
A Max-SAT Inference-Based Pre-processing for
Max-Clique

Federico Heras and Javier Larrosa�

Universitat Politècnica de Catalunya,
Gran Capità 1-3,

08034 Barcelona, Spain

Abstract. In this paper we propose the use of two resolution-based rules for the
Max-SAT encoding of the Maximum Clique Problem. These rules simplify the
problem instance in such a way that a lower bound of the optimum becomes
explicit. Then, we present a pre-processing procedure that applies such rules.
Empirical results show evidence that the lower bound obtained with the pre-
processing outperforms previous approaches. Finally, we show that a branch-and-
bound Max-SAT solver fed with the simplified problem can be boosted several
orders of magnitude.

Keywords: Max-SAT, Max-clique, Inference.

1 Introduction

Given an undirected graph, the maximum clique Problem (Max-Clique) calls for find-
ing a maximum-sized complete subgraph, that is, a subgraph whose vertices are pair-
wise adjacent. The Max-Clique is a prominent combinatorial optimization problem with
many applications such as bioinformatics [10, 23, 14] and computer vision [3] to name
a few. From the recent literature, there are two types of algorithms to handle the Max-
Clique problem. The first one is formed by branch and bound algorithms that solve the
problem to optimality [11, 25, 22]. The second one is formed by stochastic local search
solvers that cannot prove optimality, but empirical results show that they return quite
accurate upper bounds [24, 5]. Both types of algorithms have a graph as input and they
apply techniques that exploit the structure of such graph.

In this paper, we focus on the Max-SAT encoding of the Max-Clique problem and we
exploit its properties. We introduce two simplification rules for the Max-Clique problem
based on the resolution rule for Max-SAT [16] and we apply them in a preprocessing
procedure. The result of the pre-process is an equivalent Max-SAT formula with an
explicit lower bound of the optimum. Afterwards, we give the pre-processed instance
to the state-of-the-art Max-SAT solver MINIMAXSAT [13]. Empirical results indicate
that our pre-processing generates very powerful initial lower bounds. Besides, fetching
the Max-SAT solver with the simplified formula can boost the search process in several
problem instances.

� Research funded by project TIN2006-15387-C03-0.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 139–152, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 F. Heras and J. Larrosa

The structure of this paper is the following. Section 2 introduces all the preliminary
notation and concepts about Max-SAT and how to encode the Max-Clique problem as
Max-SAT. Then, Section 3 presents the two simplification rules that are used in the
pre-processing introduced in Section 4. Section 5 includes the experimental investiga-
tion and the related work can be found in Section 6. Finally, Section 7 presents some
concluding remarks and points out our future work.

2 Preliminaries

2.1 The Max-SAT Framework

The following notation and terminology has been borrowed from [16]. In the sequel
X is a set of boolean variables taking values over the set {t, f}, which stands for true
and false, respectively. A literal is either a variable (e.g. x) or its negation (e.g. x̄). We
will use l1, l2, l3, . . . to denote literals and var(l) to denote the variable related to l
(namely, var(x) = var(x̄) = x). A clause C = l1 ∨ l2 ∨ . . . ∨ lk is a disjunction of
literals such that ∀1≤i,j≤k, i�=j var(li) �= var(lj). The size of a clause, noted |C|, is the
number of literals that it has. var(C) is the set of variables that appear in C (namely,
var(C) = {var(l)|l ∈ C}). We refer to a clause as positive (negative) if all its literals
appear in the positive (negative) polarity. An assignment satisfies a clause iff it satisfies
one or more of its literals. If variable x is instantiated to t, literal x is satisfied and literal
x̄ is falsified. Similarly, if variable x is instantiated to f , literal x̄ is satisfied and literal x
is falsified. The empty clause, noted �, cannot be satisfied. Sometimes it is convenient
to think of clause C as its equivalent C ∨ �. An assignment is an instantiation of a
subset of X . The assignment is complete if it instantiates all the variables (otherwise it
is partial).

A weighted clause is a pair (C, w) such that C is a classical clause and w is the cost
of its falsification. In this paper we assume costs being natural numbers. A weighted
formula in conjunctive normal form (CNF) is a set of weighted clauses. The cost of an
assignment is the sum of weights of all the clauses that it falsifies.

As shown in [16], the De Morgan rule cannot be used in Max-SAT. Instead, the
following rule should be repeatedly used until CNF is achieved:

(A ∨ l ∨ C, w) ≡ {(A ∨ C̄, w), (A ∨ l̄ ∨ C, w)}

Following [16], we assume without loss of generality the existence of a known upper
bound � of the optimal solution (� is a strictly positive natural number). A model is a
complete assignment with cost less than �. A Max-SAT instance is a pair (F , �) and
the task of interest is to find a model of minimum cost, if there is any. We say that two
weighted formulas are equivalent, F ≡ F ′, if the cost of their optimal assignment is
the same or if neither of them has a model.

