
Nenofex: Expanding NNF for QBF Solving

Florian Lonsing and Armin Biere

Johannes Kepler University

Abstract. The topic of this paper is Nenofex, a solver for quantified
boolean formulae (QBF) in negation normal form (NNF), which relies
on expansion as the core technique for eliminating variables. In contrast
to eliminating existentially quantified variables by resolution on CNF,
which causes the formula size to increase quadratically in the worst case,
expansion on NNF is involved with only a linear increase of the formula
size. This property motivates the use of NNF instead of CNF combined
with expansion. In Nenofex, a formula in NNF is represented as a tree
with structural restrictions in order to keep its size small and distances
from nodes to the root short. Expansions of variables are scheduled based
on estimated expansion cost. The variable with the smallest estimated
cost is expanded first. In order to remove redundancy from the formula,
limited versions of two approaches from the domain of circuit optimiza-
tion have been integrated. Experimental results on latest benchmarks
show that Nenofex indeed exceeds a given memory limit less frequently
than a resolution-based QBF solver for CNF, but also that there is the
need for runtime-related improvements.

1 Introduction

QBF [36,19] is an important research area with many applications [28,33,6,31,
21, 16, 24, 5, 30]. Progress has been impressive in recent years, but in practice
QBF solvers lack the generic applicability on PSPACE hard problems as SAT
solvers on NP hard problems.

We believe that one of the reasons is the usage of CNF as input and as
internal format to reason about SAT problems. We argue that in QBF more
general data structures are necessary. There is clear indication in the relevant
literature [39, 37, 34] that supports this conjecture.

The most natural extension of CNF is NNF: NNF is still tree shaped, i.e. there
is no sharing, and a formula in CNF is as well a formula in NNF. Before
mentioned approaches [39, 34] and in essence all QBF solvers that learn solu-
tions [29, 40, 20] use some kind of combination of DNF and CNF, which again
can be considered NNF. As we argue in this paper, a tree representation has
many advantages compared to a more general DAG representation.

We investigated the usage of NNF to reduce space usage of expansion based
QBF solvers. Our experiments clearly indicate, that our prototype implementa-
tion Nenofex needs less space than the highly optimized expansion based solver
Quantor [7], which works on CNF. Nenofex is also able to solve several instances,
that could not be handled by Quantor.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 196–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Nenofex: Expanding NNF for QBF Solving 197

The success of Quantor is based on two techniques. First, it implements a fast
scheduling algorithm for heuristically choosing the next variable to expand. The
second contribution is a fast subsumption algorithm, that removes redundant
clauses generated during expansions. Both techniques are also crucial for the
efficiency of the SAT preprocessor SATeLite [17]. To maintain accurate expansion
costs for NNF turns out to be much more difficult than for CNF. The same
comment applies to redundancy removal for NNF. In Nenofex we considered both
problems, but due to space constraints only present a solution to redundancy
removal on NNF in this paper.

Another related application of a restricted form of NNF is knowledge compi-
lation [12]. But it is unclear how to use it for QBF solving.

2 Motivation

In order to show that NNF is much more compact than CNF for representing
the result of expansion, consider the following formula F ≡ R∧X0 ∧X1 in CNF.
The clause sets X0 = {c1, c2, c3} = {(¬x∨c∨¬d), (¬x∨d∨¬e), (¬x∨e∨¬c)} and
X1 = {c4, c5, c6} = {(x∨f ∨¬g), (x∨g ∨¬h), (x∨h∨¬f)} with |X0| = |X1| = 3
contain all clauses with negative and positive literals of variable x, respectively.
Variable x has n = 3 negative and p = 3 positive literals. R = {(a ∨ b)} is the
set of clauses which do not contain a literal of x (notation adopted from [14]).

Variable x may be expanded by copying F : F ≡ F [x/0] ∨ F [x/1] where ex-
pression F [x/v] denotes the formula obtained from F by substituting value v for
every literal of x. This yields

F ≡ ((R ∧ X0 ∧ X1)[x/0]) ∨ ((R ∧ X0 ∧ X1)[x/1]) (1)
F ≡ (R ∧ (X0 ∧ X1)[x/0]) ∨ (R ∧ (X0 ∧ X1)[x/1]) (2)
F ≡ R ∧ ((X0 ∧ X1)[x/0] ∨ (X0 ∧ X1)[x/1]) (3)
F ≡ R ∧ (X ′

0 ∨ X ′
1) (4)

which is (a∨b)∧(((c∨¬d)∧(d∨¬e)∧(e∨¬c))∨((f ∨¬g)∧(g∨¬h)∧(h∨¬f))).
In the clause set X ′

0 (X ′
1) all negative (positive) literals of variable x have been

deleted. Clauses in R have not been affected during expansion, hence this set
can be factored out as shown in formula 3. Formulae 1 to 4 are not in CNF any
more but in NNF.

