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Abstract. Given a set of N strings A = {α1, . . . , αN} of total length n
over alphabet Σ one may ask to find, for each 2 ≤ K ≤ N , the longest
substring β that appears in at least K strings in A. It is known that
this problem can be solved in O(n) time with the help of suffix trees.
However, the resulting algorithm is rather complicated (in particular, it
involves answering certain least common ancestor queries in O(1) time).
Also, its running time and memory consumption may depend on |Σ|.

This paper presents an alternative, remarkably simple approach to
the above problem, which relies on the notion of suffix arrays. Once
the suffix array of some auxiliary O(n)-length string is computed, one
needs a simple O(n)-time postprocessing to find the requested longest
substring. Since a number of efficient and simple linear-time algorithms
for constructing suffix arrays has been recently developed (with constant
not depending on |Σ|), our approach seems to be quite practical.

1 Introduction

Consider the following problem:

(LCS) Given a collection of N strings A = {α1, . . . , αN} over alphabet Σ
find, for each 2 ≤ K ≤ N , the longest string β that is a substring of at
least K strings in A.

It is known as a generalized version of the Longest Common Substring (LCS)
problem and has a plenty of practical applications, see [Gus97] for a survey.

Even in the simplest case of N = K = 2 a linear-time algorithm is not
easy. A standard approach is to construct the so-called generalized suffix tree T
(see [Gus97]) for α1$1 and α2$2, which is a compacted symbol trie that captures
all the substrings of α1$1, α2$2. Here $i are special symbols (called sentinels)
that are distinct and do not appear in α1 and α2. Then, nodes of T are examined
in a bottom-up fashion and those having sentinels of both types in their subtrees
are listed. Among these nodes of T let us choose a node v with the largest string
depth (which is the length of the string obtained by reading letters along the path
from root to v). The string that corresponds to v in T is the answer. See [Gus97]
for more details.
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In practice, the above approach is not very efficient since it involves comput-
ing T . Several linear-time algorithms for the latter task are known (possibly,
the most famous one is due to Ukkonen [Ukk95]). However, suffix trees are still
not very convenient. They do have linear space bound but the hidden constants
can be pretty large. Most of modern algorithms for computing suffix trees have
the time bound of O(n log |Σ|) (where n denotes the length of a string). Hence,
their running time depends on |Σ|. Moreover, achieving this time bound requires
using balanced search trees to store arcs. The latter data structures further in-
crease constants in both time- and space-bounds making these algorithms rather
impractical. Other options include employing hashtables or assuming that |Σ|
is small and using direct addressing to access arcs leaving each node. These
approaches have their obvious disadvantages.

If one assumes that N and K are arbitrary then additional complications arise.
Now we are interested in finding the deepest (in sense of string depth) node v in
T such that the tree rooted at v contains sentinels of at least K distinct kinds.
Moreover, this routine should run in parallel for all possible values of K and
take linear time. This seems to be an involved task. A possible solution requires
answering Least Common Ancestor (LCA) queries on T in O(1) time, e.g. using
a method from [BFC00]. Reader may refer to [Gus97] for a complete outline.

In this paper we present an alternative approach that is based on the notion
of suffix arrays. The latter were introduced by Manber and Myers [MM90] in an
attempt to overcome the issues that are inherent to suffix trees. The suffix array
(SA) of string α having length n is merely an array of n integers that indicate
the lexicographic order of non-empty suffixes of α (see Section 2 for a precise
definition). Its simplicity and compactness make it an extremely useful tool in
modern text processing. Originally, an O(n log n)-time algorithm for constructing
SA was suggested [MM90]. This algorithm is not very practical. Subsequently,
much simpler and faster algorithms for computing SA were developed. We par-
ticularly mention an elegant approach of Kärkkäinen and Sanders [KS03]. A
comprehensive practical evaluation of different algorithms for constructing SA
is given in [PST07].

