

Lecture Notes in Computer Science 4996
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Hans Kleine Büning Xishun Zhao (Eds.)

Theory and Applications
of Satisfiability Testing –
SAT 2008

11th International Conference, SAT 2008
Guangzhou, China, May 12-15, 2008
Proceedings

13

Volume Editors

Hans Kleine Büning
University of Paderborn
Department of Computer Science
33095 Paderborn, Germany
E-mail: kbcsl@upb.de

Xishun Zhao
Sun Yat-sen University
Institute of Logic and Cognition
510275 Guangzhou, P.R. China
E-mail: hsszxs@mail.sysu.edu.cn

Library of Congress Control Number: 2008925418

CR Subject Classification (1998): F.4.1, I.2.3, I.2.8, I.2, F.2.2, G.1.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-79718-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79718-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12265787 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 11th International Conference
on Theory and Applications of Satisfiability Testing (SAT 2008).

The series of International Conferences on Theory and Applications of Sat-
isfiability Testing (SAT) has evolved from a first workshop on SAT in 1996 to
an annual international conference which is a platform for researchers studying
various aspects of the propositional satisfiability problem and its applications.
In the past, the SAT conference venue alternated between Europe and North
America. For the first time, the conference venue was in Asia, more precisely
at the Zhudao Guest House, near Sun Yat-Sen University in Guangzhou, P.R.
China.

Many hard combinatorial problems can be encoded into SAT. Therefore im-
provements on heuristics on the practical side, as well as theoretical insights into
SAT apply to a large range of real-world problems. More specifically, many im-
portant practical verification problems can be rephrased as SAT problems. This
applies to verification problems in hardware and software. Thus SAT is becom-
ing one of the most important core technologies to verify secure and dependable
systems. The topics of the conference span practical and theoretical research on
SAT and its applications and include but are not limited to proof systems, proof
complexity, search algorithms, heuristics, analysis of algorithms, hard instances,
randomized formulae, problem encodings, industrial applications, solvers, sim-
plifiers, tools, case studies, and empirical results. SAT is interpreted in a rather
broad sense: besides propositional satisfiability, it includes, for example, the do-
main of quantified Boolean formulae (QBF) and satisfiability modulo theories
(SMT).

The Program Committee selected 25 papers out of 70 submissions. Submis-
sions were rigorously reviewed by three Program Committee members. The com-
mittee decided to accept 17 regular papers with a page limit of 14 pages and 8
short papers with a page limit of 6 pages.

The conference program included two invited presentations. The first, by
Alasdair Urquhart, addressed the exponential separation between regular and
unrestricted resolution. The second, by Kazuo Iwama, dealt with recent devel-
opments on the CNF satisfiability problem: deterministic algorithms for k-SAT,
inapproximability of MAX-3SAT and related problems, and proof complexity of
unsatisfiable formulas.

An integral part of the SAT conferences are the competitions and evalua-
tions. SAT 2008 featured a SAT Race in the spirit of the SAT Competitions, a
competitive QBF Evaluation and a Max-SAT Evaluation. The SAT Race was
organized by Carsten Sinz (Chair), Nina Amla, Toni Jussila, Daniel Le Berre,
Panagiotis Manolios, and Lintao Zhang. For the first time there were special
tracks for parallel SAT solvers and structural SAT solvers. The QBF Evaluation

VI Preface

was organized by Massimo Narizzano, Luca Pulina, and Armando Tacchella.
Participants of this evaluation could contribute by submitting implementations
of QBF solvers as well as submitting hard instances of QBF formulas. The Max-
SAT Evaluation was organized by Josep Argelich, Chu Min Li, Felip Manyà, and
Jordi Planes. The evaluation was divided in four categories: Max-SAT, Weigthed
Max-SAT, Partial Max-SAT, and Weighted Partial Max-SAT.

The organizers of this year’s conference are deeply indebted to the large num-
ber of people who contributed to its preparation: the local organizers Shier Ju
and Minghui Xiong in Guangzhou; Uwe Bubeck and Theo Lettmann in Pader-
born; the organizers of the affiliated events as mentionend above.

We thank the authors for their contributions and we thank the Program
Committee and the additional reviewers for their careful and thorough work.
Without their efforts, it would not have been possible for us to put together
such an excellent conference program. In particular, we are grateful to Andrei
Voronkov for his EasyChair system. EasyChair is a very helpful tool for the
organization of paper submissions, the reviewing process, Program Committee
discussions, and assembly of the proceedings.

Financial and organizational support was generously provided by the
National Natural Science Foundation of China, the Sun Yat-Sen University
(Guangzhou, P.R. China), especially the Institute of Logic and Cognition, and
the University of Paderborn (Paderborn, Germany), especially the Department
of Computer Science.

Finally, we would like to thank the sponsors for their generous support of the
SAT 2008 conference: Hexin Technology (Guangzhou), Intel Design Technolo-
gies and Solutions (Haifa), K.C. Wong Education Foundation (Hong Kong),
Light Engineering (Guangzhou), Microsoft Research (Mountain View), NEC
Labs America (Princeton), and Potevio (Beijing).

May 2008 Hans Kleine Büning
Xishun Zhao

Organization

Conference Chairs

Hans Kleine Büning
Xishun Zhao

Local Chairs

Shier Ju
Minghui Xiong
Lin Xu
Uwe Bubeck
Theo Lettmann

Technical Program Committee

Fahiem Bacchus
Armin Biere
Nadia Creignou
Adnan Darwiche
Leonardo de Moura
Decheng Ding
John Franco
Ian Gent
Enrico Giunchiglia
Aarti Gupta
Ziyad Hanna
Holger Hoos

Henry Kautz
Oliver Kullmann
Daniel Le Berre
Chu-Min Li
Ines Lynce
Panagiotis Manolios
Joao Marques-Silva
David Mitchell
Stefan Porschen
Steve Prestwich
Karem Sakallah
Uwe Schöning

Roberto Sebastiani
Bart Selman
Laurent Simon
Ewald Speckenmeyer
Ofer Strichman
Stefan Szeider
Allen Van Gelder
Hans van Maaren
Toby Walsh
Jian Zhang
Lintao Zhang

External Reviewers

A. Anbulagan
Ralph Becket
Roderick Bloem
Sebastian Brand
Roberto Bruttomesso
Uwe Bubeck
Benjamin Chambers
Baiqiang Chen
Sylvain Darras
Hervé Daudé

Jed Davis
Gilles Dequen
Laure Devendeville
Jianfeng Du
Anders Franzén
Oded Fuhrmann
Alberto Griggio
Christine Hang
Warwick Harvey
Miki Hermann

Frank Hutter
Xiangxue Jia
George Katsirelos
Mark Liffiton
Sheng Liu
Feifei Ma
Michael Maher
Vasco Manquinho
Paolo Marin
Hannes Moser

VIII Organization

Moritz Müller
Massimo Narizzano
Peter Nightingale
Luca Pulina
Olivier Roussel
Bert Randerath
Igor Razgon
Emanuele Di Rosa

Vadim Ryvchin
Marko Samer
Tatjana Schmidt
Ilka Schnoor
Martina Seidl
Ohad Shacham
Yuping Shen
Dave Tompkins

Stefano Tonetta
Aaron Turon
Michele Vescovi
Wanxia Wei
Lin Xu
Christian Bessière

Sponsoring Institutions

National Natural Science Foundation of China
Sun Yat-Sen University of Guangzhou
Institute of Logic and Cognition, Sun Yat-Sen University
University of Paderborn
Department of Computer Science, University of Paderborn

Hexin Technology (Guangzhou)
Intel Design Technologies and Solutions (Haifa)
K. C. Wong Education Foundation (Hongkong)
Light Engineering (Guangzhou)
Microsoft Research (Mountain View)
NEC Labs America (Princeton)
Potevio (Beijing)

Table of Contents

Modelling Max-CSP as Partial Max-SAT . 1
Josep Argelich, Alba Cabiscol, Inês Lynce, and Felip Manyà

A Preprocessor for Max-SAT Solvers . 15
Josep Argelich, Chu Min Li, and Felip Manyà

A Generalized Framework for Conflict Analysis . 21
G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and L. Sais

Adaptive Restart Strategies for Conflict Driven SAT Solvers 28
Armin Biere

New Results on the Phase Transition for Random Quantified Boolean
Formulas . 34

Nadia Creignou, Hervé Daudé, Uwe Egly, and Raphaël Rossignol

Designing an Efficient Hardware Implication Accelerator for SAT
Solving . 48

John D. Davis, Zhangxi Tan, Fang Yu, and Lintao Zhang

Attacking Bivium Using SAT Solvers . 63
Tobias Eibach, Enrico Pilz, and Gunnar Völkel

SAT Modulo the Theory of Linear Arithmetic: Exact, Inexact and
Commercial Solvers . 77

Germain Faure, Robert Nieuwenhuis, Albert Oliveras, and
Enric Rodŕıguez-Carbonell

Random Instances of W[2]-Complete Problems: Thresholds,
Complexity, and Algorithms . 91

Yong Gao

Complexity and Algorithms for Well-Structured k-SAT Instances 105
Konstantinos Georgiou and Periklis A. Papakonstantinou

A Decision-Making Procedure for Resolution-Based SAT-Solvers 119
Eugene Goldberg

Online Estimation of SAT Solving Runtime . 133
Shai Haim and Toby Walsh

A Max-SAT Inference-Based Pre-processing for Max-Clique 139
Federico Heras and Javier Larrosa

X Table of Contents

SAT, UNSAT and Coloring (Invited Talk) . 153
Kazuo Iwama

Computation of Renameable Horn Backdoors . 154
Stephan Kottler, Michael Kaufmann, and Carsten Sinz

A New Bound for an NP-Hard Subclass of 3-SAT Using Backdoors 161
Stephan Kottler, Michael Kaufmann, and Carsten Sinz

Improvements to Hybrid Incremental SAT Algorithms 168
Florian Letombe and Joao Marques-Silva

Searching for Autarkies to Trim Unsatisfiable Clause Sets 182
Mark Liffiton and Karem Sakallah

Nenofex: Expanding NNF for QBF Solving . 196
Florian Lonsing and Armin Biere

SAT(ID): Satisfiability of Propositional Logic Extended with Inductive
Definitions . 211

Maarten Mariën, Johan Wittocx, Marc Denecker, and
Maurice Bruynooghe

Towards More Effective Unsatisfiability-Based Maximum Satisfiability
Algorithms . 225

Joao Marques-Silva and Vasco Manquinho

A CNF Class Generalizing Exact Linear Formulas . 231
Stefan Porschen and Ewald Speckenmeyer

How Many Conflicts Does It Need to Be Unsatisfiable? 246
Dominik Scheder and Philipp Zumstein

Speeding-Up Non-clausal Local Search for Propositional Satisfiability
with Clause Learning . 257

Zbigniew Stachniak and Anton Belov

Local Restarts . 271
Vadim Ryvchin and Ofer Strichman

Regular and General Resolution: An Improved Separation
(Invited Talk) . 277

Alasdair Urquhart

Finding Guaranteed MUSes Fast . 291
Hans van Maaren and Siert Wieringa

Author Index . 305

Modelling Max-CSP as Partial Max-SAT�

Josep Argelich1, Alba Cabiscol1, Inês Lynce2, and Felip Manyà1

1 Computer Science Department
Universitat de Lleida

Jaume II, 69, E-25001 Lleida, Spain
2 IST/INESC-ID

Technical University of Lisbon
Rua Alves Redol 9, 1000-029 Lisboa, Portugal

Abstract. We define a number of original encodings that map Max-
CSP instances into partial Max-SAT instances. Our encodings rely on the
well-known direct and support encodings from CSP into SAT. Then, we
report on an experimental investigation that was conducted to compare
the performance profile of our encodings on random binary Max-CSP
instances. Moreover, we define a new variant of the support encoding
from CSP into SAT which produces fewer clauses than the standard
support encoding.

1 Introduction

In the last years, there has been an increasing interest in the Boolean Max-SAT
problem. Taking into account the success of SAT on solving NP-complete deci-
sion problems, the SAT community investigates how to transfer the technology
created for SAT to Max-SAT with the aim of developing fast Max-SAT solvers,
which can be used to solve NP-hard optimization problems via their reduction
to Max-SAT.

The most recent and relevant results for Max-SAT can be summarized
as follows: (i) there exist solvers like Clone [21], Lazy [1], MaxSatz [18],
MiniMaxSat [12], ms4 [19], SR(w) [22] and Max-DPLL [15] which solve many
instances that are beyond the reach of the solvers existing just five years ago;
(ii) resolution refinements, which preserve the number of unsatisfied clauses, have
been incorporated into Max-SAT solvers [14,15,18], as well as good quality under-
estimations of the lower bound [16,17,21,22], (iii) a resolution-style calculus for
Max-SAT has been proven to be complete [5,6], (iv) formalisms like Partial Max-
SAT have been investigated for solving problems with soft constraints [2,8,12,3],
and (v) two evaluations of Max-SAT solvers have been performed for the first
time as a co-located event of the International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT-2006 and SAT-2007).

� This research was funded by MEC research projects TIN2006-15662-C02-02,
TIN2007-68005-C04-04 and Acción Integrada HP2005-0147, and FCT research
projects SATPot (POSC/EIA/61852/2004) and SHIPs (PTDC/EIA/64164/2006).

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 1–14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 J. Argelich et al.

In this paper, we define a number of original encodings that map Max-CSP
instances into partial Max-SAT instances. Our encodings rely on the well-known
direct and support encodings from CSP into SAT. Then, we report on an exper-
imental investigation that was conducted to compare the performance profile of
our encodings on random binary Max-CSP instances. Interestingly, we also de-
fine a new variant of the support encoding from CSP into SAT which produces
fewer clauses than the standard support encoding. Our new encoding, called
minimal support encoding, eliminates redundant clauses.

The objective of our research is to show that different Max-SAT encodings for a
same optimization problem may produce substantial differences on performance,
as well as to identify features of the encodings that lead to better performance
profiles. To the best of our knowledge, this is the first paper that addresses the
question of how to encode Max-CSP into Max-SAT, and analyzes the impact of
modelling on the performance of Max-SAT solvers.

The structure of the paper is as follows. Section 2 contains preliminary defin-
itions about Max-SAT and Max-CSP. Section 3 surveys the support and direct
encodings from CSP into SAT, and defines a new encoding that we call minimal
support encoding. Section 4 defines a number of original encodings from Max-
CSP into partial Max-SAT. Section 5 reports and analyses the experimental
investigation. Section 6 presents the conclusions and future research directions.

2 Preliminaries

2.1 Max-SAT Definitions

In propositional logic a variable xi may take values 0 (for false) or 1 (for true).
A literal li is a variable xi or its negation x̄i. A clause is a disjunction of literals,
and a CNF formula is a multiset of clauses.

An assignment of truth values to the propositional variables satisfies a literal
xi if xi takes the value 1 and satisfies a literal x̄i if xi takes the value 0, satisfies a
clause if it satisfies at least one literal of the clause, and satisfies a CNF formula
if it satisfies all the clauses of the formula. An empty clause, denoted by �,
contains no literals and cannot be satisfied.

The Max-SAT problem for a CNF formula φ is the problem of finding an
assignment of values to propositional variables that maximizes the number of
satisfied clauses. In this sequel we often use the term Max-SAT meaning Min-
UNSAT. This is because, with respect to exact computations, finding an assign-
ment that minimizes the number of unsatisfied clauses is equivalent to finding
an assignment that maximizes the number of satisfied clauses.

We also consider the extension of Max-SAT known as Partial Max-SAT be-
cause it is more well-suited for representing and solving NP-hard problems. A
Partial Max-SAT instance is a CNF formula in which some clauses are relax-
able or soft and the rest are non-relaxable or hard. Solving a Partial Max-SAT
instance amounts to finding an assignment that satisfies all the hard clauses
and the maximum number of soft clauses. Hard clauses are represented between
square brackets, and soft clauses are represented between round brackets.

Modelling Max-CSP as Partial Max-SAT 3

2.2 Max-CSP Definitions

Definition 1. A Constraint Satisfaction Problem (CSP) instance is defined
as a triple 〈X , D, C〉, where X = {X1, . . . , Xn} is a set of variables, D =
{d(X1), . . . , d(Xn)} is a set of finite domains containing the values the vari-
ables may take, and C = {C1, . . . , Cm} is a set of constraints. Each con-
straint Ci = 〈Si, Ri〉 is defined as a relation Ri over a subset of variables
Si = {Xi1 , . . . , Xik

}, called the constraint scope. The relation Ri may be repre-
sented extensionally as a subset of the Cartesian product d(Xi1) × · · · × d(Xik

).

Definition 2. An assignment v for a CSP instance 〈X , D, C〉 is a mapping that
assigns to every variable Xi ∈ X an element v(Xi) ∈ d(Xi). An assignment v
satisfies a constraint 〈{Xi1 , . . . , Xik

}, Ri〉 ∈ C iff 〈v(Xi1), . . . , v(Xik
)〉 ∈ Ri.

Definition 3. The Constraint Satisfaction Problem (CSP) for a CSP instance
P consists in deciding whether there exists an assignment that satisfies P .

In the sequel we assume that all CSPs are unary and binary; i.e., the scope of
all the constraints has cardinality at most two.

Definition 4. A CSP is node consistent, if for every variable Xi, every value
of the domain of Xi is allowed for the unary constraints on Xi. A CSP is arc
consistent, if for every constraint on two variables Xi and Yj, for all a ∈ d(Xi),
there exists b ∈ d(Yj), such that (a, b) is in the constraint.

Definition 5. The Max-CSP problem for a CSP instance 〈X , D, C〉 is the prob-
lem of finding an assignment that minimizes (maximizes) the number of violated
(satisfied) constraints.

3 Encoding CSP into SAT

Mappings of binary CSPs into SAT is an area of research that has been inves-
tigated by several authors [4,9,10,11,13,23]. They have proposed a number of
encodings having different performance profiles and achieving different degrees
of local propagation on SAT solvers. Among them, the most well-known are the
direct encoding and the support encoding. In the rest of this section, we first
define the direct encoding and the support encoding, and then define a new
encoding from CSP into SAT called minimal support encoding.

3.1 Direct Encoding and Support Encoding

In the direct encoding, we associate a Boolean variable xij with each value j
that can be assigned to the CSP variable Xi. Assuming that Xi has a domain of
size m, the direct encoding contains clauses that ensure that each CSP variable
Xi is given a value: for each i, xi1 ∨ · · · ∨ xim (called at-least-one clauses), and
contains clauses that rule out any binary nogoods. For example, if X1 = 2 and
X3 = 1 is not allowed, then the clause x12 ∨x31 (called conflict clause) is added.

4 J. Argelich et al.

We consider the version of the direct encoding that adds clauses that ensure
that each CSP variable Xi takes no more than one value: for each i, j, k with
j < k, xij ∨xik (called at-most-one clauses). These clauses are redundant, but are
considered in the literature in order to maintain a one-to-one mapping between
CSP models and SAT models.

In the support encoding, the idea is to encode into clauses the support for a
value instead of encoding conflicts. The support for a value j of a CSP variable
Xi across a constraint is the set of values of the other variable in the constraint
which allow Xi = j. If v1, v2, . . . , vk are the supporting values of variable Xl for
Xi = j, we add the clause xij ∨xlv1 ∨xlv2 ∨· · ·∨xlvk

(called support clause). There
is one support clause for each pair of variables Xi, Xl involved in a constraint,
and for each value in the domain of Xi. Unlike conflict clauses, a clause in each
direction is used in the literature, one for the pair Xi, Xl and one for Xl, Xi.
The support clauses on their own do not provide a correct encoding of CSPs
into SAT. To complete an encoding using support clauses we need to add the
at-least-one and at-most-one clauses for each CSP variable to ensure that each
CSP variable takes exactly one value of its domain.

Example 1. The direct encoding of the CSP 〈X , D, C〉 = 〈{X, Y }, {d(X) =
{1, 2, 3}, d(Y) = {1, 2, 3}}, {X ≤ Y }〉 contains the following clauses:

at-least-one x1 ∨ x2 ∨ x3 y1 ∨ y2 ∨ y3
at-most-one x1 ∨ x2 x1 ∨ x3 x2 ∨ x3

y1 ∨ y2 y1 ∨ y3 y2 ∨ y3
conflict x2 ∨ y1 x3 ∨ y1 x3 ∨ y2

and the support encoding for that CSP contains the at-least-one clauses, the
at-most-one clauses, and the following support clauses:

support x2 ∨ y2 ∨ y3 y1 ∨ x1
x3 ∨ y3 y2 ∨ x1 ∨ x2

The support clause for x1 is missing because it is subsumed by y1 ∨ y2 ∨ y3, and
the support clause for y3 is missing because it is subsumed by x1 ∨ x2 ∨ x3.

3.2 Minimal Support Encoding

Our first contribution in this paper is to give a new version of the support
encoding, which we call minimal support encoding. Our definition follows from
the observation that the support encoding contains redundant clauses. More
precisely, given a binary constraint Ck with scope {X, Y }, it is enough to add
the support clauses either for the values of X or for the values of Y ; it is not
necessary to add a clause in each direction. Despite of the number of papers
dealing with the support encodings, this fact has gone unnoticed so far.

Definition 6. The minimal support encoding is like the support encoding except
for the fact that, for every constraint Ck with scope {X, Y }, we only add either
the support clauses for all the domain values of the CSP variable X or the support
clauses for all the domain values of the CSP variable Y .

Modelling Max-CSP as Partial Max-SAT 5

Example 2. A minimal support encoding for the CSP instance from Example 1
contains the following clauses:

at-least-one x1 ∨ x2 ∨ x3 y1 ∨ y2 ∨ y3
at-most-one x1 ∨ x2 x1 ∨ x3 x2 ∨ x3

y1 ∨ y2 y1 ∨ y3 y2 ∨ y3
support x2 ∨ y2 ∨ y3 x3 ∨ y3

Proposition 1. The minimal support encoding is correct.

Proof: We assume, without loss of generality, that we add the support clauses
for all the domain values of the CSP variable X for every constraint Ck with
scope {X, Y }. Given a CSP assignment, we construct its corresponding Boolean
assignment by setting the variable xi to true if the CSP assignment assigns
the value i to X ; otherwise, we set the variable xi to false. Given a Boolean
assignment that satisfies the minimal support encoding of a CSP, we construct its
corresponding CSP assignment by assigning to the CSP variable X the value i if
xi is true. Note that there is exactly one xi for each CSP variable X which is true
because the minimal support encoding contains the at-least-one and at-most-one
clauses. So, it is a valid CSP assignment.

We prove first that if a CSP assignment satisfies all the constraints of a CSP
instance, then its corresponding Boolean assignment satisfies its minimal encod-
ing. Since a CSP assignment assigns exactly one value to each CSP variable, the
Boolean assignment satisfies the at-least-one and at-most-one clauses. For every
constraint Ck with scope {X, Y }, the CSP assignment assigns a value i to X
and a value j to Y . Since (X = i, Y = j) is an allowed combination, among the
clauses encoding that constraint, there is a clause of the form xi ∨yj ∨· · · which
is satisfied by the Boolean encoding because yj is true. The remaining clauses are
also satisfied by the Boolean assignment because they are of the form xl ∨ · · · ,
where l �= i, and the Boolean assignment assigns the value false to all variables
xl with l �= i.

We prove now that if a Boolean assignment satisfies the minimal support
encoding of a CSP instance P , then its corresponding CSP assignment satisfies
P . Assume that the CSP assignment does not satisfy P . Therefore, there exists
a constraint Ck of P with scope {X, Y } which is violated because the CSP
assignment assigns a value i to X and a value j to Y which corresponds to a
forbidden combination. In this case, there is exactly one support clause of the
form xi ∨ yj1 ∨ · · · ∨ yjk

among the support clauses encoding Ck which is not
satisfied by the Boolean assignment because xi is true and yj1 �= yj, . . . , yjk

�= yj .
The rest of support clauses encoding Ck are satisfied by the Boolean assignment
because it assigns the value false to all variables xl with l �= i.

Unlike the support encoding [11,13], the minimal support encoding does not
maintain arc consistency through unit propagation. Recall that the direct en-
coding does not maintain arc consistency too.

Proposition 2. The minimal support encoding does not maintain arc consis-
tency through unit propagation.

6 J. Argelich et al.

Proof: We give a counterexample to prove the proposition. Given the CSP
instance 〈X , D, C〉, where X = {X, Y }, d(X) = d(Y) = {1, 2, 3}, C = {CXY } =
{{(1, 1), (2, 2), (3, 3)}} with the following minimal support encoding:

at-least-one x1 ∨ x2 ∨ x3 y1 ∨ y2 ∨ y3
at-most-one x1 ∨ x2 x1 ∨ x3 x2 ∨ x3

y1 ∨ y2 y1 ∨ y3 y2 ∨ y3
support x1 ∨ y1 x2 ∨ y2 x3 ∨ y3,

if x1 is set to false, then y1 is not derived by unit propagation, and the domain of
Y is not arc consistent. Observe that if the support clauses are y1∨x1, y2∨x2, y3∨
x3, then y1 is derived by unit propagation, and the domain of Y becomes arc
consistent. However, if y1 is set to false, then arc consistency is not maintained
in the last case.

4 Encoding Max-CSP into Partial Max-SAT

4.1 Direct Encoding for Partial Max-SAT

Given a CSP instance P , our goal is to define a version of the direct encoding
that produces a partial Max-SAT instance φ such that the minimum number of
constraints of P that are violated by a CSP assignment is exactly the same as
the minimum number of clauses of φ that are falsified by a Boolean assignment.

Definition 7. The direct encoding of a Max-CSP instance 〈X , D, C〉 is the
Partial Max-SAT instance that contains as hard clauses the corresponding
at-least-one and at-most-one clauses for every CSP variable in X , and contains
a soft clause xi ∨ yj for every nogood (X = i, Y = j) of every constraint of C
with scope {X, Y }.

Example 3. The Partial Max-SAT direct encoding for the Max-CSP problem of
the CSP instance from Example 1 is as follows:

at-least-one [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]
at-most-one [x1 ∨ x2] [x1 ∨ x3] [x2 ∨ x3]

[y1 ∨ y2] [y1 ∨ y3] [y2 ∨ y3]
conflict (x2 ∨ y1) (x3 ∨ y1) (x3 ∨ y2)

Proposition 3. Solving a Max-CSP instance is equivalent to solving the Partial
Max-SAT problem of its direct encoding.

Proof: The hard clauses ensure that exactly one of the Boolean variables that
encode a CSP variable is true and the rest are false in a feasible assignment.
Therefore, we have that there is a one-to-one mapping between the set of CSP
assignments and the set of feasible assignments of the Partial Max-SAT instance
and, moreover, at most one of the conflict clauses that encode a certain con-
straint can be falsified by a feasible assignment. If the CSP assignment satisfies

Modelling Max-CSP as Partial Max-SAT 7

a constraint, then the corresponding Boolean assignment also satisfies the con-
flict clauses that encode that constraint because there is no clause forbidding
allowed values. If the CSP assignment violates a constraint, then the corre-
sponding Boolean assignment does not satisfy the conflict clause that encodes
the forbidden values of the two variables involved in the constraint, and satisfies
the remaining clauses.

There are other options for defining the direct encoding which amount to intro-
ducing auxiliary variables. For example, you can add all the clauses representing
nogoods as hard clauses by adding an auxiliary literal ci to every clause encod-
ing a nogood of every constraint Ci ∈ C, and adding the unit clause ci as a
soft clause. Nevertheless, we do not consider this encoding because we realized
that its performance profile is worse than the performance profile of the direct
encoding (at least for the benchmarks considered in our empirical evaluation).

4.2 Support Encoding for Partial Max-SAT

The support encoding for Partial Max-SAT may be defined by adapting the
minimal support encoding from CSP into SAT:

Definition 8. The minimal support encoding of a Max-CSP instance 〈X , D, C〉
is the Partial Max-SAT instance that contains as hard clauses the corresponding
at-least-one and at-most-one clauses for every CSP variable in X , and contains
as soft clauses the support clauses of the minimal support encoding from CSP
into SAT.

Example 4. A minimal Partial Max-SAT support encoding for the Max-CSP
problem of the CSP instance from Example 1 contains the following clauses:

at-least-one [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]
at-most-one [x1 ∨ x2] [x1 ∨ x3] [x2 ∨ x3]

[y1 ∨ y2] [y1 ∨ y3] [y2 ∨ y3]
support (x2 ∨ y2 ∨ y3) (x3 ∨ y3)

Proposition 4. Solving a Max-CSP instance is equivalent to solving the Partial
Max-SAT problem of its minimal support encoding.

Proof: Proposition 1 proves that there is one unsatisfied clause for every vi-
olated constraint. Since the minimal support encoding is correct, and the hard
clauses ensure a one-to-one mapping between Max-CSP and feasible Partial Max-
SAT assignments, the optimal solutions of Max-CSP are exactly the same as the
optimal solutions of Partial Max-SAT.

We now define how to adapt to Partial Max-SAT the support encoding from
CSP into SAT.

Definition 9. The support encoding of a Max-CSP instance 〈X , D, C〉 is the
Partial Max-SAT instance that contains as hard clauses the corresponding

8 J. Argelich et al.

at-least-one and at-most-one clauses for every CSP variable in X , and con-
tains, for every constraint Ck ∈ C with scope {X, Y }, a soft clause of the form
SX=j ∨ ck for every support clause SX=j encoding the support for the value j of
the CSP variable X, where ck is an auxiliary variable , and contains a soft clause
of the form SY =m ∨ ck for every support clause SY =m encoding the support for
the value m of the CSP variable Y .

Observe that we introduce an auxiliary variable for every constraint. This is
due to the fact that there are two unsatisfied soft clauses for every violated
constraint of the Max-CSP instance if we do not introduce auxiliary variables.
It is particularly important to have one unsatisfied clause for every violated
constraints when mapping weighted Max-CSP instances into weighted Max-SAT
instances.1 In this case, all the clauses encoding a certain constraint have as
weight the weight associated to that constraint. When a constraint is violated
with weight w, this guarantees that there is exactly one unsatisfied clause with
weight w.

Example 5. The Partial Max-SAT support encoding for the Max-CSP problem
of the CSP instance from Example 1 is as follows:

at-least-one [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]
at-most-one [x1 ∨ x2] [x1 ∨ x3] [x2 ∨ x3]

[y1 ∨ y2] [y1 ∨ y3] [y2 ∨ y3]
support (x2 ∨ y2 ∨ y3 ∨ c1) (y1 ∨ x1 ∨ c1)

(x3 ∨ y3 ∨ c1) (y2 ∨ x1 ∨ x2 ∨ c1)

Proposition 5. Solving a Max-CSP instance is equivalent to solving the Partial
Max-SAT problem of its support encoding.

Proof: By introducing auxiliary variables we ensure that the optimal solutions
of Max-CSP are exactly the same as the optimal solutions of Partial Max-SAT.
The auxiliary variables allow to violate exactly one clause for every violated
constraint.

In the following proposition we assume that Partial Max-SAT solvers incorporate
the rule that replaces any two complementary unit clauses with an empty clause.
Actually, most of the solvers we know implement such a rule.

Proposition 6. When solving a Max-CSP instance with the support encoding
on a Partial Max-SAT solver, it is not necessary to branch on the auxiliary
variables.

Proof: For every violated constraint Ck with scope {X, Y }, there is exactly
one unsatisfied support clause of the form xi ∨ yj1 ∨ · · · ∨ yjk

and one unsatisfied
support clause of the form yl ∨ xm1 ∨ · · · ∨ xms in the support encoding from

1 In weighted Max-CSP (Max-SAT), each constraint (clause) has a weight and the goal
is to minimize the sum of the weights of the violated constraints (falsified clauses).

Modelling Max-CSP as Partial Max-SAT 9

CSP into SAT. Therefore, these clauses will produce the derivation of the two
complementary unit clauses in the support encoding from Max-CSP into Partial
Max-SAT: ck (from xi∨yj1∨· · ·∨yjk

∨ck) and ck (from yl∨xm1∨· · ·∨xms∨ck). The
solver will then derive a contradiction from these two clauses. If Ck is satisfied,
both support clauses are satisfied and the fact of adding an extra literal does
not affect their satisfaction.

On the solved benchmarks we did not see significant differences between branch-
ing including auxiliary variables and branching without including them. So, we
only report results for branching including auxiliary variables. However, there
may exist differences on other types of instances and solvers.

5 Experimental Results

We conducted an empirical evaluation to assess the impact of the defined encod-
ings on the performance of two of the best performing Partial Max-SAT solvers:
MiniMaxSat [12] and PMS [3]. Moreover, we compared the support encoding
and the minimal support encoding when solving SAT-encoded CSP instances
with MiniSat [7] and zChaff [20]. The evaluation was conducted on a cluster
with 160 2 GHz AMD Opteron 248 Processors with 1 GB of memory.

As benchmarks we considered binary CSPs, which were obtained with a gen-
erator of uniform random binary CSPs2 —designed and implemented by Frost,
Bessière, Dechter and Regin— that implements the so-called model B: in the class
〈n, d, p1, p2〉 with n variables of domain size d, we choose a random subset of ex-
actly p1n(n−1)/2 constraints (rounded to the nearest integer), each with exactly
p2d

2 conflicts (rounded to the nearest integer); p1 may be thought of as the density
of the problem and p2 as the tightness of constraints. The difficulty of the instances
depends on the selected values for n, d, p1 and p2. We selected values that allowed
to solve the instances in a reasonable amount of time in each solver.

We used the following encodings: the direct encoding (dir), the support en-
coding (supxy), and three variants of the minimal support encoding (supx,
supl, supc). The encoding supx refers to the minimal support encoding of a
binary CSP containing only the support clauses for the CSP variable X and
not for the variable Y for every constraint with scope {X, Y }; we do not show
results for the encoding containing only support clauses for the CSP variable
Y because its behaviour is very close to supx for the solved random instances.
The encoding supl refers to the minimal support encoding containing, for each
constraint, the support clauses for the variable that produces a smaller total
number of literals. The encoding supc refers to the minimal support encoding
containing, for each constraint, the support clauses for the variable that pro-
duces smaller size clauses; we give a score of 16 to unit clauses, a score of 4 to
binary clauses and a score of 1 to ternary clauses, and choose the variable with
higher sum of scores. For instance, given the CSP instance 〈X, D, C〉, where
X = {X, Y }, d(X) = d(Y) = {1, 2, 3, 4}, C = {CXY } = {{(1, 2), (1, 3), (1, 4)}},

2 http://www.lirmm.fr/˜bessiere/generator.html

10 J. Argelich et al.

 0

 500

 1000

 1500

 2000

 2500

 40 45 50 55 60 65 70 75 80

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

ng

<35, 15, 305, ng>

supxy
supx
supc
supl

Fig. 1. Experimental results for MiniSat

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

ng

<45, 10, 415, ng>

supxy
supx
supc
supl

Fig. 2. Experimental results for zChaff (log scale)

supc prefers three binary support clauses x1 ∨y2, x1 ∨y3, x1 ∨y4 rather than the
quaternary support clause x1 ∨ y2 ∨ y3 ∨ y4, while supl prefers x1 ∨ y2 ∨ y3 ∨ y4.

In the first experiment we solved 100 CSP instances with MiniSat and zChaff
for each data point. We compared all the support encodings from CSP into
SAT. With MiniSat, we solved CSP instances with 35 variables, domains of 15
elements, 305 constraints and variable tightness (we vary the number of nogoods
(ng)). The obtained results are shown in Figure 1. With zChaff, we solved CSP
instances with 45 variables, domains of 10 elements, 415 constraints and variable
tightness. The obtained results are shown in Figure 2. We observe that the sup-
port encoding outperforms the three variants of the minimal support encoding.
We believe that this is due to the fact that the support encoding, unlike the
minimal support encoding, maintains arc consistency through unit propagation.

In the second experiment we solved 100 Max-CSP instances with MiniMaxSat
for each data point; the instances had 22 variables, domains of 4 elements, 231
constraints and variable tightness. We compared all the defined encodings of
Max-CSP into Partial Max-SAT. The obtained results are shown in Figure 3.

In the third experiment we solved 100 Max-CSP instances with MiniMaxSat
for each data point; the instances had 25 variables, domains of 5 elements, 150

Modelling Max-CSP as Partial Max-SAT 11

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

ng

<22, 4, 231, ng>

dir
supx
supl

supxy
supc

Fig. 3. Experimental results for MiniMaxSat

 0

 50

 100

 150

 200

 250

 300

 350

 5 10 15 20

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

ng

<25, 5, 150, ng>

supx
supl

supc

Fig. 4. Experimental results for MiniMaxSat

constraints and variable tightness. We compared all the defined encodings of
Max-CSP into Partial Max-SAT. The obtained results are shown in Figure 4.
We omit the results for the encodings dir and supxy because they are not
competitive.

In the fourth experiment we solved 100 Max-CSP instances with PMS for each
data point; the instances had 15 variables, domains of 4 elements, 120 constraints
and variable tightness. We compared all the defined encodings of Max-CSP into
Partial Max-SAT. The obtained results are shown in Figure 5.

In the fifth experiment we solved 100 Max-CSP instances with PMS for each
data point; the instances had 14 variables, domains of 5 elements, 91 constraints
and variable tightness. We compared all the defined encodings of Max-CSP into
Partial Max-SAT. The obtained results are shown in Figure 6.

We observe that support encodings from Max-CSP into Partial Max-SAT,
which have been introduced for the first time in this paper, outperform the
direct encoding for both solvers. In MiniMaxSat, the best performing encoding
is the minimal support encoding. Among the different versions of the minimal
support encoding, we observe that supc is up to 6 times faster than the other

12 J. Argelich et al.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 5 10 15 20

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

ng

<14, 5, 91, ng>

dir
supx
supl

supxy
supc

Fig. 5. Experimental results for PMS

 0

 500

 1000

 1500

 2000

 2 4 6 8 10 12 14

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

ng

<16, 4, 120, ng>

dir
supx
supl

supxy
supc

Fig. 6. Experimental results for PMS

Table 1. Number of clauses for different encodings

Parameters dir supxy supx supc supl

〈25, 5, 150, 2〉 575 824 551 549 524

〈25, 5, 150, 4〉 875 1201 738 720 685

〈25, 5, 150, 6〉 1175 1445 861 826 804

〈25, 5, 150, 8〉 1475 1602 939 905 890

〈25, 5, 150, 10〉 1775 1690 983 959 950

〈25, 5, 150, 12〉 2075 1739 1007 993 991

〈25, 5, 150, 14〉 2375 1762 1019 1012 1012

〈25, 5, 150, 16〉 2675 1771 1023 1021 1021

〈25, 5, 150, 18〉 2975 1774 1025 1024 1024

〈25, 5, 150, 20〉 3275 1775 1025 1025 1025

two encodings (supx and supl). In PMS, the best encoding for high values of
tightness is the support encoding while the best encodings for lower values are
supc and supl in Figure 5, and supl in Figure 6.

Modelling Max-CSP as Partial Max-SAT 13

Finally, in Table 1 we show, for each different encoding, the average number
of clauses of some sets of Max-CSP instances solved in the third experiment
(Figure 4) in order to illustrate the differences on the number of clauses among
all the defined encodings from Max-CSP into Partial Max-SAT. Observe that
encodings supx, supl and supc produce instances with a similar number of
clauses.

6 Conclusions

We have defined the minimal support encoding, which is a new encoding from
CSP into SAT, and a number of original encodings (dir, supxy, supx, supl,
supc) that map Max-CSP instances into partial Max-SAT instances, and have
provided experimental evidence that different Max-SAT encodings for a given
optimization problem may produce substantial differences on the performance
of a solver. Since our mappings produce one unsatisfied clause for every violated
constraints, they can be easily extended to mappings from weighted Max-CSP
instances into weighted Max-SAT instances; all the clauses encoding a certain
constraint should have as weight the weight associated to that constraint.

To the best of our knowledge, this is the first paper that addresses the ques-
tion of how to encode Max-CSP into Max-SAT, and analyzes the impact of
modelling on the performance of Max-SAT solvers. Future research directions
include analyzing the degree of soft local consistency achieved by each encoding,
conducting an experimental investigation with benchmarks other than random
binary Max-CSP instances, and generalizing our results to n-ary constraints.

References

1. Alsinet, T., Manyà, F., Planes, J.: Improved exact solver for weighted Max-SAT. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 371–377. Springer,
Heidelberg (2005)

2. Argelich, J., Manyà, F.: Exact Max-SAT solvers for over-constrained problems.
Journal of Heuristics 12(4–5), 375–392 (2006)

3. Argelich, J., Manyà, F.: Partial Max-SAT solvers with clause learning. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 28–40. Springer,
Heidelberg (2007)

4. Bessière, C., Hebrard, E., Walsh, T.: Local consistencies in SAT. In: Giunchiglia, E.,
Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 299–314. Springer, Heidelberg
(2004)

5. Bonet, M.L., Levy, J., Manyà, F.: A complete calculus for Max-SAT. In: Biere, A.,
Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 240–251. Springer, Heidelberg
(2006)

6. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artificial Intelli-
gence 171(8–9), 240–251 (2007)

7. Een, N., Sorensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

14 J. Argelich et al.

9. Gavanelli, M.: The log-support encoding of CSP into SAT. In: Bessière, C. (ed.)
CP 2007. LNCS, vol. 4741, pp. 815–822. Springer, Heidelberg (2007)

10. Génisson, R., Jégou, P.: Davis and Putnam were already checking forward. In:
Proceedings of the ECAI-1996, pp. 180–184 (1996)

11. Gent, I.P.: Arc consistency in SAT. In: Proceedings of ECAI-2002, pp. 121–125
(2002)

12. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: A new weighted Max-SAT solver.
In: Proceedings of SAT-2007 (2007)

13. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence 45, 275–286 (1990)

14. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency
in weighted CSPs. In: Proceedings of IJCAI-2005, Edinburgh, Scotland, pp. 193–
198. Morgan Kaufmann, San Francisco (2005)

15. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving.
Artificial Intelligence 172(2–3), 204–233 (2008)

16. Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower
bounds in branch and bound Max-SAT solvers. In: van Beek, P. (ed.) CP 2005.
LNCS, vol. 3709, pp. 403–414. Springer, Heidelberg (2005)

17. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for
computing lower bounds for Max-SAT. In: Proceedings of AAAI-2006, pp. 86–91
(2006)

18. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. Journal of
Artificial Intelligence Research 30, 321–359 (2007)

19. Marques-Silva, J., Planes, J.: Algorithms for Maximum Satisfiability using Unsat-
isfiable Cores. In: Proceedings of DATE-2008 (2008)

20. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: 39th Design Automation Conference (2001)

21. Pipatsrisawat, K., Darwiche, A.: Clone: Solving weighted max-sat in a reduced
search space. In: 20th Australian Joint Conference on Artificial Intelligence, AI-
2007, pp. 223–233 (2007)

22. Ramı́rez, M., Geffner, H.: Structural relaxations by variable renaming and their
compilation for solving MinCostSAT. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 605–619. Springer, Heidelberg (2007)

23. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–
456. Springer, Heidelberg (2000)

A Preprocessor for Max-SAT Solvers�

Josep Argelich1, Chu Min Li2, and Felip Manyà1

1 Computer Science Department
Universitat de Lleida

Jaume II, 69, E-25001 Lleida, Spain
2 LaRIA, Université de Picardie Jules Verne

33 Rue Saint Leu, 80039 Amiens Cedex 01, France

Abstract. We describe a preprocessor that incorporates a variable sat-
uration procedure for Max-SAT, and provide empirical evidence that it
improves the performance of some of the most successful state-of-the-
art solvers on several partial (weighted) Max-SAT instances of the 2007
Max-SAT Evaluation.

1 Introduction

In the last years, there has been an increasing interest in Max-SAT formalisms
such as (weighted) Max-SAT and partial (weighted) Max-SAT. Among the
most relevant results we highlight the following ones: (i) there exist solvers
like ChaffBS [6], Clone [14], Lazy [1], MaxSatz [12], MiniMaxSat [8], ms4 [13],
PMS [3], Sat4Jmaxsat, SR(w) [15] and Toolbar [7] which solve many instances
that are beyond the reach of the solvers existing just five years ago; (ii) resolution
refinements, which preserve the number of unsatisfied clauses, have been incor-
porated into Max-SAT solvers [9,7,12], as well as good quality underestimations
of the lower bound [10,11,14,15], (iii) a resolution-style calculus for Max-SAT
has been proven to be complete [4,5], (iv) formalisms like Partial Max-SAT have
been investigated for solving problems with soft constraints [2,6,8,3], and (v) two
evaluations of Max-SAT solvers have been performed for the first time.

In this paper we present a preprocessor that can be applied to solvers for
Max-SAT formalisms, including Max-SAT, weighted Max-SAT, partial Max-
SAT and partial weighted Max-SAT solvers. Our preprocessor implements a
variable saturation procedure defined in [4,5]. Moreover, we provide empirical
evidence that it improves the performance of MiniMaxSat, SR(w) and PMS on
several partial (weighted) Max-SAT instances of the 2007 Max-SAT Evaluation.
The preprocessor applies the variable saturation procedure defined in [4,5] to a
limited number of variables which are selected heuristically, and transforms the
input instance into an equivalent instance which does not contain the saturated
variables. To the best of our knowledge, this is the first paper that investigates
the practical usefulness of the notion of variable saturation in the Max-SAT
context.
� This research was funded by the MEC research projects TIN2006-15662-C02-02 and

TIN2007-68005-C04-04, and Acción Integrada HP2005-0147.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 15–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 J. Argelich, C.M. Li, and F. Manyà

The structure of the paper is as follows. Section 2 contains preliminary defini-
tions about Max-SAT. Section 3 introduces the Max-SAT resolution rule and the
notion of variable saturation. Section 4 reports and analyses the experiments.

2 Preliminaries

In propositional logic a variable xi may take values 0 (false) or 1 (true). A literal
li is a variable xi or its negation x̄i. A clause is a disjunction of literals, and
a CNF formula is a multiset of clauses. A weighted clause is a pair (Ci, wi),
where Ci is a disjunction of literals and wi, its weight, is a positive number,
and a weighted CNF formula is a multiset of weighted clauses. An assignment
of truth values to the propositional variables satisfies a literal xi (x̄i) if it takes
the value 1 (0), satisfies a clause if it satisfies at least one literal of the clause,
and satisfies a CNF formula if it satisfies all the clauses of the formula.

The Max-SAT problem for a CNF formula φ is the problem of finding an
assignment that maximizes (minimizes) the number of satisfied (unsatisfied)
clauses. The weighted Max-SAT problem for a weighted CNF formula φ is the
problem of finding an assignment that minimizes the sum of weights of unsatisfied
clauses. A Partial Max-SAT instance is a CNF formula in which some clauses
are relaxable or soft and the rest are non-relaxable or hard. Solving a Partial
Max-SAT instance amounts to find an assignment that satisfies all the hard
clauses and the maximum number of soft clauses. The weighted Partial Max-
SAT problem is the combination of weighted Max-SAT and Partial Max-SAT.

3 Resolution in Max-SAT

The Max-SAT resolution rule is defined as follows:

x ∨ a1 ∨ · · · ∨ as

x ∨ b1 ∨ · · · ∨ bt

a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt

x ∨ a1 ∨ · · · ∨ as ∨ b1

x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2
· · ·
x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt

x ∨ b1 ∨ · · · ∨ bt ∨ a1
x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ a2
· · ·
x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ · · · ∨ as−1 ∨ as

This inference rule is applied to multisets of clauses, and replaces the premises
of the rule by its conclusions. We say that the rule cuts the variable x, and the
tautologies concluded by the rule are removed from the resulting multiset. In
partial Max-SAT, the hard clauses remain and the clauses subsumed by the
hard clause are removed (see [3] for details). For the sake of clarity, we did not
define the weighted version of the rule (see [5] for details).

A Preprocessor for Max-SAT Solvers 17

Definition 1. A multiset of clauses C is said to be saturated w.r.t. x if for every
pair of clauses C1 = x ∨ A and C2 = x ∨ B of C, there is a literal l such that
l is in A and l is in B. A multiset of clauses C′ is a saturation of C w.r.t. x
if C′ is saturated w.r.t. x and C �x C′; i.e., C′ can be obtained from C applying
Max-SAT resolution cutting x finitely many times.

Lemma 1. [5] For every multiset of clauses C and variable x, there exists a
multiset C′ such that C′ is a saturation of C w.r.t. x. Moreover, this multiset C′

can be computed by applying Max-SAT resolution to any pair of clauses x ∨ A
and x ∨ B with the restriction that A ∨ B is not a tautology, using any ordering
of the literals, until we can not apply Max-SAT resolution any longer.

The completeness proof of Max-SAT resolution [4,5] states that we can get a
complete algorithm by successively saturating w.r.t. all the variables as follows:
we saturate w.r.t x1 and then remove all the clauses containing x1, saturate w.r.t
x2 and then remove all the clauses containing x2, etc. After saturating this way
w.r.t. all the variables we get as many empty clauses as the minimum number
of unsatisfied clauses in the original formula.

Solving a Max-SAT instance by successively saturating w.r.t. all the variables
is clearly not competitive with solving it with a modern branch and bound solver.
Nevertheless, we thought that it would make sense to saturate w.r.t. a limited
number of variables as a preprocessing in order to simplify the formula. We
select the variables to be saturated, depending on a parameter k, iteratively as
follows: We build a graph whose nodes are the Boolean variables occurring in the
instance, and add an edge between two vertices if the variables of the vertices
occur in the same clause. We select a variable whose vertex has minimal degree
if its degree is smaller than k. This process is repeated until no more variables
can be selected. The idea is to saturate variables in which the application of
variable saturation is not very costly in terms of time and space. We also tried
to saturate the variables with a low number of occurrences, but the results were
not so good.

4 Experimental Results

To assess the impact of the preprocessor on the performance of branch and bound
Max-SAT solvers, we solved partial Max-SAT instances1 of the 2007 Max-SAT
Evaluation (with a timeout of 30 minutes as in the evaluation) on three of
the most successful and representative state-of-the-art solvers: MiniMaxSat [8],
PMS [3], and SR(w) [15]. For MiniMaxSat and SR(w) we used the same versions
as in the evaluation. For PMS we used an improved version (PMS v1.3). We
executed the preprocessor with k = 6, 10, 14 (remind that k is the parameter
for selecting variables). All the experiments were performed on a Linux Cluster
where the nodes have a 2GHz AMD Opteron processor with 1Gb of RAM.
1 We solved only the instances in which the preprocessor detected variables that could

be saturated. We also solved (weighted) Max-SAT instances, but the speed-ups were
not so good as in (weighted) Partial Max-SAT.

18 J. Argelich, C.M. Li, and F. Manyà

Tables 1 and 2 show the experimental results for PMS. The instances are
divided into sets. The first column is the name of the set, the second column
shows the number of instances in each set, the third column shows the results
for the solver without preprocessing, and the rest of columns show the results
with preprocessing for k = 6, 10, 14. We display the mean time (in seconds) of
the solved instances, as well as the number of solved instances (in brackets). We
observe that PMS with preprocessing solves more instances in 5 sets, and reduces
considerably the CPU time in most of the other sets. The best improvements
are achieved for MaxClique (random), where the preprocessing allows to solve 8
additional instances, and for Auctions (paths), where the preprocessing allows
to solve 9 additional instances.

Tables 3 and 4 show the results for MiniMaxSat. In this case, the gains are
not so significative as for PMS, although the preprocessing allows to solve 1
additional instance for MaxClique (structured) and for WCSP (spot5 dir).

Tables 5 and 6 show the experimental results for SR(w). In this case, we solve
an additional instance for 3 sets (MaxCSP (dense loose), MaxCSP (w-queens)
and Auctions (scheduling)), and 185 additional instances for Pseudo (factor).
The latter is the best improvement achieved with our preprocessor.

Table 1. Partial Max-SAT benchmarks with PMS

Instance set # PMS PMS(6) PMS(10) PMS(14)

MaxClique (random) 96 43.69(80) 69.30(83) 61.04(85) 53.85(88)
MaxClique (structured) 62 175.27(23) 183.30(24) 178.03(24) 171.13(25)
MaxOne (3-SAT) 50 261.95(50) 122.08(50) 62.06(50) 328.07(48)

MaxOne (structured) 60 177.84(58) 234.56(56) 223.76(42) 6.57(1)

MaxCSP (dense loose) 20 5.50(20) 5.26(20) 3.39(20) 8.31(20)

MaxCSP (dense tight) 20 9.76(20) 9.76(20) 7.83(20) 12.95(20)

MaxCSP (sparse loose) 20 16.39(20) 9.18(20) 4.77(20) 36.51(19)

MaxCSP (sparse tight) 20 24.02(20) 21.70(20) 18.07(20) 84.81(20)

WCSP (w-queens) 7 72.22(6) 72.19(6) 72.17(6) 72.18(6)

Table 2. Weighted Partial Max-SAT benchmarks with PMS

Instance set # PMS PMS(6) PMS(10) PMS(14)

Auctions (paths) 88 233.56(71) 178.50(80) 127.72(77) 266.47(63)

Auctions (regions) 84 5.24(84) 5.30(84) 5.52(84) 5.62(84)

Auctions (scheduling) 84 89.70(84) 89.62(84) 89.66(84) 89.61(84)
Pseudo (factor) 186 11.00(186) 11.64(186) 226.88(186) 924.37(2)

Pseudo (miplib) 16 1.94(4) 0.96(4) 190.93(4) 2.34(1)

QCP 25 199.31(15) 199.36(15) 199.46(15) 199.52(15)

WCSP (planning) 71 13.96(71) 21.97(71) 63.65(70) 233.29(42)

WCSP (spot5 dir) 21 14.86(2) 6.59(5) 57.96(6) 13.27(5)

WCSP (spot5 log) 21 18.95(2) 91.03(3) 2.55(4) 1.46(4)

A Preprocessor for Max-SAT Solvers 19

Table 3. Partial Max-SAT benchmarks with MiniMaxSat

Instance set # MiniMS MiniMS(6) MiniMS(10) MiniMS(14)

MaxClique (random) 96 2.41(96) 2.44(96) 2.67(96) 4.38(96)

MaxClique (structured) 62 85.22(36) 82.15(37) 67.94(37) 66.43(36)

MaxOne (3-SAT) 50 0.37(50) 0.40(50) 0.43(50) 8.87(50)

MaxOne (structured) 60 31.35(60) 20.57(54) 65.88(42) 0.78(1)

MaxCSP (dense loose) 20 0.65(20) 0.71(20) 0.87(20) 5.11(20)

MaxCSP (dense tight) 20 0.69(20) 0.70(20) 0.70(20) 2.87(20)

MaxCSP (sparse loose) 20 0.35(20) 0.36(20) 0.57(20) 21.20(20)

MaxCSP (sparse tight) 20 0.85(20) 0.87(20) 0.94(20) 27.05(20)

WCSP (w-queens) 7 55.47(7) 55.28(7) 54.56(7) 179.13(7)

Table 4. Weighted Partial Max-SAT benchmarks with MiniMaxSat

Instance set # MiniMS MiniMS(6) MiniMS(10) MiniMS(14)

Auctions (paths) 88 29.82(88) 19.44(88) 13.52(84) 78.21(75)

Auctions (regions) 84 1.63(84) 1.55(84) 1.55(84) 1.56(84)

Auctions (scheduling) 84 46.14(84) 46.24(84) 46.28(84) 46.16(84)

Pseudo (factor) 186 1.16(186) 1.79(186) 5.53(186) 905.51(183)

Pseudo (miplib) 16 41.35(5) 84.90(5) 398.55(5) 1.43(1)

QCP 25 25.00(20) 26.71(20) 25.28(20) 24.65(20)
WCSP (planning) 71 9.97(71) 10.11(71) 22.12(71) 235.45(47)

WCSP (spot5 dir) 21 2.63(3) 11.82(3) 8.18(4) 6.99(4)
WCSP (spot5 log) 21 9.07(4) 5.69(2) 152.16(3) 323.82(4)

Table 5. Partial Max-SAT benchmarks with SR(w)

Instance set # SR-W SR-W(6) SR-W(10) SR-W(14)

MaxClique (random) 96 244.85(55) 219.40(55) 224.65(55) 218.38(55)
MaxClique (structured) 62 21.18(9) 17.56(9) 22.67(8) 20.17(8)

MaxOne (3-SAT) 50 386.23(41) 338.69(41) 718.76(22) 758.61(1)

MaxOne (structured) 60 471.72(22) 449.33(19) 618.92(18) 1078.54(1)

MaxCSP (dense loose) 20 697.74(1) 633.31(1) 1162.49(2) 0.00(0)

MaxCSP (dense tight) 20 209.22(18) 199.18(18) 202.71(18) 350.83(15)

MaxCSP (sparse loose) 20 296.48(16) 272.89(16) 408.06(15) 853.86(7)

MaxCSP (sparse tight) 20 235.98(19) 216.19(19) 230.31(19) 563.63(12)

WCSP (w-queens) 7 54.00(6) 230.25(7) 228.06(7) 258.10(7)

As a conclusion, we could say that variable saturation is an effective prepro-
cessing technique that may produce substantial speed-ups, as well as increase
the number of solved instances. As future work we plan to incorporate additional
simplification techniques into our preprocessor, and explore the application of
variable saturation to a limited number of nodes of the search space because its
application at each node is too costly.

20 J. Argelich, C.M. Li, and F. Manyà

Table 6. Weighted Partial Max-SAT benchmarks with SR(w)

Instance set # SR-W SR-W(6) SR-W(10) SR-W(14)

Auctions (paths) 88 173.42(77) 161.15(76) 169.32(72) 353.90(66)

Auctions (regions) 84 146.54(82) 136.45(82) 126.93(82) 119.52(82)
Auctions (scheduling) 84 276.91(56) 240.61(56) 270.71(57) 239.26(56)

Pseudo (factor) 186 0.00(0) 2.86(37) 520.50(185) 1091.88(1)

Pseudo (miplib) 16 2.62(5) 3.04(4) 216.89(4) 4.12(1)

QCP 25 715.58(5) 572.40(5) 675.34(5) 674.26(5)

WCSP (planning) 71 379.57(57) 371.42(53) 286.88(46) 285.58(25)

WCSP (spot5 dir) 21 2.95(6) 1.90(6) 9.27(4) 61.92(3)

WCSP (spot5 log) 21 14.56(6) 11.53(6) 25.30(5) 10.83(4)

References

1. Alsinet, T., Manyà, F., Planes, J.: Improved exact solver for weighted Max-SAT.
In: SAT-2005, pp. 371–377 (2005)

2. Argelich, J., Manyà, F.: Exact Max-SAT solvers for over-constrained problems.
Journal of Heuristics 12(4–5), 375–392 (2006)

3. Argelich, J., Manyà, F.: Partial Max-SAT solvers with clause learning. In: SAT-
2007, pp. 28–40 (2007)

4. Bonet, M.L., Levy, J., Manyà, F.: A complete calculus for Max-SAT. In: SAT-2006,
pp. 240–251 (2006)

5. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artificial Intelli-
gence 171(8–9), 240–251 (2007)

6. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: SAT-2006, pp.
252–265 (2006)

7. Heras, F., Larrosa, J.: New inference rules for efficient Max-SAT solving. In: AAAI-
2006, pp. 68–73 (2006)

8. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: A new weighted Max-SAT solver.
In: SAT-2007 (2007)

9. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency
in weighted CSPs. In: IJCAI-2005, pp. 193–198 (2005)

10. Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower
bounds in branch and bound Max-SAT solvers. In: CP-2005, pp. 403–414 (2005)

11. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for
computing lower bounds for Max-SAT. In: AAAI-2006, pp. 86–91 (2006)

12. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. Journal of
Artificial Intelligence Research 30, 321–359 (2007)

13. Marques-Silva, J., Planes, J.: Algorithms for Maximum Satisfiability using Unsat-
isfiable Cores. In: DATE-2008 (2008)

14. Pipatsrisawat, K., Darwiche, A.: Clone: Solving weighted max-sat in a reduced
search space. In: 20th Australian Joint Conf. on AI, AI-2007, pp. 223–233 (2007)

15. Ramı́rez, M., Geffner, H.: Structural relaxations by variable renaming and their
compilation for solving MinCostSAT. In: CP-2007, pp. 605–619 (2007)

A Generalized Framework for Conflict Analysis

G. Audemard1, L. Bordeaux2, Y. Hamadi2, S. Jabbour1, and L. Sais1

1 CRIL - CNRS UMR 8188, Artois, France
{audemard,jabbour,sais}@cril.fr

2 Microsoft Research Cambridge, UK
{lucasb,youssefh}@microsoft.com

Abstract. This paper presents an extension of Conflict Driven Clauses Learning
(CDCL). It relies on an extended notion of implication graph containing addi-
tional arcs, called inverse arcs. These are obtained by taking into account the
satisfied clauses of the formula, which are usually ignored by conflict analysis.
This extension captures more conveniently the whole propagation process, and
opens new perspectives for CDCL-based approaches. Among other benefits, our
extension leads to a new conflict analysis scheme that exploits the additional arcs
to back-jump to higher levels. Experimental results show that the integration of
our generalized conflict analysis scheme within two state-of-the-art solvers im-
proves their performance.

1 Introduction

This paper extends Conflict-Driven Clause-Learning (CDCL), which is one of the key
components of modern SAT solvers [7,5]. In the CDCL approach a central data-structure
is the implication graph, which records the partial assignment that is under construc-
tion together with its implications. This data-structure enables conflict analysis, which,
in turn, is used for intelligent backtracking, clause learning, for the adjustment of the
variable selection heuristic. An important observation is that the implication graph built
in the traditional way is ”incomplete” in that it only gives a partial view of the actual
implications between literals. A solver only keeps track of the first explanation that is
encountered for the deduced literal. This strategy is obviously very much dependent on
the particular order in which clauses are propagated. We present here an extended no-
tion of implication graph in which a deduced literal can have several explanations. An
extended version of our work can be found in [1]. The paper is organized as follows, def-
initions and notations are presented in the next section. Section three describes classical
conflict analysis. Section four presents our extension, and finally before the conclusion,
section five presents some experimental results.

2 Preliminary Definitions and Notations

A CNF formula F is a set (interpreted as a conjunction) of clauses, where a clause is
a set (interpreted as a disjunction) of literals. A literal is a positive (x) or negated (¬x)
propositional variable. The two literals x and ¬x are called complementary. We note l̄

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 21–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

22 G. Audemard et al.

the complementary literal of l. For a set of literals L, L̄ is defined as {l̄ | l ∈ L}. A unit
clause is a clause with only one literal (called unit literal). An empty clause, noted ⊥,
is interpreted as false, while an empty CNF formula, noted �, is interpreted as true.

The set of variables occurring in F is noted VF . A set of literals is complete if it
contains one literal for each variable in VF , and fundamental if it does not contain
complementary literals. An interpretation ρ of a boolean formula F associates a value
ρ(x) to some of the variables x ∈ F . An interpretation is alternatively represented by a
complete and fundamental set of literals, in the obvious way. A model of a formula F
is an interpretation ρ that satisfies the formula; noted ρ � Σ.

The following notations will be heavily used throughout the paper:

– η[x, ci, cj] denotes the resolvent between a clause ci containing the literal x and cj

a clause containing the literal ¬x. In other words η[x, ci, cj] = ci ∪ cj\{x, ¬x}.
– F|x will denote the formula obtained from F by assigning x the truth-value true.

Formally F|x = {c | c ∈ F , {x, ¬x} ∩ c = ∅} ∪ {c\{¬x} | c ∈ F , ¬x ∈ c}. This
notation is extended to interpretations: given an interpretation ρ = {x1, . . . , xn},
we define F|ρ = (. . . ((F|x1)|x2) . . . |xn).

– F∗ denotes the formula F closed under unit propagation, defined recursively as
follows: (1) F∗ = F if F does not contain any unit clause, (2) F∗ =⊥ if F
contains two unit-clauses {x} and {¬x}, (3) otherwise, F∗ = (F|x)∗ where x is
the literal appearing in a unit clause of F .

Let us now introduce some notations and terminology on SAT solvers based on
the DPLL backtrack search procedure [3]. At each node the assigned literals (deci-
sion literal and the propagated ones) are labeled with the same decision level starting
from 1 and increased at each branching. The current decision level is the highest deci-
sion level in the assignment stack. After backtracking, some variables are unassigned,
and the current decision level is decreased accordingly. At level i, the current partial
assignment ρ can be represented as a sequence of decision-propagations of the form
〈(xi

k), xi
k1

, xi
k2

, . . . , xi
knk

〉 where the first literal xi
k corresponds to the decision literal

xk assigned at level i and each xi
kj

for 1 ≤ j ≤ nk represents a propagated (unit) literal
at level i. Let x ∈ ρ, we note l(x) the assignment level of x, d(ρ, i) = x if x is the
decision literal assigned at level i. For a given level i, we define ρi as the projection of
ρ to literals assigned at a level ≤ i.

3 Conflict Analysis Using Implication Graphs

Implication graphs capture the variable assignments ρ made during the search, both by
branching and by propagation. This representation is a convenient way to analyze con-
flicts. In classical SAT solvers, whenever a literal y is propagated, we keep a reference
to the clause at the origin of the propagation of y, which we note

−→
cla(y). The clause

−→
cla(y) is in this case of the form (x1 ∨· · ·∨xn ∨y) where every literal xi is false under
the current partial assignment (ρ(xi) = false, ∀i ∈ 1..n), while ρ(y) = true. When a

literal y is not obtained by propagation but comes from a decision,
−→
cla(y) is undefined,

which we note for convenience
−→
cla(y) =⊥.

A Generalized Framework for Conflict Analysis 23

When
−→
cla(y) �=⊥, we denote by exp(y) the set {x | x ∈ −→

cla(y) \ {y}}, called set of

explanations of y. In other words if
−→
cla(y) = (x1 ∨ · · · ∨xn ∨ y), then the explanations

are the literals xi with which
−→
cla(y) becomes the unit clause {y}. Note that for all i we

have l(xi) ≤ l(y), i.e., all the explanations of the deduction come from a level at most

as high. When
−→
cla(y) is undefined we define exp(y) as the empty set. The explanations

can alternatively be seen as an implication graph, in which the set of predecessors of a
node corresponds to the set of explanations of the corresponding literal:

Definition 1 (Implication Graph). Let F be a CNF formula, ρ a partial ordered in-
terpretation, and let exp denote a choice of explanations for the deduced literals in ρ.
The implication graph associated to F , ρ and exp is (N , E) where:

– N = ρ, i.e. there is exactly one node for every literal, decision or implied;
– E = {(x, y) | x ∈ ρ, y ∈ ρ, x ∈ exp(y)}

Example 1. Gρ
F , shown in Figure 1 and restricted to plain arcs is an implication graph

for the formula F and the partial assignment ρ given below : F ⊇ {c1, . . . , c9}

(c1) x6 ∨ ¬x11 ∨ ¬x12 (c2) ¬x11 ∨ x13 ∨ x16 (c3) x12 ∨ ¬x16 ∨ ¬x2
(c4) ¬x4 ∨ x2 ∨ ¬x10 (c5) ¬x8 ∨ x10 ∨ x1 (c6) x10 ∨ x3
(c7) x10 ∨ ¬x5 (c8) x17 ∨ ¬x1 ∨ ¬x3 ∨ x5 ∨ x18 (c9) ¬x3 ∨ ¬x19 ∨ ¬x18

ρ = {〈. . . ¬x1
6 . . . ¬x1

17〉〈(x2
8) . . . ¬x2

13 . . . 〉〈(x3
4) . . . x3

19 . . . 〉 . . . 〈(x5
11) . . . 〉}. The cur-

rent decision level is 5.

We consider ρ, a partial assignment such that (F|ρ)∗ = ⊥ and Gρ
F = (N , E) the

associated implication graph. Assume that the current decision level is m. As a conflict
is reached, then ∃x ∈ st. {x, ¬x} ⊂ N and l(x) = m or l(¬x) = m. Conflict analysis
is based on applying resolution from the top to the bottom of the implication graph
using the different clauses of the form (exp(y) ∨ y) implicitly encoded at each node
y ∈ N . We call this process a conflict resolution proof. More formally,

Definition 2 (Asserting clause). A clause c of the form (α ∨ x) is called an asserting
clause iff ρ(c) = false, l(x) = m and ∀y ∈ α, l(y) < l(x). x is called asserting literal,
which we note in short A(c). We can define jump(c) = max{l(¬y) | y ∈ α}.

Definition 3 (Conflict resolution proof). A conflict resolution proof π is a sequence of
clauses 〈σ1, σ2, . . . σk〉 satisfying the following conditions :

1. σ1 = η[x,
−→
cla(x),

−→
cla(¬x)], where {x, ¬x} is the conflict.

2. σi, for i ∈ 2..k, is built by selecting a literal y ∈ σi−1 for which
−→
cla(y) is defined.

We then have y ∈ σi−1 and y ∈ −→
cla(y): the two clauses resolve. The clause σi is

defined as η[y, σi−1,
−→
cla(y)];

3. σk is, moreover an asserting clause.

It is called elementary iff �i < k s.t. 〈σ1, σ2, . . . σi〉 is also a conflict resolution proof.

24 G. Audemard et al.

4 Extended Implication Graph

In modern SAT solvers, clauses containing a literal x that is implied at the current level
are essentially ignored by the propagation. More precisely, because the solver does not
maintain the information whether a given clause is satisfied or not, a clause containing
x may occasionally be considered by the propagation, but only when another literal y
of the clause becomes false. When this happens the solver typically skips the clause.
However, in cases where x is true and all the other literals are false, an ”arc” was
revealed for free that could as well be used to extend the graph. Such arcs are those we
propose to use in our extension.

To explain our idea let us consider, again, the formula F and the partial assignments
given in the example 1. We define a new formula F ′ as follow : F ′ ⊇ {c1, . . . , c9} ∪
{c10, c11, c12} where c10 = (¬x19 ∨ x8), c11 = (x19 ∨ x10) and c12 = (¬x17 ∨ x10).

The three added clauses are satisfied under the instantiation ρ. c10 is satisfied by x8
assigned at level 2, c11 is satisfied by x19 at level 3, and c12 is satisfied by ¬x17 at level
1. This is shown in the extended implication graph (see Figure 1) by the doted edges.
Let us now illustrate the usefulness of our proposed extension. Let us consider again
the the asserting clause Δ1 corresponding to the classical first UIP. We can generate
the following strong asserting clause: c13 = η[x8, Δ1, c10] = (x1

17 ∨ ¬x3
19 ∨ x5

10),
c14 = η[x19, c13, c11] = (x1

17 ∨ x5
10) and Δs

1 = η[x17, c14, c12] = x5
10. In this case we

backtrack to the level 0 and we assign x10 to true. Indeed F ′ |= x10.
As we can see Δs

1 subsumes Δ1. If we continue the process we also obtain other
strong asserting clauses Δs

2 = (¬x3
4 ∨ x5

2) and Δs
3 = (¬x3

4 ∨ x2
13 ∨ x1

6 ∨ ¬x5
11) which

subsume respectively Δ2 and Δ3. This first illustration gives us a new way to minimize
the size of the asserting clauses.

If we take a look to the clauses used in the implication graph Gρ
F (plain edges) all

have the following properties: (1) ∀x ∈ N the clause c = (exp(x) ∨ x) is satisfied
by only one literal i.e. ρ(x) = true and ∀y ∈ exp(x), we have ρ(y) = true and (2)
∀y ∈ exp(x), l(¬y) ≤ l(x). Now in the extended implication graph, the added clauses
satisfy property (1) and, in addition, the property (2’) ∃y ∈ exp(x) st. l(¬y) > l(x).

Let us now explain briefly how the extra arcs can be computed. Usually unit propa-
gation does not keep track of implications from the satisfiable sub-formula. In this ex-
tension the new implications (deductions) are considered. For instance in the previous

Fig. 1. Implication graph / extended implication graph

A Generalized Framework for Conflict Analysis 25

example, when we deduce x19 at level 3, we ”rediscover” the deduction x8 (which was
a choice (decision literal) at level 2). Our proposal keeps track of these re-discoveries.

Before introducing the formal definition of our extended Implication Graph, we in-
troduce the concept of inverse implication (inverse edge).

We maintain additionally to the classical clause
−→
cla(x) a new clause

←−
cla(x) of the

form (x ∨ y1 ∨ · · · ∨ yn). This clause is selected so that ρ(yi) = false for i ∈ 1..n;
ρ(x) = true; and ∃i. l(yi) > l(x). This clause can be undefined in some cases (which

we note
←−
cla(x) =⊥). Several clauses of this form can be found for each literal, in which

case one is selected arbitrarily: one can choose to consider the first one in the ordering.
(It is easy to define a variant where we would take into account all of them, in which
case

←−
cla(x) is a set of clauses; but we won’t develop this variant).

We denote by ←−exp(x) the set {y | y ∈ ←−
cla(x) \ {x}}, and, for clarity, by −→exp(x) the

set that was previously noted exp. An extended implication graph is defined as follows
(note that this graph is now not acyclic in general):

Definition 4 (Extended Implication Graph). Let F be a CNF formula and ρ an or-
dered partial interpretation. We define the extended implication Graph associated to F
and ρ as Gsρ

F = (N , E ∪ E ′) where, N = ρ, E = {(x, y) | x ∈ ρ, y ∈ ρ, x ∈ −→exp(y)}
and E ′ = {(x, y) | x ∈ ρ, y ∈ ρ, x ∈ ←−exp(y)}

4.1 Learning to Back-Jump : A First Extension

In this section, we describe a first possible extension of CDCL approach using extended
implication graph. Our approach makes an original use of inverses arcs to back-jump
farther, i.e. to improve the back-jumping level of the classical asserting clauses.

Let us illustrate the main idea behind our proposed extension. Our approach works
in three steps. In the first step (1) : an asserting clause, say σ1 = (¬x1 ∨ ¬y3 ∨ ¬z7 ∨
¬a9) is learnt using the usual learning scheme where 9 is the current decision level. As
ρ(σ1) = false, usually we backtrack to level jump(σ1) = 7. In the second step (2): our
approach aims to eliminate the literal ¬z7 from σ1 using the new arcs of the extended
graph. Let us explain this second and new processing. Let c = (z7∨¬u2∨¬v9) such that
ρ(z) = true, ρ(u) = true and ρ(v) = true. The clause c is an inverse arc i.e. the literal
z assigned at level 7 is implied by the two literals u and v respectively assigned at level 2
and 9. From c and σ1, a new clause σ2 = η[z, c, σ1] = (¬x1∨¬u2∨¬y3∨¬v9∨¬a9) is
generated. We can remark that the new clause σ2 contains two literals from the current
decision level 9. In the third step (3), using classical learning, one can search from σ2
for another asserting clause σ3 with only one literal from the current decision level. Let
us note that the new asserting clause σ3 might be worse in terms of back-jumping level.
To avoid this main drawback, the inverse arc c is chosen if the two following conditions
are satisfied : i) the literals of c assigned at the current level (v9) has been already visited
during the first step and ii) all the other literals of c are assigned before the level 7 i.e.
level of z. In this case, we guaranty that the new asserting clause satisfies the following
property : jump(σ3) ≤ jump(σ1). Moreover, the asserting literal of σ3 is ¬a.

One can iterate the previous process on the new asserting clause σ3 to eliminate the
literals of σ3 assigned at level jump(σ3) (for more details see [1]).

26 G. Audemard et al.

5 Experiments

Our extended learning scheme can be crafted to any CDCL based solver. See [1] for
details. The experimental results reported in this section are obtained on a Xeon 3.2
GHz (2 GB RAM) and performed on a large panel of SAT instances (286) coming from
SAT RACE2006 and SAT07 (industrial). All instances are simplified by the satellite
preprocessor [4]. Time limit is set to 1800 seconds and results are reported in seconds.
We implement our proposed extension to Minisat [5] and Rsat [8] and make a compar-
ison between original solvers and extended ones (called MinisatE and RsatE). Figure 2
shows the time (t) (figure on the left-hand side) and the cumulated time (ct) (figure
on the right hand side) needed to solve a given number of instances (nb instances).
t and ct represent respectively the number of instances with running time less than t
seconds and the number of solved instances if we consider that all the instances are run
sequentially within a time limit of t seconds. This global view clearly shows that as t or
ct increase the extended versions solve more instances than the original ones.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20 40 60 80 100 120 140 160

tim
e

(s
ec

on
ds

)

nb instances

Minisat
Minisat Extended

Rsat
Rsat Extended

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 20 40 60 80 100 120 140 160

cu
m

ul
at

ed
 ti

m
e

(s
ec

on
ds

)

nb instances

Minisat
Minisat Extended

Rsat
Rsat Extended

Fig. 2. Time and cumulated time for solving a given number of instances

6 Conclusion

In this paper, we have proposed a generalized framework for conflict analysis. This gen-
eralization is obtained by an original extension of the classical implication graph. This
extension is obtained by considering clauses that come from the satisfiable part of the
formula. Several learning schemes can be defined from this extension. The first exten-
sion of learning that improves the classical asserting clauses in term of back-jumping
level shows the great potential of the new framework. Despite the different restrictions,
our approach achieves interesting improvements of the SAT solvers (Rsat and MiniSat).

References

1. Audemard, G., Bordeaux, L., Hamadi, Y., Jabbour, S., Sais, L.: A Generalized Framework for
Conflict Analysis. Microsoft Research, MSR-TR-2008-34 (2008)

2. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of
clause learning. JAIR 22, 319–351 (2004)

A Generalized Framework for Conflict Analysis 27

3. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Com-
munications of the ACM 5(7), 394–397 (1962)

4. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg
(2005)

5. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT
2003. LNCS, vol. 2919, Springer, Heidelberg (2004)

6. Marques-Silva, J.: Personal communication
7. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an effi-

cient SAT solver. In: Proceedings of (DAC 2001), pp. 530–535 (2001)
8. Pipatsrisawat, K., Darwiche, A.: Rsat 2.0: Sat solver description. Technical Report D–153,

Automated Reasoning Group, Computer Science Department, UCLA (2007)

Adaptive Restart Strategies

for Conflict Driven SAT Solvers

Armin Biere

Johannes Kepler University, Linz, Austria

Abstract. As the SAT competition has shown, frequent restarts im-
prove the speed of SAT solvers tremendously, particularly on satisfiable
industrial instances. This paper presents a novel adaptive technique that
measures the agility of the search process dynamically, which in turn is
used to control the restart frequency. Experiments demonstrate, that this
new dynamic restart strategy improves speed of our SAT solver PicoSAT
on crafted instances considerably and on industrial instances slightly.

1 Introduction

SAT solvers may benefit from restarts [3]. Particularly on satisfiable industrial
examples frequent restarts improved the performance of our SAT solver PicoSAT
[1] tremendously. Even though PicoSAT is a winner of the SAT competition
2007 in the category of satisfiable industrial instances, an analysis of PicoSAT’s
performance on unsatisfiable instances in general and on crafted instances in
particular reveals, that frequent restarts can also be harmful.

In this short paper we address this issue and present a novel adaptive technique
that measures the “agility” of the SAT solver as it traverses the search space, based
on the rate of recently flipped assignments. The level of agility dynamically deter-
mines the restart frequency. Low agility enforces frequent restarts, high agility
prohibits restarts. Our experiments demonstrate, that this new dynamic restart
strategy improves the speed of PicoSAT on crafted instances considerably and on
industrial instances slightly.

As has been argued in [3] combinatorial search has heavy-tail behavior. Even
if an instance is easy to satisfy (or to refute), the search may get stuck in a
complex part of the search space. As a solution to this problem, the authors
suggest to use randomization, and in particular restarts. To restart means to
stop the current search after a certain time has passed and start over again.

Our focus is on industrial and crafted instances. For random benchmarks
randomized algorithms are more successful. There has been work on dynamic
restart algorithms for randomized search, see for instance [4,6]. This work is not
applicable to our setting. We want to improve the performance of conflict driven
SAT solvers with learning, such as RSAT [9] and PicoSAT [1]. Additionally these
solvers always pick the last assignment for a decision variable. Enforcing these
heuristics without learning makes restarts useless. Furthermore, statistics, such
as the number of satisfied clauses, which are crucial in adaptive restart scheduling
for local search [4], are not available in the solvers we want to improve.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 28–33, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Adaptive Restart Strategies for Conflict Driven SAT Solvers 29

Techniques, as implemented in the SAT solver TiniSAT [5] inspired by [7]
and further improved in RSAT [9] and PicoSAT [1], show, that frequent restarts
in combination with saving and reusing the previous phase can speed up SAT
solvers on industrial instances tremendously, particularly on satisfiable ones. In
this category PicoSAT was a clear winner of the SAT’07 Competition.

Beside fast low level data structures [1], the major improvement in version 535
of PicoSAT as submitted to the SAT’07 Competition, is an aggressive restart
schedule in combination with saving and reusing phases of assigned variables:
The first restart occurs after 100 conflicts. Then this restart interval is increased
by 10%, which means the next restart happens after another 110 conflicts, then
after another 121 conflicts etc. However, this sequence of longer and longer in-
ner restart intervals is reset to its initial value of 100 conflicts after the end of
an outer restart interval is reached. Then the outer restart interval is also in-
creased by 10%. This results in “bursts” of restarts. The restart frequency in one
burst sequence slows down at the end and its length, the burst duration, slowly
increases over time. More details can be found in [1].

RSAT [9] follows TiniSAT [5] with respect to restarts. Both have a less ag-
gressive restart strategy than PicoSAT. They also do use the same kind of pre-
processing [2] as MiniSAT. As a result RSAT, TiniSAT and MiniSAT turned
out to be faster than PicoSAT on unsatisfiable industrial instances. On unsat-
isfiable crafted instances the situation is even worse. PicoSAT and in this case
also RSAT can solve far less benchmarks than MiniSAT.

After this analysis it seems a valid conjecture, that frequent restarts may also
be harmful, particularly on unsatisfiable crafted instances. The question then
is, how to measure the effectiveness of frequent restarts, or better, to determine
criteria, when to disable restarts.

2 Measuring Agility

In all our recent SAT solvers we monitor the average decision height and print
it as a kind of progress report. The average decision height is calculated by
summing up the decision levels at decision points and dividing the result by the
number of decisions. If the average decision height is going up, we are “close”
to a satisfying assignment. If the average decision height goes down1, the solver
will eventually resolve the empty clause, or at least some new unit clauses, and
its getting “closer” to a refutation. Intuitively the solver is stuck if the average
height is not changing much, and it may be a good idea to restart. On the other
hand restarts should not happen if the average decision height is changing fast.

Our first failed attempt to dynamically control restarts was based on this ob-
servation. Restarts are disabled if the derivative of the average decision height
becomes small. However, we were not able to get any positive results. In partic-
ularly, it seems to be impossible to come up with good “magic constants”. The
absolute values of the derivative of the average decision height varies consider-
ably from instance to instance.
1 This only applies to a conflict driven SAT solver with learning.

30 A. Biere

2.1 Flips

As pioneered by RSAT [9], PicoSAT always picks the last phase resp. direction
to which a variable was assigned when assigning a decision variable. For instance
if a decision variable was assigned to true, the last time it was assigned, then
again it is assigned to true. If a variable is picked as decision variable and was not
assigned before, then the phase is picked depending on the number of positive
resp. negative occurrences.

Therefore, whenever a variable becomes assigned to a certain value, in partic-
ular if the assignment is forced by some other decision, PicoSAT and RSAT have
to remember this value. During backtracking the variable is unassigned again,
but the old value is saved.

This apparatus easily allows to determine when a new forced2 assignment to
a variable flips the old value of the variable. Flipping the value of a variable
means, that it is assigned to the opposite value, as it was assigned the last time.

Clearly, if the frequency of flips is small, then the SAT solver literally does not
move much, using for instance hamming distance in the boolean space as metric.
This may be a good time to restart. On the other hand if many flips have occurred
recently then there is no point in restarting, it may be even counterproductive.

2.2 A Fresh Look at VSIDS

In order to obtain a robust metric for measuring agility, we follow a reformulation
of the seminal work on VSIDS [8]. The basic idea of VSIDS is to concentrate on
those variables that recently were involved in conflicts: a variable v is involved
in a conflict, if v is resolved in the conflict analysis to produce the learned clause
or is contained in the learned clause.

Every variable has a counter, called the VSIDS score, which counts how often
this variable was used in deriving a learned clause. This counter essentially sums
up all these involvements. However, and this is the intriguing idea of VSIDS, it
is much better to slowly forget past involvement. Variables with higher VSIDS
score are picked as decision variable, which increases the focus of the search.
Explaining the effectiveness of VSIDS is out of the scope of this paper.

One way to implement this scheme, is to multiply the VSIDS counters of all
variables not involved in the current conflict by a constant factor3 0 < f < 1,
but not change the counters of involved variables. However, this does not quite
work, because the counters will never increase. The solution is to first punish all
variables by multiplying their score with f , including variables involved in the
conflict, and only then additionally increment the score of the latter by 1 − f .

s, f ≤ 1, then s′ ≤ s

decay in any case
︷︸︸︷

· f + 1 − f
︸ ︷︷ ︸

increment if involved

≤ f + 1 − f = 1

2 An assignment for a decision variable will always use the old value according to the
direction resp. phase saving and reusing heuristics.

3 MiniSAT, RSAT: f = 95% ≈ 1/1.05, PicoSAT: f = 1/1.1 ≈ 91%.

Adaptive Restart Strategies for Conflict Driven SAT Solvers 31

This reformulation of VSIDS [8] has the benefit that it produces a rational
number between 0 and 1, and can be interpreted as the percentage of the number
of times a variable was involved in a conflict “recently”. Unfortunately we do
not have a more precise definition for “recently” at this moment.

The details are as follows. Let δn denote the normalized nth increment of a
variable v in the nth conflict. It is either 0 if v is not involved in the nth conflict,
or 1 if v is involved, and we have in = (1 − f) · δn for the actual increment in.
Then the nth score sn of v after conflict n can be calculated as

sn = (. . . (i1 ·f + i2) ·f + i3) ·f · · ·) ·f + in =
n

∑

k=1

ik ·fn−k = (1− f) ·
n

∑

k=1

δk ·fn−k

which we call normalized VSIDS (NVSIDS).
In practice it is too costly to update the VSIDS resp. NVSIDS score of all

variables at every conflict, in particular for industrial examples. In the original
Chaff implementation, this overhead is avoided, by accumulating and delaying
punishment: variables are only punished after 256 conflicts have passed, by mul-
tiplying their score by 0.5. Meanwhile involvements increment the score by 1.

MiniSAT 1.13 has shown that it is also possible, much more accurate, more
efficient and more effective to just update the scores of variables involved in the
conflict. The same scheme is used in PicoSAT and in the following we explain
and relate this optimized score calculation to our NVSIDS.

In MiniSAT’s new exponential VSIDS scheme (EVSIDS) variables are not
punished, but the EVSIDS score Sn has to be interpreted as sn · f−n/(1 − f),
where n is the number of conflicts and sn is the NVSIDS score. The increment
becomes fn at the nth conflict and with Ik = δk · f−k we get

sn = (1 − f) ·fn ·
n

∑

k=1

δk · f−k = (1 − f) · fn ·
n

∑

k=1

Ik = (1 − f) · fn · Sn

As the equation shows the EVSIDS score is linearly related to NVSIDS and thus
can be used instead of NVSIDS to compare activity of variables. Moreover, it can
be kept up-to-date by just adding f−k to the score of those variables involved in
the kth conflict. The EVSIDS scores of other variables, which are usually many
more, do not have to be touched.

2.3 Average Number of Recently Flipped Assignments (ANRFA)

To obtain a concrete metric for the agility a we follow the same idea as our
NVSIDS reformulation of VSIDS. The global variable a is initialized to zero and
intuitively measures the average number of recently flipped assignments.

Whenever a variable v is forced to be assigned, a is updated. First a is multi-
plied by 0 < g < 1. If the assignment is a flip, e.g. it assigns the opposite value
as in the previous assignment to v, then we increment a by 1 − g. Assignments

32 A. Biere

of decision variables and variables not assigned before do not increment a. As
discussed for NVSIDS this enforces 0 ≤ a ≤ 1, if we start with a = 0:

a, g ≤ 1, then a′ ≤ a

decay in any case
︷︸︸︷

· g + 1 − g
︸ ︷︷ ︸

increment if flipped

≤ g + 1 − g = 1

Also note that we do not need an “exponential” reformulation of EVSIDS as for
VSIDS, because there is only one single global agility counter.

A value of g = 0.9999 = 1−1/10000 was effective in our experiments. Slightly
different values did not change the result much (in contrast to f in VSIDS).
Note, that there are orders of magnitude more assignments than conflicts in a
SAT run and therefore g naturally has to be much closer to 1 than f .

We logged a over industrial and crafted benchmarks on which the old version
of PicoSAT performed much worse than competitors. It turned out that in those
cases, where we conjectured that restarts should be slowed down, the agility a
varied between 15% and 40%. For many industrial benchmarks a was way below
20%. Therefore we picked 20% as the limit at which a scheduled inner restart is
disabled. Outer restarts are only disabled if the agility reaches 25% and more.
Slightly different values do not change experimental results much.

The restart schedule controls the garbage collection limit for learned clauses,
as in MiniSAT. Thus the restart schedule per se should not change. If a sched-
uled restart is disabled resp. skipped the solver simply does not backtrack and
continues at the same decision level.

Table 1. Number of solved instances: “adaptive = no” is without dynamic restart
control, “adaptive = yes” uses the ANRFA agility a to disable backtracking. Columns
sat, unsat, and solved denote the number of solved satisfiable instances, then the num-
ber of unsatisfiable instances, and the sum of these two numbers. Time out is only 900
seconds which matches the one used in the SAT Race’06, but is much less than the time
limit in the SAT Competition’07. The three rows with AAS-RSAT, show the number
of solved instances for a modified version of RSAT, which is more similar to PicoSAT.
The percentages “25%” and “30%” are the two values on the limit of the ANRFA
agility a. Above this limit AAS-RSAT does not backtrack if a restart is scheduled.

SAT Race’06 SAT Competition’07

industrial crafted

adaptive sat unsat solved sat unsat solved sat unsat solved
MiniSAT 2.0 no 32 38 70 37 57 94 22 46 68

orig. RSAT 2.0 no 38 36 74 41 51 92 10 20 30

AAS-RSAT no 33 33 66 45 48 93 11 21 32
AAS-RSAT 25% yes 34 32 66 44 49 93 11 24 35
AAS-RSAT 30% yes 36 33 69 48 48 96 12 23 35

PicoSAT 741 no 35 39 74 43 54 97 14 24 38
PicoSAT 741 yes 36 39 75 44 57 101 16 36 52

Adaptive Restart Strategies for Conflict Driven SAT Solvers 33

3 Experiments

We added calculating ANRFA and the adaptive restart strategy to PicoSAT and
measured its effect on the SAT Race’06 instances and the SAT’07 Competition
benchmarks with a time out of 900 seconds and a memory limit of 1.5 GB on
Linux PCs with 3 GHz Pentium IV. As Tab. 1 shows we slightly improved on
industrial examples. PicoSAT with the adaptive restart schedule can solve 36%
more crafted instances. This is mainly due to the improvement on unsatisfiable
instances, where 50% more instances are solved.

We also implemented the suggested adaptive technique in RSAT 2.0, the ver-
sion submitted to the SAT’07 Competition. Before we changed the basic restart
interval from 512 to 100 as in PicoSAT and always enforced saving and reusing
phases to match PicoSAT more closely. This results in an “aggressive always
saving” RSAT, called AAS-RSAT, with and without adaptive restart control.
Using adaptive control for restarts in RSAT is not as impressive as for PicoSAT,
but we did not spend much time to optimize magic constants either.

4 Conclusion and Future Work

We presented a new adaptive restart strategy, which slows down restarts if
the agility of the SAT solver is high. The key insight is to apply the same
filtering technique to the number of flipped assignments as in a new reformula-
tion of VSIDS. For PicoSAT considerable performance improvements have been
achieved. In future work we want to apply similar ideas to dynamically control
the number of garbage collected clauses resp. the limit on the number of conflicts.

References

1. Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Com-
putation (submitted, 2008)

2. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elim-
ination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, Springer,
Heidelberg (2005)

3. Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through random-
ization. In: Proc. AAAI 1998 (1998)

4. Hoos, H.: An adaptive noise mechanism for WalkSAT. In: Proc. AAAI 2002 (2002)
5. Huang, J.: The effect of restarts on the eff. of clause learning. In: Proc. IJCAI 2007

(2007)
6. Kautz, H., Horvitz, E., Ruan, Y., Selman, B., Gomes, C.: Dynamic restart policies.

In: Proc. AAAI 2002 (2002)
7. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.

Information Processing Letters 47 (1993)
8. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an

efficient SAT solver. In: Proc. DAC 2001 (2001)
9. Pipatsrisawat, K., Darwiche, A.: RSat 2.0: SAT solver description. Technical Report

D–153, Automated Reasoning Group, Comp. Science Dept., UCLA (2007)

New Results on the Phase Transition for

Random Quantified Boolean Formulas�

Nadia Creignou1, Hervé Daudé2, Uwe Egly3, and Raphaël Rossignol4

1 Université d’Aix-Marseille, Laboratoire d’Informatique Fondamentale,
Luminy, F-13288 Marseille, France

2 Université d’Aix-Marseille, Laboratoire d’Analyse, Topologie et Probabilités,
Chateau Gombert F-13453 Marseille, France

3 Institut für Informationsysteme 184/3, Technische Universität Wien
Favoritenstrasse 9-11, A-1040 Wien, Austria

4 Université de Paris 11, Département de Mathématiques, Bâtiment 425,
F-91405 Orsay Cedex, France

Abstract. The QSAT problem is the quantified version of the satis-
fiability problem SAT. We study the phase transition associated with
random QSAT instances. We focus on a certain subclass of closed quan-
tified Boolean formulas that can be seen as quantified extended 2-CNF
formulas. The evaluation problem for this class is coNP-complete. We
carry out an advanced practical and theoretical study, which illuminates
the influence of the different parameters used to define random quantified
instances.

1 Introduction

Recently there has been a growth of interest in a powerful generalization of the
Boolean satisfiability, namely the satisfiability of quantified Boolean formulas,
QBFs. Compared to the well-known propositional formulas, QBFs permit both
universal and existential quantifiers over Boolean variables. Thus QBFs allow for
the modeling of problems having higher complexity than SAT, ranging in the
polynomial hierarchy up to PSPACE. These problems include problems from the
areas of verification, knowledge representation and logic. The numerous appli-
cations of QBFs have stimulated the development of practically efficient QBF
solvers.

A significant tool for SAT research has been the study of random instances.
It has stimulated fruitful interactions among the areas of artificial intelligence,
theoretical computer science, mathematics and statistical physics. Encouraged
by the widespread embrace of the random SAT model, random instances of
QBF have started to attract some attention (see [8,2,11]). Models for generat-
ing random instances of QBF have been initiated in [8]. Experimental studies
have revealed that QBFs in prenex conjunctive normal form show a sharp tran-
sition from satisfiability to unsatisfiability, similar to the one observed for SAT.
� This work has been supported by EGIDE 10632SE, ÖAD Amadée 2/2006 and ACI

NIM 202.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 34–47, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

New Results on the Phase Transition 35

Chen and Interian [2] proposed a mathematically tangible model for generat-
ing random instances of QBF. The parameter space of the model offers a richer
framework for exploring random instances and their complexity than the SAT
model. Our work takes place in this framework. Our goal is to illuminate the role
of the different parameters. We focus on particular problems for which we can
combine practical experiments with theoretical studies. A first step in this line
of research was made in [5], where we studied the QXOR-SAT problem. This
problem deals with quantified CNF formulas in which the usual “or” is replaced
by the “exclusive or”. It has the property of being polynomial time solvable, and
thus is a natural candidate to carry out both practical and theoretical studies.
Thus, we got new insight on the parameters that influence the nature of the
transition from satisfiability to unsatisfiability for XOR-CNF formulas. Here, we
continue in this line of research in studying another subclass of formulas, but this
time, the evaluation problem is coNP-complete. We focus on a certain subclass
of closed quantified Boolean formulas that can be seen as quantified extended
2-CNF formulas. This feature provides instances that are still in the reach of the
current QBF solvers and also induces some good combinatorial properties that
are of use to derive theoretical results.

More precisely, we are interested in closed formulas in conjunctive normal
form having two quantifier blocks, namely in formulas of the type ∀X∃Y ϕ(X, Y),
where X and Y denote distinct sets of variables, and ϕ(X, Y) is a conjunction of
3-clauses, each of which contains exactly one universal literal and two existential
ones. It is worth noticing that the evaluation problem for this subclass of formulas
is coNP-complete. Moreover it provides a fixed-length-clause class that smoothly
“interpolates” in between P and coNP-complete (see Section 2.1).

In order to generate random instances we have to introduce several parame-
ters. The first one is the pair (m, n) that specifies the number of variables in
each quantifier block, i.e., in X and Y . The second one is L = cn, the number
of clauses. To sum up the generated formulas are of the form ∀X∃Y ϕ(X, Y),
where X has m variables, Y has n variables, each clause in ϕ has one literal
from X and two from Y and there is a total number of cn clauses in ϕ. We are
interested in the probability that a formula drawn at random uniformly out of
this set of formulas evaluates to true as n tends to infinity. We will denote by
Pm,c this probability. We are thus interested in

lim
n→+∞ Pm,c(n).

We prove that the transition between satisfiability and unsatisfiability for such
a random formula occurs when c is in between 1 and 2. Moreover we show that
the parameter that controls the location of the transition is m the number of
universal variables. For m big enough (as a function of n), there is a critical
value (or a threshold) of c, c = 1, above which the likelihood of a random formula
being satisfiable vanishes as n tends to infinity, and below which it goes to 1.
For m small enough, the critical value is at c = 2. An intermediate regime is
obtained when m is of logarithmic order compared to n. Our main result is

36 N. Creignou et al.

Theorem 1. Let m = �α ln n� where α > 0. There exist two decreasing func-
tions a and b with 1 < a(α) ≤ b(α) ≤ 2 such that the following holds:

– if c < a(α), then Pm,c(n) −−−−−→
n→+∞ 1,

– if c > b(α), then Pm,c(n) −−−−−→
n→+∞ 0.

