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Preface

The Third International Computer Science Symposium in Russia (CSR-2008)
was held during June 7–12, 2008 in Moscow, Russia, hosted by Dorodnicyn
Computing Centre of Russian Academy of Sciences, Institute for System Pro-
gramming of Russian Academy of Sciences, Moscow State University, Moscow
Institute of Open Education, and Institute of New Technologies. It was the third
event in the series of regular international meetings following CSR-2006 in St.
Petersburg and CSR-2007 in Ekaterinburg.

The symposium was composed of two tracks: Theory and Applications/Tech-
nology. The opening lecture was given by Avi Wigderson and eight other invited
plenary lectures were given by Eric Allender, Zurab Khasidashvili, Leonid Levin,
Pavel Pudlák, Florin Spanachi, Limsoon Wong, Yuri Zhuravlev and Konstantin
Rudakov, and Uri Zwick.

This volume contains the accepted papers of both tracks and also some of
the abstracts of the invited speakers. The scope of the proposed topics for the
symposium was quite broad and covered basically all areas of computer science
and its applications. We received 103 papers in total. The Program Committee
of the Theory Track selected 27 papers out of 62 submissions. The Program
Committee of the Applications/Technology Track selected 6 papers out of 41
submissions.

Yandex provided Best Paper Awards; the recepients of these awards were
selected by the Program Committee:
– Marius Zimand, “Two Sources Are Better Than One for Increasing the Kol-

mogorov Complexity of Infinite Sequences” — Best Paper Award for the
Theory Track

– Laura Kovács, “Invariant Generation for P-solvable Loops with Assignments”
— Best Paper Award for the Application/Technology Track

– Vladimir Podolskii, “A Uniform Lower Bound on Weights of Perceptrons”
— Best Student Paper Award

The symposium featured two special sessions, “Andrei Muchnik. In Memo-
riam” and “Teaching Computer Science,” and one pre-conference workshop
ACC 2008 (Russian-Indian Workshop on Algebra, Combinatorics and Complex-
ity) organized by Meena Mahajan and Mikhail Volkov.

The reviewing process was organized using the EasyChair conference system,
thanks to Andrei Voronkov.

We are grateful to our sponsors:
– Russian Foundation for Basic Research
– NIX Computer Company (hardware and software selling, system

integration)
– Institute of New Technologies (INT, Russian leader of ICT in school

education)
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– Yandex (the largest Russian Internet portal providing key Web services)
– Microsoft Russia

We also thank a group of young Moscow computer scientists, headed by Yuri
Pritykin, who significantly helped with local organizational issues.

March 2008 Edward A. Hirsch
Alexander Razborov

Alexei Semenov
Anatol Slissenko
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Randomness – A Computational Complexity

Perspective

Avi Wigderson

Institute for Advanced Study,
School of Mathematics,

1 Einstein Drive, Princeton, NJ 08540, USA

Abstract. Man has grappled with the meaning and utility of random-
ness for centuries. Research in the Theory of Computation in the last
thirty years has enriched this study considerably. This lecture will de-
scribe two main aspects of this research on randomness, demonstrating
its power and weakness respectively.

Randomness is paramount to computational efficiency: The use
of randomness seems to dramatically enhance computation (and do other
wonders) for a variety of problems and settings. In particular, examples
will be given of probabilistic algorithms (with tiny error) for natural
tasks in different areas, which are exponentially faster than their (best
known) deterministic counterparts.

Computational efficiency is paramount to understanding ran-
domness: We will explain the computationally-motivated definition of
“pseudorandom” distributions, namely ones which cannot be distin-
guished from the uniform distribution by any efficient procedure from a
given class. Using this definition, we show how such pseudorandomness
may be generated deterministically, from (appropriate) computationally
difficult problems. Consequently, randomness is probably not as powerful
as it seems above.

We conclude with the power of randomness in other computational
settings, such as space complexity and probabilistic proof systems. In
particular we’ll discuss the remarkable properties of Zero-Knowledge
proofs and of Probabilistically Checkable proofs.

The bibliography contains several useful books and surveys in which
material pertaining to the computational randomness may be found. In
particular, we include surveys on topics not covered in the lecture, includ-
ing extractors (designed to purify weak random sources) and expander
graphs (perhaps the most useful “pseudorandom” object).

Keywords: randomness, complexity, pseudorandom, derandomnization.

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 1–2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Cracks in the Defenses: Scouting Out Approaches on
Circuit Lower Bounds

Eric Allender

Department of Computer Science, Rutgers University, Piscataway, NJ 08855
allender@cs.rutgers.edu

Abstract. Razborov and Rudich identified an imposing barrier that stands in the
way of progress toward the goal of proving superpolynomial lower bounds on
circuit size. Their work on “natural proofs” applies to a large class of arguments
that have been used in complexity theory, and shows that no such argument can
prove that a problem requires circuits of superpolynomial size, even for some
very restricted classes of circuits (under reasonable cryptographic assumptions).

This barrier is so daunting, that some researchers have decided to focus their
attentions elsewhere. Yet the goal of proving circuit lower bounds is of such im-
portance, that some in the community have proposed concrete strategies for sur-
mounting the obstacle. This lecture will discuss some of these strategies, and will
dwell at length on a recent approach proposed by Michal Koucký and the author.

1 Introduction and Ancient History

More than a decade ago, the author wrote a survey of results in circuit complexity [7].
That survey is still depressingly up-to-date. Despite some interesting recent progress
on circuit lower bounds (see, for example [16,22,40,21,17]), it is fairly accurate to say
that only modest progress has been made in the field of circuit lower bounds since the
dramatic results of the 1980s [5,20,42,25,34,41].

Already in the mid-1990s, Razborov and Rudich identified a reason that explained
this lack of progress [33]. They examined the known lower bound arguments showing
that some function f is not computed by a class C of circuits, and showed that such
arguments all implied the existence of a combinatorial property Q such that

– Q is large: That is, most of the Boolean functions f on n input variables have
property Q.

– Q is constructive: That is, given a truth-table of size N = 2n representing a
Boolean function t on n input variables, determining whether t has property Q
takes time only polynomial in N . (The main conclusions of [33] carry over un-
changed if this is weakened to time N logO(1) N .)

– Q is useful for proving that f is not computed by circuits in C, in the sense that f
has property Q, but no function computed by circuits in the class C has property Q.

Razborov and Rudich call any such argument a natural proof.
Razborov and Rudich showed in [33] that if there is a secure pseudorandom function

generator computable in the class C, then there can be no natural proof showing that f

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 3–10, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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is not in C. Since Naor and Reingold [31] show that there are pseudorandom function
generators computable in TC0 (assuming that factoring Blum integers requires circuits
of size 2nε

for some ε > 0) this means that, in the likely case that factoring Blum
integers is hard, no natural proof can show that any function lies outside of TC0.

2 Tried and True Techniques

Of course, we do know that there are some problems that lie outside of TC0. Indeed,
the only arguments currently known showing that certain functions do not lie in TC0

make use of diagonalization, which was already identified by Razborov and Rudich as
a “non-natural” proof technique. Usually diagonalization applies only to uniform com-
plexity classes (such as the arguments of [8,15] showing that dlogtime-uniform TC0 is
properly contained in C=P and PP). However, even non-uniform classes such as P/poly
can be separated from large enough classes by means of diagonalization. Diagonaliza-
tion combined with “arithmetization1” yields the best-known result along these lines:
the result of Buhrman, Fortnow and Thierauf [14] that MAEXP is not contained in
P/poly (and hence is also not contained in (non-uniform) TC0). Is there hope that these
techniques might lead to better lower bounds for TC0?

