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Abstract. This paper consists of two conceptually related but indepen-
dent parts. In the first part we initiate the study of k-SAT instances of
bounded diameter. The diameter of an ordered CNF formula is defined as
the maximum difference between the index of the first and the last occur-
rence of a variable. We investigate the relation between the diameter of a
formula and the tree-width and the path-width of its corresponding inci-
dence graph. We show that under highly parallel and efficient transforma-
tions, diameter and path-width are equal up to a constant factor. Our
main result is that the computational complexity of SAT, Max-SAT,
#SAT grows smoothly with the diameter (as a function of the number
of variables). Our focus is in providing space efficient and highly parallel
algorithms, while the running time of our algorithms matches previously
known results. Our results refer to any diameter, whereas for the special
case where the diameter is O(log n) we show NL-completeness of SAT

and NC
2 algorithms for Max-SAT and #SAT.

In the second part we deal directly with k-CNF formulas of bounded
tree-width. We describe algorithms in an intuitive but not-so-standard
model of computation. Then we apply constructive theorems from com-
putational complexity to obtain deterministic time-efficient and simul-
taneously space-efficient algorithms for k-SAT as asked by Alekhnovich
and Razborov [1].

1 Introduction

SAT,Max-SAT and #SAT are among the most fundamental and well-studied
problems in theoretical computer science, all intractable in the most general case:
SAT is NP-complete [9], Max-SAT is NP-hard to approximate within some con-
stant [3], while #SAT is hard for #P [32]. The intractability of SAT,Max-SAT

and #SAT soon led to the study of restricted versions based on hidden struc-
tures of formulas and in particular on the so-called width restrictions. In this
work, first we introduce a natural structural width parameter directly defined
on k-CNF formulas that we call diameter. We consider SAT,Max-SAT and
#SAT and parameterize them with respect to diameter, giving space-efficient
and parallel algorithms. Second, given the tree decomposition of the incidence
graph of a formula, we show how to decide SAT in simultaneously efficient time
and space.
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Parameterizing SAT instances using width parameters follows the more gen-
eral study of NP-hard graph problems initiated by Lipton and Tarjan [19]. Along
these lines, Robertson and Seymour [24,25] introduced tree-width that has been
widely used to parameterize the complexity of many NP-hard problems, see e.g.
surveys [5,17]. When it comes to SAT, a CNF formula can be associated with
many underlying graphs and for each one of them a number of width parame-
ters can be defined e.g. tree-width, path-width, clique-width, branch-width and
cluster-width (for a comparison see [20]). There are numerous works parame-
terizing SAT with respect to width parameters. In what follows, due to space
limitations, our exposition is far from being complete.

Khanna and Motwani [18] considered Max-SAT for formulas of constant
tree-width, while [2] exploits the same structural property for SAT. Deciding
SAT has been proved fixed-parameter tractable with respect to branch-width
by Alekhnovich and Razborov [1], and to tree-width by Gottlob et al [16] on
primal graphs. Using DPLL procedures, Bacchus, Dalmao and Pitassi, [4] con-
sidered #SAT, while the same time-bound for #SAT was achieved by Samer
and Szeider [27] extending [16]. Fixed-parameter tractability of SAT and #SAT

has also been considered in e.g. [10,13,20,21,28]; see also [31] for a survey.
The diameter of an ordered formula formalizes the following idea: if we know

that the distance between the first and last occurrence of any variable is bounded,
we may be able to understand better the complexity of such restricted SAT-
instances. We extend the definition to unordered formulas to be the smallest
diameter over all clause-orderings. Technically, the diameter of a formula φ fully
coincides with the bandwidth (see [7] for a survey) of the intersection graph of
φ. In this work, we consider ordered k-CNF instances of bounded diameter, and
we do not deal with the independent and well-studied problem of finding the
best ordering (equivalent to bandwidth minimization) which is NP-complete.