Observe that any weight w ≥ � indicates that the associated clause must be nec-
essarily satisfied. Thus, we can replace w by � without changing the problem. Conse-
quently, we can assume all costs in the interval [0..�]. A clause with weight � is called
mandatory (or hard), otherwise it is called non-mandatory (or soft).

A Max-SAT Inference-Based Pre-processing for Max-Clique 141

Let u and w be two costs. Their sum is defined as,

u ⊕ w = min{u + w, �}

in order to keep the result within the interval [0..�]. If u ≥ w, their subtraction is
defined as,

u
 w =
{

u − w : u �= �
� : u = �

Essentially,
 behaves like the usual subtraction except in that � is an absorbing ele-
ment.

The identification of mandatory clauses with the � symbol allows to extend some
well-known simplification rules from SAT to Max-SAT such as addition {(A, u), (A,
w)} ≡ {(A, u ⊕ w)} or subsumption {(A, �), (A ∨ B, w)} ≡ {(A, �)}.

A weighted CNF formula may contain (�, w). Since � cannot be satisfied, w is
added to the cost of any assignment. Therefore, w is an explicit lower bound of the
optimal model. When the lower bound and the upper bound have the same value (i.e.,
(�, �) ∈ F) the formula does not have any model and we call this situation an explicit
contradiction.

The notion of resolution can be extended to weighted formulas as follows,

{(x ∨ A, u), (x̄ ∨ B, w)} ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(A ∨ B, m),
(x ∨ A, u
 m),
(x̄ ∨ B, w
 m),
(x ∨ A ∨ B̄, m),
(x̄ ∨ Ā ∨ B, m)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where A and B are arbitrary disjunctions of literals and m = min{u, w}.
(x∨A, u) and (x̄∨B, w) are called the prior clashing clauses. (A∨B, m) is called

the resolvent. (x ∨ A, u
 m) and (x̄ ∨ B, w
 m) are called the posterior clashing
clauses. (x ∨ A ∨ B̄, m) and (x̄ ∨ Ā ∨ B, m) are called the compensation clauses.

Example 1. If we apply resolution to the following clauses {(x1 ∨ x2, 3), (x̄1 ∨ x2 ∨
x3, 4)} (with � = 5) we obtain {(x2 ∨ x2 ∨ x3, 3), (x1 ∨ x2, 3
 3), (x̄1 ∨ x2 ∨x3, 4

3), (x1 ∨x2 ∨ (x2 ∨ x3), 3), (x̄1 ∨ x̄2 ∨x2 ∨x3, 3)}. The first and fourth clauses can be
simplified. The second clause can be omitted because its weight is zero. The fifth clause
can be omitted because it is a tautology. Therefore, we obtain the equivalent formula
{(x2 ∨ x3, 3), (x̄1 ∨ x2 ∨ x3, 1), (x1 ∨ x2 ∨ x̄3, 3)}.

2.2 Inference-Based Simplification Rules

A Max-SAT problem can be solved to optimality with a pure inference algorithm,
namely, an algorithm that only applies the resolution rule [4, 16]. However, such an
algorithm has exponential space requirements and it is not used in practice. A natural
alternative is to use only restricted forms of resolution that simplify the formula and use
search afterwards. The application of a simplification rule is simply the application of a
limited number of resolution steps. Current Max-SAT solvers apply simplification rules
at each node of a search tree. Their main objective is to simplify the problem instance

142 F. Heras and J. Larrosa

and to make explicit a lower bound (i.e. create new empty clauses). The following ex-
ample shows the application of two steps of resolution that lead to increase the lower
bound.

Example 2. Consider a weighted formula {(x1 ∨ x2, 3), (x̄1 ∨ x2, 2), (x̄2, 1)} (with
� = 5). Suppose we apply the resolution rule between the first and the second clause.
We obtain {(x1∨x2, 1), (x2, 2), (x̄2, 1)}. Now, we apply the resolution rule between the
second and the third clause so that the lower bound is increased {(x1 ∨ x2, 1), (x2, 1),
(�, 1)}. Observe that the three formulas are equivalent, but the last one is more explicit
and presumably simpler.

2.3 Encoding the Min-Vertex-Covering and Max-Clique as Max-SAT

Definition 1. Given a graph G = (V, E), a vertex covering is a set U ⊆ V such
that for every edge (vi, vj) either vi ∈ U or vj ∈ U . The size of a vertex covering is
|U |. The minimum vertex covering (Min-Vertex-Covering) problem consists in finding
a covering of minimal size.

The minimum vertex covering problem is a well-known NP-Hard problem and it is
well-known that it can be naturally formulated as (weighted) Max-SAT. We associate
one variable xi to each graph vertex. Value true (respectively, false) indicates that vertex
xi belongs to U (respectively, to V −U). There is a binary weighted clause (xi ∨xj , �)
for each edge (vi, vj) ∈ E. It specifies that at least one of these vertices must be in the
covering because there is an edge connecting them. There is a unary clause (x̄i, 1) for
each variable xi, in order to specify that it is preferred not to add vertices to U . � must
be set to a sufficiently large number. Note that different weights in unary and binary
clauses are required to express the relative importance of each type of clauses.

