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Abstract. Knowing a Backdoor Set B for a given Sat instance, satis-
fiability can be decided by only examining each of the 2|B| truth assign-
ments of the variables in B. However, one problem is to efficiently find
a small backdoor up to a particular size and, furthermore, if no back-
door of the desired size could be found, there is in general no chance to
conclude anything about satisfiability.

In this paper we introduce a complete deterministic algorithm for
an NP-hard subclass of 3-Sat, that is also a subclass of Mixed Horn
Formulas (MHF). For an instance of the described class the absence of
two particular kinds of backdoor sets can be used to prove unsatisfiability.
The upper bound of this algorithm is O(p(n)∗1.427n) which is less than
the currently best upper bound for deterministic algorithms for 3-Sat

and MHF.

1 Introduction and Definitions

The boolean satisfiability problem (Sat) is one of the well known hard problems
in theoretical computer science. Even when restricting the number of literals in
each clause to a maximum of three (3-Sat), deciding satisfiability of a given
instance is known to still be NP-complete. From the theoretical point of view
the upper bound to solve 3-Sat could be improved steadily (see [13]). From
the practical point of view we know by experience that many Sat instances
evolving from real-world applications can be solved within nearly linear time.
This is often due to some hidden structure that facilitates the solving process
enormously. One possibility to measure this structure, namely Backdoor Sets,
was introduced in 2003 by Williams, Gomes and Selman [16]. On the one hand
it was shown that small backdoor sets are often related to real-world instances
[16,12], on the other hand minimal backdoors of randomized, hence unstructured
3-Sat instances contain from 30% to 65% of all variables [6].

We use backdoors not as a measure of structure but rather to guide an al-
gorithm for an NP-hard subclass of 3-Sat and Mixed Horn Formulas (MHF).
MHF denotes the set of all Sat instances in conjunctive normal form where each
clause is either Horn or binary [10,11].
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Strong Backdoor Sets. We use the definition of strong backdoor sets that is given
in [8]. Note that there are also weak backdoor sets [16,8], however, they are not
relevant for this paper. A backdoor is defined with respect to a class C of formulas
that can be recognized and solved in polynomial time. A set B of variables V
of a boolean formula F is a strong backdoor set of F with respect to C (strong
C-backdoor) if F [τ ] ∈ C for every truth assignment τ : B �→ {0, 1}. F [τ ] denotes
the result of removing all clauses that contain a literal x with τ(x) = true and
removing all literals y with τ(y) = false from F .

We particularly use a variant of strong backdoors, so-called deletion backdoors
[9,14]: B is a deletion backdoor if the formula F − B belongs to C, where F − B
denotes the result of removing all occurrences (both positive and negative) of
the variables in B from the clauses of formula F . Every deletion backdoor is a
strong backdoor, if class C is clause-induced (F ∈ C ⇒ F ′ ∈ C for all F ′ ⊆ F )
[9]. In this paper we solely deal with the two clause-induced classes Horn and
2-Sat as base classes of backdoors.

Parameterized Algorithms. Constitute one possible approach to cope with com-
putational intractability [7]. One basic idea of parameterized algorithms is to
ask whether a given NP-hard problem has a solution that can be bounded by
some non-negative integer parameter k. If a problem is fixed-parameter tractable
this question can be solved in time that is only exponential in k but not in
the size of the original problem. Since our approach rather applies than creates
parameterized algorithms we refer the reader to [7] for a formal definition and
more detailed information on parameterized complexity.

2 A NP-Hard Subclass of 3-SAT

Definition 1. Let 2�-CNF be the subclass of 3-Sat with the restriction that
any clause C with |C| = 3 must only contain negative literals.

Theorem 1. 2�-CNF is NP-complete.

Proof. The definition of 2�-CNF as a subclass of 3-Sat ∈ NP directly implies
2�-CNF to be in NP. The NP-completeness of 2�-CNF can be shown by the
polynomial time reduction 3-Sat ≤p 2�-CNF.

Let F be a boolean formula represented in 3-Sat. We need to specify a formula
F ′ ∈ 2�-CNF such that F ′ is satisfiable if and only if F is satisfiable. Let therefore
Cp denote the set of all clauses C of F with |C| = 3 and C containing at least
one positive literal. Let Cn := C \ Cp denote the remaining clauses. Moreover, let
Vp ⊆ V denote those variables of F which occur positively in at least one clause
of Cp. In order to transform a formula F ∈ 3-Sat into F ′ ∈ 2�-CNF, all clauses
Cn can be adopted unchanged (C′n := Cn) for F ′. For every variable xi ∈ Vp we
introduce one variable x∗

i and one clause (x∗
i ∨ xi) in F ′. We refer to the set of

these added clauses as C′a. Furthermore, all clauses in Cp are modified to clauses
C′p by replacing each occurrence of a positive literal xi by the (negative) literal
x∗

i . Hence, F ′ belongs to class 2�-CNF and it is:
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F is satisfiable ⇔ F ′ is satisfiable

