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1 Introduction

Proof complexity is a research area that studies the concept of complexity from
the point of view of logic. Although it is very much connected with computational
complexity, the goals are different. In proof complexity we are studying the
question how difficult is to prove a theorem? There are various ways how one
can measure the “complexity” of a theorem. We may ask what is the length of
the shortest proof of the theorem in a given formal system. Thus the complexity
is the size of proofs. This corresponds to questions in computational complexity
about the size of circuits, the number of steps of Turing machines etc. needed to
compute a given function. But we may also ask how strong theory is needed to
prove the theorem. This also has a counterpart in computational complexity—
the questions about the smallest complexity class to which a given set or function
belongs.

Often the best way to find out what is going in some field of research is to
look at open problems. Therefore my aim in this paper is to compile a list of
problems in proof complexity that I consider to be important, but which also
seem to be within the reach of our methods. With each problem, I shall define
the necessary concepts and mention some related results.

The paper is intended for researchers in computational complexity who want
to know what is going on in proof complexity and, perhaps, want to try some
open problem there. Essentially all problems have already been stated before,
sometimes in different forms. The reader interested in problems should consult
monographs [6,20], survey articles [11,36] and other lists of problems [11,21].

2 Frege Systems

Most of my problems will be about propositional proof systems. I shall consider
classical propositional logic, but I shall also mention some results about nonclas-
sical propositional calculi. The general definition of a propositional proof system
[12] is based on the following three conditions:

1. soundness;
2. completeness;
3. polynomial time decidability of the relation: D is a proof of proposition φ.
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Since the set of propositional tautologies is coNP-complete, there exists a proof
system P such that every tautology has a proof of polynomial length in P if and
only if NP = coNP. If P has that property, I shall say that P is polynomially
bounded.

Although NP �= coNP is considered to be very likely true, we are not able to
prove that some very basic proof systems are not polynomially bounded. These
proof systems are called Frege systems. They are the well-known systems used in
most textbooks and, in fact, fairly close to natural reasoning of mathematicians.
A Frege system P is based on a finite number of axiom schemas and deduction
rules. A proof in P is a string of propositions which are either instances of the
axiom schemas or follow from previous ones by deduction rules.

There are two basic measures of complexity of Frege proofs. First, we may
count the number of propositions in the proof; second, we may count the total
length of an encoding of the proof as a binary string. This determines two mea-
sures of proof complexity of a tautology—the least number of steps in a proof
and the length of the shortest proof. It has been shown that for every two Frege
systems the the numbers of steps differ by at most a polynomial; the same holds
for the length, [12]. In fact, when both systems use the same language (the same
basis of connectives), then the lengths, resp. the numbers of steps, differ by at
most a linear factor and the proof is trivial.

Problem 1. Prove a superpolynomial lower bound on the length of proofs for a
Frege system (or prove that it is polynomially bounded).1

Essentially the only lower bound on the lengths of proofs in a Frege system is
based on the simple observation that in a proof of an irreducible tautology τ 2

all subformulas must occur. Thus if the depth of τ is n the size of every proof
of τ is Ω(n2). No lower bounds are known for the number of steps!

This is the most difficult of all problems I am going to state in this paper. As
a matter of fact, I doubt that it is within the reach of the current methods, but it
is worth mentioning it, before talking about its weaker versions and other related
problems. The number of steps in a proof is always at most its length. It seems
possible that there are tautologies with proofs that have only polynomial number
of steps while they have only proofs of exponential length. So the problem to
prove superpolynomial lower bounds on the number of steps for Frege proofs is
even harder.

One possible weakening is to prove superpolynomial lower bounds using some
complexity-theoretical assumptions. Of course, the assumptions must not imply
NP �= coNP, as that assumption implies that there is no polynomially bounded
propositional proof system.

Problem 2. Prove a superpolynomial lower bound on the length of proofs for a
Frege system using a conjecture that does not imply NP �= coNP.

1 I put the alternative into parenthesis, because I believe it is very unlikely. In the rest
of the paper I shall omit such alternatives.

2 This means that all subformulas of τ are essential for τ being a tautology.
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One natural place to look for such conjectures is in theoretical cryptography.
Several conjectures in that field are stronger than P �= NP but they are not
known to imply NP �= coNP. Solving this problem requires finding some com-
putational consequences of the existence of short Frege proofs. I shall say more
about it in the next section.

