanging the roles of C and C̄ we also obtain that C̄ is unsatisfiable. 
�
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Corollary 1. If C is simple and satisfiable then either
(i) H(C) is Sperner and C̄ is simple or
(ii) neither H(C) is Sperner nor C̄ is simple and, for each pair b1 ⊂ b2 ∈ B(C),
there are c1 ⊂ c2 ∈ C̄ such that V (ci) = bi, i = 1, 2.

The criterion in (ii) above is not sufficient for satisfiability of C: Let b1 ⊂ b ∈
B(C) such that c1 ⊂ c ∈ C̄ and moreover let b′1 ⊂ b′ ∈ B(C) such that c′1 ⊂
c′ ∈ C̄, where V (c) = b, V (c′) = b′, V (c1) = b1, and V (c′1) = b′1. Now assume
that b ∩ b′ 	= ∅, and that c, c′ are the only clauses over b, b′ in C̄. Clearly,
if c|b∩b′ 	= c′|b∩b′ then there is no compatible f-transversal of C̄, so C has no
model.

4 Formulas over Exact Linear Base Hypergraphs

Returning to the general discussion, let H = (V, B) be a non-empty base hyper-
graph, then clearly Fcomp(KH) is non-empty we even have |Fcomp(KH)| = 2|V |

according to Prop. 1 (1). However, a priori it is not clear whether in general
Fdiag(KH) 	= ∅ holds, too. Actually, this depends on the structure of the base
hypergraph H. To that end, let us consider an interesting and guiding example
regarding satisfiability of certain formulas over an (exact) linear base hypergraph
H = (V, B). By definition, H linear has the property |b ∩ b′| ≤ 1, for all distinct
b, b′ ∈ B, and the exact linear case is defined replacing ≤ with =. Recall that
a hypergraph H = (V, B) is called loopless iff |b| ≥ 2, for all b ∈ B. In [14]
(exact) linear formulas are discussed in more detail. In an (exact) linear formula
the variable sets of distinct clauses have at most (resp. exactly) one member in
common.

Lemma 1. [14] Each exact linear formula without unit clauses is satisfiable.

From the Lemma we conclude that if the base hypergraph H = (V, B) is ex-
act linear and loopless then for the corresponding total clause set Fdiag(KH)
= ∅ holds. Indeed, no unsatisfiable f-transversal can exist then, because each
is exact linear and we are done by contraposing Proposition 1 (6). So indeed
there are hypergraphs admitting no diagonal f-transversal. The reverse ques-
tion, namely are there hypergraphs at all such that the total clause sets have
diagonal f-transversals, also is answered positive: Each unsatisfiable linear for-
mula obviously is an f-transversal of the total clause set over the underlying
linear base hypergraph, so it is diagonal.

Fact 1. The notion of (diagonal) f-transversals generalizes the notion of (un-
satisfiable) linear formulas.

We now address the class of all CNF formulas over exact linear base hypergraphs,
called exact linearly-based formulas, for short. It is easy to see that this class
corresponds to the class of CNF formulas such that the variable sets of each pair
of clauses have exactly one or all members in common. Clearly, each exact linear
formula also is exact linearly-based. In the following we investigate some aspects
of SAT regarding the class of exact linearly-based formulas.
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To a H-based formula C, for arbitrary H, we can assign its fibre graph G(C) as
follows: Each clause c of C corresponds to a vertex. And vertices c, c′ ∈ C form
an edge iff (1) they belong to distinct fibres of C, i.e. there are b, b′ ∈ B, b 	= b′,
such that c ∈ Cb, c′ ∈ Cb′ ; and (2) c ∩ c′ 	= ∅. In terms of the fibre graph we
obtain the following characterization of satisfiability in the case of exact linear
bases. Recall that a clique is a (sub)graph such that each pair of its vertices are
joined by an edge.

Proposition 3. Let C be exact linearly-based such that H(C) = H(C̄) =: H =
(V, B). Then C is satisfiable iff G(C̄) admits a clique of size |B|.

