
A Preprocessor for Max-SAT Solvers�

Josep Argelich1, Chu Min Li2, and Felip Manyà1

1 Computer Science Department
Universitat de Lleida

Jaume II, 69, E-25001 Lleida, Spain
2 LaRIA, Université de Picardie Jules Verne

33 Rue Saint Leu, 80039 Amiens Cedex 01, France

Abstract. We describe a preprocessor that incorporates a variable sat-
uration procedure for Max-SAT, and provide empirical evidence that it
improves the performance of some of the most successful state-of-the-
art solvers on several partial (weighted) Max-SAT instances of the 2007
Max-SAT Evaluation.

1 Introduction

In the last years, there has been an increasing interest in Max-SAT formalisms
such as (weighted) Max-SAT and partial (weighted) Max-SAT. Among the
most relevant results we highlight the following ones: (i) there exist solvers
like ChaffBS [6], Clone [14], Lazy [1], MaxSatz [12], MiniMaxSat [8], ms4 [13],
PMS [3], Sat4Jmaxsat, SR(w) [15] and Toolbar [7] which solve many instances
that are beyond the reach of the solvers existing just five years ago; (ii) resolution
refinements, which preserve the number of unsatisfied clauses, have been incor-
porated into Max-SAT solvers [9,7,12], as well as good quality underestimations
of the lower bound [10,11,14,15], (iii) a resolution-style calculus for Max-SAT
has been proven to be complete [4,5], (iv) formalisms like Partial Max-SAT have
been investigated for solving problems with soft constraints [2,6,8,3], and (v) two
evaluations of Max-SAT solvers have been performed for the first time.

In this paper we present a preprocessor that can be applied to solvers for
Max-SAT formalisms, including Max-SAT, weighted Max-SAT, partial Max-
SAT and partial weighted Max-SAT solvers. Our preprocessor implements a
variable saturation procedure defined in [4,5]. Moreover, we provide empirical
evidence that it improves the performance of MiniMaxSat, SR(w) and PMS on
several partial (weighted) Max-SAT instances of the 2007 Max-SAT Evaluation.
The preprocessor applies the variable saturation procedure defined in [4,5] to a
limited number of variables which are selected heuristically, and transforms the
input instance into an equivalent instance which does not contain the saturated
variables. To the best of our knowledge, this is the first paper that investigates
the practical usefulness of the notion of variable saturation in the Max-SAT
context.
� This research was funded by the MEC research projects TIN2006-15662-C02-02 and

TIN2007-68005-C04-04, and Acción Integrada HP2005-0147.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 15–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 J. Argelich, C.M. Li, and F. Manyà

The structure of the paper is as follows. Section 2 contains preliminary defini-
tions about Max-SAT. Section 3 introduces the Max-SAT resolution rule and the
notion of variable saturation. Section 4 reports and analyses the experiments.

2 Preliminaries

In propositional logic a variable xi may take values 0 (false) or 1 (true). A literal
li is a variable xi or its negation x̄i. A clause is a disjunction of literals, and
a CNF formula is a multiset of clauses. A weighted clause is a pair (Ci, wi),
where Ci is a disjunction of literals and wi, its weight, is a positive number,
and a weighted CNF formula is a multiset of weighted clauses. An assignment
of truth values to the propositional variables satisfies a literal xi (x̄i) if it takes
the value 1 (0), satisfies a clause if it satisfies at least one literal of the clause,
and satisfies a CNF formula if it satisfies all the clauses of the formula.

The Max-SAT problem for a CNF formula φ is the problem of finding an
assignment that maximizes (minimizes) the number of satisfied (unsatisfied)
clauses. The weighted Max-SAT problem for a weighted CNF formula φ is the
problem of finding an assignment that minimizes the sum of weights of unsatisfied
clauses. A Partial Max-SAT instance is a CNF formula in which some clauses
are relaxable or soft and the rest are non-relaxable or hard. Solving a Partial
Max-SAT instance amounts to find an assignment that satisfies all the hard
clauses and the maximum number of soft clauses. The weighted Partial Max-
SAT problem is the combination of weighted Max-SAT and Partial Max-SAT.