Perhaps there is hope – but it is tempered by the recognition that diagonalization
and arithmetization also have severe limitations when it comes to proving circuit lower
bounds. Diagonalization is the canonical example of a “relativizing” proof technique,
and even when when combined with arithmetization techniques the known separation
results “algebrize” (using the terminology introduced by Aaronson and Wigderson [1]).
Aaronson and Wigderson show that algebrizing proof techniques are not strong enough
to prove that NEXP is not in P/poly (so that the lower bound of [14] mentioned above
is close to the best that can be obtained using these techniques).

It is true that this does not directly address the question of using diagonalization and
arithmetization to prove lower bounds for “small” subclasses of P/poly (such as TC0),
and indeed it is debatable whether it is even relevant to talk about “relativized” or “alge-
brized” subclasses of P. This issue has been discussed in several papers [10,19,24,23];
see also Section 9 of [1]. Thus there is (as yet) no strong argument why diagonalization
and arithmetization cannot prove separations from TC0 – but there is also scant reason
for optimism that this will be a promising avenue of attack. After all, there is no evi-
dence that these techniques can provide alternative proofs of known separations (such
as the result that PARITY is not in AC0 [5,20,42,25]).

We are left to wonder what other approaches have been proposed, for obtaining cir-
cuit lower bounds.

3 The Mulmuley-Sohoni Approach

TC0 is a class defined by Boolean circuits, but it also has appealing characterizations
in terms of arithmetic circuits [2]. Specifically, TC0 is the class of Boolean functions
that can be represented as the sign of a function {0, 1}n → Z that is computed by

1 For more information on what terms such as “arithmetization mean, consult [1].
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polynomial-size constant-depth unbounded-fan-in arithmetic circuits with + and ×
gates, and constants from {0, 1, −1}. This class of arithmetic circuits (arithmetic AC0

circuits) has enough restrictions so that existing lower bound techniques suffice to show
that several functions cannot be computed by such circuits [2,9] (although they do not
suffice to say much about what can be represented as the sign of such functions.) The
natural proofs framework of Razborov and Rudich is not known to extend in a direct
way to arithmetic circuits. Might this not offer an avenue of attack?

As it turns out, there is a fairly sophisticated plan of attack that is based on (a some-
what different model of) arithmetic circuits. Mulmuley and Sohoni proposed a program
for using the techniques of algebraic geometry in order to prove lower bounds on the
size of arithmetic formulae computing the permanent (and eventually for addressing
the P vs NP question) [30]. The question of whether their approach might circumvent
the natural proofs barrier was discussed briefly by Mulmuley and Sohoni [30] and sub-
sequently was discussed at more length by Regan [37]. Regan reaches the conclusion
that the approach proposed by Mulmuley and Sohoni holds the promise of being an
“un-natural” proof technique, by violating the requirement of constructivity. That is, it
seems that the proof might give rise to a useful and large combinatorial property Q with
the property that, given a truth table t determining if the function represented by t has
property Q might be very complex.

3.1 Other Nonconstructive Approaches

The call for lower bound arguments that violate the “constructivity” requirement of
Razborov and Rudich is echoed in the current draft of the textbook by Arora and Barak
[12]. Arora and Barak describe how improved circuit lower bounds could conceivably
be based on the combinatorial property Q consisting of those functions that have high
discrepancy. They observe that computing the discrepancy, given the truth table of a
function, is hard for coNP, and thus this is a good candidate for violating the “construc-
tivity” condition. It also might suggest that this is too complicated a notion to hope to
analyze usefully in the context of a lower bound proof – but Arora and Barak go on to
give examples of elegant and understandable proofs in the literature that rely on com-
puting values that are NP-hard to compute in general, but which yield to analysis in
such a way that does not yield an efficient algorithm. Quoting from Arora and Barak:

This suggests we should not blindly trust the intuition
that “nonconstructive ≡ difficult.”

4 Lower Bounds Via Derandomization

Let us turn again to the topic of arithmetic circuits. The Identity Testing problem is to
determine, given an arithmetic circuit C, if the polynomial represented by the circuit
is the identically zero polynomial. It is well known that this problem has an efficient
probabilistic algorithm (see, e.g., [27,18,39,43]), and thus it is a tempting target for
those seeking to derandomize probabilistic algorithms. Note that there have been some
very impressive successes in the last decade in the campaign to transform probabilistic
algorithms to efficient deterministic algorithms [3,38].
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Unfortunately, anyone seeking to derandomize the Identity Testing problem will
need to contend with the results of Kabanets and Impagliazzo [29], who showed that
Identity Testing is in P only if one of the following two conditions hold:

– NEXP �⊆ P/poly
– The Permanent does not have arithmetic circuits of polynomial size.

Conversely, sufficiently strong circuit lower bounds imply that Identity Testing can
be derandomized. Thus derandomizing the Identity Testing problem is in some sense
equivalent to proving circuit lower bounds.

There are two ways to view this state of affairs. The pessimist might conclude that
derandomizing Identity Testing is hopeless. The optimist might conclude that this is
exactly the problem to work on, in order to prove circuit lower bounds. (The optimist
might take additional inspiration from the observation that it suffices to deal with arith-
metic circuits that have no input variables; simply evaluating an arithmetic circuit to
determine if it evaluates to zero is already as hard as the general problem [6].)

In fact, Agrawal has proposed a multi-step program to separate P from NP that pro-
ceeds by building progressively better pseudorandom generators, with the goal of prov-
ing lower bounds via derandomization [4]. Agrawal does cite the work of Razborov and
Rudich, but he does not explicitly state how his program would circumvent the obsta-
cle of Natural Proofs. I would characterize his approach to Natural Proofs as saying,
in essence: “First, let’s prove the lower bound, and afterward we can figure out why
Natural Proofs posed no obstacle.”

This is a reasonable stance to take, because, in Agrawal’s own words, “In the se-
quence of steps proposed to prove arithmetic and Boolean circuit lower bounds, perhaps
the most important one is step 1” – and step 1 in Agrawal’s program does not seem to
involve proving anything that Razborov and Rudich say should be hard to prove.

Step 1 in Agrawal’s program involves improving the Nisan-Wigderson pseudoran-
dom generator for probabilistic AC0 circuits [32]. The Nisan-Wigderson generator
shows that any problem solvable by probabilistic AC0 circuits can be solved in time
2logO(1) n. Agrawal proposes improving the parameters, in a way that would yield a
polynomial-time algorithm. As he observes, such a construction would also show that
there is a problem in DTIME(2O(n)) that requires AC0 circuits of size 2εn for some
ε > 0. This would be a significant advance beyond what is currently known; it is not
even known if there is any problem in DTIME(2O(n)) that requires depth three circuits
of this size. Perhaps there are significant barriers that prevent us from proving such
lower bounds – but there seems to be nothing in the Natural Proofs framework that
explains why this should be difficult.

5 Amplifying Modest Lower Bounds

This section describes work performed jointly by Michal Koucký and the author [11].
The work of Razborov and Rudich highlights a significant obstacle to proving super-

polynomial lower bounds – but there is nothing in their framework that prevents “nat-
ural” proofs of quadratic or cubic lower bounds. Indeed, there are examples of proofs
of this sort. Håstad showed that a certain function requires formulae of size nearly n3
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[26], and it is known that certain problems in P require branching programs of size
nearly n log log n [13]. Impagliazzo, Paturi, and Saks showed that any depth d TC0

circuit for PARITY must have n1+Ω(1/(2.5)d) wires [28].
Thus we know of no reason why a natural proof cannot show that, say, the Boolean

Formula Evaluation problem (a standard complete problem for NC1) requires TC0 cir-
cuits of size n1.01.

It turns out that this would have significant consequences. It is shown in [11] that, if
NC1 = TC0, then for every ε > 0, the Boolean Formula Evaluation problem has TC0

circuits of size n1+ε. That is, proving even a size lower bound of n1.01 would separate
TC0 from NC1.

The reason for this “amplification” effect is that many of the well-studied problems
in NC1 (such as the Boolean Formula Evaluation problem) have a very strong self-
reducibility property. Namely, there are very efficient reductions that reduce the prob-
lem for instances of length n to instances of length nε.