We present two algorithms. The first one, which is simpler, assumes that pa-
rameter K is fixed. It first builds an auxiliary string α by concatenating strings αi

and intermixing them with sentinels $i (1 ≤ i ≤ N) and then constructs the suf-
fix array for string α. Also, an additional LCP array is constructed. Finally, a
sliding window technique is applied to these arrays to obtain the answer. Alto-
gether, the running time is linear and does not depend on |Σ|.

The second algorithm deals with all possible values of K simultaneously. Its
initial stage stage is similar: string α, suffix array for α, and LCP array are
constructed. Then, Cartesian tree (CT) is constructed from LCP array. Finally,
a certain postprocessing aimed to count the number of distinct types of nodes
appearing in subtrees of CT is used. It should be noticed that this postprocessing
does not require answering any least common ancestor queries.

The paper is organized as follows. Section 2 gives a formal background, intro-
duces useful notation and definitions. It also explains the notion of suffix arrays
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and indicates how an auxiliary LCP array is constructed in linear time. Section 3
presents the algorithm for the case of fixed K. Finally, Section 4 considers the
general case when the value of K is not fixed.

2 Preliminaries

We shall start with a number of definitions first. In what follows we assume that
a finite non-empty set Σ (called an alphabet) is fixed. The elements of Σ are
letters or symbols. A finite ordered sequence of letters (possibly empty) is called
a string.

We assume the usual RAM model of computation [AUH74]. Letters are treated
just as integers in range {1, . . . , |Σ|}, so one can compare any pair of them in
O(1) time. This lexicographic order on Σ is linear and can be extended in a
standard way to the set of strings in Σ. We write α < β to denote that α
lexicographically precedes β; similarly for other relation signs.

We usually use Greek symbols to denote strings. Letters in a string are
numbered starting from 1, that is, for a string α of length k its letters are
α[1], . . . , α[k]. The length k of α is denoted by |α|. The substring of α from po-
sition i to position j (inclusively) is denoted by α[i..j]. Also, if i = 1 or j = |α|
then these indices are omitted from the notation and we write just α[..j] and
α[i..]. String β = α[..j] is called a prefix of α. Similarly, if β = α[i..] then β is
called a suffix of α. For a set of strings S let lcp(S) denote the longest common
prefix of all strings in S.

Recall that A stands for the collection of the input strings αi. We start with
an almost trivial observation:

Proposition 1. Let B = {β1, . . . , βm} ⊆ A be an arbitrary subset of A obeying
m ≥ K. Let γi be an arbitrary suffix of βi for each 1 ≤ i ≤ m. Solving (LCS)
amounts to computing the longest string among

lcp(γ1, . . . , γm)

where maximum is taken over all possible choices of subsets B and suffixes {γi}.

Let us combine the strings in A as follows:

α = α1$1α2$2 . . . αN$N (1)

Here $i are pairwise distinct sentinel symbols not appearing in strings of A. We
assume that these sentinels are lexicographically smaller than other (normal)
symbols. The lexicographic order between sentinels is not important.

String α captures all needed information about set A. For each index i (1 ≤
i ≤ N) and a position j in αi (1 ≤ j ≤ |αi|) one may consider the corresponding
position p(i, j) in α:

p(i, j) :=
i−1∑

k=1

(|αk| + 1) + j
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suffixes SA sorted suffixes lcp
1 mississippi 11 i 1
2 ississippi 8 ippi 1
3 ssissippi 5 issippi 4
4 sissippi 2 ississippi 0
5 issippi 1 mississippi 0
6 ssippi 10 pi 1
7 sippi 9 ppi 0
8 ippi 7 sippi 2
9 ppi 4 sissippi 1

10 pi 6 ssippi 3
11 i 3 ssissippi

Fig. 1. String mississippi, its suffixes, and the corresponding suffix and LCP arrays

Positions in α of the form p(i, j) are called essential ; the remaining positions
(those containing sentinels) are called unessential.