Proof. In view of Theorem 1 we prove that C̄ admits a compatible f-transversal
if and only if G(C̄) has a clique of size |B|. Assume G(C̄) has such a clique F ,
then it contains exactly one member of each of the fibres of C̄, hence the clauses
corresponding to the vertices in F form an f-transversal of C̄, also denoted as F .
Suppose that F is not a compatible f-transversal. Then the union of all clauses
in F contains a variable x and its negation x̄, i.e. a complemented pair. As by
definition no clause of C has a complemented pair, there are two clauses c and c′

in F such that x ∈ c and x̄ ∈ c′. Since H is linear and F is an f-transversal V (c)
and V (c′) do not have another variable in common than x meaning c ∩ c′ = ∅.
Because c and c′ form an edge in G(C̄) we have c∩c′ 	= ∅ yielding a contradiction,
so F is a compatible f-transversal.

Conversely, assume that C̄ has a compatible f-transversal F . Then it has
size |B| because C̄ is a H-based formula by assumption. Suppose there are two
members c, c′ in F whose vertices do not form an edge in G(C̄). Then c∩ c′ = ∅

implying V (c) ∩ V (c′) = ∅ contradicting exact linearity of H. In conclusion, the
members of F correspond to a |B|-clique in G(C̄). 
�
Note that if C̄ is not a H-based formula then C is unsatisfiable trivially because
it contains a complete Wb as fibre subformula. Moreover notice that the proof
above is not valid for arbitrary base hypergraphs. The next observation concerns
rather specific exact linearly-based formulas:

Lemma 2. Let H = (V, B) be an exact linear base hypergraph such that there is
a vertex x ∈ V occuring in each b ∈ B. Let C ⊂ KH be a H-based formula such
that C̄ also is H-based. Then we have: C ∈ UNSAT if and only if

(∗) |{b ∈ B|∀c ∈ C̄b : x ∈ c}| > 0 and |{b ∈ B|∀c ∈ C̄b : x̄ ∈ c}| > 0

Moreover, assuming that C is given in terms of its fibre subformulas we can
check it for satisfiability in linear time O(‖C‖).

Proof. In view of Prop. 3 it is sufficient to show that G(C̄) admits no |B|-clique
iff (∗) in the assertion is true. But this is obvious because (∗) holds for C̄ iff there
is a fibre subformula C̄b containing x as pure literal, and (at least) one other C̄b′

containing x̄ as pure literal. Hence no clause contained in C̄b can be joined in
G(C̄) to a clause in C̄b′ and we proved the first assertion.

For verifying the second assertion, we decribe a simple algorithm checking
(∗), for C̄, via inspecting C in linear time. To that end initialize two counters
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Nx ← 0 and Nx̄ ← 0. Then check each fibre subformula Cb ⊂ C, b ∈ B, whether
it contains exactly 2|b|−1 clauses containing literal x, respectively literal x̄. If
the first holds true then increase counter Nx̄ by one; if the second is true then
increase counter Nx by one; otherwise do not modify the counters, respectively.
Proceed in this way until either Nx̄ > 0, and Nx > 0 then stop, and return
C ∈ UNSAT. Or the whole formula has been inspected and Nx̄ = 0 = Nx then
return C ∈ SAT. The algorithm works correctly, as it is easy to see that (∗)
holds iff Nx̄ > 0 and Nx > 0. 
�
The next algorithm, instead of searching G(C̄), works via inspecting C itself:

Theorem 3. For C exact linearly-based and represented in terms of its fibre
subformulas, SAT can be decided in polynomial time.