How does this relate to the Natural Proofs framework? Consider the combinatorial
property Q consisting of all truth-tables of n-variate Boolean functions that are not
computed by threshold circuits of depth log∗ n and size n1.01. This property certainly
satisfies the largeness criterion. It is also easy to see that, given a truth table of size N =
2n, it can be determined in time NO log.01 N whether property Q holds. Thus, although
this does not seem to be recognizable in polynomial time, it certainly is recognizable
in quasipolynomial time, and thus is “constructive” enough to qualify as “natural” in
most of the theorems presented by Razborov and Rudich. Thus we have an example
of a large and constructive combinatorial property that is useful against TC0 circuits
of size n1.01. Yet we know of no way to conclude from this (using the machinery of
[33] or using any other argumentation) that factoring Blum integers is computable by
circuits of size 2no(1)

– although this would be the case if we had a large constructive
combinatorial property Q′ that is useful not only against TC0 circuits of size n1.01 but
against TC0 circuits of polynomial size.

Of course, we don’t know that the Boolean Formula Evaluation problem satisfies
this property Q. But we do know that it satisfies the strong self-reducibility property
mentioned earlier, which in turn implies that it satisfies property Q only if it does not
lie in TC0. However, only a tiny fraction of all functions on n variables satisfy this
self-reducibility property. Thus if one were able to establish that the Boolean Formula
Evaluation problem satisfies property Q, we see no obvious way that this would give
rise to a “large” combinatorial property useful against TC0, and thus this could provide
a way to perform an end-run around the Natural Proofs barrier.

Although this provides a rough plan of attack for separating NC1 from TC0, it is
interesting (or frustrating) to note that it does not provide a similar plan of attack for
separating TC0 from NP or NEXP. That is, if SAT is in TC0, we do not know how to
conclude that SAT has TC0 circuits of size n1.01; indeed, we do not know how to find
any fixed k such that SAT has TC0 circuits of size nk, assuming only that NP = TC0.

5.1 Other Evidence That Lower Bounds Are Hard

There is more than one way to explain our inability to prove lower bounds in circuit
complexity. Razborov [36] has shown, under cryptographic assumptions, that certain



8 E. Allender

circuit lower bounds are independent of certain theories of bounded arithmetic. (He
also argues in [35] that these same theories capture the types of reasoning that have
been used in lower bound arguments thus far.) It would be interesting to determine if
these same logics are unable to prove that the Boolean Formula Evaluation problem
requires TC0 circuits of size n1.00001, under similar cryptographic assumptions.
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On Formal Equivalence Verification of Hardware

Zurab Khasidashvili

Formal Technology and Logic Group
Intel Corporation, Haifa, Israel

When modeling the logic functionality, hardware can be viewed as a Finite
State Machine (FSM) [7]. The power-up state of hardware cannot be determined
uniquely, therefore the FSM modeling the hardware does not have an initial state
(or a set of initial states). Instead, it has a set of legal operation states, and it
must be brought into this set of operation states from any power-up state by a
reboot sequence.

Hardware is specified with a Hardware Description Language. In contempo-
rary design, the specification model description is very close to its logic descrip-
tion. On the other hand, hardware is manufactured based on an implementation
model originated from a transistor-level description. To make sure that the spec-
ification model has the intended logic functionality, assertions are written for
the specification model in a temporal logic language, such as Linear Temporal
Logic [1]. For the correct operation of hardware it is therefore necessary to

– Make sure that the reboot sequence brings the specification and implemen-
tation models into the intended set of operation states ;

– Make sure that the specification model satisfies the temporal assertions, in
the operation states;

– Make sure that the specification and implementation models are equivalent,
in the operation states.

Several concepts of hardware equivalence have been proposed in the literature.
They can be divided into two categories:

1. combinational equivalence, whose application is limited to comparing FSMs
that have the same amount of state elements. The corresponding state el-
ements in the two combinatoionally equivalent FSMs must have the same
next-state functions. Thus, for combinational equivalence verification, propo-
sitional satisfiability checking is enough;

2. sequential equivalence, where FSMs with or without a set of given initial
states can be compared using model checking techniques [1]. Sequential equiv-
alence concepts include several forms of replaceability equivalence, 3-valued
equivalence, steady-state equivalence, alignability equivalence, and post-reboot
equivalence [7,2,9,4,6].

In this talk, we discuss recent advances in sequential equivalence verification
of hardware. We will focus on post-reboot equivalence, since it preserves the
validity of temporal properties between equivalent FSMs. In particular, we will

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 11–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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discuss compositional methods for proving post-reboot equivalence in a divide-
and-conquer fashion [2,5,6,8]. Further, we will briefly describe the underlying
algorithms and model-checking techniques used in Intel’s equivalence verifica-
tion tool [3]. Finally, we will present some experimental data on equivalence
verification of Intel designs.
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Twelve Problems in Proof Complexity

Pavel Pudlák�

Mathematical Institute, Prague

1 Introduction

Proof complexity is a research area that studies the concept of complexity from
the point of view of logic. Although it is very much connected with computational
complexity, the goals are different. In proof complexity we are studying the
question how difficult is to prove a theorem? There are various ways how one
can measure the “complexity” of a theorem. We may ask what is the length of
the shortest proof of the theorem in a given formal system. Thus the complexity
is the size of proofs. This corresponds to questions in computational complexity
about the size of circuits, the number of steps of Turing machines etc. needed to
compute a given function. But we may also ask how strong theory is needed to
prove the theorem. This also has a counterpart in computational complexity—
the questions about the smallest complexity class to which a given set or function
belongs.

Often the best way to find out what is going in some field of research is to
look at open problems. Therefore my aim in this paper is to compile a list of
problems in proof complexity that I consider to be important, but which also
seem to be within the reach of our methods. With each problem, I shall define
the necessary concepts and mention some related results.

The paper is intended for researchers in computational complexity who want
to know what is going on in proof complexity and, perhaps, want to try some
open problem there. Essentially all problems have already been stated before,
sometimes in different forms. The reader interested in problems should consult
monographs [6,20], survey articles [11,36] and other lists of problems [11,21].

2 Frege Systems

Most of my problems will be about propositional proof systems. I shall consider
classical propositional logic, but I shall also mention some results about nonclas-
sical propositional calculi. The general definition of a propositional proof system
[12] is based on the following three conditions:

1. soundness;
2. completeness;
3. polynomial time decidability of the relation: D is a proof of proposition φ.

� Supported by grants A1019401 and 1M002162080.
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Since the set of propositional tautologies is coNP-complete, there exists a proof
system P such that every tautology has a proof of polynomial length in P if and
only if NP = coNP. If P has that property, I shall say that P is polynomially
bounded.

Although NP �= coNP is considered to be very likely true, we are not able to
prove that some very basic proof systems are not polynomially bounded. These
proof systems are called Frege systems. They are the well-known systems used in
most textbooks and, in fact, fairly close to natural reasoning of mathematicians.
A Frege system P is based on a finite number of axiom schemas and deduction
rules. A proof in P is a string of propositions which are either instances of the
axiom schemas or follow from previous ones by deduction rules.

There are two basic measures of complexity of Frege proofs. First, we may
count the number of propositions in the proof; second, we may count the total
length of an encoding of the proof as a binary string. This determines two mea-
sures of proof complexity of a tautology—the least number of steps in a proof
and the length of the shortest proof. It has been shown that for every two Frege
systems the the numbers of steps differ by at most a polynomial; the same holds
for the length, [12]. In fact, when both systems use the same language (the same
basis of connectives), then the lengths, resp. the numbers of steps, differ by at
most a linear factor and the proof is trivial.