Definition 2. Given a graph G = (V, E), a clique is a set U ⊆ V such that for every
vertex v ∈ U , v is connected to all the vertices in U . The size of a clique is |U |. The
maximum clique problem (Max-Clique) consists in finding a clique of maximal size.

The maximum clique problem is a well-known NP-Hard problem. As noted in [11],
finding the maximum clique of a graph G = (V, E) is equivalent to finding a minimum
vertex covering of the complementary graph Ḡ. Given a graph G = (V, E), its comple-
mentary graph is denoted by Ḡ = (V, Ē). It is constructed with the same set of vertices
V and (vi, vj) ∈ Ē iff (vi, vj) /∈ E. Hence, we can model Max-Clique problems as
Minimum Vertex Covering problems over the complementary graph. Observe that the
maximum size of the maximum clique is equivalent to |V | − s, where s is the size of
the minimum vertex covering.

Note that the Max-SAT encoding of the Max-Clique problem only contains negative
unit soft clauses and positive binary hard clauses.

3 Two Simplification Rules

In this section we present two simplification rules that can be executed frequently in
the Max-SAT encoding of a Max-Clique problem. The correctness of both rules can be
easily established with a sequence of resolution steps.

A Max-SAT Inference-Based Pre-processing for Max-Clique 143

3.1 Star Rule

The Star Rule [21] can be used to create new empty clauses from a long clause and a
set of appropriate unit clauses.

{(xi1 ∨ xi2 ∨ . . . ∨ xik, w0), (xi1, w1), (xi2, w2), . . . , (xik, wk)} ≡
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�, m), (xi1 ∨ xi2 ∨ . . . ∨ xik, w0
 m),
(xi1, w1
 m), (xi2, w2
 m), . . . , (xik, wk
 m),
(xi1 ∨ xi2 ∨ xi3 ∨ . . . ∨ xik, m),
(xi2 ∨ xi3 ∨ xi4 ∨ . . . ∨ xik, m),
(xi3 ∨ xi4 ∨ xi5 ∨ . . . ∨ xik, m),
. . . ,
(xik−1 ∨ xik, m)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

where m = min{w0, w1, . . . , wk}.
The new empty clause is added to the possibly existing one, which produces a lower

bound increment. It is clear that the Star Rule may be effective when a large number of
unit clauses are available.

Example 3. Consider the initial formula {(x̄1 ∨ x̄2, 1), (x1, 1), (x2, 1)}. In this exam-
ple, we show each step of resolution needed to obtain the same result provided by the
Star Rule. First, we apply the resolution rule between the first and the third clauses and
we obtain {(x1 ∨ x2, 1), (x1, 1), (x̄1, 1)}. Then, we apply the resolution rule between
the second and the third clauses to obtain {(x1 ∨ x2, 1), (�, 1)}.

3.2 Unit Rule

The original Unit Rule can be used to create new unit clauses from a long clause and
a set of appropriate binary hard clauses. Given a subset of variables {xi1, xi2, . . . , xik,
xj} ⊆ X , consider the following subset of binary hard clauses:

Bin(xi1, xi2, . . . , xik, xj) =
{

(xi1 ∨ xj , �), (xi2 ∨ xj , �), . . . , (xik ∨ xj , �)
}

The Unit Rule has the form,

{(xi1 ∨ xi2 ∨ . . . ∨ xik, w), Bin(xi1, xi2, . . . , xik, xj)} ≡
{

(xi1 ∨ xi2 ∨ . . . ∨ xik ∨ xj , w), Bin(xi1, xi2, . . . , xik, xj), (xj , w)
}

Example 4. Consider the initial formula {(x̄1 ∨ x̄2, 1), (x1 ∨x3, �), (x2 ∨x3, �)}. In
this example, we show each step of resolution needed to obtain the same result provided
by the Unit Rule. First, we apply the resolution rule between the first and the second
clauses and we obtain {(x̄2 ∨ x3, 1), (x̄1 ∨ x̄2 ∨ x̄3, 1), (x1 ∨ x3, �), (x2 ∨ x3, �)}.
Then, we apply the resolution rule between the first and the last clauses to obtain
{(x3, 1), (x̄1 ∨ x̄2 ∨ x̄3, 1), (x1 ∨ x3, �), (x2 ∨ x3, �)}.

144 F. Heras and J. Larrosa

4 Pre-processing

In this section we show a pre-process that exploits the synergy between the Unit and the
Star rules. The unit rule generates unit positive clauses from negative clauses and binary
positive hard clauses. This unit clauses are used by the star rule which transforms them
into empty clauses, which means an increment of the lower bound. The pre-process
works in a on-demand manner: it triggers the unit rule only if it can guarantee that it
will allow the subsequent execution of the star rule.

Before introducing the details of the pre-processing, we present a useful definition.