It is worth noting that the subproblem of k-SAT instances of diameter nε,
ε > 0, where n is the number of variables, is NP-complete. In contrast we show
that k-CNF formulas of log n diameter encode arbitrary NL computations. Ar-
bitrary NL-computations are objects exhibiting highly complex interactions be-
tween their parts. Hence, it is intuitively clear that by considering instances of
bounded ordered diameter we do not break the problem into independent prob-
lems (a preliminary study for a similar problem was given in [14]). Even for
unordered formulas the value of the diameter is provably less informative than
the width parameters in the following sense. Path-width is always upper bounded
by the diameter, although the two values can be off by almost a linear factor
(Lemma 2). Despite this, we prove that by a highly efficient algorithm (Theorem
2), a formula of path-width d(n) can be viewed as a formula of diameter O(d(n)).
Hence we (computationally) counter any undesirable properties of the diameter
and we only keep its simplicity. For ordered instances of SAT,Max-SAT and
#SAT of bounded diameter we design space-efficient and time-efficient algo-
rithms, showing that the complexity of all three problems grows smoothly with
respect to the diameter. If in particular the instances are of sufficiently small
diameter, we present algorithms that in addition are highly parallel. A strong
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point of this work is that these algorithms appear to have quite intuitive descrip-
tions. To the best of our knowledge this is the first work that simultaneously
gives efficient time and space fixed parameter tractability bounds or even deals
with parallelization issues for SAT,Max-SAT and #SAT.

Additional motivation for the study of SAT with respect to simultaneously
time and space tractability is explicitly given by Alekhnovich and Razborov
[1]. Given instances of bounded branch-width w(n) and given a decomposition,
they decide SAT in time nO(1)2O(w(n)) and in space nO(1)2O(w(n)); they further
ask whether it is possible to reduce the space to polynomial preserving time
efficiency. The last part of our paper goes in a fashion independent to the study
of diameter. A consequence of our study is a new algorithm that matches the
same time-space bounds as in [1], and more importantly an algorithm that works
in time nO(1)2O(w(n) log n) and space nO(1).

2 Definitions and Preliminary Results

2.1 Notation and Terminology

All logarithms are of base 2. All propositional formulas are in CNF. A k-CNF is
a CNF where each clause has at most k literals, for a constant k ∈ N. We denote
by φπ a total ordering of the clauses of φ. In an input, an unordered (ordered)
formula φ (φπ) is represented in the standard way as a sequence (sequence in the
given order) of clauses. We consistently use n to denote the number of variables
in a formula. N is used to denote the size of given inputs. The diameter of an
ordered formula is always expressed as a function of the number of variables,
and it is denoted by d(n). All circuit families are logspace or logtime uniform.
DEPTH(f(N)) is the class of languages decidable by a family of circuits in depth
f(N). DSPACE(f(N)), NSPACE(f(N)), DTIME(f(N)) denotes the class of
problems decidable in deterministic, non-deterministic space and deterministic
time f(N) respectively. For the function analogs of decision complexity classes
we extend the notation introducing a leading F ; e.g. FDSPACE(log2 N). NC

i

(AC
i) is the class of languages decidable by polynomial size circuits of depth

O(logi N) where the gates are of bounded (unbounded) fan-in. We denote by
NL = NSPACE(log N). Our notation is standard, see e.g. [11,34]. LOGCFL is
the class of languages logspace reducible to Context Free Languages (see Section
2.5). When the input is a formula of n variables we abuse notation by writing
CompClass(f(n)) instead of CompClass(f(N)). Since N > n our containment
results are slightly better than what our notation suggests. We use the term
“highly parallel algorithms” to refer to circuits that are both of polynomial size
and of small depth e.g. logarithmic or a square of a logarithm.

2.2 Structural Parameters of Graphs

Definition 1. Let G = (V, E) be an undirected graph. A tree decomposition
of G is a tuple (T, X), where T = (W, F ) is a tree, and X = {X1, . . . , X|W |}
with Xi ⊆ V such that: (1)

⋃|T |
s=1 Xs = V ; (2) For all {i, j} ∈ E, there exist
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t ∈ W , such that both i, j ∈ Xt; (3) For all i ∈ V , the subset {t : i ∈ Xt} of
W forms a subtree of T . The quantity maxt∈W |Xt| − 1 is called the width of
(T, X). The tree-width of G, denoted by T W(G), is the minimum width over
all tree decompositions of G. The path decomposition is defined similarly; T has
to be a path and the term path-width is used instead of tree-width.