Proof. For C exact linearly-based, by definition, there is an exact linear base
hypergraph H = (V, B) such that C ⊆ KH. If H is not loopless, we are done by
Lemma 2. If C is exact linear and loopless, we are done according to Lemma 1 in
linear time, by inspection of the input. If C̄ is not H-based then C cannot be satis-
fiable because it contains at least one complete fibre Wb of KH. So assume that C̄
is H-based. The basic idea is as follows: We say that a clause c of the input formula
C over n variables meets a truth assignment t ∈ WV iff c ⊆ t. A single clause c ob-
viously meets exactly 2n−|c| truth assignments. Suppose we are able to calculate
fast the total number N of all distinct truth assignments met by all clauses of the
input formula C. Then we have C ∈ SAT iff N < 2n. Indeed, only in that case C
does not contain a diagonal formula since the H-based complement formula C̄ of
C admits a compatible f-transversal corresponding to a truth assignment not met
by any c ∈ C according to Prop. 1. So, we are done refering to Theorem 1.

To that end, recall that Cb ⊂ Wb denotes the fibre subformula of C over
b ∈ B. Let l be an arbitrary literal occurring in the input formula C, and recall
that Cb(l) ⊂ Cb is the subformula of Cb of all clauses containing literal l, where
V (l) ∈ b. The clauses in Cb(l) in total meet exactly μ(l, b) := |Cb(l)| ·2n−|b| of all
2n−1 truth assignments containing l. The determination of the number of truth
assignments met by the clauses in the input formula C is organized as follows:
First we compute a variable x called a maximum variable and the corresponding
edges bx, bx̄ ∈ B (smallest indices if ambigous) satisfying

μ(x, bx) + μ(x̄, bx̄) = max{μ(y, b) + μ(ȳ, b′)|y ∈ V, b, b′ ∈ B}

Note that |Cb(l)| = 0 if l 	∈ L(Cb), specifically if V (l) 	∈ b meaning b 	∈ B(x).
(Here, we have B(x) = {b ∈ B|x ∈ b}regarding B as a positive monotone clause
set.) It is possible that bx = bx̄. Next we perform at most two independent runs of
a Procedure ComputeCoverNumber(l, p). The first one for l = x and a second one
for l = x̄; returning in p the number of all l-containing truth assignments, that
are met by the clauses of C containing l. Each of these executions of Procedure
ComputeCoverNumber(l, p) is initiated only if μ(l, bl) < 2n−1 meaning that the
fibre subformulas corresponding to the maximum variable x do not meet all 2n−1

possible l-containing truth assignments. Clearly, the runs of the procedure for x
and x̄ can be processed independently. Finally, the numbers of truth assignments
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met that are returned in p are added, and the algorithm returns unsatisfiable
iff the total value equals 2n.

Procedure ComputeCoverNumber(l, p) consists of two subprocedures. The first
one is entered only if there is at least one fibre subformula Cb with x ∈ b besides
Cbl

in which literal l occurs. The subprocedure then computes all additional l-
containing truth assignments met by the clauses in all these fibre subformulas. The
second subprocedure is devoted to determine all further truth assignments con-
taining l met by the remaining fibre subformulas Cb with x = V (l) 	∈ b. Similarly,
it is entered only if there is at least one fibre subformula Cb with b ∈ B − B(x).

The first subprocedure of ComputeCoverNumber proceeds as follows: W.l.o.g.
let Cl := {Cb1 , Cb2 , . . . , Cbs}, for s ≥ 1, be the collection of all remaining fibre
subformulas with x = V (l) ∈ bi, and |Cbi(l)| > 0, for all 1 ≤ i ≤ s, where
b1 := bl. Obviously, a fibre formula Cb with b ∈ B(x) but Cb(l) = ∅ cannot
contribute to the set of met l-containing truth assignments. Let mj := |Cbj (l)| and
m′

j := |Wbj (l) − Cbj (l)| = 2|bj |−1 − mj , for 1 ≤ j ≤ s. Note that by assumption
we have m′

j > 0, for 1 ≤ j ≤ s. Now we claim that the number αl of l-containing
truth assignments met by the clauses of the subformulas in Cl is given by:

(∗) αl(s) :=
s∑

j=1

[

mj · 2n+(j−1)−�j
q=1 |bq| ·

j−1∏

k=1

m′
k

]

where as usual
∏j−1

k=1 m′
k := 1 if j = 1. We prove the claim by induction on

s := |Cl| ≥ 1. If s = 1 then clearly αl(1) = μ(l, bl) and (∗) can easily be verified
to be correct. So, let s ≥ 1 and assume that (∗) is true for all values not greater
than s. Let Cl have cardinality s + 1, then the first s members of Cl meet αl(s)
distinct l-containing truth assignments by the induction hypothesis.