According to the following partition in three intervals for α we have:

1. if α ≤ 1
ln 2

, then a(α) = b(α) = 2,

2. if
1

ln 2
< α ≤ 2

ln 2 − 1/2
, then a(α) < b(α) = 2 and a is strictly decreasing,

3. if α >
2

ln 2 − 1/2
, then a(α) < b(α) < 2, a and b are strictly decreasing

and lim
α→+∞ a(α) = lim

α→+∞ b(α) = 1.

The following figure gives a synthetic picture of the evolution of both lower
and upper bounds a(α), b(α) mentioned in Theorem 1 and explicitly defined in
Section 4.

Fig. 1. a(α) and b(α)

The paper is organized as follows. First in Section 2 we precisely define the
problem we are interested in. We discuss its complexity and finally present the
random model. In Section 3, we report some experiments and we show how
they have lead to first informations on the phase transition from satisfiability to
unsatisfiability. We also illustrate in this section the limits of the experiments.
The proof of our main result is inspired by the investigation done by Chvátal,
Reed and Goerdt [3,10] in establishing a sharp threshold phenomenon for ran-
dom 2-SAT (the associated critical ratio being c = 1). It is based on a digraph
representation of our formulas presented in Section 4. Then, first and second

New Results on the Phase Transition 37

moment methods used on specific structures on these graphs give lower and up-
per bounds for the location of the phase transition. The main steps of the final
analytical analysis are given in Section 5.

2 Definition of Our Problem

2.1 The Problem (1,2)-QSAT and Its Complexity

A literal is a propositional variable or its negation. The atom or the propositional
variable of a literal l, denoted by |l|, is l itself, if l is of the form p, and p if l is of
the form p. A clause is a finite disjunction of literals. A formula is in conjunctive
normal form (CNF) if it is a conjunction of clauses. A formula is in k-CNF, if
any clause consists of exactly k literals.

We assume familiarity with the syntax and semantics of quantified Boolean
formulas (QBFs). We only consider closed QBFs, i.e., QBFs without free vari-
ables. A universal (existential) literal is a literal whose atom is universally (ex-
istentially) quantified.

Here we are interested in formulas of the form

F = ∀X∃Y ϕ(X, Y)

where X = {x1, . . . , xm}, and Y = {y1, . . . , yn}, and ϕ(X, Y) is a 3-CNF for-
mula, with exactly one universal and two existential literals in each clause. We
will call such formulas (1,2)-QCNFs. These formulas can be considered as quanti-
fied extended 2-CNF formulas, because deleting the only universal literal in each
clause and removing the then superfluous ∀-quantifiers results in an existentially
quantified set of binary clauses. In the following, the 2-CNF formula so obtained
will be denoted by FY = ∃Y ϕ(Y).

A (1,2)-QCNF formula is true (or satisfiable) if for every assignment to the
variables X , there exists an assignment to the variables Y such that ϕ is true.

Let us give some information about the complexity of the evaluation (true
or false) of such formulas. The exhaustive algorithm which consists in deciding
whether for all assignment to the variables X , there exists an assignment to the
variables Y such that ϕ is true provides a first upper bound for the worst case
complexity. Indeed, since the satisfiability of a 2-CNF formula can be decided in
linear time [1], the evaluation of the formula ∀X∃Y ϕ(X, Y) can be performed
in time O(2m · |ϕ|), where m is the number of universal variables. Observe that
if m is bounded by a constant, then it provides a linear time algorithm, and if
m is of the order of log n, then it provides a polynomial time algorithm. If m
has the same order as n, then the above algorithm runs in exponential time.
Moreover this problem is in coNP: to prove that such a formula is unsatisfiable,
guess a vector of truth values v1, . . . , vm corresponding to x1, . . . , xm. Replace in
∃Y ϕ(X, Y) all free occurrences of any xi by vi, remove ⊥ from the clauses and
delete clauses with 	. The resulting formula is a usual 2-CNF formula, whose
unsatisfiability can be checked in polynomial time. It is also hard for this class
as shown in [7].

38 N. Creignou et al.

Theorem 2

– For every fixed α, when restricted to formulas having m universal variables
and n existential variables with m = �α ln n�, the evaluation problem for
(1,2)-QCNF formulas is decidable in polynomial time.

– In its full generality, this evaluation problem is coNP-complete.

It is interesting to note that the same functional dependency between the number
of universal variables and the number of existential one, namely m = �α ln n�,
appears in Theorem 1 and in Theorem 2, thus controlling the location of the
transition as well as the complexity of the evaluation problem.

2.2 Random Instances

Let us now describe our model, which is a model suggested in [8] and system-
atically defined in [2]. The model has several parameters. The first parameter
is a pair (m, n) specifying the number of variables in each quantifier block, re-
spectively in X and Y . The second parameter is L, the number of clauses. To
sum up the generated formulas are of the form ∀X∃Y ϕ(X, Y), where X has m
variables, Y has n variables, each clause in ϕ has one variable from X and two
from Y and there is a total number of L clauses in ϕ.

Throughout the paper, we reserve m for the number of universal variables, n
for the number of existential variables. Note that there are

N = m ·
(

n

2

)

· 23 = 4 · m · n(n − 1) (1)

clauses. We consider random formulas ∀X∃Y ϕ(X, Y) obtained by choosing uni-
formly independently and with replacement L clauses from all the possible
N clauses. We will always consider the parameter m as a function of n, i.e.,
m = m(n) and L as a fraction of n, i.e., L = cn. Thus, we are interested in the
probability that a formula drawn at random uniformly out of this set of formulas
is true as n tends to infinity. It is well-known that equivalently, we can consider
a formula drawn at random in choosing independently each possible clause with
probability p, where N · p = c · n, that is

p ∼ c

4nm
.

We will denote by Pm,c(n) the probability that such a random formula is
true. For fixed n and m, Pm,c(n) is a decreasing function of c = L/n, which is
a control parameter for the transition from satisfiability to unsatisfiability. We
will be interested in studying lim

n→+∞ Pm,c(n) as a function of the parameters m

and c. Any value of c such that Pm,c(n) → 1 (resp. s. t. Pm,c(n) → 0) gives
a lower (resp. upper) bound for the threshold effect associated to the phase
transition.

New Results on the Phase Transition 39

3 Experimental Results and a First Estimate for the
Location of the Threshold

Before we start discussing the empirical results, let us first describe how we
performed the experiments. All experiments have been conducted according to
the same scheme, which is described with the help of Fig.2. One experiment
consisted in generating at random (in drawing uniformly and independently)
(1,2)-QCNF formulas over given values of m universal variables and n existential
variables, with a ratio “number of clauses/number of existential variables” vary-
ing from 0.85 to 1.2 in steps of 0.05. In Fig. 2, m = n and the values are 5000,
10000, 20000 and 40000. For each of the chosen values of ratio, a sample of 1000
formulas have been studied using the QBF solver QuBE [9], thus computing the
truth value of each formula. The proportion of true (or satisfiable) instances for
each considered value of ratio has been plotted in Fig. 2.

The experimental results shown in Fig. 2 suggest that, if m = n, then the
transition between satisfiability and unsatisfiability occurs when the ratio of
number of clauses to number of existential variables, c, is equal to 1. Fig. 3
shows that if m is constant, m = 2, then the transition occurs at c = 2. Moreover,
the experiments reported in Fig. 4 indicate that an intermediate regime, with a
transition occurring in between 1 and 2, can also be observed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

S
A

T

no clauses/no exvars

(1,2)-(5k,5k)-QCNF
(1,2)-(10k,10k)-QCNF
(1,2)-(20k,20k)-QCNF
(1,2)-(40k,40k)-QCNF

Fig. 2. Pm,c when m(n) = n. The threshold occurs at c = 1.

These first experiments indicate that the phase transition from satisfiability
to unsatisfiability for (1,2)-QCNF formulas occurs when 1 ≤ c ≤ 2. The following
easy result confirms this observation.

Proposition 1. Let m = m(n) be any sequence of integers.

– If c < 1 then Pm,c(n) −−−−→
n→∞ 1.

40 N. Creignou et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25

S
A

T

no clauses/no exvars

(1,2)-(2,10k)-QCNF
(1,2)-(2,20k)-QCNF
(1,2)-(2,40k)-QCNF

Fig. 3. Pm,c when m(n) = 2. The threshold occurs at c = 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.2 1.4 1.6 1.8 2

S
A

T

no clauses/no exvars

(1,2)-(80, 12365)-QCNF
(1,2)-(23, 11222)-QCNF
(1,2)-(15, 12445)-QCNF

Fig. 4. Pm,c when m(n) is varying

– If c > 2 then Pm,c(n) −−−−→
n→∞ 0.

Proof. Let Ft be the 2-CNF formula obtained from F by setting all the variables
x1, . . . , xm to true and omitting all quantifiers. If F is satisfiable, then so is Ft.
Notice that Ft can be obtained by picking independently each possible 2-clause
with probability q(n) = 1−(1−p(n))m = c

4n +O
(1

n2

)

. Thus the average number
of clauses in Ft is equal to 4

(
n(n−1)

2

)

· q ∼ c/2 · n. It follows from the threshold
of 2-SAT [3,10] that Ft is unsatisfiable with probability tending to 1 if c > 2.
Thus, the same holds for F .

New Results on the Phase Transition 41

Now, we look at the existential part of the formula, FY . Observe that if FY is
satisfiable, then so is F . In FY , each of the 4

(
n
2

)

2-clauses appear independently
with probability q′(n) = 1−(1−p(n))2m = c

2n +O
(1

n2

)

. Therefore, the threshold
of 2-SAT tells us that when c < 1, the formula FY is satisfiable with probability
tending to one.

For m constant the critical value seems to be at 2, for m = n it seems to be
at 1. Then a natural question arises: at what speed should m vary so that the
critical value is strictly in between 1 and 2? The curves shown in Fig. 4 suggest
that a good candidate to look at is when m is of logarithmic order compared
to n. Indeed, each of the curves in this figure corresponds to m = �α ln n� for
some value α, respectively for α = 9/8, 3/2 and 15/8. The following proposition
confirms that the logarithmic scale is indeed a good candidate.

Proposition 2. Let m=m(n) be a sequence of integers such that m ≤ ln n/ ln 2.
If c < 2 then Pm,c(n) −−−−→

n→∞ 1.

Observe that this result together with Proposition 1 shows a threshold at c = 2
when m is small enough, that is when m ≤ ln n/ ln 2. In Theorem 1, this corre-

sponds to the first interval, namely α ≤ 1
ln(2)

.

To take a step further, a question is whether we can continue to use exper-
iments in order to make precise the critical value when m = �α ln n�. Are the
solvers, and the machines, powerful enough to provide experiments at a scale
big enough?

Figures 5 and 6 show that the critical value of the threshold is very difficult
to estimate from the experiments. The experimental results reported in Figure
5 could suggest that all the curves pivot about a single point, thus indicating
a critical ratio at c ∼ 1.8. However, as evidenced in Figure 6, which consists

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

S
A

T

no clauses/no exvars

(1,2)-(10,500)-QCNF
(1,2)-(10,1000)-QCNF
(1,2)-(10,2000)-QCNF
(1,2)-(10,4000)-QCNF

Fig. 5. Pm,c when m(n) = 10. Is the threshold at c = 1.8?

42 N. Creignou et al.

 0

 0.05

 0.1

 0.15

 0.2

 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1

S
A

T

no clauses/no exvars

(1,2)-(10,500)-QCNF
(1,2)-(10,1000)-QCNF
(1,2)-(10,2000)-QCNF
(1,2)-(10,4000)-QCNF
(1,2)-(10,8000)-QCNF

(1,2)-(10,16000)-QCNF
(1,2)-(10,32000)-QCNF
(1,2)-(10,64000)-QCNF

(1,2)-(10,128000)-QCNF

Fig. 6. Pm,c when m(n) = 10. The critical value is difficult to estimate.

in experiments on a finer scale for bigger values of n, one can have successive
crossings of pairs of curves for increasing values of n, which provide only a rough
estimate of a possible critical ratio. Moreover, the asymptotical behavior (here
according to Proposition 2, we have a critical ratio at 2) is still not reached for
very big values of n, e.g., for n = 128000.

For this reason, when looking at the case m = �α ln n� (for which the com-
plexity is higher than in the case m = 10) one cannot hope that the experiments
furnish a reliable estimate on the relationship between the location of the thresh-
old and α.

4 Main Result and Its Relation to 2-SAT

Our main result, which is stated in Theorem 1, shows that the transition occurs
for c strictly in between 1 and 2 when the number of universal variables is
of a sufficiently large logarithmic order compared to the number of existential
variables. Two functions a(α) and b(α), which give respectively a lower and an
upper bound for the threshold, are announced in Theorem 1 and shown in Fig. 1.
Our probabilistic analysis shows that they are implicitly defined as follows:

a(α) is the unique solution of H(c) =
1
α

for c ∈]1, 2[where

H(c) = ln(c) +
(2
c

− 1
)

ln(2 − c),

b(α) is the unique solution of K(c) =
1
α

for c ∈]1, 2[where

K(c) =
1
2

(

ln c +
1
c

− 1)
)

.

New Results on the Phase Transition 43

We have lim
α→+∞ a(α) = lim

α→+∞ b(α) = 1. Thus, when m/ lnn −−−−−→
n→+∞ +∞, Theo-

rem 1 together with Proposition 1 establish a sharp threshold for the satisfiability
of (1,2)-QCNF formulas with a critical ratio at c = 1. Since it is easy to derive
from [7] that the evaluation problem of (1,2)-QCNF formulas is coNP-complete
when restricted to the case m = n, this proves a sharp threshold for a quantified
satisfiability problem which is coNP-complete.

In order to prove our main result we will use the relation of our problem to
random 2-SAT. Chvátal and Reed introduced specific substructures (bicycles
and snakes) on digraphs associated to 2-CNF formulas. Below we will show that
their analysis can be adapted to study (1,2)-QCNF random formulas in consid-
ering labeled digraphs, pure bicycles and simple snakes. Although the digraph
structures associated to 2-CNF and (1,2)-QCNF formulas are very similar, we
will need a more involved analysis to describe the probabilistic behavior of pure
bicycles and simple snakes associated to our quantified formulas.

4.1 Representation of (1,2)-QCNF Formulas as Labeled Digraphs

Any (1,2)-QCNF-formula can be represented as a digraph with labeled arcs. For
constructing the digraph, we construct the implication digraph [1] associated
with the existential 2-CNF formula, and we put the universal literal as a label
of the two arcs derived from each clause. Two labels are dual if one is x and
the other x̄ for some universal variable x. We say that a subgraph of a labeled
digraph is pure if its set of labels does not contain two dual labels. The maximal
pure subgraphs correspond to the implication graphs of the 2-CNF formulas
obtained after instantiating the universal variables in the original formula and
deleting the quantifiers. Therefore the quantified formula is satisfiable if and
only if all the 2-CNF formulas corresponding to the maximal pure subgraphs
are satisfiable.

Let φ : ∀x1∃y1y2((x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2)). The labeled digraph of φ
is shown on the left in Fig. 7 together with its two maximal pure subgraphs.
The first one corresponds to the instantiation x1 = 1, whereas the second one
corresponds to the instantiation x1 = 0.

In order to get lower and upper bounds for the location of the phase transition
the idea is to identify specific structures in these graphs that guarantee a formula
to be satisfiable (respectively unsatisfiable).

By a bicycle of length s+1 ≥ 3, we mean a set of s+1 clauses C0, . . . , Cs that
have the following structure: there are s distinct existential literals w1, . . . , ws

y1 y2

y1 y2

x1

x1

x1x1

y1 y2

y1 y2

y1 y2

y1 y2

Fig. 7. The digraph for φ together with its maximal pure subgraphs

44 N. Creignou et al.

such that no wi is the complement of another, there is a sequence v0, . . . , vs of
s + 1 universal literals (or labels), each Cr with 0 < r < s is (vr ∨ wr ∨ wr+1),
and C0 = (v0 ∨ u ∨ w1), Cs = (vs ∨ ws ∨ v) with literals u, v chosen from
w1, . . . , ws, w1, . . . , ws with (u, v) �= (ws, w1). We consider pure bicycles, which
are bicycles such that no label is the complement of another.

Claim. Every unsatisfiable (1,2)-QCNF formula contains a pure bicycle.

Let B be the number of pure bicycles in a (1,2)-QCNF formula. In our proba-
bilistic model, we deduce from the above claim and the Markov inequality

1 − Pm,c(n) ≤ Pr(B ≥ 1) ≤ E(B). (2)

By a snake of length s+1, we mean a set of s+1 clauses C0, . . . , Cs, that have
the following structure: there are s distinct existential literals w1, . . . , ws with
s = 2t − 1 such that no wi is the complement of another, there is a sequence
v0, . . . , vs of s + 1 universal literals (or labels), each Cr with 0 ≤ r ≤ s is
(vr ∨ wr ∨ wr+1) with w0 = ws+1 = wt. We consider simple snakes, which are
snakes such that no label is the same as or the complement of another. Note
that a simple snake is pure. Simple snakes are easier to enumerate than pure
ones and will be sufficient for our purpose. Observe that ∀X∃Y C0 ∧ . . . ∧ Cs is
unsatisfiable.

Claim. Every (1,2)-QCNF formula that contains some simple snake is unsatisfi-
able.

Let X be the number of simple snakes of size s + 1 = 2t in a (1,2)-QCNF
formula. In our probabilistic model, we deduce from the above claim and the
Cauchy-Schwarz inequality:

1 − Pm,c(n) ≥ Pr(X ≥ 1) ≥
(

E(X)
)2

E(X2)
(3)

4.2 The First Moment of B and the Second Moment of X

In our probabilistic model, where p =
c

4m(n − 1)
∼ c

4nm
, the following result

will be the starting point to get lower bounds for the location of the phase
transition.

Proposition 3. The mean of the number B of pure bicycles in a random
(1,2)-QCNF formula is given by

E(B) =
n

∑

s=2

(n)s2s[(2s)2 − 1]c(m, s + 1)ps+1 , (4)

where

c(m, s + 1) =
min(m,s+1)

∑

k=1

(

m

k

)

· 2k · S(s + 1, k) · k! (5)

with S(m, k) denoting the Stirling number of the second kind.

New Results on the Phase Transition 45

Proof. To count B, choose s, the s distinct literals w1, . . . , ws such that no wi

is the complement of another, choose u and v, and choose the pure sequence of
s + 1 labels v0, . . . , vs (they are not necessarily distinct but no literal can be the
complement of another).

Let c(m, s + 1) be the number of pure sequences of literals of length s + 1,
having a set of m variables from which the literals can be built. Let us recall
that S(m, k) · k! is the number of applications from a set of m elements onto
a set of k elements. A pure sequence of literals of length s + 1 is obtained by
exactly one sequence of choices of the following choosing process.

1. Choose the number k of different variables occurring in the sequence.
2. Choose the k variables
3. For each such variable, choose whether it occurs positively or negatively.
4. Choose their places in the sequence.

As in [3], the following observation will be the starting point to get upper bounds
for the location of the phase transition:

Proposition 4. Let X be the number of simple snakes of size s + 1 = 2t in a
(1,2)-QCNF formula. Then

(E(X))2

E(X2)
=

1
q0(m, n) +

∑2t
i=1 qi(m, n) · p−i

(6)

where

qi(m, n) =
#{simple snakes B such that |A0 ∩ B| = i}

#{simple snakes} (7)

for any fixed simple snake A0, with |A0 ∩ B| denoting the number of clauses A0
and B share.

5 Proofs

5.1 Proof of Proposition 2

Coming back to the first moment of B, we get from equation (4):

E(B) ≤ c

nm

n
∑

s=2

s2(
c

2m
)sc(m, s + 1) . (8)

Notice that c(m, s + 1) is bounded from above by 2min{m,s+1} times the number
of applications from {1, . . . , s + 1} to {1, . . . , m}:

c(m, s + 1) ≤ 2min{m,s+1}ms+1 . (9)

When x ∈]0, 1[and r ≥ 1, standard computations show that:

∞
∑

s=r

s2xs ≤ r2 xr

(1 − x)3
. (10)

46 N. Creignou et al.

Thus, when 1< c< 2, then E(B)≤ c

n

m−1
∑

s=2

s2cs+
c2m

n

∞
∑

s=m

s2
(c

2

)s

=O

(

m2 cm

n

)

,

which goes to zero as n goes to infinity when m ≤ ln n/ ln 2. Proposition 2 is
proved.

5.2 Proof of the Lower Bound in Theorem 1

By using precise results for the behavior of Stirling numbers of the second kind
[12] (already used in [6] and [5]), a finer analysis of the expected number of pure
bicycles as expressed in (4) gives the following result.

Theorem 3. When 1 < c < 2, and m = �α ln n� with α >
1

ln(2)
, the average

number of pure bicycles satisfies

E(B) ≤ C(ln n)9/2 · nαH(c)−1 + o(1),

where C is a constant depending only on α and c, and H(c) = ln(c) +
(2
c

−
1
)

ln(2 − c).

Let a(α) be the solution of the equation α · H(c) = 1, then for c < a(α) the
above result shows that E(B) = o(1). Thus, with (2) we deduce the lower bound
stated in Theorem 1.

5.3 Proof of the Upper Bound in Theorem 1

When considering simple snakes and making a similar estimation as in equations
(8) and (9) in [3], we get the following result.

Theorem 4. When 1 < c < 2, m = �α ln n� and for t =
⌈α

2
(1 − 1

c
) ln(n)

⌉

we
have

2t
∑

i=1

qi(m, n)p−i = O
(

max
(

ln(n) · n1−αK(c),
(ln n)10

n

)
)

where K(c) =
1
2

(

ln c +
1
c

− 1)
)

.

Let b(α) be the solution of the equation α · K(c) = 1 then b(α) < 2 when α >
2

ln(2) − 1/2
. For c > b(α) the above result shows that

∑2t
i=1 qi(m, n)p−i = o(1).

Observe that
2t

∑

i=0

qi(m, n) = 1, then with (3) and (6) we get the upper bound

stated in Theorem 1.

New Results on the Phase Transition 47

6 Conclusion

We have made an extensive study of a natural and expressive quantified problem.
The obtained results have several interesting features. They highlight the role
of different parameters and their influence on the transition. These results are
based on experiments that make use of a current QBF solver. These experiments
are carried out at a scale large enough in order to give a useful intuition on the
asymptotical behavior of random instances. We have shown that functional de-
pendencies other than m = ρn can be important. Indeed, we have demonstrated
that m = �α ln n� is the scale which is crucial, both for the complexity and the
behavior of random instances (see Theorems 1 and 2). Moreover, we give the
precise location of the sharp phase transition (namely at c = 1) for a natural
quantified problem (namely when m = n) which is coNP-complete.

References

1. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified Boolean formulas. Information Processing Letters 8(3), 121–
123 (1979)

2. Chen, H., Interian, Y.: A model for generating random quantified Boolean formulas.
In: Proceedings of the 19th International joint Conference on Artificial Intelligence,
IJCAI 2005, pp. 66–71 (2005)

3. Chvátal, V., Reed, B.: Mick gets some (the odds are on his side). In: Proceedings
of the 33rd Annual Symposium on Foundations of Computer Science, FOCS 1992,
pp. 620–627 (1992)

4. Creignou, N., Daudé, H., Dubois, O.: Expected number of locally maximal solutions
for random Boolean CSPs. In: Proceedings of the13th International Conference on
Analysis of Algorithms, AofA 2007, Antibes, June 2007. DMTCS, pp. 507–516
(2007)

5. Creignou, N., Daudé, H., Egly, U.: Phase transition for random quantified XOR-
formulas. Journal of Artificial Intelligence Research 19, 1–18 (2007)

6. Dubois, O., Boufkhad, Y.: A general upper bound for the satisfiability threshold
of random r-SAT formulae. Journal of Algorithms 24(2), 395–420 (1997)

7. Flögel, A., Karpinski, M., Kleine Büning, H.: Subclasses of quantified Boolean
formulas. In: Schönfeld, W., Börger, E., Kleine Büning, H., Richter, M.M. (eds.)
CSL 1990. LNCS, vol. 533, pp. 145–155. Springer, Heidelberg (1991)

8. Gent, I.P., Walsh, T.: Beyond NP: the QSAT phase transition. In: Proceedings of
AAAI 1999 (1999)

9. Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE: A System for Deciding Quan-
tified Boolean Formulas Satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.)
IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 364–369. Springer, Heidelberg (2001)

10. Goerdt, A.: A threshold for unsatisfiability. Journal of of Computer and System
Sciences 53(3), 469–486 (1996)

11. Interian, Y., Corvera, G., Selman, B., Williams, R.: Finding small unsatisfiable
cores to prove unsatisfiability of QBFs. In: Proceedings of the 9th International
Symposium on Artificial Intelligence and Mathematics (2006)

12. Temme, N.M.: Asymptotic estimates of Stirling numbers. Stud. appl. Math. 89,
223–243 (1993)

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 48–62, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Designing an Efficient Hardware Implication
Accelerator for SAT Solving

John D. Davis1, Zhangxi Tan2,*, Fang Yu1, and Lintao Zhang1

1 Microsoft Research Silicon Valley Lab
{joda,fangyu,intaoz}@microsoft.com

2 UC Berkeley
xtan@cs.berkley.edu

Abstract. This paper discusses the design of a hardware accelerator for Boo-
lean Constraint Propagation (BCP) using Field Programmable Gate Arrays
(FPGA). In particular, we describe the detailed implementation of the inference
engine, a key component of the accelerator that performs implications. Unlike
previous efforts in FPGA assisted SAT solving, our design uses Block RAM
(BRAM) to store instance information. This novel design not only facilitates
fast lookup and update, but also avoids synthesizing overhead for each SAT in-
stance. We demonstrate that SAT instances can be easily partitioned into multi-
ple groups that can be processed by multiple inference engines in parallel. By
exploiting parallelism in hardware, the BCP accelerator can infer implications
in 6 to 17 clock cycles for a new variable assignment. In addition, our design
supports dynamic insertion and deletion of learned clauses. Cycle accurate
simulation shows that our BCP accelerator is 5~16 times faster than the conven-
tional software based approach for BCP.

1 Introduction

Hardware-assisted SAT solving has attracted much research in recent years. Designs
based on Field Programmable Gate Arrays (FPGAs) have been described in
[2][3][4][5][6][7][8], and were compared in a survey [9]. Unfortunately, most of these
accelerators were designed before the prevalence of the so called “chaff-like” modern
SAT solvers [10][1]. Due to the tremendous improvements of modern SAT solvers
and the stringent requirements from industrial applications, many of the existing
hardware solvers are either obsolete in some cases and/or severely constrained in
others. For example, compared with modern software solvers, the hardware accelera-
tors from previous work were usually slow and capacity limited, and they are unable
to accommodate important features in software SAT solvers such as learning.

Our main goal in this research is to leverage hardware acceleration to build a prac-
tical SAT solver. In a previous paper [11], we described the overall architecture of the
FPGA-based SAT accelerator and compared it with previous works. Our design con-
centrates on accelerating the Boolean Constraint Propagation (BCP) part of the SAT
solving process in hardware. We target the acceleration of the BCP phase because it is

* This work was done during the author’s internship at Microsoft Research.

 Designing an Efficient Hardware Implication Accelerator for SAT Solving 49

a stable component in all SAT solvers and accounts for 80~90% of total runtime in a
modern software SAT solver. The rest of the work such as branching, restarting and
conflict analysis is left to the software on the host computer. Our accelerator is appli-
cation specific instead of instance specific. It does not require time consuming re-
synthesizing the logic in the FPGA for each new CNF instance and can load a SAT
instance into the FPGA in sub-second.

In this paper, we describe the key component of the accelerator, namely the infer-
ence engines. The inference engine is responsible for inferring new implications from
new variable assignments. In our design, each inference engine is in charge of a num-
ber of clauses. The information of these clauses such as the literals and their corre-
sponding values is stored locally in FPGA Block RAM (BRAM). Multiple inference
engines can operate in parallel to perform inferences on the same newly assigned
variable. In our design, clauses need to be partitioned and the groups of clauses are
distributed across multiple inference engines. Finding the optimal partitioning that
uses the least amount of memory is itself an NP hard problem. In this paper, we pre-
sent a simple and efficient clause partitioning algorithm that generates high quality
partitions in practice.

In our previous work [11], the design lacked the ability to accommodate learned
clauses, which is a critical feature of modern SAT solvers. One of the main contribu-
tions of this paper is the improved inference engine design with the ability to dynami-
cally insert and delete learned clauses.

2 An Overview of the Hardware SAT Accelerator

For the completeness of the paper, we briefly review the design of the accelerator. We
refer the readers to [11] for a detailed description of the architecture and the rationales
behind the design. The overall system architecture of the accelerator is shown in
Figure 1. The shaded blocks are modifications to accommodate learning (as described
in section 3.4). It is composed of the following major components:

Inference
Engine

Inference
Engine

From
CPU

In
fe
re
n c
e
M
ul
tip
l e
x e
r

DRAM

2

1 3

4

Conflict
Inference
Detection

5

To
CPU Learned

Clause

Im
pl
ic
at
io
n
Q
ue
ue

Fig. 1. FPGA Boolean Constraint Propagation Accelerator Architecture

50 J.D. Davis et al.

1. CPU Communication Module: This module receives branch decisions from
and returns inference results back to the CPU.

2. Implication Queue: Decisions from the CPU and implications derived from
the inference engines are queued in a FIFO and sent to multiple implication in-
ference engines. This module also puts the implications performed in a buffer
to be sent back to the CPU.

3. Parallel Inference Engines: Clauses of the SAT formula are partitioned and
stored in multiple inference engines. We present a more detailed description of
the inference engines in Section 3.

4. Inference Multiplexer: This module serializes the data communications be-
tween the parallel inference engines and the sequential conflict inference detec-
tion stage.

5. Conflict Inference Detection: This module stores the global variable values
and detects conflict inference results generated by the inference engines.

3 Inference Engines

The inference engine is the key component of any SAT solver, regardless of whether
it is hardware or software based. Given a new variable assignment, the implication
machinery in a SAT solver needs to infer the implications caused by the new assign-
ment and current variable assignments. To accomplish this, it must store the clause
information. In software SAT solvers, the clauses are stored in main memory as ar-
rays or lists of literals. Previous hardware SAT solvers such as [3] synthesize clauses
into gates using Lookup Tables or LUTs in the FPGA. This design is inflexible be-
cause each new SAT instance requires the FPGA to be re-synthesized, which is time
consuming1. Moreover, most current FPGAs cannot be dynamically re-configured or
the process is very cumbersome, thus making dynamic clause addition/removal diffi-
cult. In our novel design, we leverage the fact that modern FPGAs have many banks
of Block RAM (BRAM), which are distributed around the FPGA with the configur-
able logics (LUTs). We use BRAM to store clause information, thus avoiding
re-synthesizing the logic in the FPGA. Multiple BRAM blocks can be accessed at the
same time to provide the necessary bandwidth and parallelism. Moreover, BRAMs
can be loaded on the fly, making dynamic clause addition and deletion for learning
possible. BRAMs in our targeted FPGA are dual ported. Therefore, implication and
learning mechanisms can access BRAM at the same time without disrupting each
other’s operation.

In our design, we partition clauses into non-overlapping groups so that each literal
only occurs at most p times in each group. Here, we restrict p to be a small number,
e.g., one or two. We also allocate enough BRAM for each engine to store c clauses,
with c being a fixed number for all engines (e.g. 1024). Each group of clauses is proc-
essed by a hardware element (called an inference engine). Given a newly assigned
variable, each engine only needs to work on at most p related clauses -- a process that

1 [8] uses memory to store clauses, but the solver stores a full matrix of the clause data, instead

of the traditional sparse matrix representation as in software SAT solvers.

 Designing an Efficient Hardware Implication Accelerator for SAT Solving 51

takes a fixed number of cycles. Thus, by limiting p, multiple inference engines process
literal assignments in parallel rather than in serial as in software solvers. By partition-
ing clauses into groups, the number of engines can be significantly smaller than the
number of clauses, more efficiently utilizing FPGA resources. We allow p to be larger
than one because slightly larger p can help reduce the number of engines required. This
is especially helpful for long clauses such as the learned clauses because they share
variables with many other clauses. Although it is outside of the scope of this paper, we
can adjust p and c to optimize the number of inference engines and the memory utiliza-
tion within the inference engine. In Section 3.1, we present the partitioning algorithm
and study the effect of p in the simulation section.

We will describe the high-level inference engine functionality, followed by the de-
sign considerations and challenges. Inference engines use a two step operation to
process a new variable assignment and produce possible implications, as shown in
Figure 2. In the first step, the inference engine needs to find out whether the assigned
variable actually is related to any clauses stored in the engine, and if so, identify these
clauses. In the second step, the engine examines these clauses to see whether they
actually imply a new variable. The algorithm and data structure for the first step is
described in Section 3.2, and the second step is described in Section 3.3. In Section
3.4, we describe how we dynamically add clauses into and remove clauses from infer-
ence engines to enable learning.

Clause index
walk

(4 cycles)

Implication
(2 cycles)

Tree
walk
Table
(BRAM)

Input:
new variable
index and
value

Output:
inferred variable
(index &value)Clause

status
Table
(BRAM)

Fig. 2. Inference engine overview

3.1 Clause Partition for Inference Engines

As mentioned previously, our design restricts the number of clauses associated with
any inference engine to be at most c clauses, and restricts the max number of occur-
rences of any variable in an inference engine to be p. In this section, we discuss the
algorithm for partitioning a SAT instance into multiple groups that satisfy these re-
strictions.

If we restrict each literal to be associated with at most one clause (p=1) in each
group, and allow unlimited group size (c=∞), the problem is essentially a graph coloring
problem. Each vertex in the graph represents a clause. An edge between two vertices
denotes that these two clauses share a common literal. The graph coloring process ensures
that no two adjacent vertices have the same color. This process is equivalent to dividing
the clauses into groups with each color denoting a group and no two clauses in a group
share any literal. Therefore, we can use the graph coloring algorithms to solve a relaxed
partitioning problem (c=∞ and p=1).

52 J.D. Davis et al.

The graph coloring problem is a well know NP Complete problem [13] and has
been extensively studied. DSATUR, TABU, MAXIS, to name a few, are well known
graph coloring algorithms [14]. These algorithms are not directly applicable because
our problem restricts the group size c and allows p>1 (p adjacent edges have the same
color). Since an optimal solution for the partition is not required, we use a simple yet
effective greedy algorithm to partition the clauses.

The goal of the partitioning algorithm is to ensure that any literal is associated with
at most p clauses per group. Meanwhile, we want to evenly distribute clauses across
groups and minimize the number of groups (inference engines) required. Our greedy
algorithm is shown in Figure 3. It begins with zero groups and loops through all the
clauses that have not been assigned a group and inserts the clause into the first group
Gi that can accommodate it. The accommodation criteria is checked in lines 5-8 of the
pseudo-code -- for each variable in clause Ci, there should be no more than p-1 related
clauses in group Gi. If there exists a group Gi that can accommodate this clause, we
insert it into the group. Otherwise, the algorithm creates a new group (Line 12) and
adds the clause to the new group (Line 13). After the algorithm finishes processing all
the clauses, it returns all groups in G. This algorithm is obviously polynomial with
respect to the size of the input and in Section 4, we will compare it with graph-
coloring based algorithms. Note that the greedy algorithm we listed here is just one
possible algorithm. In general, the group selection criteria can be very flexible (e.g.
instead of selecting the first group, choose the group that contains the least number of
clauses). In Section 4.1, we provide further discussion of the group size, distribution,
and techniques like introducing new variables to improve the clause partitioning.

Algorithm: Partition clauses into multiple engines
Input: Clauses list C, the maximum number of clauses associated

with one variable is p
Output: Groups of clauses, each group fits into one engine

1 Begin
2 Groups G = ∅
3 For each clause Ci that has not been assigned a group yet
4 For each group Gi in G
5 For each variable Vj in Ci
6 If Vj has p related clauses in group Gi already
7 pass to next group Gi+1 (Goto line 4);
8 End for
9 Assign Ci to the group Gi;
10 pass to next clause (Goto line 3);
11 End for
12 Create a new group Gnew and add it to G;
13 Add clause Ci to group Gnew;
14 End for
15 Return all

groups in G

16 End

Fig. 3. Clause partitioning algorithm

3.2 Literal Occurrence Lookup

Given a newly assigned variable as input, the inference engine first needs to efficiently
locate the clauses associated with the variable. In a software SAT solver, this can
be implemented by associating each variable with an array of its occurrences (the occur-
rence list). A more efficient implementation may only store the watched clauses in each

 Designing an Efficient Hardware Implication Accelerator for SAT Solving 53

array (the watched list [10]). This scheme reduces the number of clauses to be exam-
ined, but does not reduce the total number of arrays, which is proportional to the number
of variables. In our design, given an inference engine, each variable has at most p
occurrences and most variables have no occurrence at all. Storing an entry for each
variable in every inference engine is inefficient space-wise since SAT benchmarks often
contain thousands of variables. A possible solution is to use a Content Addressable
Memory (CAM), the hardware equivalent of a hash table. Unfortunately, most FPGAs
do not contain CAMs as hard blocks and implementing CAM in an FPGA is expensive
[15]. Instead, we implemented a novel tree walk algorithm for this purpose.

We organize the literal occurrences in an inference engine in a trie. A leaf node
stores the clause ID where the literal occurs, as well as the literal index in the clause
that corresponds to the literal. An internal node contains an offset pointer (the base
index) to help locate the leaf nodes that share the same variable ID prefix. The tree is
stored in the tree walk table in an on-chip BRAM block local to the inference engine
module. Suppose the variable index has a width of k (so that the accelerator can han-
dle 2k variables) and every non-leaf tree node has 2m child nodes, then the tree will be
k/m deep. Here both k and m are configurable. Given a non-leaf node, the address of
its leftmost child in the tree walk table is called the base index of this tree node. The
rest of the children are stored sequentially in the table following the leftmost child.
Therefore, to locate the ith child, the address can be calculated by adding i to the base
index. If a leaf node is not associated with any clauses, we store a no-match (-1) tag in
the entry. For an internal node, if all of its 2m children have no-match, we do not ex-
pand its sub tree and just store a no-match tag in the node itself.

Figure 4 provides a simple example with the literal index size k =4 and the tree
branch width m=2. There are two clauses, (x1 ∨ x14) and (x12 ∨ x13), where variable
x1’s index is 0001, x12’s index is 1100, x13’s index is 1101, and x14’s index is 1110.
Suppose the newly assigned variable is 1101. The thick arrows in Figure 4 represent
the two memory lookups needed to locate the clauses associated with the decision
variable 1101 (x13). The base index of the root node is 0000 and the first two bits of
the input are 11. The table index is the sum of the two: 0000+11= 0011. Using this
table index, the first memory lookup is conducted by checking the 0011 entry of the

0000
Base index
0100

Root
Base index
0000

0001
No
match

0010
No
match

0011
Base index
1000

00 01 10 11

0100
No
match

0101
Clause 1
index 1

0110
No
match

0111
No
match

00 01 10 11

1000
Clause 2
Index 1

1001
Clause 2
Index 2

1010
Clause 1
Index 2

1011
No
match

00 01 10 11

1st memory lookup

2nd memory lookup

X1 X12 X13 X14

Fig. 4. Clause index tree walk in the inference engine

54 J.D. Davis et al.

table. This entry shows that the next lookup is an internal tree node with the base
index 1000. Following this base index, adding it to the next two bits of the input 01,
we reach the leaf node 1000+01 = 1001. This leaf node stores the literal information;
in this case, the literal is the second literal of clause two.

Figure 5 illustrates the tree structure mapping in memory. Note the last m bits of
the base index are always zeros because each internal node has exactly 2m children.
Even if a child is not associated with any related clauses, we still store the child’s
index, using a no-match tag. With this design choice, we do not need addition to cal-
culate addresses. We can use the top k-m bit of the base index and concatenate it with
m bits in the input to obtain the address, thus eliminating the need for a hardware
adder and saving one clock cycle.

For a leaf node, the table stores the related clause information as shown in Figure 6. It
contains the Clause ID (CID), the position in the clause (PID), and its sign (whether it’s a
positive or negative literal in the clause). These three pieces of information will be used
by the literal value inference module for generating new inferences. Note that the CID
does not need to be a globally unique among all inference engines. A locally unique CID
is sufficient to distinguish different clauses associated with one inference engine. The
mapping between a local CID to a global CID is stored in DRAM and maintained by the
conflict inference detection engine, shown as the rightmost block of Figure 1.

If p>1, one variable can be associated with multiple clauses per inference engine.
They can be stored sequentially at the leaf nodes and processed sequentially with one
implication module. If hardware resource permits, it is also possible to process them
in parallel because they are associated with different clauses.

Table index base index

0000 0100
0001 -1 (No-match)
0010 -1 (No-match)
0011 1000

0100-1011 leaf nodes

Table index Info stored at leaf nodes
0100 -1
0101 CID 1, PID 1, positive
0110 -1
0111 -1
1000 CID 2, PID 1, negative
1001 CID 2, PID 2, positive
1010 CID 1, PID 2, positive
1011 -1

Fig. 5. Clause index walk table for internal
tree nodes

Fig. 6. Clause index walk table for leaf tree
nodes

In our implementation, we set k to be 16 and m to be 4. Therefore, our current de-

sign can accommodate 64K variables and it takes 4 tree walk steps to locate a literal.
To store the tree in on-chip memory, there are two options. The first is to put the en-
tire tree into BRAM. An inference engine requires four cycles to identify the related
clause in the BRAM. Using a single port of the BRAM, inference engines can only
service a new lookup every four cycles. The second design uses distributed RAM to
store the first two levels of the tree. Similar to BRAM, distributed RAM is also
dynamically readable and writable, but with much smaller total capacity. Since the
top two levels of the tree are very small, we can easily fit them into distributed RAM.
The rest of the tree is stored in BRAM. By doing this, we break the 4-cycle pipeline

 Designing an Efficient Hardware Implication Accelerator for SAT Solving 55

stage into two pipeline stages with two cycles each, thus improving inference engine
throughput by enabling lookups every two cycles.

3.3 Inference Generation

After finding a clause to examine, the second step of the inference process is to exam-
ine the clause that contains the newly assigned variable to see whether it infers any
new implications. This is shown in the second block of Figure 2. The literals’ values
in each clause are stored in a separate BRAM called a clause status lookup table. The
implication inference module takes the output of the previous stage as inputs, which
includes the CID, PID in addition to the variable’s newly assigned value. With this
information, it examines the clause status table, updates its status and outputs possible
implications in two cycles. This step is described in more detail in [11].

3.4 Dynamic Learned Clauses Insertion and Deletion

Learning is one of the most important features in modern SAT solvers. Learned
clauses are generated during conflict analysis and added to the clause database to
prune the search space. These learned clauses can be long. Our inference engine de-
sign has a fixed maximum length for clauses (usually 9, 18, or a multiple of the size
of a BRAM word). Clauses longer than the length cannot be added to the engines
directly. There are two solutions to this problem. The first method is to break a longer
clause into multiple shorter clauses by introducing new variables. For example, clause
(x1 ∨ x2 … ∨ y1 ∨ y2 …) is equi-satisfiable to (z ∨ x1 ∨ x2 …) ∧ (¬z ∨ y1 ∨ y2 …) where
z is a new variable. The benefit of performing this translation is that the transformed
formula is logically equivalent (modulo existentially quantified bridging variables) to
the original one. The drawbacks are that the number of literals is increased, which
takes hardware resources. Extra implications are needed to pass through the bridging
variable, which slows down the solver. We use this scheme in the evaluation section.

Another method is to abbreviate the learned clauses. When a learned clause is gen-
erated from conflict analysis, it is an asserting clause [1] and may contain many false
literals assigned at lower decision levels. At higher decision levels, these literals can
be omitted because their values do not change. We can exploit this by throwing away
lower decision level literals and marking the clause valid only after a certain decision
level. To maintain the correctness of the solver, the clause needs to be invalidated
when the solver backtracks to an earlier decision level and as a result, must be gar-
bage collected. The advantage of this scheme is that it only stores a smaller number of
literals for each clause. The drawback of this scheme is that the system needs to be
able to invalidate clauses dynamically, thus complicating the solver logic. Moreover,
most learned clauses will be deleted after deep backtracks and restarts, thus reducing
the possibility of future pruning of the search space. We decided against this scheme,
mainly because this scheme affects the heuristics taken by the software SAT solver,
while the previous scheme is transparent.

In our FPGA design, we partition the number of inference engines dedicated to
original clauses and learned clauses. The inference engines for original clauses con-
tain static content for a given SAT instance. The learned inference engines have dy-
namic content. We overload the inference engine programming port to handle the

56 J.D. Davis et al.

dynamic content operations. There are three types of operations: clause insertion,
clause deletion (by invalidation), and garbage collection. In order to insert and delete
clauses in the learned clause inference engines, several components must be modified,
as shown in the shaded areas of Figure 1. The modified modules include the tree walk
table, clause status table, global status table, and global-to-local translation table. In
the rest of the section, we describe these operations in more details and describe the
modifications on the modules accordingly.

3.4.1 Clause Insertion
After the conflict analysis process derives a new learned clause, we need to find an
inference engine that can accommodate the clause and insert the clause into the en-
gine. It would be time consuming to use software to examine hundreds of inference
engines in the accelerator to find out the ones that can accommodate the clause. In-
stead, we leverage the parallelism and our tree-walk algorithm to find a potential
inference engine in hardware.

First, the software sends the newly learned clause to all the learned clause infer-
ence engines. We use the second port of the BRAM to search the table for these liter-
als sequentially. Suppose there are m literals in the clause, for each literal, we walk
down the tree to see whether a no-match tag is found at a node in the tree, or if there
is space in the tree leaf node for insertion. If so, the engine can accommodate this
literal. If all m literals can be accommodated, this clause can be inserted into the en-
gine. This checking process requires 4 cycles per literal to traverse the entire tree or
4m cycles for one clause. All learned-clause inference engines can perform the check-
ing in parallel, and since the checking uses the second memory port, it can be per-
formed without disrupting the implication process.

If no engine indicates that the clause can be inserted, the accelerator notifies the
software to trigger garbage collection. On the other hand, multiple inference engines
may signal that they can accommodate the clause. We use a priority encoder or simple
round-robin logic to select the inference engine for clause insertion. The engine
picked by the priority encoder receives an insertion enable signal and proceeds to
insert the literals into the tree walk table. Each inference engine keeps a free-index
pointer to indicate the starting point of un-used entries in the table. It inserts the liter-
als sequentially by traversing the tree m times again. This requires a tree traversal and
update to nodes at various levels in the tree. If a no-match tag is encountered, we need
to create the subtree by accessing and updating the free-index pointer to insert new
nodes. The final tree walk table step updates the leaf node with the CID, PID, and
sign of the literal.

The clause status table can then be updated accordingly. This is followed by updat-
ing the global status table and local-to-global translation table in the conflict inference
detection unit. All of these updates can be performed after the learned clause infer-
ence engine has been selected. It should be noted that these updates can be done in
parallel with the actual insertion into the tree walk table because all the information is
known at that point. Moreover, software is notified that the clause insertion was suc-
cessful and the ID of the inference engine that stores the clause. This information is
maintained in software for deletion and garbage collection purposes. The overall
learned clause system architecture is shown in Figure 7 and is orthogonal to the nor-
mal BCP operation.

 Designing an Efficient Hardware Implication Accelerator for SAT Solving 57

Clause
FIFO

Literals
Local

Clause ID

Insert Enable Success

Inference
Engine
Selection
Priority
Encode

Local
Clause ID

Clause
FIFO

Literals
Local

Clause ID

Insert Enable Success

Insert Enable

Tree
Walk
Table

Clause
Status
Table

Learned
Clause Engine

Tree
Walk
Table

Clause
Status
Table

Learned
Clause Engine

Conflict Inference
Detection DRAM

Delete

Delete

Delete

To
IE &
CPU

GC

GC

Delete

Delete

Fig. 7. Learned clause insertion, deletion, and garbage collection details

3.4.2 Clause Deletion
Clause deletion is very simple. Software knows the learned clause to inference engine
mapping and simply sends a delete clause notice to the learned clause’s inference
engine. The learned clause’s inference engine simply updates the clause status table
and invalidates the clause entry by adding a tag to prevent future implications from
being generated by this clause. Even though the clause information remains in the tree
walk table, subsequent lookups in the tree walk table will result in no inferences.

3.4.3 Garbage Collection
Even though invalidated clauses will not generate implications, they still occupy spaces
in the BRAM. Garbage collection is required to clean inference engines that contain a
significant portion of invalidated clauses. Garbage collection is a software directed task
that can be triggered by a threshold value of invalidated clauses or the inability to insert
a new clause into the tree walk table. The garbage collection operation is controlled at
the granularity of a single inference engine. Thus, implications from the rest of the en-
gines can be generated while one or more engines are garbage collected.

We perform garbage collection by first reinitializing the inference engine and then
adding the valid clauses back into the engine. For initialization, we write all entries in
the BRAM to their initial value. Using both BRAM ports, the worst case number of
writes can be reduced to half the table size. By targeting inference engines with only a
few valid clauses, we minimize the re-insertion overhead.

4 Evaluation Results

In this section, we experimentally evaluate our approach. We first evaluate the effec-
tiveness of the clause partitioning algorithm, and then report the speed of the accelera-
tor and compare it with software-based solvers.

58 J.D. Davis et al.

We obtained speedup numbers from a cycle accurate simulator that simulates events
in the accelerator. We implemented the non-learning version of our accelerator design
in 4000 lines of VHDL and synthesized with Xilinx ISE 9.2i SP3. On our target de-
vice, a Xilinx Virtex 5 LX110T with speed grade -3, we can fit 64 inference engines
running at 200 MHz clock speed, and each engine has a capacity of 2048 tree walk
entries with p=1 and maximum clause length of 9. The design is simulated and tested
using ModelSim 6.3 to obtain the timing information in our C++ based event driven
simulator. Since the revision of the inference engines for learning is minor without
requiring additional BRAM resources (the limiting resource in our design), we expect
to be able to achieve similar clock frequency and capacity for the learning version of
the accelerator. We compare the FPGA accelerator running at 200 MHz with a state-
of-the-art software-only SAT solver. The software SAT solver is a modified version of
Zchaff [11]. It runs on a 3.6 GHz Pentium 4 with 2 GB of RAM. Since the FPGA
accelerator only performs the BCP part of the solver, we compare it with the software
BCP module. The same solver is used to drive the simulator with branching, conflict
analysis and restarts.

4.1 Clause Partitioning Algorithm

We apply the greedy partitioning algorithm to a large number of real world SAT in-
stances. Due to space limitation, Table 1 only lists representative SAT instances in
each category. Here, we restrict each literal to be associated with at most one clause
per group (p=1), and the group size can be unlimited (c=∞). The fourth column of the
table shows the total number of groups needed using the graph coloring algorithm
DSATUR[14], and the fifth column is the results using our greedy algorithm. We can
see that the results are very similar, but the DSATUR implementation we used is not
able to handle large instances. Generally, the bigger the instance, the more groups are
needed. However, there are a few exceptions. The crypto-md5_48 instance is the larg-
est among all instance (66.9K variables and 279.3K clauses) and only needs 262
groups. A much smaller instance fvp-1.0-1dlx_c_mc_ex_bp_f requires a larger number
of groups (280). The reason is that in crypto-md5_48, each literal is associated with at
most 36 clauses, while in fvp-1.0-1dlx_c_mc_ex_bp_f, one literal can be associated
with up to 141 clauses. Therefore, we need at least 141 groups to accommodate this
instance because each variable can be associated with at most one clause per group.
One possible optimization is to introduce equivalent variables for the top occurring
variables. For example, if variable x appears in 1000 clauses, we can introduce a
new variable a and use it to replace x in 500 clauses. Of course, we need to add clauses
(¬a ∨ x) (a ∨ ¬x) to force x and a to the same value. We leave this to future work.

To understand the BRAM utilization, we measure the Literal space ratio, which is
defined as the number of entries used in the tree walk table per literal. In software
solvers, each variable has an array or list recording its occurrences. So every literal
only consumes one pointer in memory. In our tree based design, some space is wasted
due to the “no-match” entries. To quantify the BRAM resource cost of entries per
literal, we report the literal space ratio in Table 1. This ratio varies from 2 to 7, show-
ing that the number of wasted entries is relatively modest.

 Designing an Efficient Hardware Implication Accelerator for SAT Solving 59

Table 1. Greedy partition algorithm results

 Vars Cls
DSATUR

groups
Greedy
groups

Literal
Space Ratio

miters-c3540 3451 9327 47 48 2.86
miters-c5315 5400 15025 48 48 2.66
miters-c880 958 2591 32 32 2.70
bmc-galileo-8 58075 294822 N/A 372 5.17
bmc-ibm-12 39599 194661 N/A 453 5.42
crypto-md4_wang5 53229 221185 N/A 201 2.97
crypto md5_48 66893 279265 N/A 262 2.94
fvp-1.0-1dlx_c_mc_ex_bp_f 777 3726 280 280 5.58

The above results are based on the assumption that one tree can have an unlimited
number of entries. This assumption is unrealistic as each engine has limited resources.
Next, we performed a sensitivity study that restricts the tree size, thereby changing
the grouping results. We used three tree sizes c: 1024, 2048, and 4096. We recorded
the number of groups needed in all three cases and compare the ratio to the unlimited
tree size case (Table 1). Figure 8 plots the results. For SAT instances with a small
number of variables, the ratio is close to one. This is because collision, defined as two
clauses sharing the same variable, is high when the number of variables is small.
When the number of variables becomes larger, the collision rate decreases, and con-
sequently we can accommodate more clauses per group. This creates very large
groups. If we limit the tree size, these large groups will need to be split into smaller
groups. Therefore, large instances such as crypto-md4_wang5 need a large number of
groups when tree walk table size is small, thus increasing the number of inference
engines needed.

We also tested different p values. p>1 allows one variable to be associated with
multiple clauses in one group. The experimental results (not presented here due to

Fig. 8. Groups needed with limited tree size (normalized by c=∞ case)

60 J.D. Davis et al.

space limitations) show that when the tree size is unlimited, the number of groups
decreases almost linearly to p because we can pack p trees into one tree. When the
tree has limited size, the number of groups decreases close to linear for instances with
small variables. But for larger instances, the number of groups decreases sub-linearly
as most trees are almost close to their capacity limit.

4.2 Comparison of FPGA-Based BCP Accelerator to Software

We use the cycle accurate simulator to test the performance of our system using a set
of benchmarks. We evaluate the two design points as described in Section 3.2. The
first design places the entire tree in BRAM. The second design splits the tree, placing
the top two levels of the tree in distributed RAM and the rest in BRAM. We terminate
the simulator after 1 million implications if the solver cannot solve the instance within
the given time limit. In the simulation, we assume the interconnect between CPU and
the accelerator is a 16 lane 800 MHz HyperTransport [12].

Figure 9 presents the average number of FPGA cycles per implications. The num-
ber ranges from 6 to 17 cycles. The scheme using distributed RAM and BRAM is
around 30% faster than the BRAM only scheme. By using both distributed RAM and
BRAM, we are able to reduce the latency of this pipeline stage to two cycles, match-
ing the latency of other pipeline stages in the system. This removes the performance
bottleneck of a 4-cycle pipeline stage for the BRAM-only design.

Figure 9 also presents the learning overhead, which is the total number of cycles
for inserting, deleting and garbage collecting learned clauses, amortized to each im-
plication. It varies from 1% to 25% over different benchmarks. This cost is largely
related to the number of learned clauses generated.

Finally, we compare our design to the Software-based BCP implication engines.
Figure 10 presents the converted CPU cycles per implication. The speedup ratio of
our FPGA-based BCP accelerator is 5 to 16 times, demonstrating the effectiveness of
our system.

Fig. 9. FPGA cycles needed per implication

 Designing an Efficient Hardware Implication Accelerator for SAT Solving 61

Fig. 10. Comparison of the FPGA-based and software-based methods

5 Conclusions

In this paper we describe the detailed design of the inference engines of a Boolean Con-
straint Propagation accelerator for SAT solvers. Our design leverages the Block RAM
(BRAM) resources in modern FPGAs to store instance specific information. Compared
with previous works on hardware-assisted SAT accelerators, our designs eliminates the
need to re-synthesize each new SAT instance, and can accommodate dynamic learned
clause insertion and deletion. Empirical evaluation on a large set of benchmarks demon-
strates that our method of achieving parallelism by partitioning clauses into groups is
both efficient and effective. Our cycle accurate simulator demonstrates speed-up over an
optimized software-only BCP implementation by approximately 5 to 16 times. For future
work, we intend to implement the new learned clause inference engine extensions in
VHDL and map the system to hardware.

References

[1] Zhang, L., Malik, S.: The Quest for Efficient Boolean Satisfiability Solvers. In: Brink-
sma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)

[2] Suyama, T., Yokoo, M., Sawada, H., Nagoya, A.: Solving Satisfiability Problems Using
Reconfigurable Computing. IEEE Trans. VLSI Systems 9(1), 109–116 (2001)

[3] Zhong, P., Martonosi, M., Ashar, P., Malik, S.: Using Configurable Computing to Accel-
erate Boolean Satisfiability. IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems 18(6), 861–868 (1999)

[4] Zhong, P., Martonosi, M., Ashar, P., Malik, S.: Solving Boolean Satisfiability with Dy-
namic Hardware Configurations. In: Hartenstein, R.W., Keevallik, A. (eds.) FPL 1998.
LNCS, vol. 1482, pp. 326–335. Springer, Heidelberg (1998)

[5] Abramovici, M., de Sousa, J.T.: A SAT Solver Using Reconfigurable Hardware and Vir-
tual Logic. J. Automated Reasoning 24(1-2), 5–36 (2000)

62 J.D. Davis et al.

[6] Dandalis, A., Prasanna, V.K.: A Parallel Pipelined SAT Solver for FPGA’s. FPGAACM
Trans. Design Automation of Electronic Systems 7(4), 547–562 (2002)

[7] de Sousa, J., Marques-Silva, J.P., Abramovici, M.: A Configware/Software Approach to
SAT Solving. In: Proc. Ninth IEEE Int’l Symp. Field-Programmable Custom Computing
Machines (2001)

[8] Skliarova, I., Ferrari, A.B.: A Software/Reconfigurable Hardware SAT Solver. IEEE
Trans. Very Large Scale Integration (VLSI) Systems 12(4), 408–419 (2004)

[9] Skliarova, I., Ferrari, A.B.: Reconfigurable Hardware SAT Solvers: A Survey of Sys-
tems. IEEE Transactions on Computers 53(11), 1449–1461 (2004)

[10] Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Ef-
ficient SAT Solver. In: 38th Design Automation Conference, Las Vegas (June 2001)

[11] Davis, J.D., Tan, Z., Yu, F., Zhang, L.: A Practical Reconfigurable Hardware Accelerator
for Boolean Satisfiability Solvers. In: 45th Design Automation Conference, Anaheim
(June 2008)

[12] HyperTransport Technology I/O link, AMD (2001)
[13] Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. McGraw-Hill,

New York (1990)
[14] Culberson, J.: Graph Coloring Programs, available at

http://www.cs.ualberta.ca/~joe/Coloring/Colorsrc/index.html
[15] Xilinx product specification, Content Addressable Memory V5.1, available at

http://www.xilinx.com/ipcenter/catalog/logicore/docs/cam.pdf

Attacking Bivium Using SAT Solvers

Tobias Eibach, Enrico Pilz, and Gunnar Völkel

Ulm University, Institute of Theoretical Computer Science,
James-Franck-Ring 27, 89069 Ulm, Germany

{tobias.eibach,enrico.pilz,gunnar.voelkel}@uni-ulm.de

Abstract. In this paper we present experimental results of an applica-
tion of SAT solvers in current cryptography. Trivium is a very promising
stream cipher candidate in the final phase of the eSTREAM project. We
use the fastest industrial SAT solvers to attack a reduced version of Triv-
ium – called Bivium. Our experimental attack time using the SAT solver
is the best attack time that we are aware of, it is faster than the follow-
ing attacks: exhaustive search, a BDD based attack, a graph theoretic
approach and an attack based on Gröbner bases. The attack recovers
the internal state of the cipher by first setting up an equation system
describing the internal state, then transforming it into CNF and then
solving it. When one implements this attack, several questions have to
be answered and several parameters have to be optimised.

Keywords: SAT Solver, Application, Cryptography, Stream Cipher,
Rsat, eSTREAM, Bivium, Trivium, BDD, Gröbner Base.

1 Introduction

Stream ciphers are used in many applications like GSM, UMTS, RFID, Blue-
tooth and online encryption of big amounts of data in general. The eSTREAM
project ([1]) was started in October 2004 to find a new stream cipher, after the
NESSIE project ([2]) ended in 2003 without recommending one. Starting with
a call for candidates the project is organised into several phases and in each
phase weak candidates dropped out. The final stream cipher candidates should
be fast and cryptographically secure. All eSTREAM candidates are divided into
two categories: hardware-oriented and software-oriented ciphers. The eSTREAM
project is now in the last phase with only few candidates left in each category.
One of the hardware-oriented ciphers is Trivium, introduced in [3]. Until now no
attacks have been successfully applied to Trivium – i.e. it has not been possible
to prove a running time faster than exhaustive search. In [4] a reduced version
of the cipher has been introduced: Bivium (initially called Bivium B). The in-
tention is to find attacks on Bivium and then extend them to Trivium. In this
paper we focus on Bivium, however this “algebraic attack” concept is generic
and can also be applied to other stream ciphers.

Stream ciphers are symmetric cryptographic primitives – the communicating
parties already share a secret key. Like most stream ciphers, Trivium can be

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 63–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

64 T. Eibach, E. Pilz, and G. Völkel

described as a finite automaton whose initial state is derived from the secret
key and a public known initialisation vector (IV) by filling the register with
the key and the IV and then making a few transitions to “shuffle” the internal
state. After this initialisation phase the cipher starts to produce output bits (the
“keystream”). Trivium and Bivium produce one keystream bit with every clock
(step) of the cipher. To encrypt a message m, one uses the XOR function to add
the message- and keystream-bits bitwise, e.g: mi ⊕ zi = ci for i = 1, 2, 3, The
receiver produces the same keystream z and also adds it bitwise to decrypt the
message.

We use the common and realistic attack scenario, that we know a part of the
keystream z (from a known-plaintext attack) and try to reconstruct the internal
state of the cipher from it. If we are successful, we can clock the cipher backwards
to reconstruct the secret key. More importantly, we can clock the cipher forward
to produce the whole keystream and thereby decrypt the whole message.

In order to use a SAT solver to reconstruct the internal state, we first set up
an equation system, given by the Bivium definition and the observed keystream.
The solution of the equation system is the internal state of the cipher. Then we
transform the equation system into a CNF formula, by using the truth table and
Quine McCluskey algorithm. Finally we use the fastest complete SAT solvers
of the SAT competition 2007 ([5]) in the industrial category to solve the CNF.
Doing this, there are several parameters to be optimised and several questions
that have to be answered.

We are aware of several attack concepts that can be applied to Bivium as well.
We implemented 3 of them and we quote the results of the remaining ones to
have a complete comparison of the SAT solver speed to the other attack speeds.
According to our experiments, the SAT solver attack is by far the fastest attack
type. It is faster than our exhaustive search on the key/IV-setup, also faster than
our attack based on BDDs (binary decision diagrams) and faster than our attack
based on Gröbner bases. It is also faster than the attack times that we found
in other papers: an attack based on a graph-theoretic approach ([4]), a guess-
and-determine strategy ([6]) and an attack based on the birthday paradoxon
([7]).

Most attack concepts like the one based on SAT solvers, BDDs or Gröbner
bases use heuristical algorithms that are theoretically not well understood – at
least there is a significant gap between the proven bounds on the running times
and the actual running times. This is the reason why experiments are needed.
We run our experiments on a multi-processor system. The important process
is computed on a fast 2 GHz CPU with 2GB of memory to avoid interference
with other processes. We address several questions and optimisations and try to
answer them isolatedly.

1.1 About This Paper

In Section 2 we describe the stream cipher Bivium. In Section 3 we describe,
how we use SAT solvers to recover the internal state of Bivium. In Section 4
we show, how we optimised the attack and which results we found. In Section 5

Attacking Bivium Using SAT Solvers 65

we describe briefly our attack on Bivium using BDDs. In Section 6 we briefly
describe our attack using Gröbner bases. Finally in Section 7 we discuss and
compare our experimental results, we also compare them to results that have
been published so far and give an outlook in Section 8.

2 Description of Bivium

We focus our attack on Bivium, a stream cipher with an internal state of 177 bits
(that can be seen as 2 registers, of size 93 and 84 bits) and a key size of 80 bits.
The internal state of Bivium is initialized with the secret key, the initialization
vector (IV) and zeros. Then the cipher is clocked 4 · 177 times and then starts
producing keystream bits, according to the scheme given in Figure 1. As one can
see from the figure, Bivium is obviously a reduced version of Trivium, as it uses
only 2 registers instead of 3. The update-functions of the 3 internal registers are
non-linear, as each involves one AND gate. The output-function is linear as it
just combines 4 (for Bivium) or 6 (for Trivium) bits of the internal state by a
XOR gate. One also notices the very low amount of gates used. On the one hand
this leads to a low power consumption of the cipher and a fast implementation,
but on the other hand the equation system describing the cipher will be sparse
and thereby can be rather efficiently converted to a CNF (conjunctive normal
form) formula (see also [8]).

The size of the secret key (used to initialise the cipher) is just 80 bits. However,
so far the most efficient way to attack the key directly is exhaustive search (see
Section 7). For the SAT solver attack, we decided not to attack the key directly.
We try to reconstruct the internal state (177 bit) from a part of the keystream.
Of course it is a disadvantage to have a search space of 177 bits instead of the
80 bits. However the equation system in the 80 key-bits gets far too difficult

a1a2... a66 a67...a69 ...a91a92a93
pt

qt

b1b2... b69 b70...b78 ...b82b83b84
qt pt/rt

c1c2... c66 c67...c87 ...c110c111c112
rt pt

Bivium

Trivium

Fig. 1. Trivium and Bivium scheme

66 T. Eibach, E. Pilz, and G. Völkel

through the key/IV-setup phase. Below we give the pseudocode of Bivium. For
a more detailed description please see [4] for the description of Bivium or [3] for
Trivium.

Bivium pseudocode

1: for i = 1,2,3,... do
2: t[1] := s[66] + s[93]
3: t[2] := s[162] + s[177]
4: z[i] := t[1] + t[2]
5: t[1] := t[1] + s[91] * s[92] + s[171]
6: t[2] := t[2] + s[175] * s[176] + s[69]
7: (s[1],s[2],...,s[93]) := (t[2],s[1],...,s[92])
8: (s[94],s[95],...,s[177]) := (t[1],s[94],...,s[176])
9: end do

s[1]...s[177] denote the internal state of the cipher and z[i] (i = 1, 2, 3, ...) denotes the

output of the cipher. t[1] and t[2] are temporary variables.

3 Describing the Attack

The concept of using SAT solvers for attacking stream ciphers has been proposed
in [8] and [9]. Before this, there have already been other remarkable applications
of SAT solvers in cryptography. The actual running time of a SAT solver can be
hardly estimated. Here experiments are needed to determine the running time
on Bivium instances.

First we generate an equation system describing the internal state of the
cipher. By clocking the cipher we get one new equation in every step from line
4 of the pseudo code that connects the (known) output to the internal state. In
line 5 and 6 we can decide whether we want to introduce 2 new variables for t[1]
and t[2] or whether we use the given construction of t[1] and t[2] in line 7 and
8. The first option obviously increases the number of variables and equations
but keeps the equations short and the degree low while the second increases
the degree and length of the equations. It turned out that introducing two new
variables for t[1] and t[2] has many advantages: The equation system produced
has only 2 types of equations – one with 4 and one with 5 variables, which can
be converted into CNF without producing too many clauses. Also we believe
that this way the “structure” of the initial problem can be maintained for the
SAT solver while algebraic operations on the equation system might reduce the
link between the original structure and the structure in the CNF formula.

Having the equation system we now transform every single equation into a
CNF formula that equals 1 in case the equation is fulfilled and 0 otherwise.
By combining all formulas with AND we get an equivalent Boolean formula.
Transforming an algebraic equation into CNF can be done by looking at the
truth table to construct the clauses and then the formula can be minimized
by using the Quine McCluskey algorithm. Transforming an equation with n

Attacking Bivium Using SAT Solvers 67

variables produces about 2n−1 clauses. Actually 2n−1 is the maximum, but the
actual number is close to this, as the equation system consists mainly of XOR
operations and has only few AND operations. The fact that the number of clauses
grows exponentially in n means that at a certain point we have to introduce new
variables that substitute several old variables, to keep the number of variables
in each equation small. In [8] a “cutting number” of 6 variables per equation is
suggested. This means that if an equation has more than 6 variables one should
substitute half of them by a new variable, leading to 2 new equations with about
half the size and fewer clauses in the final CNF. By introducing 2 new variables in
every step we do not have to consider this cutting number rule, as our equations
do not get bigger than 5 variables.

Having the Boolean formula we have to transform it into the DIMACS for-
mat that serves as input to the SAT solver program and is just a convention
([10]). Before we let the SAT solver solve the formula we have to reduce the
complexity of the instance by guessing some variables. Here we have to decide
how many variables we guess and which ones. If we decide to guess m variables
the expected number of runs of the SAT solver will be approximately 2m−1 so
the total expected running time will be 2m−1 times the average running time
for one instance (if we guess the variables in a way so that we do not guess the
same assignment twice).

We skipped one more consideration above: We have to decide how many
equations we want to produce for our equation system. We need at least 177
equations – but more equations would make the problem instance overdefined
and could thereby speedup the solving time. Our experiments showed that less
than 180 used keystream bits are not enough (the attack was very slow or did not
return the internal state that we were looking for). We did not see a difference in
the range of 180 to 300 used keystream bits, just a slight increase in the running
times above 250 bits used. So we decided to use 200 keystream bits to set up our
equation system. Also as noted in [4] it is not necessary to add new variables to
the equation system, if they do not get “connected” to the keystream (the last
introduced 66 variables for the first register and the last introduced 69 variables
for the second register do not get connected to the keystream). This way the
number of variables can be reduced.

4 Experimental Results of the SAT Attack

In this section we present the experimental results of our implementation of the
attack using SAT solvers. All times are given in seconds and are averaged over
100 instances. In Table 1 we compare several SAT solvers to find out which
one would solve our kind of instances fastest. In the second column we guess
40 values of the internal state, in the next column 45 and then 50. We used
the guessing strategy “Ending2” (see below). The fastest SAT solver is Rsat
combined with the SatElite preprocessor (version 2.01), followed by MiniSAT
(version 2/070721) – available at [11] and [12].

68 T. Eibach, E. Pilz, and G. Völkel

Table 1. Comparing SAT solvers

guess 40 guess 45 guess 50

Rsat & SatElite 46.10 3.32 0.26
MiniSat 67.32 5.06 0.36
Picosat 103.96 5.78 0.42
Rsat 229.09 11.49 0.79
Zchaff 735.08 17.36 0.78

Rsat (with SatElite) and MiniSat were also the two fastest solvers in the
SAT competition 2007 in the UNSAT industrial category (as we are guessing
m bits to reduce the complexity, the outcome is “UNSAT” in all runs except
one). Consequently the following experiments have been done using Rsat (with
SatElite). In Table 2 we compare several guessing strategies. Inspired by [6] we
used the strategy “ThreeFour” that is guessing 3 variables in a way to directly
compute a fourth variable. This way it is possible to start the SAT solver with
64 variables guessed – at the same cost as guessing 48 independent variables.
However it turned out that guessing the last 48 variables of the second register
(“Ending2”) helps more and leads to a faster average running time. We also tried
“Ending1” that is guessing the end of the first register and “Ending-halved”
that is guessing the endings of both registers. We did the same for the beginning
positions of the registers. We also tried to guess 3 random sets of variables that
show quite a variation. One possible explanation why the “Ending2” strategy
gives the fastest running time might be, that many of the most frequent occurring
variables are in the “Ending2” set.

Table 2. Comparing different guessing strategies

strategy time

Beginning1 3246
Beginning2 21.27
Beginning-halved 2712
Ending1 3.94
Ending2 0.116
Ending-halved 0.718
ThreeFour 0.275
Random1 1.144
Random2 51.988
Random3 17.993

In Figure 2 we determine the optimal number of variables to guess. The x-axis
shows the number of variables guessed using the “Ending2” strategy. The y-axis
shows the expected running time (scaled by 10−10) of the whole attack. The
dark curve shows the case that we guess randomly (e.g. with high probability
incorrect, leading to an UNSAT result of the SAT solver) and the dotted curve

Attacking Bivium Using SAT Solvers 69

3335373941434547
0

400

800

1200

1600

2000

2400

2800

3200

3600

Fig. 2. Optimal guessing number

shows the running time if we guess the variables correctly. This however will
happen just once in our attack scenario. One should expect SAT solvers to be
better than guessing a variable randomly at the cost of multiplying the running
time with 2. This is – at a certain point – not the case, so that we measure a
minimum at guessing 45 variables with an expected running time of 1637E10
seconds.

In Figure 3 we determine the correlation between the Hamming-weight of
the internal state and the time needed to solve the CNF. When we guess the
36 variables correctly there is a huge correlation (dotted curve). This however
happens only once in the attack scenario and we do not see this correlation if
we guess randomly (dark curve). The x-axis shows the Hamming weight of the
internal state and the y-axis the time needed to solve one instance by guessing
36 variables with the “Ending2” strategy. We average the running time here over
just 50 instances.

Following the idea of the attack described in [6], we made one experiment,
whether certain parts of the keystream are easier to attack. This however was
not the case. In all the experiments, we observed a huge variation in the running
times – up to a factor of 20. This is why we averaged the running times over 100
instances.

One way to optimise the attack is to guess the m variables earlier than in
the final CNF formula. This allows us to do some further simplifications in
the equations. However this work has to be done for every guess and not just
once. We did not see a big influence on the running times here, but it allows
us to give a more realistic table on the CNF statistics. So in Table 3 we give
the averaged numbers of the instance size that we get if we guess m bits in
the equation system and do some fast simplifications there (roughly: expand
equations, remove duplicates and remove duplicate monomials, where possible
and substitute to 4-CNF).

70 T. Eibach, E. Pilz, and G. Völkel

0 18 35 53 71 88 106 124 142 159 177
0

42

84

126

168

210

252

294

336

378

Fig. 3. Influence of the Hamming weight

Table 3. Number of guessed variables vs. number of clauses and variables

Nb. guessed Nb. clauses Nb. variables

0 9909.0 2677.00
31 5631.0 1543.50
35 5200.2 1427.70
39 4933.8 1361.50
43 4679.4 1293.50
45 4560.4 1265.10
47 4463.6 1236.80
51 4277.4 1189.45

In [8] it is further suggested to use Gaussian elimination to reduce the number
of variables in each equation. This did not help in our experiments.

5 An Attack Based on BDDs

We also implemented an attack on Bivium that is based on BDDs. We explain
the idea of this attack roughly, present our attack times and in Section 7 we
compare them to the SAT solver attack times.

A BDD is a way to represent a Boolean formula as a directed graph, with the
variables at the nodes, the values of the variables at the outgoing edges and the
corresponding function values at the leaves. There are several fast operations on
BDDs, especially if we delimit them to OBDDs. These are BDDs with an order
on the variables, so every variable can only be read once and in every path the
reading order is the same. In this case, the following operations are efficient: count
the remaining number of paths leading to 1 (“sat-count”), minimize the BDD
for the given order and combine two BDDs. For an introduction please see [13].

Attacking Bivium Using SAT Solvers 71

The idea of the BDD attack has been published in [14], more details are
published in [15] and improvements in [16] and [17]. The BDD attack uses one
BDD to efficiently represent all possible internal states of Bivium at a given
time. The main BDD that we construct in step i represents the characteristical
function of the set of all possible internal states after i observed keystream bits.
To construct the main BDD we describe the 2 internal update-functions and the
output-function of Bivium as 3 BDDs for every keystream bit. We combine all
those BDDs to get the main BDD. We initialize the main BDD with the constant
1-BDD that represents the fact that all internal states are possible (as we have
not read a single keystream bit). Then, for every keystream bit, we combine the
3 new BDDs with the main BDD using the AND operation. This reduces in
every step the number of possible internal states. After the minimal amount of
keystream bits the BDD represents only the one internal state that we wanted
to recover.

Also in this attack there are several questions to be answered and parameters to
be optimised. First we had to decide which BDD library to use. We only achieved
a fast implementation using the CUDD library ([18]). CUDD uses a hash-table of
initially fixed size to speed up the operations on the BDDs. The size of this hash-
table is critical. In our experiments we got good running times with about 1GB of
memory, less memory led to swapping and thereby to much worse running-times.
The running time of the BDD operations depends mainly on the size of the BDD
(number of nodes) and the width of the BDD (the size of the maximal level of
the BDD). There is no particular order in which the single BDDs have to be com-
bined. One can start by combining only the BDDs describing the output-function
and then at a later point add the BDDs of the update-function. The optimisation
target here is to keep the main BDD as small as possible.

The CUDD library does not support an explicit minimisation operation, but
the resulting BDD of an AND operation is already minimised (for a fixed variable
order). The reordering operation tries to further minimize the BDD by reordering
the variables. This operation requires most of the time in the BDD attack and
is performed every few steps (based on a heuristic). The reordering operation is
also just a heuristic and does usually not find the best ordering of the variables.
However it significantly reduces the size of the BDD (up to a factor of 10) and
makes future operations faster.

5.1 Experimental Results of the BDD Attack

The variance in the running times is much lower for BDDs than for SAT solvers.
So we averaged our experimental results over just 10 runs for every instance.
After identifying the CUDD library as the best BDD library for our purpose we
continued the same way as for the SAT solver attack. We tried several guessing
strategies, to find out how the complexity of the problem can be reduced most
efficiently. Again it was most useful to guess the bits close to the “end” of Bivium
(the bits close to the output). With a small difference: it is best to guess half
of the bits at the end of the first register and half of the bits at the end of the
second register (“Ending-halved”).

72 T. Eibach, E. Pilz, and G. Völkel

In Figure 4 we determine the optimal number of variables to guess in the
BDD attack. The x-axis shows the number of variables that we guess (using
the “Ending-halved” strategy). The y-axis shows the expected running time in
seconds scaled by 10−17. It is optimal to guess 55 variables, with an expected
running-time of 4.22E17 seconds. As for the SAT attack there is a point from
which on it is better to guess more variables at a cost of “factor 2” in the running
time, than using the BDD construction.

10

20

30

40

50

48 50 52 54 56 58 60

Fig. 4. Optimal guessing number for the BDD attack

6 An Attack Based on Gröbner Bases

Gröbner bases are the most common and usually fastest way to solve a system
of (non-linear) equations. They are used in algebra software like Mathematica,
Maple, MAGMA and Singular ([20]). We use the algebra software SAGE ([19])
that integrates the Singular software, as it is free, offers several algorithms to
compute a Gröbner base and also Singular is well known for its fast and optimised
Gröbner base algorithms.

A Gröbner base G for a given set of polynomials F by definition generates
the same ideal as F and has certain nice properties that allow fast solutions to
many problems that are hard for F . This is especially true for the solution of the
equation system: the Gröbner base G has the same solution(s) as F but due to
the “elimination property” the solution(s) can be derived easily. The “elimination
property” implies that one of the polynomials is univariate – meaning that it
depends on just one of the variables – and so this variable can be computed
directly. When we substitute this variable in the other equations we get again
an equation in just one variable and so on. This can be seen as a generalised
form of the Gaussian elimination (please see [21] for an introduction).

Attacking Bivium Using SAT Solvers 73

First we set up the Bivium equation system – in contrast to the SAT solver
attack, it is much better not to introduce any new variables, so we set up the
equation system in just the 177 unknown internal bits. We set up 200 equations
and then we guess several variables to reduce the complexity of one instance.
We use different algorithms of the Singular packet to construct the Gröbner
base, this step took most of the time. If we guess the variables incorrectly (most
likely) the Gröbner base will be just the 1-polynomial and we guess again. If we
guess correctly, we will be able to derive the solution (the internal state) very
efficiently. In contrast to the SAT solver approach here the running time when
guessing incorrectly is much faster than when guessing correctly.

Table 4. Comparing guessing numbers and Gröbner algorithms

Nb. guessed std slimgb

64 0.2852 0.1887
62 0.2308 0.2264
60 0.1824 0.1823
58 8.1856 82.019
56 267.35 1114.3

In Table 4 we give the averaged times for the 2 fastest Gröbner base algorithms
in the Singular packet (out of 5 algorithms) for solving one instance. We used the
“Ending-halved” guessing strategy for which it is optimal to guess 60 variables
(randomly), resulting in an expected running time of 1.051E17 seconds. The
“std” algorithm used from 100MB to 5 GB of memory – depending on the
number of variables guessed. The “slimgb” algorithm used just up to 400 MB.

There are many different algorithms to compute a Gröbner base for a given
equation system and a given ordering on the monomials. Two well known al-
gorithms are the F4 and F5 algorithm by Faugère. In the Singular portfolio of
Gröbner base algorithms the “slimgb” algorithm was slightly the fastest in our
experiments. It is optimised to keep coefficients small and polynomials short on
the computation and this pays off in computation time and memory usage ([22]).
It is partly based on ideas of the F4 algorithm by Faugère. It also offers a direct
access to adjust the algorithm to special problem classes through its weighted
length computation. However we did not exploit this parameter.

A reduced Gröbner base is unique for any given ideal and monomial ordering.
However there are huge differences when switching from one order to another.
Usually the “fastest” ordering is “Graded Reverse Lex Order”, meaning that a
monomial has the higher order if the sum of its degrees is smaller (in case the
degrees sum up to the same sum, one further distinguishes by a lexicographical
order).

The expected running time of 1.051E17 seconds is surprising to us, as in [8]
the authors say “if Magma or Singular do not crash, then they tend to be faster”
(than SAT solvers). However in our experiments the SAT solvers are about 6400-
times faster – and both implementations are stable.

74 T. Eibach, E. Pilz, and G. Völkel

7 Discussing and Comparing the Results

The expected running time of the SAT solver attack is 1.64E13 seconds, while
the BDD attack takes 4.22E17 seconds and the attack using Gröbner bases
1.051E17 seconds. The other main differences are that on the one hand the
SAT solver attack is faster, probably because it combines several sophisticated
search heuristics, but at the cost that the SAT solver can almost only be used
as a black box. While on the other hand the BDD attack uses heuristics only
in the reordering algorithm. Also the BDD in construction, can already be in-
terpreted in every step, as it represents all possible internal states of the ci-
pher at this point. Also there are some theoretical bounds for the BDD attack,
as published in [17]. We used the Gröbner bases attack also almost only as a
black box, however the theory offers more insight and optimisation as sketched
above.

Another resource to compare the 3 attack concepts on, is the amount of mem-
ory required: SAT solvers require almost no memory, while BDDs use up to 1
GB and Gröbner bases up to 400 MB. All three attacks can be easily paral-
lelised due to the guessing loop. If we had several CPUs we would just divide
the guessing-space among them, leading to parallelisation without overhead, as
no communication between the processes is required. The amount of keystream
needed is very low for all attacks (about 200 bits).

The influence of randomness is much higher in the SAT solver attack, while
the BDD attack only uses randomness for guessing the bits in the beginning. This
also supports the fact that the variance in the running times of SAT solvers is
much higher (up to a factor of 20) while the variance for BDD running times is
below a factor of 2. The variance for the Gröbner base approach is also rather low,
especially when computing the same instance twice there is almost no variance
in the running times.

For all three attack concepts we had to decide, which part of the internal
state we wanted to guess. It turned out that for SAT solvers and BDDs it is
most useful to guess the internal bits close to the end of the 2 registers. The
difference is that it is optimal for the SAT solvers to only guess the end of the
second register and for the BDDs, it is optimal to share the guessed bits between
the ends of both registers. Looking at the equation system describing Bivium,
we notice that the variables close to the output occure rather frequent (those
of the second register a little more than those of the first). This might be one
reason, why these guessing strategies helped most.

We also implemented an exhaustive search on the keysetup, this resulted in
an expected running time of 1.5E17 seconds.

7.1 Comparing Against Other Attacks

We want to cite some more results that we are aware of, but have not imple-
mented ourselves: In [4] Raddum proposed to solve the equation system by a
graph-theoretic approach, resulting in a running time of about 256 ≈ 7.2E16
seconds. The attack published in [6] gives a running time of about c · 236.1, for

Attacking Bivium Using SAT Solvers 75

c ≈ 214, leading to 250.1 ≈ 1.2E15 seconds. In [9] the SAT solver attack has
also been implemented – we were not able to reconstruct the results, so we just
quote them: when guessing 34 variables the average running time using MiniSAT
is given as 28.7, leading to an expected running time of 233 ·28.7 = 241.7 ≈ 3.57E12
seconds. A classic time-memory trade-off technique based on the birthday para-
doxon ([7]) gives a theoretical running time of O(

√
2177) (also for the amount of

memory needed).

8 Outlook

The attack concepts based on SAT solvers, BDDs and Gröbner bases are generic,
so one could run many more experiments to get cryptoanalytic results also on
other stream ciphers, not just for Bivium. Of course one open question is how
to extend the attack to Trivium. Also we believe that there is much potential
for optimisation left. For example one could try to guess the variables not just
independently with probability one-half 0 or 1. We expect further speedups for
the SAT attack, by just applying the latest SAT solvers that will lead to faster
running times.

While SAT solvers are much faster and need almost no memory the huge
disadvantage is that they can almost only be used as a black box. This might be a
starting-point for further research. Also we hope to show by this paper that there
is a very interesting benchmark class for industrial SAT solvers. An expected
running time of about 533,000 years for the attack of course does not break
Bivium and especially not the harder cipher Trivium. However parallelisation is
possible without overhead and combined with further improvements this attack
concept could become practicable.

References

1. eSTREAM: eSTREAM – The ECRYPT Stream Cipher Project.
http://www.ecrypt.eu.org/stream/

2. NESSIE: NESSIE – New European Schemes for Signatures, Integrity and Encryp-
tion. https://www.cosic.esat.kuleuven.be/nessie/

3. De Cannière, C., Preneel, B.: TRIVIUM – a stream cipher construction inspired
by block cipher design principles. eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/030 (2005), http://www.ecrypt.eu.org/stream/trivium.html

4. Raddum, H.: Cryptanalytic results on TRIVIUM. eSTREAM, ECRYPT Stream
Cipher Project, Report 2006/039 (2006), http://www.ecrypt.eu.org/stream

5. Le Berre, D., Simon, L.: Special Volume on the SAT 2005 competitions and eval-
uations. Journal of Satisfiability (JSAT) (March 2006),
http://www.satcompetition.org/

6. Maximov, A., Biryukov, A.: Two Trivial Attacks on Trivium. In: Selected Areas in
Cryptography 2007, pp. 36–55 (2007)

7. Biryukov, A., Shamir, A.: Cryptoanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

http://www.ecrypt.eu.org/stream/
https://www.cosic.esat.kuleuven.be/nessie/
http://www.ecrypt.eu.org/stream/trivium.html
http://www.ecrypt.eu.org/stream
http://www.satcompetition.org/

76 T. Eibach, E. Pilz, and G. Völkel

8. Bard, G., Courtois, N., Jefferson, C.: Efficient Methods for Conversion and Solution
of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via SAT-
Solvers. Cryptology ePrint Archiv, Report 2007/024 (2007)

9. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with MiniSat. Cryp-
tology ePrint Archive, Report 2007/040 (2007)

10. DIMACS specification: http://www.satlib.org/Benchmarks/SAT/satformat.ps
11. Pipatsrisawat, K., Darwiche, A.: RSat 2.0: SAT Solver Description. Technical re-

port D153. Automated Reasoning Group, Computer Science Department, Univer-
sity of California, Los Angeles (2007), http://reasoning.cs.ucla.edu/rsat/

12. Een, N., Sorensson, N.: MiniSat – A SAT Solver with Conflict-Clause Minimiza-
tion. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, Springer,
Heidelberg (2005), http://www.cs.chalmers.se/Cs/Research/FormalMethods/
MiniSat/MiniSat.html

13. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM Mono-
graphs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)

14. Krause, M.: BDD-Based Cryptanalysis of Keystream Generators. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 237–239. Springer, Heidelberg
(2002)

15. Krause, M.: OBDD-Based Cryptanalysis of Oblivious Keystream Generators. The-
ory of Computing Systems 40(1), 101–121 (2007)

16. Krause, M., Stegemann, D.: Reducing the space complexity of BDD-based attacks
on keystream generators. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047,
pp. 163–178. Springer, Heidelberg (2006)

17. Stegemann, D.: Extended BDD-based Cryptanalysis of Keystream Generators. In:
Proceedings of SAC 2007. LNCS, vol. 4876, pp. 17–35 (2007)

18. Somenzi, F.: CUDD, version 2.4.1, University of Colorado,
http://vlsi.colorado.edu/∼fabio/CUDD/

19. Stein, W.: Sage Mathematics Software (Version 2.9.2) The SAGE Group (2007),
http://www.sagemath.org.

20. Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3.0.4. A Computer Algebra
System for Polynomial Computations. Centre for Computer Algebra, University of
Kaiserslautern (2007), http://www.singular.uni-kl.de/

21. Buchberger, B.: Gröbner Bases: A Short Introduction for System Theorists. In:
Moreno-Dı́az Jr., R., Buchberger, B., Freire, J.-L. (eds.) EUROCAST 2001. LNCS,
vol. 2178, pp. 1–14. Springer, Heidelberg (2001)

22. Brickenstein, M.: Slimgb: Gröbner Bases with Slim Polynomials. Reports on Com-
puter Algebra 35, ZCA, University of Kaiserslautern (2005)

http://www.satlib.org/Benchmarks/SAT/satformat.ps
http://reasoning.cs.ucla.edu/rsat/
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/MiniSat.html
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/MiniSat.html
http://vlsi.colorado.edu/~fabio/CUDD/
http://www.sagemath.org
http://www.singular.uni-kl.de/

SAT Modulo the Theory of Linear Arithmetic:

Exact, Inexact and Commercial Solvers

Germain Faure, Robert Nieuwenhuis, Albert Oliveras,
and Enric Rodŕıguez-Carbonell�

Abstract. Many highly sophisticated tools exist for solving linear arith-
metic optimization and feasibility problems. Here we analyze why it is dif-
ficult to use these tools inside systems for SAT Modulo Theories (SMT)
for linear arithmetic: one needs support for disequalities, strict inequalities
and,more importantly, for dealingwith incorrect results due to the internal
use of imprecise floating-point arithmetic. We explain how these problems
can be overcome by means of result checking and error recovery policies.

Second, by means of carefully designed experiments with, among other
tools, the newest version of ILOG CPLEX and our own new Barcelogic
T -solver for arithmetic, we show that, interestingly, the cost of result
checking is only a small fraction of the total T -solver time.

Third, we report on extensive experiments running exactly the same
SMT search using CPLEX and Barcelogic as T -solvers, where CPLEX
tends to be slower than Barcelogic. We analyze these at first sight surpris-
ing results, explaining why tools such as CPLEX are not very adequate
(nor designed) for this kind of relatively small incremental problems.

Finally, we show how our result checking techniques can still be very
useful in combination with inexact floating-point-based T -solvers de-
signed for incremental SMT problems.

1 Introduction

The applicability of current SAT solvers to many areas in and outside computer
science is nowadays well known. However, some practical problems are more
naturally described and more efficiently solved in logics that are more expressive
than propositional logic. For example, for reasoning about timed automata or
about intervals in scheduling problems, a good choice is difference logic, where
formulas contain atoms of the form a − b ≤ k. Similarly, the conditions arising
from program verification usually involve arrays, lists and other data structures,
so it becomes very natural to consider satisfiability problems modulo the theory T
of these data structures. In such applications, problems may consist of thousands
of clauses like

p ∨ ¬q ∨ a=b − c ∨ read(s, b − c)=d ∨ a − c ≤7
containing purely propositional atoms as well as atoms over (combined) theories.
This is known as the Satisfiability Modulo Theories (SMT) problem for a theory

� Tech. Univ. of Catalonia, Barcelona. All authors partially supported by Spanish Min.
of Educ. and Science through the LogicTools-2 project, TIN2007-68093-C02-01.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 77–90, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

78 G. Faure et al.

T : given a formula F , determine whether F is T -satisfiable, i.e., whether there
exists a model of T that is also a model of F . SMT has become an extremely
active area of research and many SMT systems have been developed [DdM06a,
dMB07, BBC+05, BT07, NO05a], as well as a library of benchmarks for SMT,
called SMT-LIB [TR05].

The DPLL(T) approach to SMT couples a general DPLL(X) engine, in charge
of enumerating propositional models of the formula, with a theory solver Solver

T
,

responsible for checking the consistency of these models over the theory T (e.g.,
if T is difference logic and the current boolean assignment contains x − y ≤ 0,
y − z ≤ 0, and x − z ≥ 1, then Solver

T
has to detect its T -inconsistency).

Here we consider SAT modulo the theories of Linear (Real or Integer) Arith-
metic (LRA or LIA). So far, in SMT systems not much of the wide body
of technology developed in the field of OR has been exploited. The reason
for this is that the main application area of SMT is verification, which has
some requirements that are not considered essential in OR: one needs to han-
dle disequalities and strict inequalities, and, in order to guarantee correctness,
employ arbitrary-precision arithmetic instead of floating-point arithmetic. The
only work the authors are aware of the application of OR tools to SMT is
[YM06], where nevertheless the issue of how incorrect answers from the solver
should be handled was not addressed. Still, OR solvers may give wrong answers:
for instance CPLEX 11 [ILO07], the newest version of ILOG CPLEX, returns
that the following set of constraints (obtained from the industrial benchmark
clocksynchro 2clocks.main invar.induct from the SMT-LIB) is satisfiable:

−x − y + u ≤ 0 −11z + v + 11t ≤ 0
−u + z ≤ 0 11x − v ≤ −10−5

−t + y ≤ 0 x ≥ 10−5

However, it is unsatisfiable, as the reader can easily check by multiplying the
first three constraints by 11 and adding up all constraints but the last bound
(which is not in the conflict but is needed to get a wrong answer from CPLEX).

In this paper we further study the applicability of OR tools for developing the-
ory solvers for LA. We show how imprecise floating-point-based simplex solvers
can be used in combination with result checking and error recovery policies for
handling solver failures.

Furthermore, we report on a large number of carefully designed experiments
with commercial and non-commercial OR solvers, including CPLEX 11, and
with several versions of our own new Barcelogic SolverT for LRA and LIA.
These experiments show, among several other interesting results, that (i) result
checking takes only a small fraction of the total OR solver time and (ii) OR
solvers are not designed for the incremental feasibility problems that occur in
SMT and are often outperformed in this context by our specialized exact T -
solver.

This closes some research directions and opens other new ones. In particular,
it seems that a good approach may be to combine result checking with floating-
point implementations of our current SMT-style incremental solvers. Following

SAT Modulo the Theory of Linear Arithmetic 79

this idea we have implemented a prototype using floating-point arithmetic, which
we have compared experimentally with CPLEX obtaining promising results.

This paper is structured as follows. We first give some background on SMT
and DPLL(T) in Section 2. Section 3 studies which functionalities are offered
and missing in OR solvers in order to be used as theory solvers. Then, Section 4
concentrates on how to use inexact solvers like CPLEX in DPLL(T). Next,
Section 5 analyzes the performance of OR solvers when used as theory solvers.
Finally, Section 6 presents preliminary results on the development of inexact
solvers specifically designed for SMT, and we conclude in Section 7.

2 Background on SMT and DPLL(T)

In this section we give a quick overview of SMT and DPLL(T). We refer to
[NOT06] for further details, extensions and references. The SMT problem con-
sists of, given a ground first-order formula F and a theory T , deciding whether
F is T -satisfiable (or T -consistent), i.e., whether there exists a model of T that
is also a model of F . For that purpose, most state-of-the-art SMT solvers com-
bine a boolean engine DPLL(X), very similar in nature to a SAT solver, with a
theory solver SolverT , thus producing a DPLL(T) system.

In the simplest version of such systems, the boolean engine initially considers
each atom as a distinct propositional symbol. If the formula turns out to be
propositionally unsatisfiable, it is T -unsatisfiable as well. Otherwise, DPLL(X)
returns a propositional model M . This model, seen as a conjunction of literals,
is then checked for T -consistency by SolverT . If M is T -consistent then F is
T -satisfiable; otherwise, in order to prevent M from later consideration, one can
conjunct the negation of M (a disjunction of literals) to F and repeat the process
until DPLL(X) finds a T -consistent model or returns unsatisfiable.

Example 1. Let F be x ≤ 2 ∧ (¬(x + y = 1) ∨ x ≥ 3) ∧ x + y = 1.
In this case, DPLL(X) will return the model M = {x ≤ 2, x ≥ 3, x + y = 1}
which will be detected T -inconsistent by Solver

T
. After adding to F the clause

¬(x ≤ 2) ∨ ¬(x ≥ 3) ∨ ¬(x + y = 1), the boolean engine will report the
unsatisfiability of the formula.

In this simple setting all one needs from Solver
T

is the capability of checking
the T -consistency of a conjunction of literals. However, for this approach to be
efficient in practice several improvements need to be made. Here we list some of
them, making special emphasis on the requirements they pose on Solver

T
:

– The T -consistency of the assignment stored by DPLL(X) can be checked
while it is being built, without delaying the check until a propositional model
has been found (i.e., we are at a leaf of the search tree). This saves a large
amount of useless work but requires Solver

T
to be incremental, that is, being

faster in processing the addition of a single literal to a set of literals already
found T -consistent than in reprocessing the whole set from scratch.

80 G. Faure et al.

– When an assignment M is found T -inconsistent by Solver
T
, one can ask

DPLL(X) to backtrack to some point where the assignment was still T -
consistent instead of restarting the search from scratch. This obviously forces
Solver

T
to be able to support backtracking. Moreover, DPLL(X) needs to

start its conflict analysis mechanism with an inconsistency explanation given
by SolverT , that is, a small subset of M that is also T -inconsistent (e.g, in
Example 1, an inconsistency explanation is {x ≤ 2, x ≥ 3}).