The difficulty of proving lower bounds for Frege proofs is caused not only by
the lack of suitable methods, but also by the lack of suitable candidates for hard
tautologies. Most of the tautologies based on simple combinatorial principles and
theorems, such as the Pigeon-Hole Principle and the finite Ramsey theorem, have
been shown to have polynomial size proofs. On the opposite end of the spectrum
of various tautologies, there are tautologies that are almost surely hard. These
are tautologies expressing the consistency of strong theories.3 But for this kind
of tautologies our combinatorial methods do not work. The method of diago-
nalization, which is so useful in predicate logic, completely fails in propositional
logic. Therefore we need tautologies that are based on natural and sufficiently
hard combinatorial principles.

A class of candidates for hard tautologies was proposed in [24,2]. Let Fn be
a mapping from binary strings of length n to binary strings of length n + 1.
Then there is a string b of length n + 1 which is not in the range of Fn. If
Fn is computable by a polynomial size circuit, we can define a polynomial size
tautology τFn,b, for every b �∈ Rng(Fn), that expresses this property of b. The
hope is that if F is sufficiently pseudorandom, then τFn,b is hard for every b �∈
Rng(Fn). We know that it does not suffice to assume that Fn be a pseudorandom
generator. In [45] Razborov stated specific properties of F and conjectured that
the tatuologies based on such functions are hard.

Furthermore, the hardness of these formulas, for some proof systems, has been
conjectured for the following specific function T . Let s(x) be a numeric functions
such that s(x) = o(x). Given a number k, interpret binary strings of length 2s(k)

as codes of boolean circuits defining functions of k variables; interpret binary
strings of length 2k as truth tables of boolean functions of k variables. Then T
is the mapping that, given a string c of length 2s(k), maps c onto the truth table
of the function computed by the circuit encoded by c. So, roughly speaking, the
conjecture is that it is hard to prove lower bounds on circuit complexity.

Another specific function was studied in [26].
The connection to Frege proofs is not quite clear to me. In fact, it is conceiv-

able that for suitable sequences of functions {Fn} and strings {bn}, the tautologies
τFn,bn are hard for all proof systems. This conjecture is buttressed by the fact that
for all proof systems for which superpolynomial lower bounds have been obtained,
also superpolynomial lower bounds have been proved for formulas of this type.

The problem of proving lower bounds on the size and the number of steps for
Frege proofs has been studied for nonclassical logics too. Quite recently Pavel
Hrubeš proved exponential lower bounds on the number of steps in propositional
intuitionistic logic and in several modal logics [16,17].

3 For a theory T it is a sequence of tautologies {τn}, where τn expresses that no string
of length n is a proof of contradiction from the axioms of T .
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Hrubeš’s results cover a lot of modal logics, still there are other nonclassical
logics for which no lower bounds on the lengths of proofs are known. One that
I find particularly interesting is orthomodular logic.

Problem 3. Prove lower bounds on proofs in a Frege system for orthomodular
logic.

Orthomodular logic is, roughly speaking, classical logic with distributivity re-
placed by the weaker law of modularity [13]. This is one of the logics studied in
the field of quantum logic, but quantum physics and quantum computation are
not my motivations. The reason why I think this problem should be studied is
its connection to proofs of lower bounds on classical Frege systems. Connections
with structures studied in quantum mechanics were mentioned already in [23].
One can show that if a Frege proof system for orthomodular logic is polynomially
bounded, then so is every Frege proof system for classical logic.4 I am proposing
Problem 3 as a weaker version of the central Problem 1, but it may turn out
that they are equivalent.

The weaker orthologic is also interesting in connection with lower bounds on
classical Frege systems, however notice that it has polynomially bounded proof
systems [15].

3 Feasible Interpolation

Feasible interpolation, a.k.a. effective interpolation, was invented by Jan Kraj́ıček
[19]. It is a way to obtain, from a short proof, some effective computation. In partic-
ular, to obtain a polynomial size circuit computing a function related to a suitable
tautology from its polynomial size proof. This enables one to reduce the problem
of proving lower bounds on the size of proofs to proving lower bounds on the size
of circuits.