Determining the optimal tree (path) decomposition is NP-hard while the prob-
lem is approximable within factor O(log n) (O(log2 n)) [6]. Tree-width is closed
under the operation of graph minors and wlog we may assume that the number
of nodes of the tree decomposition (T, X) of a graph G is linear, and that up to
logspace transformations the degree of T is at most 3. For a survey on tree-width
we cite [5].

The diameter of a formula is related to the bandwidth of graphs.

Definition 2. For a graph G = (V, E), let f : V → {1, 2, . . . , |V |} be an injective
map. The bandwidth of G, B(G) is defined as minf maxij∈E |f(i)−f(j)|. In the
minimum bandwidth problem we compute f witnessing B(G).

The bandwidth problem is NP-complete [22] and remains intractable even if the
input graph is a tree of maximum degree 3 [15]. The problem is polylogarithmic
approximable due to Feige [12]. See [7] for a not-so-recent survey.

2.3 Structural Parameters of Formulas

Definition 3. Let V be the set of variables of an ordered formula φπ. For x ∈ V ,
let f(x), l(x) be the index of the clause that x appears for the first and last time
respectively. The ordered diameter is D(φπ) = maxx∈V (l(x) − f(x)) and the
unordered diameter is Δ(ψ) = minπ D(ψπ).

In this work we associate a k-CNF formula φ with two graphs. The incidence
graph Gφ of φ is a bipartite graph. Gφ has a distinct vertex for each clause and
each variable. A variable-vertex ux is connected to clause-vertex uc whenever
the variable x appears in the clause c. The clause-graph Cφ of φ (intersection
graph) arises by associating each clause with a distinct vertex. An edge connects
vertices whose clauses share a variable. In [31] it is shown that the tree-width of
the incidence graph is always smaller than the corresponding width parameters
on other graphs appearing in the literature.

For a formula φ , we further define tree-width T W(φ), path-width PW(φ)
and bandwidth B(φ) of φ to be

T W(φ) = T W(Gφ), PW(φ) = PW(Gφ), B(φ) = B(Cφ)

2.4 Relations between T W(φ), PW(φ), B(φ) and Δ(φ)

Lemma 1. For any ordered k-CNF formula φπ, the following are true:
(i) B(φ) = Δ(φ), (ii) PW(φ) ≤ log n · T W(φ), (iii) PW(φ) = O(D(φπ)).
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Proof. (i) Follows directly from the definitions 2 and 3.
(ii) For every graph G on n vertices, PW(G) ≤ log n · T W(G).
(iii) Consider some k-CNF ordered formula φπ on n variables with D(φπ) =

d(n) and set r = �m/(d(n) + 1)�. We decompose Gφ to a path of width (k +
1) · d(n). Define the path P = v1, v2, . . . , vr. For every i, Xi, that vi is asso-
ciated with, consists of the following two types of vertices: clause-vertices vci

corresponding to clauses ci, for i = (i − 1) · (d(n) + 1) + 1 to i · (d(n) + 1);
variable-vertices vx, for all variables x that are involved in clauses with vertices
already in Xi. We claim that P is valid path decomposition of Gφ. Indeed, prop-
erties (1),(2) of definition 1 are trivially satisfied. As for the third one, consider
any variable x and the associated vertex ux of Gφ. By construction we only have
to consider variable-vertices.

Now suppose (for the shake of contradiction) that there exist indices i < s < j,
such that ux is in both Xi, Xj and ux �∈ Xs. Then, in φπ , x does not appear in
any of the d(t) + 1 clauses in Xs, and therefore D(φπ) > (j − i − 1) · (d(n) + 1).
Finally, since φ is k-CNF formula, for every i, |Xi| ≤ d(n) + k · d(n). 	


Lemma 1 does not preclude the possibility that Δ(φ), PW(φ) are related up
to (say) some constant factor. Combinatorially, things are the worst possible
regarding the diameter. We show that even when each variable appears a small
constant number of times the gap between tree-width (path-width) and diameter
is off by almost linear factor. For this we use theorem 1, p.204 from [29].