– As a further optional refinement, if we want Solver
T

to play an active role
in the search, instead of being used only to validate the search a posteriori,
we can ask Solver

T
to detect unassigned input literals that are T -entailed

by the current assignment M ; that is, literals l such that M ∧ T |= l. This
refinement, called theory propagation, allows DPLL(X) to assign them a
truth value instead of having to guess an arbitrary value for them.

These improvements have allowed SMT solvers to be successfully used in a
variety of applications. Many of them involve reasoning over the theory of linear
arithmetic (LA), where atoms are of the form a1x1 + . . . + anxn �� b, being the
ai’s rational numbers, the xi’s integer or rational variables and �� one of the
operators =, ≤, <, >, ≥ or �=. An interesting fragment of linear arithmetic is
the one of difference logic (DL), where atoms are of the form x1−x2 �� b. In SMT
benchmarks most LA constraints are indeed DL and their consistency can be
checked very efficiently by means of negative-cycle-detection algorithms. Hence,
when checking the T -consistency of a set of LA constraints it is not uncommon
to first apply a specialized DL solver to filter out the inconsistencies that arise
only taking into account DL atoms. On the other hand, for dealing with general
LA constraints all state-of-the-art theory solvers in SMT tools are based on the
simplex method. For further reading see, e.g., [Sch87].

3 Using OR Solvers as Theory Solvers for LA

In this section we summarize what OR solvers provide and miss so as to be
applied to DPLL(LA).

All linear programming (LP) packages developed in OR allow the user to test
the satisfiability of a conjunction of linear equations and non-strict inequations.
Very often there is no specific facility for this purpose, since all that needs to be
done is to optimize the null function over the system of constraints of interest:
all models of the formula are optimal with respect to this objective function.

Moreover, most of these systems implement the so-called bounded simplex
method [Mar86], which handles bounds on variables in a more efficient way than
in the textbook version [Sch87]. This is important in the SMT context, since
typically a significant amount of the literals in a problem are bounds: on average
over 30% in the SMT-LIB, and in some benchmarks beyond 50%.

Also important as regards efficiency, the majority of these packages provide
an API that avoids expensive communication through files and system calls.

SAT Modulo the Theory of Linear Arithmetic 81

Another issue that is paramount for the application to DPLL(LA) is incre-
mentality: fortunately, most often the interfaces of these tools provide facilities
for adding and removing constraints and modifying bounds, among others.

However, when one is faced with an unsatisfiable conjunction of constraints,
as far as the authors know only commercial LP tools (or demo versions with
limited capabilities of these) provide a means for computing an irredundant
explanation for the inconsistency. Moreover some of these, such as CPLEX 9.1,
produce explanations for LRA but not for LIA; besides, for some pathological
instances, the explanations given by CPLEX 9.1 are redundant, though they
should not be according to the documentation. For example, for the following
system of constraints:

x + y ≤ 2 ∧ x ≤ 1 ∧ x ≥ 1 ∧ y ≤ 2 ∧ y ≥ 2

CPLEX 9.1 considers the conjunctions x ≤ 1 ∧ x ≥ 1 and y ≤ 2 ∧ y ≥ 2 as the
equations x = 1 and y = 2 respectively, and returns E = {x + y ≤ 2, x = 1, y =
2} as an irredundant explanation, whereas E′ = {x + y ≤ 2, x ≥ 1, y ≥ 2} is a
proper subset of E that is also inconsistent. Fortunately CPLEX 11 fixes these
problems and does produce truly irredundant explanations for both LRA and
LIA.

On the other hand, to the knowledge of the authors what all LP packages
lack is support for handling disequalities and strict inequalities. Basically this
is due to two facts: (1) optimization problems with these constraints may not
have optimal solutions, and (2) in LP data are not usually absolutely precise,
e.g., because they are subject to measurement errors.

Another feature that most LP tools lack is precise arithmetic. For the sake of
efficiency, typically an OR solver works with floating-point arithmetic, instead
of arbitrary-precision rationals as done in SMT solvers. This is the reason why,
as shown in Section 1, an OR solver may give a wrong answer, i.e., return
“SAT” for an unsatisfiable problem or “UNSAT” for a satisfiable one, or also
compute a wrong explanation of inconsistency. Moreover, the use of floating-
point arithmetic entangles the risk of a sudden unexpected failure; this is one of
the reasons why optimization routines in LP libraries return a status value that
indicates whether an internal error has occurred.

For instance, all of the versions of CPLEX we have experimented with just sup-
port floating-point arithmetic. On the other hand, the non-commercial OR solver
GLPK [Mak07] additionally provides the user with exact arbitrary-precision
arithmetic. See Section 5 for the results of our experiments with this feature.

Finally, no LP package supports theory propagation. This is natural, since in
the context of OR this notion does not make any sense. Although the impor-
tance of theory propagation has been acknowledged elsewhere for LA and other
theories [NO05b, DdM06b], one of the initial hypotheses of this research was
that, given the huge amount of work done in the area of OR over the years,
the performance of LP tools would be so outstanding that this limitation would
be compensated for. Further, as seen in Section 2, theory propagation is not a

82 G. Faure et al.

necessary part of the core interface with DPLL(X), but an optimization on this
interface.

4 How to Deal with Inexact Solvers in DPLL(T)

As discussed in Section 3, there are two issues that must be addressed so as to
employ an inexact OR solver as a LA-solver:

(1) In the SMT context, constraints may be not only equalities and non-strict
inequalities but also the negation of these, i.e., disequalities and strict in-
equalities; the OR solver must be able to handle them all.

(2) Due to imprecise arithmetic, the answers given by the OR solver may be
wrong, and thus must be checked; moreover, there must be a policy for
recovering from the possible errors and resuming the search.

In this section it is shown how this gap can be filled. As far as (1) is con-
cerned, the problem of handling disequalities can be reduced to that of strict
inequalities, since one can preprocess the input formula by splitting equalities
into conjunctions of non-strict inequalities and disequalities into disjunctions of
strict inequalities, which works very well in practice [DdM06b]. Now, given that
the issue of correctness of the OR solver needs to be addressed anyway, a pos-
sibility is to strengthen strict inequalities by subtracting a small value ε; i.e.,
a constraint of the form cT x < d is transformed into cT x ≤ d − ε (for instance,
in our experiments we used ε = 10−5). Thus, the problem (1) of handling strict
constraints has been reduced to (2), that of correctness of the inexact solver.

Now, regarding (2), a general solution for using inexact T -solvers in DPLL(T)
(not necessarily OR solvers when T is LA) is to check results by means of an
exact T -solver only when it is strictly necessary to ensure correctness. That is, (i)
whenever the inexact solver returns “UNSAT”, checking that the explanation for
the conflict is indeed inconsistent; and (ii) whenever the inexact solver returns
“SAT” (or an internal error occurs) at a leaf, checking that the assignment is
indeed consistent with the theory. A corresponding error recovery policy can be
easily described: in case (i), if the explanation is wrong, the exact solver is called
again over the partial assignment, and the search is resumed using the result of
this exact consistency check; similarly, in case (ii) the result of the check with
the exact solver is employed to continue the search. Both result checking and
error recovery policies are summarized in Algorithm 1.

Notice that the most expensive calls to the exact solver are those where the
consistency of the whole partial assignment is checked. Under the hypotheses
that the inexact solver will produce almost no wrong explanations of inconsis-
tency and that internal errors will be infrequent too, these calls will be basically
due to the uncommon event of the boolean search getting to a leaf of the tree.
So it is reasonable to imagine that the cost of these calls will not be noticeable.

As regards the calls to the exact solver with inconsistency explanations, these
will be much more frequent, since typically every few decisions a conflict arises.

SAT Modulo the Theory of Linear Arithmetic 83

Algorithm 1. Consistency check and error recovery policies

if in a leaf then
if there is an internal error or inexact solver returns “SAT” then

check consistency of partial assignment with exact solver;
resume search using the result given by exact solver;

else //inexact solver returns ‘‘UNSAT’’
check consistency of inconsistency explanation with exact solver;
if exact solver returns “SAT” then

check consistency of partial assignment with exact solver;
resume search using the result given by exact solver;

else //exact solver returns ‘‘UNSAT’’
resume search using inconsistency explanation for conflict analysis;

else //in an internal node
if there is an internal error or inexact solver returns “SAT” then

continue search as if partial assignment were theory consistent;
else //inexact solver returns ‘‘UNSAT’’

check consistency of inconsistency explanation with exact solver;
if exact solver returns “SAT” then

continue search as if partial assignment were theory consistent;
else //exact solver returns ‘‘UNSAT’’

resume search using inconsistency explanation for conflict analysis;

Fortunately, in general the number of literals in an explanation is below a few
tens, and therefore these calls are often cheap.

In order to empirically assess the cost of result checking, we have carried out
the following experiment: for all benchmarks in the LRA and LIA divisions (501
and 203 problems, respectively) of the SMT-LIB [TR05], we have run our SMT
tool using CPLEX 11 as a LA-solver and implementing the result checking and
error recovery policies presented in Algorithm 1 with our exact Barcelogic LA-
solver. In order to avoid noise, no difference-logic pre-filtering has been applied.
In this and in the rest of experiments in this paper, the machine used was a
PC with an Intel(R) Xeon(TM) CPU 3.80GHz processor running Linux Debian
4.1.1. The timeout was set to 15 minutes.

In the graph in Figure 1 each dot represents an SMT instance of LRA. The
horizontal axis shows the time spent in CPLEX (consistency checking, inconsis-
tency explanation generation and backtracking); the vertical axis represents the
time taken by result checking. Besides, the line y = x/10 is drawn as a reference.

As can be seen from the graph, for most problems in LRA the time taken
by result checking is in general at most 10% of the time spent in CPLEX. In
those instances for which result checking is significantly more expensive than
that, this is due to either (1) the length of the inconsistency explanations (for
some examples in the TM family, several hundreds of literals) or (2) the amount
of errors produced by CPLEX. However, in more than 75% of the benchmarks,
errors occur in at most 2% of the consistency checks.

The graph in Figure 2 is similar to that in Figure 1, but for benchmarks from
LIA. In this case it is also clear that, in general, the cost of result checking is at
most 10% of the time spent by CPLEX.

84 G. Faure et al.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800 900

R
es

ul
t c

he
ck

in
g

CPLEX

Time result checking vs. time CPLEX

Ref. line y=x/10
SMT benchmarks

Fig. 1. Result checking evaluation for LRA

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800 900

R
es

ul
t c

he
ck

in
g

CPLEX

Time result checking vs. time CPLEX

Ref. line y=x/10
SMT benchmarks

Fig. 2. Result checking evaluation for LIA

5 Performance of OR Solvers as T -Solvers

In this section we experimentally evaluate the performance of inexact OR solvers
against that of specialized exact LA-solvers designed for SMT.

To this end, we have carried out the following experiment: guiding the search
with our exact Barcelogic LA-solver, we have also run in parallel CPLEX 11 and
compared the timings of the two tools, counting consistency checks 1, incon-
1 There is a difference in the way consistency checks were performed with each tool.

For our LA-solver, pending constraints were asserted one at a time; for CPLEX, all
pending constraints were asserted at the same time. The reason for this is that, if
CPLEX was asked to deal with constraints one at a time, it was much slower.

SAT Modulo the Theory of Linear Arithmetic 85

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700

C
P

LE
X

Exact solver

Time CPLEX vs. time exact solver

Ref. line y=x
SMT benchmarks

Fig. 3. Comparison between our exact solver and CPLEX in LRA

sistency explanation generation and backtracking. To make a fair comparison,
apart from exploring the search space in the same way, neither difference-logic
pre-filtering nor theory propagation have been applied.

The graph in Figure 3 shows the results of this experiment for LRA. Each dot
represents an SMT instance. The horizontal axis is the time taken by our own
exact LA-solver; the vertical axis is the time spent by CPLEX. Besides, the line
y = x is drawn as a reference.

Contrary to our initially expected results, when used as a theory solver in
the DPLL(T) framework, CPLEX 11 tends to perform worse or not significantly
better than our LRA solver. This is mainly due to consistency checks, and also
inconsistency explanation generation, which are usually more expensive with
CPLEX 11. The same experiments have also been carried out with other inexact
OR solvers, namely CPLEX 9.1 and GLPK 4.25, the newest version of the GNU
Linear Programming Kit, with similar outcome (although CPLEX 11 performs
better than CPLEX 9.1, which is in turn better than GLPK). We have worked
on several hypotheses in order to explain these results:

The default CPLEX parameter values are not adequate for SMT. The
experiments above have been carried out using the default values for the pa-
rameters of CPLEX, so one could argue that these values are not the most
appropriate for SMT problems. For this reason we have experimented chang-
ing several of the parameters that, according to CPLEX documentation, have
most impact on the performance: simplex method (primal, dual, barrier), pric-
ing strategy (standard, steepest edge, devex, ...), refactorization frequency, and
several preprocessing options. No significant improvements have been achieved
on the results obtained with the default values of the parameters.

The basis is refactored at each constraint addition/deletion. CPLEX
allows writing a log file with information about the progress of the computa-
tion. From these log files it can be seen that refactorizations are not performed

86 G. Faure et al.

systematically each time constraints are added or removed, but more spacedly.
Also, as mentioned above, we did not significantly enhance the results by modi-
fying the refactorization frequency.

CPLEX is using a Phase I procedure that adds many new auxiliary
variables and/or rows to the problem at each consistency check. As far
as the authors could infer from the documentation, the Phase I primal algorithm
implemented in CPLEX is based on [Mar86], where no extra rows or variables
are added to the problem. Moreover, if the dual simplex method is employed,
since the objective function is null any basis is trivially feasible, and thus all work
is done in Phase II, where no auxiliary rows or variables are added either; still,
we did not improve timings by using the dual simplex method, as said above.

CPLEX is not designed for being used as a Solver
T

in DPLL(T), nor
for the kind of problems that arise in SMT. This is the most plausible
explanation for the results obtained in this experiment, since the way CPLEX is
commonly used in OR is remarkably different from that in this paper for SMT.

First of all, CPLEX is aimed at linear programs with up to millions of variables
and constraints, whereas consistency checks from SMT involve few thousands of
constraints over few hundreds of variables. Thus, using CPLEX for solving these
problems may be an overkill.

Secondly, when in OR a linear program is solved, typically the user carries out
some sensitivity analysis; in order to reuse computations in further reoptimiza-
tions, CPLEX provides the facilities not only for adding/removing constraints
and changing bounds, but also changing coefficients of the objective function and
the whole constraint matrix. However, efficiency in adding/removing constraints
and changing bounds is not as determinant as in DPLL(T), where thousands of
problems need to be solved incrementally for a single benchmark. As a result of
this, CPLEX does not outperform our exact LA-solver in an incremental setting,
whereas when solving large static problems it is better by orders of magnitude.

As regards inconsistency explanations, the typical scenario in OR is the fol-
lowing one: when dealing with big linear programs it may be tedious to detect
errors in the data, for instance when the problem turns out to be infeasible
whereas it should not; CPLEX offers functionalities for computing conflicting
sets of constraints in order to help the user to diagnose where the error could
be. Thus, in the context for which CPLEX has been designed, the computa-
tion of explanations of inconsistency is not critical, unlike in DPLL(T). In fact,
while we were experimenting with a previous version of CPLEX, CPLEX 9.1,
the bottleneck for many problems in LRA (namely, the sc and TM families) was
precisely the generation of these explanations. CPLEX 11 is more efficient than
its predecessor when computing inconsistency explanations, but there are still
instances for which it does not perform very well.

Finally, CPLEX provides the user with finely tuned technology for optimizing
hard problems, among others sophisticate pricing strategies, several optimization
algorithms, advanced basis methods, etc. On the other hand, from the optimiza-
tion point of view, the linear programs arising from SMT problems are easy and

SAT Modulo the Theory of Linear Arithmetic 87

can be usually solved with few iterations of the simplex algorithm. Again, using
CPLEX in this context may be excessive.

In order to look further into the cost of consistency checks in OR solvers, we
experimented with the open-source OR solver GLPK 4.25 2, which supports both
floating-point and arbitrary-precision arithmetic. As regards inexact arithmetic,
as mentioned above the results of the experiments were similar to those with
CPLEX 11, although the performance of GLPK was worse than that of CPLEX.
The execution profiles showed that about half of the time in GLPK was spent on
factorizing the basis and the rest on (re)initializing data structures and simplex
iterations, but did not reveal any deeper insights. Regarding exact arithmetic,
GLPK performed two orders of magnitude worse than our exact LA-solver.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700 800

C
P

LE
X

Exact solver

Time CPLEX vs. time exact solver

Ref. line y=x
SMT benchmarks

Fig. 4. Comparison between our exact solver and CPLEX in LIA

Finally, in Figure 4 we show the results of the experiment with CPLEX 11
and our exact solver on all LIA benchmarks from the SMT-LIB. As can be seen
from the graph, CPLEX does perform better in general than our LIA solver
(notice, however, that in some instances CPLEX is much slower; this is because
for these particular LIA benchmarks it spends a huge amount of time comput-
ing explanations of inconsistency). This outcome is explained by the simplicity
of our LIA solver, whose heuristics for branch & bound and cut generation
have not been finely tuned. Nevertheless, given that the underlying engine for
solving integer problems is a solver for reals, and given the above results for
LRA, it seems reasonable to think that this difference between CPLEX and
our LIA solver can be reduced if our search mechanism for integer solutions is
improved.

2 GLPK does not provide facilities for computing irredundant explanations of incon-
sistency, and so it was just used to check the consistency of partial assignments.

88 G. Faure et al.

6 New Prospects: An Inexact Solver Designed for
DPLL(T)

In this section we report on work in progress towards the use of inexact LA-
solvers specifically designed for SMT as opposed to solvers developed in OR,
based on the results obtained in the previous section.

Namely, in Section 5 our experiments in LRA have revealed that state-of-the-
art OR solvers such as CPLEX 11 and GLPK 4.25, when applied in the DPLL(T)
framework, are not competitive with specialized tools. Though in principle this
is a negative result, in fact it suggests a new line for research: to combine re-
sult checking techniques with implementations of our current SMT incremental
solvers using floating-point instead of arbitrary-precision arithmetic.

To assess the viability of this idea, we have run in parallel CPLEX 11 and
an implementation of our LA-solver with floating-point numbers, using result
checking and the error recovery policies described in Section 4. Our inexact LA-
solver is currently a first-stage prototype that has been implemented basically
by replacing exact rational variables by double variables, but without fine tun-
ing for handling precision errors. As expected, using floating-point numbers in
code designed for exact arithmetic may sometimes cause invariant violation and
thus runtime errors and non-terminating behavior in the solver. For this reason,
the experiment described here does not include all benchmarks from the LRA
division of the SMT-LIB, but just those for which these errors did not occur. In-
terestingly enough, just 15% of the benchmarks were discarded; these are mainly
the most difficult ones in the clock synchro, sc and tta startup families.

The outcome of this experiment is shown in the graph in Figure 5. Again, each
dot represents an SMT benchmark. The horizontal axis is the time taken by our
inexact LA-solver prototype; the vertical axis is the time spent by CPLEX.
Besides, the lines y = x and y = 5x are drawn as a reference.

As can be seen from the graph, the results are promising. For most instances,
CPLEX 11 spends at least five times as much time as our inexact solver. Taking
into account the results obtained in the previous section, there is thus a potential
gain in employing inexact LA-solvers implemented with floating-point arithmetic
over exact LA-solvers implemented with arbitrary-precision numbers. 3

However, two problems need to be addressed. First, although result checking
was not an issue when using CPLEX, the situation is different with our pro-
totype, for which the cost of ensuring correctness starts to become significant
over the total time spent in theory reasoning. Therefore, result checking becomes
eligible for optimization. A possibility in this direction is as follows. In all of the
experiments reported here, result checking is implemented by having an auxiliary
checking solver that each time it is called asserts all required constraints, and
once the answer is returned it is emptied; this could be enhanced, for instance,

3 A more precise experiment would have been to compare our inexact solver with the
exact one. However this was not possible: our implementation employs static objects,
which prevents us from having two solvers running simultaneously without resorting
to system calls.

SAT Modulo the Theory of Linear Arithmetic 89

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 100 200 300 400 500 600 700

C
P

LE
X

Inexact LA-solver

Time CPLEX vs. time inexact LA-solver

Ref. line y=x
Ref. line y=5x

SMT benchmarks

Fig. 5. Comparison between our inexact solver and CPLEX in LRA

by having two auxiliary solvers, one for checking explanations of inconsistency
and another one for checking consistency of partial assignments, and working
incrementally with the second one. Moreover, so far the inexact solver does not
communicate any internal information to the auxiliary checking solver: still, the
latter could use some data from the former to speed up the consistency check,
for example which is the feasible basis or which are the multipliers of the in-
consistency certificate. The second problem that has to be solved is that, even
though result checking guarantees that on normal termination the answer given
by the SMT tool will be correct, runtime errors or non-termination are clearly
undesirable. It remains to be seen how these situations can be avoided without
much computational effort.

On the other hand, unlike with OR solvers, this approach has the advantage
that theory propagation could be applied by properly extending the result check-
ing and error recovery policies. This would take the best of the two worlds: first,
the efficiency of floating-point arithmetic; and second, the possibility to convey
theory information to the boolean engine.

7 Conclusions

The main contributions of this paper can be summarized as follows. First, we
have explained how OR tools can be used as theory solvers for SMT by means
of result checking techniques and error recovery policies. Second, we have shown
that the cost of the result checking techniques is only a small fraction of the
time spent in the OR solver. Third, by means of exhaustive experiments we
have shown that OR tools tend to be slower than exact solvers specifically de-
signed for the DPLL(T) framework, and thus are not adequate in the context
of SMT. Finally, based on empirical results we outline a new direction of re-
search for obtaining efficient theory solvers, which consists in combining inexact

90 G. Faure et al.

floating-point-based implementations of solvers designed for DPLL(T) with re-
sult checking and error recovery policies.

Acknowledgments. The authors would like to thank J. Cortadella, J. Carmona
and J. Larrosa for technical support with CPLEX. We are also grateful to L. de
Moura, P. Stuckey and the anonymous referees for insightful comments.

References

[BBC+05] Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., van Rossum, P.,
Schulz, S., Sebastiani, R.: The MathSAT 3 System. In: Nieuwenhuis, R.
(ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 315–321. Springer, Heidel-
berg (2005)

[BT07] Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

[DdM06a] Dutertre, B., de Moura, L.: The YICES SMT Solver. Technical report, SRI
International (2006), Available at http://yices.csl.sri.com

[DdM06b] Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T).
In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94.
Springer, Heidelberg (2006)

[dMB07] de Moura, L., Bjorner, N.: Z3: An Efficient SMT Solver. Technical report,
Microsoft Research, Redmon (2007), Available at
http://research.microsoft.com/projects/z3

[ILO07] ILOG. ILOG CPLEX v.11 (2007), http://www.ilog.com/products/cplex
[Mak07] Makhorin, A.: GLPK 4.25 (GNU Linear Programming Kit) (2007), Avail-

able at http://www.gnu.org/software/glpk/
[Mar86] Maros, I.: A general Phase-I method in linear programming. European

Journal of Operational Research 23(1), 64–77 (1986)
[NO05a] Nieuwenhuis, R., Oliveras, A.: Decision Procedures for SAT, SAT Modulo

Theories and Beyond. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005.
LNCS (LNAI), vol. 3835, pp. 23–46. Springer, Heidelberg (2005)

[NO05b] Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propa-
gation and its Application to Difference Logic. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg
(2005)

[NOT06] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo
Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure
to DPLL(T). Journal of the ACM, JACM 53(6), 937–977 (2006)

[Sch87] Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chich-
ester (1987)

[TR05] Tinelli, C., Ranise, S.: SMT-LIB: The Satisfiability Modulo Theories Li-
brary (2005), http://goedel.cs.uiowa.edu/smtlib/

[YM06] Yu, Y., Malik, S.: Lemma Learning in SMT on Linear Constraints. In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 142–155.
Springer, Heidelberg (2006)

http://yices.csl.sri.com
http://research.microsoft.com/projects/z3
http://www.ilog.com/products/cplex
http://www.gnu.org/software/glpk/
http://goedel.cs.uiowa.edu/smtlib/

Random Instances of W[2]-Complete Problems:

Thresholds, Complexity, and Algorithms

Yong Gao�

Department of Computer Science
Irving K. Barber School of Arts and Sciences

University of British Columbia Okanagan
Kelowna, Canada V1V 1V7

yong.gao@ubc.ca

Abstract. The study of random instances of NP complete and coNP
complete problems has had much impact on our understanding of the
nature of hard problems as well as the strength and weakness of well-
founded heuristics. This work is part of our effort to extend this line of
research to intractable parameterized problems. We consider instances of
the threshold dominating clique problem and the weighted satisfiability
under some natural instance distribution. We study the threshold behav-
ior of the solution probability and analyze some simple (polynomial-time)
algorithms for satisfiable random instances. The behavior of these sim-
ple algorithms may help shed light on the observation that small-sized
backdoor sets can be effectively exploited by some randomized DPLL-
style solvers. We establish lower bounds for a parameterized version of
the ordered DPLL resolution proof procedure for unsatisfiable random
instances.

1 Introduction

The theory of parameterized complexity and fixed-parameter algorithms is be-
coming an active research area in recent years [1,2]. Parameterized complexity
provides a new perspective on hard algorithmic problems, while fixed-parameter
algorithms have found applications in a variety of areas such as computational
biology, cognitive modelling, and graph theory. Parameterized algorithmic prob-
lems also arise in many areas of artificial intelligence and satisfiability search.
See, for example, the survey of Gottlob and Szeider [3].

Recently, some problems related to detecting backdoor sets for instances of
the propositional satisfiability problem (SAT) have been studied from the per-
spective of parameterized complexity [4,5,6]. In particularly, the issue of the
worst-case intractability versus the practical hardness of the backdoor detection
problem has been raised: while the backdoor detection problem is NP-complete
and/or fixed-parameter intractable for many types of backdoors, SAT solvers
such as SATZ can exploit the existence of small-sized backdoors quite effectively
[4,5,7].
� Supported in part by NSERC Discovery Grant RGPIN 327587-06.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 91–104, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

92 Y. Gao

The study of the parameterized proof complexity of the satisfiability problem
has been initiated in [8] where lower bounds on the parameterized resolution
proof are established for CNF formulas that encode some first-order combinato-
rial principle.

The study of random instances of NP and coNP complete problems such as
SAT has had much impact on our understanding of the nature of hard prob-
lems, the strength of resolution proof systems, and the strength and weakness
of algorithms and well-founded heuristics [9,10,11,12,13,14,15].

This work is part of our effort to extend this line of research to intractable pa-
rameterized problems [16]. We discuss random instances of problems whose para-
meterized version is W[2]-complete, including instances of the dominating clique
problem from the Erdös-Renyi random graph and instances of the weighted CNF
satisfiability problem from a carefully-designed random distribution.

We establish lower and upper bounds on the threshold of the phase transition
of the solution probability, and show that in some region of the instance space,
satisfiable instances can be solved by simple algorithms in polynomial/fixed-
parameter time with high probability. Since finding a solution to a satisfiable
instance of the parameterized problems under our consideration can be viewed
as the task of detecting backdoor sets with respect to an (extremely) naive
sub-solver that simply checks whether the all-zero assignment is a satisfying
assignment, the behavior of these simple algorithms may help shed light on the
observation that small-sized backdoor sets can be effectively exploited by some
randomized DPLL-style solvers (See our discussion at the end of Section 3.2).

For random instances in the unsatisfiable region, we establish a lower bound
on the search tree size of the parameterized version of a basic resolution proof
procedure — the ordered DPLL algorithm.

In the next Section, we define necessary terminologies and notation. In Section
3, we discuss the random models and the main results. Sections 4 through 6
contain the proofs of the results.

2 Preliminaries

An instance of a parameterized decision problem is a pair (I, k) where I is a
problem instance and k is an input parameter. A standard example is the pa-
rameterized vertex cover problem where an instance (I, k) consists of a graph I
and a positive integer k, and the question is to decide whether the graph has a
vertex cover of at most k vertices. A parameterized problem is fixed-parameter
tractable (FPT) if any instance (I, k) can be solved in f(k)|I|O(1) time.

Parameterized problems are inter-related by parameterized reductions, result-
ing in a classification of parameterized problems into a hierarchy of complexity
classes FPT ⊂ W [1] ⊂ W [2] · · · ⊂ XP. At the lowest level is the class of FPT
problems. The top level XP contains all the problems that can be solved in time
f(k)ng(k). It is widely believed that the inclusions are strict and the notion of
completeness can be naturally defined via parameterized reductions.

Random Instances of W[2]-Complete Problems 93

Domination-style problems such as the dominating set problem are represen-
tative W [2]-complete problems. However, the behavior of random instances of
the dominating set problem is not interesting. For sparse random graphs G(n, p)
with p ∈ o(1), the size of the minimum dominating set is larger than log n. For
dense random graphs G(n, p) with 0 < p < 1 a fixed constant, any vertex subset
of size log1/(1−p) n is a dominating set.

We consider the dominating clique problem in the Erdos-Renyi random graph
G(n, p), hoping that due to the clique constraint, random instances will have a
much richer structure. The CNF formulas encoding the instances of the domi-
nating clique problem are interesting since their structure bears similarities to
that of the CNF formulas that encode instances of practical problems such as
planning and model-checking, making them potential good benchmarks for the
empirical study of satisfiability search algorithms [17]. Generalizing this observa-
tion, we further propose and study a random distribution defined by combining
a W[1]-complete problem and a W[2]-complete problem: the weighted 2-CNF
satisfiability and the general weighted CNF satisfiability.

2.1 The Threshold Dominating Clique Problem

Given a graph G(V, E), we use N(v) to denote the set of neighbors of a vertex
v ∈ V and use N(U) to denote the open neighbor of a subset of vertices U , i.e.,

N(U) = {v ∈ V \ U : N(v) ∩ U �= φ}.

The cardinality of a vertex set U is denoted by |U |. A clique is a subset of vertices
that induces a complete subgraph. A dominating set is a subset VD of vertices
such that N(v) ∩ VD �= φ, for all v ∈ V \ VD.

We use G(n, p) to denote the Erdös-Renyi random graph where n is the num-
ber of vertices and p is the edge probability. In G(n, p), each of the possible

(
n
2

)

edges appears independently with probability p. Throughout the paper when we
say “with high probability”, we mean that the probability of the event under
consideration is 1 − o(1).

Definition 1. Let G(V, E) be a graph. An α-threshold dominating clique of G
is a subset of vertices VD ⊂ V that induces a clique such that for all v ∈ V \VD,
|N(v) ∩ VD| ≥ α. A 1-threshold dominating clique is simply called a dominating
clique.

The dominating clique problem is NP-complete and W[2]-complete when para-
meterized by the size of the clique [1]. The α-threshold dominating clique can
also be shown to be W[2]-complete by a reduction from the threshold domi-
nating set problem (see the Appendix of [1] for the definition of the threshold
dominating set problem).

2.2 The Weighted CNF Satisfiability Problem

As in the theory of NP-completeness, the propositional satisfiability problem
also plays an important role in the theory of parameterized complexity. A CNF

94 Y. Gao

formula over a set of Boolean variables is a conjunction of disjunctions of literals.
A d-clause is a disjunction of d-literals. An assignment to a set of n Boolean
variables is a vector in {0, 1}n. The weight of an assignment is the number
of the variables that are set to 1 (true) by the assignment. A representative
W [1]-complete problem is the following weighted d-CNF satisfiability problem
(weighted d-SAT):

Problem 1. Weighted d-SAT
Instance: A CNF formula consisting of d-clauses and a positive integer k.

Question: Is there a satisfying assignment of weight k?

Unlike the traditional satisfiability problem, the weighted 2-SAT is already W[1]-
complete. The anti-monotone weighted d-SAT problem (the problem where each
clause contains negative literatures only) is also W[1]-complete. The weighted
satisfiability problem (weighted SAT) is similar to the weighted d-SAT except
that there is no restriction on the length of a clause in the formula. The weighted
SAT is a generic W[2] complete problem.

A formal definition of a parameterized tree-like resolution proof system for
weighted SAT is given in [8]. Basically, a parameterized resolution system can
be regarded as a classical resolution system that has access (for free) to all clauses
with more than k negated variables, where k is the parameter of the weighted
SAT.

The most widely-used algorithms for the traditional satisfiability problem are
variants of the Davis-Putnam-Logemann-Loveland (DPLL) procedure [18]. We
consider the parameterized version of the DPLL algorithm for weighted SAT. It
proceeds in the same way as the standard DPLL algorithm with the exception
that a node in the search tree fails if

1. either a clause has been falsified by the partial assignment, or
2. the number of variables assigned to true in the partial assignment has ex-

ceeded k.

This way of parameterizing a proof procedure was proposed in [8].
We will provide a lower bound on a weaker version of the parameterized

variants of the DPLL procedure — the parametric ordered DPLL. In the ordered
DPLL [10], the variables are given a fixed order (before the algorithm starts).
Except for the unit-propagation reduction steps, the variable selected to branch
on is always the first one in the order that has not been assigned a value.

3 Main Results

3.1 Random Instances of Dominating Clique Problem

We use DOMCn,p
α,k to denote a random instance of the α-threshold dominating

clique problem parameterized by the clique size k on the random graph G(n, p).
The exact threshold of the phase transition of the α-threshold dominating clique

Random Instances of W[2]-Complete Problems 95

problem can be established for all α by extending the proof given in [17]. The
threshold for any constant α (or α up to ε log n with sufficiently small ε > 0)
turns out to be the same.

Theorem 1. Consider the random graph G(n, p). For any constant α ≥ 1,

lim
n

Pr{G(n, p) has an α-threshold dominating clique }

=

{

0, if p < 3−√
5

2
1, if p > 3−√

5
2 .

(1)

The size of an α-threshold dominating clique in G(n, p), if exists, turns out
to be in Ω(log1/p n). As a consequence, random instances of the parameter-
ized α-threshold dominating clique problem with a fixed parameter is with high
probability unsatisfiable for any DOMCn,p

α,k with p < 1. Due to this reason, the
discussions in this subsection, especially those for the satisfiable instances, are
in fact for the “LOGNP”-behavior of the problem. For future studies, one may
want to consider parameterized problems that ask for a dominating clique of size
k log1/ε n for some small constant ε. This difficulty largely motivates the random
weighted SAT distribution to be discussed in the next subsection.

The Unsatisfiable Instances

Two exact algorithms for the dominating clique problem have been proposed
[19,17]. The one proposed in [19] is shown to have a time complexity O(1.339n)
while the one studied in [17] empirically works well on random graphs (In fact by
adding a few simple cases, which never happen in random graphs, the algorithm
studied in [17] can be shown to have a time complexity O(1.383n) by a simple
analysis). In the following, we lower bound the search tree size of the ordered
DPLL algorithm which is weaker than the above two branch-and-reduce algo-
rithms, but is of interest in the study of proof complexity and logic inferences.

The parameterized dominating clique problem can be encoded as a weighted
SAT problem as follows. Given a graph G(V, E), we associate with each vertex
with a Boolean variable. Let {x1, · · · , xn} be the set of variables corresponding
to the set of vertices V = {v1, · · · , vn}. The CNF formula consists of two types
of clauses:

1. Anti-monotone 2-clauses. For each pair of vertices vi and vj such that (vi, vj)
�∈ E, there is a 2-clause xi ∨ xj. This set of clauses enforces the clique
constraint.

2. Monotone long clauses. For each vertex vi, there is a clause

xi ∨ xi1 ∨ · · · ∨ xil

where {xi1 , · · · , xil
} are the neighbors of vi. This set of clauses enforces the

domination requirement.

The following theorem provides a lower bound on the size of the search tree
of the parametric ordered DPLL resolution proof. Note that the result is more
general than needed — we allow k to be as large as ε log n.

96 Y. Gao

Theorem 2. For any parameter 0 < k < ε log n where ε > 0 is a small constant
and any 0 < p < 1, the size of the search tree of the parametric ordered DPLL
algorithm for DOMCn,p

k,α is nΩ(k) with high probability.

The Satisfiable Instances

On the positive side, we show that for any p > 1
2 , an α-threshold dominat-

ing clique of size Ω(log n) in G(n, p) can be found in O(n2) time with high
probability.

Theorem 3. There is an O(n2)-time algorithm that with high probability, finds
an α-threshold dominating clique of size Ω(log n) in G(n, p) with p > 1

2 .

We consider the following greedy algorithm, G-DOMC. Except for the first α-
steps, at any moment, the vertices of the graph are in one of the following groups:

1. VC : the clique obtained so far;
2. VW : vertices that are adjacent to every vertex in VC ;
3. Vi, 0 ≤ i ≤ α − 1: a vertex v is in Vi if it is adjacent to exactly i vertices in

VC .
4. Vα: vertices that have been dominated by at least α vertices in VC , but are

not in VW .

Vertices in Vα are those that have been α-threshold dominated but cannot be
used to expand the current clique. Hence they play no role in the algorithm. It
is easy to see that after the first α steps, vertices in VW have been dominated by
more than α vertices in VC so that we do not need to worry about their domi-
nation. Since α is a fixed constant, it can be shown that with high probability,
the algorithm will not terminate within the first α steps.

The algorithm G-DOMC repeatedly picks a random vertex in VW to expand
the current clique and updates the vertex sets VW and Vi’s accordingly, as shown
in the following pseudo-code:

1. Initialization: VC = φ, VW = V , and Vi = φ, 0 ≤ i ≤ α;
2. Repeat until either Vi = φ, ∀i ≤ α or VW = φ

(a) randomly pick a vertex v in VW

(b) VC = VC ∪ {v}; VW = VW ∩ N(v);
(c) For each 0 ≤ i ≤ α − 1,

Vi = (Vi \ (N(v) ∪ {v})) ∪ (Vi−1 ∩ N(v))

Let X(t) be the size of VW after the t-th iteration and Yi(t) be the size of Vi

after the t-th iteration. Intuitively since p > 1
2 , each vertex is adjacent to more

than half of the vertices. If we construct the clique by greedily picking one of
the potential vertices, then the number of potential vertices that can be used to
expand the current clique decreases at a slower rate than the number of vertices
that still need to be dominated. Consequently, all the vertices will be dominated
before there is no way to expand the current clique.

Random Instances of W[2]-Complete Problems 97

Formally, we will prove that

P
{

X(t) > nδ1 and Yi(t) = 0, ∀ 0 ≤ i ≤ α − 1
}

> 1 − O(
1
nδ

) (2)

where δ > 0 and δ1 > 0 are properly determined small constants and

t = − 1 + δ

log(1 − p)
log n,

which guarantees that the algorithm finds an α-threshold dominating clique at
step t with high probability. For the formal proof, see Section 5.

3.2 A Random Model for Weighted SAT

To have a random distribution that generates interesting instances for fixed
parameters of some dominating-style problem, we propose the following model
Mp1,p2,m

n,k for weighted SAT.

Definition 2. An instances of Mp1,p2,m
n,k consists of

1. a collection of anti-monotone 2-clauses. Each of the potential
(

n
2

)

anti-
monotone clauses is included independently with probability p1, and

2. m monotone clauses obtained independently in the following way: for each
clause, each of the n variables appear with probability p2.

The number of variables is n and the input parameter is k.

It is a concern that the monotone clauses generated in the above may be trivial,
either being empty or containing all the variables. This is not the case — it can
be shown that for the range of m we are considering, all the clauses contain
p2n + o(n) variables with high probability.

We have the following result on the threshold of the phase transition of the
solution probability.

Theorem 4. Assume that 0 < p1, p2 < 1 are fixed constants. Let b = (1 − (1 −
p2)k), and m = c log n. The probability that a random instance of Mp1,p2,m

n,k has
a solution is

lim
n

P
{

Mp1,p2,m
n,k has a solution

}

=

{

1, if c < − 1
log b

0, if c > − k
log b .

For the case of c log b > −1, the proof of the above theorem actually indicates
that the fraction of the satisfying assignments is in a “fixed-parameter” form.
As a consequence, by simply sampling the assignments of weight k, we can find
a satisfying assignment of weight k. The average number of samples needed is
in a “fixed-parameter” for a typical instance from Mp1,p2,m

n,k . (Note however that
the average is taken with respect to the sampling process only.)

98 Y. Gao

Corollary 1. Let m = c log n such that c log b > −1. There is a randomized
algorithm that solves the satisfiable instances of Mp1,p2,m

n,k in 2O(k2)nO(1) time.

Proof. Consider the algorithm that repeatedly and randomly picks an assign-
ment of weight k until a satisfying assignment is found.

Let a = (1−p1). From the proof of Theorem 4, we see that with high probabil-
ity, an instance of Mp1,p2,m

n,k has more than a(k
2)

(
n
k

)

nc log b satisfying assignments.
For a typical (but fixed) instance from Mp1,p2,m

n,k , the probability that a
randomly-picked assignment is satisfying is

a(k
2)

(
n
k

)

nc log b

(
n
k

) = a(k
2)nc log b.

Thus, the average number of samples (with respect to the sampling process)
required before a satisfying assignment is found is 2O(k2)n−c log b.

To relate Corollary 1 to the backdoor set detection problem, consider the (ex-
tremely) naive sub-solver that simply checks whether the all-zero assignment is
a satisfying assignment. Corollary 1 says that such a backdoor set can be found
by sampling the

(
n
k

)

possibilities 2O(k2)n−c log b times, and thus provides a the-
oretical support to the observation that the existence of samll-sized backdoor
sets can be effectively exploited by randomized DPLL-style solvers with random
restarts such as SATZ [7].

Similar to the case of the threshold dominating clique problem, a lower bound
on the parametric ordered DPLL algorithm for unsatisfiable instances can be
established.

Theorem 5. Let m = c log n such that c log b < −k. Then with high probabil-
ity, the size of the search tree of the parametric ordered DPLL for instances of
Mp1,p2,m

n,k is nΩ(k).

4 Proof of Theorem 2

Proof. We focus on the case of 1-threshold dominating clique. Let V ={v1, · · · , vn}
be an ordering of the vertices and assume without loss of generality that this is
also the order used by the order DPLL algorithm. Let i = βn where β > 0 is a
constant, V0 = {v1, · · · , vi}, and U = V \ V0.

Let D be the collection of subsets of vertices in V0 of size k
2 and denote by

N (D) the set of vertices in U that are adjacent to every vertex in the vertex set
D ∈ D, i.e.,

N (D) = {u ∈ U | ∀w ∈ D, (u, w) is an edge}.

We say that a vertex set D in D is promising if

1. D induces a clique in G(n, p), and
2. N(v) ∩ N (D) �= φ for any vertex v ∈ V \ (D ∪ N (D)).

Random Instances of W[2]-Complete Problems 99

We claim that the size of the DPLL search tree is lower bounded by the number
of promising vertex sets in D. To see this, consider a subset of vertices

D = {vi1 , · · · , xi k
2
} ⊂ V0

and a path of length βn in the ordered DPLL search tree along which variables
in D are assigned to true and the other variables on the path are assigned to
false. Since D induces a clique, no anti-monotone clause has been falsified by the
partial assignment. Since the variables in N (D) are those that have not been
forced by the assignment to the variables in D, the fact that N(v) ∩ N (D) �= φ
implies that the monotone long clause enforcing the domination of vertex v is not
empty yet. Therefore, this path will be explored by the ordered DPLL algorithm.
This proves the claim.

To proceed, we first show that the size of N (D) is large with high probability.
Since a vertex u is in N (D) if and only if it is adjacent to every vertex in D, the
expected size of N (D) is

E [|N (D)|] = (1 − β)np
k
2 .

Let ID(u) be the indicator function of the event that u is in N (D). Due to the
independence of the edges in G(n, p), the variables {ID(u), u ∈ U} are indepen-
dent Bernoulli variables with mean p

k
2 . By the Chernoff bound (see, for example,

[20]), we have

P

{

|N (D)| >
1
2
(1 − β)np

k
2

}

≥ 1 − 2e−
1
2 (1−β)np

k
2 . (3)

To complete the proof of the theorem, we show that with high probability,
there are nΩ(k) promising vertex sets. From Equation (3), we have for a fixed
vertex set D ∈ D,

P {D is promising |D induces a clique}

≥ O(1)
(

1 − (1 − p)
1
2 (1−β)np

k
2

)n

≥ O(1) (4)

since p is a fixed constant.
Let X be the number of vertex subsets in D that are promising. The expec-

tation of X satisfies

O(1)
(

βn

k/2

)

p(k/2
2) ≤ E [X] ≤

(

βn

k/2

)

.

Therefore E [X] is in nΩ(k) as long as k < ε logn for some ε = ε(p) > 0. To
complete the proof, we apply Chebyshev’s inequality

P

{

|X − E [X] | >
1
2

E [X]
}

≤
4E

[

(X − E [X])2
]

(E [X])2
. (5)

100 Y. Gao

and show that

E
[

(X − E [X])2
]

= E
[

X2] − (E [X])2 = o(E [X])2,

which can be established by estimating the probability that two overlapping
vertex sets D1, D2 in D are both promising. We omit the lengthy detail due to
space limit.

5 Proof of Theorem 3

We prove the theorem by showing that with high probability, G-DOMC termi-
nates with an α-threshold dominating clique of size Ω(log n). Recall that in the
algorithm G-DOMC, after the first α steps, the vertices of the graph are in one
of the following groups: VC (the current clique), VW (vertices adjacent to every
vertex in VC), Vi (vertices dominated by exactly i vertices in VC), and Vα (the
finished vertices).

Let Xt be the size of VW after the t-th iteration and Y i
t be the size of Vi be

the size of Vi after the t-th iteration. First, we have the following lemma

Lemma 1. The number of vertices in VW after the first α steps satisfies

P

{

Xα >
1
2
pαn

}

≥ 1 − O(e−n).

Due to the above lemma, we will assume that Xα > 1
2pαn, which further implies

that Y i
t ≤ (1 − 1

2pα)n for any 0 ≤ t ≤ α.
Due to the assumption p > 1

2 , there exist small constants δ > 0 and ε > 0
such that

(1 − ε)p > (1 − p)
1

1+δ .

Let

t = − 1 + δ

log(1 − p)
log n, and

δ1 = 1 − 1 + δ

log(1 − p)
log(1 − ε)p > 0.

We will show that

P
{

Xt > nδ1 and Y i
t = 0, ∀ 0 ≤ i ≤ α − 1

}

> 1 − O(
1
nδ

) (6)

which indicates that with high probability, the algorithm G-DOMC terminates
in t steps and finds an α-threshold dominating clique. We first consider the
probability of the event {Xt > nδ1}.

Lemma 2.
P

{

Xt > nδ1
}

≥ (1 − c

n
)t.

for some fixed constant c > 0.

Random Instances of W[2]-Complete Problems 101

Proof. Recall that Xt = |VW | is the number of white vertices after step t. After
the first α steps, the set of white vertices “evolve” on its own — no vertex in
Vi’s can become a white vertex and vertices in VW have been α-dominated.

In step t, a vertex v in VW is randomly selected, and the new VW is formed as
VW = VW ∩N(v). Since in G(n, p), the edges appear in the graph independently,
by the “deferred decision” argument, we see that {Xt, t ≥ α} is a Markovian
chain.

Write at = (1 − ε)tptn = nδ1 . We have

P
{

Xt > nδ1
}

= P {Xt > at}
≥ P {Xs > as for all α ≤ s ≤ t}

=
t

∏

s=α

P {Xs > as | Xs−1 > as−1}

We claim that

P {Xs > as | Xs−1 > as−1} ≥ P {Bin(p, as−1) > as} .

where Bin(p, as−1) is a random variable that has a binomial distribution with
parameters p and as−1, i.e., Bin(p, as−1) is the sum of as−1 Bernoulli random
variables with mean p. To see this, recall that Xs−1 is the number of vertices
in VW after step s − 1 of G-DOMC. In step s, each of the white vertices sur-
vives with probability p, and the events that white vertices survive are mutually
independent.

By the Chernoff bound on the tail probability of Bernoulli variables, we have

P {Xs > as | Xs−1 > as−1}
= P {Xs > (1 − ε)pas−1 | Xs−1 > as−1}

≥ 1 − e−
ε2p2

2 a(s−1)

Since at = (1 − ε)tptn and by the choice of t, ε, we see that e−
ε2p2

2 as−1 ≤ e−nδ
1 ∈

O(1
n). The Lemma follows.

We now bound the conditional probability that Y i
t > 0 given that Xt > nδ1 .

Lemma 3. Given that Xt > nδ1 (i.e., the algorithm does not terminate due to
the lack of vertices to expand the clique), we have

P
{

Y i
t > 0 for some 0 ≤ i ≤ α − 1

}

≤ O(
α

nδ
).

Proof. Recall that after the first α steps, there will be no vertex-exchange be-
tween VW and the Vi’s. Therefore, the probabilistic behavior of the system of
vertex sets {Vi, 0 ≤ i ≤ α − 1} is independent of the specific choice of the vertex
in VW (given that |VW | = Xt > 0 so that there is always a vertex to pick).

102 Y. Gao

In step t, some vertices in Vi move to Vi+1 because they are connected to the
vertex just added to the clique. Due to the same reason, there are also vertices
moving from Vi−1 to Vi. Therefore, the expectation of Yi(t) is

E
[

Y 0
t

]

= (1 − p)E
[

Y 0
t−1

]

,

E
[

Y i
t

]

= (1 − p)E
[

Y i
t−1

]

+ pE
[

Y i−1
t−1

]

.

Write yi
t = E

[

Y i
t

]

. By induction, we have

yi
t ≤ Cti(1 − p)tn

for some constant C > 0. Consequently by Markov’s inequality, we have

P
{

Y i
t > 0

}

≤ yi
t ≤ 1

nδ
.

Therefore,
P

{

Y i
t > 0 for some 0 ≤ i ≤ α − 1

}

≤ α

nδ
.

The lemma follows.

Combining Lemma 2 and Lemma 3, we see that Equation (6) holds. This proves
Theorem 3.

6 Proof of Theorem 4

Let S be the set of assignments of weight k. For each s ∈ S, let Is be the
indicator function of the event that s satisfies Mp1,p2,m

n,k . Consider the random
variable X =

∑

s∈S

Is, the number of assignments in S that satisfy Mp1,p2,m
n,k . Write

a = 1 − p1 and b = 1 − (1 − p2)k, and recall that m = c logn. We have

E [X] =
(

n

k

)

a(k
2)nc log b.

The case of c > − k
log b follows from Markov’s inequality. For the case of

c < − 1
log b , we consider the variance V(X) of X =

∑

s∈S

Is. We say that two

assignments in S have i overlaps if there are exactly i variables that are set to
true by both of the two assignments. Let S(i) be the set of (ordered) pairs of
assignments in S that have i overlaps. V(X) can be written as

V(X) = E
[

(X − E [X])2
]

≤ E [X] +
k

∑

i=0

∑

(s1,s2)∈S(i)

(E [Is1Is2] − E [Is1] E [Is2]). (7)

For any (s1, s2) ∈ S(0), it is easy to see that

E [Is1Is2] − E [Is1] E [Is2] = 0.

Random Instances of W[2]-Complete Problems 103

Consider (s1, s2) ∈ S(i) with i > 0. We have

E [Is1Is2] − E [Is1] E [Is2] = (1 − p1)(
2k−i

2)(1 − 2(1 − p2)k + (1 − p2)2k−i)m

−(1 − p1)2(
k
2)(1 − (1 − p2)k)2m

For sufficiently large n, the above can be upper bounded by

C(1 − p1)(
2k−i

2) (

1 − 2(1 − p2)k + (1 − p2)2k−i
)m

≤ C(1 − p1)(
2k−i

2) (

1 − (1 − p2)k
)m

.

where C > 0 is a fixed constant. Therefore, we have
k

∑

i=1

∑

(s1,s2)∈S(i)

(E [Is1Is2] − E [Is1] E [Is2])

≤ Ck

(

n

2k − 1

)

(1 − p1)(
2k−1

2) (

1 − (1 − p2)k
)m

.

It follows that

V(X)
(E [X])2

≤
E [X] + Ck

(
n

2k−1

)

δ(1 − p1)(
2k−1

2) (

1 − (1 − p2)k
)m

n2k(1 − p1)2(
k
2) (1 − (1 − p2)k)2m

∈ O(
1

n1+c log b
).

For the case c < − 1
log b , write 0 < ε = −c log b < 1. We have by Chebyshev’s

inequality

P

{

|X − E [X] | > n
1−ε
4

1

n
1−ε
2

E [X]
}

≤ 1
n(1−ε)/2 .

Recall that E [X] =
(
n
k

)

a(k
2)(1 − (1 − p2)k)m. It follows that with probability

1 − O(1
nε/2), we have

X ≥ a(k
2)nk−ε − o(nk−ε). (8)

This completes the proof.

7 Conclusions

In this paper, we have studied the behavior of random instances of two W[2]-
complete problems. The threshold behavior of the solution probability under the
proposed random models is studied. Lower and upper bounds on the complexity
of satisfiable and unsatisfiable instances are established.

It is interesting to see if the dominating clique problem on random graphs
with 3−√

5
2 < p < 1

2 can be solved in polynomial time with high probability. Es-
tablishing lower bounds on the proof complexity of more general parameterized
resolution proof system is a challenging future task.

There is a gap between the lower and upper bounds on the threshold of
the solution probability of the random weighted SAT model. Closing the gap
is interesting. Identifying more scenarios that lead to fixed-parameter tractable
class of instances is perhaps even more interesting.

104 Y. Gao

References

1. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
2. Neidermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University

Press, Oxford (2006)
3. Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence, con-

straint satisfaction, and database problems. The Computer Journal (to appear)
4. Dilkina, B., Gomes, C., Sabharwal, A.: Tradeoffs in the complexity of backdoor

detection. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 256–270. Springer,
Heidelberg (2007)

5. Szeider, S.: Backdoor sets for DLL subsolvers. Journal of Automated Reasoning
(1-3) 73–88 (2005)

6. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to
horn and binary clauses. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, Springer, Heidelberg (2005)

7. Williams, R., Gomes, G., Selman, B.: On the connections between heanvy-tails,
backdoors, and restarts in combinatorial search. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 222–230. Springer, Heidelberg (2004)

8. Dantchev, S., Martin, B., Szeider, S.: Parameterized proof complexity. In: Proceed-
ings of FOCS 2007, pp. 150–160. IEEE Press, Los Alamitos (2007)

9. Achlioptas, D., Beame, P., Molloy, M.: A sharp threshold in proof complexity. In:
Proceedings of STOC 2001, pp. 337–346 (2001)

10. Beame, P., Karp, R., Pitassi, T., Saks, M.: The efficiency of resolution and Davis-
Putnam procedures. SIAM Journal on Computing 31(4), 1048–1075 (2002)

11. Cheeseman, P., Kanefsky, B., Taylor, W.: Where the really hard problems are. In:
Proceedings of IJCAI 1991, pp. 331–337. Morgan Kaufmann, San Francisco (1991)

12. Cook, S., Mitchell, D.: Finding hard instances of the satisfiability problem: A
survey. In: Du, Gu, Pardalos (eds.) Satisfiability Problem: Theory and Applica-
tions. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 35, American Mathematical Society (1997)

13. Gent, I., Walsh, T.: Analysis of heuristics for number partitioning. Computational
Intelligence 14(3), 430–451 (1998)

14. Gomes, C., Fernandez, C., Selman, B., Bessiere, C.: Statistical regimes across con-
strainedness regions. Constraints 10(4), 313–337 (2005)

15. Gao, Y., Culberson, J.: Consistency and random constraint satisfaction models.
Journal of Artificial Intelligence Research 28, 517–557 (2007)

16. Gao, Y.: Random instances of parameterized complete problems: phase transi-
tions and complexity, Tech. rep., Computer Science, University of British Columbia
Okanagan (2007)

17. Culberson, J., Gao, Y., Anton, C.: Phase transitions of dominating clique problem
and their implications to heuristics in satisfiability search. In: Proceedings of IJCAI
2005, pp. 78–83 (2005)

18. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM 5, 394–397 (1962)

19. Kratsch, D., Liedloff, M.: An exact algorithm for the minimum dominating clique
problem. Theoretical Computer Science 385(1-3), 226–240 (2007)

20. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley, Chichester (2000)

Complexity and Algorithms for Well-Structured

k-SAT Instances

Konstantinos Georgiou1 and Periklis A. Papakonstantinou1,2

1 University of Toronto, Dept. of Computer Science, Toronto, ON, M5S 3G4, Canada
2 University of Toronto, Dept. of Mathematics, Toronto, ON, M5S 2E4, Canada

{cgeorg,papakons}@cs.toronto.edu

Abstract. This paper consists of two conceptually related but indepen-
dent parts. In the first part we initiate the study of k-SAT instances of
bounded diameter. The diameter of an ordered CNF formula is defined as
the maximum difference between the index of the first and the last occur-
rence of a variable. We investigate the relation between the diameter of a
formula and the tree-width and the path-width of its corresponding inci-
dence graph. We show that under highly parallel and efficient transforma-
tions, diameter and path-width are equal up to a constant factor. Our
main result is that the computational complexity of SAT, Max-SAT,
#SAT grows smoothly with the diameter (as a function of the number
of variables). Our focus is in providing space efficient and highly parallel
algorithms, while the running time of our algorithms matches previously
known results. Our results refer to any diameter, whereas for the special
case where the diameter is O(log n) we show NL-completeness of SAT

and NC
2 algorithms for Max-SAT and #SAT.

In the second part we deal directly with k-CNF formulas of bounded
tree-width. We describe algorithms in an intuitive but not-so-standard
model of computation. Then we apply constructive theorems from com-
putational complexity to obtain deterministic time-efficient and simul-
taneously space-efficient algorithms for k-SAT as asked by Alekhnovich
and Razborov [1].

1 Introduction

SAT,Max-SAT and #SAT are among the most fundamental and well-studied
problems in theoretical computer science, all intractable in the most general case:
SAT is NP-complete [9], Max-SAT is NP-hard to approximate within some con-
stant [3], while #SAT is hard for #P [32]. The intractability of SAT,Max-SAT

and #SAT soon led to the study of restricted versions based on hidden struc-
tures of formulas and in particular on the so-called width restrictions. In this
work, first we introduce a natural structural width parameter directly defined
on k-CNF formulas that we call diameter. We consider SAT,Max-SAT and
#SAT and parameterize them with respect to diameter, giving space-efficient
and parallel algorithms. Second, given the tree decomposition of the incidence
graph of a formula, we show how to decide SAT in simultaneously efficient time
and space.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 105–118, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

106 K. Georgiou and P.A. Papakonstantinou

Parameterizing SAT instances using width parameters follows the more gen-
eral study of NP-hard graph problems initiated by Lipton and Tarjan [19]. Along
these lines, Robertson and Seymour [24,25] introduced tree-width that has been
widely used to parameterize the complexity of many NP-hard problems, see e.g.
surveys [5,17]. When it comes to SAT, a CNF formula can be associated with
many underlying graphs and for each one of them a number of width parame-
ters can be defined e.g. tree-width, path-width, clique-width, branch-width and
cluster-width (for a comparison see [20]). There are numerous works parame-
terizing SAT with respect to width parameters. In what follows, due to space
limitations, our exposition is far from being complete.

Khanna and Motwani [18] considered Max-SAT for formulas of constant
tree-width, while [2] exploits the same structural property for SAT. Deciding
SAT has been proved fixed-parameter tractable with respect to branch-width
by Alekhnovich and Razborov [1], and to tree-width by Gottlob et al [16] on
primal graphs. Using DPLL procedures, Bacchus, Dalmao and Pitassi, [4] con-
sidered #SAT, while the same time-bound for #SAT was achieved by Samer
and Szeider [27] extending [16]. Fixed-parameter tractability of SAT and #SAT

has also been considered in e.g. [10,13,20,21,28]; see also [31] for a survey.
The diameter of an ordered formula formalizes the following idea: if we know

that the distance between the first and last occurrence of any variable is bounded,
we may be able to understand better the complexity of such restricted SAT-
instances. We extend the definition to unordered formulas to be the smallest
diameter over all clause-orderings. Technically, the diameter of a formula φ fully
coincides with the bandwidth (see [7] for a survey) of the intersection graph of
φ. In this work, we consider ordered k-CNF instances of bounded diameter, and
we do not deal with the independent and well-studied problem of finding the
best ordering (equivalent to bandwidth minimization) which is NP-complete.

It is worth noting that the subproblem of k-SAT instances of diameter nε,
ε > 0, where n is the number of variables, is NP-complete. In contrast we show
that k-CNF formulas of log n diameter encode arbitrary NL computations. Ar-
bitrary NL-computations are objects exhibiting highly complex interactions be-
tween their parts. Hence, it is intuitively clear that by considering instances of
bounded ordered diameter we do not break the problem into independent prob-
lems (a preliminary study for a similar problem was given in [14]). Even for
unordered formulas the value of the diameter is provably less informative than
the width parameters in the following sense. Path-width is always upper bounded
by the diameter, although the two values can be off by almost a linear factor
(Lemma 2). Despite this, we prove that by a highly efficient algorithm (Theorem
2), a formula of path-width d(n) can be viewed as a formula of diameter O(d(n)).
Hence we (computationally) counter any undesirable properties of the diameter
and we only keep its simplicity. For ordered instances of SAT,Max-SAT and
#SAT of bounded diameter we design space-efficient and time-efficient algo-
rithms, showing that the complexity of all three problems grows smoothly with
respect to the diameter. If in particular the instances are of sufficiently small
diameter, we present algorithms that in addition are highly parallel. A strong

Complexity and Algorithms for Well-Structured k-SAT Instances 107

point of this work is that these algorithms appear to have quite intuitive descrip-
tions. To the best of our knowledge this is the first work that simultaneously
gives efficient time and space fixed parameter tractability bounds or even deals
with parallelization issues for SAT,Max-SAT and #SAT.

Additional motivation for the study of SAT with respect to simultaneously
time and space tractability is explicitly given by Alekhnovich and Razborov
[1]. Given instances of bounded branch-width w(n) and given a decomposition,
they decide SAT in time nO(1)2O(w(n)) and in space nO(1)2O(w(n)); they further
ask whether it is possible to reduce the space to polynomial preserving time
efficiency. The last part of our paper goes in a fashion independent to the study
of diameter. A consequence of our study is a new algorithm that matches the
same time-space bounds as in [1], and more importantly an algorithm that works
in time nO(1)2O(w(n) log n) and space nO(1).

2 Definitions and Preliminary Results

2.1 Notation and Terminology

All logarithms are of base 2. All propositional formulas are in CNF. A k-CNF is
a CNF where each clause has at most k literals, for a constant k ∈ N. We denote
by φπ a total ordering of the clauses of φ. In an input, an unordered (ordered)
formula φ (φπ) is represented in the standard way as a sequence (sequence in the
given order) of clauses. We consistently use n to denote the number of variables
in a formula. N is used to denote the size of given inputs. The diameter of an
ordered formula is always expressed as a function of the number of variables,
and it is denoted by d(n). All circuit families are logspace or logtime uniform.
DEPTH(f(N)) is the class of languages decidable by a family of circuits in depth
f(N). DSPACE(f(N)), NSPACE(f(N)), DTIME(f(N)) denotes the class of
problems decidable in deterministic, non-deterministic space and deterministic
time f(N) respectively. For the function analogs of decision complexity classes
we extend the notation introducing a leading F ; e.g. FDSPACE(log2 N). NC

i

(AC
i) is the class of languages decidable by polynomial size circuits of depth

O(logi N) where the gates are of bounded (unbounded) fan-in. We denote by
NL = NSPACE(log N). Our notation is standard, see e.g. [11,34]. LOGCFL is
the class of languages logspace reducible to Context Free Languages (see Section
2.5). When the input is a formula of n variables we abuse notation by writing
CompClass(f(n)) instead of CompClass(f(N)). Since N > n our containment
results are slightly better than what our notation suggests. We use the term
“highly parallel algorithms” to refer to circuits that are both of polynomial size
and of small depth e.g. logarithmic or a square of a logarithm.

2.2 Structural Parameters of Graphs

Definition 1. Let G = (V, E) be an undirected graph. A tree decomposition
of G is a tuple (T, X), where T = (W, F) is a tree, and X = {X1, . . . , X|W |}
with Xi ⊆ V such that: (1)

⋃|T |
s=1 Xs = V ; (2) For all {i, j} ∈ E, there exist

108 K. Georgiou and P.A. Papakonstantinou

t ∈ W , such that both i, j ∈ Xt; (3) For all i ∈ V , the subset {t : i ∈ Xt} of
W forms a subtree of T . The quantity maxt∈W |Xt| − 1 is called the width of
(T, X). The tree-width of G, denoted by T W(G), is the minimum width over
all tree decompositions of G. The path decomposition is defined similarly; T has
to be a path and the term path-width is used instead of tree-width.

Determining the optimal tree (path) decomposition is NP-hard while the prob-
lem is approximable within factor O(log n) (O(log2 n)) [6]. Tree-width is closed
under the operation of graph minors and wlog we may assume that the number
of nodes of the tree decomposition (T, X) of a graph G is linear, and that up to
logspace transformations the degree of T is at most 3. For a survey on tree-width
we cite [5].

The diameter of a formula is related to the bandwidth of graphs.

Definition 2. For a graph G = (V, E), let f : V → {1, 2, . . . , |V |} be an injective
map. The bandwidth of G, B(G) is defined as minf maxij∈E |f(i)−f(j)|. In the
minimum bandwidth problem we compute f witnessing B(G).

The bandwidth problem is NP-complete [22] and remains intractable even if the
input graph is a tree of maximum degree 3 [15]. The problem is polylogarithmic
approximable due to Feige [12]. See [7] for a not-so-recent survey.

2.3 Structural Parameters of Formulas

Definition 3. Let V be the set of variables of an ordered formula φπ. For x ∈ V ,
let f(x), l(x) be the index of the clause that x appears for the first and last time
respectively. The ordered diameter is D(φπ) = maxx∈V (l(x) − f(x)) and the
unordered diameter is Δ(ψ) = minπ D(ψπ).

In this work we associate a k-CNF formula φ with two graphs. The incidence
graph Gφ of φ is a bipartite graph. Gφ has a distinct vertex for each clause and
each variable. A variable-vertex ux is connected to clause-vertex uc whenever
the variable x appears in the clause c. The clause-graph Cφ of φ (intersection
graph) arises by associating each clause with a distinct vertex. An edge connects
vertices whose clauses share a variable. In [31] it is shown that the tree-width of
the incidence graph is always smaller than the corresponding width parameters
on other graphs appearing in the literature.

For a formula φ , we further define tree-width T W(φ), path-width PW(φ)
and bandwidth B(φ) of φ to be

T W(φ) = T W(Gφ), PW(φ) = PW(Gφ), B(φ) = B(Cφ)

2.4 Relations between T W(φ), PW(φ), B(φ) and Δ(φ)

Lemma 1. For any ordered k-CNF formula φπ, the following are true:
(i) B(φ) = Δ(φ), (ii) PW(φ) ≤ log n · T W(φ), (iii) PW(φ) = O(D(φπ)).

Complexity and Algorithms for Well-Structured k-SAT Instances 109

Proof. (i) Follows directly from the definitions 2 and 3.
(ii) For every graph G on n vertices, PW(G) ≤ log n · T W(G).
(iii) Consider some k-CNF ordered formula φπ on n variables with D(φπ) =

d(n) and set r = �m/(d(n) + 1)�. We decompose Gφ to a path of width (k +
1) · d(n). Define the path P = v1, v2, . . . , vr. For every i, Xi, that vi is asso-
ciated with, consists of the following two types of vertices: clause-vertices vci

corresponding to clauses ci, for i = (i − 1) · (d(n) + 1) + 1 to i · (d(n) + 1);
variable-vertices vx, for all variables x that are involved in clauses with vertices
already in Xi. We claim that P is valid path decomposition of Gφ. Indeed, prop-
erties (1),(2) of definition 1 are trivially satisfied. As for the third one, consider
any variable x and the associated vertex ux of Gφ. By construction we only have
to consider variable-vertices.

Now suppose (for the shake of contradiction) that there exist indices i < s < j,
such that ux is in both Xi, Xj and ux �∈ Xs. Then, in φπ , x does not appear in
any of the d(t) + 1 clauses in Xs, and therefore D(φπ) > (j − i − 1) · (d(n) + 1).
Finally, since φ is k-CNF formula, for every i, |Xi| ≤ d(n) + k · d(n). 	

Lemma 1 does not preclude the possibility that Δ(φ), PW(φ) are related up
to (say) some constant factor. Combinatorially, things are the worst possible
regarding the diameter. We show that even when each variable appears a small
constant number of times the gap between tree-width (path-width) and diameter
is off by almost linear factor. For this we use theorem 1, p.204 from [29].

Theorem 1 (Smithline ’95). For the complete k-ary tree of height h, B(T) =
�k(kh − 1)/(k − 1)(2h)�

Lemma 2. There exists a family formulas φ with n variables each one appearing
only 3 times, for which Δ(φ) = Ω(n/ log n), PW(φ) = O(log n) and T W(φ) = 1.

Proof. We determine a 3-CNF formula φ with positive literals, by defining its
incidence graph Gφ. We start with the rooted complete binary tree T of height
log n′, where log n′ is even (the root has level 0). Label all nodes of T in arbitrary
breadth-first-search manner starting from the root. At an even level, associate
vertex i with a new variable xi; at an odd level, associate vertex j with a new
clause cj . Define clause cj to be the conjunction of the parental-node x�j/2� and
the two children-nodes x2j , x2j+1. Set φ to be the conjunction of all clauses, and
n the number of variable-vertices in Gφ. Observe that T = Gφ and n = Θ(n′).

By definition T W(T) = 1, and by Lemma 1, PW(T) ≤ log n′. Next we argue
about the bandwidth of Cφ. It is easy to see that if we remove edges from Cφ that
connect clauses that appeared in T at the same level (i.e., edges that connect
clause-vertices sharing in T a common ancestor), the resulting graph consists
of two disconnected complete trees. Every vertex has 4 children, and height at
least � log n′−1

2 �. Theorem 1 then implies that B(Cφ) = Ω(n′/ log n′). 	

Despite Lemma 2, we capitalize on the fact that the notions of diameter and path-
width are the same up to some constant and up to a logspace transformation.
It is also essential for Corollary 1 (see below) that Theorem 2 is constructive.

110 K. Georgiou and P.A. Papakonstantinou

Theorem 2. For any k-CNF formula φ, there exists an ordered k-CNF formula
φπ

′ with Δ(φ′) ≤ D(φπ
′) = Θ(PW(φ)) such that φ ∈ SAT iff φπ

′ ∈ SAT.
Moreover, given the path decomposition of φ, φπ

′ can be computed in logarithmic
space with respect to the size of φ.

Proof. Consider the path decomposition X1, . . . , Xt of Cφ with |Xi| = d(n). We
identify the vertices in the block Xi by the corresponding clauses and variables.
We construct φπ

′ as the output of the following iterative procedure.
For every block Xi do the following: (copy-step) output all the clauses of Xi

in some order; (intercalate-step) for every variable x in Xi or in the clauses
of Xi, output the renaming of x, x ↔ x′; finally replace all appearances of x
in Xi+1, . . . Xt by x′. We call every clause introduced in the intercalate-step
intercalary. φπ

′ is the conjunction of the clauses ordered as the output suggests.
By construction φ is satisfiable iff φπ

′ is satisfiable.
It is clear that the previous procedure can be implemented in logarithmic

space: instead of renaming all subsequent occurrences of x, just count its previous
occurrences. In a reasonable renaming, the indices of the variables do not exceed
n + n + 2k · t · d(n).

Now, we calculate the ordered diameter of φ′
π. We distinguish between vari-

ables introduced in the copy-step and the intercalate-step. By the renamings, it
is immediate that for any variable x of a clause introduced at the copy-step, the
maximum distance between occurrences of x is at most (2k + 1) · d(n).

For variables introduced in the intercalate-step we rely on the definition of
path-width. Consider such a variable x introduced between blocks Xi, Xi+1.
Variable x is (i) either a renaming of a former variable, or (ii) it is brand new
variable that replaces y. Case (i) is easy to handle. For case (ii), the clause c
of X where y appeared, either appears in Xi+1 or not. If it does not appear,
then by the definition of path-width, c does not appear in any subsequent block.
Finally, if c appears in Xi+1 then it will be renamed again when we consider the
next block. In every case D(φπ

′) ≤ (2k + 1) · d(n). 	

Motivated by the previous observations, and for k-CNF formulas, we define

Definition 4 (Computational Problems). SAT(d(n)),Max-SAT(d(n))
and #SAT(d(n)) are the restrictions of SAT,Max-SAT and #SAT respec-
tively, where the instances φπ are ordered formulas and obey D(φπ) ≤ d(n).

2.5 NAuxPDAs: A Practical Model of Computation

A non-deterministic auxiliary pushdown automaton (NAuxPDA) is a general-
ization of a space-bounded Turing Machine (TM) extended by an unbounded
stack. Cook [8] showed that every NAuxPDA bounded to work in space s(n)
and arbitrary time can be simulated by a TM in time 2O(s(n)). Sudborough [30]
showed that LOGCFL (⊆ AC

1 ⊆ NC
2) is characterized by NAuxPDAs that

run simultaneously in logarithmic space and polynomial time. Using NAuxP-
DAs one can simulate a special form of non-deterministic recursion and from
there even a special form of divide and conquer. Non-deterministic Divide and

Complexity and Algorithms for Well-Structured k-SAT Instances 111

Conquer (ND-DnC) [23] is a paradigm which simplifies the presentation of al-
gorithms, something that recently made possible to obtain complex polynomial
time algorithms whose translations into TMs are extremely complicated and un-
natural. The transformation of an NAuxPDA to a TM or to parallel algorithms
(e.g. circuits or PRAMs) is possible and explicit through strongly non-trivial
translation theorems, see Section 4, although the resulting TM can be concep-
tually complicated. Among others, application of these theorems shows that
ND-DnC algorithms that have simple and elegant descriptions can find practical
applications through their transformations. An example of such an application
is demonstrated in Section 4.

3 Solving SAT(d(n)), Max-SAT(d(n)), #SAT(d(n))

3.1 Algorithms for d(n) = Ω(log n)

This section is devoted to d(n) = Ω(log n). We show that SAT can be decided
within non-deterministic space O(d(n)), whereas for Max-SAT and #SAT

it suffices to use deterministic space O(d(n)2). Moreover, all three problems
can be solved in (deterministic) time 2O(d(n)). The time-bounded and space-
bounded algorithms for Max-SAT and #SAT are obtained independently. Un-
der the current knowledge in computational complexity we do not know how
FDSPACE(d2(n)) compares to FDTIME(2O(d(n))).

Theorem 3. SAT(d(n)) ∈ NSPACE(d(n)), Max-SAT(d(n)), #SAT(d(n)) ∈
FDSPACE(d(n)2); Max-SAT(d(n)),#SAT(d(n)) ∈ FDTIME(2O(d(n))).

The satisfiability problem SAT(d(n))
Solve-SAT (Algorithm 1) shows that SAT(d(n)) ∈ NSPACE(d(n)). We can
standardize the way the truth assignment is stored. Reserve one bit for the

Algorithm 1. Solve-SAT
The input is an ordered k-CNF formula φπ which D(φπ) = d(n).

– Initially, consider a window (ordered subformula) W of length d(n) containing the
first d(n) clauses of φπ. Guess values for all variables in W and if the guess does
not satisfy W then reject.

– Iteratively do the following.

– Slide the current position of the window W one clause to the right and free the
space of the variables of the first clause of W .

– Guess (and store in the freed space) truth values for the variables of the new
clause in the updated W . If the updated W is not satisfied or if the new values are
inconsistent with those stored in the memory then reject. Otherwise, if there are
more clauses in φπ to the right of W then iterate; else accept.

112 K. Georgiou and P.A. Papakonstantinou

variable of each occurrence of a literal in W repeating the value for variables
which appear more than once; i.e. in total we have k · d(n) space.

For the correctness it is easy to see that there is a computational branch which
accepts iff there exists a satisfying truth assignment for φπ . Details omitted from
proofs are given in the full version of the paper.

The maximization problem Max-SAT(d(n))
We define DAG-Longest-Path to be the optimization problem where given

a DAG (Directed Acyclic Graphs) G = (V, E) and w : E → N, the goal is to out-
put the (edge-weighted) length of a longest dipath. We reduce Max-SAT(d(n))
in deterministic space O(d(n)) to DAG-Longest-Path. This is a significant
improvement over the natural dynamic programming time-bounded algorithm.

Lemma 3. DAG-Longest-Path ∈ FDEPTH(log2 N). Furthermore, this
family of circuits has size polynomial in N . In particular, the problem is in P.

Here is a brief justification. Power the adjacency matrix using repeated squaring,
over the semiring N with operations (max, +) instead of (+, ·). This way we
compute all walks of length N in depth O(log2 N).

Solve-MaxSAT (Algorithm 2) makes use of a space-efficient routine. This is
the space simulation of the above longest path algorithm. It is well-known (see
e.g. [34]) that DEPTH(s(N)) ⊆ DSPACE(s(N)), s(N) ≥ log2 N . That is,
DAG-Longest-Path ∈ FDSPACE(log2 n), and furthermore the proof of the
inclusion gives us an explicit space-efficient algorithm.

Algorithm 2. Solve-MaxSAT
The input is an ordered k-CNF formula φπ with D(φπ) = d(n). First we show how
to reduce to DAG-Longest-Path working in space d(n) and then we compose in the
standard way two space efficient algorithms.

– The graph consists of blocks of vertices. Each block is associated with a window
(ordered subformula) W of length d(n)+1, where W starts from a distinct position
(clause) in the ordered φπ. The i-th block is associated with the window which
starts from the i-th clause of φπ. Each of the vertices of each block is associated
with a distinct, satisfying truth assignment for this window. We also introduce a
fresh starting vertex s and assume it is associated with an empty subformula.

– There is an edge from a vertex v in block i to every other vertex u in block j > i
whenever v, u are consistent. The weight of the edge (v, u) is the number of clauses
in the window associated with u, satisfied by u and not (already) by v. Let us call
the constructed graph as Hφπ .

– Solve DAG-Longest-Path for Hφπ .

The reduction works in space O(d(n)) since we can enumerate all pairs of
vertices in Hφπ in that space. Hence, Solve-MaxSAT requires deterministic space

Complexity and Algorithms for Well-Structured k-SAT Instances 113

O
(

log2(nO(1)2O(d(n))) + d(n)
)

= O(d2(n)). The time-bounded algorithm is ob-
tained if instead we do matrix powering using repeated squaring (or dynamic
programming) to solve DAG-Longest-Path.

Correctness is transparent. Let us denote by R(u, v) the relation that u is
consistent with v, and u is in a smaller-indexed block than v. Then, we observe
that R is transitive and moreover R is represented by the edges in Hφπ . R can
be used to prove consistency of truth assignments. Any longest path contains s.
We finish by an easy induction on the index of blocks for paths starting from s.

The counting problem #SAT(d(n))
The algorithm for #SAT(d(n)) proceeds by a logspace reduction (Reduce-

#SAT) (Algorithm 3) to the problem of counting paths in a DAG.

Algorithm 3. Reduce-#SAT

The input is an ordered k-CNF formula φπ with D(φπ) = d(n).

– We construct a layered directed graph. Each layer (block) is associated with a
distinct position of a window (ordered subformula) W of length d(n); the i-th
layer is associated with the window which starts from the i-th clause of φπ. Each
of the vertices of each layer is associated with a distinct, satisfying truth assignment
for this window. We denote by Li the subset of vertices of the i-th layer.

– There is an edge from a vertex v in layer i to every other vertex u in layer i + 1
whenever the partial truth assignments of the two vertices are consistent.

– Add two fresh designated vertices s, t. Add an edge from s to every vertex in L1.
Let Lh be the last layer. Add an edge from each vertex v ∈ Lh to t. Let us denote
by Fφπ the constructed graph.

Lemma 4. The number of s-t dipaths in Fφπ equals the number of satisfying
truth assignments of φπ.

Proof. We define a mapping from the set of truth assignments of φπ to the set
of s-t paths in Fφπ . Let τ be a satisfying truth assignment for φπ . By definition
τ satisfies all windows. For each of the corresponding partial truth assignment
there exists a vertex in the corresponding layer. Since all of them extend to the
same τ they are in particular consistent and thus by construction there is a
directed path in Fφπ from a vertex in the first to a vertex in the last layer.

It is not hard to see why this mapping is a function (e.g. by considering the
first time that two paths split) and why it is injective. Similarly, we define an
inverse injective function. 	

From this point on there are two ways to count the number of s-t paths. One
is to reduce to an arithmetic circuit by mapping vertices in Fφπ to + gates and
then apply the results in [33]. The other way is to deal with the problem directly.
The later is even cleaner. The number of layers including s and t is 2 + h, where
h = m − d(n). We conclude the proof of the following by repeated squaring in
the semiring N with operations +, ·.

114 K. Georgiou and P.A. Papakonstantinou

Theorem 4. Let A ∈ N|V (Fφπ)|×|V (Fφπ)| be the adjacency matrix of Fφπ . The
number of s-t paths in Fφπ equals the single non-zero entry of A1+h. Moreover
this can be computed by a polysize circuit of depth O(log2 N).

3.2 Strong, Constructive Extensions of the Equivalence of
Theorem 2

The equivalence of Theorem 2 extends to Max-SAT and #SAT. The details are
given in the full version of this paper. For #SAT we observe that in the reduction
of Theorem 2, φ and φ′ have the same number of satisfying assignments. For
Max-SAT the connection is less straightforward. We modify Theorem 2 and
the graph Hφπ in Solve-MaxSAT. In the proof of Theorem 2 we omit occurrences
of a clause in multiple blocks Xi’s. Furthermore, it is possible to mark on φ′

the beginning and the end of each copy-step using “dummy” clauses. Given the
transformed bounded diameter formula we construct Hφπ

′ by defining windows
according to the previously introduced dummy clauses. Also, we omit all windows
of intercalary clauses but we use their induced relations to connect the vertices.

3.3 Diameter O(log n): Parallel Algorithms and Low Complexity
Classes

When d(n) = O(log n) the corresponding problems are deeply buried inside P.
The proof of Lemma 5 follows the lines of the standard Cook-Levin reduction
modified with systematic rewritings to avoid diameter blow-up.

Lemma 5. SAT(log n) is NL-complete under many-to-one logspace reductions.

As a corollary of Theorem 3 and its proof (in particular Lemma 3 and Theorem 4)
we obtain,

Lemma 6. Max-SAT(log n), #SAT(log n) are in the function analog of NC
2.

Let us consider SAT,Max-SAT and #SAT for formulas of path-width O(log n).
Results of this section and of Section 3.2 derive the following corollary.

Corollary 1 (Bounded path-width). Consider k-CNF instances of path-
width O(log n) where the path decomposition is given. For these instances SAT

is complete for NL, and Max-SAT,#SAT are in the function analog of NC
2.

4 Improved Results for k-CNFs of Bounded Tree-Width

Since tree-width is at worst log n smaller than path-width, the statements of
Section 3 hold for tree-width when the value of the parameter is off by log n
factor. Here we improve on this corollary when it comes to SAT. To that end our
treatment in this section is independent to the results obtained for the diameter.
We obtain an AC

1 algorithm for log n tree-width. Furthermore, by applying
strongly non-trivial results from complexity theory, we provide simultaneous
space and time efficiency as asked in [1] (even for the weaker notion of the
tree-width of the primal graph).

Complexity and Algorithms for Well-Structured k-SAT Instances 115

4.1 Dealing Directly with Tree-Width for SAT

Given a tree decomposition of formula of tree-width t(n) we design an algorithm
that in particular when t(n) = O(log n) shows SAT ∈ LOGCFL. For notational
succinctness, in this section only, n corresponds to the total number of variables
and clauses in a formula.

Algorithm 4. Solve-Treewidth-SAT
The input is a k-CNF formula φ and a tree decomposition (T, X) of width t(n) and of
degree at most 3 (see Section 2.2). Initially we make a call to Recurse-Treewidth-SAT[r],
where r is an arbitrary root of T . If the call returns then accept.

Recurse-Treewidth-SAT[root node v]

– Guess a truth assignment τ for the clauses and the variables corresponding to v.
If τ does not satisfy the clauses associated with v then reject.

– If v is a leaf then return τ . Else, let u, w be the children of v

– Set τu = Recurse-Treewidth-SAT[u] and τw = Recurse-Treewidth-SAT[w].

– If τ is not consistent with τu and τw then reject. Else, return τ .

Solve-Treewidth-SAT can be implemented on an NAuxPDA using space t(n)
and time nO(1) (wlog the number of nodes in the decomposition is linear to the
number of nodes in the graph). When the tree-width is t(n) then there are at
most t(n) clauses and variables whose truth values are checked at each level of
the recursion. Moreover, the algorithm visits each node twice.

The proof of completeness is easy and does not even rely on tree decomposition
properties. For the soundness we use the tree decomposition properties and a
little preparation is necessary.

Lemma 7. Let φ be a k-CNF and (T, X) a tree decomposition of Gφ. Construct
(T, X ′) by extending the association of each node u to be associated with all nodes
corresponding to variables that appear in the clauses associated with u. Then, X ′

witnesses a tree-width constant times bigger than X.

Proof. It is obvious that each set in X ′ is at most k times bigger than the
corresponding set in X . (T, X ′) is a tree decomposition: Axioms (1) and (2) are
easily satisfied; hence we check whether axiom (3) is satisfied too. For clause-
vertices everything is as in X . For a variable-vertex y let the subtree Ty = {t ∈
T : y ∈ Xt} and the set T ′

y = {t ∈ T : y ∈ X ′
t}. Let v ∈ T ′

y such that v �∈ Ty,
where y ∈ C for a clause C. By property (2) of the definition there exists a node
u ∈ Ty which is associated with C. Moreover, there exists a path Pu,v connecting
v and u s.t. C is associated with every vertex in Pu,v. By construction of X ′ the
vertex associated with y is also associated with every vertex in Pv,u. That is, in
X ′ the subtree Ty is extended to include v. 	

116 K. Georgiou and P.A. Papakonstantinou

We continue with the soundness direction. Fix an input φ where the algorithm
accepts. Fix an arbitrary accepting computational branch. We define the binary
relation Q to be the (variable, truth value) pairs that the algorithm assigned to
variables in this computational branch. We need to show that Q is a function
and that it is a satisfying truth assignment.

Consider any two nodes u, v of the tree decomposition where at v we have
(x, T rue) ∈ Q and at u we have (x, False) ∈ Q. By Proposition 7 there exists
{i, j} ∈ T in the u-v path, such that x ∈ Xi and x ∈ Xj which contradicts the
consistency check of the algorithm. The proof of correctness finishes by defining
and applying transitive relation R referring to consistent extensions of partial
truth assignments.

When t(n) = O(log n) algorithm Solve-Treewidth-SAT runs in logspace and
polytime which establishes the following strong theorem.

Theorem 5. k-SAT with tree decompositions of width O(log n) is in LOGCFL.

4.2 Alekhnovich and Razborov’s Question

Given a tree decomposition of width t(n), the refutation algorithm of [1] runs
in time and in space O(nO(1)2O(t(n))). By applying on Solve-Treewidth-SAT the
deterministic time simulation of [8] (Theorem 1, p.7) we obtain an algorithm
that runs in time 2O(t(n)) and space 2O(t(n)), t(n) = Ω(log n), which matches the
time-space bounds in [1] (note that when t(n) = O(log n) we have the very strong
result of Theorem 5). In fact, when t(n) = ω(log n) we improve on [1] as well.
To that end we successively apply non-trivial results from [26] and simple well-
known results from structural complexity. It is worth noting that each theorem
we apply is constructive and thus we successively transform Solve-Treewidth-SAT.
The following theorem is a corollary of three successive transformations in [26]
Theorem 3, p.375 and Theorem 5(2),5(3) p.379.

Theorem 6 (Ruzzo ’81). NAuxPDAs working in space s(n) and time z(n) can
be simulated by a family of circuits of size 2O(s(n)) and depth O(s(n) log z(n)).
Furthermore, this transformation between algorithms is given explicitly.

Theorem 6 gives a family of circuits of size 2O(t(n)) and depth O(t(n) log n)
deciding SAT instances of tree-width t(n). Apart from these parallel algorithms
we have the following as an immediate consequence of the depth bound.

Theorem 7. SAT instances consisting of a k-CNF formulas together with tree
decompositions of width t(n) can be decided in space O(t(n) log n) and thus si-
multaneously in time 2O(t(n) log n). Furthermore, if the decomposition is not given
we decide in time 2O(t(n) log n) and space nO(1).

5 Open Questions

Our work raises many questions which are left open. We consider as most fun-
damental the following four. (1) Study interrelations of SAT, Max-SAT and

Complexity and Algorithms for Well-Structured k-SAT Instances 117

#SAT for different bounds of the diameter; e.g. can we reduce #SAT(d(n))
to SAT(d2(n))? (2) Investigate structural complexity implications by assuming
SAT instances of bounded diameter to be either in P or NP-complete. (3) Im-
prove the result of Section 4.2 by reducing the exponent in the running time. (4)
Finally, we are optimistic that our research will find empirical applications.

Acknowledgments

We would like to thank Paul Medvedev for bringing to our attention the equiv-
alence between the CNF-diameter and the bandwidth of the intersection graph,
and Mohammad Moharrami for explaining tree-width-related concepts. We also
thank Steve Cook for discussions on combinatorial circuits, and Phuong Nguyen
and Matei David for useful suggestions on the presentation of this work.

References

1. Alekhnovich, A., Razborov, A.: Satisfiability, branch-width and Tseitin tautologies.
In: FOCS, pp. 593–603 (2002)

2. Amir, E., Mcilraith, S.: Solving satisfiability using decomposition and the most
constrained subproblem. In: LICS workshop on Theory and Applications of Satis-
fiability Testing. Electronic Notes in Discrete Mathematics (2001)

3. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP.
J. ACM 45, 70–122 (1998)

4. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT
and bayesian inference. In: FOCS, pp. 340–351 (2003)

5. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernet 11(1-2), 1–21
(1993)

6. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18(2),
238–255 (1995)

7. Chinn, P.Z., Chvátalová, J., Dewdney, A.K., Gibbs, N.E.: The bandwidth problem
for graphs and matrices - A survey. J. Graph Theory 6(3), 223–254 (1982)

8. Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded
computers. J. ACM 18(1), 4–18 (1971)

9. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–158
(1971)

10. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discrete
Appl. Math. 108(1-2), 23–52 (2001)

11. Du, D.-Z., Ko, K.-I.: Theory of Computational Complexity. Wiley-Interscience,
New York (2000)

12. Feige, U.: Approximating the bandwidth via volume respecting embeddings. J.
Comput. Syst. Sci 60(3), 510–539 (2000)

13. Fischer, E., Makowsky, J.A., Ravve, E.R.: Counting truth assignments of formulas
of bounded tree-width or clique-width. Discrete Appl. Math. 155(14), 1885–1893
(2007)

118 K. Georgiou and P.A. Papakonstantinou

14. Flouris, M., Lau, L.C., Morioka, T., Papakonstantinou, P.A., Penn, G.: Bounded
and ordered satisfiability: connecting recognition with Lambek-style calculi to clas-
sical satisfiability testing. In: Math. of language 8, pp. 45–56 (2003)

15. Garey, M.R., Graham, R.L., Johnson, D.S., Knuth, D.E.: Complexity results for
bandwidth minimization. SIAM J. Appl. Math. 34(3), 477–495 (1978)

16. Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complexity in AI and non-
monotonic reasoning. Artificial Intelligence 138(1–2), 55–86 (2002)

17. Hlineny, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. The Computer Journal 8, 216–235 (2007)

18. Khanna, S., Motwani, R.: Towards a syntactic characterization of PTAS. In: STOC,
pp. 329–337. ACM, New York (1996)

19. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J.
of Comp. 9(3), 615–627 (1980)

20. Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. In: Biere,
A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 396–409. Springer, Heidel-
berg (2006)

21. Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin.
Theory Ser. B 96(4), 514–528 (2006)

22. Papadimitriou, C.H.: The NP-completeness of the bandwidth minimization prob-
lem. Computing 16(3), 263–270 (1976)

23. Papakonstantinou, P.A., Penn, G., Vahlis, Y.: Polynomial-time and parallel algo-
rithms for fragments of Lambek Grammars (unpublished manuscript)

24. Robertson, N., Seymour, P.D.: Graph minors I. Excluding a forest. J. of Comb.
Theory (Ser. B) 35, 39–61 (1983)

25. Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width.
J. of Algorithms 7, 309–322 (1986)

26. Ruzzo, W.L.: On uniform circuit complexity. J. Comput. System Sci. 22(3), 365–
383 (1981) Special issue dedicated to Michael Machtey

27. Samer, M., Szeider, S.: A fixed-parameter algorithm for #SAT with parameter
incidence treewidth. CoRR, abs/cs/061017 (2006) informal publication

28. Samer, M., Szeider, S.: Algorithms for propositional model counting. In: Der-
showitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 484–498.
Springer, Heidelberg (2007)

29. Smithline, L.: Bandwidth of the complete k-ary tree. Discrete Math. 142(1-3), 203–
212 (1995)

30. Sudborough, I.H.: On the tape complexity of deterministic context-free languages.
J. Assoc. Comput. Mach. 25(3), 405–414 (1978)

31. Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202.
Springer, Heidelberg (2004)

32. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput.
Sci. 8(2), 189–201 (1979)

33. Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of
polynomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)

34. Vollmer, H.: Introduction to Circuit Complexity - A Uniform Approach. Springer,
Heidelberg (1999)

A Decision-Making Procedure for

Resolution-Based SAT-Solvers

Eugene Goldberg

Cadence Research Labs, USA, 2150 Shattuck Ave.,10th floor, Berkeley,
California, 94704

Tel.: 1-510-647-2825, Fax:1-510-647-2801
egold@cadence.com

Abstract. We describe a new decision-making procedure for resolution-
based SAT-solvers called Decision Making with a Reference Point
(DMRP). In DMRP, a complete assignment called a reference point is
maintained. DMRP is aimed at finding a change of the reference point
under which the number of clauses falsified by the modified point is
smaller than for the original one. DMRP makes it possible for a DPLL-
like algorithm to perform a ”local search strategy”. We describe a SAT-
algorithm with conflict clause learning that uses DMRP. Experimental
results show that even a straightforward and unoptimized implementa-
tion of this algorithm is competitive with SAT-solvers like BerkMin and
Minisat on practical formulas. Interestingly, DMRP is beneficial not only
for satisfiable but also for unsatisfiable formulas.

1 Introduction

Resolution based SAT-solvers have gained great popularity due to their ability
to solve very large practical CNF formulas. An important contributor to this
success is conflict driven decision making (CDDM) introduced in [17] and further
developed in BerkMin [7], Minisat [3], Siege and other SAT-solvers. CDDM takes
into account the history of conflicts thus forcing the SAT-solver to explore the
parts of the search space that have not been visited before.

Despite the obvious success of CDDM, still there are many directions to ex-
plore. In this paper, we introduce a resolution based SAT-solver whose decision
making procedure employs a complete assignment further referred to as a refer-
ence point. We will refer to this procedure as Decision Making with a Reference
Point (DMRP). (We will refer to the SAT-solver employing DMRP that we de-
scribe in this paper as DMRP-SAT.)

The main idea of DMRP is as follows. Let F be the CNF formula to be solved.
Let p be a reference point and M(p) be the set of clauses of F that are falsified
by p. DMRP-SAT picks a clause C of M(p) and tries to find a modification
p′ of p that satisfies C and does not falsify any clauses of F that are not in
M(p) \ {C}. In other words, M(p′) ⊂ M(p).

Importantly, the search of the point p′ above is done by a regular DPLL-
like procedure with conflict clause learning. After p′ is found, it becomes a new

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 119–132, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

120 E. Goldberg

reference point and DMRP-SAT performs a complete restart. In our previous
paper [6], we described the resolution-based SAT-solver called FI that operates
on complete assignments. One can view the decision making procedure of FI as
a variation of CDDM. Similarly to CDDM and decision making of FI, DMRP
also gives some preference to recently derived conflict clauses. At the same time,
DMRP is not just a variation of CDDM.

DMRP makes it possible for a SAT-solver to monotonically reduce the num-
ber of clauses falsified by the current reference point. So, in a sense, DMRP-SAT
combines the features of algorithms based on the DPLL procedure [2] and lo-
cal search SAT-algorithms pioneered in [20,21]. The strategy of reducing the
number of clauses falsified by a complete assignment has been successfully ap-
plied by local search procedures to various classes of satisfiable formulas with
no (or “little”) structure like random CNF formulas. For structured satisfiable
formulas, DPLL based SAT-solvers are usually more successful due to conflict
clause learning and Boolean Constraint Propagation. Our results imply that local
search strategy can be successfully applied to structured formulas as well. Inter-
estingly, DMRP-SAT works very well not only for satisfiable formulas (which is
somewhat expected) but also for unsatisfiable ones.

Currently, the main drawbackof DMRP in comparison to CDDM is that DMRP
is more expensive. The reason is that DMRP has to maintain a particular set of
clauses that is updated after assigning/unassigning a variable. (Satisfying all the
clauses of this set means that a new reference point is found that falsifies fewer
clauses than the original one). However, our experiments show that due to high
quality of decision making, even a straightforward unoptimized implementation
of DMRP-SAT can be competitive with SAT-solvers like BerkMin and Minisat.

This paper is structured as follows. In Section 2, we introduce the idea of
DMRP and give an example. Section 3 describes DMRP-SAT in more detail.
In Section 4, DMRP-SAT is compared with other SAT-solvers. Experimental
results are presented in Section 5. We give some conclusions in Section 6.

2 Main Idea of DMRP

In this section, we describe the basic idea of Decision Making with a Reference
Point (DMRP) that is implemented in the SAT-solver DMRP-SAT.

Let F be a CNF formula and p be a complete assignment to the variables of
F . (For the sake of brevity, we will also call p a point.) A clause C of F is said
to be falsified (satisfied) by p if C(p) = 0 (respectively C(p) = 1). Denote by
Vars(C) the set of variables of clause C. Denote by Vars(y) the set of variables
assigned in a partial assignment y.

Definition 1. Let M(p) be the set of clauses of F falsified by p. We will say
that p′ recursively satisfies a clause C of M(p) with respect to the reference
point p if a) C(p′) = 1; b) M(p′) ⊂ M(p).

The use of term ”recursively” is due to the fact that, given a reference point p,
when looking for the point p′ above, DMRP-SAT first satisfies clause C, then
satisfies “descendants” of clause C that get falsified after satisfying C and so on.