3 Resolution in Max-SAT

The Max-SAT resolution rule is defined as follows:

x ∨ a1 ∨ · · · ∨ as

x ∨ b1 ∨ · · · ∨ bt

a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt

x ∨ a1 ∨ · · · ∨ as ∨ b1

x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2
· · ·
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt

x ∨ b1 ∨ · · · ∨ bt ∨ a1
x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ a2
· · ·
x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ · · · ∨ as−1 ∨ as

This inference rule is applied to multisets of clauses, and replaces the premises
of the rule by its conclusions. We say that the rule cuts the variable x, and the
tautologies concluded by the rule are removed from the resulting multiset. In
partial Max-SAT, the hard clauses remain and the clauses subsumed by the
hard clause are removed (see [3] for details). For the sake of clarity, we did not
define the weighted version of the rule (see [5] for details).

A Preprocessor for Max-SAT Solvers 17

Definition 1. A multiset of clauses C is said to be saturated w.r.t. x if for every
pair of clauses C1 = x ∨ A and C2 = x ∨ B of C, there is a literal l such that
l is in A and l is in B. A multiset of clauses C′ is a saturation of C w.r.t. x
if C′ is saturated w.r.t. x and C �x C′; i.e., C′ can be obtained from C applying
Max-SAT resolution cutting x finitely many times.

Lemma 1. [5] For every multiset of clauses C and variable x, there exists a
multiset C′ such that C′ is a saturation of C w.r.t. x. Moreover, this multiset C′

can be computed by applying Max-SAT resolution to any pair of clauses x ∨ A
and x ∨ B with the restriction that A ∨ B is not a tautology, using any ordering
of the literals, until we can not apply Max-SAT resolution any longer.

The completeness proof of Max-SAT resolution [4,5] states that we can get a
complete algorithm by successively saturating w.r.t. all the variables as follows:
we saturate w.r.t x1 and then remove all the clauses containing x1, saturate w.r.t
x2 and then remove all the clauses containing x2, etc. After saturating this way
w.r.t. all the variables we get as many empty clauses as the minimum number
of unsatisfied clauses in the original formula.

Solving a Max-SAT instance by successively saturating w.r.t. all the variables
is clearly not competitive with solving it with a modern branch and bound solver.
Nevertheless, we thought that it would make sense to saturate w.r.t. a limited
number of variables as a preprocessing in order to simplify the formula. We
select the variables to be saturated, depending on a parameter k, iteratively as
follows: We build a graph whose nodes are the Boolean variables occurring in the
instance, and add an edge between two vertices if the variables of the vertices
occur in the same clause. We select a variable whose vertex has minimal degree
if its degree is smaller than k. This process is repeated until no more variables
can be selected. The idea is to saturate variables in which the application of
variable saturation is not very costly in terms of time and space. We also tried
to saturate the variables with a low number of occurrences, but the results were
not so good.

4 Experimental Results

To assess the impact of the preprocessor on the performance of branch and bound
Max-SAT solvers, we solved partial Max-SAT instances1 of the 2007 Max-SAT
Evaluation (with a timeout of 30 minutes as in the evaluation) on three of
the most successful and representative state-of-the-art solvers: MiniMaxSat [8],
PMS [3], and SR(w) [15]. For MiniMaxSat and SR(w) we used the same versions
as in the evaluation. For PMS we used an improved version (PMS v1.3). We
executed the preprocessor with k = 6, 10, 14 (remind that k is the parameter
for selecting variables). All the experiments were performed on a Linux Cluster
where the nodes have a 2GHz AMD Opteron processor with 1Gb of RAM.
1 We solved only the instances in which the preprocessor detected variables that could

be saturated. We also solved (weighted) Max-SAT instances, but the speed-ups were
not so good as in (weighted) Partial Max-SAT.

18 J. Argelich, C.M. Li, and F. Manyà

Tables 1 and 2 show the experimental results for PMS. The instances are
divided into sets. The first column is the name of the set, the second column
shows the number of instances in each set, the third column shows the results
for the solver without preprocessing, and the rest of columns show the results
with preprocessing for k = 6, 10, 14. We display the mean time (in seconds) of
the solved instances, as well as the number of solved instances (in brackets). We
observe that PMS with preprocessing solves more instances in 5 sets, and reduces
considerably the CPU time in most of the other sets. The best improvements
are achieved for MaxClique (random), where the preprocessing allows to solve 8
additional instances, and for Auctions (paths), where the preprocessing allows
to solve 9 additional instances.

Tables 3 and 4 show the results for MiniMaxSat. In this case, the gains are
not so significative as for PMS, although the preprocessing allows to solve 1
additional instance for MaxClique (structured) and for WCSP (spot5 dir).

Tables 5 and 6 show the experimental results for SR(w). In this case, we solve
an additional instance for 3 sets (MaxCSP (dense loose), MaxCSP (w-queens)
and Auctions (scheduling)), and 185 additional instances for Pseudo (factor).
The latter is the best improvement achieved with our preprocessor.

