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Abstract. The Justification Logic is a family of logical systems obtained
from epistemic logics by adding new type of formulas t:F which reads
as t is a justification for F. The major epistemic modal logic S4 has a
well-known Tarski topological interpretation which interprets �F as the
interior of F (a topological equivalent of the ‘knowable part of F ’). In
this paper we extend the Tarski topological interpretation from epistemic
modal logics to justification logics which have both: knowledge assertions
�F and justification assertions t:F . This topological semantics interprets
modality as the interior, terms t represent tests, and a justification asser-
tion t:F represents a part of F which is accessible for test t. We establish
a number of soundness and completeness results with respect to Kripke
topology and the real line topology for S4-based systems of Justification
Logic.

Keywords: Justification Logic, Logic of Proofs, modal logic, topological
semantics, Tarski.

1 Introduction

The Justification Logic is a family of logical systems originated from the Logic
of Proofs LP (cf. [3,5,9,10]). These systems are obtained from epistemic modal
logics by adding new type of formulas t:F which read as

t is a justification for F.

Justification Logic overlaps mathematical logic, epistemology, λ-calculi, etc. The
standard arithmetical provability semantics for LP was given in [3]. The epistemic
Krike-style semantics for LP was offered in [16,17] and later extended to Justifi-
cation Logic systems containing both epistemic modalities for “F is known” and
justification assertions “t is a justification for F” ([9,10]). The major epistemic
modal logic S4 which in the context of the Logic of Proofs may be regarded as a
logic of explicit provability has a well-known Tarski’s topological interpretation.
Such a connection between topology and modal logic proved to be very fruitful
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for both domains. In particular, topology was used in [25] to prove Gödel’s con-
jecture about a fair embedding of Intuitionistic Logic to Modal Logics. On the
other hand, Modal Logic was used to describe the behavior of dynamic systems
in real topology ([14]).

2 Background

The application of modal logic to topology dates back to Kuratowski [21] and
Riesz in [32]. Let

T = 〈X, I〉
be a topological space, where X is a set and I the interior operation. The following
principles hold for all subsets Y and Z of X:

1. I(Y ∩ Z) = IY ∩ IZ;
2. IY = IIY ;
3. IY ⊆ Y ;
4. IX = X.

These principles can be written as propositional modal formulas: Boolean opera-
tions are represented by the corresponding Boolean connectives, and the interior
operator I by the modality �:

1. �(A ∧ B) = �A ∧ �B;
2. �A→��A;
3. �A→A;
4. ��.

These are the well-known postulates of the modal logic S4. This corellation was
noticed in the late 1930s by Tarski, Stone, and Tang. Neither Lewis’ original
motivation of modal logic ([22,23]), nor Gödel’s provability interpretation of S4
([18]) were related to topology.

The Tarski topological interpretation of a propositional modal language
naturally extends the set-theoretical interpretation of classical propositional logic.
Given a topological space T = 〈X, I〉 and a valuation (mapping) ∗ of propositional
letters to subsets of X, we can extend it to all modal formulas as follows:

¬A = X \ A∗;
(A ∧ B)∗ = A∗ ∩ B∗;
(A ∨ B)∗ = A∗ ∪ B∗;

(�A)∗ = IA∗.

(1)

A formula A is called valid in T (notation: T � A) if

A∗ = X

for any valuation ∗. The set

L(T ) := {A | F � A}

is called the modal logic of T .
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The following classical result in this area is due to McKinsey and Tarski:

Theorem. ([24]) Let S be a separable dense-in-itself metric space. Then L(S) =
S4.

In particular, this yields that for each n = 1, 2, 3, . . .,

L(Rn) = S4.

Simplified proofs of this theorem were obtained in [12,26,34].
Kripke semantics can be regarded a special case of topological semantics.

Indeed, given a Kripke frame (W, R), one can construct the topological space
(W, I) where

IU := {x | R(x) ⊆ U},

so that validities in these two entities are the same. Hence, Kripke-completeness
yields the topological completeness.