Let us employ the following metaphor: for each 1 ≤ i ≤ N and 1 ≤ j ≤ |αi| we
say that position p(i, j) is of type i (it corresponds to the i-th string). Remaining
(unessential) positions k in α are said to be of type 0.

Now taking into account the properties of sentinels one can easily derive the
following claim from Proposition 1:

Proposition 2. Let P = {p1, . . . , pm} be an arbitrary set of essential positions
in α such that elements of P are of at least K distinct types. Solving (LCS)
amounts to computing the longest string among

lcp
(
α[p1..], . . . , α[pm..]

)

where maximum is taken over all possible choices of P .

This does not seem very promising at the first glance. However, the longest com-
mon prefix computation exhibits a nice structure when it is applied to suffixes
of a fixed string (in our case, string α).

To explain this structure we first introduce the notion of suffix arrays. Let ω
be an arbitrary string of length n. Consider its non-empty suffixes

ω[1..], ω[2..], . . . , ω[n..]

and order them lexicographically. Let SA(i) denote the starting position of the
suffix appearing on the i-th place (1 ≤ i ≤ n) in this order:

ω[SA(1)..] < ω[SA(2)..] < . . . < ω[SA(n)..]

Clearly, SA is determined uniquely since all suffixes of ω are distinct. An example
is depicted in Fig. 1.

Since SA is a permutation of {1, . . . , n} there must be an inverse correspon-
dence. We denote it by rank; that is, rank is also a permutation of {1, . . . , n}
and

SA(rank(i)) = i holds for all 1 ≤ i ≤ n.
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Historically, the first algorithm to compute SA was due to Manber and My-
ers [MM90]; this algorithm takes O(n log n) time. Currently, simple linear-time
algorithms for this task are known, see [PST07] for a list. The latter linear time
bounds do not depend on |Σ|.

However, knowing SA is not enough for our purposes. We also have to precom-
pute the lengths of longest common prefixes for each pair of consequent suffixes
(with respect to the order given by SA). More formally,

lcp(i) :=
∣∣lcp

(
ω[SA(i)..], ω[SA(i + 1)..]

)∣∣ for all 1 ≤ i < n.

This gives rise to array lcp of length n − 1; we call it the LCP array of ω. The
latter array not only enables to answer LCP queries for consequent (w.r.t. SA)
suffixes of ω but also carries enough information to answer any such query.
Formally [MM90]:

Lemma 1. For each pair 1 ≤ i < j ≤ n one has
∣∣lcp

(
ω[SA(i)..], ω[SA(j)..]

)∣∣ = min
i≤k<j

lcp(k)

Knowing the suffix array, LCP array may be constructed in O(n2) time by
a brute-force method. However, an elegant modification ([KLA+01], see also
[CR03]) allows to compute the longest common prefix for a pair of consequent
suffixes in O(1) amortized time. The key is to compute these values in a particular
order, namely

lcp(rank(1)), lcp(rank(2)), . . . , lcp(rank(n))

The efficiency of this approach relies on the following fact [KLA+01]:

Lemma 2. lcp(rank(i + 1)) ≥ lcp(rank(i)) − 1 for each 1 ≤ i < n such that
rank(i) < n and rank(i + 1) < n.

Hence, when computing the value of lcp(rank(i + 1)) one can safely skip
lcp(rank(i)) − 1 initial letters of ω[i + 1..] and ω[SA(rank(i + 1) + 1)..]. This
easily implies the required linear time bound for the whole computation.

3 Fixed K: Sliding Window

We now proceed by describing the algorithm that solves (LCS) for a fixed value
of K. There are several reasons for considering this case separately. Firstly, this
problem also seems natural and the resulting approach is somewhat simpler.
Secondly, the techniques that we develop for this special case turn out to be
useful for the general problem.