Theorem 1 (Smithline ’95). For the complete k-ary tree of height h, B(T ) =
�k(kh − 1)/(k − 1)(2h)�

Lemma 2. There exists a family formulas φ with n variables each one appearing
only 3 times, for which Δ(φ) = Ω(n/ log n), PW(φ) = O(log n) and T W(φ) = 1.

Proof. We determine a 3-CNF formula φ with positive literals, by defining its
incidence graph Gφ. We start with the rooted complete binary tree T of height
log n′, where log n′ is even (the root has level 0). Label all nodes of T in arbitrary
breadth-first-search manner starting from the root. At an even level, associate
vertex i with a new variable xi; at an odd level, associate vertex j with a new
clause cj . Define clause cj to be the conjunction of the parental-node x�j/2� and
the two children-nodes x2j , x2j+1. Set φ to be the conjunction of all clauses, and
n the number of variable-vertices in Gφ. Observe that T = Gφ and n = Θ(n′).

By definition T W(T ) = 1, and by Lemma 1, PW(T ) ≤ log n′. Next we argue
about the bandwidth of Cφ. It is easy to see that if we remove edges from Cφ that
connect clauses that appeared in T at the same level (i.e., edges that connect
clause-vertices sharing in T a common ancestor), the resulting graph consists
of two disconnected complete trees. Every vertex has 4 children, and height at
least � log n′−1

2 �. Theorem 1 then implies that B(Cφ) = Ω(n′/ log n′). 	


Despite Lemma 2, we capitalize on the fact that the notions of diameter and path-
width are the same up to some constant and up to a logspace transformation.
It is also essential for Corollary 1 (see below) that Theorem 2 is constructive.
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Theorem 2. For any k-CNF formula φ, there exists an ordered k-CNF formula
φπ

′ with Δ(φ′) ≤ D(φπ
′) = Θ(PW(φ)) such that φ ∈ SAT iff φπ

′ ∈ SAT.
Moreover, given the path decomposition of φ, φπ

′ can be computed in logarithmic
space with respect to the size of φ.

Proof. Consider the path decomposition X1, . . . , Xt of Cφ with |Xi| = d(n). We
identify the vertices in the block Xi by the corresponding clauses and variables.
We construct φπ

′ as the output of the following iterative procedure.
For every block Xi do the following: (copy-step) output all the clauses of Xi

in some order; (intercalate-step) for every variable x in Xi or in the clauses
of Xi, output the renaming of x, x ↔ x′; finally replace all appearances of x
in Xi+1, . . . Xt by x′. We call every clause introduced in the intercalate-step
intercalary. φπ

′ is the conjunction of the clauses ordered as the output suggests.
By construction φ is satisfiable iff φπ

′ is satisfiable.
It is clear that the previous procedure can be implemented in logarithmic

space: instead of renaming all subsequent occurrences of x, just count its previous
occurrences. In a reasonable renaming, the indices of the variables do not exceed
n + n + 2k · t · d(n).

Now, we calculate the ordered diameter of φ′
π. We distinguish between vari-

ables introduced in the copy-step and the intercalate-step. By the renamings, it
is immediate that for any variable x of a clause introduced at the copy-step, the
maximum distance between occurrences of x is at most (2k + 1) · d(n).

For variables introduced in the intercalate-step we rely on the definition of
path-width. Consider such a variable x introduced between blocks Xi, Xi+1.
Variable x is (i) either a renaming of a former variable, or (ii) it is brand new
variable that replaces y. Case (i) is easy to handle. For case (ii), the clause c
of X where y appeared, either appears in Xi+1 or not. If it does not appear,
then by the definition of path-width, c does not appear in any subsequent block.
Finally, if c appears in Xi+1 then it will be renamed again when we consider the
next block. In every case D(φπ

′) ≤ (2k + 1) · d(n). 	


Motivated by the previous observations, and for k-CNF formulas, we define

Definition 4 (Computational Problems). SAT(d(n)),Max-SAT(d(n))
and #SAT(d(n)) are the restrictions of SAT,Max-SAT and #SAT respec-
tively, where the instances φπ are ordered formulas and obey D(φπ) ≤ d(n).