Definition 3. A negative clause (C, w) = (xi1 ∨ xi2 ∨ . . . xik, w) is unit-related with
respect to x′, and it is noted (C, w)x′ , if and only if Bin(xi1, xi2, . . . , xik, x′) ∈ F .

Observe that we can always apply the Unit Rule to a clause C unit-related with respect
to literal x in order to generate a new positive unit soft clause (x, w).

The basic idea of the pre-processing is to generate the appropriate unit clauses with
the Unit Rule so that we can apply the Star Rule later in order to increase the lower
bound. The final objective is to increase as much as possible the lower bound.

The pre-processing is shown in Algorithm 1. It iterates over all the negative clauses
(line 1). For each negative clause (C, w0) the algorithm wants to obtain one unit clause
for each literal in C. To do so, for each literal li in C the algorithm seeks a clause (C′, wi)
unit-related with respect to li (i.e. (C′, wi)li) and store it in the structure S. Note that all
the negative clauses inserted in S must be different, and they must be also different from
the initial (C, w0) (lines 2-5). If it succeeds in finding unit-related clauses for each literal
in C (line 6), then the algorithm applies the two simplification rules. First, for each pair
in structure S, it applies the Unit Rule in order to create the corresponding unit clause
(lines 7,8). Once all unit clauses have been generated, the algorithm proceeds to apply
the Star Rule (line 9).

Recall that this process is applied to Max-clique problems (the original formula con-
tains negative soft units and positive hard binary clauses). Therefore, one can easily see
that, at any point of the execution of algorithm 1, each negative clause (C, w) is in F
because either (i) (C, w) is an initial unit soft clause in F or (ii) (C, w) was generated
by some application of the Unit Rule. This observation leads to a nice property:

Lemma 1. Within the pre-processing algorithm, all the compensation clauses in F
generated by the Star Rule are subsumed by binary hard clauses in F .

Proof-Sketch 1. Consider the case in which all clauses have weight 1 (as it happens in
the Max-Clique Problem). Suppose that the Star Rule is applied to an arbitrary subset
of clauses in F :

{(xi1 ∨ xi2 ∨ . . . ∨ xik, 1), (xi1, 1), (xi2, 1), . . . , (xik, 1)}

Observe that {(xi1 ∨ xi2 ∨ . . . ∨ xik, 1) is in F because the following set of Unit Rules
were applied (in reverse order):

{(xi1 ∨ xi2 ∨ . . . ∨ xik−1, 1), Bin(xi1, xi2, . . . , xik−1, xik)}

A Max-SAT Inference-Based Pre-processing for Max-Clique 145

Algorithm 1. Algorithm to transform the Max-Clique problem into an equivalent but simpler
one. Note that each application of the Unit Rule (line 5) generate a new clause to be considered
in the main Loop 1

Procedure MC-Preprocessing(F)
1 foreach (C, w0) = (l1 ∨ l2 ∨ . . . ∨ lk, w0) ∈ F do
2 S := ∅ ;
3 foreach li ∈ C do
4 if ∃(C′, wi) s.t. (C′, wi) �= (C, w0) ∧ (C′, wi) /∈ S ∧ (C′, wi)li then
5 S := S ∪ ((C′, wi), li)

6 if |S| = k then
7 foreach ((C′, wi), li) ∈ S s.t. (C′, wi) = (l′1 ∨ l′2 ∨ . . . ∨ l′p, wi) do
8 Apply Unit Rule to {(C′, wi),Bin(l′1, l

′
2, . . . , l

′
p, li) } ;

9 Apply Star Rule to {(l1, w1), (l2, w2), . . . , (lk, wk), (C, w0)} ;

{(xi1 ∨ xi2 ∨ . . . ∨ xik−2, 1), Bin(xi1, xi2, . . . , xik−2, xik−1)}

. . .

{(xi1, 1), Bin(xi1, xi2)}

Precisely, the sets of binary clauses used at each application of the Unit Rule are
enough to subsume all the compensation clauses produced by the initial Star Rule.

5 Empirical Results

In this section we present the benchmarks and the algorithms we tested in our empirical
evaluation.

5.1 Benchmarks

In our experiments we consider instances that have been used in several works related
with the Max-Clique problem.

– Random graph instances for which we solved the Max-Clique problem [16]. They
were submitted to Max-SAT Evaluations 2006 and 2007 [2]. A random graph is
defined by two parameters 〈n, e〉 where n is the number of nodes and e is the num-
ber of edges. Edges are randomly decided using a uniform probability distribution.
Those random instances have a fixed number of nodes (150) and the graph density
is varied.

– The 66 Max-Clique instances from the DIMACS challenge [15] 1 [11, 25, 24, 5].
They were also submitted to Max-SAT Evaluations 2006 and 2007 [2].

1 ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique

146 F. Heras and J. Larrosa

– Ke Xu’s Max-Clique instances with hidden optimum solutions [30, 29] which are
advocated to be very difficult to solve. We considered the following publicly avail-
able sets of instances: frb10, frb15, frb20, frb25 and frb30.