Problem 1. Prove a superpolynomial lower bound on the length of proofs for a
Frege system (or prove that it is polynomially bounded).1

Essentially the only lower bound on the lengths of proofs in a Frege system is
based on the simple observation that in a proof of an irreducible tautology τ 2

all subformulas must occur. Thus if the depth of τ is n the size of every proof
of τ is Ω(n2). No lower bounds are known for the number of steps!

This is the most difficult of all problems I am going to state in this paper. As
a matter of fact, I doubt that it is within the reach of the current methods, but it
is worth mentioning it, before talking about its weaker versions and other related
problems. The number of steps in a proof is always at most its length. It seems
possible that there are tautologies with proofs that have only polynomial number
of steps while they have only proofs of exponential length. So the problem to
prove superpolynomial lower bounds on the number of steps for Frege proofs is
even harder.

One possible weakening is to prove superpolynomial lower bounds using some
complexity-theoretical assumptions. Of course, the assumptions must not imply
NP �= coNP, as that assumption implies that there is no polynomially bounded
propositional proof system.

Problem 2. Prove a superpolynomial lower bound on the length of proofs for a
Frege system using a conjecture that does not imply NP �= coNP.

1 I put the alternative into parenthesis, because I believe it is very unlikely. In the rest
of the paper I shall omit such alternatives.

2 This means that all subformulas of τ are essential for τ being a tautology.



Twelve Problems in Proof Complexity 15

One natural place to look for such conjectures is in theoretical cryptography.
Several conjectures in that field are stronger than P �= NP but they are not
known to imply NP �= coNP. Solving this problem requires finding some com-
putational consequences of the existence of short Frege proofs. I shall say more
about it in the next section.

The difficulty of proving lower bounds for Frege proofs is caused not only by
the lack of suitable methods, but also by the lack of suitable candidates for hard
tautologies. Most of the tautologies based on simple combinatorial principles and
theorems, such as the Pigeon-Hole Principle and the finite Ramsey theorem, have
been shown to have polynomial size proofs. On the opposite end of the spectrum
of various tautologies, there are tautologies that are almost surely hard. These
are tautologies expressing the consistency of strong theories.3 But for this kind
of tautologies our combinatorial methods do not work. The method of diago-
nalization, which is so useful in predicate logic, completely fails in propositional
logic. Therefore we need tautologies that are based on natural and sufficiently
hard combinatorial principles.

A class of candidates for hard tautologies was proposed in [24,2]. Let Fn be
a mapping from binary strings of length n to binary strings of length n + 1.
Then there is a string b of length n + 1 which is not in the range of Fn. If
Fn is computable by a polynomial size circuit, we can define a polynomial size
tautology τFn,b, for every b �∈ Rng(Fn), that expresses this property of b. The
hope is that if F is sufficiently pseudorandom, then τFn,b is hard for every b �∈
Rng(Fn). We know that it does not suffice to assume that Fn be a pseudorandom
generator. In [45] Razborov stated specific properties of F and conjectured that
the tatuologies based on such functions are hard.

Furthermore, the hardness of these formulas, for some proof systems, has been
conjectured for the following specific function T . Let s(x) be a numeric functions
such that s(x) = o(x). Given a number k, interpret binary strings of length 2s(k)

as codes of boolean circuits defining functions of k variables; interpret binary
strings of length 2k as truth tables of boolean functions of k variables. Then T
is the mapping that, given a string c of length 2s(k), maps c onto the truth table
of the function computed by the circuit encoded by c. So, roughly speaking, the
conjecture is that it is hard to prove lower bounds on circuit complexity.

Another specific function was studied in [26].
The connection to Frege proofs is not quite clear to me. In fact, it is conceiv-

able that for suitable sequences of functions {Fn} and strings {bn}, the tautologies
τFn,bn are hard for all proof systems. This conjecture is buttressed by the fact that
for all proof systems for which superpolynomial lower bounds have been obtained,
also superpolynomial lower bounds have been proved for formulas of this type.

The problem of proving lower bounds on the size and the number of steps for
Frege proofs has been studied for nonclassical logics too. Quite recently Pavel
Hrubeš proved exponential lower bounds on the number of steps in propositional
intuitionistic logic and in several modal logics [16,17].

3 For a theory T it is a sequence of tautologies {τn}, where τn expresses that no string
of length n is a proof of contradiction from the axioms of T .
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Hrubeš’s results cover a lot of modal logics, still there are other nonclassical
logics for which no lower bounds on the lengths of proofs are known. One that
I find particularly interesting is orthomodular logic.

Problem 3. Prove lower bounds on proofs in a Frege system for orthomodular
logic.

Orthomodular logic is, roughly speaking, classical logic with distributivity re-
placed by the weaker law of modularity [13]. This is one of the logics studied in
the field of quantum logic, but quantum physics and quantum computation are
not my motivations. The reason why I think this problem should be studied is
its connection to proofs of lower bounds on classical Frege systems. Connections
with structures studied in quantum mechanics were mentioned already in [23].
One can show that if a Frege proof system for orthomodular logic is polynomially
bounded, then so is every Frege proof system for classical logic.4 I am proposing
Problem 3 as a weaker version of the central Problem 1, but it may turn out
that they are equivalent.

The weaker orthologic is also interesting in connection with lower bounds on
classical Frege systems, however notice that it has polynomially bounded proof
systems [15].

3 Feasible Interpolation

Feasible interpolation, a.k.a. effective interpolation, was invented by Jan Kraj́ıček
[19]. It is a way to obtain, from a short proof, some effective computation. In partic-
ular, to obtain a polynomial size circuit computing a function related to a suitable
tautology from its polynomial size proof. This enables one to reduce the problem
of proving lower bounds on the size of proofs to proving lower bounds on the size
of circuits.

Let α(p̄)∨β(q̄) be a tautology where p̄ and q̄ are disjoint sets of propositional
variables. Then either α(p̄), or β(q̄), or both are tautologies. More generally, if
α(r̄, p̄) ∨ β(r̄, q̄) is a tautology, then for every assignment of truth values ā to r̄,
either α(ā, p̄) or β(ā, q̄) or both are tautologies.

Definition 1. A proof system P has the feasible interpolation property, if there
exists a polynomial time algorithm A which outputs either 0 or 1 and such that
given a proof D of α(r̄, p̄) ∨ β(r̄, q̄) and a truth assignment ā,

1. if A outputs 0, then α(ā, p̄) is a tautology;
2. if A outputs 1, then β(ā, q̄) is a tautology.

It should be noted that the feasible interpolation property is also equivalent to the

following property. There exists a polynomial time algorithm which from a proof D of
α(r̄, p̄) ∨ β(r̄, q̄) constructs a circuit C(r̄) such that for every truth assignment ā

1. if C(ā) = 0, then α(ā, p̄) is a tautology;
2. if C(ā) = 1, then β(ā, q̄) is a tautology.

4 Thomas Vetterlein, personal communication.
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A number of propositional proof systems posses this property. The first one
for which this was established was the cut-free sequent calculus, soon after for
the propositional Resolution system and others. This property was also shown
for Frege systems for some nonclassical logics, including intuitionistic logic. For
nonclassical logics, however, one has to modify it a little. For instance, in case
of intuitionistic logic one has to consider tautologies of the form

(r1 ∨ ¬r1) ∧ . . . ∧ (rn ∨ ¬rn) → α(r̄, p̄) ∨ β(r̄, q̄).

For Frege systems for classical logic it has been shown that the property fails,
assuming some likely conjectures, eg., that factoring integers is hard (ie., not
solvable in polynomial time) [29,5].

It is not difficult to prove that the feasible interpolation property is equivalent
to separation of some disjoint NP sets in the following sense (which I state in a
bit informal way).

Proposition 1. A proof system P has the feasible interpolation property if and
only if whenever P proves that two NP sets A and B are disjoint using a se-
quence of polynomial size proofs, then A and B can be separated by a set in
P/poly, (ie., ∃C ∈ P/poly(A ⊆ C ∧ B ∩ C = ∅).