If x is eliminated by resolution, then the set of resolvents Xr = {ci,j | i =
1, . . . , n, j = n+1, . . . , n+p, ci,j = (ci ∪cj)\{x, ¬x}} contains clauses {c1,4, c1,5,
c1,6, c2,4, c2,5, c2,6, c3,4, c3,5, c3,6} where |Xr| = n · p = 3 · 3 = 9 clauses. After
discarding sets X0 and X1 and adding Xr to F, we have F ≡ (a ∨ b) ∧ (c ∨ ¬d ∨
f ∨ ¬g) ∧ (c ∨ ¬d ∨ g ∨ ¬h) ∧ (c ∨ ¬d ∨ h ∨ ¬f) ∧ (d ∨ ¬e ∨ f ∨ ¬g) ∧ (d ∨ ¬e ∨ g ∨
¬h) ∧ (d ∨¬e ∨ h ∨¬f) ∧ (e ∨¬c ∨ f ∨¬g) ∧ (e ∨ ¬c ∨ g ∨¬h) ∧ (e ∨ ¬c ∨ h ∨¬f).

Expanding a variable in a formula can at most double its size. In particular,
expanding some variable x on CNF as shown in formulae 1 to 4 will copy n + p
clauses (and introduce one logical connective), whereas eliminating the same
variable by resolution will produce n · p clauses in the worst case. Expansion

198 F. Lonsing and A. Biere

causes a formula to grow linearly in contrast to resolution, which is involved
with a quadratic size increase. In the example, this is reflected in the sizes of the
formulae resulting from expansion and resolution.

It is exactly this observation which motivates the use of NNF as formula
representation in an expansion based QBF solver as Nenofex. We expect less
size increase when eliminating existential variables by expansion on NNF than
by resolution on CNF. When expanding universal variables, there is no advantage
of expansion on NNF compared to CNF because in both cases the same set of
clauses has to be copied. For an arbitrary formula in NNF, expansion of a variable
will always yield a formula which is in NNF again. No transformations need to
be carried out on the formula between expansions.

3 Preliminaries

For a set of variables V , a literal (or occurrence) is either a variable v ∈ V or its
negation ¬v. A clause is a disjunction over literals. A (propositional) formula is
in conjunctive normal form (CNF) if it is a conjunction over clauses. A formula
consisting of disjunctions, conjunctions and literals is in negation normal form
(NNF) if the negation operator is applied to literals only.

A quantified boolean formula (QBF) F ≡ S1S2 . . . Sn φ consists of a propo-
sitional formula φ over a set of variables V and a quantifier prefix S1S2 . . . Sn.
We assume that φ is in NNF. The quantifier prefix is an ordered set of scopes
Si, which forms a partition on the set of variables: V = S1 ∪ S2 ∪ . . . ∪ Sn and
Si ∩ Sj = � 0 for 1 ≤ i, j ≤ n and i �= j. A scope Si is existential (universal) if it
is associated with an existential (universal) quantifier, written as type(Si) = ∃
(type(Si) = ∀). A variable x ∈ Si where type(Si) = ∃ (type(Si) = ∀) is exis-
tentially (universally) quantified. By convention, for two adjacent scopes Si and
Si+1, where 1 ≤ i < n, type(Si) �= type(Si+1).

The set of scopes is a linearly ordered set S1 < S2 < . . . < Sn which follows
from the order of appearance of scopes Si in the quantifier prefix. Scope S1 is
the outermost, scope Sn the innermost scope. Variables are ordered with respect
to the order of scopes they belong to. For variables from the same scope, an
arbitrary order may be chosen. Our definitions of QBF and scopes are similar
to the ones in [7] except that formula φ is not in CNF but NNF.

There is strong indication that non-prefix orders are important for QBF rea-
soning [18,7,3,22]. Initially we experimented with non-prefix orders as well, but
due to the complexity involved, we focus on non-CNF representation in this
paper, except for on-the-fly miniscoping during expansions as in Quantor.

A tree T = (N, E) consists of a set of nodes N and a set of directed edges
E ⊆ N × N such that for exactly one node r called root, there is no v ∈ N
where (v, r) ∈ E, and for each node w ∈ N \ {r}, there exists exactly one v ∈ N ,
v �= w, such that (v, w) ∈ E. If (v, w) ∈ E, then v is the parent of w and w is a
child of v. The root is the only node in T which has no parent, any other node
has exactly one parent. For nodes v and w ∈ N , a path of length k from v to w
is a sequence of nodes p0, p1, . . . , pk where p0 = v, pk = w and (pi, pi+1) ∈ E for

Nenofex: Expanding NNF for QBF Solving 199

0 ≤ i < k. For any node v, there is a path of length 0 from v to v. The level of
a node v is the length of the path from the root to v. For root r, level (r) = 0. If
(v, w) ∈ E, then level(w) = level (v) + 1. For nodes v and w, if there is a path
from v to w, then v is an ancestor of w and w is a descendant of v. Every node
is ancestor and descendant of itself. The root is ancestor of any node in T .