A Decision-Making Procedure for Resolution-Based SAT-Solvers 121

Note that if F is satisfiable, an assignment p′ meeting the two conditions of
Definition 1 always exists. (An assignment p′ satisfying F recursively satisfies
any clause C of F with respect to any reference point p falsifying C.) On the
other hand, even if F is unsatisfiable , one may find an assignment p′ recursively
satisfying C if |M(p)| > 1. Then M(p′) ⊂ M(p) and M(p′) �= ∅.

The basic idea of DMRP is to look for a complete assignment recursively
satisfying a clause by regular branching as in the DPLL-procedure.

Definition 2. Let y be a partial assignment. Denote by modify(p,y) the point
obtained from p by flipping the assignments that are different in p and y. (So
assignments to Vars(y) in the point modify(p,y) are the same as in y.)

DMRP-SAT looks for a partial assignment y such that p′ = modify(p,y) re-
cursively satisfies C. To make this search efficient, DMRP-SAT maintains a set
D(C,p,y) of clauses that one needs to satisfy before finding a point recursively
satisfying C (see Definition 3). So if D(C,p,y) = ∅, the point p′ = modify(p,y) re-
cursively satisfies C. DMRP-SAT implements DMRP using the following greedy
heuristic aimed at making D(C,p,y) empty. The next assignment is picked by
DMRP-SAT so as to satisfy the largest number of clauses of D(C,p,y).

Definition 3 (of the set D(C,p,y)). If partial assignment y is empty, then
D(C,p,y) = {C}. Otherwise, D(C,p,y) is defined as follows. A clause C′ of F
is in D(C,p,y) iff 1) there is a variable xi ∈ Vars(y) ∩ Vars(C′) that is assigned
differently in p and y; 2) C′ is not satisfied by y.

Proposition 1. Let F be a CNF formula. Let p be a complete assignment and C
be a clause of M(p). Let y be a partial assignment satisfying C. If D(C,p,y) = ∅,
then the complete assignment p′=modify(p,y) recursively satisfies the clause C
with respect to the reference point p.

Proof. Assume the contrary, i.e. there is a clause C′ of M(p′) that is not in M(p)
and so p′ does not satisfy C recursively. Suppose the set of variables A=Vars(C′)
∩ Vars(y) is empty. Then, C′(p′)=0 implies C′(p)=0 and so C′ is in M(p). We
have a contradiction. Now suppose that A �= ∅. Then all the assignments of y
to the variables of A have to falsify corresponding literals of C′. (Otherwise,
C′(p′) = 1). If all the variables of A are assigned identically in y and p, then
C′(p) = 0 and so C′ is in M(p). Suppose that at least one variable of A is
assigned differently in y and p. Then, since D(C,p,y) is empty, the clause C′

has to be satisfied by some assignment in y. So we have a contradiction again.

Note that D(C,p,y)= ∅ is only a sufficient condition. For example, even if
D(C,p,y) �= ∅ but all the clauses of D(C,p,y) are satisfied by the reference
point p, the complete assignment modify(p,y) may recursively satisfy C. One
can give another definition of D(C,p,y) so that D(C,p,y) = ∅ is also the neces-
sary condition for modify(p,y) to recursively satisfy C. However, in the current
version of DMRP-SAT, to simplify computation of D(C,p,y) we use Definition 3.

Example 1. Let F be the CNF formula specified by the following seven clauses:
C1 = x1 ∨ x2 ∨ x3, C2 = x3 ∨ x4 ∨ x5, C3 = x1 ∨ x6, C4 = x1 ∨ x7,

122 E. Goldberg

C5 = x2 ∨ x5 ∨ x7, C6 = x2 ∨ x4 ∨ x7, C7 = x2 ∨ x6 ∨ x4. Let p=(x1=0,
x2=0, x3=0, x4=1, x5=0, x6=0, x7=0) be a reference point. The set M(p)
consists of clauses C1 and C2. In this example, we describe a run of DMRP-
solve (see Figures 1 and 2) called by DMRP-SAT when looking for a point that
recursively satisfies clause C1. In this description, we use the terminology of
decision levels [22]. Decision level number k consists of the decision assignment
number k and all implied assignments derived in Boolean Constraint Propagation
(BCP) caused by this decision assignment.

Initially, Vars(y)=∅. So D(C1,p,y) = {C1}. Suppose that DMRP-SAT chose
variable x1 to satisfy C1 (the function pick lit of Figure 1). That is x1 = 1 is the
first decision assignment made by DMRP-solve. Then the clause C1 is removed
from D(C1,p,y) (because it is satisfied by an assignment in y). Only clauses C3
and C4 of F have literal x1. They are added to D(C1,p,y) because p and y have
different assignments to x1 and neither C3 nor C4 are satisfied by an assignment
in y. So for y= {x1=1} the set D(C1,p,y) is equal to {C3, C4}.

At this point C3 and C4 become unit. After BCP, DMRP-solve derives x6=0
(from clause C3) and x7=1 (from clause C4) and removes C3,C4 from D(C1,p,y).
Since assignment x6=0 is the same in y and p, no new clauses are added to
D(C1,p,y) when y becomes (x1=1,x6=0). On the other hand, the variable x7
is assigned differently in y and p. Since x7 is in C5 and C6 and they are not
satisfied by y, these clauses are added to D(C1,p,y). So after completing BCP
of decision level 1, we have y=(x1=1, x6=0, x7 = 1), D(C1,p,y)= {C5,C6}.

Suppose that DMRP-solve picks second decision assignment x2=1 to satisfy
C5. Then clauses C6 and C7 become unit, and DMRP-solve derives opposite
values of x4 from them. This leads to a conflict. DMRP-solve derives conflict
clause C8 = x1 ∨ x2 and backtracks to decision level 1. At this level, y =(x1=1,
x6=0, x7 = 1) again and D(C1,p,y) = {C5,C6}. However, now DMRP-solve has
to update D(C1,p,y) due to appearance of conflict clause C8 by adding it to
D(C1,p,y). (C8 contains variable x1 that is assigned differently in y and p and
C8 is not satisfied by y.) So, D(C1,p,y) = {C5,C6,C8}.

At decision level 1, the conflict clause C8 becomes unit and DMRP-solve
derives x2=0 from it. Since x2=0 agrees with p, no new clauses need to be added
to D(C1,p,y). At the same time, C6 and C8 are removed from D(C1,p,y) because
they are both satisfied by x2= 0. So D(C1,p,y) = {C5}. DMRP-solve derives
x5=0 from C5 and the latter is removed from D(C1,p,y). Since x5=0 agrees
with p, no new clauses are added to D(C1,p,y). So, for the partial assignment
y=(x1=1, x6=0, x7=1, x2=0, x5=0), D(C1,p,y) is empty. This means, that
the clause C1 is recursively satisfied by the assignment p′ = modify(p,y) where
p′ = (x1=1, x2=0, x3=0, x4=1, x5=0, x6=0, x7=1). It is not hard to check that
indeed C1(p′)=1 and M(p′) = {C2} and so M(p′) ⊂ M(p). Now DMRP-solve
performs a complete restart and picks p′ as the next reference point.

3 Description of DMRP-SAT

In this section, we describe DMRP-SAT in more detail.

A Decision-Making Procedure for Resolution-Based SAT-Solvers 123

3.1 DMRP-SAT (High-Level View)

DMRP-SAT (F)
{p=gen ref point(F);

while (true)
{C = pick clause(M(p));
lit = pick lit(C,M(p));
(ans,y)=DMRP-solve(F ,C,lit,p);
if (ans == unsat) return(unsat);
if (ans == sat) return(sat);
if (ans == literal) continue;
if (ans == rec sat)

{p = modify(p,y);
if (M(p) == ∅) return(sat);}

if (ans == new point)
p =modify(p,y);}}

Fig. 1. Pseudocode of DMRP-SAT

Pseudocode of DMRP-SAT (F) is
shown in Figure 1. First, DMRP-
SAT generates a reference point.
This is done identically to initial
point generation of FI [6]. “De-
cision” assignments are made by
gen ref point in the order variables
of F are numbered. A decision as-
signment is made to variable xi only
if it has not been already assigned
by BCP performed after a previous
decision assignment. The polarity of
assignment to xi is chosen to sat-
isfy the largest number of clauses
of F with variable xi. After a de-
cision assignment is made, BCP is
performed. If a clause of F is falsified
during BCP, it is added to M(p).DMRP-solve(F ,C,lit,p)

{D(C,p,y) = {C};
while (true)

{if (D(C,p,y) == ∅)
{restart(F);
return(y,rec sat);}

make assgn(F ,lit,D(C,p,y));
ans = BCP(F ,D(C,p,y),p);
if (ans == sat) return(sat);
if (ans == conflict)

{C∗ = gen cnfl clause(F);
if (empty(C∗) return(unsat);
if (C∗ == unit) p=upd pnt(p);
if (C∗ == lit)

{restart(F) ;
return(literal); }

add clause(F ,C∗);
backtrack(F);}

else continue; // no conflict
if (num of cnfl++ > THRESH)

{restart(F);
return(y,new point);}

if (num of cnfl > thresh)
{restart(F);
continue;} }}

Fig. 2. Pseudocode of DMRP-solve

The main work is done by DMRP-
SAT in the ’while’ loop. First,
DMRP-SAT picks a clause C of
M(p) to be recursively satisfied. If
M(p) contains conflict clauses, then
the clause derived most recently is
chosen as C. Otherwise, DMRP-SAT
picks a clause of M(p) that has
a literal occurring most frequently
among clauses of M(p). Then a lit-
eral lit of C is chosen by the pick lit
procedure. Namely, it chooses the
literal of C that occurs most fre-
quently among clauses of M(p).
When looking for a complete assign-
ment recursively satisfying clause
C, the function DMRP-solve called
next examines only points for which
lit evaluates to 1.

Being a DPLL-like procedure
with learning, DMRP-solve returns
answer unsatisfiable if an empty
clause is derived. If all clauses of
F are satisfied by the current par-
tial assignment y, then DMRP-solve
returns satisfiable. If DMRP-solve

124 E. Goldberg

derives the literal lit it returns literal. This means, that clause C cannot by
satisfied by setting literal lit to 1. Then DMRP-SAT starts a new iteration.

If D(C,p,y)=∅ (where y is the current partial assignment), DMRP-solve re-
turns rec sat (C can be recursively satisfied). A new reference point modify(p,y)
is computed. If M(p) = ∅, then p is a satisfying assignment. Otherwise, a new
iteration of the ’while’ loop is started. If the number of conflicts that occurred
in DMRP-solve exceeds THRESH, DMRP-solve returns new pnt. In this case,
DMRP-SAT generates a new reference point modify(p,y) (where y is the partial
assignment of DMRP-solve when it encountered the last conflict).

3.2 DMRP-Solve

The pseudocode of DMRP-solve(F ,C,lit,p) is shown in Figure 2. On the one
hand, DMRP-solve is a regular DPLL-like SAT-solver with conflict clause learn-
ing. In the ’while’ loop, it makes a decision assignment and then runs BCP. If
after BCP, all clauses of F are satisfied, then DMRP-solve returns satisfiable. If
a conflict is encountered during BCP, a conflict clause C∗ is generated using the
1UIP scheme ([23]). If C∗ is an empty clause, DMRP-solve returns unsatisfiable.
Otherwise, C∗ is added to the current CNF formula, DMRP-solve backtracks
and a new iteration starts (unless C∗ is equal to lit , see below). If the number of
conflicts that occurred since the last restart is larger than thresh, DMRP-solve
restarts [8] (i.e. backtracks to decision level 0).

On the other hand, DMRP-solve has a few differentiating features. If conflict
clause C∗ is unit and the current reference point p falsifies C∗, then p is modified
by flipping the value of the variable Vars(C∗). Besides, if C∗ is unit and equal
to lit , DMRP-solve informs DMRP-SAT that such a literal was derived. (Here,
lit is the literal of clause C to be satisfied recursively that was chosen by pick lit
of DMRP-SAT). For decision-making, DMRP-solve maintains the set D(C,p,y)
(see Definition 3). Before looking for a new decision assignment, DMRP-solve
checks if D(C,p,y)=∅. If so, it performs a restart and informs DMRP-SAT that
clause C is recursively satisfied.

At the first decision level, DMRP-solve always makes the assignment sat-
isfying the literal lit of C (and so satisfying C). At a level greater than 1,
DMRP-solve picks the next decision assignment as follows. If the set D(C,p,y)
contains a conflict clause, the clause C′ of D(C,p,y) that was derived most re-
cently is chosen. Then, DMRP-solve finds the literal of C′ that is shared by the
largest number of clauses of D(C,p,y) and picks the assignment that satisfies
this literal. If D(C,p,y) does not contain conflict clauses, DMRP-solve makes
the assignment satisfying the largest number of clauses from D(C,p,y).

If the number of conflicts that occurred since DMRP-solve has been called
is larger than THRESH, DMRP-solve performs a restart. Then DMRP-solve
informs DMRP-SAT to generate the new reference point p=modify(p,y). Here
y is the partial assignment DMRP-solve had when the last conflict occurred.
The value of THRESH is larger than that of thresh used for restarts without
changing the reference point.

A Decision-Making Procedure for Resolution-Based SAT-Solvers 125

3.3 Computation of D(C,p,y)

In the current implementation of DMRP-solve, set D(C,p,y) is computed incre-
mentally. Initially, D(C,p,y) = {C}. When making an assignment xi= b, b ∈
{0,1} (either decision one or derived by BCP), DMRP-solve does the following.
First it checks if reference point p has the same assignment xi=b. If so, no new
clauses are added to D(C,p,y). Otherwise, DMRP-solve examines all the clauses
of D(C,p,y) in which the assignment xi=b sets a literal of xi to 0. If such a clause
is neither satisfied nor it is already in D(C,p,y), it is added to D(C,p,y). Then
DMRP-solve removes from D(C,p,y) all the clauses that are satisfied by xi=b.

When undoing the assignment xi=b above (when backtracking), DMRP-solve
does similar updates. First, it removes from D(C,p,y) the clauses that were
added to D(C,p,y) due to assignment xi=b. Second, it returns to D(C,p,y) all
the clauses that were removed because they got satisfied by xi=b.

3.4 Brief Discussion of DMRP and CDDM

Similar to conflict driven decision making (CDDM) introduced by Chaff, DMRP
takes into account the history of conflicts. First, when picking a clause C of M(p)
to be satisfied recursively, DMRP gives preference to conflict clauses derived
most recently. Second, next decision assignment is made to a variable of the
most recently derived conflict clause C∗ of D(C,p,y) (if any).

At the same time, there are obvious differences. When picking next assign-
ment, DMRP finds the literal of Vars(C∗) with the largest occurrence in clauses
of D(C,p,y). So no preference is given to conflict clauses. Besides, no decay
scheme is used for literal activity computation. So DMRP cannot be called just
a variation of CDDM.

In our current implementation, DMRP is more expensive than CDDM. As
we mentioned above, every time DMRP-SAT makes/unmakes an assignment
(decision or implied one) it recomputes D(C,p,y). So one of the directions for
future research is to cut the cost of DMRP. A potential solution to this problem
is to compute D(C,p,y) approximately.

4 Background

In this section, we compare DMRP-SAT with other SAT-solvers. In this compar-
ison we take into account the following four features: BCP, learning, maintaining
a complete assignment, making restarts. Each of these features is arguably bene-
ficial. BCP allows one to find ”forced” assignments. Learning (e.g. conflict clause
recording [22]) helps in pruning away big chunks of the search space. Maintaining
a complete assignment provides some information about how far a SAT-solver
is from a satisfying assignment [20,21]. Besides, having a complete assignment
can be used for (implicit) identification of small unsatisfiable sub-formulas [6].
Restarts [8] alleviate the problem of SAT-solver’s getting stuck in a part of the
search space that does not contain satisfying assignments. At the same time, we

126 E. Goldberg

do not claim that the more of these four features a SAT-solver has, the more ad-
vanced it is. For example, SAT-solvers that do not employ conflict clause learning
(e.g. Satz [14]) work much better for random CNF formulas.

SAT-algorithms like GSAT[20] and WalkSat[21] (and many other local search
algorithms [11]) operate on complete assignments and make restarts (in the sense
that they pick a new initial complete assignment every once in a while). These
algorithms work very well for some classes of formulas like satisfiable random
formulas. However, lack of learning and BCP makes local search algorithms
less efficient when applied to “highly structured” formulas. On the other hand,
DPLL-like SAT-solvers like Grasp [22], SATO [24], Zchaff [17], BerkMin [7],
Minisat[3], Siege and many others use learning and BCP. Most of them also
employ restarts. These SAT-algorithms have been very successful in solving both
satisfiable and unsatisfiable structured formulas. This success can be attributed
to a) efficient conflict driven learning (introduced by GRASP), b) fast BCP
(introduced by SATO and improved by Chaff) and c) conflict driven decision
making (introduced by Chaff and further developed by BerkMin, Minisat, Siege
and others).

There have been significant effort to combine local search algorithms and SAT-
solvers based on the DPLL procedure. In [15], in every node of the search tree, a
local search procedure is invoked to identify the next variable to branch on. (An
important observation made in [15] is that local search can be used for identifying
unsatisfiable cores.) This approach is further improved in [9] by taking into
account variable dependencies. In [19], random backtracking is used to improve
the scalability of the DPLL procedure. In UnitWalk [10], BCP is used to correct
values of a complete assignment. The values of this complete assignment are re-
assigned in a random order, every variable assignment being followed by BCP.
A complete local search algorithm augmented by clause generation is introduced
in [4]. Clause generation is used in [4] for escaping local minima. In [6], we
described the resolution-based SAT-solver called FI that operates on complete
assignments. The decision making procedure of FI can be viewed as a variation
of CDDM. Namely, the choice of branching variables is reduced to variables of
clauses falsified by the current complete assignment.

Although only FI and DMRP-SAT have all four features mentioned above,
some SAT-algorithms can be augmented with missing features (for example, one
can add clause learning to UnitWalk.) However, only DMRP-SAT combines a
DPLL-like procedure and the ”genuine” local search strategy of minimizing the
set of clauses falsified by a complete assignment. Experiments show that such
a local search strategy can be very useful even for highly structured formulas
(both satisfiable and unsatisfiable).

There is similarity between the notion of a recursively satisfied clause and
that of an autarky [16,5,13]. When looking for a partial assignment y such that
modify(p,y) recursively satisfies a clause C of F , one tries to satisfy clauses of
F “touched” by y (like it is done when searching for an autarky). The main
difference is that a clause C′ of F is considered as touched by an assignment to
variable xi only if xi is assigned differently in y and the reference point p.

A Decision-Making Procedure for Resolution-Based SAT-Solvers 127

5 Experimental Results

In this section, we give results of some experiments with an implementation of
DMRP-SAT. The experiments were run on Intel’s Xeon CPU (3.06GHz) under
Linux. The main objective of experiments was to show that although currently
DMRP is more expensive than conflict driven decision making, it is competitive
with the latter due to high quality of decision making. To keep our implemen-
tation easily modifiable we made it very simple. In particular, it lacked many
techniques commonly employed to speed up a SAT-solver (see subsection 5.1).

We tried DMRP-SAT on a large set of structured CNF formulas. Here we give
data on Bounded Model Checking (BMC) [1,18,12] and equivalence checking
formulas. This data is representative of the typical behavior of DMRP-SAT.
For satisfiable formulas, DMRP-SAT seems to be, in general, more robust than
SAT-solvers based on conflict driven decision making. This can be attributed to
that, like local search algorithms, DMRP-SAT looks for a satisfying assignment
“incrementally”.

It is important to note that the current version of DMRP-SAT is meant just to
prove that decision-making with a reference point is viable. An optimal design of
DMRP-SAT (and many details such as generation of the initial reference point,
the best schedule for changing reference points and so on) will be the subject of
future research.

5.1 Brief Description of Implementation

DMRP-SAT is written in C++ and compiled by gcc (version 3.2.2). We used the
STL library for data structures like dynamic arrays. As mentioned above, our
implementation of DMRP-SAT is very simple. It does not have advanced fea-
tures like fast BCP, efficient formula representation, special treatment of binary
clauses and so on. For example, to check if a clause is unit in BCP, DMRP-SAT
just counts the number of unassigned literals (as it was done before SATO and
Chaff). The only kind of optimization we used in DMRP-SAT was lazy com-
putation of D(C,p,y). Namely, during BCP, DMRP-SAT accumulated all the
new assignments of y and only when BCP was over it updated D(C,p,y) if no
conflict occurred. The reason is that in case of a conflict, recomputing D(C,p,y)
is a waste of time because DMRP-SAT immediately backtracks eliminating all
the assignments made at the conflict decision level.

For each literal lit(xi), DMRP-SAT maintains an array with indexes of clauses
of the current formula containing lit(xi). So when xi is, say, set to 0, DMRP-
SAT examines the clauses of the corresponding array to see if new unit clauses
appeared. To avoid examining satisfied clauses, when lit(xi) is set to 1, all the
clauses with lit(xi) unsatisfied so far are marked as satisfied. The clauses satisfied
at a particular decision level are recorded together so that they can be efficiently
unmarked when backtracking.

To facilitate decision making and computation of the set D(C,p,y), DMRP-
SAT maintains an array that marks clauses that are currently in D(C,p,y). For
every lit(xi) it also maintains a counter containing the number of clauses of

128 E. Goldberg

D(C,p,y) that have lit(xi). Besides, it maintains the set of variables of clauses
that are currently in D(C,p,y). If this set is empty, then D(C,p,y) = ∅ and C
is recursively satisfied by modify(p,y). Finally, DMRP-SAT records the indexes
of clauses that are added to D(C,p,y) at a particular decision level. When un-
doing assignments of this level, DMRP-SAT removes the recorded clauses from
D(C,p,y).

In all the experiments, the values of thresh and THRESH were 150 and 3000
respectively (see Figure 1 and Figure 2). That is every 150 conflicts DMRP-SAT
made a restart without changing the reference point and every 3000 conflicts
such a restart was accompanied by changing the reference point.

5.2 BMC and Equivalence Checking Formulas

In this subsection, we compare our implementation of DMRP-SAT with two
SAT-solvers. The first SAT-solver is a version of BerkMin [7] that is very close
to Forklift, the winner of the SAT-2003 contest in the industrial category (but
in contrast to Forklift, it only learns conflict clauses). This version is much
faster than the publicly available one (BerkMin561) on large CNF formulas.
The second SAT-solver is Minisat [3], version 1.13 (a similar version of Minisat
was the runner-up of the SAT-2005 contest in the industrial category). Table 1
summarizes results of BerkMin, Minisat and DMRP-SAT on a set of large BMC
formulas (up to a few millions of variables). These formulas describe various
properties of more than a dozen of customer designs. This set consists of 79
formulas (28 satisfiable and 51 unsatisfiable). For all three SAT-solvers, Table 1
gives the total number of conflicts (in thousands), total and median runtime for
satisfiable, unsatisfiable and both types of formulas. A sample of formulas from
this set are shown in Table 2 (satisfiable formulas are marked with ’*’).

These two tables show that, for satisfiable formulas, DMRP-SAT makes sig-
nificantly fewer backtracks (conflicts). Even though BerkMin and Minisat have
much faster code and DMRP is more expensive, DMRP-SAT converts the advan-
tage in the number of conflicts into smaller run-times. For unsatisfiable BMC
formulas, DMRP-SAT also has fewer conflicts, but this difference is not large
enough to convert it into better performance. (However, this should change with
a faster implementation.)

Table 3 gives direct evidence that DMRP-SAT indeed benefits from its deci-
sion making strategy. For a sample of satisfiable BMC formulas (from the set of
28 formulas mentioned above), this table describes the process of finding a satis-
fying assignment in more detail. DMRP-SAT can find a satisfying assignment in
two ways (see Figures 1,2). First, it can extend the current partial assignment y
so that all clauses of the CNF formula become satisfied. Second, when DMRP-
SAT is successful in recursively satisfying a clause C, it may find a reference
point p′ = modify(p,y) such that M(p′)= ∅. (When this happens, current par-
tial assignment y may satisfy only a fraction of clauses of F .) Interestingly, for
each of 28 satisfiable BMC formulas we used, a satisfying assignment was found
after recursively satisfying a clause.

A Decision-Making Procedure for Resolution-Based SAT-Solvers 129

Table 1. BMC formulas

category
(#formulas)

BerkMin Minisat DMRP-SAT

#cnfl.
×103

total
(median)
time, sec.

#cnfl.
×103

total
(median)
time, sec.

#cnfl.
×103

total
(median)
time, sec.

sat (28) 2,546 44,814 (246) 3,457 58,319 (619) 333 9,565 (57)
unsat (51) 2,156 28,594 (64) 1,355 14,507 (80) 791 15,160 (151)

total(79) 4,702 73,408 (96) 4,812 72,826 (178) 1,124 24,725 (69)

Table 2. Sample of BMC formulas (satisfiable* and unsatisfiable)

name #vars
×106

#clau-
ses
×106

BerkMin Minisat DMRP-
SAT

#cnfl.
×103

time
(sec.)

#cnfl.
×103

time
(sec.)

#cnfl.
×103

time
(sec.)

sched* 1.0 2.7 24 386 23 1,038 0.07 2.6
byteen* 0.2 0.6 21 138 60 1,074 8.8 245

stimulus* 0.1 0.4 7.9 39 49 370 7.5 82

ipt* 1.2 3.5 61 2,896 108 3,029 4.8 205
iqm* 2.3 7.0 308 11,704 732 16,568 0.5 70
prop3* 1.4 4.3 822 5,230 495 9,084 77 2,479
gmtx* 2.7 7.9 12 281 47 2,462 0.05 7.5
sdl* 0.4 1.2 183 551 149 472 75 1,659

write* 0.6 1.8 8.4 168 48 552 1.2 51
prop9* 1.0 3.0 74 898 40 429 2.9 58

unsatisfiable formulas

always 0.2 0.8 19 45 21 213 5.0 38
page 0.2 0.8 19 35 19 151 14 425

mcbdm 0.3 0.8 17 144 6.2 84 1.5 31
lddata 0.2 0.5 20 31 55 666 18 255

cmcnt 1.2 3.6 8.5 491 2.5 68 3.0 134

iwrk 1.3 4.1 202 3,934 31 447 6.5 108
cho 0.1 0.3 14 23 15 42 31 1,308

CCC 0.3 1.1 38 199 22 165 23 1,941

The number of backtracks made before finding a satisfying assignment is re-
ported in the second column of Table 3. The third column shows the number of
clauses |M(p)| falsified by the original reference point p. The number of cases
when a clause of M(p) was recursively satisfied is given in the fourth column.
The size of the longest chain of events when a clause was recursively satisfied
with fewer than THRESH =3000 backtracks is shown in the fifth column. (Recall
that when the number of backtracks exceeds 3000, DMRP-SAT makes a restart
and picks a new reference point p′. Usually |M(p)| < |M(p′)| .) The last column

130 E. Goldberg

Table 3. Statistics on recursively satisfied clauses

name #confl. size of
initial
M(p)

#cases of
rec. sat.
a clause

#longest
chain

|y|/|Vars(F)|
when M(p)=∅

%

sched 67 1 1 1 18

byteen 8,824 543 255 255 3.5

stimulus 7,518 276 29 29 1.8

data 15,521 1,034 212 114 77

ifreeq 3,426 615 438 438 1.9

ipt 4,750 775 601 601 0.8

prop3 77,127 44 29 6 76

muls 556 104 69 69 1.4

T1 64 2 1 1 67

TX 77,934 8 7 3 96

HP-4850 17,932 62 8 7 1.0

HP-974 2,092 1 1 1 44

write 1,175 149 87 87 0.9

prop9 2,892 1 1 1 31

SUN-442 17 1 1 1 95

SUN-443 2,010 3,999 2,000 2,000 1.6

gives the size of y (in percent of |Vars(F)|) when a satisfying assignment p′ =
modify(p,y) was found.

Table 3 shows that DMRP-SAT indeed successfully used the “local search
strategy” of minimizing the set of falsified clauses to find satisfying assignments.
For example, for the formula byteen, the original reference point falsified 543
clauses. Then after 255 cases of recursively satisfied clauses a satisfying assign-
ment was found. At this point, only 3.5% of the variables were assigned in
the partial assignment y. So, in the case of formula byteen, DMRP-SAT kept
monotonically reducing the size of M(p) until a satisfying assignment was found.
For some formulas (like data), the value of THRESH was exceeded and a new
reference point was generated (possibly more than once). In such cases the size
of the longest chain is smaller than the number of cases when a clause was re-
cursively satisfied. It is worth mentioning that DMRP-SAT had a lot cases of
recursively satisfying clauses of M(p) for unsatisfiable formulas too.

Finally, Table 4 summarizes results of experiments with satisfiable equiva-
lence checking CNF formulas. Each formula F of Table 4 describes equivalence
checking of a combinational circuit N1 with a circuit N2 obtained from N1 by
optimization. If N1 and N2 are functionally equivalent (inequivalent), then F is
unsatisfiable (respectively satisfiable). We manually introduced detectable bugs
to the circuit N2. So all equivalence checking formulas of Table 4 were satisfiable.
The first column of Table 4 identifies circuit N1 (des stands for design) and gives
the number of bugs introduced in circuit N2 (each bug corresponds to a sepa-
rate satisfiable formula). Second and third columns give the size of the formula
F describing equivalence checking of N1 and N2 without any bugs. (Introducing
a bug does not affect the formula size much.)

A Decision-Making Procedure for Resolution-Based SAT-Solvers 131

Table 4. Equivalence checking (satisfiable formulas)

name
(#bugs)

#vars
×103

#clau-
ses
×103

BerkMin Minisat DMRP-
SAT

#cnfl.
×103

total
time
(sec.)

#cnfl.
×103

total
time
(sec.)

#cnfl.
×103

total
time
(sec.)

des1 (7) 4.7 53 271 120 110 143 11 56
des2(8) 2.4 24 229 40 95 10 162 197

des3(7) 2.7 29 169 39 46 3 83 114

des4(5) 1.0 9.8 54 5 14 0.4 13 6

des5 (5) 1.9 20 80 8 55 4 37 25

des6(7) 9.5 106 2,484 2,624 1,327 1,783 88 389
des7 (4) 1.6 16 75 11 39 2 15 8

des8(4) 3.5 39 69 17 111 53 52 116

Total 3,431 2,864 1,797 1,998 461 911

Results of Table 4 show again that DMRP-SAT generated fewer conflicts than
BerkMin and Minisat and this advantage was converted into better summary
performance. Although DMRP-SAT did not have smaller number of backtracks
for all designs, it showed more robust behavior. In particular, it relatively eas-
ily solved the equivalence checking formulas generated off the design des7 that
contained a multiplier. We also applied DMRP-SAT to unsatisfiable equivalence
checking formulas (no bugs in N2). DMRP-SAT again had very good perfor-
mance in terms of the number of backtracks and run-times. For the lack of space
we omit these results.

6 Conclusions

We introduce a new decision making strategy DMRP (decision making with a
reference point) for resolution-based SAT-solvers. DMRP allows a DPLL-like
procedure to pursue a local search strategy. Experiments show that our SAT-
solver DMRP-SAT implementing DMRP works well for both satisfiable and
unsatisfiable structured formulas. In the current implementation, DMRP is more
expensive than conflict driven decision making introduced by Chaff. In our future
research we will work on reducing the cost of DMRP. At the same time, even
a straightforward and unoptimized implementation of DMRP-SAT shows very
good performance due to high quality of decision-making.

References

1. Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded Model Check-
ing (a book chapter). In: Zelkovitz, M. (ed.) Advances in computers, vol. 58, Else-
vier, Amsterdam (2003)

2. Davis, M., Longemann, G., Loveland, D.: A Machine program for theorem proving.
Communications of the ACM 5, 394–397 (1962)

132 E. Goldberg

3. Een, N., Sorensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 503–518. Springer, Heidelberg (2004)

4. Fang, H., Ruml, W.: Complete Local Search for Propositional Satisfiability. In:
Proc. of 19th National Conference on Artificial Intelligence, pp. 161–166 (2004)

5. Gelder, A.V.: Autarky pruning in propositional model elimination reduces failure
redundancy. J. of Autom. Reasoning 23(2), 137–193 (1999)

6. Goldberg, E.: Determinization of resolution by an algorithm operating on complete
assignments. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 90–
95. Springer, Heidelberg (2006)

7. Goldberg, E., Novikov, Y.: BerkMin: a Fast and Robust SAT-Solver. In: DATE
2002, Paris, pp. 142–149 (2002)

8. Gomes, C.P., Selman, B., Kautz, H.: Boosting Combinatorial Search Through Ran-
domization. In: Proc. AAAI 1998 (1998)

9. Habet, D., Li, C.M., Devendeville, L., Vasquez, M.: A hybrid approach for SAT.
In: Int. Conf. on Principles and Practice of Constraint Programming, pp. 172–184
(2002)

10. Hirsch, E.A., Kojevnikov, A.: UnitWalk: A new SAT solver that uses local search
guided by unit clause elimination. Annals of Math. and Artif. Intell. 43(1-4), 91–111
(2005)

11. Hoos, H., Stutzle, T.: Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann, San Francisco (CA) (2004)

12. Katz, J., Hanna, Z., Dershowitz, N.: Space-efficient Bounded Model Checking. In:
DATE 2005, pp. 686–687 (2005)

13. Kullmann, O.: Investigations on autark assignments. Discrete Applied Mathemat-
ics 107, 99–137 (2000)

14. Li, C.M.: A constrained-based approach to narrow search trees for satisfiability.
Information processing letters 71, 75–80 (1999)

15. Mazure, B., Sais, L., Gregoire, R.: Boosting complete techniques thanks to local
search methods. Annals of Math. and Artif. Intell. 22, 319–331 (1998)

16. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete
Applied Mathematics 10, 287–295 (1985)

17. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an Efficient SAT Solver. In: DAC 2001 (2001)

18. Prasad, M., Biere, A., Gupta, A.: A survey of recent advances in SAT-based formal
verification. STTT 7(2), 16–173 (2005)

19. Prestwich, S.: Local search and backtracking vs. non-systematic backtracking. In:
AAAI Fall Symposium on Using Uncertainty Within Computation, North Fal-
mouth, Cape Cod, MA, November 2-4, 2001, pp. 109–115 (2001)

20. Selman, B., Levesque, H., Mitchell, D.: A New Method for Solving Hard Satisfia-
bility Problems. In: AAAI 1992, pp. 440–446 (1992)

21. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search.
In: AAAI 1994, Seattle, pp. 337–343 (1994)

22. Silva, J.P.M., Sakallah, K.A.: GRASP: A Search Algorithm for Propositional Sat-
isfiability. IEEE Transactions of Computers 48, 506–521 (1999)

23. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient Conflict Driven Learn-
ing in a Boolean Satisfiability Solver. In: ICCAD 2001 (2001)

24. Zhang, H.: SATO: An efficient propositional prover. In: International Conference
on Automated Deduction, July 1997, pp. 272–275 (1997)

Online Estimation of SAT Solving Runtime�

Shai Haim and Toby Walsh

NICTA and UNSW
{shai.haim,toby.walsh}@nicta.com.au

Abstract. We present an online method for estimating the cost of solv-
ing SAT problems. Modern SAT solvers present several challenges to
estimate search cost including non-chronological backtracking, learning
and restarts. Our method uses a linear model trained on data gathered
at the start of search. We show the effectiveness of this method using
random and structured problems. We demonstrate that predictions made
in early restarts can be used to improve later predictions. We also show
that we can use such cost estimations to select a solver from a portfolio.

1 Introduction

Modern SAT solvers present several challenges for estimating their runtime. For
instance, clause learning repeatedly changes the problem the solver faces. Esti-
mation of the size of the search tree at any point should take into consideration
the changes that future learning clauses will cause. As a second example, restart-
ing generates a new search tree which again makes prediction hard. Our approach
to these problems is to use a machine learning based on-line method to predict
the cost of the search by observing the solver’s behaviour at the start of search.

Previous methods include the Weighted Backtrack Estimator, the Recursive
Estimator ([5]) and the SAT Progress Bar ([6]) that do not support backjump-
ing or restarts, and the BDD-based Satometer ([1]) which doesn’t provide an
estimate for the size of the decision tree. Machine learning has also been used
to estimate search cost. Horovitz et al used a Bayesian approach to classify CSP
and SAT problems according to their runtime [4]. Whilst this work is close to
ours, there are some significant differences. For example, they used SATz-Rand
which does not use clause learning. Xu et. al [9] used machine learning to tune
empirical hardness models [7]. The only non-static features used were generated
by probes of DPLL and stochastic search. Their method gives an estimate for
the distribution of runtimes and not, as here, an estimate for a specific run.
Finally, an online machine learning method has been used for QBF solvers [8].

2 Linear Model Prediction (LMP)

We predict the size of subtrees to follow from the subtrees explored in the past.
Given a problem P∈ E, when E is an ensemble of problems, we first train the
� The second author is funded by DCITA and the ARC through Backing Australia’s

Ability and the ICT Centre of Excellence program.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 133–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

134 S. Haim and T. Walsh

model using a subset of problems T ⊂ E. For every training example t ∈ T , we
create a feature vector xt = {xt,1, xt,2, . . . , xt,k}. We select features by removing
those with the smallest standardised coefficient until no improvement is observed
based on the standard AIC (Akaike Information Criterion). We then search for
and eliminate co-linear features in the set.

Using ridge linear regression, we fit our coefficient vector w to create a linear
predictor fw (xi) = wT xi. We chose ridge regression since it is quick and simple,
and generally yields good results. We predict the log of the number of conflicts
as runtimes vary significantly. Since the feature vector is computed online, we do
not want it to add significant cost to search. It therefore only contains features
that can be calculated in (amortized) constant time. We define the observation
window to be that part of search where data is collected. At the end of the
observation window, the feature vector is computed and the model queried for
an estimation.

The feature vector measures both problem structure and search behaviour.
Since data gathered at the beginning of a restart tends to be noisy, we do not
open the observation window immediately. To keep the feature vector of reason-
able size, we use statistical measures of features (that is, the minimum over the
observation window, the maximum, the mean, the standard deviation and the
last value recorded). The list of features is shown in Table 1. The only feature
that takes more than constant time to calculate is the log(WBE) feature. This is
based on the Weighted Backtrack Estimator [5]. This estimates search tree size

Table 1. The feature vector used by linear regression to construct prediction models

Feature init
Observation Window

min max mean SD last

Number of variables (var)
√

Number of clauses (cls)
√

cls/var
√ √ √ √ √ √

var/cls
√ √ √ √ √ √

Fraction of Binary Clauses
√ √ √ √

Fraction of Ternary Clauses
√ √ √ √

Avg. Clause Size
√ √ √ √

Search Depth (from assignment stack)
√ √ √

Search Depth (in corresponding binary tree)a
√ √ √

Backjump Size
√ √ √

Learnt Clause Size
√ √ √ √

Conflict Clause Size
√ √ √ √

Fraction of assigned vars before backtracking (abb)
√ √ √ √

Fraction of assigned vars after backtracking (aab)
√ √ √ √

aab.mean/abb.mean
√ √ √ √

abb.mean/aab.mean
√ √ √ √

log(WBE)
√ √ √ √ √

a See [3] for further details.

Online Estimation of SAT Solving Runtime 135

using the weighted sum:
�

d∈D prob(d)(2d+1−1)
�

d∈D prob(d) where prob(d) = 2−d and D is the
multiset of branches lengths visited. In [3], we extended WBE to support con-
flict driven backjumping. As the new method requires O(d) time and space, we
only compute it every d conflicts. To deal with quick restarts, we wait until the
observation window fits within a single restart. In addition, we exploit estimates
from earlier restarts by augmenting the feature vector with all the search cost
predictions from previous restarts.

3 Experiments

We ran experiments using MiniSat [2], a state-of-the-art solver with clause learn-
ing, an improved version of VSIDS and a geometrical restart scheme. We used a
geometrical factor of 1.5, which is the default for MiniSat. A geometrical factor
of 1.2 gave similar results. We used three different ensembles of problems.

– rand: 500 satisfiable and 500 unsatisfiable random 3-SAT problems with 200
to 550 variables and a clause-to-var ratio of 4.1 to 5.0.

– bmc: 250 satisfiable and 250 unsatisfiable software verification problems gen-
erated by CBMC1 for on a binary search algorithm, using different array sizes
and number of loop unwindings. To generate satisfiable problems, faulty code
that causes memory overflow was added. These problems create a very ho-
mogeneous ensemble.

– fv: 56 satisfiable and 68 unsatisfiable hardware verification problems distrib-
uted by Miroslav Velev2. This is less homogeneous than the other ensembles.

Since training examples can be scarce, we restricted our training set to no more
than 500 problems, though we had far fewer for the hard verification problems.
In the first part of our experiments, when restarts were turned off, many of the
hardware verification problems were not solved. Our results in this part will only
compare the other datasets. When restarts were enabled, all three data sets were
used. In all experiments we used 10-fold cross validation, never using the same
instance for both training and testing purposes. We measured prediction quality
by observing the percentage of predictions within a certain factor of the correct
cost (the error factor). For example, 80% for error factor 2, denotes that for
80% of the instances, the predicted search cost was within a factor of 2 of the
actual cost.

3.1 Search without Restarts

We queried our predictor at different points of the search, ranging from 2000 to
50000 backtracks. Comparisons of the performance of LMP for the rand and bmc
data set are presented in Figure 1. Satisfiable problems are harder to predict for
both rand and bmc datasets, due to the abrupt way in which search terminates
with open nodes.
1 http://www.cs.cmu.edu/ modelcheck/cbmc/
2 http://www.miroslav-velev.com/sat benchmarks.html

136 S. Haim and T. Walsh

0 %

20 %

40 %

60 %

80 %

100 %

x2 x4 x8

P
er

ce
nt

 o
f i

ns
ta

nc
es

 w
ith

in
 e

rr
or

 fa
ct

or

Error factors

SAT/BMC
SAT/RND

UNSAT/BMC
UNSAT/RND

(a) After 2000 backtracks

0 %

20 %

40 %

60 %

80 %

100 %

x2 x4 x8

P
er

ce
nt

 o
f i

ns
ta

nc
es

 w
ith

in
 e

rr
or

 fa
ct

or

Error factors

SAT/BMC
SAT/RND

UNSAT/BMC
UNSAT/RND

(b) After 35000 backtracks

Fig. 1. Quality of prediction, without restarts, for the rand and bmc datasets

3.2 Search with Restarts

With restarts, we have to use smaller observation windows to give a prediction
early in search as many early restarts are too small. Figure 2 compares the
quality of prediction of LMP for the 3 different datasets. The quality of estimates
improves with the bmc data set when restarts are enabled. We conjecture this is
a result of restarts before the observation window reducing noise.

In order to see if predictions from previous restarts improve the quality of
prediction, we opened an observation window at every restart. The window size
is max(1000, 0.01 ·s) and starts after a waiting period of max(500, 0.02 ·s), when
s is the size of the current restart. At the end of each observation window, two
feature vectors were created. The first (xr) holds all features from Table 1, while
the second (x̂r) is defined as x̂r = {xr}∪

{

fw1 (x1) , fŵ2 (x̂2) , . . . , fŵr−1 (x̂r−1)
}

.
Figure 3 compares the two methods. We see that predictions from earlier restarts
improve the quality of later predictions but not greatly.

0 %

20 %

40 %

60 %

80 %

100 %

x2 x4 x8

P
er

ce
nt

 o
f i

ns
ta

nc
es

 w
ith

in
 e

rr
or

 fa
ct

or

Error factors

rand
bmc

fv

(a) sat

0 %

20 %

40 %

60 %

80 %

100 %

x2 x4 x8

P
er

ce
nt

 o
f i

ns
ta

nc
es

 w
ith

in
 e

rr
or

 fa
ct

or

Error factors

rand
bmc

fv

(b) unsat

Fig. 2. Quality of prediction for the 3 different datasets when using restarts (after 2000
backtracks in the query restart)

Online Estimation of SAT Solving Runtime 137

0 %

20 %

40 %

60 %

80 %

100 %

 10 11 12 13 14 15 16 17

P
er

ce
nt

 o
f i

ns
ta

nc
es

 w
ith

in
 e

rr
or

 fa
ct

or
 X

2

Restart

bmc - no previous
bmc - with previous

random - no previous
random - with previous

(a) sat

0 %

20 %

40 %

60 %

80 %

100 %

 10 11 12 13 14 15 16 17 18

P
er

ce
nt

 o
f i

ns
ta

nc
es

 w
ith

in
 e

rr
or

 fa
ct

or
 X

2

Restart

bmc - no previous
bmc - with previous

random - no previous
random - with previous

(b) unsat

Fig. 3. The effect of using predictions from previous restarts. We compare the quality
of prediction, through restarts, using two datasets (bmc,rand). The plots represent the
percentage of instances within a factor of 2 from the correct size.

3.3 Solver Selection Using LMP

In our final experiment, we used these estimations of search cost to improve
solver performance. We used two different versions of MiniSat. Solver A used
the default MiniSat setting (geometrical factor of 1.5), while solver B used a
geometrical factor of 1.2. The challenge is to select which is faster at solving a
problem instance.

Table 2 describes the percentage improvement achieved by each of the follow-
ing strategies. All values are fractions of the cost of solving the entire dataset,
picking a solver randomly for each problem, with equal probability. Hence, for
each dataset, average(A, B) = 1:

– best: Use an oracle to indicate which solver will solve the problem faster
(min(A, B)).

– LMP (oracle): Use both solvers until each reaches the end of its observation
window and generate a prediction, using two different models for sat and
unsat. Use a satisfiability oracle to indicate which model should be queried.
Terminate the solver that is predicted to be worse.

– LMP (two models): Use both solvers until each reaches the end of its obser-
vation window and generate a prediction, using two different models for sat
and unsat. Query both models and use the geometric mean as the predic-
tion3. Terminate the solver that is predicted to be worse.

These results show that for satisfiable problems, where solver performance
varies most, our method reduces the total cost. For unsatisfiable problems, where
solver performance does not vary as much, our method does not improve search
cost. However, as performance does not change significantly on unsatisfiable in-
stances, the overall impact of our method on satisfiable and unsatisfiable prob-
lems is positive.
3 We found this method to yield more accurate runtime estimations than using one

model for both sat and unsat instances. For further details see [3].

138 S. Haim and T. Walsh

Table 2. Improvement in total search cost using different schemes

Dataset Best LMP (oracle) LMP(two models)

rand
sat 0.591 0.930 0.895
unsat 0.925 1.009 1.014

fv
sat 0.333 0.828 0.832
unsat 0.852 1.006 1.033

bmc
sat 0.404 0.867 0.864
unsat 0.828 0.997 1.004

References

1. Aloul, F., Sierawski, B., Sakallah, K.: Satometer: How much have we searched? In:
Design Automation Conf., pp. 737–742. IEEE, Los Alamitos (2002)

2. Een, N., Sorensson, N.: An extensible SAT-solver. Theory and Applications of Sat-
isfiability Testing, 502–518 (2003)

3. Haim, S., Walsh, T.: SAT Solving Cost Estimation using Online Techniques, Tech-
nical Report 0805, UNSW, Australia (February 2008)

4. Horvitz, E., Ruan, Y., Gomes, C., Kautz, H., Selman, B., Chickering, M.: A Bayesian
approach to tackling hard computational problems. In: Proc. the 17th Conf. on
Uncertainty in Artificial Intelligence (UAI 2001) (2001)

5. Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Estimating Search Tree Size. In: Proc.
of the 21st National Conf. of Artificial Intelligence, AAAI, Menlo Park (2006)

6. Kokotov, D., Shlyakhter, I.: Progress bar for sat solvers (unpublished manuscript)
(2000), http://sdg.lcs.mit.edu/satsolvers/progressbar.html

7. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the Empirical Hardness
of Optimization Problems: The Case of Combinatorial Auctions. In: Proc. of the
8th Int. Conf. on Principles and Practice of Constraint Programming, pp. 556–572.
Springer, Heidelberg (2002)

8. Samulowitz, H., Memisevic, R.: Learning to Solve QBF. In: Proc. of 22nd Conf. on
Artificial Intelligence (AAAI 2007) (2007)

9. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hierarchical Hardness Models for SAT Prin-
ciples and Practice of Constraint Programming, 696–711 (2007)

http://sdg.lcs.mit.edu/satsolvers/progressbar.html

A Max-SAT Inference-Based Pre-processing for
Max-Clique

Federico Heras and Javier Larrosa�

Universitat Politècnica de Catalunya,
Gran Capità 1-3,

08034 Barcelona, Spain

Abstract. In this paper we propose the use of two resolution-based rules for the
Max-SAT encoding of the Maximum Clique Problem. These rules simplify the
problem instance in such a way that a lower bound of the optimum becomes
explicit. Then, we present a pre-processing procedure that applies such rules.
Empirical results show evidence that the lower bound obtained with the pre-
processing outperforms previous approaches. Finally, we show that a branch-and-
bound Max-SAT solver fed with the simplified problem can be boosted several
orders of magnitude.

Keywords: Max-SAT, Max-clique, Inference.

1 Introduction

Given an undirected graph, the maximum clique Problem (Max-Clique) calls for find-
ing a maximum-sized complete subgraph, that is, a subgraph whose vertices are pair-
wise adjacent. The Max-Clique is a prominent combinatorial optimization problem with
many applications such as bioinformatics [10, 23, 14] and computer vision [3] to name
a few. From the recent literature, there are two types of algorithms to handle the Max-
Clique problem. The first one is formed by branch and bound algorithms that solve the
problem to optimality [11, 25, 22]. The second one is formed by stochastic local search
solvers that cannot prove optimality, but empirical results show that they return quite
accurate upper bounds [24, 5]. Both types of algorithms have a graph as input and they
apply techniques that exploit the structure of such graph.

In this paper, we focus on the Max-SAT encoding of the Max-Clique problem and we
exploit its properties. We introduce two simplification rules for the Max-Clique problem
based on the resolution rule for Max-SAT [16] and we apply them in a preprocessing
procedure. The result of the pre-process is an equivalent Max-SAT formula with an
explicit lower bound of the optimum. Afterwards, we give the pre-processed instance
to the state-of-the-art Max-SAT solver MINIMAXSAT [13]. Empirical results indicate
that our pre-processing generates very powerful initial lower bounds. Besides, fetching
the Max-SAT solver with the simplified formula can boost the search process in several
problem instances.

� Research funded by project TIN2006-15387-C03-0.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 139–152, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 F. Heras and J. Larrosa

The structure of this paper is the following. Section 2 introduces all the preliminary
notation and concepts about Max-SAT and how to encode the Max-Clique problem as
Max-SAT. Then, Section 3 presents the two simplification rules that are used in the
pre-processing introduced in Section 4. Section 5 includes the experimental investiga-
tion and the related work can be found in Section 6. Finally, Section 7 presents some
concluding remarks and points out our future work.

2 Preliminaries

2.1 The Max-SAT Framework

The following notation and terminology has been borrowed from [16]. In the sequel
X is a set of boolean variables taking values over the set {t, f}, which stands for true
and false, respectively. A literal is either a variable (e.g. x) or its negation (e.g. x̄). We
will use l1, l2, l3, . . . to denote literals and var(l) to denote the variable related to l
(namely, var(x) = var(x̄) = x). A clause C = l1 ∨ l2 ∨ . . . ∨ lk is a disjunction of
literals such that ∀1≤i,j≤k, i�=j var(li) �= var(lj). The size of a clause, noted |C|, is the
number of literals that it has. var(C) is the set of variables that appear in C (namely,
var(C) = {var(l)|l ∈ C}). We refer to a clause as positive (negative) if all its literals
appear in the positive (negative) polarity. An assignment satisfies a clause iff it satisfies
one or more of its literals. If variable x is instantiated to t, literal x is satisfied and literal
x̄ is falsified. Similarly, if variable x is instantiated to f , literal x̄ is satisfied and literal x
is falsified. The empty clause, noted �, cannot be satisfied. Sometimes it is convenient
to think of clause C as its equivalent C ∨ �. An assignment is an instantiation of a
subset of X . The assignment is complete if it instantiates all the variables (otherwise it
is partial).

A weighted clause is a pair (C, w) such that C is a classical clause and w is the cost
of its falsification. In this paper we assume costs being natural numbers. A weighted
formula in conjunctive normal form (CNF) is a set of weighted clauses. The cost of an
assignment is the sum of weights of all the clauses that it falsifies.

As shown in [16], the De Morgan rule cannot be used in Max-SAT. Instead, the
following rule should be repeatedly used until CNF is achieved:

(A ∨ l ∨ C, w) ≡ {(A ∨ C̄, w), (A ∨ l̄ ∨ C, w)}

Following [16], we assume without loss of generality the existence of a known upper
bound � of the optimal solution (� is a strictly positive natural number). A model is a
complete assignment with cost less than �. A Max-SAT instance is a pair (F , �) and
the task of interest is to find a model of minimum cost, if there is any. We say that two
weighted formulas are equivalent, F ≡ F ′, if the cost of their optimal assignment is
the same or if neither of them has a model.

Observe that any weight w ≥ � indicates that the associated clause must be nec-
essarily satisfied. Thus, we can replace w by � without changing the problem. Conse-
quently, we can assume all costs in the interval [0..�]. A clause with weight � is called
mandatory (or hard), otherwise it is called non-mandatory (or soft).

A Max-SAT Inference-Based Pre-processing for Max-Clique 141

Let u and w be two costs. Their sum is defined as,

u ⊕ w = min{u + w, �}

in order to keep the result within the interval [0..�]. If u ≥ w, their subtraction is
defined as,

u
 w =
{

u − w : u �= �
� : u = �

Essentially,
 behaves like the usual subtraction except in that � is an absorbing ele-
ment.

The identification of mandatory clauses with the � symbol allows to extend some
well-known simplification rules from SAT to Max-SAT such as addition {(A, u), (A,
w)} ≡ {(A, u ⊕ w)} or subsumption {(A, �), (A ∨ B, w)} ≡ {(A, �)}.

A weighted CNF formula may contain (�, w). Since � cannot be satisfied, w is
added to the cost of any assignment. Therefore, w is an explicit lower bound of the
optimal model. When the lower bound and the upper bound have the same value (i.e.,
(�, �) ∈ F) the formula does not have any model and we call this situation an explicit
contradiction.

The notion of resolution can be extended to weighted formulas as follows,

{(x ∨ A, u), (x̄ ∨ B, w)} ≡

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

(A ∨ B, m),
(x ∨ A, u
 m),
(x̄ ∨ B, w
 m),
(x ∨ A ∨ B̄, m),
(x̄ ∨ Ā ∨ B, m)

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

where A and B are arbitrary disjunctions of literals and m = min{u, w}.
(x∨A, u) and (x̄∨B, w) are called the prior clashing clauses. (A∨B, m) is called

the resolvent. (x ∨ A, u
 m) and (x̄ ∨ B, w
 m) are called the posterior clashing
clauses. (x ∨ A ∨ B̄, m) and (x̄ ∨ Ā ∨ B, m) are called the compensation clauses.

Example 1. If we apply resolution to the following clauses {(x1 ∨ x2, 3), (x̄1 ∨ x2 ∨
x3, 4)} (with � = 5) we obtain {(x2 ∨ x2 ∨ x3, 3), (x1 ∨ x2, 3
 3), (x̄1 ∨ x2 ∨x3, 4

3), (x1 ∨x2 ∨ (x2 ∨ x3), 3), (x̄1 ∨ x̄2 ∨x2 ∨x3, 3)}. The first and fourth clauses can be
simplified. The second clause can be omitted because its weight is zero. The fifth clause
can be omitted because it is a tautology. Therefore, we obtain the equivalent formula
{(x2 ∨ x3, 3), (x̄1 ∨ x2 ∨ x3, 1), (x1 ∨ x2 ∨ x̄3, 3)}.

2.2 Inference-Based Simplification Rules

A Max-SAT problem can be solved to optimality with a pure inference algorithm,
namely, an algorithm that only applies the resolution rule [4, 16]. However, such an
algorithm has exponential space requirements and it is not used in practice. A natural
alternative is to use only restricted forms of resolution that simplify the formula and use
search afterwards. The application of a simplification rule is simply the application of a
limited number of resolution steps. Current Max-SAT solvers apply simplification rules
at each node of a search tree. Their main objective is to simplify the problem instance

142 F. Heras and J. Larrosa

and to make explicit a lower bound (i.e. create new empty clauses). The following ex-
ample shows the application of two steps of resolution that lead to increase the lower
bound.

Example 2. Consider a weighted formula {(x1 ∨ x2, 3), (x̄1 ∨ x2, 2), (x̄2, 1)} (with
� = 5). Suppose we apply the resolution rule between the first and the second clause.
We obtain {(x1∨x2, 1), (x2, 2), (x̄2, 1)}. Now, we apply the resolution rule between the
second and the third clause so that the lower bound is increased {(x1 ∨ x2, 1), (x2, 1),
(�, 1)}. Observe that the three formulas are equivalent, but the last one is more explicit
and presumably simpler.

2.3 Encoding the Min-Vertex-Covering and Max-Clique as Max-SAT

Definition 1. Given a graph G = (V, E), a vertex covering is a set U ⊆ V such
that for every edge (vi, vj) either vi ∈ U or vj ∈ U . The size of a vertex covering is
|U |. The minimum vertex covering (Min-Vertex-Covering) problem consists in finding
a covering of minimal size.

The minimum vertex covering problem is a well-known NP-Hard problem and it is
well-known that it can be naturally formulated as (weighted) Max-SAT. We associate
one variable xi to each graph vertex. Value true (respectively, false) indicates that vertex
xi belongs to U (respectively, to V −U). There is a binary weighted clause (xi ∨xj , �)
for each edge (vi, vj) ∈ E. It specifies that at least one of these vertices must be in the
covering because there is an edge connecting them. There is a unary clause (x̄i, 1) for
each variable xi, in order to specify that it is preferred not to add vertices to U . � must
be set to a sufficiently large number. Note that different weights in unary and binary
clauses are required to express the relative importance of each type of clauses.

Definition 2. Given a graph G = (V, E), a clique is a set U ⊆ V such that for every
vertex v ∈ U , v is connected to all the vertices in U . The size of a clique is |U |. The
maximum clique problem (Max-Clique) consists in finding a clique of maximal size.

The maximum clique problem is a well-known NP-Hard problem. As noted in [11],
finding the maximum clique of a graph G = (V, E) is equivalent to finding a minimum
vertex covering of the complementary graph Ḡ. Given a graph G = (V, E), its comple-
mentary graph is denoted by Ḡ = (V, Ē). It is constructed with the same set of vertices
V and (vi, vj) ∈ Ē iff (vi, vj) /∈ E. Hence, we can model Max-Clique problems as
Minimum Vertex Covering problems over the complementary graph. Observe that the
maximum size of the maximum clique is equivalent to |V | − s, where s is the size of
the minimum vertex covering.

Note that the Max-SAT encoding of the Max-Clique problem only contains negative
unit soft clauses and positive binary hard clauses.

3 Two Simplification Rules

In this section we present two simplification rules that can be executed frequently in
the Max-SAT encoding of a Max-Clique problem. The correctness of both rules can be
easily established with a sequence of resolution steps.

A Max-SAT Inference-Based Pre-processing for Max-Clique 143

3.1 Star Rule

The Star Rule [21] can be used to create new empty clauses from a long clause and a
set of appropriate unit clauses.

{(xi1 ∨ xi2 ∨ . . . ∨ xik, w0), (xi1, w1), (xi2, w2), . . . , (xik, wk)} ≡
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(�, m), (xi1 ∨ xi2 ∨ . . . ∨ xik, w0
 m),
(xi1, w1
 m), (xi2, w2
 m), . . . , (xik, wk
 m),
(xi1 ∨ xi2 ∨ xi3 ∨ . . . ∨ xik, m),
(xi2 ∨ xi3 ∨ xi4 ∨ . . . ∨ xik, m),
(xi3 ∨ xi4 ∨ xi5 ∨ . . . ∨ xik, m),
. . . ,
(xik−1 ∨ xik, m)

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

where m = min{w0, w1, . . . , wk}.
The new empty clause is added to the possibly existing one, which produces a lower

bound increment. It is clear that the Star Rule may be effective when a large number of
unit clauses are available.

Example 3. Consider the initial formula {(x̄1 ∨ x̄2, 1), (x1, 1), (x2, 1)}. In this exam-
ple, we show each step of resolution needed to obtain the same result provided by the
Star Rule. First, we apply the resolution rule between the first and the third clauses and
we obtain {(x1 ∨ x2, 1), (x1, 1), (x̄1, 1)}. Then, we apply the resolution rule between
the second and the third clauses to obtain {(x1 ∨ x2, 1), (�, 1)}.

3.2 Unit Rule

The original Unit Rule can be used to create new unit clauses from a long clause and
a set of appropriate binary hard clauses. Given a subset of variables {xi1, xi2, . . . , xik,
xj} ⊆ X , consider the following subset of binary hard clauses:

Bin(xi1, xi2, . . . , xik, xj) =
{

(xi1 ∨ xj , �), (xi2 ∨ xj , �), . . . , (xik ∨ xj , �)
}

The Unit Rule has the form,

{(xi1 ∨ xi2 ∨ . . . ∨ xik, w), Bin(xi1, xi2, . . . , xik, xj)} ≡
{

(xi1 ∨ xi2 ∨ . . . ∨ xik ∨ xj , w), Bin(xi1, xi2, . . . , xik, xj), (xj , w)
}

Example 4. Consider the initial formula {(x̄1 ∨ x̄2, 1), (x1 ∨x3, �), (x2 ∨x3, �)}. In
this example, we show each step of resolution needed to obtain the same result provided
by the Unit Rule. First, we apply the resolution rule between the first and the second
clauses and we obtain {(x̄2 ∨ x3, 1), (x̄1 ∨ x̄2 ∨ x̄3, 1), (x1 ∨ x3, �), (x2 ∨ x3, �)}.
Then, we apply the resolution rule between the first and the last clauses to obtain
{(x3, 1), (x̄1 ∨ x̄2 ∨ x̄3, 1), (x1 ∨ x3, �), (x2 ∨ x3, �)}.

144 F. Heras and J. Larrosa

4 Pre-processing

In this section we show a pre-process that exploits the synergy between the Unit and the
Star rules. The unit rule generates unit positive clauses from negative clauses and binary
positive hard clauses. This unit clauses are used by the star rule which transforms them
into empty clauses, which means an increment of the lower bound. The pre-process
works in a on-demand manner: it triggers the unit rule only if it can guarantee that it
will allow the subsequent execution of the star rule.

Before introducing the details of the pre-processing, we present a useful definition.

Definition 3. A negative clause (C, w) = (xi1 ∨ xi2 ∨ . . . xik, w) is unit-related with
respect to x′, and it is noted (C, w)x′ , if and only if Bin(xi1, xi2, . . . , xik, x′) ∈ F .

Observe that we can always apply the Unit Rule to a clause C unit-related with respect
to literal x in order to generate a new positive unit soft clause (x, w).

The basic idea of the pre-processing is to generate the appropriate unit clauses with
the Unit Rule so that we can apply the Star Rule later in order to increase the lower
bound. The final objective is to increase as much as possible the lower bound.

The pre-processing is shown in Algorithm 1. It iterates over all the negative clauses
(line 1). For each negative clause (C, w0) the algorithm wants to obtain one unit clause
for each literal in C. To do so, for each literal li in C the algorithm seeks a clause (C′, wi)
unit-related with respect to li (i.e. (C′, wi)li) and store it in the structure S. Note that all
the negative clauses inserted in S must be different, and they must be also different from
the initial (C, w0) (lines 2-5). If it succeeds in finding unit-related clauses for each literal
in C (line 6), then the algorithm applies the two simplification rules. First, for each pair
in structure S, it applies the Unit Rule in order to create the corresponding unit clause
(lines 7,8). Once all unit clauses have been generated, the algorithm proceeds to apply
the Star Rule (line 9).

Recall that this process is applied to Max-clique problems (the original formula con-
tains negative soft units and positive hard binary clauses). Therefore, one can easily see
that, at any point of the execution of algorithm 1, each negative clause (C, w) is in F
because either (i) (C, w) is an initial unit soft clause in F or (ii) (C, w) was generated
by some application of the Unit Rule. This observation leads to a nice property:

Lemma 1. Within the pre-processing algorithm, all the compensation clauses in F
generated by the Star Rule are subsumed by binary hard clauses in F .

Proof-Sketch 1. Consider the case in which all clauses have weight 1 (as it happens in
the Max-Clique Problem). Suppose that the Star Rule is applied to an arbitrary subset
of clauses in F :

{(xi1 ∨ xi2 ∨ . . . ∨ xik, 1), (xi1, 1), (xi2, 1), . . . , (xik, 1)}

Observe that {(xi1 ∨ xi2 ∨ . . . ∨ xik, 1) is in F because the following set of Unit Rules
were applied (in reverse order):

{(xi1 ∨ xi2 ∨ . . . ∨ xik−1, 1), Bin(xi1, xi2, . . . , xik−1, xik)}

A Max-SAT Inference-Based Pre-processing for Max-Clique 145

Algorithm 1. Algorithm to transform the Max-Clique problem into an equivalent but simpler
one. Note that each application of the Unit Rule (line 5) generate a new clause to be considered
in the main Loop 1

Procedure MC-Preprocessing(F)
1 foreach (C, w0) = (l1 ∨ l2 ∨ . . . ∨ lk, w0) ∈ F do
2 S := ∅ ;
3 foreach li ∈ C do
4 if ∃(C′, wi) s.t. (C′, wi) �= (C, w0) ∧ (C′, wi) /∈ S ∧ (C′, wi)li then
5 S := S ∪ ((C′, wi), li)

6 if |S| = k then
7 foreach ((C′, wi), li) ∈ S s.t. (C′, wi) = (l′1 ∨ l′2 ∨ . . . ∨ l′p, wi) do
8 Apply Unit Rule to {(C′, wi),Bin(l′1, l

′
2, . . . , l

′
p, li) } ;

9 Apply Star Rule to {(l1, w1), (l2, w2), . . . , (lk, wk), (C, w0)} ;

{(xi1 ∨ xi2 ∨ . . . ∨ xik−2, 1), Bin(xi1, xi2, . . . , xik−2, xik−1)}

. . .

{(xi1, 1), Bin(xi1, xi2)}

Precisely, the sets of binary clauses used at each application of the Unit Rule are
enough to subsume all the compensation clauses produced by the initial Star Rule.

5 Empirical Results

In this section we present the benchmarks and the algorithms we tested in our empirical
evaluation.

5.1 Benchmarks

In our experiments we consider instances that have been used in several works related
with the Max-Clique problem.

– Random graph instances for which we solved the Max-Clique problem [16]. They
were submitted to Max-SAT Evaluations 2006 and 2007 [2]. A random graph is
defined by two parameters 〈n, e〉 where n is the number of nodes and e is the num-
ber of edges. Edges are randomly decided using a uniform probability distribution.
Those random instances have a fixed number of nodes (150) and the graph density
is varied.

– The 66 Max-Clique instances from the DIMACS challenge [15] 1 [11, 25, 24, 5].
They were also submitted to Max-SAT Evaluations 2006 and 2007 [2].

1 ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique

146 F. Heras and J. Larrosa

– Ke Xu’s Max-Clique instances with hidden optimum solutions [30, 29] which are
advocated to be very difficult to solve. We considered the following publicly avail-
able sets of instances: frb10, frb15, frb20, frb25 and frb30.

– 11 Max-Clique real instances, provided by J.S. Sokol, corresponding to the pro-
tein structure alignment problem transformed into the maximum clique problem
as described in [10, 16]. In this problem, the goal is to compute a score of sim-
ilarity between two proteins based on a particular knowledge of their respective
tri-dimensional structure.

5.2 Experiments Considered

First, we compare the lower bound obtained with our new pre-processing with respect
to previous lower bounds. Second, we study the effect of feeding a Max-SAT solver
with the pre-processed instance. The results are presented in plots and tables. In most
of the tables, the common columns are: Problem, Nodes and Density that refer to the
name of the instance, the number of nodes and the density of the graph, respectively.
In tables and plots, OPT refers to value of the optimal solution. For each experiment,
additional information is presented. Execution times are presented in seconds. All the
experiments were performed on a 3.2 Ghz Intel Pentium with 1 GB and Linux.

5.3 Comparison of the New Lower Bound

Let LB-NEW be the lower bound obtained with the new pre-processing. Our first aim
is to compare LB-NEW with respect to previous lower bounds for Max-SAT and WCSP
which are deeply related to our approach. The best current lower bound in Max-SAT
solvers is LB-UB [18]. The best current lower bounds for WCSP solvers are EDAC*
[8] and OSAC [7]. We did preliminary experiments and observed that the lower bounds
computed with LB-UB and EDAC* were similar. Hence, we simply present the results
for LB-UB. We also tested WCSP solvers with OSAC [7] but we discarded it for the
final experiments because most of its executions were aborted due to a time limit of
600 seconds. See Section 6 for a more detailed explanation of these lower bounds and
their relationships. In this experiment we will also report the time needed by the novel
pre-processing and we will refer to it as Pre-Time.

Figure 1 reports the results of applying our preprocessing to the max-clique problem
of random graphs with 150 nodes and varying number of edges. Note that instances with
low graph density have an associated Max-SAT encoding containing a large number of
binary hard clauses. The figure shows three values which are average results of 30
instances per point. Two main observations can be extracted. First, the lower bound of
the novel preprocessing LB-NEW is quite powerful when the graph density is low, and
it is quite near to the optimal solution value. However, it loses accuracy as the graph
density increases. The second observation is that LB-NEW is much more accurate than
LB-UB.

Figure 2 shows results for the 66 DIMACS instances. The plot reports lower bound
gains (as (LB-NEW - LB-UB)/ LB-UB) versus problem density. It can be seen that
LB-NEW is typically 60 − 80% higher than LB-UB. The effect of the problem density
in this small sample of instances is not very clear, but again it seems that the benefits of
LB-NEW are more important in low density graphs.

A Max-SAT Inference-Based Pre-processing for Max-Clique 147

 0

 20

 40

 60

 80

 100

 120

 140

12 20 28 36 44 52 60 68 76 84 92

cp
u

tim
e

graph density

Max-Clique, 150 vars

OPT
LB-UB

LB-NEW

Fig. 1. Lower bounds computed as a pre-processing compared with optimal solutions for random
graphs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

L
B

 g
ai

n
%

density

LB gain

Fig. 2. Lower bound increment as (LB-NEW - LB-UB)/ LB-UB for the 66 Dimacs instances

Observe the time of the pre-processing Time-Pre, the new lower bound LB-NEW,
the lower bound LB-UB and the value of the optimal solution OPT in Figures 4 and
5. For the instances with hidden optimum solutions (Figure 4), the time required by
the pre-processing is negligible and LB-NEW clearly improves LB-UB. For the protein
alignment instances (Figure 5) our pre-processing can be computed in less than 5 sec-
onds for all the instances and LB-NEW is very close to the optimal solution OPT. It is
worth to observe that LB-NEW almost doubles LB-UB.

5.4 Feeding a Max-SAT Solver with the Pre-processed Instance

In our second experiment we analyze how the execution time of a Max-SAT solver can
be reduced by feeding it with the pre-processed instance. Then we also compare it to

148 F. Heras and J. Larrosa

specific Max-Clique solvers. However most of the Max-Clique solvers in the literature
are not publicly available. The only Max-Clique solver available is DF-MAX [6, 15]
that has been used in most of the comparisons of previous works. While DF-MAX is
an old algorithm, it is still very efficient on sparse graphs [27]. In that context, we used
MINIMAXSAT [13], the overall best branch and bound Max-SAT solver in the 2007
Max-SAT Evaluation [2] and we will refer to it simply as MS. When we feed MS with
the pre-processed instance we will refer to it as MS+Pre.

First, we compared the execution times of MS and MS+Pre in the random graphs of
Figure 1 but no significant differences were found in execution time.

In Figure 3 we compare the number of solved instances by the Max-SAT solver MS
with respect to the rest of specific Max-Clique solvers in the 66 DIMACS instances.
For this experiment, we considered a time limit of 2.5 hours so that we can compare
with other solvers via a normalization process. The results indicate that the Max-SAT
solver MS lays in the middle, being the constraint programming approach [25] and the
coloring approach [11] the best current solvers for the DIMACS instances. But, we ob-
served that giving a larger time limit of 8 hours 4 more instances can be solved with MS
and MS+Pre, precisely the group of brock400*. We observed that MS+Pre was able to
solve the instances san200 0.7 1 and san200 0.7 2 in 0.14 seconds and 116.31 sec-
onds, while MS required 363.47 seconds and 6046.06 seconds, respectively. However,
MS was able to solve the instance san400 0.9 1 within 5 minutes, while MS+Pre was
not able to solve such an instance. In the other 63 instances, both approaches performed
quite similar.

Solver Solved Instances
Regin [25] 52
Fahle [11] 45
MS 39
MS + Pre 38
Wood [28] 38
Ostergard [22] 36
DF-MAX 31

Fig. 3. Solved instances for the 66 graphs from the Second DIMACS challenge [15] within a time
limit of 2.5 hours

From the previous results, it seems that our new pre-processing generates a powerful
initial lower bound but it does not allow important speed-ups for a Max-SAT solver. In
what follows, we show that such speed-ups occur in some specific instances.

Observe the results in Figures 4 and 5. They include the execution time of MS,
MS+Pre and DF-MAX. The time limit was set to 4 hours.

Regarding the instances with hidden optimum solutions (Figure 4), MS and DF-
MAX performed quite similar and solved exactly the same number of instances. Dif-
ferently, MS+Pre is about two orders of magnitude faster than the other approaches.
Furthermore, it is able to solve all the instances of the frb25 set, and one instance of the
frb30 set.

A Max-SAT Inference-Based Pre-processing for Max-Clique 149

Problem nodes density Time-Pre MS DF-MAX MS+NEW LB-UB LB-NEW OPT
frb10-6-1 60 65.71 0.00 0.00 0.00 0.00 30 45 50
frb10-6-2 60 64.63 0.00 0.00 0.00 0.00 30 43 50
frb10-6-3 60 66.05 0.00 0.00 0.00 0.00 30 43 50
frb10-6-4 60 63.95 0.00 0.00 0.00 0.00 30 44 50
frb10-6-5 60 64.24 0.00 0.00 0.00 0.00 30 43 50
frb15-9-1 135 72.22 0.00 1.65 1.00 0.10 67 106 120
frb15-9-2 135 72.21 0.00 1.11 1.00 0.22 67 102 120
frb15-9-3 135 72.40 0.00 1.31 1.00 0.14 67 105 120
frb15-9-4 135 72.32 0.00 1.05 1.00 0.25 67 105 120
frb15-9-5 135 71.69 0.00 1.58 1.00 0.37 67 105 120
frb20-11-1 220 76.61 0.00 295.94 418.00 2.40 110 173 200
frb20-11-2 220 76.86 0.01 267.54 412.00 29.39 110 172 200
frb20-11-3 220 76.70 0.00 411.83 483.00 4.84 110 175 200
frb20-11-4 220 76.87 0.00 490.59 450.00 5.58 109 174 200
frb20-11-5 220 76.75 0.00 556.99 698.00 16.72 110 173 200
frb25-13-1 325 79.87 0.02 - - 2212.94 162 260 300
frb25-13-2 325 79.83 0.01 - - 583.69 162 261 300
frb25-13-3 325 79.72 0.01 - - 247.34 162 256 300
frb25-13-4 325 80.18 0.01 - - 432.19 162 260 300
frb25-13-5 325 80.04 0.02 - - 930.17 161 259 300
frb30-15-1 450 82.28 0.02 - - - 225 360 -
frb30-15-2 450 82.24 0.02 - - - 224 364 -
frb30-15-3 450 82.28 0.02 - - - 225 363 -
frb30-15-4 450 82.28 0.02 - - - 225 366 -
frb30-15-5 450 82.31 0.03 - - 5772.32 225 366 420

Fig. 4. Instances with hidden optimum solutions. 4 hours of time limit.

Problem nodes density Time-Pre MS DF-MAX MS+NEW LB-UB LB-NEW OPT
1bpi–2knt 2436 15.06 3.80 - 528.00 564.99 1218 2372 2407
1bpi–5pti 3016 15.36 5.62 - 2525.00 456.18 1508 2945 2974
1knt–1bpi 2494 14.86 3.80 - 430.00 375.45 1247 2429 2464
1knt–2knt 1806 14.76 2.02 358.93 19.00 87.22 903 1751 1767
1knt–5pti 2236 15.15 3.19 - 226.00 13441.60 1118 2179 2208
1vii–1cph 171 10.88 0.01 0.03 0.00 0.19 85 158 165
2knt–5pti 2184 15.28 2.96 - 238.00 327.04 1092 2124 2156
3ebx–1era 2548 14.72 4.04 - 886.00 865.05 1274 2483 2517
3ebx–6ebx 1768 14.45 1.99 1532.70 88.00 94.56 884 1717 1740
6ebx–1era 1666 14.35 1.89 2705.69 45.00 104.35 833 1616 1646
sandiaprot 2279 14.83 3.30 - 189.00 7710.05 1139 2220 2248

Fig. 5. Protein structure alignment problem transformed into Max-Clique. 4 hours of time limit.

150 F. Heras and J. Larrosa

Regarding the protein alignment instances (Figure 5) the novel lower bound LB-
NEW is very close to the optimal solution OPT. MS can solve only four instances within
the time limit, while MS+Pre is able to solve all the instances and 9 of them in less than
fifteen minutes. The performances of DF-MAX and MS+Pre are quite similar in most
of the instances. Recall that DF-MAX is still the best specific solver for low density
instances like those. Observe that in [16] a Max-SAT solver called MAX-DPLL was
able to solve 10 of the 11 instances. MAX-DPLL applies at each node of the search
tree the cycle rule which can be seen as a very limited version of our more general
approach. However, the current implementation of the cycle rule has severe memory
limitations [16].

6 Related Work

There exists a handful of specific Max-Clique branch and bound solvers [6, 15, 22, 11,
25, 27]. They mainly differ in their bounds. The best current upper bounds are based on
constraint programming techniques [25] and on approximate graph coloring techniques
[11, 27].

Besides specific algorithms, Max-Clique can also be solved with generic solvers. In
the following, we review Max-SAT and WCSP approaches.

Current complete algorithms for Max-SAT are also branch and bound algorithms.
In that context, the upper bound ub is the cost of the best complete assignment found
so far and the lower bound (lb) is the sum of the weights of the clauses in the original
formula violated by the current partial assignment plus an underestimation of the cost
of extending the current partial assignment. lb and ub are used to avoid visiting useless
parts of the search tree when lb ≥ ub. Most of them compute underestimations based
on detecting inconsistent subsets: Given a WCNF formula F , an inconsistent subset is
a subset of clauses of F such that at least one of the clauses is always unsatisfied by any
assignment of the variables. When an inconsistent subset is detected, two approaches
are possible:

– Relaxation: Remove the clauses involved in the inconsistent subset from the for-
mula and increase the underestimation [18].

– Inference: Apply the resolution rule to create an equivalent formula with new empty
clauses [16].

Best current Max-SAT solvers use unit propagation (UP) to detect inconsistent sub-
sets and then they apply a mixture of the previous two approaches [13, 20].

The star rule [21] captures the following inconsistent subset that can be also detected
via UP:

{(x1 ∨ x2 ∨ . . . ∨ xk, w0), (x1, w1), (x2, w2), . . . , (xk, wk)}
If we relax the formula, the underestimation can be increased by min{w0,

w1, . . . , wk}. This was applied during search in [26, 1] restricted to k = 2 and in gen-
eral in [18, 20].

Following the inference-based approach, we have precisely the same transformation
presented in Section 3. It was applied in [12, 20] restricted to k = 2 and in general in
[13].

A Max-SAT Inference-Based Pre-processing for Max-Clique 151

Let S be the largest subset of hard binary clauses of the Max-Clique problem with
no literals in common among them. For each clause (xi ∨ xj , �) in S and their respec-
tive unit clauses (xi, 1) and (xj , 1), we can relax the formula by removing them and
increasing the underestimation by 1. Hence, we can obtain a resulting lower bound of
LBP = |S|. It is precisely the best lower bound that can be computed via UP and then
relaxing the formula like LB-UB used in Section 5. A lower bound based on detect-
ing inconsistent subsets via UP and then transforming the formula may be greater than
LBP . However, in practice it is always quite near to LBP . The main observation of our
work is that the binary hard clauses of the Maximum Clique problem lead to generate
lots of unit clauses that can be used later by the star rule once and again.

The Max-SAT problem was reformulated as a Weighted Constraint Satisfaction
Problem (WCSP) [17] in [9, 8] with boolean variables and weighted constraints. Cur-
rent WCSP solvers apply an inference-based method called Existential Directional Arc
Consistency (EDAC*) [8]. The application of EDAC* in a WCNF formula only affects
to unit and binary clauses that are replaced by other unary and binary clauses and a
weighted empty clause. A lower bound based on EDAC* is always equal or lower than
LBP . The most relevant difference of our approach is that we allow the creation of
larger arity clauses.

7 Conclusions and Future Work

In this paper we present a pre-processing based on the Max-SAT resolution rule for
the Maximum Clique problem (and other related problems). We show empirically how
it can be used to obtain a powerful initial lower bound and, in some cases, how the
search process of a complete systematic search algorithm can be boosted several orders
of magnitude. The following step of our research plan will consist in powering a branch
and bound algorithm with our new algorithm at each node of the search tree. This
may lead to solve the Maximum Clique problem in a very efficient way. To do so,
we are currently working on the necessary data-structures so that the algorithm can be
performed in a very fast way.

References

1. Alsinet, T., Manyà, F., Planes, J.: Improved exact solvers for weighted Max-SAT. In: Bac-
chus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 371–377. Springer, Heidelberg
(2005)

2. Argelich, J., Li, C.M., Manyá, F., Planes, J.: The first and second max-sat evaluations. Journal
on Satisfiability, Boolean Modeling and Computation (to appear, 2008)

3. Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM Journal of Com-
putation 15(4), 1054–1068 (1986)

4. Bonet, M.L., Levy, J., Manyà, F.: Resolution for max-sat. Artificial Intelligence 171(8-9),
606–618 (2007)

5. S.B.: A new trust region technique for the maximum weight clique problem. Discrete Applied
Mathematics 154(15), 2080–2096 (2006)

6. Carraghan, R., Pardalos, P.: An exact algorithm for the maximum clique problem. Operations
Research Letters 9, 375–382 (1990)

152 F. Heras and J. Larrosa

7. Cooper, M.C., de Givry, S., Schiex, T.: Optimal soft arc consistency. In: Proceedings of
IJCAI, pp. 68–73 (2007)

8. de Givry, S., Heras, F., Larrosa, J., Zytnicki, M.: Existential arc consistency: getting closer
to full arc consistency in weighted csps. In: Proceedings of IJCAI (2005)

9. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving max-sat as weighted csp. In: Rossi,
F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg (2003)

10. Barnes, E., Strickland, D.M., Sokol, J.S.: Optimal protein structure alignment using maxi-
mum cliques. Operations Research 53, 389–402 (2005)

11. Fahle, T.: Simple and fast: Improving a branch-and-bound algorithm for maximum clique.
In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 485–498. Springer,
Heidelberg (2002)

12. Heras, F., Larrosa, J.: New inference rules for efficient max-sat solving. In: AAAI (2006)
13. Heras, F., Larrosa, J., Oliveras, A.: Minimaxsat: A new weighted max-sat solver. In:

Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 41–55. Springer,
Heidelberg (2007)

14. Ji, Y., Xu, X., Stormo, G.D.: A graph theoretical approach for predicting common RNA
secondary structure motifs including pseudoknots in unaligned sequences. Bioinformat-
ics 20(10), 1603–1611 (2004)

15. Johnson, D.S., Trick, M.: Second DIMACS implementation challenge: cliques, coloring and
satisfiability. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 26, AMS (1996)

16. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient Max-SAT solving. Artifi-
cial Intelligence, an international journal 172, 204–233

17. Larrosa, J., Schiex, T.: Solving weighted csp by maintaining arc-consistency. Artificial Intel-
ligence 159(1-2), 1–26 (2004)

18. Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower bounds in
branch and bound Max-SAT solvers. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp.
403–414. Springer, Heidelberg (2005)

19. Li, C.M., Manya, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing
lower bounds for Max-SAT. In: Proceedings of AAAI (2006)

20. Li, C.M., Manyà, F., Planes, J.: New inference rules for max-sat. Journal of Artificial Intelli-
gence Research 30, 321–359 (2007)

21. Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability. Journal of
Algorithms 36(1), 63–88 (2000)

22. Ostergard, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Applied Math-
ematics 120, 197–207 (2002)

23. Pevzner, P.A., Sze, S.: Combinatorial approaches to finding subtle signals in DNA sequences.
In: ISMB, pp. 269–278 (2000)

24. Pullan, W.J., Hoos, H.H.: Dynamic local search for the maximum clique problem. J. Artif.
Intell. Res (JAIR) 25, 159–185 (2006)

25. Régin, J.-C.: Using constraint programming to solve the maximum clique problem. In: Rossi,
F. (ed.) CP 2003. LNCS, vol. 2833, pp. 634–648. Springer, Heidelberg (2003)

26. Shen, H., Zhang, H.: Study of lower bounds for Max-2-SAT. In: AAAI (2004)
27. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maximum clique.

In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp.
278–289. Springer, Heidelberg (2003)

28. Wood, D.: An algorithm for finding maximum cliques in a graph. Operations Research Let-
ters 21, 211–217 (1997)

29. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: A simple model to generate hard satisfiable
instances. In: Proceedings of IJCAI, pp. 337–342 (2005)

30. Xu, K., Li, W.: Many hard examples in exact phase transitions with application to generating
hard satisfiable instances. CoRR, cs.CC/0302001 (2003)

SAT, UNSAT and Coloring

Kazuo Iwama�

School of Informatics, Kyoto University, Kyoto 606-8501, Japan
iwama@kuis.kyoto-u.ac.jp

In this survey, we study recent developments on the CNF satisfiability problem.
The first one is about deterministic (and of course exponential-time) algorithms
for k-SAT. The most recent improvement for k = 3 and 4 is based on the nontriv-
ial combination of the Schöning’s local search algorithm and the backtrack-type
algorithm by Paturi, Pudlák, Saks, and Zane. This approach is due to Iwama
and Tamaki and the current fastest algorithm, based on the same method, is
due to Rolf, which runs in time O(1.32216n).

The second topic is on the inapproximability of MAX-3SAT and related prob-
lems, based on the famous PCP Theory. Recently, there was an important
progress in this field, the Unique Games Conjecture (UGC), by Khot. UGC
implies several optimal inapproximability results, such as Vertex Cover.

The third one is the proof complexity of unsatisfiable formulas. Whether or
not extended Frege systems, the most powerful proof systems ever known, are
polynomially bounded is a most important open question in this field. Pitassi
and Urquhart proved that the above open question is equivalent to whether the
Hajós calculus, which is a simple, nondeterministic procedure for generating non-
3-colorable graphs, is polynomially bounded. Thus, the famous open question in
proof complexity is beautifully linked to the open question in graph theory; in
order to prove superpolynomial lower bounds for the extended Frege systems,
it now suffices to find a “hard example” from the set of non-3-colorable graphs.
Thanks to the long and extensive research history of graph theory and graph
algorithms, this is hopefully easier than finding a hard example from the set of
formulas. Recently Iwama and Tamaki made another step toward this direction
by showing that it still suffices if Hajós calculus is restricted to within the class
of planar graphs, not only for the final graph but also intermediate ones.

� Supported in part by Scientific Research Grant, Ministry of Japan, 16300002 and
19200001.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, p. 153, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computation of Renameable Horn Backdoors�

Stephan Kottler, Michael Kaufmann, and Carsten Sinz

Eberhard Karls Universität Tübingen, Wilhelm–Schickard–Institute, Tübingen,
Germany

Abstract. Satisfiability of real-world Sat instances can be often decided
by focusing on a particular subset of variables - a so-called Backdoor Set.
In this paper we suggest two algorithms to compute Renameable Horn
deletion backdoors. Both methods are based on the idea to transform
the computation into a graph problem. This approach could be used as
a preprocessing to solve hard real-world Sat instances. We also give some
experimental results of the computations of Renameable Horn backdoors
for several real-world instances.

1 Introduction

It is a well known phenomenon that Sat instances evolving from industrial
applications can be solved much faster than this could be expected from the
theoretical point of view. This allows current state-of-the-art solvers for dealing
with instances that consist of up to hundreds of thousands variables. To decide
satisfiability for industrial instances it is often sufficient to focus on a partic-
ular and primarily small subset of variables - a so-called backdoor set. In the
groundbreaking work [20] Williams, Gomes and Selman already gave examples
of instances with approximately 6,700 variables and nearly 440,000 clauses that
exhibit backdoor sets with only 12 variables. Ruan, Kautz and Horvitz showed
empirically that an extension of the concept of backdoor sets is a good predictor
for the hardness of Sat problems [16]. Moreover, Interian showed that random
3-Sat instances exhibit backdoor sets with 30% to 65% of all variables [10].

Knowing a small backdoor set for an instance in advance could speed up
the solving process extraordinarily. However, according to the work of Szeider
[18], it is in general not possible to decide in reasonable time whether a given
Sat instance exhibits a backdoor with limited size with respect to a DPLL
based subsolver (see [7,6]). Throughout this paper we consider a variant of strong
backdoors (see [20]), so-called deletion backdoors [13,19]:

A backdoor is defined with respect to a base class C of formulas that can be recog-
nized and solved in polynomial time. B ⊂ V is a deletion backdoor if the formula
F − B belongs to C, where F − B denotes the result of removing all occurrences
(both positive and negative) of the variables in B from the clauses of formula F .

� This work was partly supported by DFG-SPP 1307, project “Structure-based Algo-
rithm Engineering for SAT-Solving”.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 154–160, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computation of Renameable Horn Backdoors 155

Nishimura, Ragde and Szeider proved that every deletion backdoor is a strong
backdoor, if the base class C is clause-induced (F ∈ C ⇒ F ′ ∈ C for all F ′ ⊆ F)
[13]. For the computation of backdoors with base class Horn and 2-Sat the same
authors proved fixed-parameter tractability. Hence, the question whether a for-
mula exhibits a Horn backdoor (respectively a Binary backdoor) with at most
k variables can be answered in time that is only exponential in k but not in
the number of variables [12]. Moreover, Interian approximated backdoors with
respect to the base classes Horn and 2-Sat for random 3-Sat instances [10].

In this article we study the computation of Renameable Horn backdoors.
Thus, the base class C is Renameable Horn. A formula is Horn, if every clause
contains at most one positive literal and it is Renameable Horn (RHorn) if it
can be renamed to a Horn formula by flipping the literals of some variables.

Paris et al. used a two phase approach to compute RHorn backdoors as a
preprocessor in a modification of the zChaff Sat solver [15]. In a first step the
algorithm tries to increase the number of Horn clauses by flipping the literals of
some variables in a local search manner. Secondly, variables are chosen for the
backdoor in a greedy fashion to make all non-Horn clauses become Horn.

In a recent work Dilkina, Gomes and Sabharwal formulated linear programs
to compute optimal RHorn backdoors [9]. An important result is that smallest
RHorn backdoors can be exponentially larger than general strong backdoors.

2 Two Approaches to Compute RHorn Backdoors

The computation of RHorn backdoors of both approaches presented in this arti-
cle is based on an equivalent graph problem. The second approach approximates
the minimum RHorn backdoor with an approximation ratio that is equal to the
size of a so-called conflict loop in the graph. Furthermore, when using the second
algorithm, the exact approximation ratio is known as soon as the RHorn back-
door is computed. In the following subsection we briefly describe how to trans-
form the problem of finding RHorn backdoors to a problem on directed graphs.

Renameable Horn Backdoors as Graph Problem. For a given formula F
we create a so-called dependency graph G = (VG, EG) with 2 ∗ |V| vertices. Each
variable vi entails two vertices k0

i and k1
i that represent the facts that variable vi

has to be renamed (k0
i) respectively must not be renamed (k1

i) in order to make F
a Horn formula. The directed edges of G represent the implications of renaming
or not renaming variables, according to the clauses of F . A RHorn dependency
graph can be created in time O(m∗ size of max clause2) by traversing all possible
pairs of literals for each of overall m clauses.

Lewis introduced a method to decide whether a given formula F belongs to
class Renameable Horn [11]. The conditions that have to be satisfied to rename
F to a Horn formula are formulated as a 2-SAT instance S. It was proved that
F is Renameable Horn iff S is satisfiable [11]. The described dependency graph
corresponds to the implication graph in [3], that could be used to solve the 2-
SAT instance S. In difference to the algorithm in [3] our computations do not
deal with strongly connected components. However, the following properties of

156 S. Kottler, M. Kaufmann, and C. Sinz

implication graphs that are needed for our algorithms can be found in [3,4,14]
or derived straightforwardly from these results.

Definition 1. We call a vertex kq
i (q ∈ {0, 1}) a conflict vertex if there is a

path from kq
i to k

(q⊕1)
i . A variable xi ∈ V has a conflict loop if k0

i and k1
i are

both conflict vertices.

Corollary 1. If there is no path from kq
i to k

(q⊕1)
i then none of the vertices that

can be reached from kq
i is a conflict vertex.

Lemma 1. A formula F is Renameable Horn iff there exists no variable that
has a conflict loop in the dependency graph.

Corollary 2. If variable xi ∈ V does not have a conflict loop than neither vertex
k0

i nor vertex k1
i can be involved in a conflict loop of any other variable.

According to Lemma 1 the task to compute a RHorn backdoor can be accom-
plished by destroying all conflict loops in the appropriate dependency graph. In
particular, we aim to delete a minimal amount of variables from the Boolean
formula such that the deletion of the according vertices and their incident edges
results in a dependency graph without any conflict loops. We call the set of
variables involved in a conflict loop a conflict set. It is important to notice that
a conflict loop and its conflict set do not necessarily have to have the same size.

A heuristic to destroy all conflict loops. The first approach mainly con-
siders small conflict sets and variables that occur in many of these conflict sets.
The implementation is based on the function computeConflictSets(G, U)
that computes one conflict set for each variable in U ⊆ V with respect of the
dependency graph G. For each variable xi in U a conflict loop is computed by
checking whether there is a path from vertex k0

i to k1
i and vice versa. All variables

that occur in one of the two computed conflict paths constitute the conflict set for
variable xi. If, on the other hand there is no path from kq

i to k
(q⊕1)
i (q ∈ {0, 1})

then we know by Corollary 1 that none of the vertices Ri ⊆ VG that can be
reached from vertex kq

i can be a conflict vertex. By Corollary 2 we can disregard
the according variables (R) of the vertices in Ri for the remaining computation.
Thus, for each variable in R both representing vertices and their incident edges
can be deleted from the dependency graph.

The entire computation of a RHorn backdoor starts with creating the depen-
dency graph and computes a small conflict set for each variable of the formula.
It starts with an empty backdoor set B and chooses greedily one variable for B
that occurs most frequently in all known conflict sets S. Ties are broken in favor
of variables that occur in small conflict sets. We have applied different strategies
to choose a variable for the backdoor, but none of them clearly outperformed
the described one. The according vertices of the chosen variable and their inci-
dent edges are removed from the dependency graph. New conflict sets are then
computed for those variables whose conflict loops were destroyed. At this point
the graph may shrink rapidly for some instances, due to the simplification rules
in procedure computeConflictSets. The algorithm terminates as soon as all
conflict loops are destroyed.

Computation of Renameable Horn Backdoors 157

Approximating minimal Renameable Horn Backdoors. The second ap-
proach to compute Reanameable Horn backdoors basically adapts the idea of [8]
to approximate a weighted Feedback Vertex Set in a directed graph. The
Algorithm is divided into two phases. In the first phase conflict loops in the graph
are destroyed by always taking all related variables of a chosen conflict loop for
the backdoor. In the second phase the algorithm tries to shrink the backdoor by
reinserting the related vertices and edges of some backdoor variables, ensuring
that no conflict loops are created. Since an optimal backdoor has to contain at
least one variable of any conflict set, it is evident that always taking all variables
of any remaining conflict set into the backdoor (phase 1) already approximates
the optimal RHorn backdoor by a factor that is smaller or equal to the size of
the biggest chosen conflict set. Due to the fact that in the second phase of the
algorithm the found backdoor can be only improved the approximation ratio
applies for the entire Algorithm. To keep the approximation ratio small it is
reasonable to choose as small as possible conflict loops in the first phase.

Using the reachability data structure introduced in [8] the time to destroy all
conflict loops in a given graph can be bounded by O(|V|3) for both algorithms.
However, for industrial Sat instances the computation benefits from the fact
that on the one hand, at the beginning, small conflict paths are computed which
requires clearly less than the worst-case bound. On the other hand, at the end,
the number of vertices and edges has substantially decreased (see section 3).

3 Some Experimental Results

In order to get an idea of the sizes of backdoors of real-world Sat instances we
computed RHorn backdoors for several instances in [1,2,17]. For the computation
of Horn and Binary backdoors it turned out that a simple greedy strategy yields
the best results for most instances. For Binary backdoors we always choose that
variable for the backdoor that reduces the size of the most clauses with more
than two literals, terminating as soon as all clauses are binary. The computation
of Horn backdoors can be done analogously. A few results are listed in Fig. 1.

Especially the last two rows, the results for the two instances eq.atree.braun*
have to be emphasized. Though relatively small, both instances could not be
solved by any solver in the sat competition 2007 within the allowed time (10,000
seconds). Our heuristic found a RHorn backdoor with 761 variables for the in-
stance eq.atree.braun.13* in less than four minutes. Although a solving process
cannot examine all 2761 Renameable Horn instances, this still reduces the amount
of ’relevant’ variables by more than 62%.

It is also worth to mention the good results for instances from Car Configu-
ration [17]. E.g., the optimal RHorn backdoors for the two instances C208 FA*
contain 4.51% resp. 7.46% of all variables [9]. For these instances the heuristic
found backdoors with 4.73% resp. 8.21% of all variables (lines 2,3).

An alternative approach to compute RHorn backdoors was used in [15] as
a preprocessor in a modified zChaff Sat solver. For the most instances that
are given in [15] our algorithm could discover slightly smaller RHorn backdoors.