Table 1. Partial Max-SAT benchmarks with PMS

Instance set # PMS PMS(6) PMS(10) PMS(14)
MaxClique (random) 96 43.69(80) 69.30(83) 61.04(85) 53.85(88)
MaxClique (structured) 62 175.27(23) 183.30(24) 178.03(24) 171.13(25)
MaxOne (3-SAT) 50 261.95(50) 122.08(50) 62.06(50) 328.07(48)
MaxOne (structured) 60 177.84(58) 234.56(56) 223.76(42) 6.57(1)
MaxCSP (dense loose) 20 5.50(20) 5.26(20) 3.39(20) 8.31(20)
MaxCSP (dense tight) 20 9.76(20) 9.76(20) 7.83(20) 12.95(20)
MaxCSP (sparse loose) 20 16.39(20) 9.18(20) 4.77(20) 36.51(19)
MaxCSP (sparse tight) 20 24.02(20) 21.70(20) 18.07(20) 84.81(20)
WCSP (w-queens) 7 72.22(6) 72.19(6) 72.17(6) 72.18(6)

Table 2. Weighted Partial Max-SAT benchmarks with PMS

Instance set # PMS PMS(6) PMS(10) PMS(14)
Auctions (paths) 88 233.56(71) 178.50(80) 127.72(77) 266.47(63)
Auctions (regions) 84 5.24(84) 5.30(84) 5.52(84) 5.62(84)
Auctions (scheduling) 84 89.70(84) 89.62(84) 89.66(84) 89.61(84)
Pseudo (factor) 186 11.00(186) 11.64(186) 226.88(186) 924.37(2)
Pseudo (miplib) 16 1.94(4) 0.96(4) 190.93(4) 2.34(1)
QCP 25 199.31(15) 199.36(15) 199.46(15) 199.52(15)
WCSP (planning) 71 13.96(71) 21.97(71) 63.65(70) 233.29(42)
WCSP (spot5 dir) 21 14.86(2) 6.59(5) 57.96(6) 13.27(5)
WCSP (spot5 log) 21 18.95(2) 91.03(3) 2.55(4) 1.46(4)

A Preprocessor for Max-SAT Solvers 19

Table 3. Partial Max-SAT benchmarks with MiniMaxSat

Instance set # MiniMS MiniMS(6) MiniMS(10) MiniMS(14)
MaxClique (random) 96 2.41(96) 2.44(96) 2.67(96) 4.38(96)
MaxClique (structured) 62 85.22(36) 82.15(37) 67.94(37) 66.43(36)
MaxOne (3-SAT) 50 0.37(50) 0.40(50) 0.43(50) 8.87(50)
MaxOne (structured) 60 31.35(60) 20.57(54) 65.88(42) 0.78(1)
MaxCSP (dense loose) 20 0.65(20) 0.71(20) 0.87(20) 5.11(20)
MaxCSP (dense tight) 20 0.69(20) 0.70(20) 0.70(20) 2.87(20)
MaxCSP (sparse loose) 20 0.35(20) 0.36(20) 0.57(20) 21.20(20)
MaxCSP (sparse tight) 20 0.85(20) 0.87(20) 0.94(20) 27.05(20)
WCSP (w-queens) 7 55.47(7) 55.28(7) 54.56(7) 179.13(7)

Table 4. Weighted Partial Max-SAT benchmarks with MiniMaxSat

Instance set # MiniMS MiniMS(6) MiniMS(10) MiniMS(14)
Auctions (paths) 88 29.82(88) 19.44(88) 13.52(84) 78.21(75)
Auctions (regions) 84 1.63(84) 1.55(84) 1.55(84) 1.56(84)
Auctions (scheduling) 84 46.14(84) 46.24(84) 46.28(84) 46.16(84)
Pseudo (factor) 186 1.16(186) 1.79(186) 5.53(186) 905.51(183)
Pseudo (miplib) 16 41.35(5) 84.90(5) 398.55(5) 1.43(1)
QCP 25 25.00(20) 26.71(20) 25.28(20) 24.65(20)
WCSP (planning) 71 9.97(71) 10.11(71) 22.12(71) 235.45(47)
WCSP (spot5 dir) 21 2.63(3) 11.82(3) 8.18(4) 6.99(4)
WCSP (spot5 log) 21 9.07(4) 5.69(2) 152.16(3) 323.82(4)

Table 5. Partial Max-SAT benchmarks with SR(w)