– 11 Max-Clique real instances, provided by J.S. Sokol, corresponding to the pro-
tein structure alignment problem transformed into the maximum clique problem
as described in [10, 16]. In this problem, the goal is to compute a score of sim-
ilarity between two proteins based on a particular knowledge of their respective
tri-dimensional structure.

5.2 Experiments Considered

First, we compare the lower bound obtained with our new pre-processing with respect
to previous lower bounds. Second, we study the effect of feeding a Max-SAT solver
with the pre-processed instance. The results are presented in plots and tables. In most
of the tables, the common columns are: Problem, Nodes and Density that refer to the
name of the instance, the number of nodes and the density of the graph, respectively.
In tables and plots, OPT refers to value of the optimal solution. For each experiment,
additional information is presented. Execution times are presented in seconds. All the
experiments were performed on a 3.2 Ghz Intel Pentium with 1 GB and Linux.

5.3 Comparison of the New Lower Bound

Let LB-NEW be the lower bound obtained with the new pre-processing. Our first aim
is to compare LB-NEW with respect to previous lower bounds for Max-SAT and WCSP
which are deeply related to our approach. The best current lower bound in Max-SAT
solvers is LB-UB [18]. The best current lower bounds for WCSP solvers are EDAC*
[8] and OSAC [7]. We did preliminary experiments and observed that the lower bounds
computed with LB-UB and EDAC* were similar. Hence, we simply present the results
for LB-UB. We also tested WCSP solvers with OSAC [7] but we discarded it for the
final experiments because most of its executions were aborted due to a time limit of
600 seconds. See Section 6 for a more detailed explanation of these lower bounds and
their relationships. In this experiment we will also report the time needed by the novel
pre-processing and we will refer to it as Pre-Time.

Figure 1 reports the results of applying our preprocessing to the max-clique problem
of random graphs with 150 nodes and varying number of edges. Note that instances with
low graph density have an associated Max-SAT encoding containing a large number of
binary hard clauses. The figure shows three values which are average results of 30
instances per point. Two main observations can be extracted. First, the lower bound of
the novel preprocessing LB-NEW is quite powerful when the graph density is low, and
it is quite near to the optimal solution value. However, it loses accuracy as the graph
density increases. The second observation is that LB-NEW is much more accurate than
LB-UB.

Figure 2 shows results for the 66 DIMACS instances. The plot reports lower bound
gains (as (LB-NEW - LB-UB)/ LB-UB) versus problem density. It can be seen that
LB-NEW is typically 60 − 80% higher than LB-UB. The effect of the problem density
in this small sample of instances is not very clear, but again it seems that the benefits of
LB-NEW are more important in low density graphs.

A Max-SAT Inference-Based Pre-processing for Max-Clique 147

 0

 20

 40

 60

 80

 100

 120

 140

12 20 28 36 44 52 60 68 76 84 92

cp
u

tim
e

graph density

Max-Clique, 150 vars

OPT
LB-UB

LB-NEW

Fig. 1. Lower bounds computed as a pre-processing compared with optimal solutions for random
graphs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

L
B

 g
ai

n
%

density

LB gain

Fig. 2. Lower bound increment as (LB-NEW - LB-UB)/ LB-UB for the 66 Dimacs instances

Observe the time of the pre-processing Time-Pre, the new lower bound LB-NEW,
the lower bound LB-UB and the value of the optimal solution OPT in Figures 4 and
5. For the instances with hidden optimum solutions (Figure 4), the time required by
the pre-processing is negligible and LB-NEW clearly improves LB-UB. For the protein
alignment instances (Figure 5) our pre-processing can be computed in less than 5 sec-
onds for all the instances and LB-NEW is very close to the optimal solution OPT. It is
worth to observe that LB-NEW almost doubles LB-UB.

5.4 Feeding a Max-SAT Solver with the Pre-processed Instance

In our second experiment we analyze how the execution time of a Max-SAT solver can
be reduced by feeding it with the pre-processed instance. Then we also compare it to

148 F. Heras and J. Larrosa

specific Max-Clique solvers. However most of the Max-Clique solvers in the literature
are not publicly available. The only Max-Clique solver available is DF-MAX [6, 15]
that has been used in most of the comparisons of previous works. While DF-MAX is
an old algorithm, it is still very efficient on sparse graphs [27]. In that context, we used
MINIMAXSAT [13], the overall best branch and bound Max-SAT solver in the 2007
Max-SAT Evaluation [2] and we will refer to it simply as MS. When we feed MS with
the pre-processed instance we will refer to it as MS+Pre.

First, we compared the execution times of MS and MS+Pre in the random graphs of
Figure 1 but no significant differences were found in execution time.