As we have mentioned above, the Justification Logic grew from the Logic
of Proofs LP. A first incomplete sketch of the Logic of Proofs was made in
Gödel’s lecture of 1938 [19], which was not published until 1995 when the full
Logic of Proofs was rediscovered independently in [2]. The Logic of Proofs LP
([2,3,4,6,15]) introduces the notion of proof polynomials, i.e., terms built from
proof variables and constants by means of three operations:

– application “·”, which given a proof s of an implication F →G and a proof
t of its antecedent F provides a proof s·t of the succedent G;

– sum “+”, which given proofs s and t returns a proof s + t of everything
proven by s or t;

– proof checker “!”, which given a proof t of F verifies it and provides a proof
!t of the fact that t is indeed a proof of F .

LP is the classical logic with additional atoms

p:F

where p is a proof polynomial and F is a formula, with the intended reading

p is a proof of F .

As it was shown in [2,3], LP describes all valid principles of proof operators t:F

t is a proof of F in Peano Arithmetic

in its language. LP is able to realize the whole Gödel’s S4 by recovering proof
polynomials for provability assertions in any S4-derivation (realization theorem);
this result provides a mathematical formalization of the Brouwer-Heyting-
Kolmogorov semantics for intuitionistic logic IPC via well-known Gödel’s trans-
lation of IPC into S4 [2,3,4,6,15]. The papers [1,8,28,29,30,31,33,35] studied joint
logics of proofs and provability in a format that includes both provability asser-
tions �F and proof assertions t:F .
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In [5,8,9,10] this approach has been extended to epistemic logic and applied
for building mathematical models of justification, knowledge and belief. In par-
ticular, [9] introduced and studied the basic epistemic logic with justifications,

S4LP = S4 + LP + (t:F →�F ) .

Epistemic models for Justification Logics has been developed in [5,8,9,10,
16,17,27]. A Fitting model for S4LP is (W, R, A, �), where

– (W, R) is an S4-frame;
– A is an admissible evidence function: for each term t and formula F , A(t, F )

is a subset of W . Informally, A(t, F ) specifies a set of worlds where t is an
admissible evidence for F . An evidence function is assumed to be monotonic:

u ∈ A(t, F ) and uRv yield v ∈ A(t, F )

and has natural closure properties that agree with operations of S4LP;
– � behaves in the standard Kripke style on Boolean connectives and �:

• u � P or u � P is specified for each world u and each propositional
variable P ;

• u � F ∧ G iff u � F and u � G, u � F ∨ G iff u � F or u � G, u � ¬F
iff u¬ � F ;

• u � �F iff v � F for all v such that uRv;
– u � t:F iff u � �F and u ∈ A(t, F ).

In [8,17], S4LP is shown to be sound and complete with respect to this epistemic
semantics.

3 Topological Semantics for Justifications

We start with offering a topological semantics for operation-free single-modality
Justification Logics. It means we will work with the usual language of propo-
sitional modal logic enriched by a new construction t : F where t is a proof
variable and F is a formula.

An interpretation is specified for a topological space T = 〈X, I〉 supplied with
a test function M which maps a term t and a formula F to M(t, F ) ⊆ X.
The informal meaning of M is that M(t, F ) represents a ‘potentially accessible’
region of X associated with F and t.

We assume that an evaluation ∗ works on propositional variables, Boolean
connectives and modality � according to the usual aforementioned Tarski inter-
pretation (1). We will study several natural ways to extend ∗ on formulas t:F
and corresponding subsystems of S4LP. This approach was first discussed in [11].

We build our topological semantics for the Justification Logic language on the
following formal and informal assumptions.

1. Our semantics is based on Tarski’s topological semantics (1), e.g.,

(�F )∗ = I(F ∗).
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2. Justification terms are symbolic representations of tests. We postulate exis-
tence of a test function M which for each t and F specifies a set of points
M(t, F ) which we call

the set of possible outcomes of a test t of a property F.

3. The t:F will return a set of points where a test t confirms F . This reading
will be supported by definitions (for different subsystems of S4LP):

(t:F )∗ = F ∗ ∩ M(t, F ) (2)

or
(t:F )∗ = I(F ∗) ∩ M(t, F ). (3)

In case (2), test t supports F at all points where the possible outcome of t
lies inside F . Case (3) corresponds to the ”robust” understanding of testing:
test t supports F at all points of the possible outcome of t which lie in the
interior of F .