A common ancestor of a pair of nodes v,w in T is a node which is ancestor
of both v and w. The least common ancestor (LCA) of v,w, written as lca(v, w)
where lca : N × N → N , is their common ancestor with maximum level, that is,
which is farthest away from the root. Commutativity and associativity of lca as
an operator extend the definition from pairs to sets of nodes:

lca(n1, n2, . . . , nk) =

⎧
⎨

⎩

lca(lca(n1, n2), n3, . . . , nk) if k ≥ 3
least common ancestor of n1 and n2 if k = 2

n1 if k = 1

4 Formula Representation

A formula φ in NNF is represented as a tree T = (N, E), referred to as NNF-tree.
The set of nodes N is partitioned into operator nodes NO and literal occurrence
nodes NL (short: literal nodes), that is N = NO ∪ NL and NO ∩ NL = � 0. The
set NO (NL) comprises exactly the set of internal nodes (leaf nodes) of the tree.

The set NO is partitioned into the sets N∨ and N∧, that is NO = N∨∪N∧ and
N∨ ∩N∧ = � 0. A node from the set N∨ (N∧) is called OR-node (AND-node) and
denotes the logical disjunction (conjunction) over its children. Operator nodes
with n children, where n ≥ 2, represent n-ary boolean functions.

A node nl ∈ NL denotes one single (positive or negative) literal of some
variable x ∈ V . Conversely, a literal of some variable x is represented by exactly
one node nl ∈ NL. The least common ancestor (LCA) of a variable x ∈ V ,
written as lca(x), is defined as the LCA over all of its literal nodes.

The structure of an NNF-tree is restricted as follows. Operator nodes may have
an arbitrary number of children but must have at least two. For operator nodes
no ∈ N∨ (no ∈ N∧) and all its children c, either c ∈ N∧ or c ∈ NL (c ∈ N∨
or c ∈ NL), that is, the types of operator nodes and their children must be
different. This corresponds to the application of associativity of disjunction and
conjunction whenever possible. For operator nodes no ∈ NO and some variable
x ∈ V , if no has a child c1 ∈ NL which is a literal node of x, then no must
not have another child c2 ∈ NL, c1 �= c2, which is a literal node of x. Thus
operator nodes must neither have multiple nor complementary literals of one
and the same variable as children. The structural restrictions aim at keeping the
NNF-tree small and node levels, that is distances between nodes and the root
short. Fig. 1 shows a sample NNF-tree.

As an alternative to trees, a representation related to directed acyclic graphs
(DAGs) could have been used, which allow nodes to be structurally shared among
several parents. A well-known, DAG-related formula representation are And-
Inverter Graphs (AIGs) [26] where the set of operators is restricted to binary
conjunction and negation. Methods for identifying structural sharing in AIGs

200 F. Lonsing and A. Biere

2

b d e

3

a d

1

a

Fig. 1. NNF-tree for formula ¬a ∨ (b ∧ d ∧ ¬e) ∨ (a ∧ ¬d). An AND-node (OR-node) is
represented as a triangle � (inverted triangle �) resembling the symbol for conjunction
∧ (disjunction ∨), and a literal node as a box �. A circle ◦ at a literal node denotes
the negation operator. Labels of operator nodes in the figures are used as indices in
the text, e.g. n1 denotes the root of the NNF-tree in the example above.

have been studied in [9,8]. To our knowledge, structural sharing in combination
with n-ary operators like in an NNF-tree has not been studied at a large extent,
but obviously there is much more complexity involved. Furthermore, NNF-trees
guarantee that a formula in CNF has a flat representation: each (non-unit) literal
in the CNF corresponds to exactly one literal node with level 2, each clause
to exactly one OR-node with level 1 and the conjunction over the clauses to
one single AND-node at the root of the tree. It is impossible to achieve these
correspondences with AIGs. DAGs complicate the implementation. For each
node, the set of parents and children need to maintained under modifications
of the graph. With trees, algorithms related to expansion (next section) and
redundancy removal (section 6.1) are much easier to implement.

5 NNF Expansion

If a variable is expanded as shown in the introductory example (formulae 1 to 4),
then parts of the formula might be copied unnecessarily and need to be factored
out in order to reduce the size of the expanded formula.