2.5 NAuxPDAs: A Practical Model of Computation

A non-deterministic auxiliary pushdown automaton (NAuxPDA) is a general-
ization of a space-bounded Turing Machine (TM) extended by an unbounded
stack. Cook [8] showed that every NAuxPDA bounded to work in space s(n)
and arbitrary time can be simulated by a TM in time 2O(s(n)). Sudborough [30]
showed that LOGCFL (⊆ AC

1 ⊆ NC
2) is characterized by NAuxPDAs that

run simultaneously in logarithmic space and polynomial time. Using NAuxP-
DAs one can simulate a special form of non-deterministic recursion and from
there even a special form of divide and conquer. Non-deterministic Divide and
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Conquer (ND-DnC) [23] is a paradigm which simplifies the presentation of al-
gorithms, something that recently made possible to obtain complex polynomial
time algorithms whose translations into TMs are extremely complicated and un-
natural. The transformation of an NAuxPDA to a TM or to parallel algorithms
(e.g. circuits or PRAMs) is possible and explicit through strongly non-trivial
translation theorems, see Section 4, although the resulting TM can be concep-
tually complicated. Among others, application of these theorems shows that
ND-DnC algorithms that have simple and elegant descriptions can find practical
applications through their transformations. An example of such an application
is demonstrated in Section 4.

3 Solving SAT(d(n)), Max-SAT(d(n)), #SAT(d(n))

3.1 Algorithms for d(n) = Ω(log n)

This section is devoted to d(n) = Ω(log n). We show that SAT can be decided
within non-deterministic space O(d(n)), whereas for Max-SAT and #SAT

it suffices to use deterministic space O(d(n)2). Moreover, all three problems
can be solved in (deterministic) time 2O(d(n)). The time-bounded and space-
bounded algorithms for Max-SAT and #SAT are obtained independently. Un-
der the current knowledge in computational complexity we do not know how
FDSPACE(d2(n)) compares to FDTIME(2O(d(n))).

Theorem 3. SAT(d(n)) ∈ NSPACE(d(n)), Max-SAT(d(n)), #SAT(d(n)) ∈
FDSPACE(d(n)2); Max-SAT(d(n)),#SAT(d(n)) ∈ FDTIME(2O(d(n))).

The satisfiability problem SAT(d(n))
Solve-SAT (Algorithm 1) shows that SAT(d(n)) ∈ NSPACE(d(n)). We can
standardize the way the truth assignment is stored. Reserve one bit for the

Algorithm 1. Solve-SAT
The input is an ordered k-CNF formula φπ which D(φπ) = d(n).

– Initially, consider a window (ordered subformula) W of length d(n) containing the
first d(n) clauses of φπ. Guess values for all variables in W and if the guess does
not satisfy W then reject.

– Iteratively do the following.

– Slide the current position of the window W one clause to the right and free the
space of the variables of the first clause of W .

– Guess (and store in the freed space) truth values for the variables of the new
clause in the updated W . If the updated W is not satisfied or if the new values are
inconsistent with those stored in the memory then reject. Otherwise, if there are
more clauses in φπ to the right of W then iterate; else accept.
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variable of each occurrence of a literal in W repeating the value for variables
which appear more than once; i.e. in total we have k · d(n) space.

For the correctness it is easy to see that there is a computational branch which
accepts iff there exists a satisfying truth assignment for φπ . Details omitted from
proofs are given in the full version of the paper.

The maximization problem Max-SAT(d(n))
We define DAG-Longest-Path to be the optimization problem where given

a DAG (Directed Acyclic Graphs) G = (V, E) and w : E → N, the goal is to out-
put the (edge-weighted) length of a longest dipath. We reduce Max-SAT(d(n))
in deterministic space O(d(n)) to DAG-Longest-Path. This is a significant
improvement over the natural dynamic programming time-bounded algorithm.

Lemma 3. DAG-Longest-Path ∈ FDEPTH(log2 N). Furthermore, this
family of circuits has size polynomial in N . In particular, the problem is in P.

Here is a brief justification. Power the adjacency matrix using repeated squaring,
over the semiring N with operations (max, +) instead of (+, ·). This way we
compute all walks of length N in depth O(log2 N).