In Figure 3 we compare the number of solved instances by the Max-SAT solver MS
with respect to the rest of specific Max-Clique solvers in the 66 DIMACS instances.
For this experiment, we considered a time limit of 2.5 hours so that we can compare
with other solvers via a normalization process. The results indicate that the Max-SAT
solver MS lays in the middle, being the constraint programming approach [25] and the
coloring approach [11] the best current solvers for the DIMACS instances. But, we ob-
served that giving a larger time limit of 8 hours 4 more instances can be solved with MS
and MS+Pre, precisely the group of brock400*. We observed that MS+Pre was able to
solve the instances san200 0.7 1 and san200 0.7 2 in 0.14 seconds and 116.31 sec-
onds, while MS required 363.47 seconds and 6046.06 seconds, respectively. However,
MS was able to solve the instance san400 0.9 1 within 5 minutes, while MS+Pre was
not able to solve such an instance. In the other 63 instances, both approaches performed
quite similar.

Solver Solved Instances
Regin [25] 52
Fahle [11] 45
MS 39
MS + Pre 38
Wood [28] 38
Ostergard [22] 36
DF-MAX 31

Fig. 3. Solved instances for the 66 graphs from the Second DIMACS challenge [15] within a time
limit of 2.5 hours

From the previous results, it seems that our new pre-processing generates a powerful
initial lower bound but it does not allow important speed-ups for a Max-SAT solver. In
what follows, we show that such speed-ups occur in some specific instances.

Observe the results in Figures 4 and 5. They include the execution time of MS,
MS+Pre and DF-MAX. The time limit was set to 4 hours.

Regarding the instances with hidden optimum solutions (Figure 4), MS and DF-
MAX performed quite similar and solved exactly the same number of instances. Dif-
ferently, MS+Pre is about two orders of magnitude faster than the other approaches.
Furthermore, it is able to solve all the instances of the frb25 set, and one instance of the
frb30 set.

A Max-SAT Inference-Based Pre-processing for Max-Clique 149

Problem nodes density Time-Pre MS DF-MAX MS+NEW LB-UB LB-NEW OPT
frb10-6-1 60 65.71 0.00 0.00 0.00 0.00 30 45 50
frb10-6-2 60 64.63 0.00 0.00 0.00 0.00 30 43 50
frb10-6-3 60 66.05 0.00 0.00 0.00 0.00 30 43 50
frb10-6-4 60 63.95 0.00 0.00 0.00 0.00 30 44 50
frb10-6-5 60 64.24 0.00 0.00 0.00 0.00 30 43 50
frb15-9-1 135 72.22 0.00 1.65 1.00 0.10 67 106 120
frb15-9-2 135 72.21 0.00 1.11 1.00 0.22 67 102 120
frb15-9-3 135 72.40 0.00 1.31 1.00 0.14 67 105 120
frb15-9-4 135 72.32 0.00 1.05 1.00 0.25 67 105 120
frb15-9-5 135 71.69 0.00 1.58 1.00 0.37 67 105 120
frb20-11-1 220 76.61 0.00 295.94 418.00 2.40 110 173 200
frb20-11-2 220 76.86 0.01 267.54 412.00 29.39 110 172 200
frb20-11-3 220 76.70 0.00 411.83 483.00 4.84 110 175 200
frb20-11-4 220 76.87 0.00 490.59 450.00 5.58 109 174 200
frb20-11-5 220 76.75 0.00 556.99 698.00 16.72 110 173 200
frb25-13-1 325 79.87 0.02 - - 2212.94 162 260 300
frb25-13-2 325 79.83 0.01 - - 583.69 162 261 300
frb25-13-3 325 79.72 0.01 - - 247.34 162 256 300
frb25-13-4 325 80.18 0.01 - - 432.19 162 260 300
frb25-13-5 325 80.04 0.02 - - 930.17 161 259 300
frb30-15-1 450 82.28 0.02 - - - 225 360 -
frb30-15-2 450 82.24 0.02 - - - 224 364 -
frb30-15-3 450 82.28 0.02 - - - 225 363 -
frb30-15-4 450 82.28 0.02 - - - 225 366 -
frb30-15-5 450 82.31 0.03 - - 5772.32 225 366 420

Fig. 4. Instances with hidden optimum solutions. 4 hours of time limit.

Problem nodes density Time-Pre MS DF-MAX MS+NEW LB-UB LB-NEW OPT
1bpi–2knt 2436 15.06 3.80 - 528.00 564.99 1218 2372 2407
1bpi–5pti 3016 15.36 5.62 - 2525.00 456.18 1508 2945 2974
1knt–1bpi 2494 14.86 3.80 - 430.00 375.45 1247 2429 2464
1knt–2knt 1806 14.76 2.02 358.93 19.00 87.22 903 1751 1767
1knt–5pti 2236 15.15 3.19 - 226.00 13441.60 1118 2179 2208
1vii–1cph 171 10.88 0.01 0.03 0.00 0.19 85 158 165
2knt–5pti 2184 15.28 2.96 - 238.00 327.04 1092 2124 2156
3ebx–1era 2548 14.72 4.04 - 886.00 865.05 1274 2483 2517
3ebx–6ebx 1768 14.45 1.99 1532.70 88.00 94.56 884 1717 1740
6ebx–1era 1666 14.35 1.89 2705.69 45.00 104.35 833 1616 1646
sandiaprot 2279 14.83 3.30 - 189.00 7710.05 1139 2220 2248

Fig. 5. Protein structure alignment problem transformed into Max-Clique. 4 hours of time limit.