The algorithm works are follows. It first combines the input strings into
string α of length L (see (1)) and invokes the suffix array computation algo-
rithm thus obtaining the suffix array SA for α. It also constructs array lcp in
O(L) time as described in Section 2.
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Refer to Proposition 2 and consider an arbitrary set of essential positions
P = {p1, . . . , pm} that contains positions of at least K distinct types. Replace
these positions with ranks by putting ri := rank(pi) and, thus, forming the
set R = {r1, . . . , rm}. Lemma 1 implies the equality

∣∣lcp
(
α[p1..], . . . , α[pm..]

)∣∣ = min
R−≤j<R+

lcp(j)

where R− := min R and R+ := maxR.
Let us consider a segment Δ ⊆ [1, L] and call it K-good if for i ∈ Δ posi-

tions SA(i) are of at least K distinct essential types. This enables us to restate
Proposition 2 as follows:

Proposition 3. The length of the longest common substring that appears in at
least K input strings is equal to

max
Δ

min
Δ−≤j<Δ+

lcp(j)

where Δ = [Δ−, Δ+] ranges over all K-good segments.

This formula is already an improvement (compared to Proposition 2) since it
only requires to consider a polynomial number of possibilities. Moreover, we
shall indicate how maximum in Proposition 3 can be found in O(L) time.

To this aim, note that if a K-good segment Δ is already considered then any
Δ′ ⊃ Δ cannot give us a bigger value of minimum. For each i one may consider
the segment Δi = [Δ−

i , Δ+
i ] obeying the following properties:

– Δi starts at position i;
– Δi is K-good;
– Δi is the shortest segment obeying the above conditions.

Here index i ranges over [1, L0], where L0 ≤ L is the smallest integer such that
segment [L0 + 1, L] is not K-good.

Note that due to our assumption that sentinels are strictly less than normal
letters, the first N elements of SA correspond to unessential positions occupied
by the sentinels. The algorithm does not need to consider these positions and
only examines segments ΔN+1, . . . , ΔL0 .

Put
w(i) := min

Δ−
i ≤j<Δ+

i

lcp(j) for all N < i ≤ L0.

and consider the sequence:

w(N + 1), w(N + 2), . . . , w(L0) (2)

Once the maximum among (2) is found, the problem is solved. We construct a
pipeline with the first stage computing the sequence of segments

ΔN+1, ΔN+2, . . . , ΔL0

and the second stage calculating the respective minima (2)
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Put Δi = [Δ−
i , Δ+

i ]. The first stage works as follows. It initially sets Δ−
N+1 :=

N + 1 and then advances the right endpoint Δ+
N+1 until getting a K-good seg-

ment. Then, on each subsequent iteration i it puts Δ−
i := i, Δ+

i := Δ+
i−1 and

again advances the right endpoint Δ+
i until Δi becomes K-good. (In case, no

such segment can be extracted, it follows that i > L0, so the end is reached.)

Lemma 3. Δi is the shortest K-good segment starting at i.

Proof. We claim that for any K-good segment [i, j] one has j ≥ Δ+
i−1. Indeed,

suppose towards contradiction that j < Δ+
i−1. Since [i, j] is K-good then so is

[i − 1, j]. The latter, however, contradicts the minimality of Δi−1.

To test in O(1) time if the current candidate forms a K-good segment the al-
gorithm maintains an array of counters c(1), . . . , c(N). For each N < j ≤ L
put t(j) to be the type of position SA(j) in α (recall that all these positions
are essential). For each index i (1 ≤ i ≤ N) the entry c(i) stores the number
of positions j in the current segment such that t(j) = i. Also, the number of
non-zero entries of c (denoted by npos) is maintained.

Initializing c and npos for ΔN+1 is trivial. Then, when the algorithm puts
Δ−

i = Δ−
i−1 + 1 it decrements the entry of c that corresponds to position i − 1

(which has just been removed from the window) and adjusts npos, if necessary.
Similarly, when the current segment is extended to the right, certain entries of
c are increased and npos is adjusted. To see whether the current segment is K-
good one checks if npos ≥ K. This completes the description of the first stage
of the pipeline. Note that it totally takes O(L) time.