Consequently, if NP∩coNP �⊆ P/poly, then the feasible interpolation property
implies that the proof system is not polynomially bounded. This assumption is
not known to imply NP �= coNP. Thus we get conditional superpolynomial
lower bounds using a condition different from NP �= coNP. In many cases,
however, after proving the feasible interpolation property also unconditional ex-
ponential lower bounds have been proved.

Since this method proved to be extremely useful for proving lower bounds,
my questions concern the possibility of extending it to stronger systems. I shall
state the problems only for Frege systems, but they are meaningful for every
system for which we do not have the feasible interpolation property. The first
problem is about the possibility to replace the separation using sets in P/poly
by separation using more complex sets.

Problem 4. Prove that Frege systems have the feasible interpolation property in
a more general sense, namely, with the separation using sets in P/poly replaced
by separation using sets in a larger complexity class.

As shown in [37], it suffices to determine how difficult is to separate the canonical
pair of NP sets associated with a Frege system. Recall that the canonical pair
of a proof system P is the pair of the following two NP sets [41]:

Prov(P ) := {(φ, 0n) ; φ has a proof of length at most n in P}
NegSat := {(φ, 0n) ; ¬φ is satisfiable}.

(The string 0n only serves for padding the input to make it of length at least n.)
Thus the Problem 4 asks for a nontrivial upper bound on the complexity of sets
that separate the canonical pair of a Frege system. This connection also shows
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an important fact about the problem: we do not not have to consider general
proofs, but only certain very concrete ones. In Frege systems the propositional
translations of the sentence

Prov(F) ∩ NegSat = ∅
have polynomial size proofs, where F denotes some fixed Frege system.5 These
are the proofs that we only need to consider.

Notice that a solution of Problem 4 would also be a solution of Problem 2.
There may be other ways one can generalize feasible interpolation so that it
also holds for Frege systems, the form of which may eventually have little to do
with the original concept of interpolation. Therefore I shall state a version of the
previous problems in a very general form.

Problem 5. Derive any nontrivial computational consequences from the existence
of a small Frege proof.

There is another reason for posing the problem in this way. It is well known that
intuitionistic logic and some other related logics are constructive. This means,
roughly speaking, that one can interpret proofs as algorithms. This mainly con-
cerns predicate logic, but there are results of this kind also for propositional logic
[8]. So the above problem can be paraphrased: Does classical propositional logic
have any constructive properties?

Problems 2,4 and 5 are very much related, one should view them as possible
ways of attacking the central Problem 1.

Since all problems about Frege systems seem to be very hard, one should start
with some special cases. In case of the problems about the feasible interpolation,
one should start with bounded depth Frege systems. Assuming likely conjectures,
they do not have the feasible interpolation property already for small depths
[5]. It would be interesting to find some generalized interpolation for as weak a
system as Res(log), which is a generalization of Resolution, based on disjunctions
(clauses) of conjunctions of logarithmic lengths.

4 The Bounded Arithmetic Hierarchy

I shall start with a topic that at first will seem completely unrelated to pre-
vious problems. For n ≥ 0, T n

2 denotes the theory axiomatized by induction
axioms restricted to Σb

n formulas. The class of Σb
n defines precisely the class of

sets Σp
n of the Polynomial Hierarchy. The Bounded Arithmetic Hierarchy is the

sequence of theories {T n
2 }. Roughly speaking, T n

2 formalizes reasoning that uses
only concepts from the n-th level of the Polynomial Hierarchy. (See [6,20] for
definitions.)

We proved that if the Polynomial Hierarchy is strictly increasing, then so is the
Bounded Arithmetic Hierarchy [27]. Furthermore, we proved that the relativized
5 These sentences are also known as the Reflection Principle for the Frege System, see

[37].
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Bounded Arithmetic Hierarchy is strictly increasing. That results, however, only
show that there are Σb

n+2 sentences that separate T n+1
2 from T n

2 , resp. the same
for the relativized case.6 It is an open problem whether one can prove similar
results for sentences of fixed complexity.

Problem 6. (I) Assuming some reasonable conjecture in computational complex-
ity theory, for some k, prove or disprove that for all n ≥ 0, T n+1

2 proves more
Σb

k sentences than T n
2 .

(II) The same for relativized theories T n
2 [R], without using unproven

assumptions.

The relativized theories T n
2 [R] are extensions of T n

2 obtained by adding a new
predicate R and extending the induction axioms to Σb

n[R]; there are no specific
axioms for R. The predicate R plays a similar role as oracles in relativized
complexity classes and this connection is actually used for separation results.

Recently, most research activities focused on the Σb
1 sentences provable in the-

ories T n
2 . These sentences are related to a very natural concept in computational

complexity theory.

Definition 2. A total NP search problem is determined by a relation R ∈ P
and a polynomial p such that

∀x∃y(|y| ≤ p(|x|) ∧ R(x, y)). (1)

The sentence (1), which expresses that the search problem is total, is a Σb
1

sentence. For T 0
2 , the total search problems corresponding to the provable Σb

1
sentences, are solvable in polynomial time. For T 1

2 the search problems belong
to the well-known class Polynomial Local Search, PLS. Characterizations of
the search problems of higher levels of the Bounded Arithmetic Hierarchy were
obtained quite recently [38,31,46]. I shall describe the simplest characterization,
which is due to Skelley and Thapen [46].

An n-game is an n-ary relation G(x1, . . . , xn). We think of it as played by
two players, A is starting and B playing as the second. The players alternate in
picking xi’s; B wins if G(x1, . . . , xn) holds true, otherwise A wins. The concept
of a winning strategy is well-known. Further, we need the concept of a reduction
of an n-game G to an n-game H . It is a string of functions f1, . . . , fn such that
for every x1, . . . , xn and y1, . . . , yn such that yi = fi(x1, x3, . . . , xi) for i odd,
and xi = f(y2, y4, . . . , yi) for i even, if H(y1, . . . , yn), then G(x1, . . . , xn).

If we have a wining strategy for B in H and a reduction of G to H , then we
obtain a winning strategy for B in G by simply composing the strategy with the
reduction.

The principle GIn says that the following is impossible:

There are games G0, . . . , Ga, a winning strategy α for A in game G0,
reductions ρi of Gi+1 to Gi for i = 0, . . . , a − 1 and a winning strategy
β for B in Ga.

6 More precisely, we should denote these sentences by ∀Σn+2, as we are talking about
the universal closures of Σn+2 sentences.
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Indeed, if we compose β, ρa−1, ρi−2, . . . , ρ0, we obtain a winning strategy for B
in G0 contradicting to the existence of a winning strategy for A in G0.

The total NP search problem associated with GIn is defined using circuits.
The games G0, . . . , Ga are given by a circuit C(z, x1, . . . , xn), where for the
binary string ī representing index i, 0 ≤ i ≤ a, C (̄i, x1, . . . , xn) defines game Gi.
Similarly, the reductions ρi, 0 ≤ i ≤ a, are given by one circuit. Further, we have
a circuit defining strategy α and a circuit defining strategy β. Notice that the
number of games a is, in general, exponential in the size of input.

The task of the search problem is, given the circuits, to find out what is wrong.
Namely, we should find

1. either x1, . . . , xn that show that α is not a winning strategy for A in G0,
2. or i, 0 ≤ i < a, x1, . . . , xn and y1, . . . , yn that show that ρi is not a reduction

of Gi+1 to Gi,
3. or y1, . . . , yn that show that β is not a winning strategy for B in Ga.

This is also the way in which GIn is formalized as a Σb
1 sentence. I shall use the

same notation for the principles, their formalizations and the associated search
problems.

Theorem 1 ([46]). For n ≥ 1, GIn[R] characterizes Σb
1[R] consequences of

T n
2 [R] (hence also GIn characterizes Σb

1 consequences of T n
2 ).