150 F. Heras and J. Larrosa

Regarding the protein alignment instances (Figure 5) the novel lower bound LB-
NEW is very close to the optimal solution OPT. MS can solve only four instances within
the time limit, while MS+Pre is able to solve all the instances and 9 of them in less than
fifteen minutes. The performances of DF-MAX and MS+Pre are quite similar in most
of the instances. Recall that DF-MAX is still the best specific solver for low density
instances like those. Observe that in [16] a Max-SAT solver called MAX-DPLL was
able to solve 10 of the 11 instances. MAX-DPLL applies at each node of the search
tree the cycle rule which can be seen as a very limited version of our more general
approach. However, the current implementation of the cycle rule has severe memory
limitations [16].

6 Related Work

There exists a handful of specific Max-Clique branch and bound solvers [6, 15, 22, 11,
25, 27]. They mainly differ in their bounds. The best current upper bounds are based on
constraint programming techniques [25] and on approximate graph coloring techniques
[11, 27].

Besides specific algorithms, Max-Clique can also be solved with generic solvers. In
the following, we review Max-SAT and WCSP approaches.

Current complete algorithms for Max-SAT are also branch and bound algorithms.
In that context, the upper bound ub is the cost of the best complete assignment found
so far and the lower bound (lb) is the sum of the weights of the clauses in the original
formula violated by the current partial assignment plus an underestimation of the cost
of extending the current partial assignment. lb and ub are used to avoid visiting useless
parts of the search tree when lb ≥ ub. Most of them compute underestimations based
on detecting inconsistent subsets: Given a WCNF formula F , an inconsistent subset is
a subset of clauses of F such that at least one of the clauses is always unsatisfied by any
assignment of the variables. When an inconsistent subset is detected, two approaches
are possible:

– Relaxation: Remove the clauses involved in the inconsistent subset from the for-
mula and increase the underestimation [18].

– Inference: Apply the resolution rule to create an equivalent formula with new empty
clauses [16].

Best current Max-SAT solvers use unit propagation (UP) to detect inconsistent sub-
sets and then they apply a mixture of the previous two approaches [13, 20].

The star rule [21] captures the following inconsistent subset that can be also detected
via UP:

{(x1 ∨ x2 ∨ . . . ∨ xk, w0), (x1, w1), (x2, w2), . . . , (xk, wk)}
If we relax the formula, the underestimation can be increased by min{w0,

w1, . . . , wk}. This was applied during search in [26, 1] restricted to k = 2 and in gen-
eral in [18, 20].

Following the inference-based approach, we have precisely the same transformation
presented in Section 3. It was applied in [12, 20] restricted to k = 2 and in general in
[13].

A Max-SAT Inference-Based Pre-processing for Max-Clique 151

Let S be the largest subset of hard binary clauses of the Max-Clique problem with
no literals in common among them. For each clause (xi ∨ xj , �) in S and their respec-
tive unit clauses (xi, 1) and (xj , 1), we can relax the formula by removing them and
increasing the underestimation by 1. Hence, we can obtain a resulting lower bound of
LBP = |S|. It is precisely the best lower bound that can be computed via UP and then
relaxing the formula like LB-UB used in Section 5. A lower bound based on detect-
ing inconsistent subsets via UP and then transforming the formula may be greater than
LBP . However, in practice it is always quite near to LBP . The main observation of our
work is that the binary hard clauses of the Maximum Clique problem lead to generate
lots of unit clauses that can be used later by the star rule once and again.

The Max-SAT problem was reformulated as a Weighted Constraint Satisfaction
Problem (WCSP) [17] in [9, 8] with boolean variables and weighted constraints. Cur-
rent WCSP solvers apply an inference-based method called Existential Directional Arc
Consistency (EDAC*) [8]. The application of EDAC* in a WCNF formula only affects
to unit and binary clauses that are replaced by other unary and binary clauses and a
weighted empty clause. A lower bound based on EDAC* is always equal or lower than
LBP . The most relevant difference of our approach is that we allow the creation of
larger arity clauses.

7 Conclusions and Future Work

In this paper we present a pre-processing based on the Max-SAT resolution rule for
the Maximum Clique problem (and other related problems). We show empirically how
it can be used to obtain a powerful initial lower bound and, in some cases, how the
search process of a complete systematic search algorithm can be boosted several orders
of magnitude. The following step of our research plan will consist in powering a branch
and bound algorithm with our new algorithm at each node of the search tree. This
may lead to solve the Maximum Clique problem in a very efficient way. To do so,
we are currently working on the necessary data-structures so that the algorithm can be
performed in a very fast way.