Let α(p̄)∨β(q̄) be a tautology where p̄ and q̄ are disjoint sets of propositional
variables. Then either α(p̄), or β(q̄), or both are tautologies. More generally, if
α(r̄, p̄) ∨ β(r̄, q̄) is a tautology, then for every assignment of truth values ā to r̄,
either α(ā, p̄) or β(ā, q̄) or both are tautologies.

Definition 1. A proof system P has the feasible interpolation property, if there
exists a polynomial time algorithm A which outputs either 0 or 1 and such that
given a proof D of α(r̄, p̄) ∨ β(r̄, q̄) and a truth assignment ā,

1. if A outputs 0, then α(ā, p̄) is a tautology;
2. if A outputs 1, then β(ā, q̄) is a tautology.

It should be noted that the feasible interpolation property is also equivalent to the
following property. There exists a polynomial time algorithm which from a proof D of
α(r̄, p̄) ∨ β(r̄, q̄) constructs a circuit C(r̄) such that for every truth assignment ā

1. if C(ā) = 0, then α(ā, p̄) is a tautology;
2. if C(ā) = 1, then β(ā, q̄) is a tautology.

4 Thomas Vetterlein, personal communication.
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A number of propositional proof systems posses this property. The first one
for which this was established was the cut-free sequent calculus, soon after for
the propositional Resolution system and others. This property was also shown
for Frege systems for some nonclassical logics, including intuitionistic logic. For
nonclassical logics, however, one has to modify it a little. For instance, in case
of intuitionistic logic one has to consider tautologies of the form

(r1 ∨ ¬r1) ∧ . . . ∧ (rn ∨ ¬rn) → α(r̄, p̄) ∨ β(r̄, q̄).

For Frege systems for classical logic it has been shown that the property fails,
assuming some likely conjectures, eg., that factoring integers is hard (ie., not
solvable in polynomial time) [29,5].

It is not difficult to prove that the feasible interpolation property is equivalent
to separation of some disjoint NP sets in the following sense (which I state in a
bit informal way).

Proposition 1. A proof system P has the feasible interpolation property if and
only if whenever P proves that two NP sets A and B are disjoint using a se-
quence of polynomial size proofs, then A and B can be separated by a set in
P/poly, (ie., ∃C ∈ P/poly(A ⊆ C ∧ B ∩ C = ∅).

Consequently, if NP∩coNP �⊆ P/poly, then the feasible interpolation property
implies that the proof system is not polynomially bounded. This assumption is
not known to imply NP �= coNP. Thus we get conditional superpolynomial
lower bounds using a condition different from NP �= coNP. In many cases,
however, after proving the feasible interpolation property also unconditional ex-
ponential lower bounds have been proved.

Since this method proved to be extremely useful for proving lower bounds,
my questions concern the possibility of extending it to stronger systems. I shall
state the problems only for Frege systems, but they are meaningful for every
system for which we do not have the feasible interpolation property. The first
problem is about the possibility to replace the separation using sets in P/poly
by separation using more complex sets.

Problem 4. Prove that Frege systems have the feasible interpolation property in
a more general sense, namely, with the separation using sets in P/poly replaced
by separation using sets in a larger complexity class.

As shown in [37], it suffices to determine how difficult is to separate the canonical
pair of NP sets associated with a Frege system. Recall that the canonical pair
of a proof system P is the pair of the following two NP sets [41]:

Prov(P ) := {(φ, 0n) ; φ has a proof of length at most n in P}
NegSat := {(φ, 0n) ; ¬φ is satisfiable}.

(The string 0n only serves for padding the input to make it of length at least n.)
Thus the Problem 4 asks for a nontrivial upper bound on the complexity of sets
that separate the canonical pair of a Frege system. This connection also shows
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an important fact about the problem: we do not not have to consider general
proofs, but only certain very concrete ones. In Frege systems the propositional
translations of the sentence

Prov(F) ∩ NegSat = ∅

have polynomial size proofs, where F denotes some fixed Frege system.5 These
are the proofs that we only need to consider.

Notice that a solution of Problem 4 would also be a solution of Problem 2.
There may be other ways one can generalize feasible interpolation so that it
also holds for Frege systems, the form of which may eventually have little to do
with the original concept of interpolation. Therefore I shall state a version of the
previous problems in a very general form.