All clauses in Cbs+1(l) contain literal l and literals over the same |bs+1| − 1
variables that do not occur in any other bj, 1 ≤ j ≤ s, because H is exact
linear. Let Δl(s+1) be the number of additional l-containing truth assignments
met by the clauses in Cbs+1(l) but not by those in Cl − {Cbs+1(l)}. Further, each
clause of Cbs+1(l) contributes the same number R of additional l-containing truth
assignments. This is true because these clauses meet pairwise distinct parts over
the range bs+1 − {x} of truth assignments not already met by the clauses in
Cl − {Cbs+1(l)}; we thus have Δl(s + 1) = ms+1 · R.

To determine R we need the number of all l-containing truth assignments
not already met by the clauses in Cl − {Cbs+1(l)}. Consider arbitrary clauses
ci ∈ Wbi(l) − Cbi(l), 1 ≤ i ≤ s, i.e. the complements of the fibre subformulas
in Cl − {Cbs+1(l)}. The union d :=

⋃s
i=1 ci yields a literal set of cardinality

|d| = 1 +
∑s

i=1(|bi| − 1) which clearly cannot be contained in any of the l-
containing truth assignments met by the clauses in Cl − {Cbs+1(l)}. Hence a
clause c ∈ Cbs+1(l) meets each l-containing truth assignment enlarging a literal
string d as constructed above with c. Of such a truth assignment consequently
then r := 1+

∑s
i=1(|bi|−1)+ |bs+1|−1 positions are already fixed yielding 2n−r

distinct such truth assignments containing that literal string d and c. Clearly,
we can construct m′

1 · m′
2 · · · m′

s distinct literal strings d as above. Each yielding
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2n−r truth assignments met by each fixed clause of Cbs+1(l). So we obtain R =
m′

1 · m′
2 · · · m′

s · 2n−r and therefore

Δl(s + 1) = ms+1 · 2n+s−�s+1
q=1 |bq| ·

s∏

k=1

m′
k

additional l-containing truth assignments. Now we conclude by induction

αl(s + 1) = Δl(s + 1) + αl(s)

= ms+1 · 2n+s−�s+1
q=1 |bq| ·

s∏

k=1

m′
k +

+
s∑

j=1

[

mj · 2n+(j−1)−�j
q=1 |bq| ·

j−1∏

k=1

m′
k

]

=
s+1∑

j=1

[

mj · 2n+(j−1)−�j
q=1 |bq| ·

j−1∏

k=1

m′
k

]

in hamony with (∗), for s + 1, finishing the proof of the claim.
Clearly, number αl can be determined performing a simple loop recalling that

by assumption mj > 0, for all 1 ≤ j ≤ s:

z ← m1 · 2n−|b1|

p ← z
for j = 1 to s − 1 do

z ← z · m′
j · mj+1

mj
· 21−|bj+1|

p ← p + z
do

So finally, we have to check whether p = 2n−1. In order to avoid calculations
with possibly large number 2n it is sufficient instead to compute p′ := p/2n.
That means to start with z ← m1 · 2−|b1| and finally to check whether p′ = 1/2.