158 S. Kottler, M. Kaufmann, and C. Sinz

Instance # Vars # Cls Binary Horn RHorn
C169 FW 1402 1982 56 59 2
C208 FA SZ 120 1608 5278 161 168 76
C208 FA UT 3254 1876 7334 419 434 154
apex7 gr rcs w5.shuffled.cnf 1500 11695 900 832 635
dp10s10.shuffled.cnf 7759 23004 2005 3256 1543
vda gr rcs w9.shuffled.cnf 6498 130997 5054 4695 4262
cnf-r4-b4-k1 9528 59248 8363 4569 576
comb3 4774 16331 1641 2095 1119
dp06u05 2055 6053 560 889 457
ezfact256 1 49153 324873 24092 32936 35998
f2clk 30 20458 59559 7109 7813 3338
par32-4 3176 10313 463 1658 1290
cnf-r4-b1-k1.1-03-416 2424 14812 2113 1141 174
f2clk 40-03-424 27568 80439 9597 10562 4514
eq.atree.braun.12.unsat 1694 5726 686 1003 647
eq.atree.braun.13.unsat 2010 6802 822 1194 761

Fig. 1. Computation of different Backdoors. The three rightmost columns indicate the
sizes of the found backdoors with base classes 2-Sat, Horn and RHorn. The small-
est backdoor of an instance is highlighted with bold font. Due to space limitations
information about runtime etc. are omitted.

However, for a few instances like e.g. dp10s10* with 8,372 variables our heuristic
did considerably better: The local search strategy found a backdoor with 2,635
variables [15], whereas the described heuristic discovered a backdoor with 1,543
variables. The reason for this might be that unlike the local search approach,
a computation based on the dependency graph is mainly independent of the
number of renamings that have to be made to make the remaining instance
F − B Horn.

A further interesting aspect when analyzing the computation of RHorn back-
doors for industrial Sat instances is the simplification of the dependency graph.
In Fig. 2 it can be observed that the simplification of the dependency graphs
for instances of the same family behaves similar. For easy instances like those of

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120

nu
m

be
r

of
 v

er
tic

es

number of chosen backdoor variables

C220_FV_SZ_55
C220_FV_SZ_39

C220_FV_SZ_114
C220_FV_SZ_121

C220_FV_SZ_46
C220_FV_RZ_12
C220_FV_RZ_65
C220_FV_RZ_14
C220_FV_RZ_13

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 100 200 300 400 500 600 700 800

nu
m

be
r

of
 v

er
tic

es

number of chosen backdoor variables

eq.atree.braun.13.unsat
eq.atree.braun.12.unsat
eq.atree.braun.11.unsat
eq.atree.braun.10.unsat

eq.atree.braun.9.unsat
eq.atree.braun.8.unsat
eq.atree.braun.7.unsat

Fig. 2. Simplification of dependency graphs for different families of Sat instances from
[2,17]. The y-axis indicate the number of vertices in the graph and the x-axis indicate
the number of variables that are chosen for the present backdoor.

Computation of Renameable Horn Backdoors 159

the family C220 FV* (left plot) there are several break downs where numbers of
vertices can be disregarded and hence deleted according to Corollary 2. On the
other hand the computation of backdoors for the very hard real-world instances
of the family eq.atree.braun* (right plot) nearly behaves like the computations
for generated instances. Applying Corollary 2 is practically impossible in the
first two-thirds of the computation.

4 Conclusions and Further Work

In this paper we have presented two approaches to compute RHorn backdoors
for CNF formulas in polynomial time. Both approaches are based on the idea
to destroy conflict loops in a RHorn dependency graph. We think that this
idea could be used as a preprocessing step for solving small but hard real-world
Sat instances in order to drastically reduce the amount of variables to consider
for the solving process. For the more general case where a minimal amount of
variables has to be deleted in order to make a 2-Sat instance satisfiable, the
idea of destroying conflict loops in the implication graph of [3] can be adapted.

Furthermore, it is still an open problem if the computation of a minimum
RHorn backdoor is fixed parameter tractable. In 2007 the Feedback Vertex

Set problem in directed graphs was proved to be in FPT [5]. It might be possible
to adapt their approach for RHorn dependency graphs to remove vertices in order
to destroy all conflict loops in the graph.

References

1. Dimacs,
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/

2. The international SAT competition (2002-2007),
http://www.satcompetition.org

3. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Inf. Proc. Lett. 8, 121–123 (1979)

4. Buresh-Oppenheim, J., Mitchell, D.G.: Minimum witnesses for unsatisfiable
2CNFs. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, Springer,
Heidelberg (2006)

5. Chen, J., Liu, Y., Lu, S.: Directed feedback vertex set problem is fpt. In Structure
Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs (2007)

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

7. Davis, M., Putnam, H.: A computing procedure for quantification theory. J.
ACM 7(3), 201–215 (1960)

8. Demetrescu, C., Finocchi, I.: Combinatorial algorithms for feedback problems in
directed graphs. Inf. Process. Lett. 86(3), 129–136 (2003)

9. Dilkina, B., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoor
detection. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, Springer, Heidelberg
(2007)

10. Interian, Y.: Backdoor sets for random 3-sat. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, Springer, Heidelberg (2004)

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/
http://www.satcompetition.org

160 S. Kottler, M. Kaufmann, and C. Sinz

11. Lewis, H.R.: Renaming a set of clauses as a horn set. J. ACM 25, 134–135 (1978)
12. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to

Horn and Binary clauses. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, Springer, Heidelberg (2005)

13. Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. Acta
Informatica 44(7-8), 509–523 (2007)

14. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
15. Paris, L., Ostrowski, R., Siegel, P., Sais, L.: Computing horn strong backdoor sets

thanks to local search. In: ICTAI 2006, IEEE Computer Society, Los Alamitos
(2006)

16. Ruan, Y., Kautz, H.A., Horvitz, E.: The backdoor key: A path to understanding
problem hardness. In: AAAI, pp. 124–130 (2004)

17. Sinz, C.: SAT benchmarks (2003),
http://www-sr.informatik.uni-tuebingen.de/∼sinz/DC

18. Szeider, S.: Backdoor sets for dll subsolvers. J. Autom. Reasoning 35, 73–88 (2005)
19. Szeider, S.: Matched formulas and backdoor sets. In: Marques-Silva, J., Sakallah,

K.A. (eds.) SAT 2007. LNCS, vol. 4501, Springer, Heidelberg (2007)
20. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In:

IJCAI (2003)

http://www-sr.informatik.uni-tuebingen.de/~sinz/DC

A New Bound for an NP-Hard Subclass of

3-SAT Using Backdoors�

Stephan Kottler, Michael Kaufmann, and Carsten Sinz

Eberhard Karls Universität Tübingen, Wilhelm–Schickard–Institute,
Tübingen, Germany

Abstract. Knowing a Backdoor Set B for a given Sat instance, satis-
fiability can be decided by only examining each of the 2|B| truth assign-
ments of the variables in B. However, one problem is to efficiently find
a small backdoor up to a particular size and, furthermore, if no back-
door of the desired size could be found, there is in general no chance to
conclude anything about satisfiability.

In this paper we introduce a complete deterministic algorithm for
an NP-hard subclass of 3-Sat, that is also a subclass of Mixed Horn
Formulas (MHF). For an instance of the described class the absence of
two particular kinds of backdoor sets can be used to prove unsatisfiability.
The upper bound of this algorithm is O(p(n)∗1.427n) which is less than
the currently best upper bound for deterministic algorithms for 3-Sat

and MHF.

1 Introduction and Definitions

The boolean satisfiability problem (Sat) is one of the well known hard problems
in theoretical computer science. Even when restricting the number of literals in
each clause to a maximum of three (3-Sat), deciding satisfiability of a given
instance is known to still be NP-complete. From the theoretical point of view
the upper bound to solve 3-Sat could be improved steadily (see [13]). From
the practical point of view we know by experience that many Sat instances
evolving from real-world applications can be solved within nearly linear time.
This is often due to some hidden structure that facilitates the solving process
enormously. One possibility to measure this structure, namely Backdoor Sets,
was introduced in 2003 by Williams, Gomes and Selman [16]. On the one hand
it was shown that small backdoor sets are often related to real-world instances
[16,12], on the other hand minimal backdoors of randomized, hence unstructured
3-Sat instances contain from 30% to 65% of all variables [6].

We use backdoors not as a measure of structure but rather to guide an al-
gorithm for an NP-hard subclass of 3-Sat and Mixed Horn Formulas (MHF).
MHF denotes the set of all Sat instances in conjunctive normal form where each
clause is either Horn or binary [10,11].

� This work was partly supported by DFG-SPP 1307, project “Structure-based Algo-
rithm Engineering for SAT-Solving”.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 161–167, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

162 S. Kottler, M. Kaufmann, and C. Sinz

Strong Backdoor Sets. We use the definition of strong backdoor sets that is given
in [8]. Note that there are also weak backdoor sets [16,8], however, they are not
relevant for this paper. A backdoor is defined with respect to a class C of formulas
that can be recognized and solved in polynomial time. A set B of variables V
of a boolean formula F is a strong backdoor set of F with respect to C (strong
C-backdoor) if F [τ] ∈ C for every truth assignment τ : B �→ {0, 1}. F [τ] denotes
the result of removing all clauses that contain a literal x with τ(x) = true and
removing all literals y with τ(y) = false from F .

We particularly use a variant of strong backdoors, so-called deletion backdoors
[9,14]: B is a deletion backdoor if the formula F − B belongs to C, where F − B
denotes the result of removing all occurrences (both positive and negative) of
the variables in B from the clauses of formula F . Every deletion backdoor is a
strong backdoor, if class C is clause-induced (F ∈ C ⇒ F ′ ∈ C for all F ′ ⊆ F)
[9]. In this paper we solely deal with the two clause-induced classes Horn and
2-Sat as base classes of backdoors.

Parameterized Algorithms. Constitute one possible approach to cope with com-
putational intractability [7]. One basic idea of parameterized algorithms is to
ask whether a given NP-hard problem has a solution that can be bounded by
some non-negative integer parameter k. If a problem is fixed-parameter tractable
this question can be solved in time that is only exponential in k but not in
the size of the original problem. Since our approach rather applies than creates
parameterized algorithms we refer the reader to [7] for a formal definition and
more detailed information on parameterized complexity.

2 A NP-Hard Subclass of 3-SAT

Definition 1. Let 2�-CNF be the subclass of 3-Sat with the restriction that
any clause C with |C| = 3 must only contain negative literals.

Theorem 1. 2�-CNF is NP-complete.

Proof. The definition of 2�-CNF as a subclass of 3-Sat ∈ NP directly implies
2�-CNF to be in NP. The NP-completeness of 2�-CNF can be shown by the
polynomial time reduction 3-Sat ≤p 2�-CNF.

Let F be a boolean formula represented in 3-Sat. We need to specify a formula
F ′ ∈ 2�-CNF such that F ′ is satisfiable if and only if F is satisfiable. Let therefore
Cp denote the set of all clauses C of F with |C| = 3 and C containing at least
one positive literal. Let Cn := C \ Cp denote the remaining clauses. Moreover, let
Vp ⊆ V denote those variables of F which occur positively in at least one clause
of Cp. In order to transform a formula F ∈ 3-Sat into F ′ ∈ 2�-CNF, all clauses
Cn can be adopted unchanged (C′n := Cn) for F ′. For every variable xi ∈ Vp we
introduce one variable x∗

i and one clause (x∗
i ∨ xi) in F ′. We refer to the set of

these added clauses as C′a. Furthermore, all clauses in Cp are modified to clauses
C′p by replacing each occurrence of a positive literal xi by the (negative) literal
x∗

i . Hence, F ′ belongs to class 2�-CNF and it is:

A New Bound for an NP-Hard Subclass of 3-SAT 163

F is satisfiable ⇔ F ′ is satisfiable

’⇒’: If F is satisfiable there exists a model MF (set of satisfying literals). We
create an according model for F ′ by initializing MF ′ := MF . Moreover, for all
variables xi ∈ Vp we apply the following rule:

MF ′ =
{

MF ′ ∪ {x∗
i } if (positive) literal xi ∈ MF

MF ′ ∪ {x∗
i } otherwise

With this, all clauses C′n ∪ C′a are satisfied. Let now C′ be any arbitrary clause
in the remaining set of clauses C′p. There exists at least one literal lj ∈ MF (of
variable xj) which satisfies the according clause C ∈ Cp. Due to the initialization
it is lj ∈ MF ′ . In case lj is a negative literal, C′ also contains lj and hence is
satisfied. In case lj is a positive literal, C′ contains the literal x∗

j that was chosen
for MF ′ and hence satisfies C′. Consequently all clauses in F ′ are satisfied.

’⇐’: F ′ is satisfiable by the assignment of the literals in MF ′ . Initializing MF :=
{l ∈ MF ′ : l belongs to F} satisfies at least all clauses in Cn. Now consider any
clause C ∈ Cp: Since the according clause C′ ∈ C′p is satisfied there exists at least
one literal l ∈ MF ′ satisfying C′. In case l belongs to F then l ∈ MF and thus,
C ∈ F is satisfied. If, on the other hand, l does not belong to F then l must be
an added and negated variable of the form x∗

i , whereas clause C contains literal
xi ∈ F . Since MF ′ is a model for F ′, in particular the added clause (x∗

i ∨xi) ∈ F ′

is also satisfied by MF ′ . Hence, literal xi has to be contained in MF ′ and so it
is also contained in MF . With this MF is a model for F .

Since for any positive literal in F we added at most one new variable and one
new clause to F ′, the reduction is polynomial. Thus, it is NP-complete to decide
whether a given formula F ∈ 2�-CNF is satisfiable. �

Note that an alternative proof could adapt the idea to prove NP-hardness for
MHF [10]. It turns out that 2�-CNF ⊂ MHF encodes the problem to decide
whether the vertices of a graph can be colored with at most three different
colors such that no vertices with the same color are connected by an edge.

3 A Backdoor–Driven Approach

Based on the concept of backdoor sets we can specify a simple deterministic
algorithm to decide satisfiability for arbitrary formulas of the class 2�-CNF.
The main algorithm is listed in Alg. 1 and is explained in detail in this section.

In the second line we define a constant c whose value solely depends on the
runtime of two parameterized algorithms we use as subroutines further below.
The particular value will become more clear when analyzing the complexity of
the algorithm. In line 3 we first consider all clauses C+ of F that consist of
exactly two positive literals. Note that with F being an instance of class 2�-
CNF, any clause within the set {F \ C+} contains at most one positive literal
and thus these clauses are all Horn clauses. In the next line we aim to find the
smallest possible set of variables B+ such that every clause in C+ contains at

164 S. Kottler, M. Kaufmann, and C. Sinz

Algorithm 1. A Backdoor-driven 2�-CNF Solver

Function bd solve(F)1

c ← log4.151(2.0755) ≈ 0.5132

C+ ← {(xi ∨ xj) ∈ F : xi, xj positive}3

Choose minimum B+ ⊆ V, such that ∀ C ∈ C+ ∃ xi ∈ B+ : xi ∈ C4

if |B+| ≤ c ∗ |V| then5

return Solve F by using the Horn-Backdoor B+6

C− ← {(xh ∨ xi ∨ xj) ∈ F : xh, xi, xj negative}7

Choose minimum B− ⊆ V, such that ∀ C ∈ C− ∃ xi ∈ B− : xi ∈ C8

if |B−| ≤ (1 − c) ∗ |V| then9

return Solve F by using the Binary-Backdoor B−10

return F Unsatisfiable11

least one variable of the set B+. Since by definition all clauses within C+ are
binary clauses the problem to find the smallest possible set B+ can be seen as a
Vertex-Cover-problem:
Understanding binary clauses as edges and the variables of the two literals of
each clause as the endpoints of an edge, our task responds to find the smallest
set of endpoints to cover each edge. It is easy to verify that the set of variables
B+ constitutes a deletion backdoor with the base class C = Horn: Each clause of
the instance F −B+ contains at most one positive literal. For complexity reasons
we target to determine a set B+ of the size not greater than c ∗ |V|.

If the instance F does not contain a Horn-backdoor of the desired size, we
then consider the set of all clauses (C−) consisting of three literals. Recall that
these literals are all negative. In line 8 we aim to find a smallest possible set
of variables B− such that each clause within the set C− contains at least one
(negative) literal of the variables within the set B−. This task corresponds to a
3-Hitting-Set problem (see [6]): Clauses of the set C− can be seen as subsets
of three items (variables) each. For B− we search for the smallest set of items
to hit each subset in C−. Note that any clause in F \ C− consists of at most
two literals. Hence it is clear that the set of variables B− constitutes a deletion
backdoor with base class C = 2-Sat: The instance F − B− belongs to class
2-Sat, since from each clause with three literals (C−) at least one is removed.
Again for complexity reasons we focus on finding a Binary-backdoor with size
not greater than (1 − c) ∗ |V|.

When reaching line 11 we know that there exists neither a set of variables B+

nor a set B− with the desired size. In this case we can conclude unsatisfiability
of F . Since the considered clauses within C+ solely consist of positive literals we
need to set the values of at least |B+| variables to true in order to satisfy all the
clauses in C+. Analogously the size B− indicates the number of variables whose
values have to be set to false in order to satisfy all clauses within the set C−.
This is impossible with |B+| being greater than c ∗ |V| and |B−| being greater
than (1 − c) ∗ |V| at the same time.

A New Bound for an NP-Hard Subclass of 3-SAT 165

A similar argument to prove unsatisfiability of big random 3-Sat instances has
been used by Franco and Swaminathan in [5]. The authors show that an ap-
proximation algorithm for 3-Hitting-Set can determine bounds on how many
variables must be set to true and how many must be set to false.

Complexity of the Algorithm

It is easy to verify that satisfiability of a boolean formula of class 2�-CNF can
be decided by the algorithm described above. In this subsection we analyze the
complexity of Algorithm 1. In particular we have to focus on the following four
computationally intensive tasks of the algorithm:

1. In order to compute the set of variables B+ a Vertex Cover problem has to be
solved (line 4). There are several good approximationalgorithms to deal withVer-

tex Cover problems. However, in our case we need to know exactly the minimum
set of variables to coverall clauses in C+ which cannot be achievedbyusing approx-
imation methods. Considering the fact that we are only interested in a variable set
B+ up to a particular size, we can make use of a parameterized algorithm.

Given a graph G = (VG, EG) the parameterized Vertex Cover problem asks
if there is a subset of vertices C ⊆ VG with k or fewer vertices such that each edge
in EG has at least one of its endpoints in C. According to [7] there are algorithms
solving the parameterized Vertex Cover in time O(k ∗ |VG| + 1.29k). Since in
our case the parameter k is given by c ∗ |V| = 0.513 ∗ |V| and |VG| = |V| = n the
complexity of this task can be limited by O(n2 + 1.14n).

2. Solving the instance F by using a Horn-backdoor B+ with at most c ∗ n =
0.513 ∗ n variables (line 6) may in the worst case imply to examine all possible
truth assignments of the variables in B+. More precisely this might mean that
for each of the 20.513n = 1.427n truth assignments a Horn instance has to be
solved. The satisfiability of a Horn instance can be decided in linear time by
applying for example the algorithm described in [3]. Concluding, the complexity
of this part is limited by O(1.427n ∗ |F |).

3. Analogously, to determine the set B+, we can use a parameterized algorithm
in order to solve the 3-Hitting-Set problem to detect whether there is a set
B− with at most (1 − c) ∗ |V| = (1 − 0.513) ∗ |V| variables (line 8).

Given a collection Q of subsets of size at most three of a finite set S and
a non-negative integer k, the parameterized 3-Hitting-Set problem asks if
there is a subset S′ ⊆ S with |S′| ≤ k which allows S′ to contain at least
one element from each subset in Q [7]. Algorithms to solve this problem have
been steadily improved in the last years. In 2004 Fernau published an algorithm
for the parameterized 3-Hitting Set problem bounded by O(2.179k + |S|) [4].
Wahlström recently improved this result and gave an algorithm with an upper
bound O(p(n) ∗ 2.0755k) with a polynomial p(n) [15]. With k := (1 − c) ∗ |V| =
0.487 ∗ n in our case the complexity can be bounded by O(1.427n ∗ p(n)).

166 S. Kottler, M. Kaufmann, and C. Sinz

4. To determine satisfiability of F by using the Binary-backdoor B− with at
most (1 − c) ∗ n = 0.487 ∗ n variables (line 10) may in the worst case imply to
solve a 2-Sat instance for each possible truth assignment of the variables in B−.
Since 2-Sat can be solved in linear time [1,3] the complexity of this part can be
limited by O(1.402n ∗ |F |).

With this, the complexity of Algorithm 1 is bounded by O(1.427n ∗ p(n)).
Hence, the idea of considering two different types of backdoors yields a good
upper bound for the special class 2�-CNF ⊂ 3-Sat. This bound is slightly bet-
ter than the bound O(20.5284n) = O(1.4423n) to solve the more general class
MHF [10]. Just for comparison, the currently best deterministic algorithm for
3-Sat has an upper bound of O(1.473n) [2].

4 Conclusion

Based on the concept of backdoor sets we have bounded the complexity to decide
satisfiability for 2�-CNF ⊂ 3-Sat. The complexity for our algorithm mainly
depends on the runtime to solve parameterized 3-Hitting Set problems.

It would be interesting to study whether the idea to compute different mini-
mum backdoors of a Sat instance can be used to generate algorithms for further
NP-hard subclasses of Sat or MHF.

References

1. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Inf. Proc. Lett. 8, 121–123 (1979)

2. Brüggemann, T., Kern, W.: An improved deterministic local search algorithm for
3-sat. Theor. Comput. Sci. 329(1-3), 303–313 (2004)

3. del Val, A.: On 2-SAT and renamable horn. In: AAAI: 17th National Conference
on Artificial Intelligence, AAAI / MIT Press (2000)

4. Fernau, H.: A top-down approach to search-trees: Improved algorithmics for 3-
hitting set. Electronic Colloquium on Computational Complexity, TR04-073 (2004)

5. Franco, J., Swaminathan, R.: On good algorithms for determining unsatisfiability
of propositional formulas. Discrete Appl. Math. 130(2), 129–138 (2003)

6. Interian, Y.: Backdoor sets for random 3-sat. In: SAT (2003)

7. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Universität Tübingen
(October 2002)

8. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to horn
and binary clauses. In: SAT (2004)

9. Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. In: Biere,
A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 396–409. Springer, Heidel-
berg (2006)

10. Porschen, S., Speckenmeyer, E.: Worst Case Bounds for Some NP-Complete Mod-
ified Horn-SAT Problems. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, pp. 251–262. Springer, Heidelberg (2005)

11. Porschen, S., Speckenmeyer, E.: Satisfiability of mixed Horn formulas. Discrete
Applied Mathematics 155(11), 1408–1419 (2007)

A New Bound for an NP-Hard Subclass of 3-SAT 167

12. Ruan, Y., Kautz, H.A., Horvitz, E.: The backdoor key: A path to understanding
problem hardness. In: AAAI, pp. 124–130 (2004)

13. Schöning, U.: A probabilistic algorithm for k-sat and constraint satisfaction prob-
lems. In: Symposium on Foundations of Computer Science (1999)

14. Szeider, S.: Matched Formulas and Backdoor Sets. In: Marques-Silva, J., Sakallah,
K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 94–99. Springer, Heidelberg (2007)

15. Wahlström, M.: Algorithms, measures, and upper bounds for satisfiability and
related problems. PhD thesis, Linköping University, Dissertation no 1079 (2007)

16. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In:
IJCAI (2003)

Improvements to Hybrid Incremental
SAT Algorithms

Florian Letombe and Joao Marques-Silva

School of Electronics and Computer Science, University of Southampton, UK
{fl,jpms}@ecs.soton.ac.uk

Abstract. Boolean Satisfiability (SAT) solvers have been successfully
applied to a wide range of practical applications, including hardware
model checking, software model finding, equivalence checking, and plan-
ning, among many others. SAT solvers are also the building block of
more sophisticated decision procedures, including Satisfiability Modulo
Theory (SMT) solvers. The large number of applications of SAT yields
ever more challenging problem instances, and motivate the development
of more efficient algorithms. Recent work studied hybrid approaches for
SAT, which involves integrating incomplete and complete SAT solvers.
This paper proposes a number of improvements to hybrid SAT solvers.
Experimental results demonstrate that the proposed optimizations are
effective. The resulting algorithms in general perform better and, more
importantly, are significantly more robust.

1 Introduction

Motivated by significant improvements to Boolean Satisfiability (SAT) solvers
over the last decade, SAT has been applied to a large number of areas, including
model checking [2], model finding, planning, bioinformatics, and security, among
many others. The widespread use of SAT in so many areas generates a large
number of challenging problems instances, many of which modern SAT solvers
are not capable of solving. This in turn, motivates the development of ever
more effective SAT solvers. Nevertheless, recent years have seen a slowdown in
improvements made to SAT solvers. As a result, a number of alternatives has
been considered, one of which is the use of hybrid incremental SAT solvers [5],
that build on existing SAT algorithms that are effective in solving different
types of problems. The hybrid incremental SAT solver combines the power of
local search (LS) SAT solvers and of conflict-driven clause learning (CDCL)
SAT solvers. These more complex algorithms are expected to provide additional
performance improvements, in general not as the first choice SAT solver, but as
a reliable alternative SAT solver for more complex SAT instances, with the goal
of increased robustness in industrial settings.

This paper develops a number of optimizations to the original hybrid incre-
mental SAT algorithm. The proposed optimizations provide better performance
and, more importantly, significantly improve the robustness of SAT solvers. A
comprehensive experimental evaluation on industrial SAT problem instances pro-
vides evidence that the proposed optimized hybrid incremental SAT solver is
more robust than other existing SAT solvers.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 168–181, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improvements to Hybrid Incremental SAT Algorithms 169

The paper is organised as follows. The next section provides a necessarily
brief perspective on SAT solvers (CDCL and LS SAT solvers), as well as the
original hybrid incremental SAT solver [5]. Afterwards, section 3 presents several
optimizations to the basic hybrid incremental SAT algorithm. A comprehensive
experimental evaluation is summarized in section 4. Additional related work is
briefly surveyed in section 5. Finally, the paper concludes in section 6.

2 Boolean Satisfiability Solvers

This section provides a quick overview of Boolean Satisfiability solvers, including
Conflict-Driven Clause Learning (CDCL) SAT solvers, Local Search (LS) SAT
solvers, and the recent generation of hybrid incremental SAT solvers. CDCL SAT
solvers are widely used for solving large industrial problem instances. LS SAT
solvers are used in less applied contexts, but have also been used for developing
branching heuristics for complete solvers.

Most propositional decision procedures assume the input problem to be in
conjunctive normal form (CNF). Moreover, the SAT problem is defined as fol-
lows. A formula Σ in CNF is represented as a set of clauses, each clause is a set of
literals, and each literal is either a positive or negative propositional variable in
V . Moreover, a formula is interpreted as a conjunction of clauses, and a clause is
interpreted as a disjunction of literals. For example, (x1∨¬x2∨x3)∧(x4∨¬x5) is
represented as {{x1, ¬x2, x3}, {x4, ¬x5}}. The SAT problem consists in finding
an assignment (also called a model) for a subset of V satisfying each clause in a
CNF formula or proving that no such assignment exists.

2.1 CDCL and LS SAT Solvers

CDCL SAT solvers follow the organization of the DPLL algorithm [3], but inte-
grate a number of effective techniques, including clause learning [17], lazy data
structures [21] and search restarts [10]. CDCL SAT solvers have evolved from
the original solvers [17], which essentially proposed clause learning for SAT, to
the more recent CDCL SAT solvers, that also integrate lazy data structures and
search restarts [21,9,4]. A number of these concepts, used in the following sec-
tions, are briefly reviewed below (see [17,21,9,4] for additional detail). A CDCL
SAT solver is usually organized into three main engines [17,21,4]: the decision
engine, used for branching; the deduction engine, used for unit propagation and
identification of unsatisfied clauses (or conflicts); and the diagnosis engine, used
for clause learning. A decision level is associated with each assigned variable.
Decision levels measure the depth of the search tree in terms of the number
of variables the SAT algorithm has branched on. Variables can be assigned a
Boolean value, either resulting from a decision (or branching step), or as the
result of unit propagation [3]. Variables assigned as the result of unit propaga-
tion are said to be implied. With each implied variable the SAT algorithm also
associates a reason or antecedent, representing the clause that explains why the
variable is implied. The set of assigned variables and associated reasons implic-
itly represent the implication graph [17]. Finally, the process of clause learning

170 F. Letombe and J. Marques-Silva

consists of traversing the implication graph from a given unsatisfied clause using
the reasons of implied variable assignments, and recording unsatisfied literals as-
signed at decision levels less than the current one. The resulting set of recorded
literals is then used to create a new clause, which serves for backtracking non-
chronologically, and for preventing the same conflict from occurring again during
the search process.

Local search is a meta-heuristic for solving computationally hard optimization
problems. It can be used on problems that can be formulated as finding a solution
maximizing a criterion among a number of candidate solutions. Local search
algorithms move from solution to solution in the space of candidate solutions (the
search space) until a solution deemed optimal is found or a time bound is reached.
In SAT a candidate solution is a truth assignment, and the target is to maximize
the number of satisfied clauses by the assignment. In this case, the final solution
is of use only if it satisfies all clauses. Local search for solving SAT became
notorious with GSAT [25] and is often very effective at finding models of satisfiable
formulas [13]. LS starts by assigning random values to all the variables. If the
assignment satisfies all clauses, the algorithm stops and returns it. Otherwise,
the value of a variable is changed, and the process is repeated. The variable to
change is the one that minimizes the number of unsatisfied clauses in the new
assignment. If no assignment satisfying all clauses has been found after a fixed
number of iterations (called cutoff or number of flips), the algorithm starts again
with a new random assignment. The algorithm terminates either when a model
of the formula has been found or when the number of restarts exceeds a fixed
number.

Selman et al. have also proposed improvements to GSAT, including WalkSAT,
whose main differences to GSAT are the addition of random noise, and the step
of selecting variables to be flipped from unsatisfied clauses [24]. Many other
new heuristics have been proposed, including among others HSAT [8], Novelty
and R-Novelty [19], Novelty+ and R-Novelty+, Adaptive Novelty+ [12], and
g2wsat (including adaptg2wsat+) [15]. Local search SAT solvers are incomplete,
and so cannot prove unsatisfiability. It should be noted that recent work has
shown how to use local search for proving unsatisfiability [22], but then the
resulting algorithm can no longer prove satisfiability.

2.2 Hybrid Incremental SAT Solvers: The hbisat Algorithm

Recent work has addressed hybrid solutions for SAT, where both LS and CDCL
SAT solvers cooperate to solve a target problem instance. This section overviews
hbisat (for HyBrid Incremental SAT solver) [5], given its promising experimen-
tal results. The motivation for the hbisat algorithm is to combine the power
of LS SAT solvers for finding solutions of satisfiable formulas and the power of
CDCL SAT solvers for proving formulas to be unsatisfiable. Albeit past work
focused on using assignments suggested by LS solvers to help CDCL solvers se-
lecting decision variables and assignments, hbisat proposed the opposite: partial
models computed by the CDCL solver serve to initialize the LS solver truth as-
signment. Clauses not satisfied by the LS solver are sent to the CDCL solver,

Improvements to Hybrid Incremental SAT Algorithms 171

trying to either identify an unsatisfiable sub-formula in the clauses sent to the
CDCL SAT solver, or satisfying the clauses in the LS solver. Preliminary exper-
imental results suggest this approach can be effective [5]. The hbisat procedure
is summarized in the not underlined part of algorithm 1.1. Note that ΣΓ is
initially empty, and α is first randomly initialized.

A proof that hbisat algorithm is sound and complete can be found in [5].
Clearly, if the LS procedure LSSolve can find a truth assignment, then the ini-
tial formula is satisfiable. Otherwise, some clauses, chosen from those unsatisfied
(or broken) during local search, are sent to the CDCL solver. Besides these, a
few additional clauses can also be sent to the CDCL solver, subject to a number
of criteria outlined below. In the algorithm description, the clauses sent to the
CDCL solver are denoted ΣCriteria

Λ , and computed with getClausesToSend

procedure. If the CDCLSolve procedure concludes that the sub-formula is un-
satisfiable, then the original problem instance is also unsatisfiable, and the algo-
rithm terminates. Alternatively, if the CDCLSolve procedure concludes that
the sub-formula is satisfiable, the computed assignment, obtained with proce-
dure getModel, serves to initialize the next iteration of the LS solver. In the
hbisat algorithm the following criteria are used to decide which clauses are sent
to the CDCL solver [5].

1. Unsatisfied clauses, i.e. clauses that the LS solver was not able to satisfy;
2. Clauses containing the most flipped variable during local search;
3. Clauses with two or more of its literals having opposite polarities to literals

in broken clauses.

Note that the last two criteria are empirically only applied after the first four
calls to function isSatisfiable. Moreover, all remaining clauses are sent to the
CDCL solver if one of the two following additional criteria is satisfied [6]:

1. Less than 1% or less than 50 clauses remain to be sent to the CDCL solver;
2. The number of learnt clauses in the CDCL solver is greater than 20% of the

total number of clauses.

For each execution of hbisat algorithm, the operation ΣΓ ← ΣΓ ∪ ΣCriteria
Λ

denotes that the clauses identified by the above criteria and added to the clauses
in the CDCL SAT solver. Finally, the algorithm allows for three hundred itera-
tions, i.e. recursive calls to procedure isSatisfiable. Afterwards, all remaining
clauses are sent to the CDCL SAT solver to solve the problem.

The hbisat algorithm is illustrated in figure 1 (top). A set of clauses is asso-
ciated with each solver, and the solid black squared portions represent clauses
identified by the above criteria. These are the clauses sent to the CDCL solver.

3 New Hybrid Incremental SAT Algorithms

This section proposes several optimizations to the hbisat algorithm. All opti-
mizations are included in a new hybrid incremental SAT solver, hinotos1, that
can be configured to also implement the original hbisat algorithm.
1 hinotos denotes Hybrid Incremental SAT for NOTOS, a LTL model checker.

172 F. Letombe and J. Marques-Silva

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�������
�������

�������
�������
�������
�������

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

���������
���������
���������
���������

���������
���������
���������
���������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

����������
����������
����������
����������

����������
����������
����������
����������

�������
�������
�������
�������

�������
�������
�������
�������

������������
������������
������������
������������

������������
������������
������������
������������

���������
���������
���������
���������

���������
���������
���������
���������

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

��������
��������
��������
��������

��������
��������
��������
��������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

��������
��������
��������
��������

��������
��������
��������
��������

�����
�����
�����
�����

�����
�����
�����
�����

ΣCriteria
Λ

CDCL SAT SolverLS SAT Solver

α

�������
�������
�������
�������

�������
�������
�������
�������

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

���������
���������
���������
���������

���������
���������
���������
���������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

����������
����������
����������
����������

����������
����������
����������
����������

�������
�������
�������
�������

�������
�������
�������
�������

������������
������������
������������
������������

������������
������������
������������
������������

���������
���������
���������
���������

���������
���������
���������
���������

��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������

��������
��������
��������
��������

��������
��������
��������
��������

����������
����������
����������
����������

����������
����������
����������
����������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

������
������
������
������

α lifted

CDCL SAT SolverLS SAT Solver

ΣCriteria
Λ

Fig. 1. Solver interaction in hbisat (top) and in hinotos (bottom)

3.1 Variable Lifting and Blocking Clauses

Modern SAT solvers identify complete assignments. The main reason for this is
motivated by the use of lazy data structures, which prevent having knowledge of
clause state [21]. Most often, a reasonable number of branching decision made
by SAT solvers are irrelevant for satisfying all clauses of a problem instance.
Variable lifting is the process of removing literals or, equivalently, variables from
a satisfying assignment such that for each valuation of the lifted variables, the
formula is still satisfied [23].

Example 1 (Variable lifting). Define V = {x1, x2, x3, x4, x5, x6} and the follow-
ing propositional formula Σ over V :

(x1 ∨¬x2 ∨x6)∧(x1 ∨¬x2 ∨¬x4)∧(x1 ∨¬x2 ∨x4)∧(x3 ∨x4 ∨x5)∧(x1 ∨x2 ∨x6).

Whereas the lifted assignment {x1, x3} is enough to satisfy the formula, a CDCL
solver will identify a complete assignment, e.g. {x1, ¬x2, x3, ¬x4, ¬x5, x6}. Σ is
satisfied, independently of assignments to the other variables {x2, x4, x5, x6}.

In hbisat complete assignments are sent from the CDCL SAT solver to the
LS SAT solver at each step. This can be ineffective, since the LS solver will be
unable to identify the assignments that are relevant from the ones that are not
relevant. As a result, variable lifting can be used effectively in hybrid incremental
algorithms as shown in the next section. For the experimental results presented in
this paper, the variable lifting procedure consists of simply scanning the watched
literals in every clause and selecting one of the watched literals as the one that
satisfies the clause. As a result, variables not used for satisfying clauses can be
lifted.

Another effective technique used in model checking is the use of blocking
clauses [20] for quantification (or equivalently for model enumeration). Blocking
clauses prevent previously computed satisfying partial assignments from being
recomputed again during the search, and are created after variable lifting is

Improvements to Hybrid Incremental SAT Algorithms 173

applied. In hybrid incremental SAT algorithms, the use of blocking clauses guar-
antees that no part of the search tree is visited more than once.

3.2 Optimized Interaction between the LS and CDCL Solvers

A detailed analysis of the original hbisat algorithm reveals that in several sit-
uations the same search space can be re-visited, and that the number of times
this can happen can be arbitrarily large, up to the limit imposed by the number
of times the LS solver is called. The LS solver can repeatedly re-visit the same
complete assignments, independently of the information provided by the CDCL
solver. In contrast, the CDCL solver may have to redo parts of the search space,
motivated by the fact that the LS solver may force the CDCL solver to reconsider
branching decisions already made. These are the main sources of inefficiency in
the hbisat algorithm.

One optimization that addresses these two problems is to guarantee that the
clauses in the two solvers are distinct. Each clause sent by the LS solver to the
CDCL solver is removed from the LS solver. Hence, at any stage, the original
clauses are divided into two sets, one associated with the LS solver and the other
with the CDCL solver, and these two sets form a partition of the original set
of clauses. As a result, the overhead of the LS solver is effectively reduced at
each iteration of the algorithm due to the reduced number of clauses. Moreover,
assignments communicated by the CDCL solver must be respected by the LS
solver. As a result, variables assigned by the CDCL solver are said to be tabu
to the LS solver, and will be untouched by the LS solver. Clearly, this idea can
be effective only if variable lifting is applied; otherwise the CDCL solver would
assign all variables, and the LS solver would be unable to flip any variable.

Figure 1 (bottom) illustrates how hinotos implements the interaction be-
tween the LS and the CDCL solvers. The clauses sent to the CDCL solver, and
removed from the LS solver, are shown in solid black squares.

3.3 Additional Criteria for Moving Clauses

Besides the optimizations outlined in the previous sections, two additional cri-
teria are used for moving clauses to the CDCL SAT solver. The first criterion
ensures that a minimal amount of clauses is sent into the CDCL solver. In the
original algorithm [5], at least one clause, picked randomly, was ensured to be
sent at each step of the algorithm. Since 1% of clauses (or 50 clauses) are con-
sidered to be “simple” enough for the CDCL solver, this same amount of clauses
is also considered each time clauses are moved to the CDCL solver. As a result,
instead of the 300 iterations proposed in the original hbisat algorithm, the new
criterion implies that at most 100 iterations are executed. The second criterion
for moving clauses (from the LS solver to the CDCL solver) is a natural con-
sequence of the organization of the hinotos algorithms. If all variables become
tabu in the LS solver, then the LS solver becomes irrelevant, and all clauses are
sent to the CDCL solver.

174 F. Letombe and J. Marques-Silva

Algorithm 1.1. hbisat and hinotos

function isSatisfiable

Input: ΣΛ and ΣΓ two CNF formulas, with Σ = ΣΛ ∪ ΣΓ and ΣΛ ∩ ΣΓ = ∅;
α an assignment.

Output: True if Σ is satisfiable, False otherwise.

begin
Tabu(ΣΛ, α); /* New tabu variables to LS solver */
if LSSolve(ΣΛ, α) = SAT then return True; /* Solution found with LS */
ΣCriteria

Λ ← getClausesToSend(ΣΛ);
ΣΓ ← ΣΓ ∪ ΣCriteria

Λ ;
ΣΛ ← ΣΛ � ΣCriteria

Λ ; /* Sent clauses removed from LS solver database */
if CDCLSolve(ΣΓ) = SAT then

if ΣΓ = Σ then return True;
/* CDCL solver has found a model to be used by LS solver */
α ← getLiftedModel(ΣΓ);
return isSatisfiable(ΣΛ, ΣΓ , α);

else return False; /* CDCL solver proved sub-formula to be unsatisfiable */
end

3.4 The hinotos Algorithm

The hinotos algorithm implements the original hbisat algorithm (shown in Al-
gorithm 1.1 without the underlined parts) as well as the optimizations proposed
in the previous sections, and is shown in Algorithm 1.1. Again, ΣΓ is initially
empty, and α is first randomly initialized. The proposed optimizations do not
affect soundness or completeness. The soundness and completeness of hbisat [5]
allow establishing the following result.

Theorem 1. hinotos is complete and sound for the satisfiability problem.

4 Experimental Evaluation

4.1 Methodology

The empirical results presented in this section were obtained on servers run-
ning Red Hat Enterprise Linux WS release 4, with Intel Xeon 5160 Dual Core
3GHz processors and 4GB of RAM. For all experiments, the CPU time limit per
instance was set to 1500 seconds.

hinotos2 is implemented in C++ and can be configured to implement or
not the optimizations proposed in Section 3. Hence, one possible configura-
tion for hinotos corresponds to the actual hbisat algorithm [5]. However, the
LS and the CDCL solvers used in hinotos are more efficient than the ones
used in hbisat [5]. In hinotos the LS solver is adaptg2wsat+ [15] and the
CDCL solver is Minisat2, whereas in the original hbisat the LS solver is

2 hinotos complete documentation and binaries are publicly available on
http://satstore.ecs.soton.ac.uk/software/hinotos.

http://satstore.ecs.soton.ac.uk/software/hinotos

Improvements to Hybrid Incremental SAT Algorithms 175

WalkSAT2004.11.15 [24] and the CDCL solver is Minisat1.14 [4]). Observe
that other alternative CDCL and LS solvers could be considered for hinotos.

Moreover, hinotos can be configured to run the following configurations (the
representative letter for each option is highlighted with parenthesis):

(i)nverse order pure incremental: Represents a purely incremental (and not
hybrid) SAT solver. No LS solver is used in this version. Clauses are always
sent in the same order, inverse from the order of appearance in the formula,
according to the first criterion described in section 3.3;

(h)bisat implementation: Represents the original hbisat algorithm as de-
scribed in [5] and presented in section 2.2;

(m)inimum amount hbisat-like: Implements option h, and in addition inte-
grates the criterion for moving clauses described in section 3.3;

hi(n)otos method: Implements option h and integrates the optimizations pro-
posed in section 3.2;

(r)emoving+minimum amount hinotos-like: Corresponds to the combina-
tion of the two previous options (i.e. m and n).

These five configurations for the hinotos solver were compared against Minisat
versions 1.14 and 2. The main purpose of the first configuration was to evalu-
ate the usefulness of the LS SAT solver for identifying sets of clauses to move
to the CDCL SAT solvers. The second configuration allowed benchmarking the
implementation of hbisat in hinotos, thus confirming similar performance on
instances for which results for hbisat are known. Finally, the last three config-
urations evaluate whether the proposed optimizations are effective in practice.

4.2 Benchmarks

With the objective of conducting a comprehensive evaluation of the different
algorithms, a total of 602 problem instances were selected from the following
classes of instances:

IBM Formal Verification Benchmarks. Problem instances from Bounded
Model Checking considering different numbers of computation steps [29];

Pimag Problem instances from pipelined-machine-verification problems [16].
All Pimag instances are unsatisfiable;

Formal Verification of Processors (fvp). Formal verification of buggy vari-
ants of an out-of-order super-scalar processor [27].

Calysto (csv). Benchmarks generated by the Calysto static checker [1] for
software verification.

The results presented in this section extend and complete the preliminary
experimental evaluation of [5], by considering 602 instances instead of the 24
studied in [5]. In order to reduce bias from too many instances from any of the
classes considered, for classes ibm and csv only a subset of the available instances
was considered, which was chosen arbitrarily. Nevertheless, for each of these
classes a large number of instances was evaluated (respectively 198 and 152).

176 F. Letombe and J. Marques-Silva

Table 1. Number of solved instances (and approximate average CPU time in seconds)
for each configuration. CPU timeout is fixed to 1500 seconds.

#Solved(Avg Time)

CNF
Minisat hinotos

#s/#t
1.14 2 si sh sm sn sr

c* 95(135) 98(164) 98(194) 97(189) 98(202) 96(188) 96(155) 102/126
f* 20(158) 21(298) 19(231) 18(161) 20(255) 21(293) 19(232) 21/42
g* 42(139) 41(144) 41(120) 38(150) 42(186) 41(199) 41(144) 42/42
pmg 157(139) 160(177) 158(179) 153(176) 160(205) 158(205) 156(161) 165/210

fvps 11(157) 12(120) 10(83) 12(136) 12(150) 10(135) 11(203) 14/20
fvpu 19(98) 18(39) 19(83) 18(75) 19(100) 18(44) 18(88) 20/22
fvp 30(119) 30(72) 29(83) 30(100) 31(119) 28(76) 29(131) 34/42

ibms 81(150) 84(192) 87(185) 78(234) 85(198) 83(222) 86(252) 93/93
ibmu 86(97) 85(109) 87(112) 83(176) 88(138) 85(164) 88(170) 88/88
ibm 167(97) 169(108) 174(112) 161(176) 173(137) 168(164) 174(169) 182/198

csvs 92(142) 95(127) 98(144) 117(197) 99(133) 121(134) 116(201) 129/129
csvu 8(85) 8(101) 8(87) 8(116) 8(115) 7(31) 9(267) 9/9
csv 100(138) 103(125) 106(140) 125(192) 107(132) 128(128) 125(206) 138/152

Alls 184(146) 191(155) 195(159) 207(207) 196(162) 214(168) 213(222) 237/242
Allu 270(105) 271(118) 272(125) 262(150) 275(155) 268(158) 271(136) 282/329
All 454(122) 462(133) 467(139) 469(175) 471(158) 482(163) 484(174) 519/602

4.3 Results

Table 1 summarizes the results obtained by all configurations of hinotos and
the two versions of Minisat. Each configuration of hinotos is denoted by sX,
where X is one of the possible configurations: i, h, m, n, and r. The first column
contains the name of the class CNF formulas, where rows c*, f*, g* are problems
in the Pimag category, rows fvps and fvpu (respectively ibms and ibmu, csvs and
csvu) show the results on satisfiable and unsatisfiable instances of fvp (respec-
tively ibm, csv) categories. The last column shows for each class of instances
the total number of solved instances (by any solver) and the total number of
instances. For each combination of tool configuration and instance category, the
results shown are the number of solved instances followed (in parenthesis) by
the average running time on solved instances. Analysis of table 1 allows con-
cluding that no configuration, for either hinotos or Minisat, seems to give the
best performance in terms of average run time for solved instances. Compared to
Minisat, the performance improvements of hbisat are not clear, particularly for
the first three classes of instances. For all classes of instances, the implementa-
tion of hbisat solves 7 more instances than Minisat2. Regarding the optimiza-
tions proposed in this paper, there are reasonable gains in terms of robustness,
i.e. the number of instances solved. Indeed, configurations sn and sr solve sig-
nificantly more instances than any other configuration, either for Minisat or
for hinotos. A more detailed analysis for each class of problem instances indi-
cates that Minisat and configuration sm perform better for the Pimag and fvp

Improvements to Hybrid Incremental SAT Algorithms 177

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

H
IN

sh

MS114

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

H
IN

sh

MS2

Fig. 2. Scatter plot: hinotos-sh vs. Minisat1.14 (left hand side) and Minisat2 (right
hand side)

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

H
IN

sh

HINsm

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

H
IN

sh

HINsn

Fig. 3. Scatter plot: hinotos-sh vs. hinotos-sm (left hand side) and hinotos-sn (right
hand side)

instances, whereas configurations sn and sr perform significantly better for the
ibm and csv instances.

Figures 2 to 4 show scatter plots comparing different tool configurations.
The names used are MS114, MS2, HINsh, HINsm, HINsn and HINsr, respec-
tively for Minisat1.14, Minisat2, hinotos-sh, hinotos-sm, hinotos-sn and
hinotos-sr. All run times are in seconds. Given the large number of config-
urations, only a subset of possible scatter plots is shown. Figure 2 evaluates
hinotos-sh against Minisat versions 1.14 and 2. Albeit hinotos-sh aborts
fewer instances than either version of Minisat, the plots indicate that this con-
figuration is slower than either version of Minisat for most problem instances.
Figure 3 shows the results for hinotos-sh against hinotos-sm and hinotos-
-sn. As can be concluded, for most instances, the run times for hinotos-sm and
hinotos-sn are smaller than for hinotos-sh. This indicates that the optimiza-
tions proposed in this paper are in general effective, allowing smaller run times,
besides being more robust. Finally, figure 4 shows scatter plots of hinotos-sr
against hinotos-sn and Minisat2. As can be concluded, hinotos-sr in gen-
eral has smaller run times than hinotos-sn (which has smaller run times than
hinotos-sh), besides being more robust. The scatter plot on the right shows that

178 F. Letombe and J. Marques-Silva

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

H
IN

sr

HINsn

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

H
IN

sr

MS2

Fig. 4. Scatter plot: hinotos-sr vs. hinotos-sn (left hand side) and Minisat2 (right
hand side)

for most instances Minisat2 has smaller run times than hinotos-sr. However,
for a significant number of instances hinotos-sr has smaller run times than
Minisat2. The plot also shows that several instances that Minisat2 aborts, are
solved by hinotos-sr in run times that do not exceed 100 seconds.

4.4 Analysis

The experimental results allow drawing a few conclusions. Existing versions of
Minisat are less robust than most of the available configurations of hinotos.
Out of 602 instances, the best version of Minisat (i.e. version 2) solves 462
instances. The more robust algorithm of hinotos solves 484 instances (almost
5% more instances solved than Minisat2). This result is quite significant in
an industrial setting, and suggests that some of the configurations of hinotos
should be considered for some classes of instances. On the other hand, a detailed
analysis of the run times also suggests that for most instances, Minisat2 has
the smallest run time, and so should be the preferred solver. As a result, the
experimental results given in this section suggest that an effective approach
would be the following:

– Run Minisat2 with a small CPU time limit, e.g. 100 seconds.
– If Minisat2 does not solve the instance in the allowed CPU time limit, run

one of the hinotos configurations (e.g. hinotos-sr) with a larger CPU time
limit (e.g. 900 seconds).

The proposed configuration will be as robust as hinotos-sr and, for easier
instances, run as effectively as Minisat2.

Moreover, from the results one might consider running the two solvers in
parallel, without interaction between them. We conducted this experiment, and
the results indicate that the LS solver is hardly ever useful. Moreover, the results
show that running the two solvers in parallel is essentially equivalent to the
original CDCL SAT solver. Finally, one should note that the algorithms proposed
in hinotos complement the original SAT solvers, Minisat2 and Minisat1.14.
Together, Minisat2, Minisat1.14 and hinotos can solve a significantly larger

Improvements to Hybrid Incremental SAT Algorithms 179

number of instances than any solver alone: 519 for all solvers compared with
484 for the best standalone solver, hinotos with configuration sr. These results
suggest using a portfolio of SAT solvers similar to SATzilla [28] in industrial
problems instances.

5 Related Work

Besides hbisat [5], other hybrid approaches have been proposed for SAT. A
few are analyzed next. First, Mazure at al. [18] propose an approach essen-
tially opposite to the one used in hbisat and hinotos. In this approach, a LS
SAT solver is used to help a CDCL solver select the next decision variable. The
motivation is that the use of LS SAT solver to guide the branching strategy
can provide significant improvements. However, existing results are not promis-
ing [7]. Exploiting variable dependencies has been shown useful in local search
algorithms for SAT. The approach of [11] proposes to extend the use of such
dependencies by hybridizing WalkSAT, and the DPLL procedure Satz. At each
node reached in the DPLL search tree to a fixed depth, the literal implication
graph is constructed. Its strongly connected components are viewed as equiva-
lency classes. Each one is substituted by a unique representative literal to reduce
the constructed graph and the input formula. Finally, the implication dependen-
cies are closed under transitivity. The resulting implications and equivalencies
are exploited by WalkSAT at each node of the DPLL tree. The resulting algo-
rithm [11] is an incomplete LS procedure that helps another LS SAT solver
WalkSAT making better variable selections. Again, the approach, albeit efficient
for some classes of satisfiable problem instances, is fundamentally different from
hbisat and hinotos and unusable for unsatisfiable instances. Finally, Lardeux
at al. [14] propose the GASAT algorithm, based on evolutionary algorithms and
tabu search for SAT. The GASAT algorithm consists of a recombination stage
based on a specific crossover and a tabu search stage. GASAT includes a crossover
operator which relies on the structure of the clauses and a tabu search with spe-
cific mechanisms. The resulting algorithm is incomplete, and so not applicable
to unsatisfiable problem instances.

6 Conclusions and Future Work

Hybrid incremental SAT solvers have recently been proposed as a possible ap-
proach for improving performance of CDCL SAT solvers [5]. Unfortunately, when
an extended set of problem instances is considered, our experience is that the
original hbisat algorithm is not effective when compared with different versions
of Minisat. From the results, the conclusion is that for hbisat the CPU times
increase, and the reduction in the number of aborted instances is negligible.

Motivated by these less positive results, this paper outlines a number of key
optimizations to the original hybrid incremental SAT solver, hbisat. The exper-
imental results, obtained on a wide range of problem instances, indicate that the
proposed optimizations provide relevant performance improvements in terms of

180 F. Letombe and J. Marques-Silva

problem instances that can be solved, either with respect to Minisat (version 2)
or hbisat. In terms of aborted instances, the best configuration of hinotos
is significantly more effective than either version of Minisat, solving 5% more
instances. In an industrial setting this is significant.

Despite the promising results, the experimental evaluation also suggests that
no solver is the best option individually, and that three of the hinotos config-
urations should be considered as an alternative to Minisat2 for some classes of
problem instances. The analysis of the results also indicates that Minisat2 usu-
ally performs better when a solution can be found in a reasonably small amount
of time (e.g. 100 seconds). Hence, one strategy would be to consider running
Minisat2 as the first option and, in case no solution is found, considering one of
the hinotos configurations. Given the experimental results, the most promising
configurations are hinotos-sr, hinotos-sn, and hinotos-sm, all of which in-
clude improvements proposed in this paper. A fairly orthogonal approach, that
for some classes of instances yields promising results and so should be considered,
is the hinotos-si configuration, which is also proposed in this paper.

Future work will address portfolios of configurations, based on the ideas used
in SATzilla for different SAT algorithms [28]. Moreover, further tuning of the
algorithm’s components should be considered, e.g. improve variable lifting pro-
cedure. Finally, it might be interesting to compare results with different CDCL
solvers and different LS algorithms (e.g. based on dynamic clause weighting like
SAPS, PAWS or DLM [26]). Another line of work is to automatically select some
of the heuristic numbers used by the hinotos algorithm.

Acknowledgement. This work is partially supported by EU grants IST/033709
and ICT/217069, and by EPSRC grant EP/E012973/1. The reviewers provided
insightful comments to an earlier version of the paper.

References

1. Babić, D., Hu, A.J.: Structural Abstraction of Software Verification Conditions.
Computer-Aided Verification, 371–383 (2007)

2. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
Tools and Algorithms for the Construction and Analysis of Systems, 193–207 (1999)

3. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7, 201–215 (1960)

4. Een, N., Sörensson, N.: An extensible SAT solver. In: International Conference on
Theory and Applications of Satisfiability Testing, pp. 502–518 (2003)

5. Fang, L., Hsiao, M.S.: A new hybrid solution to boost SAT solver performance. In:
Design, Automation and Testing in Europe Conference, pp. 1307–1313 (2007)

6. Fang, L., Hsiao, M.S.: Private communications (2007)
7. Ferris, B., Froehlich, J.: WalkSAT as an Informed Heuristic to DPLL in SAT

Solving. Technical report, CSE 573: Artificial Intelligence (2004)
8. Gent, I.P., Walsh, T.: Towards an understanding of hill-climbing procedures for

SAT. In: National Conference on Artificial Intelligence, pp. 28–33 (1993)
9. Goldberg, E., Novikov, Y.: BerkMin: a fast and robust SAT-solver. In: Design,

Automation and Testing in Europe Conference, pp. 142–149 (2002)

Improvements to Hybrid Incremental SAT Algorithms 181

10. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through ran-
domization. In: National Conference on Artificial Intelligence, pp. 431–437 (1998)

11. Habet, D., Li, C.M., Devendeville, L., Vasquez, M.: A hybrid approach for SAT. In:
International Conference on Principles and Practice of Constraint Programming,
pp. 172–184 (2002)

12. Hoos, H.: An adaptive noise mechanism for WalkSAT. In: National Conference on
Artificial Intelligence, pp. 655–660 (2002)

13. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann, San Francisco (2004)

14. Lardeux, F., Saubion, F., Hao, J.-K.: GASAT: A genetic local search algorithm for
the satisfiability problem. Evolutionary Computation 14(2), 223–253 (2006)

15. Li, C.M., Huang, W.Q., Zhang, H.: Combining adaptive noise and look-ahead in
local search for SAT. In: International Conference on Theory and Applications of
Satisfiability Testing, pp. 121–133 (2007)

16. Manolios, P., Srinivasan, S.K.: A parameterized benchmark suite of hard pipelined-
machine-verification problems. In: Advanced Research Working Conference on Cor-
rect Hardware Design and Verification Methods, pp. 363–366 (2005)

17. Marques-Silva, J., Sakallah, K.: GRASP: A new search algorithm for satisfiability.
In: International Conference on Computer-Aided Design, pp. 220–227 (1996)

18. Mazure, B., Sais, L., Grégoire, E.: Boosting complete techniques thanks to local
search methods. Annals of Mathematics and Artificial Intelligence 22(3-4), 319–331
(1998)

19. McAllester, D., Selman, B., Kautz, H.: Evidence of invariants in local search. In:
National Conference on Artificial Intelligence, pp. 321–326 (1997)

20. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking.
Computer-Aided Verification, 250–264 (2002)

21. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Engineering an effi-
cient SAT solver. In: Design Automation Conference, pp. 530–535 (2001)

22. Prestwich, S., Lynce, I.: Local search for unsatisfiability. In: International Confer-
ence on Theory and Applications of Satisfiability Testing, pp. 283–296 (2006)

23. Ravi, K., Somenzi, F.: Minimal assignments for bounded model checking. Tools
and Algorithms for the Construction and Analysis of Systems, 31–45 (2004)

24. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In:
National Conference on Artificial Intelligence, pp. 337–343 (1994)

25. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability
problems. In: National Conference on Artificial Intelligence, pp. 440–446 (1992)

26. Thornton, J., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus multiplicative
clause weighting for SAT. In: National Conference on Artificial Intelligence, pp.
191–196 (2004)

27. Velev, M.N.: Using rewriting rules and positive equality to formally verify wide-
issue out-of-order microprocessors with a reorder buffer. In: Design, Automation
and Testing in Europe Conference, pp. 28–35 (2002)

28. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla-07: The design and analy-
sis of an algorithm portfolio for SAT. In: International Conference on Principles
and Practice of Constraint Programming, pp. 712–727 (2007)

29. Zarpas, E.: Benchmarking SAT solvers for bounded model checking. In: Interna-
tional Conference on Theory and Applications of Satisfiability Testing, pp. 340–354
(2005)

Searching for Autarkies to Trim Unsatisfiable

Clause Sets

Mark Liffiton and Karem Sakallah

Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor 48109-2121

{liffiton,karem}@eecs.umich.edu

Abstract. An autarky is a partial assignment to the variables of a
Boolean CNF formula that satisfies every clause containing an assigned
variable. For an unsatisfiable formula, an autarky provides information
about those clauses that are essentially independent from the infeasibil-
ity; clauses satisfied by an autarky are not contained in any minimal un-
satisfiable subset (MUS) or minimal correction subset (MCS) of clauses.
This suggests a preprocessing step of detecting autarkies and trimming
such independent clauses from an instance prior to running an algorithm
for finding MUSes or MCSes. With little existing work on algorithms for
finding autarkies or experimental evaluations thereof, there is room for
further research in this area. Here, we present a novel algorithm that
searches for autarkies directly using a standard satisfiability solver. We
investigate the autarkies of several industrial benchmark suites, and ex-
perimental results show that our algorithm compares favorably to an
existing approach for discovering autarkies. Finally, we explore the po-
tential of trimming autarkies in MCS- or MUS-extraction flows.

1 Introduction

Analysis of the infeasibility of unsatisfiable Boolean satisfiability problems has
recently received increasing attention, though still little when compared to the
efforts directed toward solutions to the problem of deciding the satisfiability of
a Boolean formula (SAT). In many cases, the answer returned by a SAT solver
given an infeasible formula, “UNSAT,” is not sufficient information, and tools
for further analysis are necessary.

Two such tools are the related concepts of minimal unsatisfiable subsets
(MUSes) and minimal correction subsets (MCSes). Both MUSes and MCSes
are irreducible portions of a formula that contain information relevant to un-
derstanding and correcting the formula’s infeasibility while ignoring unrelated
information. Several algorithms have been developed for computing MUSes and
MCSes, including algorithms for finding a single, often approximate MUS (e.g.,
[6,9,16,21]); finding a smallest MUS (SMUS, also called a minimum unsatisfiable
core) [14]; and finding both all MCSes and all MUSes [13]. The work in [13], a
focus of this paper, has found applications in finding all MCSes for circuit error
diagnosis [17] and all MUSes as part of an abstraction refinement flow [1].

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 182–195, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Searching for Autarkies to Trim Unsatisfiable Clause Sets 183

Autarkies provide another tool for looking into the structure of an unsatisfi-
able formula; they essentially provide information about portions of the formula
that can be considered independent of the infeasibility. Autarkies have recently
been linked to MUSes in [12], where Kullmann, et al., develop a classification
of clauses in Boolean formulas based on their involvement in MUSes, autarkies,
and resolution refutations. They use CAMUS (“Compute All Minimal Unsatis-
fiable Subsets”) [13], a tool for computing all MUSes of a Boolean formula, and
the only existing full approach for finding autarkies of which we are aware (first
introduced in [11]) to investigate the complete set of MUSes and the autarkies,
respectively, of a set of industrial benchmarks. They do not report runtime re-
sults, and we are not aware of any other experimental research on algorithms for
finding the largest, or maximum, autarky of an instance.

In [12], the authors suggest two directions of research that we have undertaken
in this paper:

1. An algorithm that directly searches for autarkies could be developed and
compared to their algorithm, which makes use of a “duality” between au-
tarkies and resolution refutations to find autarkies indirectly.

2. As clauses involved in autarkies are never contained in any MUS, such clauses
can be removed as a preprocessing step for computing MUSes of a formula.
(This also holds for MCSes, as they are comprised of the same clauses as
MUSes.)

We have developed a novel algorithm, named Sifter, that directly performs
a complete search for maximum autarkies, and we compare it to the existing
approach based on resolution proofs. We also investigate the use of this algorithm
as a preprocessing step to trim autarkies from unsatisfiable instances before
searching for MUSes or MCSes.

This paper is organized as follows. Section 2 lays out formal definitions and
concepts used throughout the paper. We review previous work related to au-
tarkies in Section 3, and in Section 4, we introduce our new algorithm for finding
maximum autarkies, Sifter. Experimental results comparing Sifter to the previ-
ous approach and investigating its use as a preprocessing step for two algorithms
that operate on unsatisfiable formulas are shown and discussed in Section 5. Fi-
nally, Section 6 concludes with a brief overview of the paper and potential future
work.

2 Preliminaries

Boolean Satisfiability and Conjunctive Normal Form. Formally, a Boolean for-
mula C in conjunctive normal form (CNF) is defined as follows:

C =
∧

i=1...n

Ci

Ci =
∨

j=1...ki

aij

184 M. Liffiton and K. Sakallah

where each literal aij is either a positive or negative instance of some Boolean
variable (e.g., x3 or ¬x3, where the domain of xj is {0, 1}), the value ki is the
number of literals in the clause Ci (a disjunction of literals), and n is the number
of clauses in the formula. In more general terms, each clause is a constraint of
the constraint system C. A CNF instance is said to be satisfiable (SAT) if there
exists some assignment to its variables that makes the formula evaluate to 1
or TRUE; otherwise, we call it unsatisfiable (UNSAT). A SAT solver evaluates
the satisfiability of a given CNF formula and returns a satisfying assignment
of its variables if it is satisfiable, and some produce resolution refutations (or
resolution proofs) for unsatisfiable instances, directed acyclic graphs containing
the resolution steps used to prove unsatisfiability.

The following unsatisfiable CNF instance C will be used as an example in this
paper. We will refer to individual clauses as Ci, where i refers to the position of
the clause in the formula (e.g., C3 = (¬x1 ∨ ¬x2)).

C = (x1)(¬x1 ∨ x2)(¬x1 ∨ ¬x2)(¬x2 ∨ x3)(x4 ∨ x5)(¬x4 ∨ ¬x5)

AtMost Constraints. Our algorithm employs AtMost constraints, a type of count-
ing constraint that can be constructed from Boolean CNF constraints or added to
a SAT solver with few modifications. Given a set of n literals {l1, l2, . . . , ln} and
a positive integer k, s.t. k < n, an AtMost constraint is defined as

AtMost({l1, l2, . . . , ln}, k) ≡
n

∑

i=1

val(li) ≤ k

where val(li) is 1 if li is assigned TRUE and 0 otherwise. This constraint places
an upper bound on the number of literals in the set assigned TRUE.

This constraint can be encoded into Boolean CNF using encodings such as in
[18], or it can be implemented efficiently in a SAT solver that employs watched
variables (such as MiniSAT [7], which we use in this work). An implementation
of an AtMost constraint can watch the assignments to the variables in the con-
straint and immediately propagate the negation of each remaining literal once k
of them have been assigned TRUE. On a closed SAT solver that does not allow
for a built-in implementation of the AtMost constraint, the CNF encoding can
still be used.

Minimal Unsatisfiable Subsets / Minimal Correction Subsets. The definitions of
Minimal Unsatisfiable Subsets (MUSes) and Minimal Correction Subsets (MCSes)
of clauses are important to this work, as we are looking at the use of autarkies
in preprocessing steps for algorithms that find MUSes and MCSes. An MUS is a
subset of the clauses of an unsatisfiable formula that is unsatisfiable and cannot be
made smaller without becoming satisfiable. An MCS is a subset of the clauses of
an unsatisfiable formula whose removal from that formula results in a satisfiable
formula (“correcting” the infeasibility) and that is minimal in the same sense that
any proper subset does not have that defining property. Any unsatisfiable formula
can have multiple MUSes and MCSes, potentially exponential in the number of
clauses.

Searching for Autarkies to Trim Unsatisfiable Clause Sets 185

As proven in [3], there is a duality between MUSes and MCSes such that for
a given instance, the complete set of MUSes (resp. MCSes) can be generated
by finding all minimal hitting sets of the complete set of MCSes (resp. MUSes).
This fact is used in [13] as the foundation for CAMUS, a set of two algorithms
that computes all MUSes of an instance by way of first computing all MCSes.
A corollary of this is that the union of all MUSes is equivalent to the union of
all MCSes.

Our example contains one MUS, {C1, C2, C3}, and its MCSes are the single-
clause sets {C1}, {C2}, and {C3}.

Autarkies. An autarky (or autark assignment) is an assignment to a subset of
a formula’s variables that satisfies every clause containing one of the assigned
variables. Following the meaning of the term in other fields, it is a self-sufficient
partial assignment. Because we are interested in trimming clause sets in this
work, we will refer to autarkies in terms of the clauses they satisfy. Thus, the
maximum autarky for us is the largest set of clauses satisfiable by an autarky,
as opposed to the largest partial assignment. The maximum autarky for our
example formula C is {C4, C5, C6}, which in this case is the complement of
the one MUS, and it is satisfied by the partial assignment {x3 = TRUE, x4 =
TRUE, x5 = FALSE}.

As explained in [10], any clause satisfied by some autarky can not be contained
in any MUS (nor in any MCS, as they are comprised of the same clauses). This
motivates the idea of preprocessing unsatisfiable formulas by removing their
maximum autarkies before searching for MUSes or MCSes.

Pure Literals. One simple form of autarky arises from pure literals. A pure literal
is a variable that occurs in only one polarity (either always positive or always
negated) in a CNF formula. In our example formula, x3 is a pure literal, because
¬x3 is not present. An assignment of TRUE to a pure literal will trivially satisfy
any clause containing the corresponding variable, thus any such assignment is
an autarky.

Pure literals can be found in a linear time scan of a formula. Removing the
clauses satisfied by pure literals may cause other literals to become pure in the
formula, so repeatedly detecting, recording, and removing pure literals is a simple
first step for any algorithm that finds autarkies. The process terminates when
the formula no longer contains pure literals.

3 Previous Work

Monien and Speckenmeyer [15] first introduced the concept of an autark assign-
ment or autarky, using autarkies in a modification of the DPLL satisfiability al-
gorithm [4,5] that reduced its complexity upper bound below 2n splitting steps
(for a formula with n variables). Autarkies were later used in another satisfiabil-
ity algorithm by Van Gelder [20] named Modoc. Modoc integrates autarky prun-
ing, removing those clauses satisfied by autarkies, into a resolution-based model

186 M. Liffiton and K. Sakallah

elimination approach to satisfiability. Both Monien and Speckenmeyer’s algorithm
and Modoc find autarkies as side-effects of their operation, but neither is aiming
to find the maximum autarky. Additionally, both find many more “conditional au-
tarkies,” i.e., autarkies that appear after propagating a partial assignment through
the formula, than “top-level autarkies” for the entire formula.

More recently, Kullmann has investigated autarkies in several papers. In [10],
he introduces the idea of lean clause-sets, sets of clauses that have no autarkies.
The largest lean clause-set is the complement of the maximum autarky of a
formula; all clauses can be partitioned into one or the other. Kullmann investi-
gates a special case of autarky that can be found in polynomial time using linear
programming, though this does not generalize to finding all autarkies. He also
proves, with Theorem 3.16, that a set of clauses F is lean “if and only if every
clause of F can be used by some resolution refutation of F .” Conversely, a set
of clauses A ⊆ F is an autarky if and only if each clause in A can not be used in
any resolution refutation of F . Later, in [11], Kullmann uses this fact to develop
an algorithm for computing the maximum autarky. Using a SAT solver that
provides a resolution refutation for unsatisfiable instances, one can iteratively
remove the variables included in some resolution proof. When the reduced for-
mula becomes satisfiable, the satisfying assignment is an autarky of the original
formula. This is the algorithm to which we compare ours in Section 5.

Finally, Kullmann, et al. [12] use both autarkies and MUSes as tools to de-
scribe and examine unsatisfiable formulas. They characterize clauses in such
formulas into several classes based on each clause’s involvement in MUSes, res-
olution refutations, and autarkies. Clauses contained in every MUS are called
“necessary”; those in any MUS are “potentially necessary”; “usable” indicates a
clause is in some resolution refutation; and thus “unusable” refers to clauses in
an autarky. Complements and intersections of these classes are defined as well.
They experimentally evaluate a set of industrial benchmarks from an automo-
tive product configuration domain [19], reporting on the MUSes and clauses in
the different levels of “necessity” in each instance. To compute all MUSes of the
instances, they use CAMUS [13], and they found maximum autarkies using the
algorithm described in [11], implemented using the ZChaff SAT solver’s ability
to produce resolution refutations [21].

4 Searching for Autarkies

Our approach to the problem of finding the maximum autarky for a formula treats
it as an optimization problem. We search for the largest partial assignment that
satisfies the clauses it touches, i.e., the largest autarky, by explicitly searching in
the space of all partial assignments and maximizing the size of the result (in terms
of the number of satisfied clauses). Specifically, we “instrument” the formula to
give a standard SAT solver the ability to enable and disable individual clauses
and variables within its normal search, and we use AtMost constraints to perform
a sliding objective maximization of the autarky size. This draws inspiration from
a similar technique we employed in [13] that uses a less-involved instrumentation

Searching for Autarkies to Trim Unsatisfiable Clause Sets 187

and the same optimization technique to allow a SAT solver to search for maximal
satisfiable subsets of clauses. We directly exploit the efficiency gains made in SAT
solvers in recent years by using an “off-the-shelf” solver; our algorithm works with
any solver1, so it can benefit from future improvements as well.

4.1 Instrumentation

To give a SAT solver the ability to search for autarkies, we instrument a formula
C with the following modifications:

1. We replace every literal in the formula with a literal-substitute; xj in the
formula becomes x1

j , while ¬xj is replaced with x0
j .

2. Each clause Ci is augmented with a clause-selector yi to form a new clause
C′

i = (yi → Ci) = (¬yi ∨ Ci).
3. We create a variable-selector x+

j for every variable xj . When x+
j is TRUE, xj

will be enabled, and it is disabled otherwise. For every variable xj , we add
clauses to relate its variable-selector x+

j , its two literal-substitutes x0
j and

x1
j , and the value of the variable itself, xj . In short, we want each literal-

substitute to be TRUE when the variable is enabled (x+
j is TRUE) and xj has

the corresponding value. This leads to new clauses encoding the following:
(x1

j = x+
j ∧ xj) and (x0

j = x+
j ∧ ¬xj).

4. Finally, we add clauses to require that a clause be enabled (yi = TRUE) if
any one of its variables is enabled. Thus, for any xj present in clause Ci, we
add a clause (x+

j → yi) = (¬x+
j ∨ yi).

This is not the only option for instrumenting the formula; other encodings have
the same effect. However, while preliminary experiments showed that similar
encodings yield slightly different runtimes, the differences in efficiency were not
substantial.

The complete instrumented formula for our example is too large to be useful
here, but here we show the constraints produced from a single clause of the
example, C2:

C2, (¬x1 ∨ x2) =⇒

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

1 & 2: (¬y2 ∨ x0
1 ∨ x1

2)

3:
(x1

1 = x+
1 ∧ x1)(x0

1 = x+
1 ∧ ¬x1)

(x1
2 = x+

2 ∧ x2)(x0
2 = x+

2 ∧ ¬x2)

4: (¬x+
1 ∨ y2)(¬x+

2 ∨ y2)

⎫

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎭

The clause derived from modifications 1 and 2 replaces the original clause,
while the rest are additions. The clauses from modification 3 (presented in short-
hand as equalities; each is three clauses in CNF) are specific to variables, and
the complete formula will only contain each set once per variable. The final two
clauses, resulting from modification 4, are specific to C2.
1 SAT solvers that implement AtMost constraints internally will likely perform better

than those that require using a CNF encoding of them, but all will work.

188 M. Liffiton and K. Sakallah

With the formula instrumented in this way, any satisfying assignment will
indicate an autarky of the original formula. The x+

j variables indicate which
variables are “activated,” i.e., included in the autarky; the original variables
contain the autarky assignment; and the clauses satisfied by the autarky are
represented by those yi variables set to TRUE. One such assignment is the
trivial solution in which all variables and all clauses are disabled. To find the
maximum autarky, we must maximize the number of enabled clauses.

4.2 Our Algorithm

We maximize the number of enabled clauses (yi variables assigned TRUE) by
way of an iterative optimization approach. We use AtMost constraints to bound
the number of disabled clauses, tightening the bound as solutions are found. If
an autarky is found that leaves n clauses disabled, we start the search for a larger
autarky by bounding the disabled clauses to n − 1. Eventually, if the instance
is unsatisfiable, we will reach a bound k for which no solution can be found. At
this point, we have proven that there exists an autarky of size k − 1 and none
with size k, thus the previously found autarky is the maximum autarky.

Sifter(C)

1. (C, autarky) ← PureLits(C)
2. C′ ← Instrument(C)
3. bound ← |C| − 1
4. loop
5. C′

b ← C′ ∧ AtMost({¬y1, ¬y2, . . . , ¬yn}, bound)
6. (isSAT, model) ← Solve(C′

b)
7. if not isSAT
8. return autarky
9. autarky ← autarky ∪ SatisfiedClauses(model)

10. bound ← |C| − |autarky| − 1

Fig. 1. Sifter finds the maximum autarky of a CNF formula C by “instrumenting” the
instance and using a SAT solver to search for satisfying partial assignments

Figure 1 contains pseudocode for the complete algorithm, which we call Sifter.
First, we repeatedly scan for pure literals, recording and removing them as de-
scribed in Section 2: the call to PureLits returns 1) C with any clauses con-
taining pure literals removed and 2) the set of such clauses as an initial autarky.
We then instrument the formula and use the sliding objective method described
above to find the rest of the maximum autarky or to prove that the pure literal
approach found it in its entirety. The Instrument subroutine produces instru-
mented clauses via the modifications described in Section 4.1. The bound on the
number of disabled clauses is set initially to |C| − 1 to begin the search by look-
ing for an autarky that satisfies at least one clause, and the loop then proceeds

Searching for Autarkies to Trim Unsatisfiable Clause Sets 189

by searching for a satisfying assignment, model, of the instrumented, bounded
formula, C′

b. If none is found (isSAT is false), the algorithm returns autarky,
which must be the maximum autarky. Otherwise, the satisfied clauses are added
to autarky, the bound is set to search for an autarky that satisfies at least one
more clause, and the loop repeats.

5 Experimental Results

Our two experimental goals are 1) to compare and contrastSifter, our direct search-
based approach for finding the maximum autarky, with the earlier iterative tech-
nique using resolution refutation trees [11], and 2) to investigate the value of
trimming autarkies as a preprocessing step for finding MUSes and MCSes.

5.1 Comparing Search to an Iterated Resolution Proof Approach

We implemented Sifter in C++ using MiniSAT [7] version 1.12b (the last version
containing support for AtMost constraints). We wrote the iterative approach [11],
which we will call Scraper, as a Perl script. First, Scraper uses the pure literal
elimination written for Sifter, making that phase equivalent in both implemen-
tations. Then, it employs the tools zchaff and zverify df [21] from the ZChaff
distribution zchaff.64bit.2007.3.12 to repeatedly produce resolution refuta-
tions and eliminate the involved variables until the instance becomes satisfiable.
We compiled all executables for the x86-64 instruction set using GCC 4.1.2 with
standard optimizations, and all experiments were run under Linux (Fedora 7)
on a 3.0GHz Intel Core 2 Duo E6850 with 4GB of RAM.

Figure 2 contains a log-log scatterplot comparing the runtimes of Sifter and
Scraper on a variety of industrial benchmarks. Runtimes for Sifter are repre-
sented on the y-axis, so points lying below the diagonal indicate instances in
which Sifter outperforms Scraper. A timeout of 600 seconds was used for every
run, indicated by the dashed lines on the extremes of the chart; points on these
lines indicate that a timeout was reached by the corresponding algorithms. The
reported runtimes are processor time, which for Sifter are essentially equivalent
to wall-clock time. Our implementation of Scraper, however, stores several inter-
mediate results to disk; we ignore this I/O time in these results to estimate the
runtime of a more efficient approach that retains everything in memory.

To provide a more complete understanding of these results, Table 1 lists some
overall characteristics of each benchmark family. We list the minimum and max-
imum number of variables, number of clauses, and size of the maximum autarky
(in clauses) for the instances in each family. The Benz benchmarks2 are the auto-
motive product configuration instances from [19] used in the experiments in [12].
The Miter family3 contains equivalence checking instances from João Marques-
Silva. The Dimacs instances are circuit benchmarks from the DIMACS set. The
2 http://www-sr.informatik.uni-tuebingen.de/∼sinz/DC/
3 http://sat.inesc.pt/benchmarks/cnf/equiv-checking/instances/

http: //www-sr.informatik.uni-tuebingen.de/~sinz/DC/
http://sat.inesc.pt/benchmarks/cnf/equiv-checking/instances/

190 M. Liffiton and K. Sakallah

0.0001

0.001

0.01

0.1

1

10

100

1000

0.0001 0.001 0.01 0.1 1 10 100 1000

Scraper (seconds)

S
ift

er
 (s

ec
on

ds
)

Benz
Miter
Dimacs
nPipe
BMC:Barrel
BMC:Longmult
BMC:Queueinvar

600 sec.
timeout

600 sec.
timeout

Fig. 2. Comparing the performance of Sifter and Scraper on a variety of benchmarks

nPipe instances are from Miroslav Velev’s FVP-UNSAT-2.0 benchmarks4, gen-
erated for the formal verification of microprocessors, with redundant variables
removed. The BMC:[] instances5 are formulas used in bounded model checking
(BMC) as described in [2].

From Figure 2 and Table 1, we can draw several conclusions:

1. Across all of the benchmarks, neither Sifter nor Scraper dominates the other
in terms of runtime. In some benchmarks, Scraper is faster, up to 20x, while
in others, Sifter is faster, up to 46x.

2. In just those benchmarks with non-trivial autarkies, however, our Sifter al-
gorithm is faster in nearly every instance. Specifically, looking at the Benz
and Miter families (the autarkies covering 2 clauses in each BMC:Longmult
instance are all found by pure-literal elimination alone), we see that Sifter
outperforms Scraper by approximately one order of magnitude.

3. The presence and size of autarkies is fairly consistent within benchmark
families. Each particular family in Dimacs, nPipe, and BMC:[] has either no
autarkies in any instance or an autarky that covers 2 clauses in each. The
Benz family consistently has autarkies that cover a large portion (between
32 and 98 percent) of each instance’s clauses. Every instance in the Miter
family has a non-empty autarky, though the autarky sizes vary more than
they do in the Benz instances.

4 http://www.miroslav-velev.com/sat benchmarks.html
5 http://www.cs.cmu.edu/∼modelcheck/bmc/bmc-benchmarks.html

http://www.miroslav-velev.com/sat_benchmarks.html
http://www.cs.cmu.edu/~modelcheck/bmc/bmc-benchmarks.html

Searching for Autarkies to Trim Unsatisfiable Clause Sets 191

Table 1. Benchmark Characteristics

Family Variables Clauses |autarky|
min max min max min max

Benz 1,513 1,891 4,013 9,957 2,097 7,025

Miter 1,266 17,303 1,027 34,238 1 1,831

Dimacs 389 7,767 1,115 20,812 0 0

nPipe 861 15,469 6,695 394,739 0 0

BMC:Barrel 50 8,903 159 36,606 0 0

BMC:Longmult 437 7,807 1,206 24,351 2 2

BMC:Queueinvar 116 2,435 399 20,671 0 0

Overall, these conclusions imply a strategy for exploiting autarkies in practice.
First, by searching for autarkies on a small representative set of instances from a
particular application, one can determine whether the instances in that domain
have autarkies at all. If none of the test set have autarkies of any appreciable
size, then it is likely that none generated in the application will, in which case
autarkies will be of no use. This is likely in applications such as bounded model
checking, where performing a cone of influence reduction of the circuit will likely
eliminate all autarkies. In these applications, checking for autarkies could be
a simple test of the sanity of the CNF encoding. In the other case, in which
instances do contain autarkies, it is probable that most if not all instances will
have autarkies, and Sifter is likely the more efficient algorithm to use.

5.2 Trimming Autarkies to Boost Searching for MUSes and MCSes

Trimming autarkies holds the most promise for boosting algorithms that have a
high complexity and are affected heavily by the number of clauses in an instance.
An algorithm for finding any single unsatisfiable subformula, such as that devel-
oped in ZChaff [21], is unlikely to benefit from such boosting, as the time taken
to find the maximum autarky will likely dwarf the runtime of the unboosted
algorithm.

We identified two algorithms that are good candidates for this boosting. One
is the first phase of CAMUS [13], which finds all MCSes of a formula as the first
step of solving several related problems such as computing all MUSes or finding
the smallest MUS (SMUS) of a CNF formula. In addition to computing MUSes,
this algorithm has been applied (without the second phase) in a circuit error
diagnosis system [17], in which the MCSes were used directly. A second algorithm
with potential for boosting by trimming autarkies is that by Mneimneh, et. al.
[14] for computing an SMUS directly, which we will refer to as SMUS. Both of
these candidate algorithms use clause-selector variables (as used in Sifter and
described in Section 4.1) and use a SAT solver to implicitly search through
subsets of clauses. Therefore, both can benefit from the reduced search space
produced by a reduction in the number of input clauses.

192 M. Liffiton and K. Sakallah

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Without trimming autarkies (seconds)

A
ut

ar
ki

es
 tr

im
m

ed
 (s

ec
on

ds
)

600 sec.
timeout

600 sec.
timeout

Fig. 3. Boosting SMUS by trimming autarkies for the Benz benchmarks

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Without trimming autarkies (seconds)

A
ut

ar
ki

es
 tr

im
m

ed
 (s

ec
on

ds
)

600 sec.
timeout

600 sec.
timeout

Fig. 4. Boosting CAMUS (first phase) by trimming autarkies for the Benz benchmarks

Searching for Autarkies to Trim Unsatisfiable Clause Sets 193

We investigated the impact of trimming autarkies on both of these algorithms
for the Benz benchmarks, which have the largest autarkies, and the results are
displayed in Figures 3 and 4. Each figure is a log-log scatterplot that charts the
runtime of the specified algorithm alone on the x-axis against the runtime of
the boosted version on the y-axis. The runtime reported for the boosted version
is the sum of finding an instance’s maximum autarky with Sifter and running
the algorithm on the trimmed instance. A point below the diagonal indicates an
instance for which the boosting produced a net decrease in runtime.

The results are mixed. In Figure 3, we see that the boosting does not produce
markedly better or worse results overall for finding SMUSes with SMUS. While
the runtimes for SMUS alone (not shown) do improve in nearly all cases when
it is run on the trimmed instances, the runtime of Sifter outweighs this gain in
many cases. There are two outliers: one in which SMUS’s runtime improves by
over two orders of magnitude when run on the trimmed instance, and another
that takes less than 10 seconds on the untrimmed instance yet times out at
600 seconds on the trimmed version. These are artifacts of the susceptibility of
combinatorial search algorithms like SMUS to variations in runtime due to minor
ordering changes and similar effects.

The results for boosting the first phase of CAMUS, shown in Figure 4, show
that the boosting does have value in some cases. For this algorithm, the runtime
of Sifter can outweigh the decrease in runtime due to the boosting in cases with
small runtimes (below 1 second in these benchmarks), but the boosted algorithm
always outperforms the original algorithm in cases with longer runtimes. Taken
as a whole, this is a net benefit, because the runtime increases in some “small”
instances are far outweighed by the gains in the “large” instances. The total run-
time, over all instances that did not time out in both techniques, decreased from
931 seconds on untrimmed instances to 704 seconds for the boosted algorithm,
a 24% decrease in total runtime.

6 Conclusions and Future Work

We are aware of only one existing algorithm for computing maximum autarkies,
presented in [11], and no experimental research investigating the runtime of find-
ing maximum autarkies has been published prior to this work. Furthermore, little
research has been conducted in the area of autarkies for Boolean satisfiability,
and no “industrial” application has previously been identified for them.

In this paper, we have presented a new algorithm, Sifter, for finding maximum
autarkies that searches for them directly with a standard SAT solver and an
“instrumented” formula. We have evaluated it experimentally, comparing it to
the existing approach based on iterated construction of resolution refutations, on
a variety of industrial benchmarks. In our results, Sifter outperforms the other
algorithm on benchmarks with autarkies, though the results are mixed on those
with none.

We have also performed an initial exploration of the use of autarky trimming
as a preprocessing step for complex algorithms for finding MUSes and MCSes.

194 M. Liffiton and K. Sakallah

We used Sifter to boost two different algorithms by trimming maximum autarkies
from instances before searching for MUSes or MCSes. While the boosted version
of an algorithm for finding the smallest MUS of a formula was not (overall)
faster or slower than the normal version, the boosted version of the first phase
of CAMUS [13], which finds all MCSes of an instance, was noticeably faster.
The overhead of the trimming often outweighed runtime gains on instances that
completed in under one second, but the trimming was beneficial on long-running
instances; we obtained a total runtime reduction of 24% over all instances that
did not time out.

As future work, we can look into improving the efficiency of Sifter, possibly
by using a new encoding to instrument formulas or by employing a different
optimization method. Also, more work can be done to explore the structure and
characteristics of autarkies in real-world Boolean formulas; the results here show
that there is much variation among benchmark families, with some containing
no autarkies at all. The use of conditional autarkies (autarkies that arise follow-
ing the assignment of some variables) in algorithms for analyzing unsatisfiable
instances is worth investigating as well. In the area of boosting MUS algorithms,
it would be interesting to compare autarky-trimming with the local search used
to boost the first phase of CAMUS in [8] by quickly identifying candidate MCSes
before the complete search begins.

Acknowledgments

This material is based upon work supported by the National Science Founda-
tion under ITR Grant No. 0205288. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the view of the National Science Foundation (NSF).

References

1. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Refinement strategies for verification
methods based on datapath abstraction. In: Proceedings of the 2006 conference on
Asia South Pacific design automation (ASP-DAC 2006), pp. 19–24 (2006)

2. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579,
pp. 193–207. Springer, Heidelberg (1999)

3. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure
and behaviour. Journal of Experimental and Theoretical Artificial Intelligence 15,
25–46 (2003)

4. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5(7), 394–397 (1962)

5. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7(3), 201–215 (1960)

6. Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatis-
fiable core extraction. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI),
vol. 4304, pp. 36–41. Springer, Heidelberg (2006)

Searching for Autarkies to Trim Unsatisfiable Clause Sets 195

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Grégoire, É., Mazure, B., Piette, C.: Boosting a complete technique to find MSSes
and MUSes thanks to a local search oracle. In: Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI 2007), January 2007, vol. 2, pp.
2300–2305 (2007)

9. Grégoire, É., Mazure, B., Piette, C.: Local-search extraction of MUSes. Con-
straints 12(3), 325–344 (2007)

10. Kullmann, O.: Investigations on autark assignments. Discrete Applied Mathemat-
ics 107(1-3), 99–137 (2000)

11. Kullmann, O.: On the use of autarkies for satisfiability decision. In: LICS 2001
Workshop on Theory and Applications of Satisfiability Testing (SAT-2001). Elec-
tronic Notes in Discrete Mathematics, vol. 9, pp. 231–253 (2001)

12. Kullmann, O., Lynce, I., Marques-Silva, J.: Categorisation of clauses in conjunctive
normal forms: Minimally unsatisfiable sub-clause-sets and the lean kernel. In: Biere,
A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 22–35. Springer, Heidelberg
(2006)

13. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning 40(1), 1–33 (2008)

14. Mneimneh, M.N., Lynce, I., Andraus, Z.S., Silva, J.P.M., Sakallah, K.A.: A branch-
and-bound algorithm for extracting smallest minimal unsatisfiable formulas. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 467–474. Springer,
Heidelberg (2005)

15. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete
Applied Mathematics 10(3), 287–295 (1985)

16. Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE: a
minimally-unsatisfiable subformula extractor. In: Proceedings of the 41st Annual
Conference on Design Automation (DAC 2004), pp. 518–523 (2004)

17. Safarpour, S., Liffiton, M., Mangassarian, H., Veneris, A., Sakallah, K.: Improved
design debugging using maximum satisfiability. In: Proceedings of the Interna-
tional Conference on Formal Methods in Computer-Aided Design (FMCAD 2007),
November 2007, pp. 13–19 (2007)

18. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005)

19. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive
product configuration data. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 17(1), 75–97 (2003)

20. Van Gelder, A.: Autarky pruning in propositional model elimination reduces failure
redundancy. Journal of Automated Reasoning 23(2), 137–193 (1999)

21. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable
Boolean formula. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS,
vol. 2919, Springer, Heidelberg (2004)

Nenofex: Expanding NNF for QBF Solving

Florian Lonsing and Armin Biere

Johannes Kepler University

Abstract. The topic of this paper is Nenofex, a solver for quantified
boolean formulae (QBF) in negation normal form (NNF), which relies
on expansion as the core technique for eliminating variables. In contrast
to eliminating existentially quantified variables by resolution on CNF,
which causes the formula size to increase quadratically in the worst case,
expansion on NNF is involved with only a linear increase of the formula
size. This property motivates the use of NNF instead of CNF combined
with expansion. In Nenofex, a formula in NNF is represented as a tree
with structural restrictions in order to keep its size small and distances
from nodes to the root short. Expansions of variables are scheduled based
on estimated expansion cost. The variable with the smallest estimated
cost is expanded first. In order to remove redundancy from the formula,
limited versions of two approaches from the domain of circuit optimiza-
tion have been integrated. Experimental results on latest benchmarks
show that Nenofex indeed exceeds a given memory limit less frequently
than a resolution-based QBF solver for CNF, but also that there is the
need for runtime-related improvements.

1 Introduction

QBF [36,19] is an important research area with many applications [28,33,6,31,
21, 16, 24, 5, 30]. Progress has been impressive in recent years, but in practice
QBF solvers lack the generic applicability on PSPACE hard problems as SAT
solvers on NP hard problems.

We believe that one of the reasons is the usage of CNF as input and as
internal format to reason about SAT problems. We argue that in QBF more
general data structures are necessary. There is clear indication in the relevant
literature [39, 37, 34] that supports this conjecture.

The most natural extension of CNF is NNF: NNF is still tree shaped, i.e. there
is no sharing, and a formula in CNF is as well a formula in NNF. Before
mentioned approaches [39, 34] and in essence all QBF solvers that learn solu-
tions [29, 40, 20] use some kind of combination of DNF and CNF, which again
can be considered NNF. As we argue in this paper, a tree representation has
many advantages compared to a more general DAG representation.

We investigated the usage of NNF to reduce space usage of expansion based
QBF solvers. Our experiments clearly indicate, that our prototype implementa-
tion Nenofex needs less space than the highly optimized expansion based solver
Quantor [7], which works on CNF. Nenofex is also able to solve several instances,
that could not be handled by Quantor.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 196–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Nenofex: Expanding NNF for QBF Solving 197

The success of Quantor is based on two techniques. First, it implements a fast
scheduling algorithm for heuristically choosing the next variable to expand. The
second contribution is a fast subsumption algorithm, that removes redundant
clauses generated during expansions. Both techniques are also crucial for the
efficiency of the SAT preprocessor SATeLite [17]. To maintain accurate expansion
costs for NNF turns out to be much more difficult than for CNF. The same
comment applies to redundancy removal for NNF. In Nenofex we considered both
problems, but due to space constraints only present a solution to redundancy
removal on NNF in this paper.

Another related application of a restricted form of NNF is knowledge compi-
lation [12]. But it is unclear how to use it for QBF solving.

2 Motivation

In order to show that NNF is much more compact than CNF for representing
the result of expansion, consider the following formula F ≡ R∧X0 ∧X1 in CNF.
The clause sets X0 = {c1, c2, c3} = {(¬x∨c∨¬d), (¬x∨d∨¬e), (¬x∨e∨¬c)} and
X1 = {c4, c5, c6} = {(x∨f ∨¬g), (x∨g ∨¬h), (x∨h∨¬f)} with |X0| = |X1| = 3
contain all clauses with negative and positive literals of variable x, respectively.
Variable x has n = 3 negative and p = 3 positive literals. R = {(a ∨ b)} is the
set of clauses which do not contain a literal of x (notation adopted from [14]).

Variable x may be expanded by copying F : F ≡ F [x/0] ∨ F [x/1] where ex-
pression F [x/v] denotes the formula obtained from F by substituting value v for
every literal of x. This yields

F ≡ ((R ∧ X0 ∧ X1)[x/0]) ∨ ((R ∧ X0 ∧ X1)[x/1]) (1)
F ≡ (R ∧ (X0 ∧ X1)[x/0]) ∨ (R ∧ (X0 ∧ X1)[x/1]) (2)
F ≡ R ∧ ((X0 ∧ X1)[x/0] ∨ (X0 ∧ X1)[x/1]) (3)
F ≡ R ∧ (X ′

0 ∨ X ′
1) (4)

which is (a∨b)∧(((c∨¬d)∧(d∨¬e)∧(e∨¬c))∨((f ∨¬g)∧(g∨¬h)∧(h∨¬f))).
In the clause set X ′

0 (X ′
1) all negative (positive) literals of variable x have been

deleted. Clauses in R have not been affected during expansion, hence this set
can be factored out as shown in formula 3. Formulae 1 to 4 are not in CNF any
more but in NNF.

If x is eliminated by resolution, then the set of resolvents Xr = {ci,j | i =
1, . . . , n, j = n+1, . . . , n+p, ci,j = (ci ∪cj)\{x, ¬x}} contains clauses {c1,4, c1,5,
c1,6, c2,4, c2,5, c2,6, c3,4, c3,5, c3,6} where |Xr| = n · p = 3 · 3 = 9 clauses. After
discarding sets X0 and X1 and adding Xr to F, we have F ≡ (a ∨ b) ∧ (c ∨ ¬d ∨
f ∨ ¬g) ∧ (c ∨ ¬d ∨ g ∨ ¬h) ∧ (c ∨ ¬d ∨ h ∨ ¬f) ∧ (d ∨ ¬e ∨ f ∨ ¬g) ∧ (d ∨ ¬e ∨ g ∨
¬h) ∧ (d ∨¬e ∨ h ∨¬f) ∧ (e ∨¬c ∨ f ∨¬g) ∧ (e ∨ ¬c ∨ g ∨¬h) ∧ (e ∨ ¬c ∨ h ∨¬f).

Expanding a variable in a formula can at most double its size. In particular,
expanding some variable x on CNF as shown in formulae 1 to 4 will copy n + p
clauses (and introduce one logical connective), whereas eliminating the same
variable by resolution will produce n · p clauses in the worst case. Expansion

198 F. Lonsing and A. Biere

causes a formula to grow linearly in contrast to resolution, which is involved
with a quadratic size increase. In the example, this is reflected in the sizes of the
formulae resulting from expansion and resolution.