Problem 5. Derive any nontrivial computational consequences from the existence
of a small Frege proof.

There is another reason for posing the problem in this way. It is well known that
intuitionistic logic and some other related logics are constructive. This means,
roughly speaking, that one can interpret proofs as algorithms. This mainly con-
cerns predicate logic, but there are results of this kind also for propositional logic
[8]. So the above problem can be paraphrased: Does classical propositional logic
have any constructive properties?

Problems 2,4 and 5 are very much related, one should view them as possible
ways of attacking the central Problem 1.

Since all problems about Frege systems seem to be very hard, one should start
with some special cases. In case of the problems about the feasible interpolation,
one should start with bounded depth Frege systems. Assuming likely conjectures,
they do not have the feasible interpolation property already for small depths
[5]. It would be interesting to find some generalized interpolation for as weak a
system as Res(log), which is a generalization of Resolution, based on disjunctions
(clauses) of conjunctions of logarithmic lengths.

4 The Bounded Arithmetic Hierarchy

I shall start with a topic that at first will seem completely unrelated to pre-
vious problems. For n ≥ 0, T n

2 denotes the theory axiomatized by induction
axioms restricted to Σb

n formulas. The class of Σb
n defines precisely the class of

sets Σp
n of the Polynomial Hierarchy. The Bounded Arithmetic Hierarchy is the

sequence of theories {T n
2 }. Roughly speaking, T n

2 formalizes reasoning that uses
only concepts from the n-th level of the Polynomial Hierarchy. (See [6,20] for
definitions.)

We proved that if the Polynomial Hierarchy is strictly increasing, then so is the
Bounded Arithmetic Hierarchy [27]. Furthermore, we proved that the relativized
5 These sentences are also known as the Reflection Principle for the Frege System, see

[37].
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Bounded Arithmetic Hierarchy is strictly increasing. That results, however, only
show that there are Σb

n+2 sentences that separate T n+1
2 from T n

2 , resp. the same
for the relativized case.6 It is an open problem whether one can prove similar
results for sentences of fixed complexity.

Problem 6. (I) Assuming some reasonable conjecture in computational complex-
ity theory, for some k, prove or disprove that for all n ≥ 0, T n+1

2 proves more
Σb

k sentences than T n
2 .

(II) The same for relativized theories T n
2 [R], without using unproven

assumptions.

The relativized theories T n
2 [R] are extensions of T n

2 obtained by adding a new
predicate R and extending the induction axioms to Σb

n[R]; there are no specific
axioms for R. The predicate R plays a similar role as oracles in relativized
complexity classes and this connection is actually used for separation results.

Recently, most research activities focused on the Σb
1 sentences provable in the-

ories T n
2 . These sentences are related to a very natural concept in computational

complexity theory.

Definition 2. A total NP search problem is determined by a relation R ∈ P
and a polynomial p such that

∀x∃y(|y| ≤ p(|x|) ∧ R(x, y)). (1)

The sentence (1), which expresses that the search problem is total, is a Σb
1

sentence. For T 0
2 , the total search problems corresponding to the provable Σb

1
sentences, are solvable in polynomial time. For T 1

2 the search problems belong
to the well-known class Polynomial Local Search, PLS. Characterizations of
the search problems of higher levels of the Bounded Arithmetic Hierarchy were
obtained quite recently [38,31,46]. I shall describe the simplest characterization,
which is due to Skelley and Thapen [46].

An n-game is an n-ary relation G(x1, . . . , xn). We think of it as played by
two players, A is starting and B playing as the second. The players alternate in
picking xi’s; B wins if G(x1, . . . , xn) holds true, otherwise A wins. The concept
of a winning strategy is well-known. Further, we need the concept of a reduction
of an n-game G to an n-game H . It is a string of functions f1, . . . , fn such that
for every x1, . . . , xn and y1, . . . , yn such that yi = fi(x1, x3, . . . , xi) for i odd,
and xi = f(y2, y4, . . . , yi) for i even, if H(y1, . . . , yn), then G(x1, . . . , xn).

If we have a wining strategy for B in H and a reduction of G to H , then we
obtain a winning strategy for B in G by simply composing the strategy with the
reduction.

The principle GIn says that the following is impossible:

There are games G0, . . . , Ga, a winning strategy α for A in game G0,
reductions ρi of Gi+1 to Gi for i = 0, . . . , a − 1 and a winning strategy
β for B in Ga.