A search problem S is polynomially reducible to a search problem S′, if we can
solve S in polynomial time using queries to an oracle that produces solutions
of the queried instances S′. If Σb

1 theorems of T n+1
2 [R] are the same as Σb

1
theorems of T n

2 [R], then for every oracle A, GIA
n+1 is polynomially reducible to

GIA
n (using also the oracle A). In other words, that assumption implies that

GIn+1 is polynomial reducible to GIn and the proof relativizes. This enables us
to reduce the Problem 6 to a purely computational one.

Problem 7. For n = 1, 2, . . ., find an oracle A such that the search problem
GIA

n+1 is not reducible to the search problem GIA
n .

I have stated this problem for a specific characterization, but one can try other
characterizations of Σb

1 theorems of theories T n
2 . This is only a matter of conve-

nience, all these problems are equivalent.
One should not forget about the unrelativized case.

Problem 8. For n = 1, 2, . . ., find a reasonable conjecture in complexity theory
which implies that the search problem GIn+1 is not reducible to the search
problem GIn.

A solution of this problem may be a clue for solving the previous problem.
Specifically, if the conjecture used in a solution to Problem 8 can be proved
when relativized by an oracle, then we get a solution to Problem 7.
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5 Bounded Depth Frege Systems

Bounded depth circuits are an important class of circuits studied in compu-
tational complexity, and exponential lower bounds on the size of such circuits
computing explicitly defined functions have been proved. A related concept has
been studied in proof complexity. A depth d Frege system is a Frege system in
which only formulas of depth d are allowed. As in case of bounded depth cir-
cuits, the depth of Frege proofs is the the maximal number of alternations of
∧, ∨ and ¬ in a formula of the proof (we assume that no other connectives are
used).

Let F denote some Frege systems and Fd its depth d restrictions. Following
the brake-through superpolynomial lower bound of Ajtai [1], exponential lower
bounds on bounded depth Frege proof have been proved [19,28,34]. Specifically,
for every fixed d, the tautology expressing the Pigeon-Hole Principle has only
exponentially long proofs in Fd. Superpolynomial separations of Fd from Fd+1
was proved in [30] using padded Pigeon-Hole tautologies, which are of depth 2.
Also exponential separation of Fd from Fd+1 is known [19], but it uses tautologies
of maximal depth that is possible in these systems.7 The following is still an open
problem.

Problem 9. Does there exist a k such that for every d ≥ k there exists a sequence
of tautologies of depth k that have polynomial size proofs in Fd+1, but which
do not have proofs of size 2(log n)O(1)

in Fd?

We believe that the answer to this problem is positive with k = 2 and with a
lower bound 2nΩ(1)

. But why do we need a lower bound 2(log n)ω(1)
? It is because

such a lower bound would help us solve Problem 7. The statement of Problem 9
does not formally imply the statement of Problem 7. To get such a relationship
we would have to insist that the sequences of tautologies are uniform in a certain
well defined sense. Namely, the tautologies should be propositional translations
of Σb

k sentences. However, it seems unlikely that the use of nonuniform sequences
of families could help.

The candidate tautologies are the translations of the Σb
1 sentences that char-

acterize sentences provable in T d
2 . But even the simplest ones, the GId are fairly

complicated which is the reason why researcher have not studied their propo-
sitional translations. For a few small depths we have simpler candidates. In
particular, the minimal depth in which one can prove the finite Ramsey theorem
is an open problem.

The only general lower bound technique for bounded depth Frege proofs that
we have is based on Switching Lemmas [3]. Formally they look very much like
the classical Switching Lemma of Yao and H̊astad and the proof techniques
are similar, but there are additional technical complications. Every tautology
7 The depth of these tautologies is d + 1, therefore one has to use Fd as a refutation

system, in order to be able to prove such tautologies, or one can formalize Fd as
a sequent system with arbitrary formulas and the cut rule restricted to depth d
formulas.
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requires a lemma of a specific form, thus the more complicated the tautology is,
the more complicated the lemma is. Another problem is that these lemmas do
not have interpretations in finite domains, thus we have to treat them purely
syntactically, or use nonstandard models.

In boolean complexity theory exponential lower bounds have been proved for
a larger class of circuit. A MODn

q gate is a boolean function of n variables, whose
value is 1 if and only if the number of ones in the input string is divisible by q.
Razborov and Smolensky considered bounded depth circuits with ANDs, ORs,
NOTs and gates MODn

p with p prime, and proved exponential lower bounds
on the circuit size of some explicitly defined functions [40,47]. After the method
of random restrictions had been adapted for bounded depth Frege proofs and
exponential lower bounds had been proved, researchers in proof complexity at-
tempted to prove lower bounds on the more general type of bounded depth Frege
system in which MODn

p gates, for p prime, were allowed. But an adaptation of
the approximation method turned out to be much harder, if not impossible. So
the following is still an open problem. Let Fd[p] denote a suitable depth d Frege
system that uses gates AND, OR, NOT and MODp.

Problem 10. Prove superpolynomial lower bounds on Fd[p] proofs for p prime.

I am not considering Fd[q] systems with q composite, although such systems can
be defined, because superpolynomial lower bounds for bounded depth circuits
with MODq, q composite, is a widely open problem, and we expect that the
corresponding problem in proof complexity will be even harder to solve.

I will now explain what is the obstacle to adapting the method of approxima-
tion to Fd[p]. Let us first recall how the lower bounds on bounded depth circuits
with modular gates are proved. The basic idea is to approximate functions com-
puted at the gates of the circuit by low degree polynomials. Then one shows that
the precision of the approximation deteriorates slowly, thus the output function
should be approximated well, assuming the circuit is small. Finally, one proves
that such an approximation does not exist for the given function.

Given an Fd[p] proof, we would like to mimic the above reasoning. So we
would like to associate low degree polynomials with formulas in the proof and
show that the polynomials approximate axioms very well and the precision of
the approximation decreases slowly in the course of the proof. But what does it
mean to approximate a formula in a proof? If we count truth assignments as in
the proof for bounded depth circuits we get nowhere. Each formula in the proof
is a tautology, hence it is trivially approximated by the constant 1 (which is a
zero degree polynomial). According to our experience from the proofs for Fd,
we have to consider “imaginary” truth assignments that falsify the tautology φ
for which we want to prove a lower bound. Such assignments do not exist in
real world (since φ is a tautology), we can only imagine them, or we have to
use nonstandard models. If we use a nonstandard model M, then the imagi-
nary assignments are represented by real objects, but they have to be external
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to M. Then, for a polynomial p, we need to express in M on how many of
these external assignments p vanishes. That is the problem, because there is no
natural way how to count external objects inside of M.

This is the main stumbling block when one tries to translate the approxi-
mation method in a straightforward way. Researchers tried several other ways,
but they only obtained partial results. The Polynomial Calculus was proposed
as the most rudimentary special case of Fd[p] proofs [10]. Exponential lower
bounds have been proved for this system [44] and a reduction to lower bounds
for the Polynomial Calculus extended by certain axioms has been found [7].8

Lower bounds for a system that combines Fd with the Polynomial Calculus
were proved in [22].

6 Integer Linear Programing

The general form of an Integer Linear Programing problem is: for a given set of
inequalities with rational coefficients, find solutions in the domain of integers. If
we want to study the complexity of Integer Linear Programing, we can simplify
it by considering only the decision problem: does the system of inequalities have
an integral solution? It is well-known that this problem is NP-complete.

From the point of view of proof complexity, the most interesting problem is:
how difficult is to prove that a given set of inequalities does not have an integral
solution? Since it is a coNP-complete problem, we believe that proofs in any
proof system must be exponentially large. Since we are not able to prove this
conjecture in general, we would like to prove it at least in some special cases,
ie., for particular proof systems.