It is exactly this observation which motivates the use of NNF as formula
representation in an expansion based QBF solver as Nenofex. We expect less
size increase when eliminating existential variables by expansion on NNF than
by resolution on CNF. When expanding universal variables, there is no advantage
of expansion on NNF compared to CNF because in both cases the same set of
clauses has to be copied. For an arbitrary formula in NNF, expansion of a variable
will always yield a formula which is in NNF again. No transformations need to
be carried out on the formula between expansions.

3 Preliminaries

For a set of variables V , a literal (or occurrence) is either a variable v ∈ V or its
negation ¬v. A clause is a disjunction over literals. A (propositional) formula is
in conjunctive normal form (CNF) if it is a conjunction over clauses. A formula
consisting of disjunctions, conjunctions and literals is in negation normal form
(NNF) if the negation operator is applied to literals only.

A quantified boolean formula (QBF) F ≡ S1S2 . . . Sn φ consists of a propo-
sitional formula φ over a set of variables V and a quantifier prefix S1S2 . . . Sn.
We assume that φ is in NNF. The quantifier prefix is an ordered set of scopes
Si, which forms a partition on the set of variables: V = S1 ∪ S2 ∪ . . . ∪ Sn and
Si ∩ Sj = � 0 for 1 ≤ i, j ≤ n and i �= j. A scope Si is existential (universal) if it
is associated with an existential (universal) quantifier, written as type(Si) = ∃
(type(Si) = ∀). A variable x ∈ Si where type(Si) = ∃ (type(Si) = ∀) is exis-
tentially (universally) quantified. By convention, for two adjacent scopes Si and
Si+1, where 1 ≤ i < n, type(Si) �= type(Si+1).

The set of scopes is a linearly ordered set S1 < S2 < . . . < Sn which follows
from the order of appearance of scopes Si in the quantifier prefix. Scope S1 is
the outermost, scope Sn the innermost scope. Variables are ordered with respect
to the order of scopes they belong to. For variables from the same scope, an
arbitrary order may be chosen. Our definitions of QBF and scopes are similar
to the ones in [7] except that formula φ is not in CNF but NNF.

There is strong indication that non-prefix orders are important for QBF rea-
soning [18,7,3,22]. Initially we experimented with non-prefix orders as well, but
due to the complexity involved, we focus on non-CNF representation in this
paper, except for on-the-fly miniscoping during expansions as in Quantor.

A tree T = (N, E) consists of a set of nodes N and a set of directed edges
E ⊆ N × N such that for exactly one node r called root, there is no v ∈ N
where (v, r) ∈ E, and for each node w ∈ N \ {r}, there exists exactly one v ∈ N ,
v �= w, such that (v, w) ∈ E. If (v, w) ∈ E, then v is the parent of w and w is a
child of v. The root is the only node in T which has no parent, any other node
has exactly one parent. For nodes v and w ∈ N , a path of length k from v to w
is a sequence of nodes p0, p1, . . . , pk where p0 = v, pk = w and (pi, pi+1) ∈ E for

Nenofex: Expanding NNF for QBF Solving 199

0 ≤ i < k. For any node v, there is a path of length 0 from v to v. The level of
a node v is the length of the path from the root to v. For root r, level (r) = 0. If
(v, w) ∈ E, then level(w) = level (v) + 1. For nodes v and w, if there is a path
from v to w, then v is an ancestor of w and w is a descendant of v. Every node
is ancestor and descendant of itself. The root is ancestor of any node in T .

A common ancestor of a pair of nodes v,w in T is a node which is ancestor
of both v and w. The least common ancestor (LCA) of v,w, written as lca(v, w)
where lca : N × N → N , is their common ancestor with maximum level, that is,
which is farthest away from the root. Commutativity and associativity of lca as
an operator extend the definition from pairs to sets of nodes:

lca(n1, n2, . . . , nk) =

⎧

⎨

⎩

lca(lca(n1, n2), n3, . . . , nk) if k ≥ 3
least common ancestor of n1 and n2 if k = 2

n1 if k = 1

4 Formula Representation

A formula φ in NNF is represented as a tree T = (N, E), referred to as NNF-tree.
The set of nodes N is partitioned into operator nodes NO and literal occurrence
nodes NL (short: literal nodes), that is N = NO ∪ NL and NO ∩ NL = � 0. The
set NO (NL) comprises exactly the set of internal nodes (leaf nodes) of the tree.

The set NO is partitioned into the sets N∨ and N∧, that is NO = N∨∪N∧ and
N∨ ∩N∧ = � 0. A node from the set N∨ (N∧) is called OR-node (AND-node) and
denotes the logical disjunction (conjunction) over its children. Operator nodes
with n children, where n ≥ 2, represent n-ary boolean functions.

A node nl ∈ NL denotes one single (positive or negative) literal of some
variable x ∈ V . Conversely, a literal of some variable x is represented by exactly
one node nl ∈ NL. The least common ancestor (LCA) of a variable x ∈ V ,
written as lca(x), is defined as the LCA over all of its literal nodes.

The structure of an NNF-tree is restricted as follows. Operator nodes may have
an arbitrary number of children but must have at least two. For operator nodes
no ∈ N∨ (no ∈ N∧) and all its children c, either c ∈ N∧ or c ∈ NL (c ∈ N∨
or c ∈ NL), that is, the types of operator nodes and their children must be
different. This corresponds to the application of associativity of disjunction and
conjunction whenever possible. For operator nodes no ∈ NO and some variable
x ∈ V , if no has a child c1 ∈ NL which is a literal node of x, then no must
not have another child c2 ∈ NL, c1 �= c2, which is a literal node of x. Thus
operator nodes must neither have multiple nor complementary literals of one
and the same variable as children. The structural restrictions aim at keeping the
NNF-tree small and node levels, that is distances between nodes and the root
short. Fig. 1 shows a sample NNF-tree.

As an alternative to trees, a representation related to directed acyclic graphs
(DAGs) could have been used, which allow nodes to be structurally shared among
several parents. A well-known, DAG-related formula representation are And-
Inverter Graphs (AIGs) [26] where the set of operators is restricted to binary
conjunction and negation. Methods for identifying structural sharing in AIGs

200 F. Lonsing and A. Biere

2

b d e

3

a d

1

a

Fig. 1. NNF-tree for formula ¬a ∨ (b ∧ d ∧ ¬e) ∨ (a ∧ ¬d). An AND-node (OR-node) is
represented as a triangle � (inverted triangle �) resembling the symbol for conjunction
∧ (disjunction ∨), and a literal node as a box �. A circle ◦ at a literal node denotes
the negation operator. Labels of operator nodes in the figures are used as indices in
the text, e.g. n1 denotes the root of the NNF-tree in the example above.

have been studied in [9,8]. To our knowledge, structural sharing in combination
with n-ary operators like in an NNF-tree has not been studied at a large extent,
but obviously there is much more complexity involved. Furthermore, NNF-trees
guarantee that a formula in CNF has a flat representation: each (non-unit) literal
in the CNF corresponds to exactly one literal node with level 2, each clause
to exactly one OR-node with level 1 and the conjunction over the clauses to
one single AND-node at the root of the tree. It is impossible to achieve these
correspondences with AIGs. DAGs complicate the implementation. For each
node, the set of parents and children need to maintained under modifications
of the graph. With trees, algorithms related to expansion (next section) and
redundancy removal (section 6.1) are much easier to implement.

5 NNF Expansion

If a variable is expanded as shown in the introductory example (formulae 1 to 4),
then parts of the formula might be copied unnecessarily and need to be factored
out in order to reduce the size of the expanded formula.

We present local expansion for NNF, a method where only the relevant parts
of a formula are copied and which does not require factoring out common sub-
formulae in the expanded formula. Generally, our method can be regarded as
miniscoping [2], which produces a non-prefix reduced scope through the ap-
plication of standard quantifier rules, followed by expansion. In our approach
(section 5.3), a minimal reduced scope is determined bottom up, starting from
the literal occurrences of the expanded variable.

For a QBF S1 . . . Sn−1Sn φ, we consider expansion of (1) existential or (2)
universal variables from scope Sn (section 5.1), and expansion of (3) universal
variables from scope Sn−1 (section 5.2) only. Case (2) is irrelevant for formulae
in CNF since forall-reduction [25, 7] could remove all literals of universal vari-
ables in Sn instead: a universal literal can be removed from a clause if there is no
existential literal in that clause whose variable belongs to a scope which is larger
than the scope of the universal literal’s variable. To our knowledge, it is not clear

Nenofex: Expanding NNF for QBF Solving 201

whether and how this operation can be applied to formulae in NNF. Replacing
innermost universal literals by false is incorrect, because this would reduce the
following formulae to false even though they are valid:

∀x (x ∨ x) ∀x, y (xy ∨ xy ∨ xy ∨ xy)

5.1 Innermost Expansion

Given a QBF S1 . . . Sn φ and some variable x in Sn where type(Sn) = ∃ or
type(Sn) = ∀, let ers(x) denote the expansion relevant subformula of variable x,
which is the smallest subformula of φ which contains all literals of x.

Local expansion of variable x in φ is defined as follows:

S1 . . . Sn φ ≡ S1 . . . (Sn \ {x}) φ[ers(x) / (ers(x)[x/0] ⊗ ers(x)[x/1])] (5)

where operator ⊗ = ∨ (⊗ = ∧) if type(Sn) = ∃ (type(Sn) = ∀). In rule 5, φ is
modified by replacing the expansion relevant subformula ers(x) by a subformula
consisting of two copies of ers(x), where variable x is assigned true resp. false.

5.2 Non-innermost Expansion

Expansion of universal variables from scope Sn−1 requires depending existential
variables from Sn to be duplicated. Concerning CNF, methods for universal
expansion and for identifying dependencies have been proposed in Quantor [7],
sKizzo [4], quantifier trees [3] and bounded universal expansion [10]. For example,
before some universal variable x from scope Sn−1 is expanded in Quantor, the set
of depending existential variables from scope Sn is computed via a connection
relation. Then, all clauses which contain literals of x or of any depending variable
are copied during expansion. This idea is generalized in [10, 35].

Given a QBF S1 . . . Sn−1Sn φ with n scopes and some universal variable x
in Sn−1 where type(Sn−1) = ∀ and type(Sn) = ∃. Let ers(x) be defined as in
the previous section. Let Dx be the set of depending existential variables of x
defined as follows (notation adopted from [10]):

D(0)
x := {y ∈ Sn | y has literals in ers(x)}

D(k+1)
x := {z ∈ Sn | z has literals in ers(y′) for some y′ ∈ Dk

x}, k ≥ 0

Dx :=
⋃

k

Dk
x

Let urs(x, Dx) denote the expansion relevant subformula of universal variable
x with respect to Dx, which is the smallest subformula of φ which contains all
literals of x and all literals of any existential variable y ∈ Dx. Local expansion
of variable x in φ is defined as follows:

S1 . . . Sn−1Sn φ ≡ (6)
S1 . . . (Sn−1 \ {x})(Sn ∪ D′

x) φ[u / (u[x/0] ∧ u′[x/1])]

202 F. Lonsing and A. Biere

2

B X1 X2

1

A

Fig. 2. NNF-tree for formula A ∨ (B ∧ X1 ∧ X2)

where u stands for urs(x, Dx) and urs(x, Dx)′ is obtained from urs(x, Dx) by
substituting y′ for all literals of y ∈ Dx. D′

x is the set which contains duplicated
variables y′ for every y ∈ Dx. The definition of urs extends the one of ers from the
previous section by taking the set of depending existential variables into account.
In fact, the notion of urs(x, Dx) is closely related to the CNF-based approaches
in [7] and [10], where the set Dx is constructed via a connection relation between
variables: vi is locally connected to vj if both occur in a common clause. In our
NNF-based approach, the connection relation is generalized to subformulae.

5.3 Expansion Relevant LCAs

According to the definitions of expansion relevant subformulae ers and urs for
some variable x in some formula φ, the expansion relevant subtree of x is defined
to be the smallest subtree in the NNF-tree of φ which contains all literals of x.

In order to expand x in the NNF-tree, a correspondence between expansion
relevant subformulae and subtrees as defined has to be established. The ex-
pansion relevant LCA of variable x is defined by node lca(x) and the set of
LCA-children of lca(x). A child of node lca(x) is an LCA-child if its subtree
contains at least one literal of x. The subtree denoted by the expansion relevant
LCA exactly corresponds to the expansion relevant subformula and vice versa.

In Fig. 2, subtrees X1 and X2 contain all literals of some variable x and
node n2 is lca(x). The roots of subtrees X1 and X2 form the set of LCA-children
and, together with node lca(x), denote the expansion relevant subtree of x, which
corresponds to X1∧X2, the expansion relevant subformula of x. Generally, LCAs
of variables without the notion of LCA-children are only an over-approximation
for expansion relevant subtrees. In Fig. 2, the subtree of node lca(x) contains
subtree B as well, which does not contain literals of x.

In Nenofex, expansion relevant LCAs are computed incrementally in an up-
ward directed search starting from each literal of the variable, where parents
are successively visited and LCA-children are collected. Our approach requires
O(nm) time in the worst case, where n is the number of literals and m the maxi-
mum level of a literal which is expected to be small due to structural restrictions.

Nenofex: Expanding NNF for QBF Solving 203

L

R

L

SR

[0] [1]

Fig. 3. Expansion template. Node nL is lca(x) for some existential variable x, subtree
R does not contain literals of x and black dots indicate LCA-children. In the right
NNF-tree, x has been expanded: OR-node nS is parent of two copies of the expansion
relevant subtree, where x is assigned true ([1]) and false ([0]).

In order to expand a variable in an NNF-tree, its expansion relevant subtree
needs to be copied. Fig. 3 illustrates the situation for an existential variable
whose LCA is an AND-node and which has two LCA-children. Expanding vari-
able x in the formula in Fig. 2 yields the expanded formula A ∨ (B ∧ ((X1 ∧
X2)[x/0] ∨ (X1 ∧ X2)[x/1])), as indicated by the right template in Fig. 3.

6 Implementation

The architecture of Nenofex is very similar to the one of Quantor. Variables are
eliminated in cyclic fashion starting from the innermost scope, where scheduling
is based on estimated elimination costs. Elimination of variables is interspersed
with redundancy removal. If there is only one type of variables left, then the
QBF is reduced to a SAT problem and forwarded to an internal SAT solver.

Fig. 4 shows the phases of the core algorithm in Nenofex. In either phase,
the solver may return an answer if the NNF-tree has been deleted or the SAT
solver has terminated. After an initialization phase (INIT in Fig. 4), where the
problem instance is parsed and data structures are set up, unit literals and pure
literals (or unates) [11] are eliminated until saturation.

6.1 Redundancy Removal

Local expansion avoids unnecessary copies of formula parts, but can not avoid
redundancy in general. As in Quantor, which relies on subsumption checking,
redundancy removal is crucial for Nenofex to achieve best performance. For
this purpose, limited versions of two approaches from the domain of circuit
optimization have been implemented where an NNF-tree is regarded as a circuit.

204 F. Lonsing and A. Biere

INIT

True/False

UNITS UNATES GF RR EXP SAT

Fig. 4. Core algorithm of Nenofex. Parsing and initialization (INIT), elimination of
units and unates (UNITS, UNATES), global flow (GF), redundancy removal (RR),
expansion (EXP) and propositional SAT solving (SAT).

ATPG-Based Redundancy Removal. In structural testing, a test for a fault
at a single line or gate in a circuit is a set of input values, called test pattern, by
which wrong circuit outputs related to the faulty part can be detected. Test pat-
terns can be generated algorithmically, which is the main purpose of automatic
test pattern generation (ATPG) [1]. A fault which does not change the circuit’s
behaviour is redundant and the respective hardware may be removed.

A typical model for faults related to single lines (or signals) is the stuck-
at-fault model. A line is stuck-at-1 (stuck-at-0), if it always carries true (false)
regardless of the intended value. Detection and removal of redundant stuck-at
faults can be used for circuit optimization. Testing a stuck-at fault in ATPG-
based redundancy removal [1] comprises three steps. In fault sensitization, the
fault is activated by assigning the corresponding signal the opposite value of the
fault: for a stuck-at-1 fault, the signal is assigned false, otherwise true.

In path sensitization, the effect of the activated fault must be propagated
unambiguously along a fault path to an output signal of the circuit. This can be
achieved by assigning conservative values to all off-path inputs of gates along
the fault path. Off-path inputs of OR-gates (AND-gates) must be assigned false
(true). There might be exponentially many fault paths. If propagation on one
path fails, then possibly all remaining paths have to be considered.

In justification, signal assignments made in the previous two steps must be
justified by finding a set of circuit inputs which establish the configuration of
internal signal assignments. Starting at an unjustified, assigned signal, its inputs
are assigned recursively with justifying values. For example, an AND-gate which
is assigned false may be justified by assigning false to one of its inputs. As in
DPLL-based SAT solvers [13], justification involves making decisions which have
to be undone during backtracking if conflicts between assignments occur.

If all fault paths and alternative assignments have been tried out but conflicts
could not be resolved, then the fault is untestable: there is no set of input values
such that the fault effect can be observed unambiguously at a circuit output.
The corresponding hardware is redundant and may be removed, which can cause
further faults to become redundant.

Global Flow. Global flow [27] is an approach for circuit minimization where
implications are derived from signals which are then used to transform the circuit

Nenofex: Expanding NNF for QBF Solving 205

1

2 3

a b a c

1

2 3

a b a c

4

a

1

b c

4

a

Fig. 5. Detecting distributivity by global flow and redundancy removal

without changing the logical flow of values. For any signal x in the circuit, there
are four sets of implications defined as FVW (x) := {s : x = V → s = W}
where V, W ∈ {0, 1} and s is a signal. Given the sets FVW for some signal x,
the following transformations are valid:

y ∈ F00(x) : y ≡ x ∧ y y ∈ F10(x) : y ≡ ¬x ∧ y
y ∈ F11(x) : y ≡ x ∨ y y ∈ F01(x) : y ≡ ¬x ∨ y

In order to optimize a circuit, first some signal x is chosen where subsets of impli-
cations in FVW (x) are computed, because full computation is complex. Next, an
implication is chosen and the circuit is transformed according to the respective
rule. Certain connections of x to other nodes may be removed, provided that the
logical flow of the value from x to the implied node does not change. If circuit
size is not decreased, then all modifications will be are reversed. These steps are
carried out in cyclic fashion for all signals in the circuit.

Fig. 5 illustrates a typical situation where redundancy is detected by global
flow together with ATPG-based redundancy removal: in the leftmost NNF-tree,
literal a may be factored out by applying distributivity. This can not be detected
by ATPG-based redundancy removal alone. When assigning literal a at n2 true
(and consequently variable a as well) in the leftmost NNF-tree, then n1 (the
root) will be assigned true as well, hence a = true → n1 = true and n1 may
be replaced by a ∨ n1 which yields the second NNF-tree. Dashed edges indicate
nodes with untestable stuck-at-0 faults. If the fault at literal a at n2 is tested,
then it must be assigned true in fault sensitization (that is, variable a will be
assigned true), but this yields an unresolvable conflict at n4, the only circuit
output, where literal a will be assigned true as well. This is not a conservative
value as required by path sensitization. The same argument applies for a at n3,
and the two literals may be removed which yields the NNF-tree on the right.

Limitations. The implementation of global flow (phase GF in Fig. 4) and
ATPG-based redundancy removal (phase RR) is very limited. For GF, only
implications from sets F00 and F11 are considered. GF alone is not capable of
reducing the size of an NNF-tree but, together with RR (as shown in Fig. 5), can

206 F. Lonsing and A. Biere

enable detection of redundancies which would remain undetected by RR. Mod-
ifications made by GF are never reversed, since they always produce additional
redundant stuck-at-faults due to the tree shape of NNF.

General ATPG-based redundancy removal is NP-complete [1]. Our implemen-
tation runs in polynomial time, but is incomplete. We only use propagations and
no decisions. It greatly benefits from the tree representation of NNF, because
there is a single fault propagation path from the fault site to the root.

Phases GF and RR are carried out in cyclic fashion on a small subtree of
the NNF-tree only. Generally, each optimization runs until saturation, but this
can become problematic due to the amount of required runtime. Therefore, fixed
limits are imposed on the size of the subtree and on the number of value prop-
agations during GF and RR.

6.2 Expansion

Let Si and Si−1 denote the current innermost and first non-innermost scope,
respectively. Variables are selected for expansion depending on their estimated
expansion costs (scores) and on the types of Si and Si−1. In Nenofex, generally
a greedy strategy is applied: in order to keep the size of the NNF-tree small in
each expansion, always the variable with minimum expansion cost is selected.

First, if type(Si−1) = ∃ and type(Si) = ∀, then only variables from Si

may be expanded. The variable with minimum score is expanded. Second, if
type(Si−1) = ∀ and type(Si) = ∃, then variables from both scopes may be ex-
panded. A variable from Si−1 is eligible for expansion iff the preceding expansion
from Si (1) caused the size of the NNF-tree to increase and (2) the size increase
to exceed a heuristic universal threshold tu. Initially, tu is set to 10 nodes. If tu
is exceeded in an expansion, then expansion of exactly one variable from Si−1
will be forced, which causes tu to increase by 10 and expansions from Si−1 to be
disabled again. Expansions are forced because score computation for Si−1 likely
becomes impractical when carried out each time before an expansion. This policy
goes against the greedy expansion strategy because the minimum score variable
from Si may well be cheaper than the one in Si−1.

The estimated expansion cost is calculated as a tight upper bound on the real
expansion cost. It is measured in the number of nodes added to and removed
from the NNF-tree. The costs are recalculated after every change to the NNF-
tree, taking only the changed part into account. The details are complicated and
due to space constraints have to be omitted. However, we clearly see a potential
for speeding up this process by updating scores in a full incremental fashion.

6.3 SAT Solving

If the formula contains only one type of variables, then the QBF may be reduced
to a SAT problem: a formula in CNF is generated from the NNF-tree which is
forwarded to an internal SAT solver. If only existential variables are left, then
a CNF will be generated which is satisfiable iff the formula denoted by the

Nenofex: Expanding NNF for QBF Solving 207

Table 1. Comparison of Quantor and Nenofex in three different versions by number of
instances where solvers succeeded, timed out (OOT) and ran out of memory (OOM).
The number of instances solved by Nenofex decreases from (GF, RR) to (no GF, no
RR), which indicates that GF and RR contribute positively to the solver’s performance.
On the other hand, time is traded for memory when enabling optimizations: values of
OOT increase from (no GF, no RR) to (GF, RR), the opposite effect can be observed
for memory. Note that (no GF, no RR) runs out of memory more often than Quantor,
which applies subsumption checking, hence optimizations are crucial in combination
with NNF as well. The last two lines show sums of actual maximum amounts of memory
(in MB) consumed on each solved or unsolved instance (MEM∪) and on instances
solved by all four solvers (MEM∩). The (unoptimized) node representation in Nenofex
requires about twice as much memory than the pointer-based structures of clauses and
literals in Quantor, which is reflected in the last line.

Nenofex
Quantor GF, RR no GF, RR no GF, no RR

Solved 421 361 352 313

OOT 32 124 103 83

OOM 683 651 681 740

MEM∪ 1.10e6 1.15e6 1.17e6 1.23e6
MEM∩ 10473 18472 19693 28422

Table 2. Number of instances where both or only one of Quantor and Nenofex (GF,
RR) succeeded, timed out or ran out of memory. Nenofex solved 19 instances which
Quantor could not solve. OOT and OOM indicate a similar tendency as Tab. 1.

Quantor only Both Nenofex only Sum
Solved 79 342 19 440

OOT 18 14 110 142

OOM 80 603 48 731

NNF-tree is satisfiable. Otherwise, a CNF will be generated which is satisfiable
iff the formula denoted by the NNF-tree is not a tautology.

The algorithm for generating a CNF from an NNF-tree requires linear time in
the number of nodes of the tree and is based on the Tseitin transformation [38].
Ideas from [15,32] are combined to reduce the number of clauses in the resulting
CNF.

7 Experiments

Nenofex was compared to Quantor on the benchmark collection used for the
competitive QBF evaluation in 2007 [23], which contains 1136 instances. Both
solvers used the same version of PicoSAT as backend SAT solver. Tests were run
on a cluster of Pentium IV 3 GHz workstations running Linux, where runtime
and memory were limited by 900 seconds and 1.5 GB, respectively.

208 F. Lonsing and A. Biere

Concerning global flow (GF) and redundancy removal (RR), Nenofex was run
in three versions: either both GF and RR are enabled (GF, RR), or only RR
is enabled (no GF, RR) or both GF and RR are disabled (no GF, no RR). In
either version, the size of the subtree subject to these optimizations was limited
by 500 nodes. Table 1 shows an overall comparison of Quantor and Nenofex, and
in Tab. 2, behaviour unique to each solver is indicated.

8 Conclusion

This paper showed that expansion on quantified NNF needs less space than
CNF. However, it may be worthwhile to extend our algorithms to DAGs. So
far we have only used NNF in an expansion based approach, which eliminates
quantifiers from inside to the outside. As future work, one should also consider
the combination of NNF with DPLL style algorithms. Finally we want to thank
Ofer Strichman for very fruitful discussions on this subject.

References

1. Agrawal, V., Bushnell, M.: Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits. Kluwer, Dordrecht (2000)

2. Ayari, A., Basin, D.A.: QUBOS: Deciding quantified boolean logic using proposi-
tional satisfiability solvers. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002.
LNCS, vol. 2517, Springer, Heidelberg (2002)

3. Benedetti, M.: Quantifier Trees for QBFs. In: Bacchus, F., Walsh, T. (eds.) SAT
2005. LNCS, vol. 3569, pp. 378–385. Springer, Heidelberg (2005)

4. Benedetti, M.: sKizzo: A Suite to Evaluate and Certify QBFs. In: Nieuwenhuis,
R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 369–376. Springer, Heidelberg
(2005)

5. Benedetti, M.: Experimenting with QBF-based formal verification. In: Proc. CFV
2005 (2005)

6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579,
Springer, Heidelberg (1999)

7. Biere, A.: Resolve and Expand. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

8. Bjesse, P., Borälv, A.: DAG-aware circuit compression for formal verification. In:
Proc. ICCAD 2004 (2004)

9. Brummayer, R., Biere, A.: Local two-level and-inverter graph minimization without
blowup. In: Proc. MEMICS 2006 (2006)

10. Bubeck, U., Kleine Büning, H.: Bounded Universal Expansion for Preprocessing
QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
244–257. Springer, Heidelberg (2007)

11. Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified
boolean formulae. In: Proc. AAAI/IAAI 1998 (1998)

12. Darwiche, A.: Decomposable negation normal form. JACM 48(4) (2001)
13. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-

proving. CACM 5(7) (1962)

Nenofex: Expanding NNF for QBF Solving 209

14. Davis, M., Putnam, H.: A computing procedure for quantification theory.
JACM 7(3) (1960)

15. Boy de la Tour, T.: An optimality result for clause form translation. Symb. Com-
put. 14(4) (1992)

16. Dershowitz, N., Hanna, Z., Katz, J.: Bounded Model Checking with QBF. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 408–414. Springer,
Heidelberg (2005)

17. Eén, N., Biere, A.: Effective Preprocessing in SAT Through Variable and Clause
Elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

18. Egly, U., Seidl, M., Tompits, H., Woltran, S., Zolda, M.: Comparing Different
Prenexing Strategies for Quantified Boolean Formulas. In: Giunchiglia, E., Tac-
chella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 214–228. Springer, Heidelberg
(2004)

19. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness (1979)

20. Giunchiglia, E., Narizzano, M., Tacchella, A.: Learning for quantified boolean logic
satisfiability. In: Proc. AAAI 2002 (2002)

21. Giunchiglia, E., Narizzano, M., Tacchella, A.: QBF Reasoning on Real-World In-
stances. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp.
105–121. Springer, Heidelberg (2005)

22. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantifier structure in search based
procedures for QBFs. In: Proc. DATE 2006 (2006)

23. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satis-
fiability library (QBFLIB) (2001), www.qbflib.org

24. Jussila, T., Biere, A.: Compressing BMC encodings with QBF. In: Proc. BMC 2006
(2006)

25. Kleine Büning, H., Karpinski, M., Flügel, A.: Resolution for quantified boolean
formulas. Inf. Comput. 117(1) (1995)

26. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reasoning
for equivalence checking and functional property verification. TCAD 21(12) (2002)

27. Kunz, W., Stoffel, D.: Reasoning in Boolean Networks: Logic Synthesis and Veri-
fication Using Testing Techniques. Kluwer, Dordrecht (1997)

28. Ladner, R.: The computational complexity of provability in systems of modal
propositional logic. SIAM Journal on Computing 6(3) (1977)

29. Letz, R.: Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI),
vol. 2381, Springer, Heidelberg (2002)

30. Mangassarian, H., Veneris, A., Safarpour, S., Benedetti, M., Smith, D.: A
performance-driven QBF-based iterative logic array representation with applica-
tions to verification, debug and test. In: Proc. ICCAD 2007 (2007)

31. Otwell, C., Remshagen, A., Truemper, K.: An effective QBF solver for planning
problems. In: MSV/AMCS (2004)

32. Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation.
Symb. Comput. 2(3) (1986)

33. Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of Ar-
tificial Intelligence Research 10 (1999)

34. Sabharwal, A., Ansótegui, C., Gomes, C., Hart, J., Selman, B.: QBF modeling:
Exploiting player symmetry for simplicity and efficiency. In: Proc. SAT 2006 (2006)

www.qbflib.org

210 F. Lonsing and A. Biere

35. Samer, M., Szeider, S.: Backdoor Sets of Quantified Boolean Formulas. In:
Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 230–243.
Springer, Heidelberg (2007)

36. Stockmeyer, L.: The polynomial–time hierarchy. TCS 3(1) (1976)
37. Malik, S., Tang, D.: Solving Quantified Boolean Formulas with Circuit Observabil-

ity Don’t Cares. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
368–381. Springer, Heidelberg (2006)

38. Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic 2 (1968)

39. Zhang, L.: Solving QBF by combining conjunctive and disjunctive normal forms.
In: Proc. AAAI 2006 (2006)

40. Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaction and Conflicts
in Quantified Boolean Formula Evaluation. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, Springer, Heidelberg (2002)

SAT(ID): Satisfiability of Propositional Logic

Extended with Inductive Definitions

Maarten Mariën, Johan Wittocx, Marc Denecker, and Maurice Bruynooghe

Department of Computer Science, Katholieke Universiteit Leuven, Belgium
{maartenm,johan,marcd,maurice}@cs.kuleuven.be

Abstract. We investigate the satisfiability problem, SAT(ID), of an ex-
tension of propositional logic with inductive definitions. We demonstrate
how to extend existing SAT solvers to become SAT(ID) solvers, and pro-
vide an implementation on top of MiniSat. We also report on a perfor-
mance study, in which our implementation exhibits the expected benefits:
full use of the underlying SAT solver’s potential.

1 Introduction

The SAT problem, deciding the satisfiability of propositional logic (PC) theories,
is a major research theme. An important research direction is to develop SAT
solvers for extensions of PC (e.g., SMT [22]). The use of extended languages leads
to broader applicability of SAT-like systems, facilitates the modelling of applica-
tions, and may substantially reduce the size of encodings. All these benefits also
hold for PC(ID), the extension of propositional logic with inductive definitions
(IDs), as we argue below. This paper presents a SAT solver for PC(ID). The
satisfiability problem of this logic is called the SAT(ID) problem.

Inductive definitions occur very frequently in real-world problems. A familiar
example of an inductive definition is that of reachability. Reachability has so
many applications that, for example, the abstract software design analyzer Al-
loy supports it by a special purpose language construct [11]. FO(ID) [2,4] is an
extension of first order logic with inductive definitions, it was proposed as the
language of a general declarative problem solving framework based on model ex-
pansion [20,16]. PC(ID) is the propositional fragment of FO(ID). Current solvers
reduce FO(ID) model expansion problems to SAT(ID) problems by grounding.
Thus techniques and systems as those presented in this paper form the basic
inference mechanism of this paradigm.

One approach to the SAT(ID) problem is by encoding the IDs into proposi-
tional logic formulas [23], but has the disadvantage that it may considerably in-
crease theory size. The alternative approach is by supporting IDs in SAT solvers.
In previous work, we developed algorithms for integrating inductive definitions
in SAT, and implemented the SAT(ID) solver MidL [17,18]. However, these al-
gorithms required changes to the unit propagation mechanism itself, so that we
couldn’t speak of a proper extension of SAT algorithms. In this work, by con-
trast, we show how SAT(ID) solvers can be built by extending SAT solvers with

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 211–224, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

212 M. Mariën et al.

an additional propagation mechanism suitable for reasoning on inductive defi-
nitions. The obvious advantage from this approach is that the SAT(ID) solver
benefits from any improvement made to the underlying SAT solver. In particular,
it has the same performance on pure propositional problems as the underlying
solver. This was not the case for MidL, which did not have all the fine tuning
of a state of the art SAT solver. A further advantage is that by separating the
two propagation mechanisms (one for propositional theories and one for IDs),
we also strongly simplify the description of a SAT(ID) solver.

We have built an implementation that extends the popular solver MiniSat [6].
The resulting solver, MiniSat(ID), is more efficient than the systems described
in [18] and [23]. We also compared with the best solvers of ASP [15], a formalism
with similar expressivity, and found that MiniSat(ID) is competitive.

In summary, the contributions of this work are:

– An extension of a SAT solver for SAT(ID). This allows one to build SAT(ID)
solvers that fully benefit from the best SAT solving technology.

– A simplification of the formalisation of a SAT(ID) solver.
– An implementation on top of MiniSat that performs substantially better than

other SAT(ID) solvers and is at least competitive with ASP solvers.

After formally introducing SAT and SAT(ID) in Section 2, we present a high
level overview of the requirements in Section 3, paving the way for the “recipe”
for extending a SAT solver with ID propagations, detailed in Section 4. We
evaluate the MiniSat(ID) solver in Section 5 and conclude in Section 6.

2 Preliminaries

2.1 Propositional Logic and SAT Solving

A vocabulary Σ is a set of atoms (propositions), a literal is an atom p or its
negation ¬p. A propositional formula is built from literals using the binary
connectives ∨, ∧, ≡, ⊃. A propositional logic theory is a set of formulas. In
this paper we assume, without loss of generality, that theories are in conjunctive
normal form (CNF): all formulas are disjunctions of literals, called clauses.

A Σ-assignment A is a function A : Σ → {t, f , u} (u stands for “unknown”).
An assignment is total when all elements are assigned either t of f and partial
otherwise1. We leave out Σ when it is clear from the context. In this paper we
assume that Σ always contains the atom ⊥, which is not used in the theory, and
is always assigned f . An assignment can be extended to literals: A(¬p) = ¬A(p)
with ¬t = f , ¬f = t, ¬u = u, and to clauses and conjunctions of literals:
A(

∨

C) =
∨

c∈C A(c) with
∨

V = t if the multiset of truth values V contains
t, otherwise

∨

V = u if V contains u,
∨

V = f otherwise; likewise A(
∧

C) =
∧

c∈C A(c) = ¬
∨

c∈C ¬A(c). A theory T is satisfiable if it has a model : a total

1 It is more convenient to use a three-valued formalization than to use a partial func-
tion that leaves elements undefined when assigned u in the three valued one.

SAT(ID): Satisfiability of PC(ID) 213

assignment A that satisfies every clause of T , denoted A |= T . SAT is the problem
of deciding whether a given theory is satisfiable.

SAT solving is the practice of answering the SAT problem. Although other
solving techniques exist, the current state of the art solvers are based on DPLL [1]
augmented with the two watched literal scheme (2WL) and with clause learn-
ing [21,24]. The propagation method that drives this search is unit propagation,
whereby a literal is assigned true if it occurs as the only non-false literal in
a clause. In Section 4.2 we introduce a highly abstracted version of the 2WL
scheme; for more (implementation-oriented) details we refer the reader to [21].

2.2 Inductive Definitions

This section is based on work on FO(ID) [2,4]. In short, SAT(ID) is the satisfi-
ability problem of the propositional fragment of FO(ID).

A definition Δ over vocabulary Σ is a set of rules of the form p ← ϕ, where
p ∈ Σ, ← is a new binary connective (definitional implication), and ϕ is a
Σ-formula (the body of the rule). Propositional calculus (PC) extended with
inductive definitions (IDs) is called PC(ID); a PC(ID) theory consists of a set of
formulas and definitions. In this paper we assume, without loss of generality [26],
that definitions are in definitional normal form (DefNF): for any p ∈ Σ, the
definition contains at most one rule p ← ϕ, and either ϕ =

∨

Bp or ϕ =
∧

Bp,
where Bp is a set of literals called the body literals. A PC(ID) theory is in DefNF
if it contains only one definition, which is in DefNF, and its set of formulas is in
CNF. In this paper we also assume that PC(ID) theories are in DefNF.

For a definition Δ, the atoms Def(Δ) = {p | (p ← ϕ) ∈ Δ} are called
defined atoms and the others the non-defined ones. Given an assignment A′

of the non-defined atoms, we can simplify Δ by substituting these atoms by
their truth values. The resulting definition contains only defined atoms and their
negative literals; such a set of rules has a unique well-founded model [10], denoted
wfmΔ(A′). This well-founded model is a (possibly partial) assignment of the
defined atoms. A definition Δ is total (with respect to theory T) if this well-
founded model wfmΔ(A′) is a total assignment (for all assignments A′ that
satisfy T). Definitions occurring in standard mathematical practice—when bug-
free—are always total with respect to the rest of the theory in which they occur2,
and we restrict attention to these unless otherwise said. In Section 4.3 we will
explain how to deal with non-total definitions.

A total assignment A satisfies a definition Δ, denoted A |= Δ, if A|Def(Δ) =
wfmΔ(A|Σ\Def(Δ)). We say that A extends A|Σ\Def(Δ) to a model of Δ. Two de-
finitions Δ1, Δ2 are equivalent, denoted Δ1 ≡ Δ2, when for any total assignment
A, A |= Δ1 iff A |= Δ2. A satisfies a PC(ID) theory if it satisfies every formula
and every definition of the theory. The SAT(ID) problem is the satisfiability
problem for PC(ID) theories.

2 For many classes of definitions it is trivial to prove that they are total with respect
to any (the empty) theory, e.g. for definitions that do not contain negation.

214 M. Mariën et al.

The well-founded semantics correctly formalizes the most common forms of
inductive definitions in mathematics: both monotone induction, iterated induc-
tion, and non-monotone induction over a well-founded order [5].

Example 1. Consider irreflexive undirected graphs with nodes {a, b, c}. We rep-
resent the edge between nodes x and y by Exy. Then Rx (for x ∈ {b, c}) in
the following definition expresses the reachability of x from a (Ixy expresses the
reachability of y from a via x): Δ1 = {Rb ← Eab ∨Icb, Rc ← Eac ∨Ibc, Icb ←
Rc ∧ Ebc, Ibc ← Rb ∧ Ebc}.

For instance, to determine reachability from a in a graph with only an edge
between b and c, we start from the assignment A′ with A′(Eab) = A′(Eac) =
f , and A′(Ebc) = t. Simplifying the definition with A′ yields Δ′

1 = {Rb ←
Icb, Rc ← Ibc, Icb ← Rc, Ibc ← Rb}. In wfmΔ′

1
(A′), each of Rb, Rc, Icb

and Ic is false, hence the assignment A1 = {Eab
→ f , Eac
→ f , Ebc
→ t, Rb
→
f , Rc
→ f , Icb
→ f , Ibc
→ f} is a model of Δ1.

For the well-founded semantics we refer to [10]. An important property, though,
is that A |= Δ implies A |= Δ[←/≡], where Δ[←/≡] is the propositional theory
obtained from Δ by substituting the symbol ← by ≡.3 The converse is not true,
Δ has fewer models than Δ[←/≡]. Hence Δ can cause extra constraints that
result in more propagations than in Δ[←/≡]. Our contribution is to extend a
SAT solver with these propagations.

There exist quadratic algorithms for computing a well-founded model in the
context of a given assignment of the non-defined atoms, e.g. [9,14]. However, in
the more general context of PC(ID) theories, such assignments are not given.

3 Requirements for a SAT(ID) Algorithm

In this section we simplify the formalisation presented earlier in [17]. We start
by investigating on an example what are the differences between a definition Δ,
and its propositional counterpart Δ[←/≡].

Example 2. Example 1 continued. Δ1[←/≡] has two models extending A′: one
where all defined atoms are true, and one where they are all false. However, the
first model is not a well-founded model. Indeed, analysing the reason for the
truth of its defined atoms, one observes a circular reasoning as only possible
explanation (Rb is true because Icb is, . . . , Ibc is true because Rb is).

We have to formalize the reasoning about the circularities in the models of
Δ[←/≡]. We do so by using graphical structures called justifications [3].

Definition 1 (Justification). A justification J for a definition Δ is a directed
graph (N, E), where the nodes N are the literals that occur in Δ and E is a
minimal set of edges satisfying: (1) for every rule d ←

∨

Bd ∈ Δ, E contains
precisely one edge (d, b), b ∈ Bd; (2) for every rule c ←

∧

Bc ∈ Δ, E contains
3 DefNF enables a trivial rewriting of formulas in the forms

�
Bp and

�
Bp into CNF.

SAT(ID): Satisfiability of PC(ID) 215

all edges (c, b), b ∈ Bc. The subjustification of a literal l is the subgraph of J
consisting of all paths starting in l.

We denote the unique descendant in a justification J of a disjunctively defined
atom d by J(d). Hence a justification is uniquely characterized by specifying
J(d) for each disjunctively defined atom d. Note that the edges are directed
from defined atoms to body literals.

Example 3. Consider Example 1. For the disjunctive
rule defining Rb one can choose J(Rb) as either Eab or
Icb; similarly J(Rc) is either Eac or Ibc. This results
in 2∗2 = 4 possible justifications for Δ1, one of which
is shown on the right.

J1 Rc
�� Ibc

��

��

Icb

��

�����
� Rb
��

Eab Eac Ebc

A justification reflects a possible reason for the truth of a defined atom: for a
disjunctively defined atom, it suffices that one disjunct is true; for a conjunctively
defined atom, all conjuncts are needed.

To formalize the notion that a defined atom is assigned a truth value in
accordance with a justification, we introduce the notion of support.

Definition 2 (Support and witness). A justification J supports a (partial)
assignment A iff, for each defined atom p, A(p) = A(

∧

{b|(p, b) ∈ J}) when
A(

∧

{b|(p, b) ∈ J}) differs from u. A supporting justification that contains no
cycles (is cycle-free) is a witness for A. The subjustification of a defined atom d
is a witness of d if it is cycle-free and part of a supporting justification.

Observe that for a total assignment the condition simplifies into: for each defined
atom p, A(p) = A(

∧

{b|(p, b) ∈ J}).
Some definitions contain atoms whose truth can never be justified in a well-

founded way (their falsity can); they have to be false in all models. Define � =
{p | any subjustification for p contains a cycle }. These atoms have to be false
in any model. Defining Δ�� as the definition obtained by replacing in Δ the rule
p ← ϕ by p ← ⊥ for each p ∈ � enforces this. It has the advantage of reducing
the size of the definition and of simplifying the solver.

Example 4. Let Δ4 = {p ← q ∨ r, q ← p, r ← p, s ← t ∨ a, t ← s}.
Then p, q, r are defined in terms of each other, so they are part of a cycle in any
justification; hence: Δ��

4 = {p ← ⊥, q ← ⊥, r ← ⊥, s ← t ∨ a, t ← s}.

Lemma 1. Δ ≡ Δ��.

A witness for a (partial) assignment A reflects a well-founded reasoning for the
truths in A and the following theorem holds:

Theorem 1. Let Δ be a total definition, A a total assignment. A |= Δ iff A |=
Δ[←/≡] and there is a justification for Δ�� that is a witness for A.

216 M. Mariën et al.

Example 5. Continuing from Examples 1, 2, 3, we have Δ��
1 = Δ1. We search

a model A4 of Δ1 that extends A′. The justification J1 with J1(Rb) = Icb,
J1(Rc) = Ibc contains a cycle, hence it cannot be a witness for A4. The other
justifications have either J(Rb) = Eab, or J(Rc) = Eac, or both. For any of
them to be a witness of A4, they should support A4, hence we have respectively
either A4(Rb) = f , or A4(Rc) = f , or both. Then because also A4 |= Δ1[←/≡]
is required, A4(Rb) = A4(Rc) = A4(Icb) = A4(Ibc) = f , i.e. A4 = A1.

In other words, if we have the partial assignment A′, we can strengthen it
(propagate) by making Rb and Rc false, based on the above reasoning.

The above theorem suggests the following structure for a SAT(ID) algorithm:

– initialize, to find Δ��,
– apply SAT on Δ��[←/≡] (and on the propositional part of the theory),
– maintain a witness for the assignment found by the SAT solver.

4 Recipe for a SAT(ID) Solver

4.1 Construction of Δ �� and of a Cycle-Free Justification

The purpose of the initialisation step is to identify the atoms of � and to con-
struct Δ��. We do so by marking literals for which a witness exists. Applying
the folowing rules until a fixpoint is reached marks literals with a stratification
level.

– Mark all non-defined atoms and all negative literals with 0.4

– Mark an unmarked disjunctively defined atom d with level l + 1 when one
of its body atoms is marked with level l

– Mark an unmarked conjunctively defined atom d with level l + 1 when all of
its body atoms are marked with levels ≤ l.

Atoms that remain unmarked cannot have a witness and belong to �. A cycle-
free justification of Δ�� can now be derived by assigning to J(d) a literal in the
body with a smaller stratification level (for all disjunctively defined atoms).

4.2 Main Search Procedure

Recall from Section 3 that the goal is to apply SAT on Δ��[←/≡], and to maintain
during the search a witness for the current partial assignment. We start with a
high level description of the procedure and then elaborate on the details.

The main procedure iterates over the following steps until either a solution
is found (a total assignment and a witness for it) or the search space is ex-
hausted.

4 We can mark all negative literals with level 0 because we assume all definitions are
total. We come back to this issue in Section 4.3.

SAT(ID): Satisfiability of PC(ID) 217

1. Select a cycle-free justification Jcf .
2. Use the SAT solver to update the current assignment by performing unit

propagation on Δ��[←/≡] (and on the propositional part of the theory). (If
no propagation is possible, first an undefined atom is assigned t or f .)

3. Use the state of the SAT solver to construct a supporting justification Js.
4. If Js is not a witness then:

4a Use Jcf to adjust Js so that it becomes a witness. In case this fails, a
set Cycle is obtained of defined atoms that cannot have a witness under
the current assignment (in every supporting justification it holds that
the subjustification of the atom has a cycle).

4b If Js is still not a witness, make sure all atoms in Cycle will be set to false
in the next iteration, e.g. by extending the theory with reason clauses.

Step 4a, finding a witness justification if there is one, is the step on which
the efficiency of the whole procedure hinges most. A straightforward algorithm
for this step can be derived from the algorithm from Section 4.1: in the marking
phase, also truth values should be taken into account to ensure a supporting jus-
tification. However, this results in a bottom-up algorithm, which works globally.
Instead, a top-down algorithm which works as locally as possible is much more
efficient for most definitions; we describe such an algorithm below.

Example 6. Let Δ6 = {p ← q∨r, q ← p}, and let the current assignment have
r false, and p and q undefined. A cycle-free justification for Δ6 has Jcf (p) = r
but is not supporting. A supporting justification for Δ6 has Js(p) = q but has
a cycle. Adjusting Js(p) such that it becomes a witness is not possible; the
adjustment fails and the Cycle-set {p, q} is returned. In the next iteration, unit
propagation will set p and q to false; the cycle-free justification Jcf becomes a
supporting one and a solution is obtained.

Step 1: Selection of a cycle-free justification. In the first iteration, the cycle-
free justification Jcf is constructed with the procedure described in Section 4.1
(note that it is a witness as the initial assignment assigns u to all atoms). In
later iterations, the most recent witness is used as cycle-free justification, i.e.,
the supporting justification Js of the previous iteration becomes the cycle-free
justification when it is a witness. Taking the most recent witness keeps the
difference with the supporting justification to be constructed in step 3 to a
minimum and, as will become clear, this reduces the amount of work in step 4a.

Step 2: SAT solving. This is a propagation step by the underlying SAT-solver.
Note that this includes clause learning and backtracking when propagation leads
to the detection of a conflict.

Step 3: Construct a Supporting Justification. We assume here that the SAT
solver we are extending implements unit propagation using the 2WL scheme.
This scheme keeps clauses satisfiable by maintaining for each clause an invariant
on its two watched literals. Let W1(c) and W2(c) be the watched literals of

218 M. Mariën et al.

clause c and A the current assignment, then the invariant is as follows: either
A(W1(c)) = t or A(W1(c)) = u ∧ A(W2(c))
= f .5

We use the watching literals to construct a supporting justification Js. This
requires to set Js(d) for every disjunctively defined atom d. Let d ←

∨

Bd be
the rule defining d. Δ[←/≡] contains the clause ¬d ∨

∨

Bd; let W1 and W2 be
the watched literals of this clause. If W1 = ¬d then Js(d) = W2, otherwise
Js(d) = W1. Knowing that the current assignment is the result of a propagation
step, one can easily verify that Js is a supporting justification.

Step 4a: Find a witness. The supporting justification Js can have cycles. Be-
cause Jcf is cycle-free, it must be the case that each cycle in Js contains at least
one disjunctively defined atom d with Js(d)
= Jcf (d). Let us call such atoms
cycle sources. Cycle sources belong to the set of atoms on which both justifica-
tions disagree: DS = {d | Js(d)
= Jcf (d)}. The overall strategy is to check for
each element cs in DS whether it is a cycle source, and, if so, to perform local
adjustments on the supporting justification so that cs is no longer part of a cycle
(“justifying cs”). Obviously, the smaller DS, the less work this step requires.

These local adjustments may or may not update Js(cs) and may update ele-
ments in which Js does not differ from Jcf . The point is that updates break up the
cycles passing through cs. One may wonder whether these updates may introduce
new cycles for which no element is present in DS. When we explain the details
of the adjustments we will argue (inside the description of Analyse(cs)) that this
is not possible. Hence, if all elements of DS can be successfully processed, Js

becomes cycle-free, i.e., a witness of the current assignment.
For what concerns the elements d in DS that are false under the current

assignment, one can observe that, due to the propagation, all body literals of
the rule defining d must be false as well. Hence for such d, Js remains supporting
when setting Js(d) = Jcf (d) and these elements can be removed from DS.

The further processing then consists of justifying each element cs in DS until
either DS is empty and hence Js is a witness of the current assignment or some
cs could not be justified, in which case a set Cycle as described in the high level
algorithm is returned.

Analyse(cs) (A first version of such an algorithm was in [17])
The disjunctively defined atom cs is not false in the current assignment and

possibly belongs to a cycle in the supporting justification Js.
In an initialisation step, the procedure marks all atoms as unsafe that are

on a path in Js that leads to cs. This means that all atoms that belong to an
eventual cycle are marked as unsafe; however, also other atoms can be marked
as unsafe. If Js(cs) is not marked, then there is no cycle passing through cs and
we are done. Otherwise, cs is a cycle source and Js has to be adjusted.

By “to justify a disjunctively defined atom d” we mean setting Js(d) such
that d is no longer part of a cycle through cs; “to justify a conjunctively defined

5 For other schemes, one first has to use the current assignment to determine for each
clause two literals that satisfy the two watching literals invariant.

SAT(ID): Satisfiability of PC(ID) 219

atom” means showing that all its body literals are justified. The purpose of the
algorithm is to justify cs.

A disjunctively defined atom d can be justified either by setting Js(d) to a
literal that is not marked unsafe, or by setting it to an atom that in turn can
be similarly justified. To this end, a working queue Q, initialised with cs, is
maintained: Q contains atoms that can still be tried to be justified.

The algorithm also maintains a set Cycle, initialised with cs, of atoms that
are waiting to be justified. If the algorithm fails, then the elements of Cycle have
not been justified.

Atoms are popped from Q and processesed, until either it is ensured that cs
is no longer part of a cycle or Q is empty, in which case Cycle is returned. Let
d be the popped element. If it is no longer marked as unsafe, it has already
been justified and the next element can be popped. Otherwise, two cases are
distinguished. They rely on a procedure Justify(q) described afterwards.

d is disjunctively defined. Let Bd be the body of the defining rule. If Bd has
a literal b that is neither marked nor false, then set Js(d) = b (d is not false
under the current assignment, hence, to preserve support, b has to be non
false as well) and perform Justify(d). Note that d is now justified: b is not
marked and hence has no path to cs. Furthermore, it has no path to d either,
because all atoms with a path to d in Js are marked. Therefore adding the
edge d → b cannot create a new cycle.6

If all non false literals in Bd are marked (they are atoms as negative
literals cannot be marked), the ones that are not yet in Cycle are all pushed
on Q and added to Cycle: justifying any of them suffices to justify d (Justify
will take care of doing that).

d is conjunctively defined. Let Bd be the body of the defining rule. If Bd has
no marked literal, d is justified (not part of a cycle through cs), so Justify(d)
is performed. Otherwise, a marked atom q is selected from Bd (preferably
one already in Cycle) and, if not yet in Cycle, added to it and pushed on Q.
This atom q is called the guard of d. Adding only this guard to Q (or none
if already in Cycle), instead of all marked body atoms, has the advantage
that no computation time will be lost on other body atoms in case this
guard cannot be justified. In case it can, Justify(q) will add d to Q again for
reconsideration.

Justify(q). The “unsafe” mark is removed from the atom q and the atom is
removed from Cycle. Moreover, if it is an element from DS then it can be
removed from DS as well, as it can no longer be a cycle source. Finally, if it is
cs itself, we are done and can start with processing the next element in DS. If
it is not cs, we have to continue:

– For every disjunctively defined atom d ∈ Cycle with q ∈ Bd, set Js(d) = q
and perform Justify(d). Indeed, if q is no longer part of the cycle through cs,
then so is d in the changed Js.

6 We do not neccessarily have a witness for b (and d) as b could be part of another
cycle with cycle source in DS.

220 M. Mariën et al.

– For every conjunctively defined atom d that has q as guard, d is (again)
pushed on Q.

If Q becomes empty before cs could be justified, some atoms (at least cs itself)
are still in Cycle, and all possible supporting subjustifications for them have been
exhaustively searched; none has been found that does not cycle through cs. This
implies that these atoms cannot have a witness (a cycle-free subjustification of
a justification supporting the current assignment), hence their truth can never
be justified in a well-founded way and it is correct to add the learning clauses
in step 4b.

The use of a queue as datastructure, and not a stack, means that we search
for a subjustification of cs that does not cycle through cs by making possible
modifications to the supporting justification breadth first, i.e., starting with
edges most close to cs.

Step 4b: Learning clauses from the Cycle-set 7. When the supporting justifica-
tion cannot be adjusted into a cycle-free supporting justification, the set Cycle
of defined atoms that cannot have a witness subjustification is returned. These
atoms have to be set to false in the current assignment as they necessarily have
to be false in each well-founded model extending the current assignment. To
properly integrate this with the SAT solver and its backtracking search, this is
achieved by extending the theory with an appropriate learned clause for each of
these atoms.

Define Ante =
(⋃

d∈Cycle,d disjunctively defined Bd

)

\ Cycle, i.e.: all body atoms
of the disjunctively defined atoms in the cycle set except the cycle atoms them-
selves. The falsity of those literals forces the falsity of the atoms in the cycle set.
A so-called loop formula

∨

Ante∨¬
(∨

Cycle
)

captures this (adapted from [13]);
its CNF contains one reason clause for each atom in Cycle.

4.3 Checking Totality of Definitions

When the search terminates with a SAT model A, the existence of the witness Js

guarantees (Th. 1) that A is also a SAT(ID) model (if the definition was total).
Deciding whether a definition is total is as hard as the SAT(ID) problem itself,

i.e., NP-hard, hence there is no cheap test that could be used to inform the user
if he has written an non-total definition. However, when a model is obtained as
above, one can do some verification. One can calculate wfmΔ(A′), where A′ is the
restriction of A to the non-defined atoms, and check whether this well-founded
model coincides with the original assignment. If it does not, some atoms will be
undefined in the well-founded model; it can be pointed out to the user that the
definition is not total (the undefined atoms and assignment A′ can help the user
in localising the error). Note that coincidence for A′ does not imply that the
definition is total. The well-founded model could be three valued for a different
consistent assignment to the non-defined atoms.
7 For solvers that do not implement clause learning, the negation of each atom in

Cycle has to be added to the propagation queue.

SAT(ID): Satisfiability of PC(ID) 221

5 Implementation on Top of MiniSat

5.1 Introduction

We have implemented the above algorithms as an extension to the popular SAT
solver MiniSat [6]. The resulting program is called MiniSat(ID), and its code is
available on [19]. It contains several efficiency improvements compared to the
abstracted version as presented here:

– Instead of constructing a supporting justification Js in step 3 and later up-
dating it, we only record the changes with respect to the cycle-free justifi-
cation Jcf . When Js eventually becomes a witness, then these changes are
applied on Jcf in step 1.

– In the initialization, MiniSat(ID) computes strongly connected components
(SCCs) in the graph determined by the edges {(q, b) | b is an atom of Bq}.
This information can later be used: e.g. to mark as unsafe only atoms in the
same SCC as the cycle source.

– When there have been no backtracks since last iteration, finding DS is done
by inspecting, using the propagation trail, only those atoms d whose Js(d)
has changed.

MiniSat’s implementation of 2WL is particularly suited for finding Js: a clause
is stored as an array of literals, with the watched literals always being the first
two in the array, and the first watched literal never false.

Apart from obvious changes such as command-line options processing, the
only change we did to the code of MiniSat proper, was in the “propagate()”
method, where we call code to perform steps 3, 4 and 1 of our algorithm before
completing the method.

5.2 Evaluation

SAT(ID) is a new research domain; no organized benchmarking suites exist for
it yet. We know of 3 SAT(ID) solvers: idsat [23], MidL [18], and MiniSat(ID). The
first works by translating IDs into propositional logic, the second is our earlier
work mentioned in the introduction, and the last is a contribution of this paper.

To improve the evaluation, we include also ASP solvers in our comparisons.
These can solve the same problems as SAT(ID) solvers, using similar encodings.
We have included clasp [7] (which was the winner of the ASP competition in
2007 [8]), SModelscc [25], and cmodels [12]. cmodels uses MiniSat as an underlying
SAT solver: it iteratively calls the solver and adds loop formulas until the found
SAT model is also an ASP model, or the search space is exhausted.

We use 2 sets of problem instances with different characteristics: Hamiltonian
Cycle problems and Sokoban problems. The full set of encodings and instances
that we used and results obtained is available on [19]. Here we provide aggregated
results in Tables 1 and 2.8

8 Version numbers of all the solvers used: MidL-2.2.1, idsat-0.9.5, clasp-1.0.5, SModelscc-
1.08 (using option “nolookahead” as advised by the authors), cmodels-3.75, MiniSat-
2.0b. All experiments were run on a P4 2.8GHz with 1GB memory.

222 M. Mariën et al.

We observe that MiniSat(ID) always performs very similarly to clasp, mostly
slightly better. cmodels, on the other hand, shows very variable results. On the
Hamiltonian Cycles, it shows its real drawback: whenever there are many cycles
in the problem, timings get out of hand, because many iterations are needed.
But on Sokoban instances, where reachability is required to express that the
agent can reach the square from where his pushing move starts, most squares are
reachable most of the time. Consequently, the first model found by the SAT solver
underlying cmodels is usually already an ASP model. On these problems, most
of the testing for cycles done by solvers as MiniSat(ID) and clasp is redundant.

It is possible to make PC encodings of both Hamiltonian Cycle and Sokoban
problems (i.e., encodings that do not require IDs), as well as to automatically
translate the PC(ID) instances to PC using idsat. However, both of these ap-
proaches yield PC instances that are orders of magnitude bigger than their cor-
responding PC(ID) instances. Indeed, using MiniSat on these PC instances yields
only timeouts; we have not included these in the tables.

Table 1. Evaluation on Hamiltonian Cycle problems: avg. time in sec, (no. of runs
> 300sec). Averaged over 10 instances.

Size MiniSat(ID) clasp MidL SModelscc cmodels
200 × 1800 1.23 2.08 6.90 16.94 22.74
200 × 2600 1.94 3.22 6.41 38.86 35.09
250 × 1800 6.41 1.44 28.06 (1) 18.48 94.14
250 × 2600 2.19 2.40 24.36 30.30 92.13
300 × 3600 3.28 5.61 23.81 50.60 229.54 (4)
300 × 4800 4.90 6.51 35.96 79.52 178.98 (1)
350 × 3600 3.62 5.09 38.51 (2) n/a (10) 195.91 (9)
350 × 4800 5.53 6.66 50.30 (3) n/a (10) 167.94 (7)

Table 2. Evaluation on Sokoban problems: avg. time in sec, (no. of runs > 300sec).
Averaged over 12 instances.

MiniSat(ID) clasp MidL SModelscc cmodels
7.60 7.57 n/a (12) 38.26 5.16

10.85 13.37 n/a (12) 63.08 8.02
20.33 20.59 n/a (12) 100.59 (1) 14.35
56.02 57.59 223.53 (11) 127.40 (3) 31.73
16.16 24.40 n/a (12) 69.66 (2) 6.55
16.71 13.70 33.2 (11) 82.42 (2) 24.43
9.65 9.68 139.65 (6) 64.69 5.75

34.19 34.20 219.9 (9) 93.76 (4) 25.63

6 Conclusions and Related Work

This work is based on earlier work from [17]. In particular, the proof of Theorem 1
in Section 3 is based on a similar theorem there, and the Analyse algorithm from

SAT(ID): Satisfiability of PC(ID) 223

Section 4.2 is in essence the same algorithm as first published there, though the
presentation differs considerably. In that paper, the definition of justification was
more complex (it involved also justifications for negative literals), and also the
concepts Δ��, Js, and Jcf are new to this paper: these changes have enabled us
to simplify substantially from [17].

The main contribution of this work, however, is to show how a SAT(ID) solver
can be built by extending an existing SAT solver. To do so, we have made the
ID propagation mechanism (steps 1, 3 and 4 of our algorithm) as independent
as efficiently possible from the unit propagation mechanism: apart from adding
literals on the propagation queue or reason clauses to the theory for ID-related
propagations, it only requires inspecting the SAT solver’s state. By contrast, our
earlier solver MidL [18], which was a native SAT(ID) implementation, performed
ID related changes to the solver’s state during unit propagations.

We have implemented these ideas by extending MiniSat: our experiments show
that the resulting solver, MiniSat(ID), exhibits the expected benefits. These ex-
periments included also ASP solvers: ASP is a related formalism with the same
expressivity as PC(ID). However, while PC(ID) is simply an extension of propo-
sitional logic with the natural concept of inductive definitions, ASP has a more
complex relationship with propositional logic [13].

References

1. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

2. Denecker, M.: Extending Classical Logic with Inductive Definitions. In:
Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber,
M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861,
pp. 703–717. Springer, Heidelberg (2000)

3. Denecker, M., De Schreye, D.: Justification semantics: A unifiying framework for
the semantics of logic programs. In: LPNMR 1993, pp. 365–379. MIT Press, Cam-
bridge (1993)

4. Denecker, M., Ternovska, E.: A Logic of Non-monotone Inductive Definitions and
Its Modularity Properties. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS
(LNAI), vol. 2923, pp. 47–60. Springer, Heidelberg (2003)

5. Denecker, M., Vennekens, J.: Well-Founded Semantics and the Algebraic Theory
of Non-monotone Inductive Definitions. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 84–96. Springer, Heidelberg (2007)

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

7. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A Conflict-Driven
Answer Set Solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

8. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczynski, M.:
The First Answer Set Programming System Competition. In: Baral, C., Brewka,
G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 3–17. Springer,
Heidelberg (2007)

9. Van Gelder, A.: The alternating fixpoint of logic programs with negation. Journal
of Computer and System Sciences 47(1), 185–221 (1993)

224 M. Mariën et al.

10. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

11. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

12. Lierler, Y.: cmodels – SAT-Based Disjunctive Answer Set Solver. In: Baral, C.,
Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662,
pp. 447–451. Springer, Heidelberg (2005)

13. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by sat solvers.
Artif. Intell. 157(1-2), 115–137 (2004)

14. Lonc, Z., Truszczyński, M.: On the Problem of Computing the Well-Founded Se-
mantics. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach,
U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI),
vol. 1861, pp. 673–687. Springer, Heidelberg (2000)

15. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp.
375–398. Springer, Heidelberg (1999)

16. Mariën, M., Wittocx, J., Denecker, M.: The IDP framework for declarative problem
solving. In: Search and Logic: Answer Set Programming and SAT, pp. 19–34 (2006)

17. Mariën, M., Wittocx, J., Denecker, M.: Integrating Inductive Definitions in SAT.
In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp.
378–392. Springer, Heidelberg (2007)

18. Mariën, M., Wittocx, J., Denecker, M.: MidL: a SAT(ID) solver. In: 4th Workshop
on Answer Set Programming: Advances in Theory and Implementation, pp. 303–
308 (2007)

19. MiniSat(ID), http://www.cs.kuleuven.be/∼dtai/krr/software/minisatid.html
20. Mitchell, D.G., Ternovska, E.: A framework for representing and solving NP search

problems. In: AAAI 2005, pp. 430–435. AAAI Press / The MIT Press (2005)
21. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering

an efficient SAT solver. In: DAC 2001, pp. 530–535. ACM Press, New York (2001)
22. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:

From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(t). J.
ACM 53(6), 937–977 (2006)

23. Pelov, N., Ternovska, E.: Reducing Inductive Definitions to Propositional Satis-
fiability. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp.
221–234. Springer, Heidelberg (2005)

24. Silva, J.P.M., Sakallah, K.A.: GRASP: A search algorithm for propositional satis-
fiability. IEEE Trans. Computers 48(5), 506–521 (1999)

25. Ward, J., Schlipf, J.S.: Answer Set Programming with Clause Learning. In: Lif-
schitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 302–313.
Springer, Heidelberg (2003)

26. Wittocx, J., Vennekens, J., Mariën, M., Denecker, M., Bruynooghe, M.: Pred-
icate Introduction Under Stable and Well-Founded Semantics. In: Etalle, S.,
Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 242–256. Springer, Hei-
delberg (2006)

http://www.cs.kuleuven.be/~dtai/krr/software/minisatid.html

Towards More Effective Unsatisfiability-Based
Maximum Satisfiability Algorithms

Joao Marques-Silva and Vasco Manquinho

School of Electronics and Computer Science, University of Southampton, UK
IST/INESC-ID, Technical University of Lisbon, Portugal
jpms@ecs.soton.ac.uk, vmm@sat.inesc-id.pt

Abstract. The MaxSAT problem and some of its well-known variants find an
increasing number of practical applications in a wide range of areas. Examples
include different optimization problems in system design and verification. How-
ever, most MaxSAT problem instances from these practical applications are too
hard for existing branch and bound algorithms. One recent alternative to branch
and bound MaxSAT algorithms is based on unsatisfiable subformula identifica-
tion. A number of different unsatisfiability-based MaxSAT algorithms have been
developed, which are effective at solving different classes of problem instances.
All MaxSAT algorithms based on unsatisfiable subformula identification require
using additional Boolean variables, either to allow relaxing some of the clauses or
to encode cardinality constraints used by these algorithms. As a result, these al-
gorithms may require using a significant number of additional Boolean variables,
that can exceed the original number of variables for some problem instances.
This paper proposes techniques for effectively reducing the number of auxiliary
variables that must be used in unsatisfiability-based MaxSAT algorithms. Exper-
imental results indicate that the techniques for reducing the number of auxiliary
variables are effective, and contribute to more efficient MaxSAT algorithms.

1 Introduction

Maximum Satisfiability (MaxSAT) and variants allow modeling an increasingly large
number of optimization problems in an also growing number of practical settings. The
recent application of MaxSAT and variants in design debugging and verification of
complex designs [11, 4, 5] motivated the development of new MaxSAT algorithms, ca-
pable of solving large structured problem instances common to these application do-
mains. Despite the significant improvements made in recent years to standard branch
and bound MaxSAT algorithms, in practice existing branch and bound algorithms are
unable to solve the vast majority of problem instances from practical applications.

One recent promising line of research is the development of MaxSAT solvers based
on the identification of unsatisfiable subformulas (or cores) [4,8,9]. These MaxSAT al-
gorithms are built on top of SAT solvers, and so can exploit the most effective SAT
techniques [2]. Moreover, these algorithms rely extensively on the ability of mod-
ern SAT solvers for producing certificates of unsatisfiability [12]. Even though the
organization of existing unsatisfiability-based MaxSAT algorithms is fairly different,
these algorithms also share a number of key common characteristics. For example,
all unsatisfiability-based MaxSAT algorithms iteratively identify and relax unsatisfi-
able subformulas. The approach for relaxing unsatisfiable subformulas is well-known

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 225–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

226 J. Marques-Silva and V. Manquinho

(e.g. see [8] for an overview), and consists of adding relaxing (or blocking) variables
to each clause in each identified unsatisfiable subformula. Even though existing ex-
perimental results suggest great promise for unsatisfiability-based MaxSAT algorithms,
many problem instances are still too complex even for the most effective algorithms.
One clear potential drawback of unsatisfiability-based MaxSAT algorithms is the iter-
ated addition of auxiliary variables. For many problem instances, it is possible that the
number of additional variables becomes far larger than the original number of variables.
As a result, besides the increase of search space, the much larger number of variables
can often have a negative effect on SAT solvers. This paper proposes techniques for re-
ducing the number of additional variables used in unsatisfiability-based MaxSAT algo-
rithms. The first technique addresses the encoding of the cardinality constraints relating
blocking variables. The second technique addresses the reduction of the actual number
of blocking variables. Experimental results, obtained on a wide range of practical prob-
lem instances, indicates that the reduction of additional variables can often contribute
to significantly reduce run times. The paper is organized as follows. The next two sec-
tions introduce MaxSAT and variants, existing branch and bound algorithms, and recent
unsatisfiability-based algorithms for MaxSAT. Afterwards, Section 4 proposes the new
techniques for reducing the number of variables. The new MaxSAT solvers are evalu-
ated in Section 5 and the paper concludes in Section 6.

2 Maximum Satisfiability

This section provides definitions and background knowledge for the MaxSAT problem;
familiarity with SAT and related topics is assumed [2]. The maximum satisfiability
(MaxSAT) problem can be stated as follows: given a SAT instance represented in Con-
junctive Normal Form (CNF), compute an assignment to the variables that maximizes
the number of satisfied clauses. Variants of the MaxSAT problem include the partial
MaxSAT, the weighted MaxSAT problem and the partial weighted MaxSAT problem.
In the partial MaxSAT problem some clauses (i.e. the hard clauses) must be satisfied,
whereas others (i.e. the soft clauses) may not be satisfied. Weighted variants are ad-
dressed elsewhere (e.g. see [5]). MaxSAT algorithms have been subject to significant
improvements over the last decade (see for example [6, 5] for a review of past work).
Despite the clear relationship with the SAT problem, most modern SAT techniques can-
not be applied directly to the MaxSAT problem [6, 5]. As a result, the most successful
MaxSAT algorithms implement branch and bound search, and integrate sophisticated
lower bounding and inference techniques [5, 6]. Effective lower bounding techniques
are based on unit propagation, whereas effective inference techniques can be viewed as
based on specific resolution patterns. One alternative approach for solving the MaxSAT
problem is to use Pseudo-Boolean Optimization (PBO). An overview is provided in [8].

3 Unsatisfiability-Based MaxSAT Algorithms

As mentioned in the previous section, one of the major drawbacks of the PBO model for
MaxSAT is the large number of blocking variables that must be considered. The ability
to reduce the number of required blocking variables is expected to improve significantly

Towards More Effective Unsatisfiability-Based MaxSAT 227

the ability of SAT/PBO based solvers for tackling instances of MaxSAT. Moreover, any
solution to the MaxSAT problem will be unable to satisfy clauses that must be part of
an unsatisfiable subformula. Consequently, one approach for reducing the number of
blocking variables is to associate blocking variables only with clauses that are part of
unsatisfiable subformulas. However, it is not simple to identify all clauses that are part
of unsatisfiable subformulas. One alternative is the identification and relaxation of un-
satisfiable subformulas. A number of unsatisfiability-based MaxSAT algorithms have
been proposed in recent years [4, 8, 9]. The first algorithm [4] (referred to as msu1)
iteratively finds unsatisfiable cores, adds new blocking variables to the non-auxiliary
clauses in the unsatisfiable core, and requires that exactly one of the new blocking vari-
ables must be assigned value 1. The algorithm terminates whenever the CNF formula
is satisfiable, and the number of assigned blocking variables is used for computing the
solution to the MaxSAT problem instance. The clauses used for implementing the cardi-
nality constraints are declared auxiliary; all other clauses are non-auxiliary. Observe that
each non-auxiliary clause may receive more than one blocking variable, and the total
number of blocking variables a clause receives corresponds to the number of times the
clause is part of an unsatisfiable core. In the msu1 algorithm [4] the pairwise encoding
is used for encoding AtMost1 constraints. In contrast, msu1.1 [8]1 proposes different
linear encodings. Also, msu1.1 uses AtMost1 constraints on the blocking variables as-
sociated with each clause. Alternative unsatisfiability-based MaxSAT algorithms, msu3
and msu4, were proposed recently [8, 9]. Both msu3 and msu4 use a single cardinality
constraint to constrain the number of blocking variables that can be assigned value 1,
and so ensure that at most one blocking variable is required for each clause. msu4 iter-
ates between lower and upper bounds on the number of blocking variables. In contrast,
msu3 resembles msu1 and variants, where only a lower bound on the number of block-
ing variables is updated. Existing experimental results indicate that msu1.1 is often
more efficient than either for msu3 or msu4 for most problem instances.

4 Reducing the Number of Additional Variables

This section describes two techniques for reducing the number of variables. The first
one addresses the encoding of cardinality constraints, while the second one extends the
same ideas to the way blocking variables are used. The original unsatisfiability-based
(partial) MaxSAT algorithm [4] used the pairwise encoding for the AtMost 1 cardinality
constraints (this algorithm will be referred to as msu1). A more effective approach is
to use a linear encoding for the AtMost1 cardinality constraint (e.g. [8] compares a
number of alternative linear encodings). For problem instances with large unsatisfiable
cores, the linear encodings are significantly more effective. The linear encodings use
a linear number of additional variables, the auxiliary variables, and a linear number of
clauses. The number of additional variables, albeit linear, can be a potential drawback
for some problem instances.

One approach to reduce the number of additional variables is to use the recently pro-
posed bitwise encoding [10]. Consider an AtMost1 constraint

∑k−1
i=0 xi ≤ 1. Create r

auxiliary variables, where r = 1 if k = 1 and r = �logk� if k > 1. Let v0, . . . , vr−1

1 For consistency, the algorithm msu2 in [8] is renamed to msu1.1.

228 J. Marques-Silva and V. Manquinho

be the auxiliary variables. Now associate with each xi the binary representation of i.
Finally, for each i create the clauses: (¬xi ∨ pj), j = 0, . . . , r − 1, where pj = vj if
the binary representation of i has value 1 in position j, and pj = ¬vj otherwise. For an
AtMost1 constraint with k variables, the bitwise encoding requires O(log k) variables
and O(k log k) clauses, i.e. O(log k) for each variable in the AtMost1 constraint. Ob-
serve that linear encodings (e.g. [8]) require a linear number of auxiliary variables and
a linear number of clauses. Hence, the bitwise encoding trades off variables for clauses.

Given that the number of iterations of msu1 and msu1.1 is O(m) [8], where m is the
number of clauses in the original formula, the number of additional variables for these
algorithms is in O(m2). By using the bitwise encoding, this asymptotic complexity re-
mains unchanged, but the actual constant is considerably smaller. Also, observe that
the number of blocking variables will be the same; only the number of auxiliary vari-
ables used for encoding the AtMost1 constraint is reduced. One should also observe
that the created binary clauses only selects which variable of the AtMost1 constraint
can be assigned value 1; all the other variables are required to be assigned value 0.
Hence, the encoding effectively represents an AtMost1 constraint. In order to encode
the constraint Exactly1, it would suffice to simply add a clause to capture the AtLeast1
constraint (e.g. [8]). The modified algorithm, using a logarithmic number of auxiliary
variables for representing AtMost1 constraints, is referred to as msu1.2.

The use of the bitwise encoding [10] above for reducing the number of auxiliary
variables, motivates using the same ideas for actually reducing the number of blocking
variables. Instead of selecting at most one blocking variable out of set of k blocking
variables, the bitwise encoding now operates on the clauses of each identified unsatisfi-
able core. This essentially allows eliminating the blocking variables by working directly
with the auxiliary variables used in the bitwise encoding. For an unsatisfiable core with
k clauses, the proposed encoding will require r auxiliary variables, where r = 1 if
k = 1 and r = �logk� if k > 1. Moreover, the encoding will require O(log k) vari-
ables and O(k log k) new clauses, i.e. O(log k) new clauses for each original clause
in the unsatisfiable core. Hence each original clause ωi in an unsatisfied core generates
O(log k) new clauses. The proposed approach needs to take into consideration when
a clause has already been relaxed. Assume clause ωij , relaxed from an original clause
ωi, is included in an identified unsatisfiable core. Then all clauses generated from ωi

need to be re-relaxed. The modified algorithm, using a logarithmic number of blocking
variables for each unsatisifiable core, is referred to as msu2.

5 Results

This section summarizes results on MaxSAT and partial MaxSAT instances from practi-
cal applications. A number of classes of instances were considered. Class DEBUG [11]
represents design debugging MaxSAT instances. FIR [7] represents filter design par-
tial MaxSAT instances. Class SYN [7] represents logic synthesis partial MaxSAT in-
stances. Finally, class MTG [7] represents minimum size test pattern generation partial
MaxSAT instances. All partial MaxSAT instances are obtained by translating restricted
pseudo-Boolean problem instances into partial MaxSAT (e.g. using a recently proposed
translation [5]). A number of MaxSAT solvers was considered, namely: maxsatz [6],

Towards More Effective Unsatisfiability-Based MaxSAT 229

Table 1. Number of aborted instances, with a 1000 seconds timeout

Class #I maxsatz minimaxsat minisat+ msu1 msu1.1 msu1.2 msu2 msu3 msu4
DEBUG 65 62 65 63 22 14 8 11 24 23
FIR 59 – 45 37 15 14 9 12 32 44
SYN 74 – 46 44 48 44 42 42 47 51
MTG 215 – 7 0 44 44 52 60 11 16
Total 413 – 163 144 129 116 111 125 114 134

the best performing solver in the MaxSAT 2007 evaluation [1]; minimaxsat [5], a
recent competitive MaxSAT solver; and the PBO formulation of the MaxSAT prob-
lem solved with minisat+ [3], one of the best performing PBO solvers [7]. More-
over, the unsatisfiability-based MaxSAT solvers considered were msu1 [4]; msu1.1 [8]
(renamed from msu2 for naming consistency); msu3 [8]; msu4 [9]; and the new algo-
rithms described in this paper msu1.2 and msu2. All msu algorithms are built on top
of the same unsatisfiable core extractor, implemented with minisat 1.14 [2]. Other
alternative MaxSAT algorithms (see [8, 9] for an overview) are known not to be effi-
cient for these instances. Moreover, minisat+ was run with its best configuration for
these classes of instances and, for the partial MaxSAT instances, the original PBO in-
stances were considered. The results for all MaxSAT solvers on all problem instances
were obtained on a Linux server running RHE Linux, with a Xeon 5160 3.0 GHz dual-
core processor. For the experiments, the available physical memory of the server was
2 GByte. The time limit was set to 1000 seconds per instance. Table 1 summarizes the
number of aborted instances for the MaxSAT solvers considered. Overall, CPU times
correlate well with the number of aborted instances and are not shown due to lack of
space (see [8,9] for plots for the other algorithms). For maxsatz, only MaxSAT results
are shown, since maxsatz cannot be used with partial MaxSAT instances. The solvers
exhibiting the best performance are highlighted in bold. The results indicate that the
new algorithms are more efficient than previous MaxSAT algorithms. With the excep-
tion of class MTG, MaxSAT algorithms are now vastly superior to minisat+, one of the
best performing PBO solvers [3]. For classes DEBUG and FIR, the instances aborted by
either msu1.2 and msu2 are a fraction of the instances aborted by minisat+. Similarly,
the two branch and bound algorithms considered, maxsatz and minimaxsat, perform
much worse than any of the unsatisfiability-based MaxSAT algorithms. The results in-
dicate that msu1.2 is the overall best performing algorithm. msu2 does not perform as
well, especially for class MTG. This is in part explained by the growth in the number
of clauses that msu2 often requires. The improvements introduced by msu1.2 allow
significantly reducing the number of aborted instances for classes DEBUG and FIR,
and also reducing the number of aborted instances for class SYN. For class MTG the
results for msu1.2 are worse than for msu1.1, and also worse than for msu3 and msu4.
Moreover, the results also suggest that msu1.2 is the preferred algorithm for classes
DEBUG, FIR and SYN, and that minisat+ is the preferred algorithm for class MTG.
Together, msu1.2 and minisat+ abort only 50 instances, thus motivating a portfolio
of algorithms for MaxSAT. The experimental results confirm that techniques for reduc-
ing the number of additional variables are often effective. The performance of msu2 is

230 J. Marques-Silva and V. Manquinho

affected by the significant increase in the number of clauses that can often take place.
As a result, a mixed approach, involving msu1.2 and msu2 should be considered.

6 Conclusions

Despite the significant improvements in MaxSAT algorithms over the last few years
[6,5], current state of the art MaxSAT solvers are ineffective on many problem instances
obtained from practical applications [11, 5, 9]. This paper continues recent work on de-
veloping MaxSAT algorithms based on identification of unsatisfiable sub-formulas [4,
8,9], by proposing effective techniques for reducing the number of additional variables
that must be used. Two different algorithms are developed msu1.2 and msu2. The ex-
perimental results indicate that the proposed techniques are effective, and that msu1.2
is the most effective algorithm. The results also suggest that a mixed approach between
msu1.2 and msu2 is expected to provide the most efficient approach.

Acknowledgement. This work is partially supported by EPSRC grant EP/E012973/1,
by EU grants IST/033709 and ICT/217069, and by FCT grants POSC/EIA/61852/2004
and PTDC/EIA/76572/2006.

References

1. Argelich, J., Li, C.M., Manyà, F., Planes, J.: MaxSAT evaluation,
http://www.maxsat07.udl.es

2. Een, N., Sörensson, N.: An extensible SAT solver. In: International Conference on Theory
and Applications of Satisfiability Testing, pp. 502–518 (May 2003)

3. Een, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satis-
fiability, Boolean Modeling and Computation 2 (March 2006)

4. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: International Conference on
Theory and Applications of Satisfiability Testing, pp. 252–265 (August 2006)

5. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: a new weighted Max-SAT solver. In: Inter-
national Conference on Theory and Applications of Satisfiability Testing, pp. 41–55 (May
2007)

6. Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. Journal of Artificial In-
telligence Research 30, 321–359 (2007)

7. Manquinho, V., Roussel, O.: Pseudo-Boolean evaluation,
http://www.cril.univ-artois.fr/PB07

8. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability.
Computing Research Repository, abs/0712.0097 (December 2007)

9. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable
cores. In: Design, Automation and Testing in Europe Conference (March 2008)

10. Prestwich, S.D.: Variable dependency in local search: Prevention is better than cure. In: Inter-
national Conference on Theory and Applications of Satisfiability Testing, pp. 107–120 (May
2007)

11. Safarpour, S., Mangassarian, H., Veneris, A., Liffiton, M.H., Sakallah, K.A.: Improved design
debugging using maximum satisfiability. In: Formal Methods in Computer-Aided Design, pp.
13–19 (November 2007)

12. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker:
Practical implementations and other applications. In: Design, Automation and Testing in
Europe Conference, pp. 10880–10885 (March 2003)

http://www.maxsat07.udl.es
http://www.cril.univ-artois.fr/PB07

A CNF Class Generalizing Exact Linear

Formulas

Stefan Porschen and Ewald Speckenmeyer

Institut für Informatik, Universität zu Köln,
Pohligstr. 1, D-50969 Köln, Germany

{porschen,esp}@informatik.uni-koeln.de

Abstract. The fibre view on clause sets, previously introduced in [12],
is used in the present paper to define and investigate subclasses of CNF
that appear to be polynomial time solvable w.r.t. SAT. The most in-
teresting of these classes is a generalization of exact linear formulas,
namely formulas such that each pair of distinct clauses has all variables
in common or exactly one. By definition, in an exact linear formula each
pair of distinct clauses has exactly one variable in common. SAT-solving
for exact linear formulas was shown to be easy in [14]. Here we pro-
vide an algorithm solving the decision and counting variants of SAT for
the generalized class in polynomial time. Moreover we study some other
structurally defined formula classes on the basis of the fibre view. We
show that these classes have the property that their members all are
satisfiable or all are unsatisfiable.

Keywords: CNF satisfiability, exact linear formula, hypergraph, fibre-
transversal.

1 Introduction

Exploiting the fibre view on clause sets recently introduced in [12] we consider
some structurally defined subclasses of CNF regarding their behaviour w.r.t.
SAT. The most interesting of these classes yields a generalization of exact linear
formulas. The class of linear CNF formulas has recently been studied in [14] re-
vealing its general NP-completeness w.r.t. SAT. Each pair of distinct clauses of a
linear formula by definition has at most one variable in common. And requiring
that there should be exactly one variable in the intersection of the variable sets
of each pair of distinct clauses, one arrives at the subclass of exact linear formu-
las. SAT-solving was shown to be easy for exact linear formulas in [14]. Here we
consider the class of formulas where each pair of distinct clauses has all variables
in common or exactly one, thus extending exact linear formulas. The members
of this class are called exact linearly-based formulas. We design an algorithm
providing polynomial-time SAT-decidability for this class. Moreover, by a slight
modification we are also able to show that the counting variant #-SAT for exact
linearly-based formulas belongs to P . Furthermore, we study some other struc-
turally defined formula classes using the fibre view on clause sets, and show that

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 231–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

232 S. Porschen and E. Speckenmeyer

they behave trivially w.r.t. SAT meaning that its members always are satisfiable.
There are known several classes, for which SAT can be tested in polynomial time,
such as quadratic formulas, (extended and q-)Horn formulas, matching formulas
etc. [1,3,4,5,6,8,9,10,16,17]. The classes studied in this paper appear not to be-
long to one of these classes. On the other hand, mixing polynomial-time classes,
in general, yields classes for which SAT becomes NP-complete, as already is the
case for Horn and quadratic formulas [13], cf. also [8]. Closely related to some
of these classes is the classic theorem of Schaefer in [15]. That theorem classifies
satisfiability problems w.r.t. their complexity. The theorem does not automat-
ically apply if restrictions on the number of occurrences of variables in CNF
formulas are valid explicitly or implicitly. E.g. in [7] it is shown that whereas
unrestricted k-SAT is NP-complete, for k ≥ 3, it behaves trivially (i.e. all for-
mulas are satisfiable) if each clause has length exactly k and no variable occurs
in more than f(k) clauses; it gets NP-complete then if variables are allowed to
occur at most f(k)+1 times. Here f(k) asymptotically grows as �2k/(e ·k)�; this
bound has meanwhile been improved by other authors. However, it seems to be
unknown whether one can expect a dichotomy result like Schaefer’s regarding
the occurrence number. The classes studied in the present paper do not meet
the requirement that all clauses have a constant equal length, but seem to have
a hidden or implicit bound on the maximal number of occurences along with
additional structure.

The paper is organized as follows: The next section collects the notation and
some preliminaries. Section 3 describes the fibre view on clause sets, and elab-
orates a subclass only containing unsatisfiable members. Section 4 contains the
main part of the paper, namely showing that the decision, search and counting
variants of SAT for exact linearly-based formulas can be solved in polynomial
time. In Section 5 we apply the fibre view concept on some further CNF classes
showing that they behave trivially w.r.t. SAT. Finally, in Section 6 we collect
some conclusions and open problems.

2 Notation and Preliminaries

To fix the notation, let CNF denote the set of duplicate-free conjunctive normal
form formulas over propositional variables x ∈ {0, 1}. A positive (negative) literal
is a (negated) variable. The negation (complement) of a literal l is l̄. Each formula
C ∈ CNF is considered as a clause set, and each clause c ∈ C is represented as a
literal set which in addition is assumed to be free of complemented pairs {x, x̄}.
For formula C, clause c, literal l, by V (C), V (c), V (l) we denote the variables
contained (neglecting negations), correspondingly. L(C) is the set of all literals
in C. The length of C is denoted as ‖C‖. For U ⊂ L(C), let C(U) := {c ∈
C|c ∩ U 	= ∅}; we simply write C(l), if U = {l}. The satisfiability problem
(SAT) asks, whether input C ∈ CNF has a model, which is a truth assignment
t : V (C) → {0, 1} assigning at least one literal in each clause of C to 1. For C ∈
CNF, let M(C) be the space of all models of C and let UNSAT := CNF − SAT.
It is convenient to identify truth assignments with |V |-clauses in the following

A CNF Class Generalizing Exact Linear Formulas 233

simple way: Let x0 := x̄, x1 := x. Then we can identify t : V → {0, 1} with the
literal set {xt(x)|x ∈ V }, and, for b ⊂ V , the restriction t|b is identified with the
literal set {xt(x)|x ∈ b}. The collection of all literal sets obtained as just described
by running through all total truth assignments V → {0, 1} is denoted as WV .
We call WV the hypercube (hc) formula (over V), since its clauses correspond
1:1 to the vertices of a hypercube of dimension |V |. E.g., for V = {x, y}, we
have WV = {xy, x̄y, xȳ, x̄ȳ} writing clauses as literal strings. For a clause c, we
denote by cγ the clause in which all its literals are complemented. Similarly,
let tγ = 1 − t : V → {0, 1} ∈ WV , Cγ := {cγ |c ∈ C}, and for C ⊆ CNF, let
Cγ := {Cγ |C ∈ C}. We call C asymmetric if for each c ∈ C we have cγ 	∈ C.
Asym ⊂ CNF, denotes the set of all asymmetric formulas.

3 The Fibre View on Clause Sets

The fibre view, as introduced in [12], regards a clause set C as composed of
fibres over a hypergraph: All clauses c of C projecting onto the same variable set
b = V (c), when negations are eliminated, form the fibre Cb over b, namely Cb =
{c ∈ C|V (c) = b}. The collection of these base elements b forms a hypergraph, the
base hypergraph H(C) = (V (C), B(C)) of C, where B(C) = {b := V (c)|c ∈ C}.
Hence, C is the disjoint union of all its fibres: C =

⋃

b∈B(C) Cb. Conversely,
we can also start with a given arbitrary hypergraph H = (V, B) serving as a
base hypergraph if its vertices x ∈ V are regarded as Boolean variables such
that for each x ∈ V there is a (hyper)edge b ∈ B containing x. Recall that, for
any b ∈ B, Wb is the hypercube formula over the set of variables in b. Then
the set of all clauses over H is KH :=

⋃

b∈B Wb, also called the total clause
set over H. Wb is the fibre of KH over b. For example, given V = {x1, x2, x3},
and B = {b1 := x1, b2 := x1x2, b3 := x1x3}, we have KH = Wb1 ∪ Wb2 ∪
Wb3 , where Wb1 = {x1, x̄1}, Wb2 = {x1x2, x̄1x2, x1x̄2, x̄1x̄2}, and Wb3 =
{x1x3, x̄1x3, x1x̄3, x̄1x̄3} are the hc formulas over b1, b2, and b3, respectively.

A formula over H (or a H-based) formula is a subset C ⊆ KH such that
Cb := C ∩ Wb 	= ∅, for each b ∈ B. Given a H-based formula C ⊆ KH with
the additional property that C̄b := Wb − Cb 	= ∅ holds, for each b ∈ B, then
we can define its H-based complement formula C̄ :=

⋃

b∈B C̄b = KH − C with
fibres C̄b. For example, given H = (V, B) with V = {x1, x2, x3}, and B =
{x1x2, x1x3}, let C = {x1x̄2, x1x2, x1x̄3, x̄1x̄3} then KH = C ∪ C̄ where C̄ =
{x̄1x2, x̄1x̄2, x1x3, x̄1x3}. A fibre-transversal (f-transversal) of KH (not to be
confused with a hitting set) is a H-based formula F ⊂ KH such that |F∩Wb| = 1,
for each b ∈ B. Hence F is a formula containing exactly one clause of each fibre
Wb of KH; let that clause be refered to as F (b). For convenience let F(KH) be the
set of all f-transversals of KH. An important type of f-transversals F are those
containing each variable of V as a pure literal, that is, occurring in F with a single
polarity only. Such f-transversals are called compatible and have the property
that

⋃

b∈B F (b) ∈ WV . Let Fcomp(KH) be the collection of all compatible f-
transversals of KH. As a simple example for a compatible f-transversal, consider
the base hypergraph H = (V, B) with variable set V := {x1, x2, x3} and B :=

234 S. Porschen and E. Speckenmeyer

{b1 := x1x2, b2 := x1x3, b3 := x2x3}. Then, e.g., the clauses c1 := x̄1x2 ∈ Wb1 ,
c2 := x̄1x̄3 ∈ Wb2 and c3 := x2x̄3 ∈ Wb3 , denoted as literal strings, form
a compatible f-transversal of the corresponding KH, because c1 ∪ c2 ∪ c3 =
x̄1x2x̄3 ∈ WV . In a certain sense orthogonal to compatible f-transversals are
the diagonal f-transversals. By definition, a diagonal f-transversal F meets each
compatible f-transversal F ′ of KH in at least one clause; formally: for each
F ′ ∈ Fcomp(KH) we have F ∩ F ′ 	= ∅. Let Fdiag(KH) be the collection of all
diagonal f-transversals of KH.

As for the total clause set KH we can define f-transversals for a H-based
formula C ⊂ KH: An f-transversal F of C contains exactly one clause of each
fibre Cb of C. The collection of all f-transversals of C is denoted as F(C). We
also define compatible and diagonal f-transversals of C via Fcomp(C) := F(C)∩
Fcomp(KH), and Fdiag(C) := F(C) ∩ Fdiag(KH).

The following result characterizes satisfiability of a formula C in terms of
compatible f -transversals in its based complement formula C̄ (cf. [12]):

Theorem 1. For H = (V, B), let C ⊂ KH be a H-based formula such that
C̄ is H-based, too. Then C is satisfiable if and only if C̄ admits a compatible
f-transversal, i.e. Fcomp(C̄) 	= ∅.

Proof. Suppose C is satisfiable and let t ∈ WV be one of its models. Then for
each base point b ∈ B = B(C) = B(C̄), the restriction t|b of t to b satisfies all
clauses of the fibre Wb of KH except for the clause tγ |b obtained from t|b via
complementing all literals. Hence Ft(b) := tγ |b is a member of C̄ and therefore
Ft := {Ft(b)|b ∈ B} is a compatible f-transversal of C̄ because C̄ is H-based and
⋃

Ft =
⋃

b∈B tγ |b = tγ .
Conversely, let F be a compatible f-transversal of C̄. Then, by definition of

compatibility and because V has no isolated variables t :=
⋃

b∈B F (b) ∈ WV is
a truth assignment. And we claim that via complementing all assignments we
obtain a model tγ of C. Indeed, suppose the contrary, meaning that there is a
base point b and a clause c over b belonging to C that is not satisfied by tγ . Then
this clause must have the form c = t|b ∈ C, but this means a contradiction to
F (b) = t|b ∈ C̄ as F was assumed to be an f-transversal of C̄.
�
Whereas compatible f-transversals always exist, it is not clear whether diagonal
transversals exist in KH. However, if there are diagonal transversals, then each
fixed compatible transversal meets all diagonal transversals in KH. We have
some more easy observations regarding f-transversals.

Proposition 1. (1) Fcomp(KH) ∼= WV (means isomorphism),
(2) Fdiag(KH) = {F ∈ F(KH)|∀t ∈ WV ∃b ∈ B : F (b) = t|b},
(3) Fcomp(KH)γ = Fcomp(KH),
(4) Fdiag(KH)γ = Fdiag(KH),
(5) Fdiag(KH) ∩ Fcomp(KH) = ∅,
(6) F ∈ Fdiag(KH)⇔F ∈ UNSAT,
(7) F ∈ Fcomp(KH) ⇒ F ∈ SAT.

Proof. Assertion (1) follows from Theorem 1. Assertion (2) says that each diag-
onal f-transversal meets each clause in WV and thus follows from (1) immediately.

A CNF Class Generalizing Exact Linear Formulas 235

Assertion (3) is obvious. Let F ∈ Fdiag(KH) and assume there is F ′ ∈ Fcomp(KH)
such that F ′(b) 	= F γ(b), for all b ∈ B, equivalent to F ′γ(b) 	= F (b), for all
b ∈ B, contradicting that F is diagonal, so yielding (4). Assume there is F ∈
Fdiag(KH) ∩Fcomp(KH), then with (3) also F γ ∈ Fcomp(KH) holds, but we have
F γ(b) 	= F (b), for each b ∈ B, therefore F 	∈ Fdiag(KH) yielding a contradiction
implying (5). According to Theorem 1, we have F ∈ UNSAT iff Fcomp(F̄) = ∅ iff,
∀F ′ ∈ Fcomp(KH), there is b ∈ B such that F ′(b) = F (b) ∈ F iff F ∈ Fdiag(KH),
hence (6). (7) is implied by (6) according to (5); moreover for F ∈ Fcomp(KH),
⋃

F ∈ WV specifically satisfies F .
�
Thus, we have three types of f-transversals composing F(KH), namely compat-
ible f-transversals which are always satisfiable, diagonal ones which (which do
not exist in each case but) are always unsatisfiable, and finally, f-transversals
that neither are compatible nor diagonal but are always satisfiable.

Definition 1. A formula D ⊆ KH is called a diagonal formula if, for each
F ∈ Fcomp(KH), F ∩ D 	= ∅ holds.

Obviously each F ∈ Fdiag(KH) (if existing) is a diagonal formula. Since a diag-
onal formula D contains a member of each compatible f-transversal the comple-
ment formula D̄ cannot have a compatible f-transversal. Therefore D ∈ UNSAT
according to Theorem 1, and we have:

Proposition 2. A formula is unsatisfiable iff it contains a diagonal subformula.