Solve-MaxSAT (Algorithm 2) makes use of a space-efficient routine. This is
the space simulation of the above longest path algorithm. It is well-known (see
e.g. [34]) that DEPTH(s(N)) ⊆ DSPACE(s(N)), s(N) ≥ log2 N . That is,
DAG-Longest-Path ∈ FDSPACE(log2 n), and furthermore the proof of the
inclusion gives us an explicit space-efficient algorithm.

Algorithm 2. Solve-MaxSAT
The input is an ordered k-CNF formula φπ with D(φπ) = d(n). First we show how
to reduce to DAG-Longest-Path working in space d(n) and then we compose in the
standard way two space efficient algorithms.

– The graph consists of blocks of vertices. Each block is associated with a window
(ordered subformula) W of length d(n)+1, where W starts from a distinct position
(clause) in the ordered φπ. The i-th block is associated with the window which
starts from the i-th clause of φπ. Each of the vertices of each block is associated
with a distinct, satisfying truth assignment for this window. We also introduce a
fresh starting vertex s and assume it is associated with an empty subformula.

– There is an edge from a vertex v in block i to every other vertex u in block j > i
whenever v, u are consistent. The weight of the edge (v, u) is the number of clauses
in the window associated with u, satisfied by u and not (already) by v. Let us call
the constructed graph as Hφπ .

– Solve DAG-Longest-Path for Hφπ .

The reduction works in space O(d(n)) since we can enumerate all pairs of
vertices in Hφπ in that space. Hence, Solve-MaxSAT requires deterministic space
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O
(
log2(nO(1)2O(d(n))) + d(n)

)
= O(d2(n)). The time-bounded algorithm is ob-

tained if instead we do matrix powering using repeated squaring (or dynamic
programming) to solve DAG-Longest-Path.

Correctness is transparent. Let us denote by R(u, v) the relation that u is
consistent with v, and u is in a smaller-indexed block than v. Then, we observe
that R is transitive and moreover R is represented by the edges in Hφπ . R can
be used to prove consistency of truth assignments. Any longest path contains s.
We finish by an easy induction on the index of blocks for paths starting from s.

The counting problem #SAT(d(n))
The algorithm for #SAT(d(n)) proceeds by a logspace reduction (Reduce-

#SAT) (Algorithm 3) to the problem of counting paths in a DAG.

Algorithm 3. Reduce-#SAT

The input is an ordered k-CNF formula φπ with D(φπ) = d(n).

– We construct a layered directed graph. Each layer (block) is associated with a
distinct position of a window (ordered subformula) W of length d(n); the i-th
layer is associated with the window which starts from the i-th clause of φπ. Each
of the vertices of each layer is associated with a distinct, satisfying truth assignment
for this window. We denote by Li the subset of vertices of the i-th layer.

– There is an edge from a vertex v in layer i to every other vertex u in layer i + 1
whenever the partial truth assignments of the two vertices are consistent.

– Add two fresh designated vertices s, t. Add an edge from s to every vertex in L1.
Let Lh be the last layer. Add an edge from each vertex v ∈ Lh to t. Let us denote
by Fφπ the constructed graph.

Lemma 4. The number of s-t dipaths in Fφπ equals the number of satisfying
truth assignments of φπ.

Proof. We define a mapping from the set of truth assignments of φπ to the set
of s-t paths in Fφπ . Let τ be a satisfying truth assignment for φπ . By definition
τ satisfies all windows. For each of the corresponding partial truth assignment
there exists a vertex in the corresponding layer. Since all of them extend to the
same τ they are in particular consistent and thus by construction there is a
directed path in Fφπ from a vertex in the first to a vertex in the last layer.

It is not hard to see why this mapping is a function (e.g. by considering the
first time that two paths split) and why it is injective. Similarly, we define an
inverse injective function. 	

From this point on there are two ways to count the number of s-t paths. One
is to reduce to an arithmetic circuit by mapping vertices in Fφπ to + gates and
then apply the results in [33]. The other way is to deal with the problem directly.
The later is even cleaner. The number of layers including s and t is 2 + h, where
h = m − d(n). We conclude the proof of the following by repeated squaring in
the semiring N with operations +, ·.