Exponential lower bounds have been proved for two systems [35,14]. Further-
more, exponential lower bounds have been obtained for several other systems for
tree-like proofs, see [18], and [4] combined with the recent bounds on multiparty
communication complexity of disjointness [32,9]

I shall describe in more detail one proof system which seems within the reach
of our methods; it is the Lovász-Schrijver system [33]. We want to prove the
unsatisfiability of a system of linear inequalities {Li ≥ 0}m

i=1 by integers. The
initial inequalities are:

1. Li ≥ 0, i = 1, . . . , m;
2. x2

j − xj ≥ 0, for any variable xj used in {Li ≥ 0}m
i=1.

A proof is a sequence of inequalities derived from the initial inequalities by
the rules of the system, ending with the contradictory inequality −1 ≥ 0. The
inequalities in the proof are of degree at most 2. The rules are:

1. we can derive any positive linear combination of established inequalities;
2. from a linear inequality L ≥ 0, we can derive xjL ≥ 0, for any variable xj

used in {Li ≥ 0}m
i=1;

8 More precisely, it is a reduction to an extension of a weaker system called the Null-
stellensatz System.
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3. from a linear inequality L ≥ 0, we can derive (1 − xj)L ≥ 0, for any variable
xj used in {Li ≥ 0}m

i=1.

Exponential lower bounds on tree-like proofs follow from the aforementioned
results, for general proofs (DAG-like), however, it is an open problem.

Problem 11. Prove superpolynomial lower bounds on Lovász-Schrijver proofs.

For the Lovász-Schrijver system the feasible interpolation property has been
proved [35], thus we know that the system is weak. As I have mentioned, in
many cases unconditional lower bounds were found after the feasible interpola-
tion property had been established. These lower bounds are based on monotone
versions of the feasible interpolation property, in which monotonic computational
models are used instead of boolean circuits. For the Lovász-Schrijver proof sys-
tem the following monotonic model is needed. I call it monotone linear programs
for computing boolean functions. Such a program P is given by a set of inequal-
ities of the form:

∑

j

aijzj ≤
∑

k

bikxk + ci

where aij , bi,k, ci ∈ Q are constants, bi,k ≥ 0, and zj , xk are variables. Variables
xk are used for 0–1 inputs. P computes the boolean function f(x̄) that for every
string of zeros and ones d̄ satisfies:

Px̄:=d̄ has a solution, iff f(d̄) = 1.

The solution is for the variables zj and we require zj ≥ 0. Notice that P computes
a monotone boolean function because of the condition bi,k ≥ 0. Without this
condition the model would be as efficient as general boolean circuits.

Solving the following problem positively would be a major step towards prov-
ing superpolynomial lower bounds on Lovász-Schrijver proofs.

Problem 12. Prove a superpolynomial lower bound on the size of a monotone
linear program computing an explicitly defined monotone boolean function.

The problem is important also for computational complexity, since monotone
linear programs are the strongest monotonic computational model that has been
defined.
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20. Krajıček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory.
In: Encyclopedia of Mathematics and its Applications 60, Cambridge Univ. Press,
Cambridge (1995)



26 P. Pudlák
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Abstract. The accumulation of huge amount of biomedical data and
the need to turn such data into useful knowledge lead to many chal-
lenging bioinformatics problems. Many techniques have been developed
for the bioinformatics problems that have emerged, and more are be-
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problems, and show that the techniques for their solutions are essentially
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paradigms (invariants, emerging patterns, guilt by association), some im-
portant applications (active sites, key mutations, origin of species, pro-
tein functions, disease diagnosis), some interesting technologies (sequence
comparison, multiple alignment, machine learning, signal processing, mi-
croarrays), and the economics of bioinformatics.
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Abstract. The Justification Logic is a family of logical systems obtained
from epistemic logics by adding new type of formulas t:F which reads
as t is a justification for F. The major epistemic modal logic S4 has a
well-known Tarski topological interpretation which interprets �F as the
interior of F (a topological equivalent of the ‘knowable part of F ’). In
this paper we extend the Tarski topological interpretation from epistemic
modal logics to justification logics which have both: knowledge assertions
�F and justification assertions t:F . This topological semantics interprets
modality as the interior, terms t represent tests, and a justification asser-
tion t:F represents a part of F which is accessible for test t. We establish
a number of soundness and completeness results with respect to Kripke
topology and the real line topology for S4-based systems of Justification
Logic.

Keywords: Justification Logic, Logic of Proofs, modal logic, topological
semantics, Tarski.

1 Introduction

The Justification Logic is a family of logical systems originated from the Logic
of Proofs LP (cf. [3,5,9,10]). These systems are obtained from epistemic modal
logics by adding new type of formulas t:F which read as

t is a justification for F.

Justification Logic overlaps mathematical logic, epistemology, λ-calculi, etc. The
standard arithmetical provability semantics for LP was given in [3]. The epistemic
Krike-style semantics for LP was offered in [16,17] and later extended to Justifi-
cation Logic systems containing both epistemic modalities for “F is known” and
justification assertions “t is a justification for F” ([9,10]). The major epistemic
modal logic S4 which in the context of the Logic of Proofs may be regarded as a
logic of explicit provability has a well-known Tarski’s topological interpretation.
Such a connection between topology and modal logic proved to be very fruitful
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Foundation.

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 30–39, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Topological Semantics of Justification Logic 31

for both domains. In particular, topology was used in [25] to prove Gödel’s con-
jecture about a fair embedding of Intuitionistic Logic to Modal Logics. On the
other hand, Modal Logic was used to describe the behavior of dynamic systems
in real topology ([14]).

2 Background

The application of modal logic to topology dates back to Kuratowski [21] and
Riesz in [32]. Let

T = 〈X, I〉
be a topological space, where X is a set and I the interior operation. The following
principles hold for all subsets Y and Z of X:

1. I(Y ∩ Z) = IY ∩ IZ;
2. IY = IIY ;
3. IY ⊆ Y ;
4. IX = X.

These principles can be written as propositional modal formulas: Boolean opera-
tions are represented by the corresponding Boolean connectives, and the interior
operator I by the modality �:

1. �(A ∧ B) = �A ∧ �B;
2. �A→��A;
3. �A→A;
4. ��.

These are the well-known postulates of the modal logic S4. This corellation was
noticed in the late 1930s by Tarski, Stone, and Tang. Neither Lewis’ original
motivation of modal logic ([22,23]), nor Gödel’s provability interpretation of S4
([18]) were related to topology.

The Tarski topological interpretation of a propositional modal language
naturally extends the set-theoretical interpretation of classical propositional logic.
Given a topological space T = 〈X, I〉 and a valuation (mapping) ∗ of propositional
letters to subsets of X, we can extend it to all modal formulas as follows:

¬A = X \ A∗;
(A ∧ B)∗ = A∗ ∩ B∗;
(A ∨ B)∗ = A∗ ∪ B∗;

(�A)∗ = IA∗.

(1)

A formula A is called valid in T (notation: T � A) if

A∗ = X

for any valuation ∗. The set

L(T ) := {A | F � A}
is called the modal logic of T .
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The following classical result in this area is due to McKinsey and Tarski:

Theorem. ([24]) Let S be a separable dense-in-itself metric space. Then L(S) =
S4.

In particular, this yields that for each n = 1, 2, 3, . . .,

L(Rn) = S4.

Simplified proofs of this theorem were obtained in [12,26,34].
Kripke semantics can be regarded a special case of topological semantics.

Indeed, given a Kripke frame (W, R), one can construct the topological space
(W, I) where

IU := {x | R(x) ⊆ U},

so that validities in these two entities are the same. Hence, Kripke-completeness
yields the topological completeness.

As we have mentioned above, the Justification Logic grew from the Logic
of Proofs LP. A first incomplete sketch of the Logic of Proofs was made in
Gödel’s lecture of 1938 [19], which was not published until 1995 when the full
Logic of Proofs was rediscovered independently in [2]. The Logic of Proofs LP
([2,3,4,6,15]) introduces the notion of proof polynomials, i.e., terms built from
proof variables and constants by means of three operations:

– application “·”, which given a proof s of an implication F →G and a proof
t of its antecedent F provides a proof s·t of the succedent G;

– sum “+”, which given proofs s and t returns a proof s + t of everything
proven by s or t;

– proof checker “!”, which given a proof t of F verifies it and provides a proof
!t of the fact that t is indeed a proof of F .