6 More precisely, we should denote these sentences by ∀Σn+2, as we are talking about
the universal closures of Σn+2 sentences.
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Indeed, if we compose β, ρa−1, ρi−2, . . . , ρ0, we obtain a winning strategy for B
in G0 contradicting to the existence of a winning strategy for A in G0.

The total NP search problem associated with GIn is defined using circuits.
The games G0, . . . , Ga are given by a circuit C(z, x1, . . . , xn), where for the
binary string ī representing index i, 0 ≤ i ≤ a, C (̄i, x1, . . . , xn) defines game Gi.
Similarly, the reductions ρi, 0 ≤ i ≤ a, are given by one circuit. Further, we have
a circuit defining strategy α and a circuit defining strategy β. Notice that the
number of games a is, in general, exponential in the size of input.

The task of the search problem is, given the circuits, to find out what is wrong.
Namely, we should find

1. either x1, . . . , xn that show that α is not a winning strategy for A in G0,
2. or i, 0 ≤ i < a, x1, . . . , xn and y1, . . . , yn that show that ρi is not a reduction

of Gi+1 to Gi,
3. or y1, . . . , yn that show that β is not a winning strategy for B in Ga.

This is also the way in which GIn is formalized as a Σb
1 sentence. I shall use the

same notation for the principles, their formalizations and the associated search
problems.

Theorem 1 ([46]). For n ≥ 1, GIn[R] characterizes Σb
1[R] consequences of

T n
2 [R] (hence also GIn characterizes Σb

1 consequences of T n
2 ).

A search problem S is polynomially reducible to a search problem S′, if we can
solve S in polynomial time using queries to an oracle that produces solutions
of the queried instances S′. If Σb

1 theorems of T n+1
2 [R] are the same as Σb

1
theorems of T n

2 [R], then for every oracle A, GIA
n+1 is polynomially reducible to

GIA
n (using also the oracle A). In other words, that assumption implies that

GIn+1 is polynomial reducible to GIn and the proof relativizes. This enables us
to reduce the Problem 6 to a purely computational one.

Problem 7. For n = 1, 2, . . ., find an oracle A such that the search problem
GIA

n+1 is not reducible to the search problem GIA
n .

I have stated this problem for a specific characterization, but one can try other
characterizations of Σb

1 theorems of theories T n
2 . This is only a matter of conve-

nience, all these problems are equivalent.
One should not forget about the unrelativized case.

Problem 8. For n = 1, 2, . . ., find a reasonable conjecture in complexity theory
which implies that the search problem GIn+1 is not reducible to the search
problem GIn.

A solution of this problem may be a clue for solving the previous problem.
Specifically, if the conjecture used in a solution to Problem 8 can be proved
when relativized by an oracle, then we get a solution to Problem 7.
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5 Bounded Depth Frege Systems

Bounded depth circuits are an important class of circuits studied in compu-
tational complexity, and exponential lower bounds on the size of such circuits
computing explicitly defined functions have been proved. A related concept has
been studied in proof complexity. A depth d Frege system is a Frege system in
which only formulas of depth d are allowed. As in case of bounded depth cir-
cuits, the depth of Frege proofs is the the maximal number of alternations of
∧, ∨ and ¬ in a formula of the proof (we assume that no other connectives are
used).

Let F denote some Frege systems and Fd its depth d restrictions. Following
the brake-through superpolynomial lower bound of Ajtai [1], exponential lower
bounds on bounded depth Frege proof have been proved [19,28,34]. Specifically,
for every fixed d, the tautology expressing the Pigeon-Hole Principle has only
exponentially long proofs in Fd. Superpolynomial separations of Fd from Fd+1
was proved in [30] using padded Pigeon-Hole tautologies, which are of depth 2.
Also exponential separation of Fd from Fd+1 is known [19], but it uses tautologies
of maximal depth that is possible in these systems.7 The following is still an open
problem.

Problem 9. Does there exist a k such that for every d ≥ k there exists a sequence
of tautologies of depth k that have polynomial size proofs in Fd+1, but which
do not have proofs of size 2(log n)O(1)

in Fd?