Recall that the second subprocedure of ComputeCoverNumber(p, l) is devoted
to determine all additional l-containing truth assignments met by all clauses in
fibre subformulas Cb with b ∈ B − B(x) meaning x = V (l) 	∈ b. Clearly this sub-
procedure needs to be started only if p′ < 1/2, because otherwise all l-containing
truth assignments are met already. For explaining the second subprocedure, let
c′ be a clause of a fibre subformula Cb′ with b′ ∈ B − B(x). We claim that c′

meets a not yet encountered l-containing truth assignment if and only if for each
b ∈ B(x) there is c ∈ Wb(l) − Cb(l) with c′ ∩ c 	= ∅. To prove the claim, recall
that by assumption we have m′

b = |Wb(l) − Cb(l)| > 0 for all b ∈ B(x) since
otherwise μ(l, bl) = 2n−1 and Procedure ComputeCoverNumber(p, l) would not
have been entered at all. So, there always is at least one selection S := {c ∈
Wb(l) − Cb(l)|b ∈ B(x)}. As above we build the literal string d =

⋃
S satisfying

|d| = 1 +
∑

b∈B(x)(|b| − 1) and |V (c′) ∩ V (d)| = |S|, for the chosen clause c′, be-
cause of exact linearity. None of the clauses in Cl can meet any l-containing truth
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assignment enlarging d. Clearly c′ meets such a truth assignment iff |c′∩d| = |S|
which is equivalent to c′ ∩ c 	= ∅ for all c ∈ S proving the claim.

W.l.o.g. let C := {Cbs+1 , . . . , Cbs+r} with r := |C| ≥ 1, be the collection of all
fibre subformulas of C neither containing x nor x̄. For c′ ∈ Cbs+1 , let {yi} =
V (c′)∩ bi which, for all 1 ≤ i ≤ s, are uniquely determined and pairwise distinct
because of exact linearity, hence |c′| ≥ s. Assume that li ∈ c′ is the corresponding
literal with V (li) = yi 	= x. Let nl :=

∑s
q=1 |bq| − (s − 1) be the number of

distinct variables in V (Cl). Let λi(c′) be the number of clauses in Wbi(l)−Cbi(l)
containing literal li, 1 ≤ i ≤ s. Clearly, li is contained in exactly 2|bi|−2 clauses
of Wbi(l). So, if li occurs ti times in Cbi(l) we have λi(c′) = 2|bi|−2 − ti, for
1 ≤ i ≤ s. Since each clause in Cbs+1 already fixes nl +(|bs+1|−s) of n positions,
we conclude with the claim above that all clauses in Cbs+1 together meet exactly

2n−nl−(|bs+1|−s)
∑

c∈Cbs+1

s∏

j=1

λj(c)

additional l-containing truth assignments.
On that basis we obtain via induction on r = |C| ≥ 1 analogous to the

argumentation for the first subprocedure, that all members of C together meet

r∑

k=1

⎡

⎣2n−nl−
�k

j=1 f(j)
∑

c∈Cbs+k

⎛

⎝
s+k−1∏

j=1

λj(c)

⎞

⎠

⎤

⎦

many additional distinct l-containing truth assignments. Here, for 1 ≤ j ≤ r,

f(j) := |bs+j | −
∣
∣
∣
∣
∣

s+j−1⋃

i=1

(bs+j ∩ bi)

∣
∣
∣
∣
∣
∈ {0, . . . , |bs+j | − s}

is the number of variables remaining from bs+j if each variable contained in one
of {b1, . . . , bs+j−1} is removed. Hence, nl +

∑k
j=1 f(j) = |V ({b1, . . . , bs+k})|.

Since the formula is represented through its fibres Cb, b ∈ B, and |B| ≤ V (C)
because of exact linearity [14], all needed values can be collected in polynomial
time. 
�
The method above can easily be adapted to solve the counting problem #-SAT
for exact linearly-based formulas in polynomial time: execute both subprocedures
yielding the counts N1, N2 respectively, then return 2n − (N1 + N2). Further, a
poly-time algorithm for the search problem can be provided by self-reduction:
Iteratively set a variable and check by the algorithm above, whether the result-
ing formula remains satisfiable. In the negative case, fix the selected variable
complementary, etc. Though our class is not stable under partial assignments,
the algorithm above still works since the underlying hypergraph shrinks.