114 K. Georgiou and P.A. Papakonstantinou

Theorem 4. Let A ∈ N
|V (Fφπ )|×|V (Fφπ )| be the adjacency matrix of Fφπ . The

number of s-t paths in Fφπ equals the single non-zero entry of A1+h. Moreover
this can be computed by a polysize circuit of depth O(log2 N).

3.2 Strong, Constructive Extensions of the Equivalence of
Theorem 2

The equivalence of Theorem 2 extends to Max-SAT and #SAT. The details are
given in the full version of this paper. For #SAT we observe that in the reduction
of Theorem 2, φ and φ′ have the same number of satisfying assignments. For
Max-SAT the connection is less straightforward. We modify Theorem 2 and
the graph Hφπ in Solve-MaxSAT. In the proof of Theorem 2 we omit occurrences
of a clause in multiple blocks Xi’s. Furthermore, it is possible to mark on φ′

the beginning and the end of each copy-step using “dummy” clauses. Given the
transformed bounded diameter formula we construct Hφπ

′ by defining windows
according to the previously introduced dummy clauses. Also, we omit all windows
of intercalary clauses but we use their induced relations to connect the vertices.

3.3 Diameter O(log n): Parallel Algorithms and Low Complexity
Classes

When d(n) = O(log n) the corresponding problems are deeply buried inside P.
The proof of Lemma 5 follows the lines of the standard Cook-Levin reduction
modified with systematic rewritings to avoid diameter blow-up.

Lemma 5. SAT(log n) is NL-complete under many-to-one logspace reductions.

As a corollary of Theorem 3 and its proof (in particular Lemma 3 and Theorem 4)
we obtain,

Lemma 6. Max-SAT(log n), #SAT(log n) are in the function analog of NC
2.

Let us consider SAT,Max-SAT and #SAT for formulas of path-width O(log n).
Results of this section and of Section 3.2 derive the following corollary.

Corollary 1 (Bounded path-width). Consider k-CNF instances of path-
width O(log n) where the path decomposition is given. For these instances SAT

is complete for NL, and Max-SAT,#SAT are in the function analog of NC
2.

4 Improved Results for k-CNFs of Bounded Tree-Width

Since tree-width is at worst log n smaller than path-width, the statements of
Section 3 hold for tree-width when the value of the parameter is off by log n
factor. Here we improve on this corollary when it comes to SAT. To that end our
treatment in this section is independent to the results obtained for the diameter.
We obtain an AC

1 algorithm for log n tree-width. Furthermore, by applying
strongly non-trivial results from complexity theory, we provide simultaneous
space and time efficiency as asked in [1] (even for the weaker notion of the
tree-width of the primal graph).
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4.1 Dealing Directly with Tree-Width for SAT

Given a tree decomposition of formula of tree-width t(n) we design an algorithm
that in particular when t(n) = O(log n) shows SAT ∈ LOGCFL. For notational
succinctness, in this section only, n corresponds to the total number of variables
and clauses in a formula.

Algorithm 4. Solve-Treewidth-SAT
The input is a k-CNF formula φ and a tree decomposition (T, X) of width t(n) and of
degree at most 3 (see Section 2.2). Initially we make a call to Recurse-Treewidth-SAT[r],
where r is an arbitrary root of T . If the call returns then accept.

Recurse-Treewidth-SAT[root node v]

– Guess a truth assignment τ for the clauses and the variables corresponding to v.
If τ does not satisfy the clauses associated with v then reject.

– If v is a leaf then return τ . Else, let u, w be the children of v

– Set τu = Recurse-Treewidth-SAT[u] and τw = Recurse-Treewidth-SAT[w].

– If τ is not consistent with τu and τw then reject. Else, return τ .

Solve-Treewidth-SAT can be implemented on an NAuxPDA using space t(n)
and time nO(1) (wlog the number of nodes in the decomposition is linear to the
number of nodes in the graph). When the tree-width is t(n) then there are at
most t(n) clauses and variables whose truth values are checked at each level of
the recursion. Moreover, the algorithm visits each node twice.

The proof of completeness is easy and does not even rely on tree decomposition
properties. For the soundness we use the tree decomposition properties and a
little preparation is necessary.