We believe that the answer to this problem is positive with k = 2 and with a
lower bound 2nΩ(1)

. But why do we need a lower bound 2(log n)ω(1)
? It is because

such a lower bound would help us solve Problem 7. The statement of Problem 9
does not formally imply the statement of Problem 7. To get such a relationship
we would have to insist that the sequences of tautologies are uniform in a certain
well defined sense. Namely, the tautologies should be propositional translations
of Σb

k sentences. However, it seems unlikely that the use of nonuniform sequences
of families could help.

The candidate tautologies are the translations of the Σb
1 sentences that char-

acterize sentences provable in T d
2 . But even the simplest ones, the GId are fairly

complicated which is the reason why researcher have not studied their propo-
sitional translations. For a few small depths we have simpler candidates. In
particular, the minimal depth in which one can prove the finite Ramsey theorem
is an open problem.

The only general lower bound technique for bounded depth Frege proofs that
we have is based on Switching Lemmas [3]. Formally they look very much like
the classical Switching Lemma of Yao and H̊astad and the proof techniques
are similar, but there are additional technical complications. Every tautology
7 The depth of these tautologies is d + 1, therefore one has to use Fd as a refutation

system, in order to be able to prove such tautologies, or one can formalize Fd as
a sequent system with arbitrary formulas and the cut rule restricted to depth d
formulas.
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requires a lemma of a specific form, thus the more complicated the tautology is,
the more complicated the lemma is. Another problem is that these lemmas do
not have interpretations in finite domains, thus we have to treat them purely
syntactically, or use nonstandard models.

In boolean complexity theory exponential lower bounds have been proved for
a larger class of circuit. A MODn

q gate is a boolean function of n variables, whose
value is 1 if and only if the number of ones in the input string is divisible by q.
Razborov and Smolensky considered bounded depth circuits with ANDs, ORs,
NOTs and gates MODn

p with p prime, and proved exponential lower bounds
on the circuit size of some explicitly defined functions [40,47]. After the method
of random restrictions had been adapted for bounded depth Frege proofs and
exponential lower bounds had been proved, researchers in proof complexity at-
tempted to prove lower bounds on the more general type of bounded depth Frege
system in which MODn

p gates, for p prime, were allowed. But an adaptation of
the approximation method turned out to be much harder, if not impossible. So
the following is still an open problem. Let Fd[p] denote a suitable depth d Frege
system that uses gates AND, OR, NOT and MODp.

Problem 10. Prove superpolynomial lower bounds on Fd[p] proofs for p prime.

I am not considering Fd[q] systems with q composite, although such systems can
be defined, because superpolynomial lower bounds for bounded depth circuits
with MODq, q composite, is a widely open problem, and we expect that the
corresponding problem in proof complexity will be even harder to solve.

I will now explain what is the obstacle to adapting the method of approxima-
tion to Fd[p]. Let us first recall how the lower bounds on bounded depth circuits
with modular gates are proved. The basic idea is to approximate functions com-
puted at the gates of the circuit by low degree polynomials. Then one shows that
the precision of the approximation deteriorates slowly, thus the output function
should be approximated well, assuming the circuit is small. Finally, one proves
that such an approximation does not exist for the given function.

Given an Fd[p] proof, we would like to mimic the above reasoning. So we
would like to associate low degree polynomials with formulas in the proof and
show that the polynomials approximate axioms very well and the precision of
the approximation decreases slowly in the course of the proof. But what does it
mean to approximate a formula in a proof? If we count truth assignments as in
the proof for bounded depth circuits we get nowhere. Each formula in the proof
is a tautology, hence it is trivially approximated by the constant 1 (which is a
zero degree polynomial). According to our experience from the proofs for Fd,
we have to consider “imaginary” truth assignments that falsify the tautology φ
for which we want to prove a lower bound. Such assignments do not exist in
real world (since φ is a tautology), we can only imagine them, or we have to
use nonstandard models. If we use a nonstandard model M, then the imagi-
nary assignments are represented by real objects, but they have to be external
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to M. Then, for a polynomial p, we need to express in M on how many of
these external assignments p vanishes. That is the problem, because there is no
natural way how to count external objects inside of M.