Moreover notice that checking whether the subformula {Cb|b ∈ B(x)} of C
already is unsatisfiable could be done fast according to Lemma 2, instead of run-
ning the first subprocedure twice. However if that does not yield unsatisfiability,
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in general we cannot simply proceed with the second subprocedure because we
do not know how many compatible f-transversals have been met by the clauses
in the fibre subformulas over B(x).

5 The Fibre View Further Exploited

Next we investigate some other formula classes using the fibre view concept,
besides exact linearly-based formulas. For H = (V, B), let C ⊂ KH such that
B(C) = B = B(C̄). If C ∈ SAT then according to Prop. 1 (1) for each t ∈ M(C)
there is a unique F ∈ Fcomp(KH) with

⋃
F = t. We now address the question in

which case each model t of C corresponds to an F ∈ Fcomp(C), i.e. corresponds
to a compatible f-transversal of the formula itself.

Lemma 3. If C ∈ CNF ∩ SAT, B(C) = B(C̄), such that for each t ∈ M(C)
there is F ∈ Fcomp(C) with

⋃
F = t. Then C̄ ∈ SAT and

⋃
F ′ ∈ M(C̄) for each

F ′ ∈ Fcomp(C̄); and vice versa.

Proof. Let F ∈ Fcomp(C̄) and t :=
⋃

F ∈ WV , then according to the proof of
Theorem 1, tγ is a model of C. By assumption there is F ′ ∈ Fcomp(C) such that
tγ =

⋃
F ′. Hence, again by Theorem 1, t is a model of C̄ as claimed, specifically

C̄ ∈ SAT. For the vice versa assertion exchange the roles of C and C̄. 
�
Next we provide a formula class satisfying the assumption of the last lemma.
Recall that an asymmetric formula C has the property that c ∈ C implies cγ 	∈ C
and that Asym ⊆ CNF denotes the class of all asymmetric formulas.

Lemma 4. Let C ∈ CNF be such that B(C) = B(C̄) and C̄ ∈ Asym. Then
C ∈ SAT implies C̄ ∈ SAT and each t ∈ M(C) corresponds to a compatible
f-transversal in Fcomp(C); and vice versa.

Proof. Let t ∈ M(C) 	= ∅ then for each b ∈ B(C) t|b satisfies all of Wb except
for (t|b)γ which thus must be a clause of C̄. And C̄ ∈ Asym implies that t|b ∈ C
for each b ∈ B(C). Hence {t|b|b ∈ B(C)} is a compatible f-transversal of C. It
follows that C̄ ∈ SAT and that for each t ∈ M(C) there is F ∈ Fcomp(C) with⋃

F = t. For the vice versa assertion exchange the roles of C and C̄. 
�

Corollary 2. Let C ∈ Asym such that also C̄ ∈ Asym and B(C) = B(C̄). Then
C ∈ SAT if and only if C̄ ∈ SAT. 
�

In view of Theorem 1 we know that a formula is satisfiable if and only if the
complement formula admits a compatible f-transversal. Therefore the specific
class of formulas C such that every f-transversal of C is compatible is of interest,
because any f-transversal gives rise to a model of C̄ then, and vice versa. A
characterization of that very specific class can be provided as follows: Let H =
(V, B) be a base hypergraph. Then in general there is a 2-partition of V given by
sets VI and VU . Here VU contains all vertices occurring in only one edge b ∈ B,
and VI contains all remaining vertices occurring in at least one edge intersection.
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Lemma 5. Let C ∈ CNF such that H(C) = H(C̄) =: H := (V, B). Then
Fcomp(C) = F(C) iff (∗): each variable in VI ⊆ V is a pure literal in C.