We present local expansion for NNF, a method where only the relevant parts
of a formula are copied and which does not require factoring out common sub-
formulae in the expanded formula. Generally, our method can be regarded as
miniscoping [2], which produces a non-prefix reduced scope through the ap-
plication of standard quantifier rules, followed by expansion. In our approach
(section 5.3), a minimal reduced scope is determined bottom up, starting from
the literal occurrences of the expanded variable.

For a QBF S1 . . . Sn−1Sn φ, we consider expansion of (1) existential or (2)
universal variables from scope Sn (section 5.1), and expansion of (3) universal
variables from scope Sn−1 (section 5.2) only. Case (2) is irrelevant for formulae
in CNF since forall-reduction [25, 7] could remove all literals of universal vari-
ables in Sn instead: a universal literal can be removed from a clause if there is no
existential literal in that clause whose variable belongs to a scope which is larger
than the scope of the universal literal’s variable. To our knowledge, it is not clear

Nenofex: Expanding NNF for QBF Solving 201

whether and how this operation can be applied to formulae in NNF. Replacing
innermost universal literals by false is incorrect, because this would reduce the
following formulae to false even though they are valid:

∀x (x ∨ x) ∀x, y (xy ∨ xy ∨ xy ∨ xy)

5.1 Innermost Expansion

Given a QBF S1 . . . Sn φ and some variable x in Sn where type(Sn) = ∃ or
type(Sn) = ∀, let ers(x) denote the expansion relevant subformula of variable x,
which is the smallest subformula of φ which contains all literals of x.

Local expansion of variable x in φ is defined as follows:

S1 . . . Sn φ ≡ S1 . . . (Sn \ {x}) φ[ers(x) / (ers(x)[x/0] ⊗ ers(x)[x/1])] (5)

where operator ⊗ = ∨ (⊗ = ∧) if type(Sn) = ∃ (type(Sn) = ∀). In rule 5, φ is
modified by replacing the expansion relevant subformula ers(x) by a subformula
consisting of two copies of ers(x), where variable x is assigned true resp. false.

5.2 Non-innermost Expansion

Expansion of universal variables from scope Sn−1 requires depending existential
variables from Sn to be duplicated. Concerning CNF, methods for universal
expansion and for identifying dependencies have been proposed in Quantor [7],
sKizzo [4], quantifier trees [3] and bounded universal expansion [10]. For example,
before some universal variable x from scope Sn−1 is expanded in Quantor, the set
of depending existential variables from scope Sn is computed via a connection
relation. Then, all clauses which contain literals of x or of any depending variable
are copied during expansion. This idea is generalized in [10, 35].

Given a QBF S1 . . . Sn−1Sn φ with n scopes and some universal variable x
in Sn−1 where type(Sn−1) = ∀ and type(Sn) = ∃. Let ers(x) be defined as in
the previous section. Let Dx be the set of depending existential variables of x
defined as follows (notation adopted from [10]):

D(0)
x := {y ∈ Sn | y has literals in ers(x)}

D(k+1)
x := {z ∈ Sn | z has literals in ers(y′) for some y′ ∈ Dk

x}, k ≥ 0

Dx :=
⋃

k

Dk
x

Let urs(x, Dx) denote the expansion relevant subformula of universal variable
x with respect to Dx, which is the smallest subformula of φ which contains all
literals of x and all literals of any existential variable y ∈ Dx. Local expansion
of variable x in φ is defined as follows:

S1 . . . Sn−1Sn φ ≡ (6)
S1 . . . (Sn−1 \ {x})(Sn ∪ D′

x) φ[u / (u[x/0] ∧ u′[x/1])]

202 F. Lonsing and A. Biere

2

B X1 X2

1

A

Fig. 2. NNF-tree for formula A ∨ (B ∧ X1 ∧ X2)

where u stands for urs(x, Dx) and urs(x, Dx)′ is obtained from urs(x, Dx) by
substituting y′ for all literals of y ∈ Dx. D′

x is the set which contains duplicated
variables y′ for every y ∈ Dx. The definition of urs extends the one of ers from the
previous section by taking the set of depending existential variables into account.
In fact, the notion of urs(x, Dx) is closely related to the CNF-based approaches
in [7] and [10], where the set Dx is constructed via a connection relation between
variables: vi is locally connected to vj if both occur in a common clause. In our
NNF-based approach, the connection relation is generalized to subformulae.

5.3 Expansion Relevant LCAs

According to the definitions of expansion relevant subformulae ers and urs for
some variable x in some formula φ, the expansion relevant subtree of x is defined
to be the smallest subtree in the NNF-tree of φ which contains all literals of x.

In order to expand x in the NNF-tree, a correspondence between expansion
relevant subformulae and subtrees as defined has to be established. The ex-
pansion relevant LCA of variable x is defined by node lca(x) and the set of
LCA-children of lca(x). A child of node lca(x) is an LCA-child if its subtree
contains at least one literal of x. The subtree denoted by the expansion relevant
LCA exactly corresponds to the expansion relevant subformula and vice versa.