4. We first consider systems without operations on tests.

Now we introduce several systems of Justification Logic and simultaneously
define their topological semantics in format (T , M) where T = 〈X, I〉 is a topo-
logical space and M is a test function.

3.1 Basic Testing System S4B0

The most basic system in our list is

S4B0 = S4 + (t:F →F ).

In this system, there are no any assumptions about tests; they don’t necessarily
produce open sets of outcomes. The topological interpretation of S4B0 combines
Tarski topological interpretation (1) for Booleans and modality � with the in-
terpretation of the justification assertions like in (2), i.e.,

(t:F )∗ = F ∗ ∩ M(t, F ).

3.2 Robust Testing System S4B1

The next system under consideration is

S4B1 = S4 + (t:F →�F ).

In S4B1, test sets are not necessarily open; however, the justification assertions
are interpreted as ”robust inclusion”, i.e., case (3) :

(t:F )∗ = I(F ∗) ∩ M(t, F )
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3.3 Robust Open Testing System S4B2

Finally, we consider

S4B2 = S4 + (t:F →F ) + (t:F →�t:F ).

This system corresponds to the full operation-free version of S4LP. The test sets
are assumed to be open, the justification assertions are interpreted in the robust
sense (3):

(t:F )∗ = I(F ∗) ∩ M(t, F )

3.4 Topological Soundness and Completeness

Theorem 1. All three systems S4B0, S4B1, and S4B2 are sound and complete
with respect to the corresponding classes of topological models.

Proof. The soundness proofs are straightforward. In view of the Tarski topologi-
cal interpretation of S4 ([24]), it suffices to establish validity of non-S4 principles
of S4B0, S4B1, and S4B2 in the corresponding cases.

Principle t:F → F is valid in both (2) and (3) since in each case (t:F )∗ is a
subset of F ∗. Principle t:F →�F is valid in (3) since (t:F )∗ is a subset of (�F )∗,
which is the interior of F ∗. Finally, t:F →�t:F is valid in (3) since the test sets
are open hence (t:F )∗ are all open and coincide with their interiors.

Completeness proofs go via epistemic models which are then converted into
topological spaces with topology induced by the Kripke accessibility relation.

We consider the case of S4B2, the remaining cases are receiving a similar
treatment. Let us first establish the completeness of S4B2 with respect to the
class of Fitting models (W, R, A, �) without operations on justifications.

We follow the standard canonical model construction.

– W is the set of all maximal consistent sets in S4B2. We denote elements of
W as Γ, Δ, etc.;

– ΓRΔ iff Γ � ⊆ Δ, where Γ � = {�F | �F ∈ Γ};
– A(s, F ) = {Γ ∈ W | s:F ∈ Γ};
– Γ � p iff p ∈ Γ .

Let us check that (W, R, A, �) is indeed an S4B2-model. It is immediate from
the definitions that the accessibility relation R is reflexive and transitive. The
admissible evidence function A is monotonic. Indeed, suppose Γ ∈ A(t, F ) and
ΓRΔ. Then t:F ∈ Γ , �t:F ∈ Γ , �t:F ∈ Δ, and t:F ∈ Δ, i.e. Δ ∈ A(t, F ).

Lemma 1 (Truth Lemma). For every formula F , Γ � F iff F ∈ Γ .

Proof. Induction on F . The base case in given in the definition of the canonical
model. The Boolean and modality cases are standard. Let us consider the case
when F is t:G.

Let t : G ∈ Γ and ΓRΔ. Then �t : G ∈ Γ , �t : G ∈ Δ, t : G ∈ Δ (since
�t:G→ t:G), and G ∈ Δ (since t:G→F ). By the Induction Hypothesis, Δ � G.



36 S. Artemov and E. Nogina

Furthermore, by the definition of the admissible evidence function, Γ ∈ A(t, G),
hence Γ � t:G.