’⇒’: If F is satisfiable there exists a model MF (set of satisfying literals). We
create an according model for F ′ by initializing MF ′ := MF . Moreover, for all
variables xi ∈ Vp we apply the following rule:

MF ′ =
{

MF ′ ∪ {x∗
i } if (positive) literal xi ∈ MF

MF ′ ∪ {x∗
i } otherwise

With this, all clauses C′n ∪ C′a are satisfied. Let now C′ be any arbitrary clause
in the remaining set of clauses C′p. There exists at least one literal lj ∈ MF (of
variable xj) which satisfies the according clause C ∈ Cp. Due to the initialization
it is lj ∈ MF ′ . In case lj is a negative literal, C′ also contains lj and hence is
satisfied. In case lj is a positive literal, C′ contains the literal x∗

j that was chosen
for MF ′ and hence satisfies C′. Consequently all clauses in F ′ are satisfied.

’⇐’: F ′ is satisfiable by the assignment of the literals in MF ′ . Initializing MF :=
{l ∈ MF ′ : l belongs to F} satisfies at least all clauses in Cn. Now consider any
clause C ∈ Cp: Since the according clause C′ ∈ C′p is satisfied there exists at least
one literal l ∈ MF ′ satisfying C′. In case l belongs to F then l ∈ MF and thus,
C ∈ F is satisfied. If, on the other hand, l does not belong to F then l must be
an added and negated variable of the form x∗

i , whereas clause C contains literal
xi ∈ F . Since MF ′ is a model for F ′, in particular the added clause (x∗

i ∨xi) ∈ F ′

is also satisfied by MF ′ . Hence, literal xi has to be contained in MF ′ and so it
is also contained in MF . With this MF is a model for F .

Since for any positive literal in F we added at most one new variable and one
new clause to F ′, the reduction is polynomial. Thus, it is NP-complete to decide
whether a given formula F ∈ 2�-CNF is satisfiable. �

Note that an alternative proof could adapt the idea to prove NP-hardness for
MHF [10]. It turns out that 2�-CNF ⊂ MHF encodes the problem to decide
whether the vertices of a graph can be colored with at most three different
colors such that no vertices with the same color are connected by an edge.

3 A Backdoor–Driven Approach

Based on the concept of backdoor sets we can specify a simple deterministic
algorithm to decide satisfiability for arbitrary formulas of the class 2�-CNF.
The main algorithm is listed in Alg. 1 and is explained in detail in this section.

In the second line we define a constant c whose value solely depends on the
runtime of two parameterized algorithms we use as subroutines further below.
The particular value will become more clear when analyzing the complexity of
the algorithm. In line 3 we first consider all clauses C+ of F that consist of
exactly two positive literals. Note that with F being an instance of class 2�-
CNF, any clause within the set {F \ C+} contains at most one positive literal
and thus these clauses are all Horn clauses. In the next line we aim to find the
smallest possible set of variables B+ such that every clause in C+ contains at
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Algorithm 1. A Backdoor-driven 2�-CNF Solver

Function bd solve(F )1

c ← log4.151(2.0755) ≈ 0.5132

C+ ← {(xi ∨ xj) ∈ F : xi, xj positive}3

Choose minimum B+ ⊆ V, such that ∀ C ∈ C+ ∃ xi ∈ B+ : xi ∈ C4

if |B+| ≤ c ∗ |V| then5

return Solve F by using the Horn-Backdoor B+6

C− ← {(xh ∨ xi ∨ xj) ∈ F : xh, xi, xj negative}7

Choose minimum B− ⊆ V, such that ∀ C ∈ C− ∃ xi ∈ B− : xi ∈ C8

if |B−| ≤ (1 − c) ∗ |V| then9

return Solve F by using the Binary-Backdoor B−10

return F Unsatisfiable11

least one variable of the set B+. Since by definition all clauses within C+ are
binary clauses the problem to find the smallest possible set B+ can be seen as a
Vertex-Cover-problem:
Understanding binary clauses as edges and the variables of the two literals of
each clause as the endpoints of an edge, our task responds to find the smallest
set of endpoints to cover each edge. It is easy to verify that the set of variables
B+ constitutes a deletion backdoor with the base class C = Horn: Each clause of
the instance F −B+ contains at most one positive literal. For complexity reasons
we target to determine a set B+ of the size not greater than c ∗ |V|.

If the instance F does not contain a Horn-backdoor of the desired size, we
then consider the set of all clauses (C−) consisting of three literals. Recall that
these literals are all negative. In line 8 we aim to find a smallest possible set
of variables B− such that each clause within the set C− contains at least one
(negative) literal of the variables within the set B−. This task corresponds to a
3-Hitting-Set problem (see [6]): Clauses of the set C− can be seen as subsets
of three items (variables) each. For B− we search for the smallest set of items
to hit each subset in C−. Note that any clause in F \ C− consists of at most
two literals. Hence it is clear that the set of variables B− constitutes a deletion
backdoor with base class C = 2-Sat: The instance F − B− belongs to class
2-Sat, since from each clause with three literals (C−) at least one is removed.
Again for complexity reasons we focus on finding a Binary-backdoor with size
not greater than (1 − c) ∗ |V|.