In Fig. 2, subtrees X1 and X2 contain all literals of some variable x and
node n2 is lca(x). The roots of subtrees X1 and X2 form the set of LCA-children
and, together with node lca(x), denote the expansion relevant subtree of x, which
corresponds to X1∧X2, the expansion relevant subformula of x. Generally, LCAs
of variables without the notion of LCA-children are only an over-approximation
for expansion relevant subtrees. In Fig. 2, the subtree of node lca(x) contains
subtree B as well, which does not contain literals of x.

In Nenofex, expansion relevant LCAs are computed incrementally in an up-
ward directed search starting from each literal of the variable, where parents
are successively visited and LCA-children are collected. Our approach requires
O(nm) time in the worst case, where n is the number of literals and m the maxi-
mum level of a literal which is expected to be small due to structural restrictions.

Nenofex: Expanding NNF for QBF Solving 203

L

R

L

SR

[0] [1]

Fig. 3. Expansion template. Node nL is lca(x) for some existential variable x, subtree
R does not contain literals of x and black dots indicate LCA-children. In the right
NNF-tree, x has been expanded: OR-node nS is parent of two copies of the expansion
relevant subtree, where x is assigned true ([1]) and false ([0]).

In order to expand a variable in an NNF-tree, its expansion relevant subtree
needs to be copied. Fig. 3 illustrates the situation for an existential variable
whose LCA is an AND-node and which has two LCA-children. Expanding vari-
able x in the formula in Fig. 2 yields the expanded formula A ∨ (B ∧ ((X1 ∧
X2)[x/0] ∨ (X1 ∧ X2)[x/1])), as indicated by the right template in Fig. 3.

6 Implementation

The architecture of Nenofex is very similar to the one of Quantor. Variables are
eliminated in cyclic fashion starting from the innermost scope, where scheduling
is based on estimated elimination costs. Elimination of variables is interspersed
with redundancy removal. If there is only one type of variables left, then the
QBF is reduced to a SAT problem and forwarded to an internal SAT solver.

Fig. 4 shows the phases of the core algorithm in Nenofex. In either phase,
the solver may return an answer if the NNF-tree has been deleted or the SAT
solver has terminated. After an initialization phase (INIT in Fig. 4), where the
problem instance is parsed and data structures are set up, unit literals and pure
literals (or unates) [11] are eliminated until saturation.

6.1 Redundancy Removal

Local expansion avoids unnecessary copies of formula parts, but can not avoid
redundancy in general. As in Quantor, which relies on subsumption checking,
redundancy removal is crucial for Nenofex to achieve best performance. For
this purpose, limited versions of two approaches from the domain of circuit
optimization have been implemented where an NNF-tree is regarded as a circuit.

204 F. Lonsing and A. Biere

INIT

True/False

UNITS UNATES GF RR EXP SAT

Fig. 4. Core algorithm of Nenofex. Parsing and initialization (INIT), elimination of
units and unates (UNITS, UNATES), global flow (GF), redundancy removal (RR),
expansion (EXP) and propositional SAT solving (SAT).

ATPG-Based Redundancy Removal. In structural testing, a test for a fault
at a single line or gate in a circuit is a set of input values, called test pattern, by
which wrong circuit outputs related to the faulty part can be detected. Test pat-
terns can be generated algorithmically, which is the main purpose of automatic
test pattern generation (ATPG) [1]. A fault which does not change the circuit’s
behaviour is redundant and the respective hardware may be removed.

A typical model for faults related to single lines (or signals) is the stuck-
at-fault model. A line is stuck-at-1 (stuck-at-0), if it always carries true (false)
regardless of the intended value. Detection and removal of redundant stuck-at
faults can be used for circuit optimization. Testing a stuck-at fault in ATPG-
based redundancy removal [1] comprises three steps. In fault sensitization, the
fault is activated by assigning the corresponding signal the opposite value of the
fault: for a stuck-at-1 fault, the signal is assigned false, otherwise true.

In path sensitization, the effect of the activated fault must be propagated
unambiguously along a fault path to an output signal of the circuit. This can be
achieved by assigning conservative values to all off-path inputs of gates along
the fault path. Off-path inputs of OR-gates (AND-gates) must be assigned false
(true). There might be exponentially many fault paths. If propagation on one
path fails, then possibly all remaining paths have to be considered.

In justification, signal assignments made in the previous two steps must be
justified by finding a set of circuit inputs which establish the configuration of
internal signal assignments. Starting at an unjustified, assigned signal, its inputs
are assigned recursively with justifying values. For example, an AND-gate which
is assigned false may be justified by assigning false to one of its inputs. As in
DPLL-based SAT solvers [13], justification involves making decisions which have
to be undone during backtracking if conflicts between assignments occur.