If t:G ∈ Γ , then Γ ∈ A(t, G), hence Γ � t:G.

Let us now finish the proof of completeness of S4B2 with respect to S4B2-models.
Suppose S4B2 � F . Then the set {¬F} is consistent, and hence included into
some maximal consistent set Γ . Naturally, F ∈ Γ . By the Truth Lemma, Γ � F .

Now we convert a given countermodel K = (W, R, A, �) for F into an appro-
priate topological space and find an interpretation under which F does not hold.
A Kripke topological space TK associated with K is a topological space with the
carrier W and open sets which are all subsets of W closed upward under R:

Y is open iff for all u ∈ Y , if uRv then v ∈ Y .

To make TK a topological S4B2-model it remains to define a test function

M(t, F ) = A(t, F ).

Given a Fitting model K = (W, R, A, �) for S4B2 we can also define a topological
interpretation ∗ of S4B2-language in TK:

p∗ = {u ∈ W | u � p} for a propositional letter p.

Any interpretation ∗ is extended to all S4B2-formulas in the standard way:

– (A ∨ B)∗ = A∗ ∪ B∗;
– (¬A)∗ = W \ A∗;
– (�A)∗ = I(A∗);
– (t:A)∗ = I(A∗) ∩ M(t, A).

From the definitions it is immediate that t:G→G holds at this model. Note that
due to monotonicity of the admissible evidence function A, for each t and F the
test sets M(t, G) are open in TK. Therefore t:G→�t:G also holds at the model.

Lemma 2 (The Main Lemma)

u � G ⇔ u ∈ G∗

Proof. Induction on G. The base case when G is atomic is covered by the defi-
nition. The Boolean connective case is straightforward.

Let G be �B. Suppose u � �B, then for all v ∈ W such that uRv, v � A as
well. By the Induction Hypothesis, v ∈ B∗ for all v ∈ W such that uRv. This
yields that the whole open cone Ou = {v | uRv} is a subset of B∗. Therefore,
u ∈ I(B∗) = (�B)∗.

Suppose u ∈ (�B)∗ = I(B∗). Since I(B∗) is open, v ∈ I(B∗) hence v ∈ B∗

for all v such that uRv. By the Induction Hypothesis, v � B for all v such that
uRv. Therefore, u � �B.

Let G be t:B. Suppose u � t:B. Then, by definition, u ∈ A(t, B) and v � B
for all v such that uRv. By the definition of a test function, u ∈ M(t, B). By
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the Induction Hypothesis, v ∈ B∗ for all v such that uRv, which means that
u ∈ I(B∗). Hence u ∈ I(B∗) ∩ M(t, B), i.e., u ∈ (t:B)∗.

Suppose u ∈ I(B∗) ∩ M(t, B). Then u ∈ M(t, B) hence u ∈ A(t, B). Further-
more, u ∈ I(B∗). Like in the case G = �B, we conclude that u � �B. Altogether
this yields u � t:B.

To conclude the proof of Theorem 1 consider a Fitting S4B2-model, where u � F .
By the Main Lemma, u ∈ F ∗, hence F is not valid in the topological S4B2-model
TK.

3.5 Completeness with Respect to Real Topology

Theorem 2. S4B0, S4B1, S4B2 are complete with respect to the real topology
R

n.

Proof. We will use the following main lemma from recent refinements of the
Tarski Theorem from [12,26,34] :

Lemma 3. There is an open and continuous map π from (0, 1) onto the Kripke
topological space corresponding to a finite rooted Kripke frame.

Such a map π preserves truth values of modal formulas at the corresponding
points. It suffices now to refine the proof of Theorem 1 to produce a finite rooted
Fitting counter-model for F and to define the test function M′(t, G) on (0, 1) as

M′(t, G) = π−1M(t, G).

The resulted topological model is a (0, 1)-countermodel for F . This construction
yields completeness with respect to the real topology R

n, for each n = 1, 2, 3, ....

4 Future Work

The next natural steps in this direction could be introducing operations on tests.
It also looks promising to introduce tests in systems of topological reasoning
about knowledge [13] and Dynamic Topological Systems [7,20].
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