When reaching line 11 we know that there exists neither a set of variables B+

nor a set B− with the desired size. In this case we can conclude unsatisfiability
of F . Since the considered clauses within C+ solely consist of positive literals we
need to set the values of at least |B+| variables to true in order to satisfy all the
clauses in C+. Analogously the size B− indicates the number of variables whose
values have to be set to false in order to satisfy all clauses within the set C−.
This is impossible with |B+| being greater than c ∗ |V| and |B−| being greater
than (1 − c) ∗ |V| at the same time.
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A similar argument to prove unsatisfiability of big random 3-Sat instances has
been used by Franco and Swaminathan in [5]. The authors show that an ap-
proximation algorithm for 3-Hitting-Set can determine bounds on how many
variables must be set to true and how many must be set to false.

Complexity of the Algorithm

It is easy to verify that satisfiability of a boolean formula of class 2�-CNF can
be decided by the algorithm described above. In this subsection we analyze the
complexity of Algorithm 1. In particular we have to focus on the following four
computationally intensive tasks of the algorithm:

1. In order to compute the set of variables B+ a Vertex Cover problem has to be
solved (line 4). There are several good approximationalgorithms to deal withVer-

tex Cover problems. However, in our case we need to know exactly the minimum
set of variables to coverall clauses in C+ which cannot be achievedbyusing approx-
imation methods. Considering the fact that we are only interested in a variable set
B+ up to a particular size, we can make use of a parameterized algorithm.

Given a graph G = (VG, EG) the parameterized Vertex Cover problem asks
if there is a subset of vertices C ⊆ VG with k or fewer vertices such that each edge
in EG has at least one of its endpoints in C. According to [7] there are algorithms
solving the parameterized Vertex Cover in time O(k ∗ |VG| + 1.29k). Since in
our case the parameter k is given by c ∗ |V| = 0.513 ∗ |V| and |VG| = |V| = n the
complexity of this task can be limited by O(n2 + 1.14n).

2. Solving the instance F by using a Horn-backdoor B+ with at most c ∗ n =
0.513 ∗ n variables (line 6) may in the worst case imply to examine all possible
truth assignments of the variables in B+. More precisely this might mean that
for each of the 20.513n = 1.427n truth assignments a Horn instance has to be
solved. The satisfiability of a Horn instance can be decided in linear time by
applying for example the algorithm described in [3]. Concluding, the complexity
of this part is limited by O(1.427n ∗ |F |).

3. Analogously, to determine the set B+, we can use a parameterized algorithm
in order to solve the 3-Hitting-Set problem to detect whether there is a set
B− with at most (1 − c) ∗ |V| = (1 − 0.513) ∗ |V| variables (line 8).

Given a collection Q of subsets of size at most three of a finite set S and
a non-negative integer k, the parameterized 3-Hitting-Set problem asks if
there is a subset S′ ⊆ S with |S′| ≤ k which allows S′ to contain at least
one element from each subset in Q [7]. Algorithms to solve this problem have
been steadily improved in the last years. In 2004 Fernau published an algorithm
for the parameterized 3-Hitting Set problem bounded by O(2.179k + |S|) [4].
Wahlström recently improved this result and gave an algorithm with an upper
bound O(p(n) ∗ 2.0755k) with a polynomial p(n) [15]. With k := (1 − c) ∗ |V| =
0.487 ∗ n in our case the complexity can be bounded by O(1.427n ∗ p(n)).
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4. To determine satisfiability of F by using the Binary-backdoor B− with at
most (1 − c) ∗ n = 0.487 ∗ n variables (line 10) may in the worst case imply to
solve a 2-Sat instance for each possible truth assignment of the variables in B−.
Since 2-Sat can be solved in linear time [1,3] the complexity of this part can be
limited by O(1.402n ∗ |F |).

With this, the complexity of Algorithm 1 is bounded by O(1.427n ∗ p(n)).
Hence, the idea of considering two different types of backdoors yields a good
upper bound for the special class 2�-CNF ⊂ 3-Sat. This bound is slightly bet-
ter than the bound O(20.5284n) = O(1.4423n) to solve the more general class
MHF [10]. Just for comparison, the currently best deterministic algorithm for
3-Sat has an upper bound of O(1.473n) [2].

4 Conclusion

Based on the concept of backdoor sets we have bounded the complexity to decide
satisfiability for 2�-CNF ⊂ 3-Sat. The complexity for our algorithm mainly
depends on the runtime to solve parameterized 3-Hitting Set problems.

It would be interesting to study whether the idea to compute different mini-
mum backdoors of a Sat instance can be used to generate algorithms for further
NP-hard subclasses of Sat or MHF.
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