If all fault paths and alternative assignments have been tried out but conflicts
could not be resolved, then the fault is untestable: there is no set of input values
such that the fault effect can be observed unambiguously at a circuit output.
The corresponding hardware is redundant and may be removed, which can cause
further faults to become redundant.

Global Flow. Global flow [27] is an approach for circuit minimization where
implications are derived from signals which are then used to transform the circuit

Nenofex: Expanding NNF for QBF Solving 205

1

2 3

a b a c

1

2 3

a b a c

4

a

1

b c

4

a

Fig. 5. Detecting distributivity by global flow and redundancy removal

without changing the logical flow of values. For any signal x in the circuit, there
are four sets of implications defined as FVW (x) := {s : x = V → s = W}
where V, W ∈ {0, 1} and s is a signal. Given the sets FVW for some signal x,
the following transformations are valid:

y ∈ F00(x) : y ≡ x ∧ y y ∈ F10(x) : y ≡ ¬x ∧ y
y ∈ F11(x) : y ≡ x ∨ y y ∈ F01(x) : y ≡ ¬x ∨ y

In order to optimize a circuit, first some signal x is chosen where subsets of impli-
cations in FVW (x) are computed, because full computation is complex. Next, an
implication is chosen and the circuit is transformed according to the respective
rule. Certain connections of x to other nodes may be removed, provided that the
logical flow of the value from x to the implied node does not change. If circuit
size is not decreased, then all modifications will be are reversed. These steps are
carried out in cyclic fashion for all signals in the circuit.

Fig. 5 illustrates a typical situation where redundancy is detected by global
flow together with ATPG-based redundancy removal: in the leftmost NNF-tree,
literal a may be factored out by applying distributivity. This can not be detected
by ATPG-based redundancy removal alone. When assigning literal a at n2 true
(and consequently variable a as well) in the leftmost NNF-tree, then n1 (the
root) will be assigned true as well, hence a = true → n1 = true and n1 may
be replaced by a ∨ n1 which yields the second NNF-tree. Dashed edges indicate
nodes with untestable stuck-at-0 faults. If the fault at literal a at n2 is tested,
then it must be assigned true in fault sensitization (that is, variable a will be
assigned true), but this yields an unresolvable conflict at n4, the only circuit
output, where literal a will be assigned true as well. This is not a conservative
value as required by path sensitization. The same argument applies for a at n3,
and the two literals may be removed which yields the NNF-tree on the right.

Limitations. The implementation of global flow (phase GF in Fig. 4) and
ATPG-based redundancy removal (phase RR) is very limited. For GF, only
implications from sets F00 and F11 are considered. GF alone is not capable of
reducing the size of an NNF-tree but, together with RR (as shown in Fig. 5), can

206 F. Lonsing and A. Biere

enable detection of redundancies which would remain undetected by RR. Mod-
ifications made by GF are never reversed, since they always produce additional
redundant stuck-at-faults due to the tree shape of NNF.

General ATPG-based redundancy removal is NP-complete [1]. Our implemen-
tation runs in polynomial time, but is incomplete. We only use propagations and
no decisions. It greatly benefits from the tree representation of NNF, because
there is a single fault propagation path from the fault site to the root.

Phases GF and RR are carried out in cyclic fashion on a small subtree of
the NNF-tree only. Generally, each optimization runs until saturation, but this
can become problematic due to the amount of required runtime. Therefore, fixed
limits are imposed on the size of the subtree and on the number of value prop-
agations during GF and RR.

6.2 Expansion

Let Si and Si−1 denote the current innermost and first non-innermost scope,
respectively. Variables are selected for expansion depending on their estimated
expansion costs (scores) and on the types of Si and Si−1. In Nenofex, generally
a greedy strategy is applied: in order to keep the size of the NNF-tree small in
each expansion, always the variable with minimum expansion cost is selected.

First, if type(Si−1) = ∃ and type(Si) = ∀, then only variables from Si

may be expanded. The variable with minimum score is expanded. Second, if
type(Si−1) = ∀ and type(Si) = ∃, then variables from both scopes may be ex-
panded. A variable from Si−1 is eligible for expansion iff the preceding expansion
from Si (1) caused the size of the NNF-tree to increase and (2) the size increase
to exceed a heuristic universal threshold tu. Initially, tu is set to 10 nodes. If tu
is exceeded in an expansion, then expansion of exactly one variable from Si−1
will be forced, which causes tu to increase by 10 and expansions from Si−1 to be
disabled again. Expansions are forced because score computation for Si−1 likely
becomes impractical when carried out each time before an expansion. This policy
goes against the greedy expansion strategy because the minimum score variable
from Si may well be cheaper than the one in Si−1.