Lemma 7. Let φ be a k-CNF and (T, X) a tree decomposition of Gφ. Construct
(T, X ′) by extending the association of each node u to be associated with all nodes
corresponding to variables that appear in the clauses associated with u. Then, X ′

witnesses a tree-width constant times bigger than X.

Proof. It is obvious that each set in X ′ is at most k times bigger than the
corresponding set in X . (T, X ′) is a tree decomposition: Axioms (1) and (2) are
easily satisfied; hence we check whether axiom (3) is satisfied too. For clause-
vertices everything is as in X . For a variable-vertex y let the subtree Ty = {t ∈
T : y ∈ Xt} and the set T ′

y = {t ∈ T : y ∈ X ′
t}. Let v ∈ T ′

y such that v �∈ Ty,
where y ∈ C for a clause C. By property (2) of the definition there exists a node
u ∈ Ty which is associated with C. Moreover, there exists a path Pu,v connecting
v and u s.t. C is associated with every vertex in Pu,v. By construction of X ′ the
vertex associated with y is also associated with every vertex in Pv,u. That is, in
X ′ the subtree Ty is extended to include v. 	
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We continue with the soundness direction. Fix an input φ where the algorithm
accepts. Fix an arbitrary accepting computational branch. We define the binary
relation Q to be the (variable, truth value) pairs that the algorithm assigned to
variables in this computational branch. We need to show that Q is a function
and that it is a satisfying truth assignment.

Consider any two nodes u, v of the tree decomposition where at v we have
(x, T rue) ∈ Q and at u we have (x, False) ∈ Q. By Proposition 7 there exists
{i, j} ∈ T in the u-v path, such that x ∈ Xi and x ∈ Xj which contradicts the
consistency check of the algorithm. The proof of correctness finishes by defining
and applying transitive relation R referring to consistent extensions of partial
truth assignments.

When t(n) = O(log n) algorithm Solve-Treewidth-SAT runs in logspace and
polytime which establishes the following strong theorem.

Theorem 5. k-SAT with tree decompositions of width O(log n) is in LOGCFL.

4.2 Alekhnovich and Razborov’s Question

Given a tree decomposition of width t(n), the refutation algorithm of [1] runs
in time and in space O(nO(1)2O(t(n))). By applying on Solve-Treewidth-SAT the
deterministic time simulation of [8] (Theorem 1, p.7) we obtain an algorithm
that runs in time 2O(t(n)) and space 2O(t(n)), t(n) = Ω(log n), which matches the
time-space bounds in [1] (note that when t(n) = O(log n) we have the very strong
result of Theorem 5). In fact, when t(n) = ω(log n) we improve on [1] as well.
To that end we successively apply non-trivial results from [26] and simple well-
known results from structural complexity. It is worth noting that each theorem
we apply is constructive and thus we successively transform Solve-Treewidth-SAT.
The following theorem is a corollary of three successive transformations in [26]
Theorem 3, p.375 and Theorem 5(2),5(3) p.379.

Theorem 6 (Ruzzo ’81). NAuxPDAs working in space s(n) and time z(n) can
be simulated by a family of circuits of size 2O(s(n)) and depth O(s(n) log z(n)).
Furthermore, this transformation between algorithms is given explicitly.

Theorem 6 gives a family of circuits of size 2O(t(n)) and depth O(t(n) log n)
deciding SAT instances of tree-width t(n). Apart from these parallel algorithms
we have the following as an immediate consequence of the depth bound.

Theorem 7. SAT instances consisting of a k-CNF formulas together with tree
decompositions of width t(n) can be decided in space O(t(n) log n) and thus si-
multaneously in time 2O(t(n) log n). Furthermore, if the decomposition is not given
we decide in time 2O(t(n) log n) and space nO(1).

5 Open Questions

Our work raises many questions which are left open. We consider as most fun-
damental the following four. (1) Study interrelations of SAT, Max-SAT and
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#SAT for different bounds of the diameter; e.g. can we reduce #SAT(d(n))
to SAT(d2(n))? (2) Investigate structural complexity implications by assuming
SAT instances of bounded diameter to be either in P or NP-complete. (3) Im-
prove the result of Section 4.2 by reducing the exponent in the running time. (4)
Finally, we are optimistic that our research will find empirical applications.
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