The second stage aims to maintain the values (2) dynamically. This is done
by the following (possibly folklore) trick. Consider a queue Q that, at any given
moment i, holds the sequence of keys

lcp(Δ−
i ), lcp(Δ−

i + 1), . . . , lcp(Δ+
i − 1)

Increasing index i the algorithm dequeues value lcp(Δ−
i ) from the head of Q

(to account for the increase of Δ−
i ) and then enqueues some (possibly none)

additional values to the tail of Q (to account for the increase of Δ+
i , if any). The

total number of these queue operations is O(L).
We describe a method for maintaining the minimum of keys in Q under in-

sertions and removals and serving each such request in O(1) amortized time. A
queue Q that holds a sequence (q1, . . . , qm) may be simulated by a pair of stacks
S1 and S2. A generic configuration of these stacks during this simulation is as
follows (here 0 ≤ s ≤ m):

S1 = ( qs, qs−1, . . . , q1 )
S2 = ( qs+1, qs+2, . . . , qm ) (3)

Here stack elements are listed from bottom to top. Initially Q is empty, hence so
are S1 and S2. To enqueue a new key x (which becomes qm+1) to Q one pushes x
onto S2. This takes O(1) time. To dequeue q1 from Q consider two cases. If s > 0
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then S1 is non-empty; pop the top element q1 from S1. Otherwise, one needs
to transfer elements from S2 to S1. This is done by popping elements from S2

one after another and simultaneously pushing them onto S1 (in the same order).
By (3) these operations preserve the order of keys in Q. Once they are complete,
S1 becomes non-empty and the first case applies. To estimate the running time
note that any enqueued element may participate in an S2-to-S1 transfer at most
once. Hence, an amortized bound of O(1) follows.

Our algorithm simulates Q via S1 and S2, as explained above. Each Si is ad-
ditionally augmented to maintain the minimum among the keys it contains. This
is achieved by keeping minima m1, m2 and a pair of auxiliary stacks M1, M2.
When a new key x is pushed to Si the algorithm saves the previous minimum mi

in M i and updates mi by mi := min(mi, x). When an element is popped from Si

the algorithm also pops mi from M i.
Altogether these manipulations with Q, Si, M i, and mi take time that is

proportional to the number of operations applied to Q. The latter is known to
be O(L). Hence, the algorithm computes the sequence of minima (2) and chooses
the maximum (call it M(K)) among these values in O(L) time, as claimed.

Let the above maximum be attained by a segment Δ = [Δ−, Δ+] ⊆ [N +1, L].
Suppose that position SA(Δ−) in string α corresponds to some position j in some
input string αi. Now the desired longest common substring is αi[j..j+M(K)−1].

4 Arbitrary K: Cartesian Tree

Now we go back to the original problem (LCS) and no longer assume that the
value of K is given in advance. Similarly to Section 3, we start by constructing
string α, suffix array SA of α, and the corresponding LCP array.

The cornerstone of the algorithm is a novel postprocessing, which combines
the above information. Firstly, we need to overcome the following technical issue.
Recall from the previous section that t(j) ∈ {1, . . . , N} denotes the type of
position SA(j) in string α (N < j ≤ L). Also, a segment Δ is called K-good
if t(j) gives at least K distinct values while j ranges over Δ. According to
Proposition 3 to estimate the length of the common substring corresponding to
segment Δ one needs to compute minj lcp(j) where j ranges over Δ without its
right endpoint.