This is the main stumbling block when one tries to translate the approxi-
mation method in a straightforward way. Researchers tried several other ways,
but they only obtained partial results. The Polynomial Calculus was proposed
as the most rudimentary special case of Fd[p] proofs [10]. Exponential lower
bounds have been proved for this system [44] and a reduction to lower bounds
for the Polynomial Calculus extended by certain axioms has been found [7].8

Lower bounds for a system that combines Fd with the Polynomial Calculus
were proved in [22].

6 Integer Linear Programing

The general form of an Integer Linear Programing problem is: for a given set of
inequalities with rational coefficients, find solutions in the domain of integers. If
we want to study the complexity of Integer Linear Programing, we can simplify
it by considering only the decision problem: does the system of inequalities have
an integral solution? It is well-known that this problem is NP-complete.

From the point of view of proof complexity, the most interesting problem is:
how difficult is to prove that a given set of inequalities does not have an integral
solution? Since it is a coNP-complete problem, we believe that proofs in any
proof system must be exponentially large. Since we are not able to prove this
conjecture in general, we would like to prove it at least in some special cases,
ie., for particular proof systems.

Exponential lower bounds have been proved for two systems [35,14]. Further-
more, exponential lower bounds have been obtained for several other systems for
tree-like proofs, see [18], and [4] combined with the recent bounds on multiparty
communication complexity of disjointness [32,9]

I shall describe in more detail one proof system which seems within the reach
of our methods; it is the Lovász-Schrijver system [33]. We want to prove the
unsatisfiability of a system of linear inequalities {Li ≥ 0}m

i=1 by integers. The
initial inequalities are:

1. Li ≥ 0, i = 1, . . . , m;
2. x2

j − xj ≥ 0, for any variable xj used in {Li ≥ 0}m
i=1.

A proof is a sequence of inequalities derived from the initial inequalities by
the rules of the system, ending with the contradictory inequality −1 ≥ 0. The
inequalities in the proof are of degree at most 2. The rules are:

1. we can derive any positive linear combination of established inequalities;
2. from a linear inequality L ≥ 0, we can derive xjL ≥ 0, for any variable xj

used in {Li ≥ 0}m
i=1;

8 More precisely, it is a reduction to an extension of a weaker system called the Null-
stellensatz System.
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3. from a linear inequality L ≥ 0, we can derive (1 − xj)L ≥ 0, for any variable
xj used in {Li ≥ 0}m

i=1.

Exponential lower bounds on tree-like proofs follow from the aforementioned
results, for general proofs (DAG-like), however, it is an open problem.

Problem 11. Prove superpolynomial lower bounds on Lovász-Schrijver proofs.

For the Lovász-Schrijver system the feasible interpolation property has been
proved [35], thus we know that the system is weak. As I have mentioned, in
many cases unconditional lower bounds were found after the feasible interpola-
tion property had been established. These lower bounds are based on monotone
versions of the feasible interpolation property, in which monotonic computational
models are used instead of boolean circuits. For the Lovász-Schrijver proof sys-
tem the following monotonic model is needed. I call it monotone linear programs
for computing boolean functions. Such a program P is given by a set of inequal-
ities of the form:

∑

j

aijzj ≤
∑

k

bikxk + ci

where aij , bi,k, ci ∈ Q are constants, bi,k ≥ 0, and zj , xk are variables. Variables
xk are used for 0–1 inputs. P computes the boolean function f(x̄) that for every
string of zeros and ones d̄ satisfies:

Px̄:=d̄ has a solution, iff f(d̄) = 1.

The solution is for the variables zj and we require zj ≥ 0. Notice that P computes
a monotone boolean function because of the condition bi,k ≥ 0. Without this
condition the model would be as efficient as general boolean circuits.

Solving the following problem positively would be a major step towards prov-
ing superpolynomial lower bounds on Lovász-Schrijver proofs.

Problem 12. Prove a superpolynomial lower bound on the size of a monotone
linear program computing an explicitly defined monotone boolean function.

The problem is important also for computational complexity, since monotone
linear programs are the strongest monotonic computational model that has been
defined.
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20. Krajıček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory.
In: Encyclopedia of Mathematics and its Applications 60, Cambridge Univ. Press,
Cambridge (1995)



26 P. Pudlák
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22. Krajıček, J.: Lower bounds for a proof system with an exponential speed-up
over constant-depth Frege systems and over polynomial calculus. In: Privara, I.,
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