The estimated expansion cost is calculated as a tight upper bound on the real
expansion cost. It is measured in the number of nodes added to and removed
from the NNF-tree. The costs are recalculated after every change to the NNF-
tree, taking only the changed part into account. The details are complicated and
due to space constraints have to be omitted. However, we clearly see a potential
for speeding up this process by updating scores in a full incremental fashion.

6.3 SAT Solving

If the formula contains only one type of variables, then the QBF may be reduced
to a SAT problem: a formula in CNF is generated from the NNF-tree which is
forwarded to an internal SAT solver. If only existential variables are left, then
a CNF will be generated which is satisfiable iff the formula denoted by the

Nenofex: Expanding NNF for QBF Solving 207

Table 1. Comparison of Quantor and Nenofex in three different versions by number of
instances where solvers succeeded, timed out (OOT) and ran out of memory (OOM).
The number of instances solved by Nenofex decreases from (GF, RR) to (no GF, no
RR), which indicates that GF and RR contribute positively to the solver’s performance.
On the other hand, time is traded for memory when enabling optimizations: values of
OOT increase from (no GF, no RR) to (GF, RR), the opposite effect can be observed
for memory. Note that (no GF, no RR) runs out of memory more often than Quantor,
which applies subsumption checking, hence optimizations are crucial in combination
with NNF as well. The last two lines show sums of actual maximum amounts of memory
(in MB) consumed on each solved or unsolved instance (MEM∪) and on instances
solved by all four solvers (MEM∩). The (unoptimized) node representation in Nenofex
requires about twice as much memory than the pointer-based structures of clauses and
literals in Quantor, which is reflected in the last line.

Nenofex
Quantor GF, RR no GF, RR no GF, no RR

Solved 421 361 352 313
OOT 32 124 103 83
OOM 683 651 681 740
MEM∪ 1.10e6 1.15e6 1.17e6 1.23e6
MEM∩ 10473 18472 19693 28422

Table 2. Number of instances where both or only one of Quantor and Nenofex (GF,
RR) succeeded, timed out or ran out of memory. Nenofex solved 19 instances which
Quantor could not solve. OOT and OOM indicate a similar tendency as Tab. 1.

Quantor only Both Nenofex only Sum
Solved 79 342 19 440
OOT 18 14 110 142
OOM 80 603 48 731

NNF-tree is satisfiable. Otherwise, a CNF will be generated which is satisfiable
iff the formula denoted by the NNF-tree is not a tautology.

The algorithm for generating a CNF from an NNF-tree requires linear time in
the number of nodes of the tree and is based on the Tseitin transformation [38].
Ideas from [15,32] are combined to reduce the number of clauses in the resulting
CNF.

7 Experiments

Nenofex was compared to Quantor on the benchmark collection used for the
competitive QBF evaluation in 2007 [23], which contains 1136 instances. Both
solvers used the same version of PicoSAT as backend SAT solver. Tests were run
on a cluster of Pentium IV 3 GHz workstations running Linux, where runtime
and memory were limited by 900 seconds and 1.5 GB, respectively.

208 F. Lonsing and A. Biere

Concerning global flow (GF) and redundancy removal (RR), Nenofex was run
in three versions: either both GF and RR are enabled (GF, RR), or only RR
is enabled (no GF, RR) or both GF and RR are disabled (no GF, no RR). In
either version, the size of the subtree subject to these optimizations was limited
by 500 nodes. Table 1 shows an overall comparison of Quantor and Nenofex, and
in Tab. 2, behaviour unique to each solver is indicated.

8 Conclusion

This paper showed that expansion on quantified NNF needs less space than
CNF. However, it may be worthwhile to extend our algorithms to DAGs. So
far we have only used NNF in an expansion based approach, which eliminates
quantifiers from inside to the outside. As future work, one should also consider
the combination of NNF with DPLL style algorithms. Finally we want to thank
Ofer Strichman for very fruitful discussions on this subject.

References

1. Agrawal, V., Bushnell, M.: Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits. Kluwer, Dordrecht (2000)

2. Ayari, A., Basin, D.A.: QUBOS: Deciding quantified boolean logic using proposi-
tional satisfiability solvers. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002.
LNCS, vol. 2517, Springer, Heidelberg (2002)

3. Benedetti, M.: Quantifier Trees for QBFs. In: Bacchus, F., Walsh, T. (eds.) SAT
2005. LNCS, vol. 3569, pp. 378–385. Springer, Heidelberg (2005)

4. Benedetti, M.: sKizzo: A Suite to Evaluate and Certify QBFs. In: Nieuwenhuis,
R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 369–376. Springer, Heidelberg
(2005)

5. Benedetti, M.: Experimenting with QBF-based formal verification. In: Proc. CFV
2005 (2005)

6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579,
Springer, Heidelberg (1999)