To simplify the matters we construct a new pair of arrays lcp′ and t′ (whose
elements are numbered starting from 1) by intermixing elements of lcp and t
with artificial values as follows:

lcp′ := ( ∞, lcp(N + 1), ∞, lcp(N + 2), . . . , lcp(L − 1), ∞ )
t′ := ( t(N + 1), 0, t(N + 2), 0, . . . , 0, t(L) )

Now for arrays lcp′ and t′ it is clear that the same segment Δ should be used
both for calculating the number of distinct non-zero values among t′(j), j ∈ Δ
and the respective minima min (lcp′(j) : j ∈ Δ).

We remind the reader the notion of Cartesian trees (see, e.g., [BFC00]). Let
A = (a1, . . . , an) be an arbitrary (possibly empty) sequence of items, and let
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each ai be assigned a real number key(ai). We associate a tree CT (A) with A
by the following rules:

– if n = 0 then CT (A) is the null tree (having no nodes);
– if n > 0 then let ai denote an item in A with the smallest key key(ai)

(the choice of i may not be unique); now CT (A) is constructed by taking
ai as its root, recursively constructing trees CTL := CT (a1, . . . , ai−1) and
CTR := CT (ai+1, . . . , an), and attaching CTL to ai as its left child and CTR

as its right child.

Proposition 4. Consider a pair 1 ≤ i ≤ j ≤ n and let lca(ai, aj) denote the
least common ancestor of nodes ai and aj in CT (A). Then

min
i≤k≤j

key(ak) = key(lca(ai, aj)).

Let L′ denote the length of lcp′ and t′. We construct a Cartesian tree CT taking
positions i ∈ {1, . . . , L′} as nodes and using values lcp′(i) as keys. For a node v
in CT let CTv denote the subtree rooted at v and z(v) — the number of distinct
non-zero values of t′(u) for u ∈ CTv.

The next reformulation of (LCS) is an immediate consequence of Proposi-
tion 4:

Proposition 5. The length of the longest common substring that appears in at
least K input strings is equal to maxv lcp′(v), where v ranges over all nodes
of CT such that z(v) ≥ K.

This provides us with the following two problems: how to construct CT from
lcp′ values and how to compute z values. The first task is easily solvable in O(L)
time (see, e.g., [BFC00]); we shall describe this method below.

The second task is more involved. Instead of working directly with values of z
consider an integer-valued function ζ on the nodes of CT such that

z(v) =
∑

u∈CTv

ζ(u).

Clearly, ζ is uniquely determined by z and vice versa. We construct ζ and
CT incrementally by scanning arrays lcp′ and t′ and adding, at the i-th step
(1 ≤ i ≤ L′), node i with key lcp′(i) and type t′(i).

The algorithm maintains a stack S = (S(1), . . . , S(m)) that holds nodes of
CT contained on the rightmost path (that is, the path formed by walking from
the root of CT and taking the right child on each step until reaching a null
reference). Here m is the length of the rightmost path, S(1) is the root of CT
(the bottom of the stack), and S(m) is the last node on the rightmost path (the
top of the stack).

Adding the first node 1 to CT is straightforward. Suppose that nodes 1, . . . , i
are already added to CT and the corresponding values of ζ are computed. To
insert node i + 1 into CT the algorithm iteratively pops a sequence of nodes
S(m), S(m − 1), . . . , S(l) from the stack as long as the last popped node S(l)
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a
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d

α

β
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δ

S

S = (a, b, c, d) l = 3

a

b

c

d

w
α

β

γ

δ

S

S = (a, b, w)

Fig. 2. Inserting a new node w into a Cartesian tree. Here key(a) ≤ key(b) < key(w) ≤
key(c) ≤ key(d).

obeys lcp′(S(l)) ≥ lcp′(i + 1). In particular, if lcp′(S(m)) < lcp′(i + 1) then
l := m + 1 and no nodes are popped. Tree CT is adjusted as follows (see Fig. 2
for an example):

– the right child of i + 1 is set to null;
– the left child of i + 1 is set to S(l) if l ≤ m or to null if l > m;
– node i + 1 is added to the end of the rightmost path.