Proof. Assume that (∗) is true. Then each y ∈ b ∩ b′ for all b, b′ ∈ B, b 	= b′

is a pure literal in C and therefore each F ∈ F(C) is compatible. Conversely,
F ∈ F(C) is compatible iff all variables are pure literals in F . Hence if each
F ∈ F(C) is compatible it is easy to see that all variables occurring in edge
intersections must be pure literals in C. 
�
Let CNFcomp denote the class of all formulas C ∈ CNF with B(C) = B(C̄), and
such that F(C̄) = Fcomp(C̄). As an example for C ∈ CNFcomp, let H = (V, B)
with V = {q, r, s, t, u, v, x, y}, B = {b1 = xy, b2 = yuv, b3 = vxr, b4 = rst, b5 =
txq}, then the following formula C̄

C̄ = xȳ ȳuv vxr rst̄ t̄xq

ȳūv rs̄t̄ t̄xq̄

where clauses are arranged fibrewise obviously has the property that F(C̄) =
Fcomp(C̄), hence C = KH − C̄ ∈ CNFcomp implying C ∈ SAT.

Theorem 4. We can check in polynomial time whether an input formula C ∈
CNF belongs to CNFcomp. In the positive case a model can be provided in polyno-
mial time assuming for both that C is represented through its fibre subformulas.

Proof. Let H = (V, B) = H(C) = H(C̄). In linear time we check whether C
contains a whole Wb as fibre subformula, in which case C 	∈ CNFcomp. Otherwise,
in view of Lemma 5 we have to check whether each variable in VI is a pure literal
in C̄. First, we check in B which variables occur uniquely yielding VU and set
VI = V − VU . For each y ∈ VI we check whether it occurs in different polarities
in C̄[B(y)] := {C̄b|b ∈ B(y)} simultaneously. Recall that B(y) = {b ∈ B|y ∈ b}.
This test can be performed in linear time O(‖C[B(y)]‖) similar to the procedure
presented in the second part of the proof of Lemma 2: Initialize two counters
Ny ← 0 and Nȳ ← 0. Then check each fibre subformula Cb, b ∈ B(y), whether
it contains exactly 2|b|−1 clauses containing literal y, respectively literal ȳ. If the
first holds true then increase counter Nȳ by one; if the second is true then increase
counter Ny by one; otherwise do not modify the counters, respectively. Proceed
in this way until either Nx̄ > 0 and Nx > 0 then stop, and return C 	∈ CNFcomp,
because y occurs in both polarities (in distinct fibre subformulas). Or the whole
formula has been inspected. Then we set a flag to C ∈ CNFcomp if and only if
(∗): Nȳ = 0 and Ny = |B(y)|, or vice versa. The test works correctly, as it is easy
to see that (∗) holds iff the clauses in the fibre subformulas in C̄[B(y)] either all
contain y or ȳ. If in that way the algorithm does not return C 	∈ CNFcomp we
have checked all y ∈ VI , and we know that C ∈ CNFcomp.

Finally, to provide a model of C ∈ CNFcomp we simply need to select one
clause cb ∈ C̄b = Wb − Cb for each b ∈ B ensuring that

⋃
b∈B cγ

b ∈ M(C)
according to Theorem 1. For fixed b = {bi1 , . . . , bi|b|}, the selection can be per-

formed, e.g., by ordering the members c = {b
εi1(c)
i1

, . . . , b
εi|b|(c)

i|b|
} in Cb according
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to the lexicographic order of the vectors (εi1(c), . . . , εi|b|(c)) ∈ {0, 1}|b|, and tak-
ing clause in the first gap w.r.t. all of Wb, for each b ∈ B. 
�

6 Concluding Remarks and Open Problems

We provided several CNF subclasses that are polynomial time decidable resp.
behave trivially regarding SAT using the fibre view on clause sets. The most in-
teresting are exact linearly-based formulas. We showed that the decision, search
and counting variants of SAT restricted to this class all are polynomial time
solvable. We leave it as an open problem to design a more direct algorithm for
the decision, resp. search variants of SAT for exact linearly-based formulas. A
future work perspective is to elaborate more deeply the relationships between
the polynomial time classes studied here to other such classes. Finally, it might
be of interest to relate Theorem 1 to the characterization of satisfiability of CNF
formulas in the framework of binary decision diagrams.

Acknowledgement. We would like to thank the anonymous reviewers for their
valuable comments.
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