Instance set # SR-W SR-W(6) SR-W(10) SR-W(14)
MaxClique (random) 96 244.85(55) 219.40(55) 224.65(55) 218.38(55)
MaxClique (structured) 62 21.18(9) 17.56(9) 22.67(8) 20.17(8)
MaxOne (3-SAT) 50 386.23(41) 338.69(41) 718.76(22) 758.61(1)
MaxOne (structured) 60 471.72(22) 449.33(19) 618.92(18) 1078.54(1)
MaxCSP (dense loose) 20 697.74(1) 633.31(1) 1162.49(2) 0.00(0)
MaxCSP (dense tight) 20 209.22(18) 199.18(18) 202.71(18) 350.83(15)
MaxCSP (sparse loose) 20 296.48(16) 272.89(16) 408.06(15) 853.86(7)
MaxCSP (sparse tight) 20 235.98(19) 216.19(19) 230.31(19) 563.63(12)
WCSP (w-queens) 7 54.00(6) 230.25(7) 228.06(7) 258.10(7)

As a conclusion, we could say that variable saturation is an effective prepro-
cessing technique that may produce substantial speed-ups, as well as increase
the number of solved instances. As future work we plan to incorporate additional
simplification techniques into our preprocessor, and explore the application of
variable saturation to a limited number of nodes of the search space because its
application at each node is too costly.

20 J. Argelich, C.M. Li, and F. Manyà

Table 6. Weighted Partial Max-SAT benchmarks with SR(w)

Instance set # SR-W SR-W(6) SR-W(10) SR-W(14)
Auctions (paths) 88 173.42(77) 161.15(76) 169.32(72) 353.90(66)
Auctions (regions) 84 146.54(82) 136.45(82) 126.93(82) 119.52(82)
Auctions (scheduling) 84 276.91(56) 240.61(56) 270.71(57) 239.26(56)
Pseudo (factor) 186 0.00(0) 2.86(37) 520.50(185) 1091.88(1)
Pseudo (miplib) 16 2.62(5) 3.04(4) 216.89(4) 4.12(1)
QCP 25 715.58(5) 572.40(5) 675.34(5) 674.26(5)
WCSP (planning) 71 379.57(57) 371.42(53) 286.88(46) 285.58(25)
WCSP (spot5 dir) 21 2.95(6) 1.90(6) 9.27(4) 61.92(3)
WCSP (spot5 log) 21 14.56(6) 11.53(6) 25.30(5) 10.83(4)

References

1. Alsinet, T., Manyà, F., Planes, J.: Improved exact solver for weighted Max-SAT.
In: SAT-2005, pp. 371–377 (2005)

2. Argelich, J., Manyà, F.: Exact Max-SAT solvers for over-constrained problems.
Journal of Heuristics 12(4–5), 375–392 (2006)

3. Argelich, J., Manyà, F.: Partial Max-SAT solvers with clause learning. In: SAT-
2007, pp. 28–40 (2007)

4. Bonet, M.L., Levy, J., Manyà, F.: A complete calculus for Max-SAT. In: SAT-2006,
pp. 240–251 (2006)

5. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artificial Intelli-
gence 171(8–9), 240–251 (2007)

6. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: SAT-2006, pp.
252–265 (2006)

7. Heras, F., Larrosa, J.: New inference rules for efficient Max-SAT solving. In: AAAI-
2006, pp. 68–73 (2006)

8. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: A new weighted Max-SAT solver.
In: SAT-2007 (2007)

9. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency
in weighted CSPs. In: IJCAI-2005, pp. 193–198 (2005)

10. Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower
bounds in branch and bound Max-SAT solvers. In: CP-2005, pp. 403–414 (2005)

11. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for
computing lower bounds for Max-SAT. In: AAAI-2006, pp. 86–91 (2006)

12. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. Journal of
Artificial Intelligence Research 30, 321–359 (2007)

13. Marques-Silva, J., Planes, J.: Algorithms for Maximum Satisfiability using Unsat-
isfiable Cores. In: DATE-2008 (2008)

14. Pipatsrisawat, K., Darwiche, A.: Clone: Solving weighted max-sat in a reduced
search space. In: 20th Australian Joint Conf. on AI, AI-2007, pp. 223–233 (2007)

15. Ramı́rez, M., Geffner, H.: Structural relaxations by variable renaming and their
compilation for solving MinCostSAT. In: CP-2007, pp. 605–619 (2007)

	A Preprocessor for Max-SAT Solvers
	Introduction
	Preliminaries
	Resolution in Max-SAT
	Experimental Results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