The total time that is necessary to perform these operations for node i + 1 is
O(2 + Δm), where Δm denotes the decrease of m. By amortization, this easily
yields a linear time bound for the total process.

Now we need to explain how the values of ζ are changed by the insertion. If
t′(i + 1) = 0 then it suffices to put ζ(i + 1) := 0. Otherwise, let t′(i + 1) �= 0.
Clearly, we may only need to change values ζ(S(1)), . . . , ζ(S(l − 1)) (if any) and
to initialize ζ(i+1); other values of ζ correspond to subtrees of CT that are not
affected by the insertion.

At any given moment we assign ranks to the nodes of CT by the following
rule: for each 1 ≤ i ≤ m node S(i) and all nodes in its left subtree are of rank i.
For each possible type j ∈ {1, . . . , N} let max-rank(j) denote the maximum
rank of a node in CT having type j. In case no node of type j exists, we put
max-rank(j) := −∞.

Two cases are possible. Firstly, suppose l′ := max-rank(t′(i + 1)) ≥ l. This
means that prior to insertion of node i + 1 the first node of type t′(i + 1) (with
regard to the in-order traversal) was occurring in CTS(l). Then, the step is com-
pleted by putting ζ(i + 1) := 0.
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Secondly, let l′ < l (in particular, this case applies when l′ = −∞). The
algorithm assigns ζ(i+1) := 1 and decreases the value ζ(S(l′)) by 1 (if l′ > −∞).

It is easy to see that these changes are correct and produce the required values
of ζ. However, it remains to explain how the max-rank values are computed.
To this aim, we need a data structure for maintaining an array max-rank =
(max-rank(1), . . . , max-rank(N)) of these values. In addition to the standard
read and write requests, this array should also be capable of performing trimming
as follows: given a value l put

max-rank(j) := min(max-rank(j), l) for all 1 ≤ j ≤ N.

This operation is invoked to adjust the maximum ranks each time node S(l) is
turned into a left child of node i + 1.

A possible implementation is based on keeping, for each index 1 ≤ j ≤ N , an
integer timestamp last-write(j) that keeps the moment of time when this entry
was last updated. Also, instead of performing it directly, the algorithm maintains
the timestamp last-trim of the latest trimming operation (together with the
corresponding trimming parameter l). Now to get the actual value max-rank(j)
one compares last-write(j) with last-trim to see if trimming applies to the
currently stored value. With this implementation, each read access, write access
or trimming takes O(1) time.

Therefore, we can construct CT and compute the values of ζ in linear time.
Then, the values of z are computed from ζ in a bottom-up fashion. Simultane-
ously, for each possible value of z(i) we accumulate the largest value of lcp′(i)
and construct the array

max-lcp′(k) := max
(
lcp′(i) : z(i) = k

)
for all 2 ≤ k ≤ N.

The length of the longest common substring corresponding to a certain value
of K is

M(K) := max
(
max-lcp′(k) : k ≥ K

)
for all 2 ≤ K ≤ N. (4)

Hence, all values M(2), . . . , M(N) may be computed by an obvious recurrence.
The longest substrings themselves may also be easily extracted. For each node

v of CT enumerate the nodes in CTv via an in-order traversal and put u− (resp.
v+) to be the first (resp. the last) node in CTv such that t′(v−) �= 0 (resp.
t′(v+) �= 0). Clearly, computing all nodes v+ and v− takes linear time.

Now consider a fixed value of K. Let the maximum in (4) be attained by
some k ≥ K. Next, let v denote a node in CT such that z(v) = k. Nodes
v− and v+ give rise to a k-good segment Δ = [Δ−, Δ+] ⊆ [N + 1, L] obeying
the equality min (lcp(j) : Δ− ≤ j < Δ+) = M(K). The corresponding longest
common substring is constructed from Δ in the same way as in Section 3.
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