Consider a simple application of the concepts above: Recall that a hypergraph is
called Sperner if no hyperedge is contained in another hyperedge [2]. Similarly,
we call a formula C ∈ CNF simple if no clause is contained in another one. A
non-simple formula C can easily be turned into a SAT-equivalent simple one by
removing each clause c′ ∈ C that properly contains another clause. If C is simple
its base hypergraph H(C) = (V (C), B(C)) can either be Sperner or non-Sperner.
Assuming H(C) = H(C̄) we have that H(C) Sperner implies that C̄ is simple. The
case that H(C) = H(C̄) is non-Sperner, but both C and C̄ are simple is illustrated
by the following example (where clauses and edges are represented as strings):

C = {xy, xȳz, x̄yz, x̄ȳz, xȳz̄, x̄yz̄, x̄ȳz̄}
C̄ = {xȳ, x̄y, x̄ȳ, xyz, xyz̄}

B(C) = {xy, xyz}

Theorem 2. Let C ∈ CNF be such that H(C) = H(C̄) is non-Sperner, but both
C and C̄ are simple. Then C and C̄ are unsatisfiable.

Proof. For proving that C is unsatisfiable, it is sufficient to show that C̄ cannot
have a compatible f-transversal according to Theorem 1. Since H(C) is non-
Sperner there are b, b′ ∈ B(C) with b ⊂ b′. Now, for each f-transversal F ∈
F(C̄), we have F (b) 	= F (b′), and F (b) 	⊆ F (b′) because C̄ is assumed to be
simple. That means there is x ∈ b such that x ∈ F (b), x̄ ∈ F (b′) or vice versa,
hence F (b) ∪ F (b′) ⊃ {x, x̄} is not compatible implying that C ∈ UNSAT. By
exchanging the roles of C and C̄ we also obtain that C̄ is unsatisfiable.
�

236 S. Porschen and E. Speckenmeyer

Corollary 1. If C is simple and satisfiable then either
(i) H(C) is Sperner and C̄ is simple or
(ii) neither H(C) is Sperner nor C̄ is simple and, for each pair b1 ⊂ b2 ∈ B(C),
there are c1 ⊂ c2 ∈ C̄ such that V (ci) = bi, i = 1, 2.

The criterion in (ii) above is not sufficient for satisfiability of C: Let b1 ⊂ b ∈
B(C) such that c1 ⊂ c ∈ C̄ and moreover let b′1 ⊂ b′ ∈ B(C) such that c′1 ⊂
c′ ∈ C̄, where V (c) = b, V (c′) = b′, V (c1) = b1, and V (c′1) = b′1. Now assume
that b ∩ b′ 	= ∅, and that c, c′ are the only clauses over b, b′ in C̄. Clearly,
if c|b∩b′ 	= c′|b∩b′ then there is no compatible f-transversal of C̄, so C has no
model.

4 Formulas over Exact Linear Base Hypergraphs

Returning to the general discussion, let H = (V, B) be a non-empty base hyper-
graph, then clearly Fcomp(KH) is non-empty we even have |Fcomp(KH)| = 2|V |

according to Prop. 1 (1). However, a priori it is not clear whether in general
Fdiag(KH) 	= ∅ holds, too. Actually, this depends on the structure of the base
hypergraph H. To that end, let us consider an interesting and guiding example
regarding satisfiability of certain formulas over an (exact) linear base hypergraph
H = (V, B). By definition, H linear has the property |b ∩ b′| ≤ 1, for all distinct
b, b′ ∈ B, and the exact linear case is defined replacing ≤ with =. Recall that
a hypergraph H = (V, B) is called loopless iff |b| ≥ 2, for all b ∈ B. In [14]
(exact) linear formulas are discussed in more detail. In an (exact) linear formula
the variable sets of distinct clauses have at most (resp. exactly) one member in
common.

Lemma 1. [14] Each exact linear formula without unit clauses is satisfiable.

From the Lemma we conclude that if the base hypergraph H = (V, B) is ex-
act linear and loopless then for the corresponding total clause set Fdiag(KH)
= ∅ holds. Indeed, no unsatisfiable f-transversal can exist then, because each
is exact linear and we are done by contraposing Proposition 1 (6). So indeed
there are hypergraphs admitting no diagonal f-transversal. The reverse ques-
tion, namely are there hypergraphs at all such that the total clause sets have
diagonal f-transversals, also is answered positive: Each unsatisfiable linear for-
mula obviously is an f-transversal of the total clause set over the underlying
linear base hypergraph, so it is diagonal.

Fact 1. The notion of (diagonal) f-transversals generalizes the notion of (un-
satisfiable) linear formulas.

We now address the class of all CNF formulas over exact linear base hypergraphs,
called exact linearly-based formulas, for short. It is easy to see that this class
corresponds to the class of CNF formulas such that the variable sets of each pair
of clauses have exactly one or all members in common. Clearly, each exact linear
formula also is exact linearly-based. In the following we investigate some aspects
of SAT regarding the class of exact linearly-based formulas.

A CNF Class Generalizing Exact Linear Formulas 237

To a H-based formula C, for arbitrary H, we can assign its fibre graph G(C) as
follows: Each clause c of C corresponds to a vertex. And vertices c, c′ ∈ C form
an edge iff (1) they belong to distinct fibres of C, i.e. there are b, b′ ∈ B, b 	= b′,
such that c ∈ Cb, c′ ∈ Cb′ ; and (2) c ∩ c′ 	= ∅. In terms of the fibre graph we
obtain the following characterization of satisfiability in the case of exact linear
bases. Recall that a clique is a (sub)graph such that each pair of its vertices are
joined by an edge.

Proposition 3. Let C be exact linearly-based such that H(C) = H(C̄) =: H =
(V, B). Then C is satisfiable iff G(C̄) admits a clique of size |B|.

Proof. In view of Theorem 1 we prove that C̄ admits a compatible f-transversal
if and only if G(C̄) has a clique of size |B|. Assume G(C̄) has such a clique F ,
then it contains exactly one member of each of the fibres of C̄, hence the clauses
corresponding to the vertices in F form an f-transversal of C̄, also denoted as F .
Suppose that F is not a compatible f-transversal. Then the union of all clauses
in F contains a variable x and its negation x̄, i.e. a complemented pair. As by
definition no clause of C has a complemented pair, there are two clauses c and c′

in F such that x ∈ c and x̄ ∈ c′. Since H is linear and F is an f-transversal V (c)
and V (c′) do not have another variable in common than x meaning c ∩ c′ = ∅.
Because c and c′ form an edge in G(C̄) we have c∩c′ 	= ∅ yielding a contradiction,
so F is a compatible f-transversal.

Conversely, assume that C̄ has a compatible f-transversal F . Then it has
size |B| because C̄ is a H-based formula by assumption. Suppose there are two
members c, c′ in F whose vertices do not form an edge in G(C̄). Then c∩ c′ = ∅
implying V (c) ∩ V (c′) = ∅ contradicting exact linearity of H. In conclusion, the
members of F correspond to a |B|-clique in G(C̄).
�
Note that if C̄ is not a H-based formula then C is unsatisfiable trivially because
it contains a complete Wb as fibre subformula. Moreover notice that the proof
above is not valid for arbitrary base hypergraphs. The next observation concerns
rather specific exact linearly-based formulas:

Lemma 2. Let H = (V, B) be an exact linear base hypergraph such that there is
a vertex x ∈ V occuring in each b ∈ B. Let C ⊂ KH be a H-based formula such
that C̄ also is H-based. Then we have: C ∈ UNSAT if and only if

(∗) |{b ∈ B|∀c ∈ C̄b : x ∈ c}| > 0 and |{b ∈ B|∀c ∈ C̄b : x̄ ∈ c}| > 0

Moreover, assuming that C is given in terms of its fibre subformulas we can
check it for satisfiability in linear time O(‖C‖).

Proof. In view of Prop. 3 it is sufficient to show that G(C̄) admits no |B|-clique
iff (∗) in the assertion is true. But this is obvious because (∗) holds for C̄ iff there
is a fibre subformula C̄b containing x as pure literal, and (at least) one other C̄b′

containing x̄ as pure literal. Hence no clause contained in C̄b can be joined in
G(C̄) to a clause in C̄b′ and we proved the first assertion.

For verifying the second assertion, we decribe a simple algorithm checking
(∗), for C̄, via inspecting C in linear time. To that end initialize two counters

238 S. Porschen and E. Speckenmeyer

Nx ← 0 and Nx̄ ← 0. Then check each fibre subformula Cb ⊂ C, b ∈ B, whether
it contains exactly 2|b|−1 clauses containing literal x, respectively literal x̄. If
the first holds true then increase counter Nx̄ by one; if the second is true then
increase counter Nx by one; otherwise do not modify the counters, respectively.
Proceed in this way until either Nx̄ > 0, and Nx > 0 then stop, and return
C ∈ UNSAT. Or the whole formula has been inspected and Nx̄ = 0 = Nx then
return C ∈ SAT. The algorithm works correctly, as it is easy to see that (∗)
holds iff Nx̄ > 0 and Nx > 0.
�
The next algorithm, instead of searching G(C̄), works via inspecting C itself:

Theorem 3. For C exact linearly-based and represented in terms of its fibre
subformulas, SAT can be decided in polynomial time.

Proof. For C exact linearly-based, by definition, there is an exact linear base
hypergraph H = (V, B) such that C ⊆ KH. If H is not loopless, we are done by
Lemma 2. If C is exact linear and loopless, we are done according to Lemma 1 in
linear time, by inspection of the input. If C̄ is not H-based then C cannot be satis-
fiable because it contains at least one complete fibre Wb of KH. So assume that C̄
is H-based. The basic idea is as follows: We say that a clause c of the input formula
C over n variables meets a truth assignment t ∈ WV iff c ⊆ t. A single clause c ob-
viously meets exactly 2n−|c| truth assignments. Suppose we are able to calculate
fast the total number N of all distinct truth assignments met by all clauses of the
input formula C. Then we have C ∈ SAT iff N < 2n. Indeed, only in that case C
does not contain a diagonal formula since the H-based complement formula C̄ of
C admits a compatible f-transversal corresponding to a truth assignment not met
by any c ∈ C according to Prop. 1. So, we are done refering to Theorem 1.

To that end, recall that Cb ⊂ Wb denotes the fibre subformula of C over
b ∈ B. Let l be an arbitrary literal occurring in the input formula C, and recall
that Cb(l) ⊂ Cb is the subformula of Cb of all clauses containing literal l, where
V (l) ∈ b. The clauses in Cb(l) in total meet exactly μ(l, b) := |Cb(l)| ·2n−|b| of all
2n−1 truth assignments containing l. The determination of the number of truth
assignments met by the clauses in the input formula C is organized as follows:
First we compute a variable x called a maximum variable and the corresponding
edges bx, bx̄ ∈ B (smallest indices if ambigous) satisfying

μ(x, bx) + μ(x̄, bx̄) = max{μ(y, b) + μ(ȳ, b′)|y ∈ V, b, b′ ∈ B}

Note that |Cb(l)| = 0 if l 	∈ L(Cb), specifically if V (l) 	∈ b meaning b 	∈ B(x).
(Here, we have B(x) = {b ∈ B|x ∈ b}regarding B as a positive monotone clause
set.) It is possible that bx = bx̄. Next we perform at most two independent runs of
a Procedure ComputeCoverNumber(l, p). The first one for l = x and a second one
for l = x̄; returning in p the number of all l-containing truth assignments, that
are met by the clauses of C containing l. Each of these executions of Procedure
ComputeCoverNumber(l, p) is initiated only if μ(l, bl) < 2n−1 meaning that the
fibre subformulas corresponding to the maximum variable x do not meet all 2n−1

possible l-containing truth assignments. Clearly, the runs of the procedure for x
and x̄ can be processed independently. Finally, the numbers of truth assignments

A CNF Class Generalizing Exact Linear Formulas 239

met that are returned in p are added, and the algorithm returns unsatisfiable
iff the total value equals 2n.

Procedure ComputeCoverNumber(l, p) consists of two subprocedures. The first
one is entered only if there is at least one fibre subformula Cb with x ∈ b besides
Cbl

in which literal l occurs. The subprocedure then computes all additional l-
containing truth assignments met by the clauses in all these fibre subformulas. The
second subprocedure is devoted to determine all further truth assignments con-
taining l met by the remaining fibre subformulas Cb with x = V (l) 	∈ b. Similarly,
it is entered only if there is at least one fibre subformula Cb with b ∈ B − B(x).

The first subprocedure of ComputeCoverNumber proceeds as follows: W.l.o.g.
let Cl := {Cb1 , Cb2 , . . . , Cbs}, for s ≥ 1, be the collection of all remaining fibre
subformulas with x = V (l) ∈ bi, and |Cbi(l)| > 0, for all 1 ≤ i ≤ s, where
b1 := bl. Obviously, a fibre formula Cb with b ∈ B(x) but Cb(l) = ∅ cannot
contribute to the set of met l-containing truth assignments. Let mj := |Cbj (l)| and
m′

j := |Wbj (l) − Cbj (l)| = 2|bj |−1 − mj , for 1 ≤ j ≤ s. Note that by assumption
we have m′

j > 0, for 1 ≤ j ≤ s. Now we claim that the number αl of l-containing
truth assignments met by the clauses of the subformulas in Cl is given by:

(∗) αl(s) :=
s

∑

j=1

[

mj · 2n+(j−1)−�j
q=1 |bq| ·

j−1
∏

k=1

m′
k

]

where as usual
∏j−1

k=1 m′
k := 1 if j = 1. We prove the claim by induction on

s := |Cl| ≥ 1. If s = 1 then clearly αl(1) = μ(l, bl) and (∗) can easily be verified
to be correct. So, let s ≥ 1 and assume that (∗) is true for all values not greater
than s. Let Cl have cardinality s + 1, then the first s members of Cl meet αl(s)
distinct l-containing truth assignments by the induction hypothesis.

All clauses in Cbs+1(l) contain literal l and literals over the same |bs+1| − 1
variables that do not occur in any other bj, 1 ≤ j ≤ s, because H is exact
linear. Let Δl(s+1) be the number of additional l-containing truth assignments
met by the clauses in Cbs+1(l) but not by those in Cl − {Cbs+1(l)}. Further, each
clause of Cbs+1(l) contributes the same number R of additional l-containing truth
assignments. This is true because these clauses meet pairwise distinct parts over
the range bs+1 − {x} of truth assignments not already met by the clauses in
Cl − {Cbs+1(l)}; we thus have Δl(s + 1) = ms+1 · R.

To determine R we need the number of all l-containing truth assignments
not already met by the clauses in Cl − {Cbs+1(l)}. Consider arbitrary clauses
ci ∈ Wbi(l) − Cbi(l), 1 ≤ i ≤ s, i.e. the complements of the fibre subformulas
in Cl − {Cbs+1(l)}. The union d :=

⋃s
i=1 ci yields a literal set of cardinality

|d| = 1 +
∑s

i=1(|bi| − 1) which clearly cannot be contained in any of the l-
containing truth assignments met by the clauses in Cl − {Cbs+1(l)}. Hence a
clause c ∈ Cbs+1(l) meets each l-containing truth assignment enlarging a literal
string d as constructed above with c. Of such a truth assignment consequently
then r := 1+

∑s
i=1(|bi|−1)+ |bs+1|−1 positions are already fixed yielding 2n−r

distinct such truth assignments containing that literal string d and c. Clearly,
we can construct m′

1 · m′
2 · · · m′

s distinct literal strings d as above. Each yielding

240 S. Porschen and E. Speckenmeyer

2n−r truth assignments met by each fixed clause of Cbs+1(l). So we obtain R =
m′

1 · m′
2 · · · m′

s · 2n−r and therefore

Δl(s + 1) = ms+1 · 2n+s−�s+1
q=1 |bq| ·

s
∏

k=1

m′
k

additional l-containing truth assignments. Now we conclude by induction

αl(s + 1) = Δl(s + 1) + αl(s)

= ms+1 · 2n+s−�s+1
q=1 |bq| ·

s
∏

k=1

m′
k +

+
s

∑

j=1

[

mj · 2n+(j−1)−�j
q=1 |bq| ·

j−1
∏

k=1

m′
k

]

=
s+1
∑

j=1

[

mj · 2n+(j−1)−�j
q=1 |bq| ·

j−1
∏

k=1

m′
k

]

in hamony with (∗), for s + 1, finishing the proof of the claim.
Clearly, number αl can be determined performing a simple loop recalling that

by assumption mj > 0, for all 1 ≤ j ≤ s:

z ← m1 · 2n−|b1|

p ← z
for j = 1 to s − 1 do

z ← z · m′
j · mj+1

mj
· 21−|bj+1|

p ← p + z
do

So finally, we have to check whether p = 2n−1. In order to avoid calculations
with possibly large number 2n it is sufficient instead to compute p′ := p/2n.
That means to start with z ← m1 · 2−|b1| and finally to check whether p′ = 1/2.

Recall that the second subprocedure of ComputeCoverNumber(p, l) is devoted
to determine all additional l-containing truth assignments met by all clauses in
fibre subformulas Cb with b ∈ B − B(x) meaning x = V (l) 	∈ b. Clearly this sub-
procedure needs to be started only if p′ < 1/2, because otherwise all l-containing
truth assignments are met already. For explaining the second subprocedure, let
c′ be a clause of a fibre subformula Cb′ with b′ ∈ B − B(x). We claim that c′

meets a not yet encountered l-containing truth assignment if and only if for each
b ∈ B(x) there is c ∈ Wb(l) − Cb(l) with c′ ∩ c 	= ∅. To prove the claim, recall
that by assumption we have m′

b = |Wb(l) − Cb(l)| > 0 for all b ∈ B(x) since
otherwise μ(l, bl) = 2n−1 and Procedure ComputeCoverNumber(p, l) would not
have been entered at all. So, there always is at least one selection S := {c ∈
Wb(l) − Cb(l)|b ∈ B(x)}. As above we build the literal string d =

⋃

S satisfying
|d| = 1 +

∑

b∈B(x)(|b| − 1) and |V (c′) ∩ V (d)| = |S|, for the chosen clause c′, be-
cause of exact linearity. None of the clauses in Cl can meet any l-containing truth

A CNF Class Generalizing Exact Linear Formulas 241

assignment enlarging d. Clearly c′ meets such a truth assignment iff |c′∩d| = |S|
which is equivalent to c′ ∩ c 	= ∅ for all c ∈ S proving the claim.

W.l.o.g. let C := {Cbs+1 , . . . , Cbs+r} with r := |C| ≥ 1, be the collection of all
fibre subformulas of C neither containing x nor x̄. For c′ ∈ Cbs+1 , let {yi} =
V (c′)∩ bi which, for all 1 ≤ i ≤ s, are uniquely determined and pairwise distinct
because of exact linearity, hence |c′| ≥ s. Assume that li ∈ c′ is the corresponding
literal with V (li) = yi 	= x. Let nl :=

∑s
q=1 |bq| − (s − 1) be the number of

distinct variables in V (Cl). Let λi(c′) be the number of clauses in Wbi(l)−Cbi(l)
containing literal li, 1 ≤ i ≤ s. Clearly, li is contained in exactly 2|bi|−2 clauses
of Wbi(l). So, if li occurs ti times in Cbi(l) we have λi(c′) = 2|bi|−2 − ti, for
1 ≤ i ≤ s. Since each clause in Cbs+1 already fixes nl +(|bs+1|−s) of n positions,
we conclude with the claim above that all clauses in Cbs+1 together meet exactly

2n−nl−(|bs+1|−s)
∑

c∈Cbs+1

s
∏

j=1

λj(c)

additional l-containing truth assignments.
On that basis we obtain via induction on r = |C| ≥ 1 analogous to the

argumentation for the first subprocedure, that all members of C together meet

r
∑

k=1

⎡

⎣2n−nl−
�k

j=1 f(j)
∑

c∈Cbs+k

⎛

⎝

s+k−1
∏

j=1

λj(c)

⎞

⎠

⎤

⎦

many additional distinct l-containing truth assignments. Here, for 1 ≤ j ≤ r,

f(j) := |bs+j | −
∣

∣

∣

∣

∣

s+j−1
⋃

i=1

(bs+j ∩ bi)

∣

∣

∣

∣

∣

∈ {0, . . . , |bs+j | − s}

is the number of variables remaining from bs+j if each variable contained in one
of {b1, . . . , bs+j−1} is removed. Hence, nl +

∑k
j=1 f(j) = |V ({b1, . . . , bs+k})|.

Since the formula is represented through its fibres Cb, b ∈ B, and |B| ≤ V (C)
because of exact linearity [14], all needed values can be collected in polynomial
time.
�
The method above can easily be adapted to solve the counting problem #-SAT
for exact linearly-based formulas in polynomial time: execute both subprocedures
yielding the counts N1, N2 respectively, then return 2n − (N1 + N2). Further, a
poly-time algorithm for the search problem can be provided by self-reduction:
Iteratively set a variable and check by the algorithm above, whether the result-
ing formula remains satisfiable. In the negative case, fix the selected variable
complementary, etc. Though our class is not stable under partial assignments,
the algorithm above still works since the underlying hypergraph shrinks.

Moreover notice that checking whether the subformula {Cb|b ∈ B(x)} of C
already is unsatisfiable could be done fast according to Lemma 2, instead of run-
ning the first subprocedure twice. However if that does not yield unsatisfiability,

242 S. Porschen and E. Speckenmeyer

in general we cannot simply proceed with the second subprocedure because we
do not know how many compatible f-transversals have been met by the clauses
in the fibre subformulas over B(x).

5 The Fibre View Further Exploited

Next we investigate some other formula classes using the fibre view concept,
besides exact linearly-based formulas. For H = (V, B), let C ⊂ KH such that
B(C) = B = B(C̄). If C ∈ SAT then according to Prop. 1 (1) for each t ∈ M(C)
there is a unique F ∈ Fcomp(KH) with

⋃

F = t. We now address the question in
which case each model t of C corresponds to an F ∈ Fcomp(C), i.e. corresponds
to a compatible f-transversal of the formula itself.

Lemma 3. If C ∈ CNF ∩ SAT, B(C) = B(C̄), such that for each t ∈ M(C)
there is F ∈ Fcomp(C) with

⋃

F = t. Then C̄ ∈ SAT and
⋃

F ′ ∈ M(C̄) for each
F ′ ∈ Fcomp(C̄); and vice versa.

Proof. Let F ∈ Fcomp(C̄) and t :=
⋃

F ∈ WV , then according to the proof of
Theorem 1, tγ is a model of C. By assumption there is F ′ ∈ Fcomp(C) such that
tγ =

⋃

F ′. Hence, again by Theorem 1, t is a model of C̄ as claimed, specifically
C̄ ∈ SAT. For the vice versa assertion exchange the roles of C and C̄.
�
Next we provide a formula class satisfying the assumption of the last lemma.
Recall that an asymmetric formula C has the property that c ∈ C implies cγ 	∈ C
and that Asym ⊆ CNF denotes the class of all asymmetric formulas.

Lemma 4. Let C ∈ CNF be such that B(C) = B(C̄) and C̄ ∈ Asym. Then
C ∈ SAT implies C̄ ∈ SAT and each t ∈ M(C) corresponds to a compatible
f-transversal in Fcomp(C); and vice versa.

Proof. Let t ∈ M(C) 	= ∅ then for each b ∈ B(C) t|b satisfies all of Wb except
for (t|b)γ which thus must be a clause of C̄. And C̄ ∈ Asym implies that t|b ∈ C
for each b ∈ B(C). Hence {t|b|b ∈ B(C)} is a compatible f-transversal of C. It
follows that C̄ ∈ SAT and that for each t ∈ M(C) there is F ∈ Fcomp(C) with
⋃

F = t. For the vice versa assertion exchange the roles of C and C̄.
�

Corollary 2. Let C ∈ Asym such that also C̄ ∈ Asym and B(C) = B(C̄). Then
C ∈ SAT if and only if C̄ ∈ SAT.
�

In view of Theorem 1 we know that a formula is satisfiable if and only if the
complement formula admits a compatible f-transversal. Therefore the specific
class of formulas C such that every f-transversal of C is compatible is of interest,
because any f-transversal gives rise to a model of C̄ then, and vice versa. A
characterization of that very specific class can be provided as follows: Let H =
(V, B) be a base hypergraph. Then in general there is a 2-partition of V given by
sets VI and VU . Here VU contains all vertices occurring in only one edge b ∈ B,
and VI contains all remaining vertices occurring in at least one edge intersection.

A CNF Class Generalizing Exact Linear Formulas 243

Lemma 5. Let C ∈ CNF such that H(C) = H(C̄) =: H := (V, B). Then
Fcomp(C) = F(C) iff (∗): each variable in VI ⊆ V is a pure literal in C.

Proof. Assume that (∗) is true. Then each y ∈ b ∩ b′ for all b, b′ ∈ B, b 	= b′

is a pure literal in C and therefore each F ∈ F(C) is compatible. Conversely,
F ∈ F(C) is compatible iff all variables are pure literals in F . Hence if each
F ∈ F(C) is compatible it is easy to see that all variables occurring in edge
intersections must be pure literals in C.
�
Let CNFcomp denote the class of all formulas C ∈ CNF with B(C) = B(C̄), and
such that F(C̄) = Fcomp(C̄). As an example for C ∈ CNFcomp, let H = (V, B)
with V = {q, r, s, t, u, v, x, y}, B = {b1 = xy, b2 = yuv, b3 = vxr, b4 = rst, b5 =
txq}, then the following formula C̄

C̄ = xȳ ȳuv vxr rst̄ t̄xq

ȳūv rs̄t̄ t̄xq̄

where clauses are arranged fibrewise obviously has the property that F(C̄) =
Fcomp(C̄), hence C = KH − C̄ ∈ CNFcomp implying C ∈ SAT.

Theorem 4. We can check in polynomial time whether an input formula C ∈
CNF belongs to CNFcomp. In the positive case a model can be provided in polyno-
mial time assuming for both that C is represented through its fibre subformulas.

Proof. Let H = (V, B) = H(C) = H(C̄). In linear time we check whether C
contains a whole Wb as fibre subformula, in which case C 	∈ CNFcomp. Otherwise,
in view of Lemma 5 we have to check whether each variable in VI is a pure literal
in C̄. First, we check in B which variables occur uniquely yielding VU and set
VI = V − VU . For each y ∈ VI we check whether it occurs in different polarities
in C̄[B(y)] := {C̄b|b ∈ B(y)} simultaneously. Recall that B(y) = {b ∈ B|y ∈ b}.
This test can be performed in linear time O(‖C[B(y)]‖) similar to the procedure
presented in the second part of the proof of Lemma 2: Initialize two counters
Ny ← 0 and Nȳ ← 0. Then check each fibre subformula Cb, b ∈ B(y), whether
it contains exactly 2|b|−1 clauses containing literal y, respectively literal ȳ. If the
first holds true then increase counter Nȳ by one; if the second is true then increase
counter Ny by one; otherwise do not modify the counters, respectively. Proceed
in this way until either Nx̄ > 0 and Nx > 0 then stop, and return C 	∈ CNFcomp,
because y occurs in both polarities (in distinct fibre subformulas). Or the whole
formula has been inspected. Then we set a flag to C ∈ CNFcomp if and only if
(∗): Nȳ = 0 and Ny = |B(y)|, or vice versa. The test works correctly, as it is easy
to see that (∗) holds iff the clauses in the fibre subformulas in C̄[B(y)] either all
contain y or ȳ. If in that way the algorithm does not return C 	∈ CNFcomp we
have checked all y ∈ VI , and we know that C ∈ CNFcomp.

Finally, to provide a model of C ∈ CNFcomp we simply need to select one
clause cb ∈ C̄b = Wb − Cb for each b ∈ B ensuring that

⋃

b∈B cγ
b ∈ M(C)

according to Theorem 1. For fixed b = {bi1 , . . . , bi|b|}, the selection can be per-

formed, e.g., by ordering the members c = {b
εi1(c)
i1

, . . . , b
εi|b|(c)

i|b|
} in Cb according

244 S. Porschen and E. Speckenmeyer

to the lexicographic order of the vectors (εi1(c), . . . , εi|b|(c)) ∈ {0, 1}|b|, and tak-
ing clause in the first gap w.r.t. all of Wb, for each b ∈ B.
�

6 Concluding Remarks and Open Problems

We provided several CNF subclasses that are polynomial time decidable resp.
behave trivially regarding SAT using the fibre view on clause sets. The most in-
teresting are exact linearly-based formulas. We showed that the decision, search
and counting variants of SAT restricted to this class all are polynomial time
solvable. We leave it as an open problem to design a more direct algorithm for
the decision, resp. search variants of SAT for exact linearly-based formulas. A
future work perspective is to elaborate more deeply the relationships between
the polynomial time classes studied here to other such classes. Finally, it might
be of interest to relate Theorem 1 to the characterization of satisfiability of CNF
formulas in the framework of binary decision diagrams.

Acknowledgement. We would like to thank the anonymous reviewers for their
valuable comments.

References

1. Aspvall, B., Plass, M.R., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified Boolean formulas. Inform. Process. Lett. 8, 121–123 (1979)

2. Berge, C.: Hypergraphs. North-Holland, Amsterdam (1989)
3. Boros, E., Crama, Y., Hammer, P.L.: Polynomial time inference of all valid impli-

cations for Horn and related formulae. Annals Math. Artif. Int. 1, 21–32 (1990)
4. Boros, E., Hammer, P.L., Sun, X.: Recognition of q-Horn formulae in linear time.

Discrete Appl. Math. 55, 1–13 (1994)
5. Franco, J., Gelder, A.v.: A perspective on certain polynomial-time solvable classes

of satisfiability. Discrete Appl. Math. 125, 177–214 (2003)
6. Kleine Büning, H., Lettman, T.: Propositional logic, deduction and algorithms.

Cambridge University Press, Cambridge (1999)
7. Kratochvil, J., Savicky, P., Tusa, Z.: One more occurrence of variables makes sat-

isfiability jump from trivial to NP-complete. SIAM J. Comput. 22, 203–210 (1993)
8. Knuth, D.E.: Nested satisfiability. Acta Informatica 28, 1–6 (1990)
9. Lewis, H.R.: Renaming a Set of Clauses as a Horn Set. J. ACM 25, 134–135 (1978)

10. Minoux, M.: LTUR: A Simplified Linear-Time Unit Resolution Algorithm for Horn
Formulae and Computer Implementation. Inform. Process. Lett. 29, 1–12 (1988)

11. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete
Appl. Math. 10, 287–295 (1985)

12. Porschen, S.: A CNF Formula Hierarchy over the Hypercube. In: Orgun, M.A.,
Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 234–243. Springer, Hei-
delberg (2007)

13. Porschen, S., Speckenmeyer, E.: Satisfiability of Mixed Horn Formulas. Discrete
Appl. Math. 155, 1408–1419 (2007)

14. Porschen, S., Speckenmeyer, E., Randerath, B.: On linear CNF formulas. In: Biere,
A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 221–225. Springer, Heidel-
berg (2006)

A CNF Class Generalizing Exact Linear Formulas 245

15. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC 1978.
ACM, pp. 216–226 (1978)

16. Schlipf, J., Annexstein, F.S., Franco, J., Swaminathan, R.P.: On finding solutions
for extended Horn formulas. Inform. Process. Lett. 54, 133–137 (1995)

17. Tovey, C.A.: A Simplified NP-Complete Satisfiability Problem. Discrete Appl.
Math. 8, 85–89 (1984)

How Many Conflicts Does It Need to Be

Unsatisfiable?

Dominik Scheder and Philipp Zumstein�

Institute of Theoretical Computer Science, ETH Zürich
8092 Zürich, Switzerland

dscheder@inf.ethz.ch, zuphilip@inf.ethz.ch

Abstract. A pair of clauses in a CNF formula constitutes a conflict if
there is a variable that occurs positively in one clause and negatively in
the other. Clearly, a CNF formula has to have conflicts in order to be
unsatisfiable—in fact, there have to be many conflicts, and it is the goal
of this paper to quantify how many.

An unsatisfiable k-CNF has at least 2k clauses; a lower bound of 2k for
the number of conflicts follows easily. We improve on this trivial bound
by showing that an unsatisfiable k-CNF formula requires Ω(2.32k) con-
flicts. On the other hand there exist unsatisfiable k-CNF formulas with
O(4k log3 k

k
) conflicts. This improves the simple bound O(4k) arising from

the unsatisfiable k-CNF formula with the minimum number of clauses.

Keywords: satisfiability, unsatisfiable formulas, conflict graph, Lovász
Local Lemma.

1 Introduction

If you want to explain to your non-computer science friend what satisfiability of
CNF formulas is all about, you will probably say it is about a list of constraints,
all of which you want to satisfy simultaneously. Perhaps you will add that while
each constraint is very easy to satisfy individually, the difficulty arises because
many constraints conflict with each other. A natural guess is that if you cannot
satisfy all your constraints, then there must be a lot of conflicts between them.

In our case, constraints are boolean clauses with no repetition of literals and
no complementary literals, e.g., x ∨ ȳ ∨ z. A k-CNF formula is the conjunction
of such clauses each containing exactly k literals. We use this notation for CNF
formulas to be closer to the semantical viewpoint of formulas instead of using
the notation of clause-sets which is closer to the syntactical viewpoint.

Two clauses have a conflict if one contains a positive literal, while the other
contains its negation. Kullmann [1] introduced the notion of the symmetric con-
flict matrix, which has an entry for each pair of clauses counting the number of
conflicts between them. We take the 0-1-version of this matrix interpreted as a
graph. More formally, the conflict graph CG(F) of a k-CNF formula F contains

� Research is supported by the SNF Grant 200021-118001/1.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 246–256, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

How Many Conflicts Does It Need to Be Unsatisfiable? 247

the clauses as vertices, and two clauses are connected if there is a conflict be-
tween them. Any lower bound on the number of edges in the conflict graph, i.e.,
the number of conflicts, is also a lower bound on the number of multi-edges in
the symmetric conflict matrix interpreted as a multi-graph.

We study the extremal values of several natural parameters of CG(F) for un-
satisfiable k-CNF formulas F , such as its minimum degree, maximum degree, and
of course, above all, its number of edges. We will use the notations dmin, dmax, e,
respectively, for these parameters and use concepts of graph theory also in the
context of CNF formulas, e.g., the neighborhood of a clause C in a CNF formula
F , denoted by ΓF (C), is the set of all clauses in F conflicting with C. To avoid
notational confusion we use the e for the number of edges and e for the Eulerian
constant.

Further, we introduce a notation that will come handy when defining CNF
formulas: Let F = C1 ∧ . . . ∧ Cm and G = D1 ∧ . . . ∧ Dn be two CNF formulas
over disjoint sets of variables. Define

F � G :=
∧

i=1,...,m
j=1,...,n

Ci ∨ Dj .

The formula F � G is a CNF formula with mn clauses. If F is a k-CNF formula
and G an �-CNF formula, F � G is a (k + �)-CNF formula. Moreover, by using
distributivity it is easy to see that the two formulas F ∨G and F � G are equiv-
alent (describing the same boolean function) but F ∨ G is syntactically not a
CNF formula. Note that a CNF formula is just one representation of a boolean
function and there might exists other representations (logically equivalent for-
mulas). The problem of deciding whether a given CNF formula is unsatisfiable
is the same as to answer the question whether it is logically equivalent to the
constant 0 function. Thus it is essential how a formula is represented.

Example 1. The complete formula Kk on the variables x1, . . . , xk is the k-CNF
formula with all 2k possible k-clauses on these variables. More formally

K1 := x1 ∧ x̄1, Kk+1 := (xk+1 � Kk) ∧ (x̄k+1 � Kk) .

Kk is a k-CNF formula, and using induction and the fact that � is logically equiv-
alent to ∨, one can easily see that it is unsatisfiable. Furthermore the conflict
graph CG(Kk) is a clique, has 2k vertices and

(2k

2

)

edges.

It is clear that an unsatisfiable 1-CNF formula contains two complimentary
clauses and thereby at least one edge. After deleting all clauses of degree 0
in an unsatisfiable k-CNF formula, the so-obtained formula stays unsatisfiable.
Therefore, we have at least 2k clauses because this is the minimum number
of clauses needed for a k-CNF formula to be unsatisfiable, and every clause
has degree at least 1. Thus all unsatisfiable k-CNF formulas have Ω(2k) many
conflicts. Example 1 shows that there is an unsatisfiable k-CNF with Θ(4k) many
conflicts. What is the right order of magnitude for the number of conflicts needed
for an unsatisfiable k-CNF formula?

248 D. Scheder and P. Zumstein

There is a similar question in Ramsey theory: A graph G is H-Ramsey if every
2-coloring of its edges contains a monochromatic copy of H . The size Ramsey
number r̂(H) asks for the minimum number of edges over all H-Ramsey graphs
where the Ramsey number r(H) is the minimum number of vertices over all H-
Ramsey graphs. For which graphs does it hold that r̂(H) =

(
r(H)

2

)

? It is known
that equality holds for complete graphs [2] but clearly not for stars, cf. [3] for a
survey about the size Ramsey number.

1.1 Results

The technical groundwork, namely the Lopsided Lovász Local Lemma is dis-
cussed in Section 2. We examine thereby also the maximum and minimum degree
of an unsatisfiable k-CNF formula. The main theorem follows in Subsection 3.1
and states that every unsatisfiable k-CNF formula has at least Ω(2.32k) conflicts.
A construction by Hoory and Szeider [4] shows that there exists unsatisfiable k-
CNF formulas with O(4k log3 k

k) conflicts, discussed in Subsection 3.2. In the end
we discuss the maximization versions of these parameters and formulate some
open problems.

2 Maximum Degree and Minimum Degree

The Lovász Local Lemma can be used to show that k-CNF formulas where every
clause depends only on a small subset of the other clauses are always satisfiable,
compare for example [5] Section 2.2. As an implication k-CNF formulas where
every variable occurs only a few times are always satisfiable, cf. Corrollary 5 and
[6,7]. The Lovász Local Lemma can also be used to define a branching rule for
a DPLL-algorithm on SAT as shown in [8]. Another applications is shown in [9]
for the MAX-SAT problem.

Definition 2. Let A1, . . . , Am be events in some probability space. A graph G =
(V, E) with V = {1, . . . , m} is called a lopsided dependency graph if for any Ai

and any U ⊆ V \ ({Ai} ∪ ΓG(Ai)) with Pr[
⋂

j∈U Āj] > 0, it holds that

Pr

⎡

⎣Ai

∣

∣

∣

∣

∣

⋂

j∈U

Āj

⎤

⎦ ≤ Pr [Ai] .

Lemma 3 ([10],[11],[12]). Let A1, . . . , Am be events in some probability space,
and let G be a lopsided dependency graph for them. If there are numbers 0 ≤
γi < 1, 1 ≤ i ≤ m, such that for any i,

Pr [Ai] ≤ γi

∏

j∈ΓG(Ai)

(1 − γj) ,

then
Pr

[

Ā1 ∩ · · · ∩ Ām

]

> 0 .

How Many Conflicts Does It Need to Be Unsatisfiable? 249

Now think of a CNF formula F = C1 ∧· · ·∧Cm. Set each variable independently
uniformly at random. Define Ai to be the event that Ci is not satisfied. It is not
difficult to see that the conflict graph of F is a lopsided dependency graph for
the events A1, . . . , Am. Applying Lemma 3, we obtain the following result:

Theorem 4. The maximum degree of any unsatisfiable k-CNF formula is at
least 2k

e .

Proof. The proof is basically given in [6] by Kratochv́ıl et al. Assume that the
maximum degree of a k-CNF formula F is at most d := 2k

e −1. Set each variable
independently uniformly at random. Then for each clause Ci, the probability
that it is not satisfied is 2−k. Now apply Lemma 3 with γi := 1

d+1 for all i, and
use the fact that (1 − 1

d+1)d ≥ e−1. 	

The complete formula Kk (Example 1) has maximum degree 2k − 1 and shows
that this bound is tight up to a constant factor.

Corollary 5 (Kratochv́ıl et al. [6]). Suppose F is a k-CNF formula. If every
variable occurs in at most 2k

ek clauses, then F is satisfiable.

Proof. Consider any clause C of F . Clearly, every literal in C causes at most
2k

ek − 1 conflicts and hence the maximum degree of F is at most 2k

e − k. Thus F
is satisfiable by Theorem 4. 	

Does this result implies anything about the number of conflicts in an unsatisfiable
k-CNF formula? The number of conflicts is trivially at least the maximum degree,
hence Ω

(

2k
)

. Further, some variable x occurs in many clauses of F . Assume that
this variable is more or less balanced, i.e., it occurs equally often as a positive
and negative literal. In this case this variable by itself induces Ω

(

4k

k2

)

conflicts.
Does every unsatisfiable k-CNF formula have such a balanced high-frequency
variable? The next example gives the most negative answer to this question: We
will define an unsatisfiable formula in which every variable occurs exactly once
negative.

Example 6. We set F1 := x1 ∧ x̄1, and for k ≥ 1 define recursively

Fk := (x̄1 ∨ x̄2 ∨ . . . ∨ x̄k) ∧
k

∧

i=1

(

F
(i)
k−1 � xi

)

,

where F
(i)
k−1 are copies of Fk−1 on different set of variables. By definition of the

operator � one sees inductively that Fk is indeed a k-CNF formula. It is easy to
see by using induction again that Fk is unsatisfiable for all k ≥ 1 and that every
negative literal occurs only once.

Let a(k) be the number of clauses in Fk. We have a(1) = 2 and a(k) =
ka(k − 1) + 1. Solving this recurrence, we obtain a(k) =

∑k
j=0

k!
j! = �ek!�. Each

“top level” variable xi occurs once negatively and �e(k − 1)!� times positively.

250 D. Scheder and P. Zumstein

Therefore, the number of conflicts in this formula is huge and does not give us any
good upper bound. It seems that we have to pay for extreme non-balancedness by
huge variable frequency. Still, the concept of balanced and non-balanced variables
will be of great importance in the next section, when we prove a lower bound
on the number of conflicts.

Let us make a second stab on proving a lower bound on e(F) for F being an
unsatisfiable k-CNF formula. Observe that e(F) ≥ dmin(F)

2 m(F), where m(F) is
the number of clauses. We know that m(F) ≥ 2k. The minimum degree dmin(F)
gets 0 when we add clauses of degree 0. Thus to get any meaningful bound, we
have to consider minimal unsatisfiable formulas. A CNF formula is called mini-
mal unsatisfiable if it is unsatisfiable and deleting any clause makes it satisfiable.
Minimal unsatisfiable formulas are interesting objects themselves, for they have
many algorithmic aspects, which were studied for example in [13,14,15,16,17]. In
this paper however, we use only some straightforward combinatorial properties.
First, we can assume w.l.o.g. that F is a minimal unsatisfiable k-CNF formula, as
every unsatisfiable CNF formula has a minimal unsatisfiable subformula (which
does not have more conflicts). Second, we actually can state a lower bound on
dmin(F) if F is minimal unsatisfiable:

Lemma 7. If F is a minimal unsatisfiable k-CNF formula, then dmin(F) ≥ k.

Proof. Let F be a minimal unsatisfiable k-CNF formula and assume for contra-
diction that there is a clause C such that its degree in the conflict graph is less
than k. By minimality of F , F − C is satisfiable. Take a satisfying assignment α
of F −C. The neighbors ΓF (C) of C are satisfied by α, so we can assign to each
D ∈ ΓF (C) a variable xD such that the corresponding literal in D is satisfied.
At least one of the k variables in C is not assigned, say � is the corresponding
literal in C. By changing α such that � is true, we get a satisfying assignment
for F , which is a contradiction. 	

This result is also tight: The k-CNF formula Fk defined above is minimal unsat-
isfiable, and has a minimum degree of k.

Corollary 8. Every unsatisfiable k-CNF formula has at least k · 2k−1 conflicts.

3 Number of Conflicts

3.1 A Lower Bound

In this section, we prove a lower bound on the number of conflicts in an unsatisfi-
able k-CNF formula. Our main technical tool will be a corollary of the Lopsided
Lovász Local Lemma:

Corollary 9. Let F be a CNF formula not containing the empty clause. If for
all clauses C in F it holds that

∑

D∈ΓF (C)

Pr [D not satisfied] ≤ 1
4

, (1)

then F is satisfiable.

How Many Conflicts Does It Need to Be Unsatisfiable? 251

Proof. Write F = C1 ∧ . . . ∧Cm. First, we can assume that there are no isolated
clauses, i.e., every clause has some conflict. We apply Lemma 3 with γi :=
2 Pr [Ci not satisfied]. Note that (1) implies Pr [Ci not satisfied] ≤ 1

4 for each Ci,
thus γi ≤ 1

2 for all i. A short calculation using the fact that
∏

(1−γj) ≥ 1−
∑

γj

completes the proof. 	

Consider the function f(p) = 1 − log(1 − p) − log(1−p)
log(p) which has a unique

p∗ ∈ (0, 1
2) maximizing f(p). In fact, p∗ ≈ 0.30 and f(p∗) > 1.218.

Theorem 10. Let F be an unsatisfiable k-CNF formula. For any p < 1
2 , F has

at least

2f(p)k

8 + 128k2

conflicts. Furthermore, plugging in the optimal value p∗, we obtain that F has
Ω

(

2.32k
)

conflicts.

Before we proceed to the proof, we explain the basic idea behind it. The Lovász
Local Lemma implies that any unsatisfiable k-CNF formula contains a variable
of high degree, namely around 2k

ek . Assume that this variable is more or less
balanced, i.e., it occurs positively and negatively equally often. In this case there
are already Ω

(

4k

k2

)

conflicts due to this variable, and we are done. Otherwise, we
can assume that if a literal u occurs frequently, then ū does not. A natural idea
now comes to mind: In the probability space used in the Lovász Local Lemma,
we set each variable independently, choosing 1 with probability 1

2 . Should we
not bias u towards 1, if many clauses benefit from this, and only few suffer?

Proof (of Theorem 10). For a literal u, let occF(u) denote the number of clauses
in F containing the literal u. Please note that occF(u) and occF(ū) may differ.
Choose parameters �, θ as follows: � := k log(1−p)

log(p) and θ = 2k−�

8k .
We will color the literals of the formula and choose a probability with which

they are set to 1. (i) If both occF(u) ≥ θ and occF(ū) ≥ θ, color u and ū red,
and set each to 1 with probability 1

2 . (ii) If occF(u) ≥ θ and occF(ū) < θ, color
u green and ū red, and set u to 1 with probability 1 − p (and thus ū to 1 with
probability p). (iii) If both occF(u) < θ and occF(ū) < θ, color both black,1

and set each to 1 with probability 1
2 . What you should keep in mind is that

every black literal is “not frequent”, and the complement of each red literal is
“frequent”, and that green literals are likely to be satisfied, since 1 − p > 1

2 .
Let e(F) be number of conflicts/edges in F . As a first observation, note that

any literal u causes occF(u)occF(ū) conflicts. Summing this up over all red literals
u we obtain the number of conflicts caused by red literals. However, we might
(i) count the pair {u, ū} twice, if both are red, and (ii) count the same conflict
k times, as two clauses can have up to k conflicting literals, e.g. (u1 ∨ · · · ∨ uk)
and (ū1 ∨ · · · ∨ ūk). Still, we obtain

1 Or white, if you are working on a blackboard. . .

252 D. Scheder and P. Zumstein

e(F) ≥ 1
2k

∑

u:red

occF(u)occF(ū) ≥ θ

2k

∑

u:red

occF(u)

≥ θ

2k
|{C ∈ F | C contains at least one red literal}| . (2)

Our interpretation of this inequality is that if F has few conflicts, then only
few clauses can contain red literals. Next, we define a new formula F ′ as follows:
Start with F , and for each clause C in F that has fewer than � green literals,
and no red ones, remove all green literals. This formula F ′ is still unsatisfiable,
and e(F) ≥ e(F ′). It is no k-CNF formula anymore, but each clause has at least
(k − �) literals. Further, occF′(u) ≤ occF(u) for any literal u.

Since F ′ is unsatisfiable, we can use the contrapositive of Corollary 9, i.e.,
there is a clause C∗ in F ′ such that

∑

D∈ΓF ′ (C∗)

Pr [D not satisfied] >
1
4

. (3)

Let us partition ΓF ′(C∗) into sets B, BG and BGR as follows: Let B contain
all clauses D ∈ ΓF ′(C∗) containing only black literals, BG those containing at
least one green literal, but no red ones, and BGR those containing at least one
red literals. There are several useful observations: First, by construction of F ′,
every clause in BG contains at least � green literals. Second, clauses in B have at
least k − � literals, and BGR and BG contain only k-clauses. We can give certain
bounds on |BGR| and |B|. Every D ∈ BGR contains a red literal, hence by (2)

|BGR| ≤ 2ke(F)
θ

. (4)

To give a bound on |B|, note that for every D ∈ B there is a black literal u in
C∗ such that ū is in D. Since occF′(ū) ≤ θ for each such literal u in C∗, and C∗

contains at most k of them,

|B| ≤ kθ . (5)

To evaluate the sum in (3), let us estimate the probabilities with which the
clauses in the three sets are unsatisfied. First, a clause D ∈ BGR has at least
k literals, and each is satisfied with probability at least p (we pessimistically
assume the worst case, namely that all literals in D are red). We obtain

∀ D ∈ BGR : Pr[D not satisfied] ≤ (1 − p)k . (6)

For D ∈ B, observe that D has at least k − � literals, which are all black, thus

∀ D ∈ B : Pr[D not satisfied)] ≤ 2−k+� . (7)

For D ∈ BG, we know that D contains at least � green literals, each of which is
satisfied with probability 1 − p. All other literals in D are black. Therefore we
obtain

∀ D ∈ BG : Pr[D not satisfied] ≤ 2−k+�p� . (8)

How Many Conflicts Does It Need to Be Unsatisfiable? 253

We plug (4)–(8) into (3) and get

1
4

< |BG|2−k+�p� + 2ke(F)θ−1(1 − p)k + kθ2−k+� .

This yields a lower bound on |BG|. Since every clause in BG has a conflict with
C, it yields a lower bound on e(F ′), and thus on e(F):

e(F) ≥ |BG| > p−�
(

2k−�−2 − 2ke(F)θ−1(1 − p)k2k−� − kθ
)

.

Plugging in our values for θ and �, a few calculations show that

e(F) >
2f(p)k

8 + 128k2 .

This completes the proof of the theorem. 	

We should make some comments on the proof above. It is a natural idea to
choose a probability �= 1

2 for unbalanced variables. However, it is not clear why
it makes sense to delete green (frequent) literals from clauses. Are these not
exactly those literals making the clause more likely to be satisfied? What would
happen if we re-did the proof without deleting green literals? We would have to
assume the worst case that every D ∈ BG contains k − 1 black literals and only
one green, only marginally pushing up its probability of being satisfied. Overall,
we would obtain a bound like Ω

(

k22k

ln k

)

, if we choose our parameters optimally.
The benefit of crossing out some green literal becomes clear if one thinks the
other way round: We are given a formula with fewer than 2f(p)k

8+128k2 conflicts and
want to prove that it is satisfiable. By deleting green literals from some clauses
D, we sacrifice by decreasing the probability of D being satisfied. On the other
hand, no clause C can have many of these shrunk, now completely black clauses
D in its neighborhood, due to the bound |B|. We are actually making the conflict
graph much sparser, thus more amenable to the Local Lemma.

3.2 Upper Bound

For an upper bound construction we show that the construction given by Hoory
and Szeider [4] gives an unsatisfiable k-CNF formula with O(4k log3 k

k) conflicts.
They used this construction to give an instance of a k-CNF formula with few
occurrences of each variable.

For notational matter we write K(v1, . . . , vs) to denote the complete for-
mula on the variables v1, . . . , vs, and K−(v1, . . . , vs) is used for the formula
obtained by K(v1, . . . , vs) deleting the all-positive-clause (v1 ∨ . . . ∨ vs). The
formula K−(v1, . . . , vs) is equivalent to (v̄1 ∧ . . . ∧ v̄s). Let k ≥ 1 and choose
� = �log(k/ log2 k)�, u = �k/l�, and v = k − lu. Define the formula F =

∧u
i=0 Fi

where

F0 = K(z1, . . . , zv) �
∨u

i=1
K−(x(i)

1 , . . . , x
(i)
�) ,

Fi = K(y(i)
1 , . . . y

(i)
k−�) � (x(i)

1 ∨ . . . ∨ x
(i)
�) .

254 D. Scheder and P. Zumstein

Replace the complete formulas by the constant 0 function and the “almost
complete” formulas K−(x(i)

1 , . . . , x
(i)
s) by (x̄(i)

1 ∧. . .∧x̄
(i)
s) to see that this formula

is unsatisfiable. It remains to calculate the number of conflicts in this formula:

e(F) = e(F0) + ue(F1) + ue(F0, F1) ≤ |F0|2 + u|F1|2 + u|F0||F1|

≤ e24k

k2 +
4k log3 k

k log2 e
+

4ke log3 k

k log2 e
= O

(

4k log3 k

k

)

.

The calculations for |F0|, |F1| are made in [4] and the better upper bound de-
scribed there can also be used to get rid of one logarithm, i.e., this would yield an
unsatisfiable k-CNF formula with O(4k log2 k

k) conflicts. The details are omitted
because the lower bound is far away from this upper bound and we cannot be
sure what the right order of magnitude is.

4 Maximizing the Parameters

How big can the parameters dmin, dmax, e of a minimal unsatisfiable k-CNF for-
mula be? We will show that there exists minimal unsatisfiable k-CNF formulas
with arbitrarily large minimum degree, for k ≥ 3. From this it follows that the
maximum degree, number of edges are arbitrarily big as well.

Example 11. The cycle formula C� on the variables x1, . . . , x� contains the clauses
(x̄i ∨ xi+1), i = 1, . . . , � (the index is taken here and in the following modulo �).
We can interpret each clause as a logical implication xi → xi+1 or as an inequality
xi ≤ xi+1 over the boolean values 0, 1. It follows that C� is satisfied if and only if
all the variables x1, . . . , x� are set to the same value. By adding the clauses (x1 ∨
x2), (x̄1 ∨ x̄2) to C� we obtain a minimal unsatisfiable 2-CNF formula. Consider
now

Hk,� := (C� ∧ (x1 ∨ x2) ∧ (x̄1 ∨ x̄2)) � K(y1, . . . , yk−2)

It is not difficult to see for two minimal unsatisfiable formulas F, G also F �G
is minimal unsatisfiable. Thus Hk,� is a minimal unsatisfiable k-CNF formula.
It contains 2k−2(� + 2) clauses, and each clause has at least (2k−2 − 1)(� + 2) +
2 conflicts. Therefore, the minimum degree of a minimal unsatisfiable k-CNF
formula can be arbitrarily large, for each fixed k ≥ 3.

5 Conclusion

Let ek denote the minimum number of conflicts/edges over all unsatisfiable k-
CNF formulas. Theorem 10 and the construction in Section 3.2 leads to the
following asymptotic bounds

Ω(2.32k) ≤ ek ≤ O

(

4k log3 k

k

)

.

This improves over the trivial bounds, but the gap between the lower and upper
bound is still huge. We suspect that the true value of ek is much closer to the

How Many Conflicts Does It Need to Be Unsatisfiable? 255

upper bound, but it took us a considerable effort to get away from lower bounds
like Ω(kt2k) for some fixed t. The right magnitude of ek is therefore still the
main open question of this paper.

It is easy to change the definition of the complete formula in such a way that
every pair of clauses has exactly one conflicting variable. By substituting this
variant of the complete formula into the example given in Section 3.2 yields an
unsatisfiable k-CNF formula with Θ

(

4k log3 k
k

)

multi-edges.
As we pointed out in Example 6 there exists unsatisfiable k-CNF formu-

las where all variables of high degree are very unbalanced. But even there it
holds that there is one variable u such that it induces almost all conflicts, i.e.,
occ(u) · occ(ū) is already very large. Is it true in general that the maximum of
occ(u) · occ(ū) is very large?

Acknowledgment. We thank all the participants of Gremo Workshop on Open
Problems, GWOP 2007, for the helpful discussions at the workshop.

References

1. Kullmann, O.: The combinatorics of conflicts between clauses. In: Giunchiglia, E.,
Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 426–440. Springer, Heidelberg
(2004)

2. Erdős, P., Faudree, R.J., Rousseau, C.C., Schelp, R.H.: The size ramsey number.
Periodica Mathematica Hungarica 9(2-2), 145–161 (1978)

3. Faudree, R.J., Schelp, R.H.: A survey of results on the size Ramsey number. In:
Paul Erdős and his mathematics, II (Budapest, 1999), János Bolyai Math. Soc.
Budapest. Bolyai Soc. Math. Stud, vol. 11, pp. 291–309 (2002)

4. Hoory, S., Szeider, S.: A note on unsatisfiable k-CNF formulas with few occurrences
per variable. SIAM Journal on Discrete Mathematics 20(2), 523–528 (2006)

5. Welzl, E.: Boolean satisfiability – combinatorics and algorithms (lecture notes)
(2005), http://www.inf.ethz.ch/∼emo/SmallPieces/SAT.ps

6. Kratochv́ıl, J., Savický, P., Tuza, Z.: One more occurrence of variables makes sat-
isfiability jump from trivial to NP-complete. SIAM Journal of Computing 22(1),
203–210 (1993)

7. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness and satisfiability
of bounded occurrence instances of SAT. Electronic Colloquium on Computational
Complexity (ECCC) 10(022) (2003)

8. Hooker, J.N., Vinay, V.: Branching rules for satisfiability. Journal of Automated
Reasoning 15, 359–383 (1995)

9. Czumaj, A., Scheideler, C.: A new algorithm approach to the general Lovász local
lemma with applications to scheduling and satisfiability problems (extended ab-
stract). In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory
of Computing, pp. 38–47. ACM, New York (2000); (electronic)

10. Erdős, P., Spencer, J.: Lopsided Lovász local lemma and Latin transversals. Dis-
crete Appl. Math. 30, 151–154 (1991); ARIDAM III (New Brunswick, NJ, 1988)

11. Alon, N., Spencer, J.H.: The probabilistic method, 2nd edn. Wiley-Interscience
Series in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley
& Sons], New York (2000); With an appendix on the life and work of Paul Erdős

http://www.inf.ethz.ch/~emo/SmallPieces/SAT.ps

256 D. Scheder and P. Zumstein

12. Lu, L., Székely, L.: Using Lovász local lemma in the space of random injections.
Electron. J. Combin. 14(1), 13 (2007) Research Paper 63 (electronic)

13. Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. J. Comput.
Syst. Sci. 37(1), 2–13 (1988)

14. Szeider, S.: Minimal unsatisfiable formulas with bounded clause-variable difference
are fixed-parameter tractable. J. Comput. Syst. Sci. 69(4), 656–674 (2004)

15. Kleine Büning, H.: On subclasses of minimal unsatisfiable formulas. Discrete Appl.
Math. 107(1-3), 83–98 (2000); Boolean functions and related problems

16. Fleischner, H., Kullmann, O., Szeider, S.: Polynomial-time recognition of mini-
mal unsatisfiable formulas with fixed clause-variable difference. Theoret. Comput.
Sci. 289(1), 503–516 (2002)

17. Kleine Büning, H., Zhao, X.: The complexity of some subclasses of minimal unsat-
isfiable formulas. J. Satisf. Boolean Model. Comput. 3(1-2), 1–17 (2007)

Speeding-Up Non-clausal Local Search for Propositional
Satisfiability with Clause Learning

Zbigniew Stachniak and Anton Belov�

Department of Computer Science and Engineering,
York University, Toronto, Canada

{zbigniew,antonb}@cse.yorku.ca

Abstract. In this paper we discuss search heuristics for non-clausal stochastic
local search procedures for propositional satisfiability. These heuristics are based
on a new method for variable selection as well as a novel clause learning tech-
nique for dynamic input formula simplification as well as for guiding the search
for a model.

Introduction

The search heuristic of a typical stochastic local search method for propositional satis-
fiability is a two step selection procedure. First, some variables that occur in an input
formula are chosen. In the second step, these candidate variables are subjected to an
evaluation by a variable selection heuristic which picks one of them in order to modify
the current truth-value assignment by changing the truth-value of the selected variable.

With a few notable exceptions, most clause-based stochastic local search SAT solvers
select the candidate variables in the same way: they come from a random input clause
false under the current assignment. The difference in performance of such solvers is
therefore due mainly to differences in their respective variable selection heuristics.

In non-clausal case, the situation is different. The performance of non-clausal solvers
depends critically not only on variable selection heuristics employed in them but also
on the method for the selection of candidate variables. Clearly, the structure of an input
formula has to play a role in the selection of the candidate variables and so should the
current truth-value assignment. But the options are many.

In this paper we address the problem of the candidate variable selection for non-
clausal stochastic local search solvers. This problem, that originated from our attempts
at improving the performance of the polSAT procedure, first introduced in [14], led
us to the definition of wish lists – special sets of variables that record the differences
between models of an input formula. We have empirically confirmed that by modifying
polSAT’s candidate variable generation method to guarantee that the sets of candidate
variables are wish lists, we obtain a significantly more efficient solver. Furthermore, by
replacing the variable selection heuristic employed by the original polSAT procedure
with a new one, modeled after Adaptive Novelty+ (cf. [6]), we obtained an even more

� Research of both authors supported by grants from the Natural Sciences and Engineering Re-
search Council of Canada.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 257–270, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

258 Z. Stachniak and A. Belov

dramatic improvement in performance (measured in terms of both the number of search
steps as well CPU time). As shown in the Experimental Studies section of the paper, on
some classes of problems, the new solver performs as well as, and in some cases better
than, some clausal state of the art solvers.

Wish lists offer other opportunities for boosting the performance of stochastic local
search solvers. In this paper we propose a novel technique for deriving information
from wish lists recording failed attempts at finding a model for a Boolean formula. This
technique, which we call clause learning, allows a SAT solver to derive and record
such information from wish lists in the form of clauses. Learned clauses are logical
consequences of input formulas and, hence, can be used in a number of ways to speed-
up the performance of a solver – from input formula simplification and adjusting its
search heuristic, to unsatisfiability detection and certification. In the present paper, we
discuss the use of learned clauses for dynamic input formula simplification and for the
refinement of search heuristics. The empirical results collected during our preliminary
study on the incorporation of clause learning into non-clausal local search indicate that
information provided by learned clauses can significantly improve the performance of a
solver. However, our study also indicates that learned clauses have to be used in a rather
subtle way to support rather than dominate a given search heuristic.

1 Logical Preliminaries

We assume that the reader is familiar with the syntax and semantics of classical proposi-
tional logic (CPL) and its clausal fragment. In this section we clarify some terminology
and notation used in the paper that, otherwise, might result in unintended ambiguity.

Formulas of CPL (or simply formulas) are constructed in terms of countably infinite
set of propositional variables, logical constants F (false) and T (true) and some selec-
tion of logical connectives (including ¬ (negation), ∨ (disjunction), and ∧ (conjunc-
tion)). For reasons of simplicity of presentation, we restrict our discussion to formulas
in negation normal form (NNF) only, i.e., to formulas in which the negation connective
can only apply to propositional variables. However, all the definitions and results given
in this paper extend to all the formulas of CPL without much difficulty.

Let α and β be formulas. We shall write α � β when β is a logical consequence of
α. V ar(α) denotes the set of all the variables that occur in α. We shall write α(p) to
explicitly indicate that a variable p occurs in α. If v is a logical constant, then α(p/v)
denotes the result of a simultaneous replacement of every occurrence of the variable p
in α by v.

We identify truth-value assignments for α with functions h mapping V ar(α) ∪
{F, T } into the set {0, 1} of truth-values in such a way that h(F) = 0 and h(T) = 1.
Since the CPL semantics allows to extend h, in the unique way, to the set of all sub-
formulas of α, we shall be making no distinction between truth-value assignments and
their extensions. Hence, α is satisfiable (or, α ∈ SAT) if and only if there exists a
truth-value assignment h for α such that h(α) = 1. Every truth-value assignment h for
α such that h(α) = 1 is called a model for α. Finally, if h is a truth-value assignment,
p is a variable, and if v ∈ {0, 1}, then h[p/v] denotes the truth-value assignment which
is defined in the same way as h with the exception that h[p/v](p) = v.

Speeding-Up Non-clausal Local Search 259

The polSAT procedure discussed in this paper is defined in terms of logical polarity
which we review next.

Let α(p) be a NNF formula. An occurrence of p in α(p) is positive (resp. negative)
if it is not in the scope (resp. it is in the scope) of the negation connective. This variable
is positive (resp. negative) in α(p) if its every occurrence is positive (resp. negative) in
α(p). Clearly, a formula may contain variables that are neither negative nor positive.

If one is not searching for all models for a formula α, then every positive and negative
variable should be eliminated from α. This syntactic simplification of α is accomplished
by, first, replacing every occurrence of every positive (resp., negative) variable with the
constant T (resp. F) and, then by applying rewrite rules reflecting the semantics of the
logical connectives (the rules: rewrite a subformula β ∨ F as β and rewrite F ∧ β as
F , can serve as examples).

�∧
2

������

������� �∨
0

∧
2

�
�

��

�
�

�	

�
�

��

�
�

�	� � � �

�

�
�
��

∧
0

¬q

1

¬r

1

¬r

1

� �q

0

p

0

Fig. 1. Tree formula representation of α = ((q ∧ p) ∨ ¬r) ∧ (¬q ∧ ¬r)

The following definition of the polarity clash of a formula comes from [14].

DEFINITION 1.1. Let α be a formula and let h be a truth-value assignment for α. The
polarity clash of α with respect to h, denoted as clash(α, h), is defined as follows:

– if α is a literal, then clash(α, h) = 1 − h(α);
– if α = α0 ∨ α1, then clash(α, h) = min{clash(α0, h), clash(α1, h)};
– if α = α0 ∧ α1, then clash(α, h) = clash(α0, h) + clash(α1, h).

The clash(α, h) parameter was introduced in [14] as a measure of progress in the search
for a satisfying truth-value assignment (the smaller the clash(α, h) value the better; it
is easy to see that h(α) = 1 if and only if clash(α, h) = 0). If α is a conjunction of
clauses, then clash(α, h) is simply the number of clauses in α false under h.

EXAMPLE 1.2. Figure 1 depicts a tree representation of the formula α = ((q ∧ p) ∨
¬r) ∧ (¬q ∧ ¬r). The reader is asked to verify that p is positive, r is negative, and q is
of no polarity in α. The label of every node N in the tree indicates the polarity clash of
the subformula of α rooted in N with respect to the truth-value assignment h defined
by h(p) = h(q) = h(r) = 1.

260 Z. Stachniak and A. Belov

2 polSAT Algorithm

polSAT is a non-clausal stochastic local search algorithm. In the preprocessing step, it
converts an input formula into NNF in which ∨ and ∧ are multi-argument rather than
binary connectives. Similarly to clausal stochastic local search SAT methods, such as
WalkSAT, polSAT performs a local search over the space of truth-value assignments
(see Figure 2). Given an input formula α, polSAT generates a random truth-value as-
signment h and makes a fixed number (MaxFlip) of changes to h, each time selecting
one of the variables p ∈ V ar(α) and ‘flipping’ its truth-value, i.e., changing its truth-
value from h(p) to 1 − h(p). Such variable selections and flips are repeated until either
h satisfies α or the allocated time to modify h into a satisfying assignment has elapsed
(MaxFlips). The process is repeated (if needed) up to the specified MaxTries times.

polSAT’s variable selection is a two-step process. First, a subset CandList(α, h)
of V ar(α) is generated (line (vs1) in Figure 2). In the second step (line (vs2)),
CandList(α, h) is searched for a variable v to flip using a variable selection heuristic.

procedure polSAT(α)
for i := 1 to MaxTries do

h :=random truth-value assignment
for j := 1 to MaxF lips do

if h(α) = 1 then return h else
(vs1) compute CandList(α, h) ⊆ V ar(α);
(vs2) pick v ∈ CandList(α, h) using a variable selection heuristic;

h(v) := 1 − h(v);
end if

end for
end for
return ‘satisfying valuation for α not found’

Fig. 2. Generic polSAT algorithm

polSAT forms CandList(α, h) by collecting all the variables that can be reached
from the root of α (when α is represented as a binary tree) branching into children
β having the smallest but non-zero clash(β, h) values. It’s variable selection heuristic
picks, with probability p, a variable from CandList(α, h) at random or, with probabil-
ity 1 − p, using the objective function to minimize the clash(α, h[v/1 − h(v)]) value.
The following example illustrates polSAT’s computation of CandList(α, h).

EXAMPLE 2.1. Let α and h be as in Example 1.2. The search for the elements of
CandList(α, h) begins with the root of α. The clash value of the root’s leftmost child
is 0. Therefore, the search continues by inspecting the rightmost subtree of the root
(clash value 2). The root of this subtree, labeled with ‘∧’, has two children with identi-
cal clash values equal to 1. Therefore, our search has to include both paths: one going
through ¬q and ending with q, and the second going through ¬r and terminating at r.
This gives us CandList(α, h) = {q, r}.

Speeding-Up Non-clausal Local Search 261

3 From Wish Lists to Learned Clauses

The original definition of CandList(α, h) discussed in the previous section has a draw-
back. It may happen that every variable from CandList(α, h) could be a wrong choice
for a flip. This is the case, for instance, when every model of α agrees with h on
CandList(α, h). Indeed, the flip of any of the candidate variables would direct the
search away from a model. For instance, if α = p ∧ (¬p ∨ (s ∧ s)) and the truth-value
assignment h is defined by h(p) = 1 and h(s) = 0, then CandList(α, h) = {p}.
Flipping p is certainly wrong since the only model for α assigns 1 to p as does h.

To remedy this problem, we may impose certain constraints on the CandList sets
such as the one proposed in the following definition.

DEFINITION 3.1. Let α be a formula and let h a truth-value assignment such that
h(α) = 0. A set X ⊆ V ar(α) is said to be a wish list for α and h if for every model h′

for α there exists a p ∈ X such that h(p) �= h′(p).

Paraphrasing Definition 3.1, if X is a wish list for α and h, then no model for α as-
signs truth-values to all the variables of X in the way h does. To guarantee that every
candidate list of variables generated by polSAT is a wish list, we can adopt the follow-
ing new definition of CandList(α, h):

DEFINITION 3.2 (all–∨–random–∧). Let α be a formula in NNF and let h be a truth-
value assignment. The set CandList(α, h) is defined as follows. If h(α) = 1, then
CandList(α, h) = ∅. Else:

– If α is a literal containing a variable p, then CandList(α, h) = {p}.
– If α = β0 ∨ . . . ∨ βn, then CandList(α, h) =

⋃

{CandList(βi, h) : i ≤ n}.
– If α = β0 ∧ . . . ∧ βn, then CandList(α, h) = CandList(βi, h), where βi is a

randomly selected conjunct of α false under h.

PROPOSITION 3.3. If α is a formula and h is a truth-value assignment h such that
h(α) = 0, then CandList(α, h), defined as in Definition 3.2, is a wish list for α and h.

PROOF (by induction on the syntactic complexity of α)
Let α (in NNF) and h be as stated. If α(p) is a literal, then CandList(α, h) = {p}.
Clearly, for every model h′ for α, h′(p) �= h(p).

Next, let us assume that α = β0 ∨ . . . ∨ βn and that h′ is a model for α. So, there
is i ≤ n, such that h′(βi) = 1. Since h(βi) = 0, by inductive hypothesis, there exists
p ∈ CandList(βi, h) ⊆ CandList(α, h) such that h′(p) �= h(p).

Finally, suppose that α = β0 ∧ . . . ∧ βn. Let βi be the randomly selected conjunct
used to compute CandList(α, h). Since h′ is also a model for βi, by inductive hypoth-
esis, there exists p ∈ CandList(βi, h) = CandList(α, h) such that h(p) �= h′(p).

EXAMPLE 3.4. Let us use the all–∨–random–∧ method to compute CandList(α, h),
where α and h are as in Example 1.2. Since α is a conjunction, by Definition 3.2, to
compute CandList(α, h) we should randomly select one of the conjuncts of α which
has non-zero clash value. Since there is only one such conjunct, ¬q ∧ ¬r,

262 Z. Stachniak and A. Belov

(a) CandList(α, h) = CandList(¬q ∧ ¬r, h).

Now, to compute CandList(¬q ∧ ¬r, h), we note that both ¬q and ¬r have non-zero
clash values. If ¬q is selected, then CandList(¬q ∧ ¬r, h) = CandList(¬q, h) =
{q} and, by (a), CandList(α, h) = {q}. On the other hand, if ¬r is selected, then
CandList(α, h) = {r}. To conclude, when computed using the all–∨–random–∧
method, CandList(α, h) is a singleton rather a two-element set as computed in Exam-
ple 1.2.

In Sections 4 and 5 we shall discuss two techniques for boosting the performance of
non-clausal stochastic local search using information derived from failed attempts at
local transformation of the current truth-value assignment into a model for an input for-
mula. The notion of the learned clause derived from a wish list, given in the following
definition, is at the core of these methods.

DEFINITION 3.5 (learned clause). Let α be a formula, h be a truth-value assignment
such that h(α) = 0, and let CandList be a wish list for α and h. For every variable
p ∈ CandList, let p∗ be ¬p, if h(p) = 1 and p∗ = p, otherwise. The learned clause
associated with CandList is the disjunction

∨

{p∗ : p ∈ CandList}.

THEOREM 3.6. Let α, h, and CandList be as in Definition 3.5, and let cα be the
learned clause associated with CandList. Then α � cα.

PROOF. Follows directly from Definitions 3.1 and 3.5.

THEOREM 3.7. Let α be a formula and let Cα be the set of learned clauses obtained
from all wish lists for α. Then α ∈ SAT iff Cα is consistent.

PROOF. Let α and Cα be as stated. The only if part of the theorem follows from Theo-
rem 3.6 and the soundness of �. The if part can be justified as follows. Suppose that h is
a model for every clause in Cα but h(α) = 0. Let c be the learned clause obtained from
the wish list for α and h. By the definition of a learned clause, we must have h(c) = 0.
However, since c ∈ C, h(c) = 1. Hence, h(α) = 1, as required.

The derivation of learned clauses from wish lists defined using the all–∨–random–∧
method is native to the non-clausal approach and is of no benefit to clausal SAT solvers.
Indeed, when a formula α is in conjunctive normal form, then every CandList(α, h)
coincides with the set of variables that occur in some randomly selected clause C in α
that is false under h. Furthermore, the learned clause associated with such a clause C
is C itself. On the other hand, in the non-clausal case, learned clauses are not neces-
sarily subformulas of α. Furthermore, by inspecting the proof of Theorem 3.7 we can
conclude that the set Cα (defined as in Theorem 3.7) is a CNF representation of α, i.e.,
α is equivalent to

∧

Cα. This opens up a possibility of developing hybrid non-clausal
solvers that utilize clausal methods for SAT.

Speeding-Up Non-clausal Local Search 263

4 Learned Clauses and Dynamic Formula Simplification

An input formula α can be periodically subjected to the syntactic simplification process
during the search for its model. Learned clauses can be used for this purpose by, first,
subjecting them to automated reasoning methods (such as binary resolution or implica-
tion graph reasoning) in an attempt to derive literals l(p) such that

(a) α � l(p),

or pairs l0, l1 of literals such that

(b) α � l0 ≡ l1.

Every literal l(p) satisfying (a) (frequently referred to as a backbone literal in SAT
literature) uniquely determines the truth-value of p in every model of α. We can use
this knowledge to simplify α by reducing either α(p/T), if l(p) = p, or α(p/F), if
l(p) = ¬p using equivalence preserving rewrite rules discussed in Section 1.1. The
resulting simplified formula may now have positive or negative variables that could be
used to further simplify the formula.

Pairs l0, l1 of literals satisfying (b) should be used to reduce the variable count in α
through literal renaming, that is by replacing every occurrence of l0 in α by l1.

For reasons of efficiency, the dynamic formula simplification may employ reasoning
methods of limited inference power and be restricted to specific classes of clauses only
(e.g., unary, binary, or Horn). Table 4 shows the results of detecting literals satisfying (a)
and (b) on sample SAT instances. The results are obtained using the all–∨–random–∧
method for wish list generation and using Boolean Constraint Propagation style reason-
ing on binary learned clauses.

5 Guiding Local Search Using Learned Clauses

Conflict clause learning technique for clausal backtracking SAT solvers is a method of
derivation and retention of clauses which record reasons for inconsistencies as repre-
sented by failed search paths (cf. [10]). Learned clauses are conjoined with an input
formula preventing the exploration of other search paths whose reasons for failure have
already been encoded by some of these clauses.

The clause learning method presented in this paper derives additional clauses from
wish lists. In polSAT, a search failure is indicated by CandList(α, h) being non-empty
and that can be recorded as a learned clause (assuming, of course, that CandList(α, h)
is a wish list). These clauses, in turn, can be used in a number of ways to constrain the
search for the best greedy move.

One way to incorporate learned clauses into polSAT’s search heuristic is to modify
the way the cumulative clash clash(α, h) is computed. Since every model of an input
formula has to be a model of every learned clause, we may take the clauses false under
the current assignment into consideration. This, too, can be done in a number of ways.
First, one can simply conjoin α with all the learned clauses generated and retained by a
solver, i.e., the new clash value for α and h, clash∗(α, h), is calculated as follows

clash∗(α, h) = clash(α ∧ C, h),

264 Z. Stachniak and A. Belov

where C is the set of learned clauses generated and retained by a solver. This eager
approach to clause learning can be contrasted with a more cautious approach which we
briefly discuss next.

As it was reviewed in Section 2, a variable selection heuristic of the original pol-
SAT algorithm selects a variable from CandList(α, h) either at random or by making
a greedy move which selects a variable p that minimizes the cumulative clash value
clash(α, h[p/1 − h(p)]). In the greedy move, the heuristic resolves ties by selecting
a best variable at random. Learned clauses can provide another way to brake ties by
looking at the number of learned clauses becoming false after the flip of a variable’s
truth-value. Clearly the eager and cautious approaches could be combined, refined, or
incorporated into other variable selection heuristics.

As our preliminary study shows, making clause learning work well in a non-clausal
stochastic local search solver requires a carefully crafted learning strategy to support the
main search heuristic of the solver. Adding any of the clause learning methods defined
above to polSAT may significantly improve the performance of the solver on some SAT
instances. However, in other cases, these clause learning methods seem to ‘hijack’ the
search process causing the solver to perform more search steps to find models.

6 Refining polSAT

We can now use the theoretical concepts and results discussed in the previous sections
to evolve polSAT into a more efficient solver.

6.1 From polSAT-G to polSAT-N

First, we can replace the candidate variable generation method of the original polSAT
procedure with the all–∨–random–∧ method. This replacement alone improves pol-
SAT’s performance considerably (see Table 1). Let us refer to this version of polSAT as
polSAT-G.

(vs2) with probability wp pick v from CandList(α, h) at random;
(vs3∗) with probability 1 − wp do the following:

• sort the variables r in CandList(α, h), in ascending order, by
the clash(α, h[r/1 − h(r)]) value; ties are broken according
to variables’ age (oldest first); if there are several variables
with the same clash value and age, the one that has been added
to CandList(α, h) first is chosen;

• let v1 be the first and v2 the second variable in the ordering;
• if v1 does not have minimal age among the variables

in CandList(α, h)), then return v1;
• else, with probability p return v1 and with probability 1 − p

return v2.

Fig. 3. Variable selection heuristic of polSAT-N

Speeding-Up Non-clausal Local Search 265

Having improved the selection of candidate variables (cf. line (vs1) in Figure 1), one
may now experiment with new variable selection heuristics (line (vs2)). Our next solver–
polSAT-N–is obtained from polSAT-G by modeling the variable selection heuristic after
Adaptive Novelty+ heuristic ([11,4,5,6]). The new heuristic’s behavior is controlled by
two parameters: dynamically adjusted noise setting p, and the pre-defined walk proba-
bility, wp (see Figure 3). At each local-search step, the variable to flip is selected from
the candidate list based on its clash value and on its age, that is on the number of local
search steps since this variable was last flipped.

The noise setting p is adjusted dynamically, using essentially the same mechanism as
in [6], except that the step threshold is calculated using the initial clash value of the input
formula, instead of the number of clauses. Furthermore, this new heuristic assumes that
CandList(α, h) is not a singleton. When such a set has only one variable, say v, then
v is a backbone variable which can be used to simplify α.

As we shall see shortly, there is an empirical evidence that polSAT-N performs sig-
nificantly better than both polSAT and polSAT-G.

6.2 Clause Learning and Formula Simplification in polSAT-G and -N

Since every set of candidate variables generated by new versions of polSAT is a wish
list, we can augment the solver with clause learning and dynamic formula simplification.

The dynamic formula simplification is implemented by periodically inspecting all
the binary learned clauses generated by the solver and, then, attempting to deduce back-
bone variables and equivalent literals from them. To this end, the solvers maintain an
implication graph to store the binary clauses and use this structure to perform a Boolean
Constraint Propagation style reasoning. When either backbone variables or equivalent
literals are deduced, the input formula is simplified in the way discussed in Section 4
and the search resumes.

Our experiments with clause learning concentrated on eager approach as applied to
polSAT-N. To this end, in the variable selection heuristic described in Figure 3, the
CandList(α, h) was sorted using the function clash∗ defined in Section 5 rather than
clash. During its execution, polSAT-N collected all the learned clauses and performed
only rudimentary operations to manage them such as the removal of subsumed clauses.
In view of the experimental results obtained during our studies, this implementation of
the learning method should be viewed as a proof of concept.

7 Experimental Results

We performed series of experiments with the following objectives: to confirm the ef-
fectiveness of the new candidate list generation algorithm; to evaluate the effect of re-
placement of the original polSAT’s search strategy with Adaptive Novelty+, which is
known to perform well in the clausal setting; to compare polSAT’s performance with
a state-of-the-art incomplete clausal solver; and, to evaluate the effects of the addition
of learning and reasoning mechanisms described in Sections 4 and 5. The evaluation of
the algorithms is based on the analysis of run-length and run-time distributions (RLDs
and RTDs) on variety of instances from different benchmark classes. The methodology

266 Z. Stachniak and A. Belov

for RLD/RTD based analysis of stochastic local search algorithms is described in detail
in [7]. Due to the limited resources, some of the experiments could not be performed
with a high enough cutoff value to guarantee close to 100% success rate - in such cases,
the reader should account for the fact that the descriptive statistics are taken over all
runs, including the unsuccessful ones. Finally, all the experiments were performed on
Intel Xeon X5355, 2.66GHz, 4MB cache, 4GB RAM.

7.1 Benchmarks

To facilitate our testing objectives, we implemented a formula generator capable of pro-
ducing random and structured formulas from various classes 1. One of the features of
our generator is that when the generated formula is outputted in non-clausal format
(DIMACS SAT and ISCAS formats), the same formula is converted to CNF and out-
putted in DIMACS CNF. The conversion to clauses is performed in two ways: using the
equivalence preserving transformation, and using the well-known Plaisted-Greenbaum
structure preserving CNF translation, optimized to avoid introduction of unnecessary
variables (see [12]).

The benchmark classes used in our experimental studies are listed below:

fs-200-560-3-3-2. This class consists of the fixed-shape random formulas intro-
duced in [12]. Each formula in this class consists of 560 200-variable hyper-clauses of
shape 〈3, 3, 2〉. Each such hyper-clause can be viewed as a 3 level tree with the 3-child
disjunction at the root, followed by 3-child conjunction at the second level, followed by
a 2-child disjunction of literals at the third level. In [12], authors performed a detailed
study of such formulas, and conjectured a phase transition at the ratio of hyper-clauses
to variables at about 3.02. We took the formulas slightly below the phase-transition to
ensure the satisfiability (to our knowledge, no complete solver, clausal or not, is capable
of handling formulas from this class).

fsf-300-354-2-2-3-2. Similar to the above, the formulas in this class consist
of 354 300-variable hyper-clauses of shape 〈2, 2, 3, 2〉. The main difference this time
is that we forced satisfiability of the generated formulas by seeding them with two
complimentary satisfying assignments – this technique was suggested in [1], and was
shown to produce formulas that are very difficult for local-search based methods.

parity8. The instances in this class represent the standard encoding of 8-bit Mini-
mal Disagreement Parity (MDP) problem, as described in [2].

2dlx-cc-mc-ex-bp-f2-bugXXX.These instancesare takenfromthesss-sat-1.0
processor verification benchmark available from [16]. The benchmarks contain instances
in both non-clausal (ISCAS) and clausal formats.

For each of the benchmark classes, we generated 100 instances, and performed a set
of preliminary experiments to determine a noise value for each of the solvers involved
in our experimental study. Additionally, for CNF versions of benchmarks, we selected
the CNF translation that produces instances that are as easy as possible for the clausal

1 The generator and the benchmarks used in this paper are available at
http://www.cse.yorku.ca/∼antonb

Speeding-Up Non-clausal Local Search 267

solver involved in our study. To obtain the benchmark hardness distribution, we mea-
sured the median number of search steps over 100 runs for each instance and for each
of the solvers. To select representative instances for the experiments, we were careful
to choose instances that were equally hard for each of the solvers involved in the study.
Thus, for each class the easy representative falls within 5% of the easiest instances
for all solvers, medium representative falls within 3% of the median, and the hard

representative falls within the 5% of the hardest instances.

7.2 The Effect of all–∨–random–∧ Candidate List Generation Strategy

Our first test was set up to determine the effect of the new candidate list generation
strategy. To this end, we compared the performance of the original version of polSAT
with the performance of polSAT-G. The results presented in Table 1 clearly indicate the
superiority of all–∨–random–∧ strategy both in terms of the number of search steps
and in terms of CPU time. The disproportionally large improvement in CPU time is due
to the fact that the new strategy is susceptible to a more efficient implementation.

Table 1. Basic descriptive statistics of RLD and RTD for polSAT and polSAT-G; all results are
based on 1000 tries; cutoff is set at 5 · 105 for fsf-300-354-2-2-3-2.easy and 106 for the rest

instance algorithm success mean stddev/ median mean
rate flips mean flips CPU

flips (ms)
fs-200-560-3-3-2.easy polSAT 97.3 180128 1.23 97179 5416

polSAT-G 99.9 28485 1.45 15275 366
fsf-300-354-2-2-3-2.easy polSAT 80.7 218970 0.82 163957 10462

polSAT-G 100 36988 0.76 28243 303
parity8.medium polSAT 42.6 n/a n/a >5000000 n/a

polSAT-G 77.9 2536741 0.70 2191527 7059

7.3 polSAT-G vs. polSAT-N

The goal of the second set of experiments was to test our hypothesis that due to the inde-
pendence of polSAT from a particular search strategy, the modifications to search strategy
that are known to work well in the clausal setting might work well in the context of non-
clausal framework described in this paper. To that end we compared the performance of
polSAT-G and polSAT-N. The results of this set of experiments, some of which are pre-
sented in Table 2 (next page), clearly indicate that polSAT-N significantly outperforms
polSAT-G both in terms of the number of search steps, and in terms of the CPU time.

7.4 Comparison with Clausal Solver

Since thevariableselection inpolSAT-NisperformedusingAdaptiveNovelty+algorithm,
we compared the performance of our solver with the performance of a clausal solver that
employs the same algorithm. We chose ubcsat [15] for comparative study due to the fact

268 Z. Stachniak and A. Belov

Table 2. Basic descriptive statistics of RLD and RTD for polSAT-G and polSAT-N; all results are
based on 1000 tries; cutoff is set at 105 for 2dlx-cc-mc-ex-bp-f2-bug099, 5 · 106 for parity8

instances, 106 for the rest

instance algorithm success mean stddev/ median mean
rate flips mean flips CPU

flips (ms)
fs-200-560-3-3-2.medium polSAT-G 99.7 123218 1.21 69350 1753

polSAT-N 100 13351 0.91 9619 236
fsf-300-354-2-2-3-2.medium polSAT-G 99.9 759746 1.00 513189 6930

polSAT-N 100 51749 0.94 35865 698
parity8.medium polSAT-G 77.9 2536741 0.70 2191527 7059

polSAT-N 99.7 816693 0.98 582834 1667
2dlx-cc-mc-ex-bp-f2-bug099 polSAT-G 99.8 7977 1.76 1782 55

polSAT-N 100 1317 0.80 1034 7

Table 3. Basic descriptive statistics of RLD and RTD for polSAT-N and ubcsat with Adaptive
Novelty+ heuristic; most of the results, with the exception of the following, are for 1000 tries with
106 cutoff for polSAT-N and 108 cutoff for ubcsat; for ubcsat on fsf-300-354-2-2-3-2.medium

the results are for 100 tries with 109 cutoff; for 2dlx-cc-mc-ex-bp-f2-bug049 the results are for
100 tries with 107 cutoff for polSAT-N and 109 cutoff for ubcsat.

instance algorithm success mean stddev/ median mean
rate flips mean flips CPU

flips (ms)
fs-200-560-3-3-2.hard polSAT-N 99.6 156911 1.00 107737 2799

ubcsat/anovelty+ 100 170770 0.93 117011 1043
fsf-300-354-2-2-3-2.easy polSAT-N 100 10540 0.75 8384 143

ubcsat/anovelty+ 76.2 37885144 1.06 17055099 14344
fsf-300-354-2-2-3-2.medium polSAT-N 100 51749 0.94 35865 698

ubcsat/anovelty+ 44 n/a n/a > 109 n/a
parity8.hard polSAT-N 97.7 2583752 0.93 1804016 5275

ubcsat/anovelty+ 99.9 1484619 0.96 1029140 374
2dlx-cc-mc-ex-bp-f2-bug049 polSAT-N 100 2231360 0.87 1873929 21195

ubcsat/anovelty+ 50 n/a n/a 987001033 n/a

that it is both a high-performing solver (in terms of raw flip speed), and a very convenient
tool for experimentation. The representative results of our study are presented in Table 3.

Our results clearly demonstrate that there are classes of problems that can be solved
very efficiently in non-clausal representation. Even though some classes, likeparity-8,
can be handled more efficiently in CNF, for others translation to CNF is extremely
harmful: equivalence preserving transformation of fsf-300-354-2-2-3-2 formulas
produces 5-6-CNF instances with approximately 88000 clauses which can not be solved
by ubcsat. On the other hand, Plaisted Greenbaum structure preserving CNF translation
of these formula introduces over 3000 extra variables, many of which are interdepen-
dent, which makes these formulas very difficult for local search (see [13]). Similarly,
introduction of extra variables during translation of processor verification instances to

Speeding-Up Non-clausal Local Search 269

CNF (over 1600 extra variables for 2dlx-cc-mc-ex-bp-f2-bug049) makes them
very hard for clausal local search.

7.5 Learning and Formula Simplification

In this section we discuss the results of evaluation of the effects of the addition of clause
learning and formula simplification techniques to polSAT-N, as described in Sections
4 and 5. As it has been already mentioned, making clause learning work well in a
non-clausal stochastic local search solver requires additional study of the interaction
between the main heuristic of the solver and the clause learning engine.

Table 4 shows that in some cases even a very rudimentary form of clause learning,
such as the eager approach discussed in Section 5, may result in a significant improve-
ment in the performance of a solver. For example, the results for parity8 instances
demonstrate that the savings in the number of search steps could be significant enough
to offset the additional computational effort required to perform learning, and could
result in the improvement in the CPU time. However, in other cases, we observed that
the clause learning interfered negatively with the polSAT-N’s search heuristic and that
resulted in a diminished performance of polSAT-N with learning.

Our results also indicate that even restricting reasoning to binary learned clauses
polSAT-N was still able to simplify input formulas (see Table 4)

Table 4. Basic descriptive statistics of RLD and RTD for polSAT-N with and without the addition
of learning and formula simplification techniques

instance reasoning success mean stddev/ median mean
mechanism rate flips mean flips CPU

flips (ms)
fs-200-560-3-3-2.hard none 99.6 156911 1.00 107737 2799

learning 100 121883 0.82 94283 4228
fsf-300-354-2-2-3-2.medium none 100.0 51749 0.94 35865 698

learning 99.6 67826 1.64 36456 5526
parity8.hard none 99.7 2583752 0.93 1804016 5275

learning 100 1354522 0.98 944137 3612
simplification 100 1740627 0.92 1309759 4491

2dlx-cc-mc-ex-bp-f2-bug049 none 100 2231360 0.87 1873929 21195
simplification 99.7 2152581 1.00 1451799 28152

8 Concluding Remarks

The notions of a wish list and a learned clause introduced and studied in this paper offer
other promising directions for future studies. One of them is the possibility of building
complete hybrid clausal/non-clausal SAT solvers. Learned clauses deduced during the
execution of a non-clausal local search solver can be subjected to automated reasoning
using a variety of clause-based tools from SAT solvers to refutational proof systems. In
Section 4 we discussed the use of clause-based automated deduction for the purpose of
input formula simplification. Clausal reasoning can also be used to detect and certify

270 Z. Stachniak and A. Belov

the unsatisfiability of input formulas. Indeed, if an input formula α is unsatisfiable then,
by Theorem 3.7, the set of all learned clauses that can be derived from α is inconsistent.
Achieving completeness of a stochastic local search SAT procedure in such a way has
been suggested by other authors. A framework for complete clause-based local search
proposed in [3] uses a clause generator to derive implied clauses of an input formula α
and to conjoin them with α. The generation of the empty clause indicates that α �∈ SAT .

Another research direction, that has already been initiated by the authors, is the ex-
tension of the polSAT framework to directly handle other non-clausal representations
of input formulas such as DAGs. There have been some previous work on DAG-based
stochastic local search, most notably that by Kautz, McAllester, and Selman [9], which
identifies classes of Boolean satisfiability problems that could benefit from such an ex-
tended framework.

Acknowledgments. We thank the anonymous referees for helpful comments.

References

1. Achlioptas, D., Jia, H., Moore, C.: Hiding Satisfying Assignments: Two are Better than One.
J. of Artificial Intelligence Research 24, 623–639 (2005)

2. Crawford, J.M., Kearns, M.J., Shapire, R.E.: The Minimal Disagreement Parity Problem as
Hard Satisfiability Problem. Computational Intell. Research Lab and AT&T Bell Labs TR
(1994)

3. Fang, H., Ruml, W.: Complete Local Search for Propositional Satisfiability. In: AAAI, pp.
161–166 (2004)

4. Hoos, H.H.: Local Search – Methods, Models, Applications. TU Dermstadt, FB Informatik,
Darmstadt, Germany (1998)

5. Hoos, H.H.: On the Run-Time Behavior of Stochastic Local Search Algorithms for SAT. In:
AAAI/IAAI, pp. 661–666 (1999)

6. Hoos, H.H.: An Adaptive Noise Mechanism for WalkSAT. In: AAAI, pp. 655–660 (2002)
7. Hoos, H.H., Stutzle, T.: Local Search Algorithms for SAT: An Empirical Evaluation. Journal

of Automated Reasoning 24, 421–481 (2000)
8. Hoos, H.H., Stutzle, T.: Stochastic Local Search: Foundations and Applications. Elsevier,

Amsterdam (2005)
9. Kautz, H., Selman, B., McAllester, D.: Exploiting Variable Dependency in Local Search. In:

IJCAI (1997)
10. Lynce, I., Marques-Silva, J.P.: An Overview of Backtrack Search Satisfiability Algorithms.

Annals of Mathematics and Artificial Intelligence, 307–326 (2003)
11. McAllester, D., Selman, B., Kautz, H.: Evidence for Invariants in Local Search. In: AAAI,

pp. 321–326 (1997)
12. Navarro, J.A., Voronkov, A.: Generation of Hard Non-Clausal Random Satisfiability Prob-

lems. In: AAAI, pp. 436–442 (2005)
13. Prestwich, S.D.: Variable Dependency in Local Search: Prevention Is Better Than Cure. In:

Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 107–120. Springer,
Heidelberg (2007)

14. Stachniak, Z.: Going Non-clausal. In: SAT, pp. 316–322 (2002)
15. Tompkins, D.A., Hoos, H.: UBCSAT: An Implementation and Experimentation Environment

for SLS Algorithms for SAT and MAX-SAT. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT
2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005)

16. Velev, M.: Miroslav Velev’s SAT Benchmarks,
http://www.miroslav-velev.com/sat benchmarks.html

http://www.miroslav-velev.com/sat_benchmarks.html

Local Restarts

Vadim Ryvchin1,2 and Ofer Strichman1

1 Information Systems Engineering, IE, Technion, Haifa, Israel
2 Design Technology Solutions Group, Intel Corporation, Haifa, Israel

rvadim@tx.technion.ac.il, ofers@ie.technion.ac.il

Abstract. Most or even all competitive DPLL-based SAT solvers have
a “restart” policy, by which the solver is forced to backtrack to decision
level 0 according to some criterion. Although not a sophisticated tech-
nique, there is mounting evidence that this technique has crucial impact
on performance. The common explanation is that restarts help the solver
avoid spending too much time in branches in which there is neither an
easy-to-find satisfying assignment nor opportunities for fast learning of
strong clauses. All existing techniques rely on a global criterion such as
the number of conflicts learned as of the previous restart, and differ in
the method of calculating the threshold after which the solver is forced to
restart. This approach disregards, in some sense, the original motivation
of focusing on ‘bad’ branches. It is possible that a restart is activated
right after going into a good branch, or that it spends all of its time in
a single bad branch. We suggest instead to localize restarts, i.e., apply
restarts according to measures local to each branch. This adds a dimen-
sion to the restart policy, namely the decision level in which the solver is
currently in. Our experiments with both Minisat and Eureka show that
with certain parameters this improves the run time by 15% - 30% on
average (when applied to the 100 test benchmarks of SAT-race’06), and
reduces the number of time-outs.

1 Global vs. Local Restarts

Most or even all competitive DPLL SAT solvers have a “restart” policy, a strat-
egy initially proposed by Gomes et. al [3]. The solver is restarted after a certain
number of conflict clauses have been learned. The fact that new clauses have been
added to the clause database deviates the search from one restart to the next. In
those solvers that is relevant, the search is changed also owing to randomness.

Different restart policies are used by different solvers. A recent survey by
Huang [4] includes several types of restart policies. We briefly describe vari-
ous types of popular restart techniques based on that survey and on some new
developments.

1. Arithmetic (or fixed) series. Parameters: x, y. A policy in which there is a
restart every x conflicts, which is increased by y every restart. Some sample
values are: in zchaff 2004 x = 700, in Berkmin x = 550, in Siege x = 16000
and in Eureka x = 2000. In all of these solvers the series is in fact fixed (i.e.,

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 271–276, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

272 V. Ryvchin and O. Strichman

y = 0), owing to the observation that completeness is meaningless in the
realm of timeouts.