7. Biere, A.: Resolve and Expand. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

8. Bjesse, P., Borälv, A.: DAG-aware circuit compression for formal verification. In:
Proc. ICCAD 2004 (2004)

9. Brummayer, R., Biere, A.: Local two-level and-inverter graph minimization without
blowup. In: Proc. MEMICS 2006 (2006)

10. Bubeck, U., Kleine Büning, H.: Bounded Universal Expansion for Preprocessing
QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
244–257. Springer, Heidelberg (2007)

11. Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified
boolean formulae. In: Proc. AAAI/IAAI 1998 (1998)

12. Darwiche, A.: Decomposable negation normal form. JACM 48(4) (2001)
13. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-

proving. CACM 5(7) (1962)

Nenofex: Expanding NNF for QBF Solving 209

14. Davis, M., Putnam, H.: A computing procedure for quantification theory.
JACM 7(3) (1960)

15. Boy de la Tour, T.: An optimality result for clause form translation. Symb. Com-
put. 14(4) (1992)

16. Dershowitz, N., Hanna, Z., Katz, J.: Bounded Model Checking with QBF. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 408–414. Springer,
Heidelberg (2005)

17. Eén, N., Biere, A.: Effective Preprocessing in SAT Through Variable and Clause
Elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

18. Egly, U., Seidl, M., Tompits, H., Woltran, S., Zolda, M.: Comparing Different
Prenexing Strategies for Quantified Boolean Formulas. In: Giunchiglia, E., Tac-
chella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 214–228. Springer, Heidelberg
(2004)

19. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness (1979)

20. Giunchiglia, E., Narizzano, M., Tacchella, A.: Learning for quantified boolean logic
satisfiability. In: Proc. AAAI 2002 (2002)

21. Giunchiglia, E., Narizzano, M., Tacchella, A.: QBF Reasoning on Real-World In-
stances. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp.
105–121. Springer, Heidelberg (2005)

22. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantifier structure in search based
procedures for QBFs. In: Proc. DATE 2006 (2006)

23. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satis-
fiability library (QBFLIB) (2001), www.qbflib.org

24. Jussila, T., Biere, A.: Compressing BMC encodings with QBF. In: Proc. BMC 2006
(2006)

25. Kleine Büning, H., Karpinski, M., Flügel, A.: Resolution for quantified boolean
formulas. Inf. Comput. 117(1) (1995)

26. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reasoning
for equivalence checking and functional property verification. TCAD 21(12) (2002)

27. Kunz, W., Stoffel, D.: Reasoning in Boolean Networks: Logic Synthesis and Veri-
fication Using Testing Techniques. Kluwer, Dordrecht (1997)

28. Ladner, R.: The computational complexity of provability in systems of modal
propositional logic. SIAM Journal on Computing 6(3) (1977)

29. Letz, R.: Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI),
vol. 2381, Springer, Heidelberg (2002)

30. Mangassarian, H., Veneris, A., Safarpour, S., Benedetti, M., Smith, D.: A
performance-driven QBF-based iterative logic array representation with applica-
tions to verification, debug and test. In: Proc. ICCAD 2007 (2007)

31. Otwell, C., Remshagen, A., Truemper, K.: An effective QBF solver for planning
problems. In: MSV/AMCS (2004)

32. Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation.
Symb. Comput. 2(3) (1986)

33. Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of Ar-
tificial Intelligence Research 10 (1999)

34. Sabharwal, A., Ansótegui, C., Gomes, C., Hart, J., Selman, B.: QBF modeling:
Exploiting player symmetry for simplicity and efficiency. In: Proc. SAT 2006 (2006)

www.qbflib.org

210 F. Lonsing and A. Biere

35. Samer, M., Szeider, S.: Backdoor Sets of Quantified Boolean Formulas. In:
Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 230–243.
Springer, Heidelberg (2007)

36. Stockmeyer, L.: The polynomial–time hierarchy. TCS 3(1) (1976)
37. Malik, S., Tang, D.: Solving Quantified Boolean Formulas with Circuit Observabil-

ity Don’t Cares. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
368–381. Springer, Heidelberg (2006)

38. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic 2 (1968)

39. Zhang, L.: Solving QBF by combining conjunctive and disjunctive normal forms.
In: Proc. AAAI 2006 (2006)

40. Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaction and Conflicts
in Quantified Boolean Formula Evaluation. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, Springer, Heidelberg (2002)

	Nenofex: Expanding NNF for QBF Solving
	Introduction
	Motivation
	Preliminaries
	Formula Representation
	NNF Expansion
	Innermost Expansion
	Non-innermost Expansion
	Expansion Relevant LCAs

	Implementation
	Redundancy Removal
	Expansion
	SAT Solving

	Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