References

1. Alsinet, T., Manyà, F., Planes, J.: Improved exact solvers for weighted Max-SAT. In: Bac-
chus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 371–377. Springer, Heidelberg
(2005)

2. Argelich, J., Li, C.M., Manyá, F., Planes, J.: The first and second max-sat evaluations. Journal
on Satisfiability, Boolean Modeling and Computation (to appear, 2008)

3. Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM Journal of Com-
putation 15(4), 1054–1068 (1986)

4. Bonet, M.L., Levy, J., Manyà, F.: Resolution for max-sat. Artificial Intelligence 171(8-9),
606–618 (2007)

5. S.B.: A new trust region technique for the maximum weight clique problem. Discrete Applied
Mathematics 154(15), 2080–2096 (2006)

6. Carraghan, R., Pardalos, P.: An exact algorithm for the maximum clique problem. Operations
Research Letters 9, 375–382 (1990)

152 F. Heras and J. Larrosa

7. Cooper, M.C., de Givry, S., Schiex, T.: Optimal soft arc consistency. In: Proceedings of
IJCAI, pp. 68–73 (2007)

8. de Givry, S., Heras, F., Larrosa, J., Zytnicki, M.: Existential arc consistency: getting closer
to full arc consistency in weighted csps. In: Proceedings of IJCAI (2005)

9. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving max-sat as weighted csp. In: Rossi,
F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg (2003)

10. Barnes, E., Strickland, D.M., Sokol, J.S.: Optimal protein structure alignment using maxi-
mum cliques. Operations Research 53, 389–402 (2005)

11. Fahle, T.: Simple and fast: Improving a branch-and-bound algorithm for maximum clique.
In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 485–498. Springer,
Heidelberg (2002)

12. Heras, F., Larrosa, J.: New inference rules for efficient max-sat solving. In: AAAI (2006)
13. Heras, F., Larrosa, J., Oliveras, A.: Minimaxsat: A new weighted max-sat solver. In:

Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 41–55. Springer,
Heidelberg (2007)

14. Ji, Y., Xu, X., Stormo, G.D.: A graph theoretical approach for predicting common RNA
secondary structure motifs including pseudoknots in unaligned sequences. Bioinformat-
ics 20(10), 1603–1611 (2004)

15. Johnson, D.S., Trick, M.: Second DIMACS implementation challenge: cliques, coloring and
satisfiability. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 26, AMS (1996)

16. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving. Artifi-
cial Intelligence, an international journal 172, 204–233

17. Larrosa, J., Schiex, T.: Solving weighted csp by maintaining arc-consistency. Artificial Intel-
ligence 159(1-2), 1–26 (2004)

18. Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower bounds in
branch and bound Max-SAT solvers. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp.
403–414. Springer, Heidelberg (2005)

19. Li, C.M., Manya, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing
lower bounds for Max-SAT. In: Proceedings of AAAI (2006)

20. Li, C.M., Manyà, F., Planes, J.: New inference rules for max-sat. Journal of Artificial Intelli-
gence Research 30, 321–359 (2007)

21. Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability. Journal of
Algorithms 36(1), 63–88 (2000)

22. Ostergard, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Applied Math-
ematics 120, 197–207 (2002)

23. Pevzner, P.A., Sze, S.: Combinatorial approaches to finding subtle signals in DNA sequences.
In: ISMB, pp. 269–278 (2000)

24. Pullan, W.J., Hoos, H.H.: Dynamic local search for the maximum clique problem. J. Artif.
Intell. Res (JAIR) 25, 159–185 (2006)

25. Régin, J.-C.: Using constraint programming to solve the maximum clique problem. In: Rossi,
F. (ed.) CP 2003. LNCS, vol. 2833, pp. 634–648. Springer, Heidelberg (2003)

26. Shen, H., Zhang, H.: Study of lower bounds for Max-2-SAT. In: AAAI (2004)
27. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maximum clique.

In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp.
278–289. Springer, Heidelberg (2003)

28. Wood, D.: An algorithm for finding maximum cliques in a graph. Operations Research Let-
ters 21, 211–217 (1997)

29. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: A simple model to generate hard satisfiable
instances. In: Proceedings of IJCAI, pp. 337–342 (2005)

30. Xu, K., Li, W.: Many hard examples in exact phase transitions with application to generating
hard satisfiable instances. CoRR, cs.CC/0302001 (2003)

	A Max-SAT Inference-Based Pre-processing for Max-Clique
	Introduction
	Preliminaries
	The Max-SAT Framework
	Inference-Based Simplification Rules
	Encoding the Min-Vertex-Covering and Max-Clique as Max-SAT

	Two Simplification Rules
	Star Rule
	Unit Rule

	Pre-processing
	Empirical Results
	Benchmarks
	Experiments Considered
	Comparison of the New Lower Bound
	Feeding a Max-SAT Solver with the Pre-processed Instance

	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