2. Geometric series. Parameters: x, y. A policy in which the initial interval is
x, which is then multiplied by a factor of y in each restart, for some y > 1.
This policy is used in Minisat-2 with x = 100 conflicts and y = 1.5.

3. Inner-Outer Geometric series. Parameters: x, y, z. An idea suggested by
Biere and implemented in PicoSAT [1], by which restarts follow what can
be seen as a two dimensional pattern that increases geometrically in both
dimensions. The inner loop multiplies a number initialized to x, by z, at each
restart. When this number is larger than a threshold y, it is reset back to x
and the threshold y is also multiplied by z (this is the outer loop). Hence,
both the inner and outer loops follow a geometric series, and the whole series
creates an oscillating pattern.

4. Luby et al. series [5]. Parameter: x. A policy in which restarts are performed
according to the following series of numbers: 1,1,2,1,1,2,3,1,1,2,1,1,2,3,4,...
multiplied by the constant x (called the unit-run). Formally, let ti denote
the i-th number in this series. Then ti is defined recursively:

ti =
{

2k−1 if ∃k ∈ N. i = 2k − 1
ti−2k−1+1 if ∃k ∈ N. 2k−1 ≤ i < 2k − 1

This is a well-defined series, as the two conditions are mutually-exclusive.
This policy has some nice theoretical characteristics in a class of randomized
algorithms called Las Vegas algorithms1, but the relevance of these results
to DPLL has only been empirical so far – it is not clear what is the reason
that it works well in practice. The experiments reported in [4] show that it
outperforms the other restart strategies, and indeed this is now the restart
method of choice of several state-of-the-art solvers, such as TinySAT [4] and
RSAT [8].

For completeness of this list, we should also mention that there is a family of
techniques in which ‘restart’ does not entail backtracking to level 0, but rather
to some decision level which is lower than what is computed as the backtrack-
ing level by a conflict analysis procedure. Such a procedure was proposed, for
example, by Lynch [6]. We did not experiment with these techniques, however.

All of the strategies listed above are based on a global counter of conflict
clauses, and therefore they measure progress over many branches together. As-
suming that the motivation for restarts is to prevent the solver from getting stuck
in a bad branch (which can, informally, be defined as a branch which neither
contains an easy-to-find satisfying assignment nor leads to efficient learning that
directs the solver to a different search-space or to a proof of unsatisfiability),
such a global policy may miss the point.

For example, it is possible that the solver spent a significant amount of time
searching in a branch, eventually left it, and very soon after that it restarts (since

1 Algorithms that use randomness, but the quality of the result is not affected by it.
Typically randomness in such algorithms only affects run-times.

Local Restarts 273

the global threshold was reached), although there is no knowledge yet about the
potential of the current branch. It is also possible that the restart is too late, for
example if it spends all its time between restarts in a single bad branch.

A possibly better strategy is to localize the measure of difficulty of branches,
and restart when the branch is more difficult than some threshold. Each of the
global strategies mentioned above can be applied locally, because we can count
the number of conflicts under each branch easily, as follows. For each decision
level d we maintain a counter c(d), which is initially (when a decision is made
at that level) set to the global number of conflicts. When backtracking back
to that level, we examine the difference between the current global number of
conflicts, and c(d). This difference reflects the number of conflicts that were
encountered above level d, since the last time a decision was made at this level.
If this difference is larger than some strategy-dependent threshold, we restart.

Locality opens a new dimension, namely that of the decision level. In other
words, the threshold can be a function of the level in which the solver is currently
in. We call such strategies dynamic. It can be expected that the work done
between two visits to a decision level (from decision to backtracking back to
that level) will be smaller as the level increases. Also, we collected statistics
regarding the size of learned clauses at each level, and it shows that conflict
clauses at low decision levels are smaller on average. Hence giving less chance to
deeper levels forces the solver to learn stronger facts first. Each of the strategies
above can be made dynamic, although in strategies in which the series oscillates
as in Luby et al. and the Inner-Outer strategy, it is not clear how to add this
new dimension. We focused, then, on the following strategy:

5. Dynamic-fix. Parameters: x, y, d, min. A policy in which at decision level i
there is a restart every max(x − i · d, min) conflicts, which is increased by y
every restart.

Making the strategy local instead of global requires re-tuning of the parame-
ters – there is no reason to believe that parameters that optimize a global restart
policy also optimize a local one. Hence a major empirical evaluation is needed
in order to check the effect of locality on each of these strategies.

2 Experimental Results and Conclusions

The table in Fig. 1 shows results with 40 different restart configurations, when
implemented on top of Minisat 2007 [2], and ran on the 100 industrial bench-
marks that were used as preparation for SAT-race’06 (divided evenly to the two
test-sets TS1 and TS2). A similar table for the latest version of Eureka [7], with
41 configurations, appears in Fig. 2. The set of configurations is not identical,
but close, because we chose them dynamically: when a good strategy was found,
we tried to change it incrementally. The tables are sorted according to the type
of strategy, local/global, and parameters. The third column indicates whether
this strategy is implemented globally or locally. Timeout was set to 30 minutes.
Instances that timed-out are included and contribute 30 minutes (we added them

274 V. Ryvchin and O. Strichman

G/ TS1 TS2 Overall
Place Strategy L Parameters SAT UNSAT TO Total SAT UNSAT TO Total TO Time

�3 Arith L 100,10 1.12 2.06 4 3.18 2.17 2.59 6 4.75 10 7.93
26 Arith L 10,1 2.12 2.62 6 4.74 2.42 2.99 6 5.41 12 10.15
8 Arith L 100,1 1.89 1.96 4 3.85 2.37 2.84 6 5.21 10 9.05
6 Arith L 100,20 2.49 1.99 6 4.48 2.32 2.21 5 4.53 11 9.02
12 Arith L 100,40 2.51 1.95 6 4.47 2.11 2.74 6 4.86 12 9.33
10 Arith L 1000,0.1 2.3 2.05 4 4.35 1.89 2.85 6 4.74 10 9.09
9 Arith L 1000,1 2.15 1.93 5 4.08 2.07 2.9 6 4.97 11 9.05
32 Arith L 1000,10 2.76 2.13 7 4.89 2.72 2.99 8 5.71 15 10.6
34 Arith L 1000,20 3.13 2.07 8 5.2 2.61 2.93 5 5.54 13 10.74
21 Arith L 2500,1 2.11 2.38 6 4.49 2.37 3.03 7 5.39 13 9.89
24 Arith L 3,1 2.47 1.87 3 4.34 2.88 2.81 9 5.69 12 10.03
29 Arith L 3,10 2.69 1.92 6 4.61 2.95 2.92 9 5.87 15 10.48
14 Arith L 5,0.2 2.41 1.62 6 4.04 2.59 2.85 8 5.43 14 9.47
15 Arith L 5000,1 2.33 2.48 7 4.81 2.13 2.56 4 4.69 11 9.5
18 Arith L 6,1 2.02 2.23 5 4.25 2.61 2.86 8 5.46 13 9.71
27 Geom. L 10,1.1 2.53 2.03 6 4.56 2.5 3.18 8 5.68 14 10.24
37 Geom. L 10,1.5 2.46 2.63 7 5.08 2.62 3.29 6 5.91 13 10.99
40 Geom. L 10,2 2.89 2.77 9 5.65 3.03 3.39 9 6.42 18 12.07
16 Geom. L 100,1.1 1.71 2.16 3 3.86 2.55 3.14 8 5.69 11 9.56
38 Geom. L 100,1.5 3.33 2.71 9 6.03 2.94 2.77 6 5.71 15 11.75
36 Geom. L 100,2 2.33 2.86 7 5.19 2.42 3.35 7 5.76 14 10.95
33 Geom. * G 100,1.5 1.6 2.76 6 4.36 3.06 3.22 8 6.28 14 10.64
11 IO G 100,1000,1.1 2.68 2.07 6 4.75 1.72 2.86 7 4.57 13 9.32
4 IO G 100,1000,1.5 1.81 2.04 4 3.86 2.04 2.97 6 5 10 8.86
39 IO G 100,1000,2 2.81 2.16 8 4.97 3.33 3.48 10 6.81 18 11.78
�1 IO L 100,1000,1.1 1.59 2 4 3.59 1.27 2.51 4 3.78 8 7.38
7 IO L 100,1000,1.5 2.22 2.02 5 4.24 1.92 2.88 6 4.8 11 9.04
30 IO L 100,1000,2 2.89 2.22 8 5.11 2.6 2.79 7 5.39 15 10.5
22 Luby G 32 2.22 1.49 3 3.71 3.06 3.15 10 6.21 13 9.91
23 Luby G 128 3.08 1.76 6 4.84 2.21 2.89 7 5.1 13 9.94
13 Luby G 512 2.84 1.93 7 4.77 1.92 2.64 5 4.56 12 9.33
5 Luby G 1024 2.26 1.97 5 4.22 2.02 2.74 6 4.76 11 8.98

�2 Luby L 32 1.6 1.15 3 2.75 2.22 2.92 6 5.14 9 7.89
25 Luby L 128 2.75 2.01 7 4.76 2.29 3.02 7 5.32 14 10.08
17 Luby L 512 2.18 2.08 5 4.26 2.33 3.1 6 5.43 11 9.69
19 Luby L 1024 2.71 2.02 4 4.73 1.94 3.05 7 5 11 9.73
28 D-arith L 1000,0.1,10,10 3.45 1.02 6 4.47 2.7 3.13 8 5.84 14 10.31
20 D-arith L 1000,0.1,20,10 2.92 0.99 4 3.91 2.77 3.1 8 5.87 12 9.78
31 D-arith L 1000,10,10,10 3.5 2 8 5.51 1.64 3.41 7 5.05 15 10.56
35 D-arith L 1000,10,20,10 3.22 2.02 8 5.24 2.25 3.4 8 5.65 16 10.89

Fig. 1. Results, in hours, based on Minisat 2007. The original configuration of Min-

isat 2007 is marked with *.

to the SAT or UNSAT column according to our prior knowledge of the expected
result). Instances that none of our configurations nor any SAT’06-race competi-
tor can solve are not included. The overall number of timeouts and total run
time are given in the last two columns, where time is measured in hours. All
together the two tables represent over 40 days of CPU time.

The first column indicates the position of each solver when measured by the
total run time, and the best three configurations according to this measure are
preceded by ‘�’. With both solvers, the best three configurations that we tried
are local (also when measured by time-outs).

To the extent that the benchmark set is representative of industrial prob-
lems, and that MiniSat 2007 and Eureka represent state-of-the-art solvers, it

Local Restarts 275

G/ TS1 TS2 Overall
Place Strategy L Parameters SAT UNSAT TO Total SAT UNSAT TO Total TO Time

39 Arith L 10,0.1 2.34 1.26 4 3.6 2.78 4.22 11 7 15 10.59
38 Arith L 10,1 1.92 1.67 4 3.59 2.93 4.06 10 6.98 14 10.58
41 Arith L 100,1 2.19 1.63 3 3.81 3.24 4.04 10 7.28 13 11.09
17 Arith L 100,10 1.78 1.11 2 2.89 2.8 3.44 7 6.24 9 9.13
�2 Arith L 1000,1 1.6 1.04 2 2.64 2.74 2.72 6 5.46 8 8.09
5 Arith L 1000,10 1.63 0.96 2 2.59 3.05 2.68 5 5.72 7 8.31

�1 Arith L 1000,20 1.83 0.92 2 2.75 2.57 2.67 5 5.24 7 7.98
40 Arith L 20,0.1 2.47 1.35 4 3.82 2.65 4.23 11 6.87 15 10.69
31 Arith L 20,1 2.4 1.32 3 3.72 2.63 3.69 9 6.32 12 10.04
14 Arith L 2000,1 1.76 1.1 2 2.86 3.4 2.81 6 6.21 8 9.08
32 Arith L 3,1 2.04 1.19 3 3.23 3.4 3.43 9 6.83 12 10.06
8 Arith L 3,10 1.63 1 2 2.63 2.66 3.24 6 5.89 8 8.52
4 Arith L 3,20 1.7 0.9 2 2.6 2.47 3.21 7 5.68 9 8.28
21 Arith L 3,40 1.79 0.92 2 2.71 3.54 3.39 8 6.93 10 9.64
37 Arith L 5,0.2 2.29 1.23 3 3.53 3.17 3.85 10 7.02 13 10.55
18 Arith L 5000,1 1.71 1.08 2 2.79 3.01 3.44 7 6.45 9 9.24
19 Arith* G 2000,0 2.15 1.07 3 3.22 3.17 3 6 6.17 9 9.39
29 Geom. L 10,1.1 2.2 1.07 3 3.26 3.27 3.49 9 6.76 12 10.03
36 Geom. L 10,1.5 1.89 1.1 2 2.99 3.17 4.23 10 7.4 12 10.39
25 Geom. L 10,2 1.96 1.32 2 3.28 3.14 3.38 9 6.52 11 9.80
11 Geom. L 100,1.1 1.98 0.9 2 2.88 2.8 3.1 7 5.9 9 8.78
28 Geom. L 100,1.5 1.73 0.95 2 2.68 3.46 3.78 9 7.24 11 9.93
30 Geom. L 100,2 2.11 1.01 2 3.12 3.16 3.75 7 6.91 9 10.04
10 IO G 100,1000,1.1 1.54 0.93 2 2.47 3.05 3.12 7 6.17 9 8.64
15 IO G 100,1000,1.5 1.59 0.9 1 2.49 3.01 3.57 8 6.58 9 9.08
26 IO G 100,1000,2 2.12 0.87 3 2.99 3.34 3.48 8 6.83 11 9.82
�3 IO L 100,1000,1.1 1.72 0.88 2 2.6 2.82 2.7 6 5.52 8 8.12
22 IO L 100,1000,1.5 2.19 0.86 3 3.05 3.14 3.55 8 6.68 11 9.73
34 IO L 100,1000,2 2.34 1.1 3 3.44 3.13 3.76 8 6.88 11 10.32
16 Luby G 32 1.83 1.03 3 2.86 2.97 3.29 7 6.26 10 9.12
12 Luby G 128 2.17 0.87 2 3.05 2.92 2.94 7 5.86 9 8.90
13 Luby G 512 1.59 1 2 2.59 3.18 3.27 7 6.46 9 9.05
23 Luby G 1024 2.22 1.09 3 3.31 3.58 2.88 6 6.46 9 9.76
9 Luby L 32 1.67 0.94 1 2.61 2.75 3.17 7 5.92 8 8.53
7 Luby L 128 1.71 0.91 1 2.62 2.84 2.96 6 5.79 7 8.41
6 Luby L 512 1.6 0.94 2 2.54 3.14 2.72 6 5.86 8 8.40
27 Luby L 1024 2.33 1.1 3 3.43 3.6 2.87 7 6.47 10 9.90
24 D-arith L 1000,0.1,10,10 1.91 1.34 3 3.25 3.26 3.27 8 6.53 11 9.77
35 D-arith L 1000,0.1,20,10 1.86 1.71 4 3.57 3.15 3.66 9 6.81 13 10.38
20 D-arith L 1000,10,10,10 1.88 1.2 2 3.08 3.25 3.28 5 6.53 7 9.61
33 D-arith L 1000,10,20,10 1.82 1.31 2 3.13 3.25 3.74 8 6.98 10 10.11

Fig. 2. Results, in hours, based on Eureka. The original configuration of Eureka is
marked with *.

seems that locality can help with the four types of strategies that we tried.
The following table shows, for the Luby and Inner-Outer strategies, the figures
corresponding to the best local and best global configurations that we could find.

Minisat Eureka
Strategy Global Local Global Local

TO Time TO Time TO Time TO Time
Luby 11 8.98 9 7.89 9 8.90 8 8.40
IO 10 8.86 8 7.38 9 8.64 8 8.12

There seems to be such an advantage for the local geometric and local arith-
metic strategies as well, but more global configurations of these strategies need

276 V. Ryvchin and O. Strichman

to be tested in order to draw concrete conclusions. If we take the default para-
meters of Minisat and Eureka as best of their respective global strategies, then
this can be said with some confidence.

What about the dynamic strategy? it does not seem to score well in general,
at least not with the 4 parameters set that we tried, but it performs well with
unsatisfiable instances. In the case of the first table (Minisat), the dynamic
strategies with parameters 1000,0.1,20,10 and 1000,0.1,10,10 arrive at the second
and third places, respectively, if we measure only unsatisfiable instances. More
parameters and variations of this strategy are necessary in order to see if it can
become competitive in the general case.

We are currently trying more configurations and looking for other measures for
the quality of the branch that can be checked with a marginal cost in run-time.
It is possible that measures such as the size of the backtrack can be factored in
the restart policy.

References

1. A. Biere. PicoSAT essentials. JSAT (2008) (to be published)
2. Een, N., Sorensson, N.: Minisat v2.0 (beta). In: Solvers description, SAT-race (2006),

http://fmv.jku.at/sat-race-2006/descriptions/27-minisat2.pdf
3. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through ran-

domization. In: AAAI/IAAI, pp. 431–437 (1998)
4. Huang, J.: The effect of restarts on the efficiency of clause learning. In: IJCAI, pp.

2318–2323 (2007)
5. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.

In: ISTCS, pp. 128–133 (1993)
6. Baptista, L.L., Marques Silva, J.P.: Stochastic systematic search algorithms for sat-

isfiability. In: LICS Workshop on Theory and Applications of Satisfiability Testing,
pp. 190–204 (2001)

7. Nadel, A., Gordon, M., Palti, A., Hana, Z.: Eureka-2006 SAT solver. In: Solvers
description, SAT-race (2006)

8. Pipatsrisawat, K., Darwiche, A.: Rsat 2.0: SAT solver description. In: SAT compe-
tition 2007 (2007)

http://fmv.jku.at/sat-race-2006/descriptions/27-minisat2.pdf

Regular and General Resolution: An Improved

Separation

Alasdair Urquhart�

Department of Computer Science
University of Toronto

Toronto, Ontario M5S 1A4,
Canada

urquhart@cs.toronto.edu

Abstract. This paper gives an improved separation between regular
and unrestricted resolution. The main result is that there is a sequence
Π1, Π2, . . . , Πi, . . . of sets of clauses for which the minimum regular reso-

lution refutation of Πi has size 2Ω(Ri/(log Ri)
7), where Ri is the minimum

size of an unrestricted resolution refutation of Πi. This improves earlier

lower bounds for which the separations proved were of the form 2Ω(3√
R)

and 2Ω(4√
R/(log R)3).

1 Introduction

1.1 The Regularity Restriction

This paper proves an improved separation between the size of regular and unre-
stricted resolution refutations of sets of clauses. This provides a nearer approach
to an optimal separation between these two propositional proof systems than
earlier results.

The regularity restriction was first introduced by Grigory Tseitin in a ground-
breaking article [1], the published version of a talk given in 1966 at a Leningrad
seminar. This restriction is very natural, in the sense that algorithms such as that
of Davis, Logemann and Loveland [2] (the prototype of almost all satisfiability
algorithms used in practice today) can be understood as a search for a regular
refutation of a set of clauses. If refutations are represented as trees, rather than
directed acyclic graphs, then minimal-size refutations are regular, as can be
proved by a simple pruning argument [3, p. 436].

The main result of Tseitin’s paper [1] is an exponential lower bound for regular
resolution refutations of contradictory CNF formulas based on graphs. Tseitin
makes the following remarks about the heuristic interpretation of the regularity
restriction:

The regularity condition can be interpreted as a requirement for not
proving intermediate results in a form stronger than that in which they

� The author gratefully acknowledges the support of the Natural Sciences and Engi-
neering Research Council of Canada.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 277–290, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

278 A. Urquhart

are later used (if A and B are disjunctions such that A ⊆ B, then A may
be considered to be the stronger assertion of the two); if the derivation
of a disjunction containing a variable ξ involves the annihilation of the
latter, then we can avoid this annihilation, some of the disjunctions in
the derivation being replaced by “weaker” disjunctions containing ξ.

These remarks of Tseitin suggest that there is always a regular resolution
refutation of minimal size, as in the case of tree resolution. Consequently, some
researchers tried to extend Tseitin’s results to general resolution by showing
that regular resolution can simulate general resolution efficiently. However, these
attempts were doomed to failure.

The first example of a contradictory CNF formula whose shortest resolu-
tion refutation is irregular was given by Wenqi Huang and Xiangdong Yu [4].
Subsequently, Andreas Goerdt [5] gave the first super-polynomial separation be-
tween regular resolution and unrestricted resolution by constructing a family
of formulas that have polynomial-size resolution refutations, but require super-
polynomial size regular resolution refutations.

Goerdt’s results were improved to an exponential separation in a paper by
Alekhnovich, Johannsen, Pitassi and Urquhart [6]. The paper in fact contains
two separate proofs of an exponential separation. The first presents a sequence
GT ′

n,ρ of sets of clauses that have general resolution refutations with size O(n3),
but require regular resolution refutations of size 2Ω(n). The second gives an
infinite sequence of sets of clauses Stone(G, S) based on a pebbling problem
that have general resolution refutations with size O(n4), but require regular
resolution refutations of size 2Ω(n/(log n)3).

Hence, the best separations so far between regular and general resolution are
of the form 2Ω(3√R), and 2Ω(4√R/(log R)3), where R is the size of the smallest
general resolution refutation of the set of clauses in question. It is natural to
ask whether we can improve these separations. In fact, we know that we cannot
do better than a 2Ω(R log log R/ log R) separation. This is because Ben-Sasson, Im-
pagliazzo and Wigderson [7] showed that if R is the size of a general resolution
refutation of a set of clauses, then there is a tree resolution refutation with size
2O(R log log R/ log R). Since a tree resolution refutation of minimal size is regular,
it follows that the same upper bound holds for regular resolution.

The present paper makes a closer approach to a matching lower bound. The
main result is that there is a sequence of contradictory sets of clause Πi, with an
associated unbounded parameter n = n(i), so that Πi has a general resolution
refutation with size O(n(log n)7), but any regular resolution refutation has size
2Ω(n/[(log n)2 log log n]) The proof of this result is an amalgamation and extension
of ideas underlying the two previous separation results.

1.2 Preliminaries

A literal is a propositional variable x or its negation ¬x. A clause is a set of
literals, interpreted as the disjunction of the set. For clauses containing exactly
one positive literal, we use the implication p1, . . . , pk → q as alternative notation

Regular and General Resolution 279

for the clause ¬p1 ∨ · · · ∨ ¬pk ∨ q. The resolution rule allows us to derive the
resolvent C ∨ D from the clauses C ∨ x and D ∨ ¬x by resolving on the variable
x; a clause C ∨D can also be derived from a clause C by weakening. A resolution
derivation of a clause C from a set of clauses Σ consists of a sequence of clauses
in which each clause is either a clause of Σ, or derived from earlier clauses by
resolution or weakening, and C is the last clause in the sequence; it is a refutation
of Σ if C is the empty clause Λ. The size |R| of a refutation R is the number of
resolvents in it. We can represent it as a directed acyclic graph (dag) where the
nodes are the clauses in the refutation, each clause of F has out-degree 0, and
any other clause has one or two arcs pointing to the clause or clauses from which
it is derived. Resolution is a sound and complete propositional proof system, that
is to say, a set of clauses Σ is unsatisfiable if and only if there is a resolution
refutation for Σ.

A resolution refutation is regular if on any path from Λ to a clause in F (in the
directed acyclic graph associated with the refutation), each variable is resolved
on at most once along the path.

It is sometimes helpful to view a regular resolution refutation as a branching
program. Representing the refutation as a dag, let us say that a variable x is
queried at a node q in the dag if q is labelled with a clause C ∨ D, derived from
parent clauses C∨x and D∨¬x by resolving on x. Starting from the empty clause
Λ at the root of the dag, we can construct a path in the refutation by answering
the queries occurring in the path; the answers determine an assignment to the
variables queried along the path. The path is chosen so that the assignment
falsifies all the clauses in the path. Thus, if the variable x is queried at a node, and
the answer is “false,” then the next node in the path is labelled with the parent
clause containing the literal x; similarly for the answer “true.” If C∨D is derived
by weakening from C, then the path continues to C. The path constructed in
this way must end with an initial clause falsified by this assignment.

An assignment (restriction) for a set of clauses is a Boolean assignment to
some of the variables in the set; the assignment is total if all the variables in
the set are assigned values. If C is a clause, and σ an assignment, then we write
C� σ for the result of applying the assignment to C, that is, C� σ = 1 if σ(l) = 1
for some literal l in C, otherwise, C� σ is the result of removing all literals set
to 0 by σ from C. If Σ is a set of clauses, then Σ� σ is the set of clauses C� σ,
C a clause in Σ.

If R is a resolution refutation of Σ, and σ a restriction for Σ, then we define
the restriction R� σ of R to be the sequence of clauses resulting from R by
replacing all of the clauses C in R by C� σ, and then removing all of the clauses
set to 1. It is easy to verify that R� σ is a resolution refutation of Σ� σ, and that
R is regular, if R is regular.

If Σ is a set of clauses, and x, y are variables in Σ, or the propositional
constant ⊥, then we say that there is an implicational chain from x to y in Σ if
there is a sequence x = x0, . . . , xk = y of variables (or constants) and a sequence
C1, . . . , Ck of clauses so that for all i, 0 < i ≤ k, xi−1 occurs negatively and xi

positively in Ci.

280 A. Urquhart

The notation log x stands for the base two logarithm of x, and lnx the natural
logarithm of x.

2 Pebbling Games and Pebbling Formulas

2.1 The Pebbling Game

A pointed graph G is a directed acyclic graph where all nodes have indegree at
most two, having a unique sink, or target node, to which there is a directed path
from all the nodes in G. It is binary if all nodes except for the source nodes have
indegree two. If v is a node in a pointed graph G, then G� v is the subgraph of
G restricted to the nodes from which there is a directed path to v.

The pebbling game played on a pointed graph G is a one-player game in the
course of which pebbles are placed on or removed from nodes in G. The rules of
the game are as follows;

1. A pebble may be placed on a source node at any time.
2. If all predecessors of a node u are marked with pebbles, then a pebble may

be placed on node u.
3. A pebble may be removed from a node at any time.

A move in the game consists of the placing or removing one of the pebbles in
accordance with one of the three rules. The configuration at a given stage in the
game is the set of nodes in G that are marked with a pebble. The goal of the
game is to place a pebble on the sink node t, while minimizing the number of
pebbles used (that is, minimizing the number of pebbles on the graph at any
stage of the game). Thus a successful play of the game can be presented as a
sequence of configurations C0, . . . , Ck, where C0 = ∅ and t ∈ Ck.

A strategy for the game is a sequence of moves following the rules of the
game that ends in pebbling the target node. The cost of such a strategy is the
minimum number of pebbles required in order to execute it, that is to say, the
size of the largest configuration in the sequence of configurations produced by
following the strategy. The pebbling number of G, written as �G, is the minimum
cost of a strategy for the pebbling game played on G.

2.2 Pebbling Formulas

We associate a contradictory set of clauses with every pointed graph G. Each
node in G except the target t is assigned a distinct variable; to simplify notation,
we identify a node with the variable associated with it, and use the notation
Var(G) for the set of these variables. We associate the constant ⊥ (falsum) with
the target node t, and make the identification t = ⊥.

Definition 1. If G is a pointed graph, Peb(G) is a set of clauses expressed in
terms of the variables Var(G), so that Peb(G) = {Clause(v) : v ∈ G \ {t}}.

1. If v is a source node of G, then Clause(v) = v.

Regular and General Resolution 281

2. If v is a node in G, with predecessor u, then Clause(v) = u → v.
3. If v is a node in G, with predecessors u, w, then Clause(v) = u, w → v.

If we set some variables in Peb(G), then the resulting set of clauses is not nec-
essarily of the form Peb(G′), where G′ is a subgraph of G. We shall focus on
a family of special assignments, called pebbling assignments, that preserve this
property. If v ∈ G, v 	= t, then we define the assignment [[v := 1]] to be the
assignment defined by first setting the variable v to 1, and then setting to 1 any
variable u for which there is no implicational chain from u to ⊥ in the resulting
clause set. The assignment [[v := 0]] is defined as follows: first, choose a directed
path π = (v, . . . , t) from v to the target t, set all the nodes in the path to 0, and
in addition set any node from which v is not reachable, but not in the path π,
to 1. The assignment [[v := 0]] is not uniquely determined by this construction,
since it depends on the path chosen – however, this is not important, since the
set of clauses Peb(G)� [[v := 0]] resulting from the restriction is independent of
the path. A pebbling assignment results from a sequence of restrictions of the
form [[v := 0]] and [[w := 1]].

The effect of the restrictions just defined can be described directly as an
operation on the underlying graph. If G is a pointed graph, and v ∈ G, v 	= t,
G[v := 1] is the graph resulting from G by first removing v, together with all
edges entering or leaving v, and then restricting the resulting graph to the nodes
from which the target node t is accessible. G[v := 0] is the pointed graph G� v.

Lemma 1. 1. For b = 0, 1, Peb(G)� [[v := b]] = Peb(G[v := b]).
2. If G is a pointed graph, and v ∈ G, then

�G ≤ max{�G[v := 0], �G[v := 1] + 1}.

Proof. The first part of the lemma follows straightforwardly from the definitions.
For the second part, we employ the following strategy in the pebble game on G.
First, follow a minimum cost strategy to pebble v in G[v := 0]. Second, leaving a
pebble on v, but removing all other pebbles, follow a minimum cost strategy in
the pebbling game on G[v := 1] to pebble the target node in G, using the extra
pebble for any moves where a pebble is needed on v to justify a placement. The
cost is at most max{�G[v := 0], �G[v := 1] + 1}.
�
If Σ is a set of clauses, then a C-critical assignment is an assignment to the
variables in Σ that makes all the clauses true, except C. In the case of Peb(G),
we are interested in a particular family of critical assignments. Let v be a vertex
in G, and π = (v, . . . , t) a directed path in G from v to the target node t. Set
all the nodes in the path π to 0, and all other nodes in G to 1. This assignment
makes all of the clauses in Peb(G) true, except for Clause(v). An assignment
determined by the path π we shall call a v-critical assignment, since the clause
that it falsifies is associated with the node v. Since we have assumed that G is a
pointed graph, such v-critical assignments exist for all the nodes v in G, so that
Peb(G) is minimally inconsistent.

Lemma 2. If G is a pointed graph with �G = p, then there are at least p vertices
v in G for which there is a v-critical assignment for Peb(G).

282 A. Urquhart

Proof. Every pebbling strategy for G must contain a configuration with p peb-
bles, so there must be at least p vertices in G. For every vertex v in G, we can
construct a v-critical assignment for Peb(G) by choosing a path from v to the
target node.
�
If G is a binary pointed graph, then the clause set Peb(G) contains both 3-
literal clauses and unit clauses. It is convenient, in view of a later construction,
to convert it into a set of 3-literal clauses.

Definition 2. Let Σ be a set containing both 3-literal clauses and unit clauses.
Then Σ∗ is the set of clauses obtained from Σ by the following construction.
First, introduce for each unit clause l in Σ, a pair of new auxiliary variables
xl and yl. Second, replace the unit clause l by the set of four 3-literal clauses
{l ∨ xl ∨ yl, l ∨ xl ∨ yl, l ∨ xl ∨ yl, l ∨ xl ∨ yl}.

We write Peb∗(G) for Peb(G)∗. Let G be a binary pointed graph. If v is a node in
G that is not a source node, then we write Clauses(v) for {u, w → v}, where u, w
are the predecessors of v, and if v is a source node, then Clauses(v) is defined to be
the set of four clauses {v∨xv∨yv, v∨xv∨yv, v∨xv∨yv, v∨xv∨yv}. If X is a subset
of the nodes in G, then Clauses(X) is defined to be

⋃

{Clauses(v) : v ∈ X}.

3 Constructing Hard Problems

3.1 Earlier Constructions

In this section, we construct the problems that produce our improved separation
between general and regular resolution. The overall approach is derived from the
first separation result described above in §1; the proof of this result is based on
the following idea. The construction begins with a sequence of problems GTn

that are hard for tree resolution but not for regular resolution. The set of clauses
GTn asserts that there is a directed acyclic ordering on n nodes that has no sink;
these problems were introduced in the proof complexity literature by Krishna-
murthy [8], who conjectured that they require superpolynomial-size resolution
refutations. That conjecture was refuted by St̊almarck, who showed that they in
fact have linear size resolution refutations [9]. However, Bonet and Galesi [10]
showed that they require exponentially large tree resolution refutations, thus
showing an exponential separation between general and tree resolution.

The exponential lower bound for tree resolution shows that any tree refutation
for GTn must contain exponentially many paths starting from the root of the
tree. Although this fact does not force regular resolution refutations to be large,
as St̊almarck showed, nevertheless we can convert the GTn examples into hard
problems for regular resolution by making a small modification. The idea is to
add new literals to certain clauses in such a way as to force the exponentially
many paths in a tree refutation not to overlap, at least in their initial segments.
The new sets of clauses GT ′

n,ρ require exponentially large regular resolution
refutations, though the general resolution size remains linear, as in the case of
the original GTn problems.

Regular and General Resolution 283

The construction in the present paper follows the outline above, but this time
starting from the pebbling formulas. The second lower bound proof in [6] also
began from the pebbling formulas, but used a somewhat different construction
to convert them into hard examples for regular resolution. The present result
combines features of both proofs; the construction proceeds in two stages.

3.2 Xorification of Clause Sets

The construction starts from Peb(G), for G a pointed graph. The first stage
applies to Peb(G) a construction of Alekhnovich and Razborov.

Definition 3. Let Σ be a set of clauses, and k > 1 a positive integer. For each
variable x in Σ, introduce a set of k distinct variables {x1, · · · , xk}. Then the set
of clauses Σk⊕, the k-xorification of Σ, is defined as follows: first, substitute the
formula x1 ⊕ · · · ⊕ xk for all of the variables x occurring in Σ, second, convert
the resulting formula into conjunctive normal form.

If C is a clause containing m literals, then {C}k⊕ contains 2m(k−1) clauses, each
of length mk. Hence, when G is a binary pointed graph with n nodes, Peb∗(G)k⊕

contains nk variables, and n23(k−1) clauses, each of length 3k.
The special case of Definition 3 where k = 2 is the original construction of

Alekhnovich and Razborov [11]. They observed that it could be used to produce
hard problems for resolution from clause sets requiring refutations of large width.
Let Width(Σ) be the size of the largest clause in Σ, and Width(Σ
 0) the
minimum width of a resolution refutation of Σ.

Theorem 1. (Alekhnovich and Razborov) If Σ is contradictory, then any
resolution refutation of Σ2⊕ has size exp[Ω(Width(Σ
 0) − Width(Σ))].

More important in the present context is the fact that the construction can be
used to produce examples that separate tree resolution from general resolution.

Theorem 2. If G is a pointed graph with n nodes and pebbling number p, then
the set of clauses Peb(G)2⊕ has general resolution refutations of size O(n), but
every tree resolution refutation of Peb(G)2⊕ has size 2Ω(p).

Proof. The theorem can be proved by imitating the proof of Ben-Sasson, Im-
pagliazzo and Wigderson [7]. Their result involves clause sets that are the “ori-
fication” Peb(G)∨ of Peb(G) rather than the xorification Peb(G)2⊕; however,
the steps in their proof can be imitated almost word for word in the case of
Peb(G)2⊕ to produce essentially the same result as their main theorem.
�
An assignment μ for Peb∗(G)k⊕ is defined to be full if whenever v is a vertex in G,
and μ assigns a value to some variable vj associated with v, then all the variables
attached to v are assigned values by μ. If μ is such a full assignment, then we can
construct an assignment for Peb(G) from μ by setting σ(v) = μ(v1 ⊕· · ·⊕vk). In
this case, we say that the constructed assignment is the projection of μ, written
π(μ). We shall say that an assignment μ for Peb∗(G)k⊕ is a pebbling assignment
if its projection π(μ) is a pebbling assignment for Peb(G).

284 A. Urquhart

Lemma 3. Let G be a binary pointed graph. If σ is a v-critical assignment for
Peb(G), v ∈ G, and C is in Clauses(v)k⊕, then there is a C-critical assignment
μ for Peb∗(G)k⊕ so that π(μ) = σ.

Proof. If v is a source node in G, and D is a clause in Clauses(v), then we can
construct a D-critical assignment for Peb∗(G) by giving the appropriate values
to the auxiliary variables xl and yl. If v is not a source node, then σ is already
a v-critical assignment for Peb∗(G).

Starting from a v-critical assignment for Peb∗(G), we can construct an assign-
ment μ that assigns values to u1, . . . , uk, for all nodes u ∈ G, so as to make C
false, but all other clauses in Peb∗(G)k⊕ true, and in addition, this assignment
μ satisfies π(μ) = σ.
�

3.3 Adding Random Literals

The second stage of the construction starts from Peb∗(G)k⊕, for a binary pointed
graph G and suitable k, and replaces each clause C in the set with a pair of
clauses, C ∨ ρ(C) and C ∨ ¬ρ(C), where ρ(C) is a variable associated with C
by the function ρ. For the second stage to work (that is to say, for the resulting
sets of clauses to require exponentially large regular resolution refutations), it is
essential that ρ have a special property, namely that the image of a large set of
clauses has a large intersection with a large set of variables. The easiest way to
construct such a function is by a probabilistic argument, given in the following
lemma.

Lemma 4. If G is a binary pointed graph with n nodes, δ = 5/3 and k =
�δ log log n� + 1, define Σ = Peb∗(G)k⊕, and V = Var(Σ). Then for sufficiently
large n, there exists a map ρ from Σ to V satisfying the condition: For all A ⊆ G
with |A| = �n/4 logn�, and B ⊆ V , with |B| = �n/4 logn�, |ρ(Clauses(A))∩B| ≥
n/8 logn.

Proof. If A ⊆ G with |A| = �n/4 logn�, and x ∈ A, then Clauses(x) con-
tains 23(k−1) = 25�log log n	 ≥ (log n)5 clauses, so that |Clauses(A)| contains
Θ(n(log n)4) clauses, |Σ| = Θ(n(log n)5), and |V | = nk = n(�δ log log n� + 1) ≤
2n log log n, for sufficiently large n.

Consider the space R of all random maps from Σ to V ; that is to say, for
each C ∈ Σ, a variable ρ(C) ∈ V is chosen uniformly at random. For A ⊆ G
with |A| = �n/4 logn�, and B ⊆ V , with |B| = �n/4 logn�, we say that ρ is bad
for A and B if |ρ(Clauses(A)) ∩ B| < n/8 logn.

We establish the existence of the map ρ by a probabilistic argument; to accom-
plish this, we need to prove exponentially small upper bounds on the probability
that a random map is bad for some sets A and B. In proving this, it helps to
view the construction of a random map as resulting from a series of independent
experiments, each of them consisting in the construction of a random map from
a subset of Σ.

We partition Clauses(x) as Ξ1(x), . . . , Ξq(x), where q = �(log n)3�, so that
each set Ξj(x) in the sequence contains at least (log n)2 clauses. For fixed j,

Regular and General Resolution 285

1 ≤ j ≤ q, let Σj be the union of all the Ξj(x), for x ∈ G, and for A ⊆ G,
|A| = �n/4 logn�, let Clausesj(A) be the union of all the Ξj(x), for x ∈ A. Then
Clausesj(A) contains Θ(n log n) clauses. Let ρj be a random map from Σj to V ;
we take ρ to be the union of the sequence ρ1, . . . , ρq of independently constructed
random maps.

For a given j, where 1 ≤ j ≤ q, let Z be the random variable representing the
number of variables in B not in the image of Clausesj(A) under ρj:

Z(ρj) = |{x ∈ B| x 	∈ ρj(Clausesj(A)) }|.

For B = {b1, b2, . . . , bi, . . . , bm}, where m = �n/4 logn�, define an indicator
random variable Θi by:

Θi(ρj) =
{

1, if bi 	∈ ρj(Clausesj(A))
0, if bi ∈ ρj(Clausesj(A)),

so that Z = Θ1 + · · · + Θm. We estimate the expected value of Θi by

E(Θi) =
(

1 − 1
|V |

)|Clausesj(A)|

≤
(

1 − 1
2n log log n

)Θ(n log n)

≤ exp
(

−Ω

(

log n

log log n

))

,

showing that

E(Z) ≤ m · exp
(

−Ω

(

log n

log log n

))

= m · o(1).

It follows that for any given positive γ, E(Z) < γm, for sufficiently large n. For
the remainder of the proof, we assume that n is chosen sufficiently large so that
E(Z) < m/8.

We need to show that the random variable Z is tightly concentrated around its
mean. To do this, we employ a large deviation bound for martingales, following
[12].

Order Clausesj(A) as {C1, . . . , Cp}. For ρ ∈ R, and 1 ≤ j ≤ p, define ρ� j to
be the restriction of ρ to the set {C1, . . . , Cj}. Define an equivalence relation ≡j

on R by setting
ρ ≡j σ ⇐⇒ ρ� j = σ� j,

for 1 ≤ j ≤ p, and let ≡0 be the universal relation on R. Let Fj be the finite
Boolean algebra whose atoms are the blocks of the partition of R induced by
≡j, for 0 ≤ j ≤ p. Now define a sequence of random variables Z0, . . . , Zp by
setting Zj = E(Z|Fj). Then Z0 = E(Z), Zp = Z, and the sequence Z0, . . . , Zp

forms a martingale, with |Zj+1 − Zj | ≤ 1. Consequently, by the martingale tail
inequality of Hoeffding and Azuma [13, p. 221],

286 A. Urquhart

P (Z ≥ m/2) ≤ P (Z − E(Z) > 3m/8)
< exp(−(3m/8)2/2p)
≤ exp(−Ω(n/(log n)3)).

Let W be the random variable representing the number of variables in B not
in the image of Clauses(A) under ρ:

W (ρ) = |{x ∈ B| x 	∈ ρ(Clauses(A)) }|.

Since the maps ρ1, . . . , ρq are constructed independently, it follows that

P (W ≥ m/2) ≤ [exp(−Ω(n/(log n)3))]q = exp(−Ω(n)).

We can now complete the proof of the existence of a map ρ satisfying the
condition of the lemma. The probability that a random map ρ ∈ R is bad for
some A and B is bounded by

(

n

�n/4 logn�

)(

n log log n

�n/4 logn�

)

exp(−Ω(n)).

Let H(x) = x log(1/x) + (1 − x) log(1/(1 − x)) be the binary entropy function.
Then the first binomial coefficient above can be bounded by

(

n

�n/4 logn�

)

≤ exp(O(nH(n/�n/4 logn�))

= exp(O(nH(1/ log n)))
= exp(O(n log log n/ logn)).

A similar computation shows that the second binomial coefficient has the same
upper bound. Hence, the probability can be bounded above by

exp(O(n log log n/ log n)) exp(−Ω(n)) = exp(−Ω(n)).

Consequently, the probability that a random map ρ is bad for some A and B
is exponentially small for sufficiently large n, showing that a map satisfying the
condition of the lemma must exist.
�

3.4 Construction of the Hard Problems

Let’s say that for Σ = Peb∗(G)k⊕, a map ρ is good for Σ if it satisfies the
condition of Lemma 4. This lemma states that for δ = 5/3, k = �δ log log n� + 1,
and sufficiently large n, there is a map that is good for Σ = Peb∗(G)k⊕. This
enables us to construct our set of hard problems for regular resolution. The
construction is based on the following result of Paul, Celoni and Tarjan.

Theorem 3. [14] There is a sequence of binary pointed graphs G1, G2, . . . , Gi, . . .
with pebbling number Ω(n(i)/ log n(i)), where n(i) = |Gi| = O(i2i).

Regular and General Resolution 287

We construct our sequence Π1, Π2, . . . , Πi, . . . by applying the earlier construc-
tions to G1, G2, . . . , Gi,

Definition 4. Let G1, G2, . . . , Gi, . . . be the sequence of graphs of Theorem 3,
k(i) = �δ log log n(i)� + 1, and ρi a map that is good for Σi = Peb∗(Gi)k(i)⊕.
Then Πi is defined to be the set of clauses

{C ∨ ρi(C) : C ∈ Σi} ∪ {C ∨ ¬ρi(C) : C ∈ Σi}.

The set of clauses Πi contains Θ(n(log n)5) clauses, and Θ(n log log n) variables,
where n = n(i) is the size of the pointed graph Gi. By a “pebbling assignment
for Πi” we mean a pebbling assignment for Σi = Peb∗(Gi)k(i)⊕.

4 Lower Bound for Regular Resolution

4.1 Destroying Large Clauses by Restrictions

In this section, to avoid notational clutter, we adopt the following conventions.
We assume that we are dealing with the set of clauses Π = Πi, for sufficiently
large i, write G for Gi, and n for n(i) = |Gi|. Define a clause to be large if it
contains at least n/8 logn literals.

Lemma 5. If Σ is a set of clauses in the language of Π, containing fewer than
2n/[64(log n)2 log log n] clauses, then there is a pebbling assignment μ so that:

1. Σ� μ contains no large clauses.
2. G� π(μ) has pebbling number at least n/2 logn.

Proof. There are at most 2n log log n variables in Π , and so at most 4n log log n
literals involving those variables. If we choose a literal at random and set it to
1, then the probability this assignment sets a large clause C to 1 is at least 1/r,
where r = 32 logn log log n. Hence, the average number of large clauses in Σ set
to 1 is at least |Σ|/r.

Choose a literal l achieving at least this average, and set it to 1. Suppose that
l contains a variable vj , where v ∈ G. Set the remaining variables in the set of
variables {v1, . . . , vk} so as to maximize �G[v := b], where b = v1 ⊕· · ·⊕ vk. Now
extend this assignment to produce a pebbling assignment for Π whose projection
to Peb(G) is [[v := b]]. Then the set Σ′ resulting from this restriction contains at
most (1 − 1/r)|Σ| large clauses, and by Lemma 1, �G[v := b] is at most one less
than �G.

If we repeat this procedure �n/2 logn� times, resulting in a restriction μ, then
the set contains at most

(1 − 1/r)
n/2 log n�2n/[64(log n)2 log log n]

large clauses. However, this last expression is bounded above by

exp
[

− n

(log n)2

(

0.9 − ln 2
64 log log n

)]

< 1,

showing that Σ� μ contains no large clauses. By construction, the pebbling num-
ber of G� π(μ) is at least n/2 logn.
�

288 A. Urquhart

4.2 Large Clauses

Lemma 6. Let R be a regular resolution refutation of Π� μ, where μ is a peb-
bling assignment, and G� π(μ) has pebbling number ≥ n/2 logn. Then R contains
a clause with at least n/8 logn literals.

Proof. Viewing R as a branching program, we describe a strategy for con-
structing a path in R, starting with the root, and concurrently constructing a
full assignment to certain variables in π. The strategy is as follows. We suppose
that the path has been constructed as far as a node p, and that σ is the current
full assignment. We extend the path and the assignment according to these rules:

1. If the clause labelling p is derived by weakening, then continue the path to
the unique parent node; the assignment remains unchanged.

2. If the variable queried at p is already assigned a value by σ, answer the query
according to σ, and continue the path according to this answer.

3. If the variable queried at p is not assigned a value by σ, then it must be
associated with a node v ∈ G� π(σ). Extend σ to a pebbling assignment σ′

so that π(σ′) = [[v := b]], choosing b so as to maximize the pebbling number
of (G� π(μ ∪ σ))� [[v := b]]). Then extend the path in accordance with σ′.

Continue according to these rules until �n/4 logn� nodes in G have been
queried (that is to say, variables attached to the nodes have been queried), let
C be the clause at the end of the resulting path, and τ the resulting assignment.

By Lemma 2, there are at least n/4 logn vertices v ∈ G� π(τ) for which there
is a v-critical assignment for Peb(G� π(τ)). If φ is such a critical assignment,
then π(τ)∪φ is a v-critical assignment for Peb(G). Let A be the set of all nodes
in G satisfying this condition, and B the set of variables assigned values by τ .
Since |A|, |B| ≥ �n/4 logn�, by Lemma 4, |ρ(Clauses(A)) ∩ B| ≥ n/8 logn.

Let x be a variable in ρ(Clauses(A)) ∩ B. We claim that x must occur in C.
Suppose not. By assumption, there is a D ∈ Clauses(v), for some v ∈ A, so that
ρ(D) = x, and D ∨ x, D ∨ x ∈ Π . Let’s assume that τ(x) = 0 (the case τ(x) = 1
is symmetrical). By Lemma 3, there is a D-critical assignment φ for Peb∗(G)k⊕

that extends τ , and so is a D ∨ x-critical assignment for Π . Extend the path in
R from C by answering queries in accordance with φ. This path must terminate
in a node labelled with D ∨ x. But since x does not occur in C, it follows that
it must have been resolved on twice along the path, violating regularity. This
contradiction proves that x must occur in C, showing that C contains at least
n/8 logn literals.
�

4.3 Lower Bound

Theorem 4. Let Π1, Π2, . . . , Πi, . . . be the sequence of contradictory sets of
clauses based on the pointed graphs G1, G2, . . . , Gi, . . . of Paul, Celoni and Tar-
jan, where n = n(i) is the size of the graph Gi. Then:

1. There are resolution refutations of Πi with size O(n(log n)7).
2. Every regular resolution refutation of Πi has size 2Ω(n/[(log n)2 log log n])

Regular and General Resolution 289

Proof. The set of clauses Peb(G) has a refutation using unit resolution (where
at least one of the premisses in every resolution step is a unit clause), with O(n)
steps and in which every clause contains at most three literals. We can imitate
this refutation to produce a refutation of Peb(G)k⊕; in this refutation, a single
resolution step in the original refutation corresponds to multiple resolution steps
in the new refutation. Let us suppose that in the original refutation of Peb(G),
the clause b ∨ c was inferred from a and a ∨ b ∨ c, where a, b, c are literals. Then
in the new refutation, we infer {b ∨ c}k⊕ from {a ∨ b ∨ c}k⊕ and {a}k⊕. The set
of clauses {a}k⊕ ∪ {a}k⊕ consists of all the clauses in a fixed set of k variables,
so it takes O(2k) = O((log n)5/3) steps to deduce the empty clause from this
set. Hence, a single clause in {b ∨ c}k⊕ can be derived in O((log n)5/3) steps.
It follows that the derivation of {b ∨ c}k⊕ takes O((log n)5(log n)5/3) resolution
steps, showing that the entire refutation has size O(n(log n)20/3). By adding
some extra resolution inferences, we can produce a resolution refutation of Πi

with the same size bound.
For the second part of the theorem, let us assume that R is a regular resolu-

tion refutation of Πi, with size less than 2n/[64(log n)2 log log n]. By Lemma 5 there is
a pebbling assignment μ so that R� μ contains no large clauses, but Gi� π(μ) has
pebbling number at least n/2 logn. However, Lemma 6 shows that R� μ must con-
tain a large clause, showing that a regular refutation of this size cannot exist.
�
It is interesting to ask how close Theorem 4 comes to the optimum. We al-
ready observed in §1 that if R is the minimum size of a resolution refutation
of a set of clauses, then the size of a regular refutation is bounded above by
2O(R log log R/ log R). If we express the lower bound in these terms, then we find
that the lower bound on regular refutations has the form 2Ω(R/(log R)7). So, the
separation we have proved is certainly much closer to the optimum than previous
bounds, but there is definitely room for improvement.

References

1. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Slisenko,
A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic, Part 2,
pp. 115–125. Consultants Bureau, New York (1970); Reprinted in[15], vol. 2, pp.
466-483

2. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the Association for Computing Machinery 5, 394–397 (1962);
Reprinted in [15], vol. 1, pp. 267-270

3. Urquhart, A.: The complexity of propositional proofs. The Bulletin of Symbolic
Logic 1, 425–467 (1995)

4. Huang, W., Yu, X.: A DNF without regular shortest consensus path. SIAM Journal
on Computing 16, 836–840 (1987)

5. Goerdt, A.: Regular resolution versus unrestricted resolution. SIAM Journal on
Computing 22, 661–683 (1993)

6. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential sep-
aration between regular and general resolution. Theory of Computing 3, 81–102
(2007); Preliminary version. In: Proceedings of the 34th Annual ACM Symposium
on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada (2002)

290 A. Urquhart

7. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree-
like and general resolution. Combinatorica, 585–603 (2004); Preliminary version,
ECCC TR00-005 (2000)

8. Krishnamurthy, B.: Short proofs for tricky formulas. Acta Informatica 22, 253–275
(1985)

9. St̊almarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta
Informatica 33, 277–280 (1996)

10. Bonet, M.L., Galesi, N.: Optimality of size-width tradeoffs for resolution. Com-
putational Complexity 10, 261–276 (2001); Preliminary version: Proceedings 40th
FOCS (1999)

11. Ben-Sasson, E.: Size Space Tradeoffs For Resolution. In: Proceedings of the 34th
ACM Symposium on the Theory of Computing, pp. 457–464 (2002)

12. Kamath, A., Motwani, R., Palem, K., Spirakis, P.: Tail bounds for occupancy and
the satisfiability threshold conjecture. Random Structures and Algorithms 7, 59–80
(1995)

13. McDiarmid, C.: Concentration. In: Habib, M., McDiarmid, C., Ramirez-Alfonsin,
J., Reed, B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics,
vol. 16, pp. 195–248. Springer, Heidelberg (1998); Algorithms and Combinatorics
16

14. Paul, W., Tarjan, R., Celoni, J.: Space bounds for a game on graphs. Mathematical
Systems Theory 10, 239–251 (1977)

15. Siekmann, J., Wrightson, G. (eds.): Automation of Reasoning. Springer, New York
(1983)

Finding Guaranteed MUSes Fast

Hans van Maaren1 and Siert Wieringa2,�

1 Delft University of Technology
Faculty of EWI

Mekelweg 4, 2628 CD, Delft, The Netherlands
h.vanmaaren@tudelft.nl

2 Helsinki University of Technology (TKK)
Department of Information and Computer Science

P.O. Box 5400, FI-02015 TKK, Finland
Siert.Wieringa@tkk.fi

Abstract. We introduce an algorithm for finding a minimal unsatisfi-
able subset (MUS) of a CNF formula. We have implemented and evalu-
ated the algorithm and found that its performance is very competitive
on a wide range of benchmarks, including both formulas that are close
to minimal unsatisfiable and formulas containing MUSes that are only a
small fraction of the formula size.

In our simple but effective algorithm we associate assignments with
clauses. The notion of associated assignment has emerged from our work
on a Brouwer’s fixed point approximation algorithm applied to satisfi-
ability. There, clauses are regarded to be entities that order the set of
assignments and that can select an assignment to be associated with
them, resulting in a Pareto optimal agreement.

In this presentation we abandon all terminology from this theory
which is superfluous with respect to the recent objective and make the
paper self contained.

1 Introduction

Solvers for instances of the Boolean satisfiability problem, so called SAT solvers,
have found their way into numerous applications including electronic design au-
tomation (EDA) [1], formal verification [2,3] and artificial intelligence [4]. In
many of those applications we would like to have an explanation of the cause
of unsatisfiability in case a formula is unsatisfiable. For example if an FPGA
routing problem is translated to a Boolean formula a satisfying assignment cor-
responds to a valid routing, and unsatisfiability means no such routing exists [1].
In the latter case the user might want to know which part of the design caused
the unroutability.

An unsatisfiable subset or core of an unsatisfiable formula is a subset of clauses
from that formula the conjunction of which is unsatisfiable. A minimal unsatisfi-
able subset (MUS) is an unsatisfiable subset that becomes satisfiable if any of its

� Supported by the Academy of Finland project #112016.

H. Kleine Büning and X. Zhao (Eds.): SAT 2008, LNCS 4996, pp. 291–304, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

292 H. van Maaren and S. Wieringa

clauses is removed. There can be multiple MUSes in one formula. An unsatisfiable
subset might help to understand at least one cause of a formula’s unsatisfiability
as the clauses that have been left out were not necessary to maintain unsatisfi-
ability. Multiple algorithms have been presented for finding unsatisfiable cores
that are not guaranteed to be MUSes (i.e. [5,6,7]). In this paper we present an
algorithm for finding a MUS in an unsatisfiable formula. Our algorithm does not
guarantee finding the minimum unsatisfiable core, which is the MUS with the
least number of clauses [8].

In [6] a nice example of a small unsatisfiable FPGA routing problem can be
found. It shows the use of finding multiple MUSes and is used to argue that the
minimum unsatisfiable core is not necessarily the most useful core for diagnostic
purposes. Other work has focused on algorithms for finding all MUSes [9,10]
or the minimum unsatisfiable core [8]. Even if finding all MUSes is not feasible
those algorithms might be very useful to find one or multiple MUSes under some
time constraint.

Important notions for our algorithm emerged from our work [11] on applying
a Brouwer’s fixed point approximation algorithm [12] to satisfiability. In that
work a clause is regarded to be an entity that can select an assignment from the
set of all 2n possible assignments on which it imposes a complete ordering in
which all satisfying assignments are preferred over all unsatisfying assignments.
Unsatisfiability is represented by the possibility to find a subset, or coalition, of
clauses that form a Pareto optimal agreement. In such an agreement all clauses
have chosen a unique assignment that does not satisfy themselves, while they
would all prefer the chosen assignment of all other clauses in the coalition and
there is no single assignment that all those clauses prefer over their own choice.
The existence of this agreement proves that the preferences of the clauses are
contradictionary from which the inconsistency of the formula follows. As the
clauses in the coalition prove unsatisfiability of the formula they form an unsat-
isfiable subset. We implemented an algorithm for finding unsatisfiable subsets
using this theory [11], but as it remains far from competitive we let go of most
of this background and present a simple and efficient algorithm.

2 Extracting a MUS

We will represent a CNF formula F by a sequence of clauses. Furthermore a
subscript will denote an element index in a sequence, so clause Ci from F =
〈C1, C2, ..., Cm〉 is the ith clause in the sequence.

The most straightforward approach to reducing a CNF formula of m clauses to
a MUS is given in Algorithm 1. This algorithm requires solving m SAT problem
instances to find a MUS in the unsatisfiable set of clauses F . In case the input
set F is a MUS itself all the SAT problem instances have m − 1 clauses.

Given a CNF formula F Algorithm 2 finds a formula F ′ ⊆ F such that F ′

and F have the same set of satisfying assignments. The conditional addition of
the clauses from F to F ′ is performed one by one in the order of occurrence in
the sequence F = 〈C1, C2, ..., Cm〉. A clause Ci is added to F ′ iff there exists a

Finding Guaranteed MUSes Fast 293

Algorithm 1. naiveFindMUS(F)
1: F ′ := F
2: for i = 1 to |F| do
3: if F ′ \ {Ci} is UNSATISFIABLE then
4: F ′ := F ′ \ {Ci}
5: end if
6: end for
7: return F ′

Algorithm 2. findEquSubset(F)
1: F ′ := 〈〉
2: for i = 1 to |F| do
3: if ¬Ci ∧ F ′ is SATISFIABLE then
4: append Ci to F ′

5: end if
6: end for
7: return F ′

truth assignment that is satisfying all the clauses that have already been added
to F ′ while not satisfying Ci.

Lemma 1. The formula F ′ returned by Algorithm 2 has the same set of satis-
fying truth assignments as the input formula F .

Proof. Each clause Ci ∈ F is added to the initially empty sequence F ′ if there is
an assignment satisfying the clauses already added to F ′ while not satisfying the
clause Ci. If no such assignment exists then either F ′ is unsatisfiable or F ′ |= Ci.
If F ′ is unsatisfiable F must be unsatisfiable and thus both formulas have zero
satisfying truth assignments. If F ′ |= Ci then Ci does not restrict the number of
satisfying truth assignments in F as it implied by, and therefore can be derived
from, the subset of F that was already added to F ′. ��

Corollary 1. If the input F of Algorithm 2 is unsatisfiable so is the formula F ′

it returns

Although it is possible to use Algorithm 2 to reduce the number of clauses
in satisfiable formulas in this paper we limit ourselves to its applications for
unsatisfiable formulas.

Definition 1. A critical clause of an unsatisfiable formula F is a clause that
belongs to every unsatisfiable subset of the formula F .

Proposition 1. In a MUS every clause is a critical clause.

Note that an unsatisfiable formula does not have to contain any critical clauses.
An example of a formula without critical clauses would be a formula with two

294 H. van Maaren and S. Wieringa

completely disjoint unsatisfiable subsets. A critical clause is called a necessary
clause in [13].

Lemma 2. The last clause appended to the sequence forming the unsatisfiable
formula F ′ = 〈C′

1, C
′
2, ..., C

′
m〉 which is a subset of the unsatisfiable formula F

returned by Algorithm 2 is critical for F ′.

Proof. By construction it holds for each clause C′
i in F ′ that there exists an as-

signment that satisfies all the clauses C′
j in F ′ with j < i. So without the clause

C′
|F ′| there is a satisfying assignment for the |F ′| − 1 other clauses in F ′. Conse-

quently, every subset of F ′ that does not contain clause C′
|F ′| is satisfiable. ��

Algorithm 3 reduces an unsatisfiable CNF formula to a MUS. It proceeds in
multiple rounds, proving one clause critical in every round. The lines 3 to 8
in this algorithm are similar to the pseudo code of Algorithm 2 except for the
addition of a sequence M to which F ′ is initialised. This sequence M consists of
all clauses that have already been proven to be critical for the unsatisfiability of
the MUS we are constructing.

Algorithm 3. reduceToMUS(F)
1: M := 〈〉
2: while |M | < |F| do
3: F ′ := M
4: for i = 1 to |F| do
5: if (Ci does not appear in M) and (¬Ci ∧F ′ is SATISFIABLE) then
6: append Ci to F ′

7: end if
8: end for
9: append last(F ′) to M

10: F := F ′

11: end while

Lemma 3. In each round of Algorithm 3 it finds a new critical clause unless
the set of critical clauses is unsatisfiable.

Proof. The first round proceeds just like Algorithm 2 would. At the end of the
round the last clause is added to M as according to Lemma 2 it is critical. In
every following round the sequence F ′ is initialised to contain the clauses in M ,
which are all clauses that have already been proven critical. If M is satisfiable at
the start of a round more clauses will be added to F ′ which will cause the last
clause added in that round to be a clause that was not yet in M . According to
Lemma 2 it is critical and as it was not proven critical before we have found a
new critical clause. If M is unsatisfiable at the start of a round then at the end
of the round F ′ will still be equal to M and the algorithm will end. ��

Instead of using a sequence M to keep track of the critical clauses one can also
reshuffle the sequence of clauses before each round in such a way that all the

Finding Guaranteed MUSes Fast 295

clauses already proven critical precede the other clauses in the sequence. One
might also want to add a preliminary exit to the for loop as soon as F ′ becomes
unsatisfiable but from experimental results this did not seem to result in an
overall performance gain.

Example 1. Consider the following unsatisfiable CNF formula.

(x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x1 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (¬x1) . (1)

algorithm end of end of end of algorithm
start round 1 round 2 round 3 finished

x1 ∨ x2 x1 ∨ x2 ¬x1 x1 ∨ ¬x2 x1 ∨ ¬x2

x3 ∨ x4 → x3 ∨ x4 → x1 ∨ x2 → ¬x1 → ¬x1

x1 ∨ ¬x2 x1 ∨ ¬x2 x3 ∨ x4 x1 ∨ x2 x1 ∨ x2

x1 ∨ x2 ∨ x3 ¬x1 x1 ∨ ¬x2

¬x1

Fig. 1. Finding a MUS in Formula (1)

Each of the rectangles in Fig. 1 show the contents of the sequence F at some
point in the execution of Algorithm 3 with the example formula as input.

– After the first round the clause x1∨x2∨x3 is removed as there is no satisfying
assignment to ¬(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ (x1 ∨ ¬x2). This is
because clause x1 ∨ x2 ∨ x3 subsumes (is a superset of) clause x1 ∨ x2 which
has already been added to the sequence. After this round the clause ¬x1 is
proven to be a critical clause.

– The first clause in the rectangle in Fig. 1 holding the contents of the sequence
F after the second round is separated from the other clauses by a horizontal
line because it is a critical clause and F is therefore initialised to hold that
clause at the start of this round. In this round no clauses are removed from
the sequence. After this round clause x1 ∨ ¬x2 is proven to be a critical
clause.

– At the start of the third round the sequence F is initialised to hold the two
clauses that were proven to be critical so far. Clause x1 ∨x2 can be added to
the sequence as ¬(x1 ∨x2)∧ (x1 ∨¬x2)∧¬x1 is satisfiable. After adding that
clause the sequence F becomes unsatisfiable and therefore clause x3 ∨x4 will
not be added. After this round the clause x1 ∨ x2 is proven to be a critical
clause. As all clauses in F are now proven to be critical we have found a
MUS. �

We will now describe a way to find more than one critical clause per round of
the algorithm. This will reduce the number of rounds the algorithm needs to
find a MUS and therefore the number of SAT problem instances that need to
be solved. Recall that in each round a clause Ci from F is only added to the
sequence F ′ if there is a satisfying assignment for what is already in F ′ that is

296 H. van Maaren and S. Wieringa

not satisfying Ci. To find multiple critical clauses in one round we store that
satisfying assignment with each clause C′

i ∈ F ′ with F ′ = 〈C′
1, C

′
2, ..., C

′
m〉 and

name it the associated assignment of the clause C′
i. This associated assignment

does not have to define a truth assignment for all variables in F .

Definition 2. The associated assignment of a clause C′
i ∈ F ′ is an assignment

that satisfies all C′
j ∈ F ′ with j < i and does not satisfy C′

i.

Lemma 4. If the associated assignment of a clause C′
i ∈ F ′ satisfies all clauses

C′
j ∈ F ′ with j > i then clause C′

i is critical for F ′.

Proof. By definition the associated assignment of a clause C′
i ∈ F ′ satisfies all

clauses C′
j ∈ F ′ with j < i. If it also satisfies all clauses C′

j ∈ F ′ with j > i
then it is a satisfying assignment for all C′

j in F ′ with j
= i and therefore every
subset of F ′ not containing C′

i is satisfiable. ��

Example 2. Let us reconsider the unsatisfiable Formula (1) and feed it to the
improved version of the algorithm. Figure 2 is constructed similarly to Fig. 1
with the exception that it shows the associated assignments for the clauses in F
after round one. Let us assume that the associated assignments define a truth
assignment for all variables in Formula (1). In this example the first, third and
fourth clause are proven to be critical after the first round as their associated
assignments satisfy all clauses succeeding them in the sequence. At the start of
the second round F ′ is initialised to contain those three clauses and therefore
it becomes unsatisfiable right away. This means that clause x3 ∨ x4 will not be
added and we have found a MUS as all clauses in F ′ are critical.

algorithm end of associated end of algorithm
start round 1 assignment round 2 finished

x1 ∨ x2 x1 ∨ x2 ¬x1 ¬x2 x3 x4 x1 ∨ x2 x1 ∨ x2

x3 ∨ x4 → x3 ∨ x4 x1 x2 ¬x3 ¬x4 → x1 ∨ ¬x2 → x1 ∨ ¬x2

x1 ∨ ¬x2 x1 ∨ ¬x2 ¬x1 x2 x3 x4 ¬x1 ¬x1

x1 ∨ x2 ∨ x3 ¬x1 x1 x2 x3 x4

¬x1

Fig. 2. Finding a MUS in Formula (1), using improved algorithm �

The associated assignment a of a clause C′
i ∈ F ′ is the result of solving a SAT

problem instance that only contained those literals that occurred in the clauses
C′

j ∈ F ′ with j ≤ i. This means that the associated assignment a of C′
i might

not include a truth assignment for a literal in a clause C′
k ∈ F ′ with k > i. It

is possible that none of the literals of C′
k are satisfied by the truth assignments

defined in a but there is a literal in C′
k for which no truth assignment is defined

in a. In an implementation of the algorithm one must either always regard such a
as an unsatisfying assignment or extend a to hold a satisfying truth assignment
for at least one of the literals of C′

k for which no truth assignment was previously
defined in a.

Finding Guaranteed MUSes Fast 297

Consider the case where this algorithm is given a MUS of m clauses as input
for which the algorithm manages to find only one critical clause per round.
In this worst case mm+1

2 SAT problem instances must be solved to prove all
clauses critical, whereas the naive strategy of Algorithm 1 only requires solving
m problem instances. However, first of all these SAT problem instances are
varying in size from 1 to m clauses so a large number of them are easy to
solve, or even trivial, while all the instances that need to be solved using the
naive approach have m clauses and thus will often all be hard. Secondly, it is
possible to implement all of the SAT solver calls performed in one round in
one incremental problem, thus requiring only m incremental problems. This can
be implemented easily. Adding a clause to F ′ in the pseudo code is adding a
clause to the problem instance in the solver. Satisfying ¬Ci without having to
add it to the solvers problem instance can be guaranteed by forcing the solver
to assign all literals from Ci the value false. Using the SAT solver MiniSat [14]
such assignments can be passed as so called assumptions. Thirdly, our technique
for finding multiple critical clauses per round will usually reduce the number
of required rounds to significantly less than m as will become clear from the
experimental results further on in this document.

3 Implementation

In order to obtain an efficient implementation of our algorithm we have merged
it with the code of the state of the art SAT solver MiniSat 2.0 [14] without the
optional simplifier [15]. The simplifier is not used as we are interested in finding a
MUS consisting of the original input clauses. It might be possible to modify the
simplifier for our application but we will not discuss that here. Our MUS finder is
called MiniUnsat. Each round is handled as one incremental SAT problem.

The problem mentioned earlier of an assignment that might not be complete
for a succeeding clause is handled by extending the assignment with a satisfying
truth assignment for a literal of the clause. In case there are multiple literals in
the clause for which no truth assignment is defined by the assignment the literal
that occurs last in the clause is chosen.

As the algorithm is greedy in the sense that it adds a clause to the subset unless
it is proven to be unnecessary clause sorting has a great effect on performance in
terms of speed, but also on which MUS the algorithm finds. By manually sorting
the clauses before executing the program the user might give preference to one
clause over the other and can thereby influence which MUS is found.

Two simple optional automatic clause sorting methods are also implemented.
The first automatic sorting method, sort by weight, sorts clauses by the sum of
the number of occurrences in the formula of all of the literals of the clause. This
sorting method is by default enabled as it has positive influence on the speed
with which MUSes are found.

The second automatic sorting method, sort by length, sorts the clauses with the
shortest ones first and thereby focuses on removing subsumed clauses. A subsumed
clause is a clause that is a superset of another clause in the formula. If the clauses

298 H. van Maaren and S. Wieringa

are sorted using this method then the conditional addition of the shorter subsumed
clauses will always precede the conditional addition of the subsuming clauses. The
latter will never be added as the shorter clause implies the longer clause. Note that
it is possible that a formula contains a MUS in which a clause Ci subsuming a
clause Cj occurs as long as Cj does not, and that MUSes that have this property
will not be found if clauses are sorted in this way. Sorting by length is also by
default enabled and if both described clause sorting methods are used together
then sorting by length has priority over sorting by weight.

To improve the speed with which the SAT problems are solved a heuristic was
added which influences MiniSat’s branch direction heuristic. At each variable
decision MiniSat branches to the negative side by default. In the first round
of the algorithm this is left untouched. After the first round every clause that
has not been removed has had an associated assignment in the previous round.
As the clauses will remain in the same order in each round apart from the new
critical clauses moving to the front this assignment can be seen as an estimate
to the assignment we are looking for. Our program therefore sets the variable
branch directions to those that would lead the solver in the direction of the
associated assignment found in the previous round when it is looking for a new
assignment.

4 Related Work

The argument of Lemma 2 is also used in work on finding subsets of infeasi-
ble linear programmes [16,17] and in recent work on the Constraint Satisfaction
Problem (CSP), which is more generalised than SAT. In the latter work it is
credited to [18]. The constraint that is critical due to Lemma 2 is called the
transition constraint in the work on CSP, as it is on the transition from satisfi-
ability to unsatisfiability.

Where we have focused on proving more clauses critical than only this tran-
sition constraint, or transition clause in our case, they focused on more efficient
approaches to finding the transition constraint. Instead of adding a constraint
to a sequence until it becomes unsatisfiable they do a binary search for the
transition constraint.

The authors call their approach the dichotomic approach. It has the advan-
tage of a logarithmic, rather than linear, worst case number of required SAT
problems to solve per round. The authors applied this algorithm successfully to
instances of CSP. Although its worst case required number of SAT problems to
be solved is lower we reckon it has some disadvantages as an incremental SAT
implementation is not immediate, at least not without adding clause selector
variables that will make the problems considerably harder. Besides that only
one critical clause will be found per round. Still, their approach is interesting
and might perform well when implemented efficiently for SAT problems or even
combined with some of the ideas presented here.

Another approach to finding an unsatisfiable core is applied by zcore [5]. It
records which clauses are necessary to derive the empty clause in a resolution

Finding Guaranteed MUSes Fast 299

proof of unsatisfiability generated using a SAT solver (zchaff in this case).
Those clauses form an unsatisfiable subset, but it might be far from minimal. To
approximate a MUS closer the authors suggest to iterate zcore until the size of
the unsatisfiable subset no longer reduces. We will refer to this approach by the
name of the script supplied with zchaff for this purpose, which is zruntillfix.
For finding a guaranteed MUS the authors of zcore supply zminimal which is
an implementation of the naive MUS finding algorithm (1).

In a recent publication [7] an unsatisfiable core extractor called Approximate
One MUS (AOMUS) was introduced. Our experimental results support the claim
of the authors that it has good performance at the useful task of reducing bench-
marks that describe FPGA routing problems. As the name indicates the “ap-
proximated MUSes” found by AOMUS are not guaranteed to be MUSes. The
algorithm OMUS, which does guarantee the output of exactly one MUS, is the
AOMUS algorithm with the addition of a post processor with the slightly under-
stated name “fine tune”. This procedure is in fact an implementation of the
naive MUS finding algorithm (1).

The core extractor AMUSE [6] is best suited for use with formulas that contain
unsatisfiable cores that are small compared to the formula size. It does not
guarantee finding a MUS. AMUSE’s preference for small cores is supported by our
experimental results and caused by the fact that it builds up the unsatisfiable
subset by adding clauses to a satisfiable subset until it becomes unsatisfiable.

In [19] an approach for finding a MUS by using the resolution proof of the
unsatisfiability of the input formula is presented. The algorithm presented there
tests for every clause in the input formula whether the empty clause can still
be derived from the original resolution proof after removing that clause and all
clauses derived from it.

The minimal unsatisfiability prover (MUP) [20] is targeted at proving the input
formula to be a MUS rather than at extracting MUSes from the input formula.
It is meant as a post processor to core extractors that are able to give close
approximation of MUSes, like AMUSE, AOMUS or zruntillfix.

5 Results

We have tested our implementation using a computing cluster with 20 nodes that
each have 2 Intel Xeon 5130 (2Ghz) Dual Core processors, making up for a total
of 80 processor cores. None of the tested MUS finders is based on a parallelised
algorithm so each run was executed on a single processor core. All tests were
run with an 1800 seconds time limit and a 2GB memory limit.

We used benchmarks describing various sorts of problems. We generated ran-
dom 3-SAT formulas with 50 variables and 215 clauses, 100 variables and 430
clauses and 200 variables and 860 clauses. From each of the three sets we took
50 unsatisfiable formulas. We also added all unsatisfiable instances found in the
DaimlerChrysler benchmark set which describes problems from automotive prod-
uct configuration1. In the DaimlerChrysler benchmarks the unsatisfiable cores
1 http://www-sr.informatik.uni-tuebingen.de/∼sinz/DC

http://www-sr.informatik.uni-tuebingen.de/~sinz/DC

300 H. van Maaren and S. Wieringa

are only a small fraction of the formula size. Next we added the Bevan family
from the handmade category of the SAT Competition2 held in 2003. All bench-
marks in the Bevan family are already MUSes. Finally, we put the benchmark
set used in the paper presenting AOMUS together3 we will refer to that set as
FPGA+Various. Note that some FPGA routing problems occur both in original
form and shuffled in that set [21].

Besides testing the MUS extraction qualities of MiniUnsatwe have also tested
it as a post processor to the output of AMUSE, AOMUS and zruntillfix. Those
three programs were also tested using the naive MUS proving approach as a post
processor. For AMUSE and zruntillfix a naive MUS prover implementation was
found in zminimal. OMUS is the implementation of AOMUS followed by an internal
naive MUS prover.

Although AOMUS outputs a core that is only an approximation to a MUS it may
prove some clauses of that core critical. Those clauses are not tested again by the
post processor implemented in OMUS. With permission of the author of AOMUS we
have modified it to pass the information about those clauses to MiniUnsat when
we used it with AOMUS.

We also tested MUP as a post processor to the three core extractors. We do not
present the results here as MUPdoes not seem to be robust enough.The dtree gener-
ator supplied with MUP for generating the required binary decision diagram (BDD)
often crashes. Fortunately, the c2d generator [22], which was suggested as an alter-
native by the author of MUP in a personal communication, works better. However,
the number of successful runs using MUP with either of the two generators is much
smaller than that of the other tested approaches, and where it is succesful it is not
significantly faster either. The author of MUP uses a BDD variable reordering tool
called MINCE [23] as a preprocessor for some of his benchmarks results, which might
explain the difference between his and our results.

The results presented in Table 1 are meant to give a general impression of the
performance of different approaches. Please note that only those benchmarks in
which a MUS was found using all seven presented approaches were included in
the calculations of the average MUS sizes. The run times and MUS sizes for each
tested benchmark on all tested approaches, including MUP, are available on the
internet4. Table 2 shows the average number of clauses that are proven critical in
one round by making use of the associated assignment technique we described.
From the results in this table one can easily see that checking if a clause is critical
by testing if its successors are satisfied by its associated assignment leads to a
significant reduction in the number of required rounds.

The six scatter plots that together form Fig 3 give an impression of the run
times in seconds of the various approaches to extracting a MUS. Each scatter
plot compares two program versions. In each scatter plot there is a data point for
every benchmark, with the position along the horizontal axes indicating the run
time of the approach labelled on the horizontal axis, and the vertical position

2 http://www.satcompetition.org
3 SAT Competitions and http://www.aloul.net/benchmarks.html
4 http://www.tcs.hut.fi/∼swiering/musfinding

http://www.satcompetition.org
http://www.aloul.net/benchmarks.html
http://www.tcs.hut.fi/~swiering/musfinding

Finding Guaranteed MUSes Fast 301

Table 1. Results summary

A+zmin AMUSE + zminimal
A+M AMUSE + MiniUnsat
z+zmin zruntillfix + zminimal
z+M zruntillfix + MiniUnsat
O OMUS
AO+M AOMUS + MiniUnsat
M MiniUnsat

Number of formulas a MUS was extracted from within 1800 seconds

Set # A+zmin A+M z+zmin z+M O AO+M M
3-SAT 50 vars 50 50 50 50 50 50 50 50
3-SAT 100 vars 50 48 50 50 50 50 50 50
3-SAT 200 vars 50 6 50 8 50 48 50 50
DaimlerChrysler 84 84 84 84 84 84 84 84
Bevan 56 29 29 31 31 43 41 56
FPGA+Various 36 21 24 20 25 28 29 23

Sum 326 238 287 243 290 303 304 313

Average MUS size for formulas a MUS was extracted from by all approaches

Set # A+zmin A+M z+zmin z+M O AO+M M
3-SAT 50 vars 50 101.4 96.2 95.2 94.8 92.4 92.3 101.3
3-SAT 100 v. 48 268 243.1 247.6 233.7 234 232.2 252.9
3-SAT 200 v. 3 624 563.3 639.3 576.3 546.3 546.7 578.3
DaimlerChr. 84 78.4 78.4 76.8 76.8 77.8 76 76.4
Bevan 28 186.4 186.4 186.4 186.4 186.4 186.4 186.4
FPGA+Various 15 225.5 220.4 231.9 217.3 226.4 220.6 221.5

Table 2. Average number of clauses proven critical per round

3-SAT 50 vars 2.6
3-SAT 100 vars 2.7
3-SAT 200 vars 2.8
DaimlerChrysler 10.2
Bevan 45.1
FPGA+Various 4.6

indicating the run time of the approach labelled on the vertical axis. Note that
in all six plots both axes have a logarithmic scale. A value of 1800 seconds
corresponds to a timeout.

The first three scatter plots show the gains the core extractors AMUSE (a),
zruntillfix (b) and AOMUS (c) have from using MiniUnsat rather than a naive
MUS proving approach as a post processor. The improvement caused by using
MiniUnsat when regarding the combination of core extractor and prover as one
program is quite remarkable, especially for the random 3-SAT formulas with 200

302 H. van Maaren and S. Wieringa

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

A
M

U
S

E
 +

 M
in

iU
ns

at

AMUSE + zminimal

DaimlerChrysler
Bevan

3-SAT 200 var
FPGA+Various

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

zr
un

til
lfi

x
+

 M
in

iU
ns

at

zruntillfix + zminimal

DaimlerChrysler
Bevan

3-SAT 200 var
FPGA+Various

(a) A+zmin vs A+M (b) z+zmin vs z+M

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

A
O

M
U

S
 +

 M
in

iU
ns

at

OMUS

DaimlerChrysler
Bevan

3-SAT 200 var
FPGA+Various

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

M
in

iU
ns

at

AMUSE + MiniUnsat

DaimlerChrysler
Bevan

3-SAT 200 var
FPGA+Various

(c) O vs AO+M (d) A+M vs M

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

M
in

iU
ns

at

zruntillfix + MiniUnsat

DaimlerChrysler
Bevan

3-SAT 200 var
FPGA+Various

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

M
in

iU
ns

at

AOMUS + MiniUnsat

DaimlerChrysler
Bevan

3-SAT 200 var
FPGA+Various

(e) z+M vs M (f) AO+M vs M

Fig. 3. Results

variables. While AMUSE+zminimal and zruntillfix+zminimal are not capable
of extracting a MUS in half an hour from the majority of those formulas that
goal can always reached when using MiniUnsat instead of zminimal.

Finding Guaranteed MUSes Fast 303

The other scatter plots show how the three core extractors combined with
MiniUnsat and regarded as one program perform against MiniUnsat without a
preprocessor. From those scatter plots it can be seen that for the set of Daim-
lerChrysler benchmarks it pays off to use AMUSE (d) or zruntillfix (e) as a
preprocessor. However, for the Bevan benchmarks using those preprocessors will
mean most benchmarks will not be solved because the preprocessor times out.
The performance of the AOMUS core extractor (f) as a preprocessor for the Be-
van benchmarks is, unsurprisingly, similar to the other two tested preprocessors.
However, in AOMUS’s scatter plot, on the horizontal line indicating a timeout for
MiniUnsat we see a number of benchmarks from the set FPGA+Various. The
benchmarks from that set that MiniUnsat fails to extract a MUS from without
the help of AOMUS are FPGA routing problems, a domain in which AOMUS excels.

6 Conclusion

Although over the last years attention has been paid to the development of
tools for extracting unsatisfiable subsets from unsatisfiable Boolean formulas
most existing tools do not guarantee that the extracted unsatisfiable subsets are
minimal. The MiniUnsat MUS finder we presented is capable of extracting a
MUS from a wide range of unsatisfiable formulas at very competitive speeds.

In case the user wants to tune performance for a specific set of benchmarks
several interesting combinations with existing software are recommendable. For
example, if the program is applied in a setting were a MUS is often only a small
fraction of the size of the formula it is extracted from, it is wise to use AMUSE as a
preprocessor to MiniUnsat. For finding minimal unsatisfiable subsets in FPGA
routing problems the use of AOMUS as a preprocessor is recommended.

Acknowledgements. Thanks to all developers of the tested tools for making
their software available, either on the web or at request. Thanks to all colleagues
that supported this work by showing their interest or commenting. Special thanks
to Keijo Heljanko for all his help throughout this project.

References

1. Nam, G.J., Sakallah, K.A., Rutenbar, R.A.: Satisfiability-based layout revisited:
Detailed routing of complex FPGAs vis search-based Boolean SAT. In: FPGA, pp.
167–175 (1999)

2. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579,
pp. 193–207. Springer, Heidelberg (1999)

3. McMillan, K.L.: Interpolants and symbolic model checking. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 89–90. Springer, Heidelberg (2007)

4. Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans
and algorithms for plan search. Artif. Intell. 170(12-13), 1031–1080 (2006)

304 H. van Maaren and S. Wieringa

5. Zhang, L., Malik, S.: Extracting Small Unsatisfiable Cores from Unsatisfiable
Boolean Formula. In: Theory and Applications of Satisfiability Testing, 6th In-
ternational Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8 (2003)

6. Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE: A
minimally-unsatisfiable subformula extractor. In: Malik, S., Fix, L., Kahng, A.B.
(eds.) DAC, pp. 518–523. ACM, New York (2004)

7. Grégoire, É., Mazure, B., Piette, C.: Local-search extraction of MUSes. Con-
straints 12(3), 325–344 (2007)

8. Lynce, I., Silva, J.P.M.: On computing minimum unsatisfiable cores. In: H. Hoos,
H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, Springer, Heidelberg (2005)

9. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas
[25], 173–186

10. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning 40(1), 1–33 (2008)

11. Wieringa, S.: Finding cores using a Brouwer’s fixed point approximation algorithm.
Master’s thesis, Delft University of Technology, Faculty of EWI (2007)

12. van Maaren, H.: Pivoting algorithms based on Boolean vector labeling. Acta Math-
ematica Vietnamica 22(1), 183–198 (1997)

13. Kullmann, O., Lynce, I., Marques-Silva, J.: Categorisation of clauses in conjunctive
normal forms: Minimally unsatisfiable sub-clause-sets and the lean kernel. [24] 22–
35

14. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

15. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. [15] 61–75

16. Tamiz, M., Mardle, S.J., Jones, D.F.: Detecting IIS in infeasible linear programmes
using techniques from goal programming. Computers & OR 23(2), 113–119 (1996)

17. Galinier, P., Hertz, A.: Solution techniques for the large set covering problem.
Discrete Applied Mathematics 155(3), 312–326 (2007)

18. de Siqueira, N.J.L., Puget, J.-F.: Explanation-based generalisation of failures. In:
ECAI, pp. 339–344 (1988)

19. Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfi-
able core extraction. [24] 36–41

20. Huang, J.: MUP: A minimal unsatisfiability prover. In: Tang, T.A. (ed.) ASP-DAC,
pp. 432–437. ACM Press, New York (2005)

21. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult instances
of Boolean satisfiability in the presence of symmetry. IEEE Trans. on CAD of
Integrated Circuits and Systems 22(9), 1117–1137 (2003)

22. Darwiche, A.: New advances in compiling CNF into decomposable negation nor-
mal form. In: de Mántaras, R.L., Saitta, L. (eds.) ECAI, pp. 328–332. IOS Press,
Amsterdam (2004)

23. Aloul, F.A., Markov, I.L., Sakallah, K.A.: MINCE: A static global variable-ordering
heuristic for SAT search and BDD manipulation. J. UCS 10(12), 1562–1596 (2004)

24. Biere, A., Gomes, C.P. (eds.): SAT 2006. LNCS, vol. 4121. Springer, Heidelberg
(2006)

25. Bacchus, F., Walsh, T. (eds.): SAT 2005. LNCS, vol. 3569. Springer, Heidelberg
(2005)

Author Index

Argelich, Josep 1, 15
Audemard, G. 21

Belov, Anton 257
Biere, Armin 28, 196
Bordeaux, L. 21
Bruynooghe, Maurice 211

Cabiscol, Alba 1
Creignou, Nadia 34

Daudé, Hervé 34
Davis, John D. 48
Denecker, Marc 211

Egly, Uwe 34
Eibach, Tobias 63

Faure, Germain 77

Gao, Yong 91
Georgiou, Konstantinos 105
Goldberg, Eugene 119

Haim, Shai 133
Hamadi, Y. 21
Heras, Federico 139

Iwama, Kazuo 153

Jabbour, S. 21

Kaufmann, Michael 154, 161
Kottler, Stephan 154, 161

Larrosa, Javier 139
Letombe, Florian 168
Li, Chu Min 15
Liffiton, Mark 182
Lonsing, Florian 196
Lynce, Inês 1

Manquinho, Vasco 225
Manyà, Felip 1, 15
Mariën, Maarten 211
Marques-Silva, Joao 168, 225

Nieuwenhuis, Robert 77

Oliveras, Albert 77

Papakonstantinou, Periklis A. 105
Pilz, Enrico 63
Porschen, Stefan 231

Rodŕıguez-Carbonell, Enric 77
Rossignol, Raphaël 34
Ryvchin, Vadim 271

Sais, L. 21
Sakallah, Karem 182
Scheder, Dominik 246
Sinz, Carsten 154, 161
Speckenmeyer, Ewald 231
Stachniak, Zbigniew 257
Strichman, Ofer 271

Tan, Zhangxi 48

Urquhart, Alasdair 277

van Maaren, Hans 291
Völkel, Gunnar 63

Walsh, Toby 133
Wieringa, Siert 291
Wittocx, Johan 211

Yu, Fang 48

Zhang, Lintao 48
Zumstein, Philipp 246

	Title Page
	Preface
	Organization
	Table of Contents
	Modelling Max-CSP as Partial Max-SAT
	Introduction
	Preliminaries
	Max-SAT Definitions
	Max-CSP Definitions

	Encoding CSP into SAT
	Direct Encoding and Support Encoding
	Minimal Support Encoding

	Encoding Max-CSP into Partial Max-SAT
	Direct Encoding for Partial Max-SAT
	Support Encoding for Partial Max-SAT

	Experimental Results
	Conclusions

	A Preprocessor for Max-SAT Solvers
	Introduction
	Preliminaries
	Resolution in Max-SAT
	Experimental Results

	A Generalized Framework for Conflict Analysis
	Introduction
	Preliminary Definitions and Notations
	Conflict Analysis Using Implication Graphs
	Extended Implication Graph
	Learning to Back-Jump : A First Extension

	Experiments
	Conclusion

	Adaptive Restart Strategiesfor Conflict Driven SAT Solvers
	Introduction
	Measuring Agility
	Flips
	A Fresh Look at VSIDS
	Average Number of Recently Flipped Assignments (ANRFA)

	Experiments
	Conclusion and Future Work

	New Results on the Phase Transition for Random Quantified Boolean Formulas
	Introduction
	Definition of Our Problem
	 The Problem (1,2)-QSAT and Its Complexity
	Random Instances

	Experimental Results and a First Estimate for the Location of the Threshold
	Main Result and Its Relation to 2-SAT
	Representation of (1,2)-QCNF Formulas as Labeled Digraphs
	The First Moment of B and the Second Moment of X

	Proofs
	Proof of Proposition 2
	Proof of the Lower Bound in Theorem 1
	Proof of the Upper Bound in Theorem 1

	Conclusion

	Designing an Efficient Hardware Implication Accelerator for SAT Solving
	Introduction
	An Overview of the Hardware SAT Accelerator
	Inference Engines
	Clause Partition for Inference Engines
	Literal Occurrence Lookup
	Inference Generation
	Dynamic Learned Clauses Insertion and Deletion

	Evaluation Results
	Clause Partitioning Algorithm
	Comparison of FPGA-Based BCP Accelerator to Software

	Conclusions
	References

	Attacking Bivium Using SAT Solvers
	Introduction
	About This Paper

	Description of Bivium
	Describing the Attack
	Experimental Results of the SAT Attack
	An Attack Based on BDDs
	Experimental Results of the BDD Attack

	An Attack Based on Gröbner Bases
	Discussing and Comparing the Results
	Comparing Against Other Attacks

	Outlook

	SAT Modulo the Theory of Linear Arithmetic: Exact, Inexact and Commercial Solvers
	Introduction
	Background on SMT and DPLL(T)
	Using OR Solvers as Theory Solvers for LA
	How to Deal with Inexact Solvers in DPLL(T)
	Performance of OR Solvers as T-Solvers
	New Prospects: An Inexact Solver Designed for DPLL(T)
	Conclusions

	Random Instances of W[2]-Complete Problems: Thresholds, Complexity, and Algorithms
	Introduction
	Preliminaries
	The Threshold Dominating Clique Problem
	The Weighted CNF Satisfiability Problem

	Main Results
	Random Instances of Dominating Clique Problem
	A Random Model for Weighted SAT

	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Conclusions

	Complexity and Algorithms for Well-Structured k-SAT Instances
	Introduction
	Definitions and Preliminary Results
	Notation and Terminology
	Structural Parameters of Graphs
	Structural Parameters of Formulas
	Relations between TW(), PW(), B() and ()
	NAuxPDAs: A Practical Model of Computation

	Solving SAT(d(n)), Max-SAT(d(n)), #SAT(d(n))
	Algorithms for d(n) = (logn)
	Strong, Constructive Extensions of the Equivalence of Theorem 2
	Diameter O(logn): Parallel Algorithms and Low Complexity Classes

	Improved Results for k-CNFs of Bounded Tree-Width
	Dealing Directly with Tree-Width for SAT
	Alekhnovich and Razborov's Question

	Open Questions

	A Decision-Making Procedure for Resolution-Based SAT-Solvers
	Introduction
	Main Idea of DMRP
	Description of DMRP-SAT
	DMRP-SAT (High-Level View)
	DMRP-Solve
	Computation of D(C,p,y)
	Brief Discussion of DMRP and CDDM

	Background
	Experimental Results
	Brief Description of Implementation
	BMC and Equivalence Checking Formulas

	Conclusions

	Online Estimation of SAT Solving Runtime
	Introduction
	Linear Model Prediction (LMP)
	Experiments
	Search without Restarts
	Search with Restarts
	Solver Selection Using LMP

	A Max-SAT Inference-Based Pre-processing for Max-Clique
	Introduction
	Preliminaries
	The Max-SAT Framework
	Inference-Based Simplification Rules
	Encoding the Min-Vertex-Covering and Max-Clique as Max-SAT

	Two Simplification Rules
	Star Rule
	Unit Rule

	Pre-processing
	Empirical Results
	Benchmarks
	Experiments Considered
	Comparison of the New Lower Bound
	Feeding a Max-SAT Solver with the Pre-processed Instance

	Related Work
	Conclusions and Future Work
	References

	SAT, UNSAT and Coloring
	Computation of Renameable Horn Backdoors
	Introduction
	Two Approaches to Compute RHorn Backdoors
	Some Experimental Results
	Conclusions and Further Work

	A New Bound for an NP-Hard Subclass of 3-SAT Using Backdoors
	Introduction and Definitions
	A NP-Hard Subclass of 3-SAT
	A Backdoor--Driven Approach
	Conclusion

	Improvements to Hybrid Incremental SAT Algorithms
	Introduction
	Boolean Satisfiability Solvers
	CDCL and LS SAT Solvers
	Hybrid Incremental SAT Solvers: The hbisat Algorithm

	New Hybrid Incremental SAT Algorithms
	Variable Lifting and Blocking Clauses
	Optimized Interaction between the LS and CDCL Solvers
	Additional Criteria for Moving Clauses
	The hinotos Algorithm

	Experimental Evaluation
	Methodology
	Benchmarks
	Results
	Analysis

	Related Work
	Conclusions and Future Work

	Searching for Autarkies to Trim Unsatisfiable Clause Sets
	Introduction
	Preliminaries
	Previous Work
	Searching for Autarkies
	Instrumentation
	Our Algorithm

	Experimental Results
	Comparing Search to an Iterated Resolution Proof Approach
	Trimming Autarkies to Boost Searching for MUSes and MCSes

	Conclusions and Future Work

	Nenofex: Expanding NNF for QBF Solving
	Introduction
	Motivation
	Preliminaries
	Formula Representation
	NNF Expansion
	Innermost Expansion
	Non-innermost Expansion
	Expansion Relevant LCAs

	Implementation
	Redundancy Removal
	Expansion
	SAT Solving

	Experiments
	Conclusion

	SAT(ID): Satisfiability of Propositional Logic Extended with Inductive Definitions
	Introduction
	Preliminaries
	Propositional Logic and SAT Solving
	Inductive Definitions

	Requirements for a SAT(ID) Algorithm
	Recipe for a SAT(ID) Solver
	Construction of and of a Cycle-Free Justification
	Main Search Procedure
	Checking Totality of Definitions

	Implementation on Top of MiniSat
	Introduction
	Evaluation

	Conclusions and Related Work

	Towards More Effective Unsatisfiability-Based Maximum Satisfiability Algorithms
	Introduction
	Maximum Satisfiability
	Unsatisfiability-Based MaxSAT Algorithms
	Reducing the Number of Additional Variables
	Results
	Conclusions

	A CNF Class Generalizing Exact Linear Formulas
	Introduction
	Notation and Preliminaries
	The Fibre View on Clause Sets
	Formulas over Exact Linear Base Hypergraphs
	The Fibre View Further Exploited
	Concluding Remarks and Open Problems

	How Many Conflicts Does It Need to Be Unsatisfiable?
	Introduction
	Results

	Maximum Degree and Minimum Degree
	Number of Conflicts
	A Lower Bound
	Upper Bound

	Maximizing the Parameters
	Conclusion

	Speeding-Up Non-clausal Local Search for Propositional Satisfiability with Clause Learning
	Logical Preliminaries
	polSAT Algorithm
	From Wish Lists to Learned Clauses
	Learned Clauses and Dynamic Formula Simplification
	Guiding Local Search Using Learned Clauses
	Refining polSAT
	From polSAT-G to polSAT-N
	Clause Learning and Formula Simplification in polSAT-G and -N

	Experimental Results
	Benchmarks
	The Effect of all----random-- Candidate List Generation Strategy
	polSAT-G vs. polSAT-N
	Comparison with Clausal Solver
	Learning and Formula Simplification

	Concluding Remarks

	Local Restarts
	Global vs. Local Restarts
	Experimental Results and Conclusions

	Regular and General Resolution: An Improved Separation
	Introduction
	The Regularity Restriction
	Preliminaries

	Pebbling Games and Pebbling Formulas
	The Pebbling Game
	Pebbling Formulas

	Constructing Hard Problems
	Earlier Constructions
	Xorification of Clause Sets
	Adding Random Literals
	Construction of the Hard Problems

	Lower Bound for Regular Resolution
	Destroying Large Clauses by Restrictions
	Large Clauses
	Lower Bound

	Finding Guaranteed MUSes Fast
	Introduction
	Extracting a MUS
	Implementation
	Related Work
	Results
	Conclusion

	Author Index