LP is the classical logic with additional atoms

p:F

where p is a proof polynomial and F is a formula, with the intended reading

p is a proof of F .

As it was shown in [2,3], LP describes all valid principles of proof operators t:F

t is a proof of F in Peano Arithmetic

in its language. LP is able to realize the whole Gödel’s S4 by recovering proof
polynomials for provability assertions in any S4-derivation (realization theorem);
this result provides a mathematical formalization of the Brouwer-Heyting-
Kolmogorov semantics for intuitionistic logic IPC via well-known Gödel’s trans-
lation of IPC into S4 [2,3,4,6,15]. The papers [1,8,28,29,30,31,33,35] studied joint
logics of proofs and provability in a format that includes both provability asser-
tions �F and proof assertions t:F .
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In [5,8,9,10] this approach has been extended to epistemic logic and applied
for building mathematical models of justification, knowledge and belief. In par-
ticular, [9] introduced and studied the basic epistemic logic with justifications,

S4LP = S4 + LP + (t:F →�F ) .

Epistemic models for Justification Logics has been developed in [5,8,9,10,
16,17,27]. A Fitting model for S4LP is (W, R, A, �), where

– (W, R) is an S4-frame;
– A is an admissible evidence function: for each term t and formula F , A(t, F )

is a subset of W . Informally, A(t, F ) specifies a set of worlds where t is an
admissible evidence for F . An evidence function is assumed to be monotonic:

u ∈ A(t, F ) and uRv yield v ∈ A(t, F )

and has natural closure properties that agree with operations of S4LP;
– � behaves in the standard Kripke style on Boolean connectives and �:

• u � P or u � P is specified for each world u and each propositional
variable P ;

• u � F ∧ G iff u � F and u � G, u � F ∨ G iff u � F or u � G, u � ¬F
iff u¬ � F ;

• u � �F iff v � F for all v such that uRv;
– u � t:F iff u � �F and u ∈ A(t, F ).

In [8,17], S4LP is shown to be sound and complete with respect to this epistemic
semantics.

3 Topological Semantics for Justifications

We start with offering a topological semantics for operation-free single-modality
Justification Logics. It means we will work with the usual language of propo-
sitional modal logic enriched by a new construction t : F where t is a proof
variable and F is a formula.

An interpretation is specified for a topological space T = 〈X, I〉 supplied with
a test function M which maps a term t and a formula F to M(t, F ) ⊆ X.
The informal meaning of M is that M(t, F ) represents a ‘potentially accessible’
region of X associated with F and t.

We assume that an evaluation ∗ works on propositional variables, Boolean
connectives and modality � according to the usual aforementioned Tarski inter-
pretation (1). We will study several natural ways to extend ∗ on formulas t:F
and corresponding subsystems of S4LP. This approach was first discussed in [11].

We build our topological semantics for the Justification Logic language on the
following formal and informal assumptions.

1. Our semantics is based on Tarski’s topological semantics (1), e.g.,

(�F )∗ = I(F ∗).
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2. Justification terms are symbolic representations of tests. We postulate exis-
tence of a test function M which for each t and F specifies a set of points
M(t, F ) which we call

the set of possible outcomes of a test t of a property F.

3. The t:F will return a set of points where a test t confirms F . This reading
will be supported by definitions (for different subsystems of S4LP):

(t:F )∗ = F ∗ ∩ M(t, F ) (2)

or
(t:F )∗ = I(F ∗) ∩ M(t, F ). (3)

In case (2), test t supports F at all points where the possible outcome of t
lies inside F . Case (3) corresponds to the ”robust” understanding of testing:
test t supports F at all points of the possible outcome of t which lie in the
interior of F .

4. We first consider systems without operations on tests.

Now we introduce several systems of Justification Logic and simultaneously
define their topological semantics in format (T , M) where T = 〈X, I〉 is a topo-
logical space and M is a test function.

3.1 Basic Testing System S4B0

The most basic system in our list is

S4B0 = S4 + (t:F →F ).

In this system, there are no any assumptions about tests; they don’t necessarily
produce open sets of outcomes. The topological interpretation of S4B0 combines
Tarski topological interpretation (1) for Booleans and modality � with the in-
terpretation of the justification assertions like in (2), i.e.,

(t:F )∗ = F ∗ ∩ M(t, F ).

3.2 Robust Testing System S4B1

The next system under consideration is

S4B1 = S4 + (t:F →�F ).

In S4B1, test sets are not necessarily open; however, the justification assertions
are interpreted as ”robust inclusion”, i.e., case (3) :

(t:F )∗ = I(F ∗) ∩ M(t, F )
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3.3 Robust Open Testing System S4B2

Finally, we consider

S4B2 = S4 + (t:F →F ) + (t:F →�t:F ).

This system corresponds to the full operation-free version of S4LP. The test sets
are assumed to be open, the justification assertions are interpreted in the robust
sense (3):

(t:F )∗ = I(F ∗) ∩ M(t, F )

3.4 Topological Soundness and Completeness

Theorem 1. All three systems S4B0, S4B1, and S4B2 are sound and complete
with respect to the corresponding classes of topological models.

Proof. The soundness proofs are straightforward. In view of the Tarski topologi-
cal interpretation of S4 ([24]), it suffices to establish validity of non-S4 principles
of S4B0, S4B1, and S4B2 in the corresponding cases.

Principle t:F → F is valid in both (2) and (3) since in each case (t:F )∗ is a
subset of F ∗. Principle t:F →�F is valid in (3) since (t:F )∗ is a subset of (�F )∗,
which is the interior of F ∗. Finally, t:F →�t:F is valid in (3) since the test sets
are open hence (t:F )∗ are all open and coincide with their interiors.

Completeness proofs go via epistemic models which are then converted into
topological spaces with topology induced by the Kripke accessibility relation.

We consider the case of S4B2, the remaining cases are receiving a similar
treatment. Let us first establish the completeness of S4B2 with respect to the
class of Fitting models (W, R, A, �) without operations on justifications.

We follow the standard canonical model construction.

– W is the set of all maximal consistent sets in S4B2. We denote elements of
W as Γ, Δ, etc.;

– ΓRΔ iff Γ � ⊆ Δ, where Γ � = {�F | �F ∈ Γ};
– A(s, F ) = {Γ ∈ W | s:F ∈ Γ};
– Γ � p iff p ∈ Γ .

Let us check that (W, R, A, �) is indeed an S4B2-model. It is immediate from
the definitions that the accessibility relation R is reflexive and transitive. The
admissible evidence function A is monotonic. Indeed, suppose Γ ∈ A(t, F ) and
ΓRΔ. Then t:F ∈ Γ , �t:F ∈ Γ , �t:F ∈ Δ, and t:F ∈ Δ, i.e. Δ ∈ A(t, F ).

Lemma 1 (Truth Lemma). For every formula F , Γ � F iff F ∈ Γ .

Proof. Induction on F . The base case in given in the definition of the canonical
model. The Boolean and modality cases are standard. Let us consider the case
when F is t:G.

Let t : G ∈ Γ and ΓRΔ. Then �t : G ∈ Γ , �t : G ∈ Δ, t : G ∈ Δ (since
�t:G→ t:G), and G ∈ Δ (since t:G→F ). By the Induction Hypothesis, Δ � G.
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Furthermore, by the definition of the admissible evidence function, Γ ∈ A(t, G),
hence Γ � t:G.

If t:G ∈ Γ , then Γ ∈ A(t, G), hence Γ � t:G.

Let us now finish the proof of completeness of S4B2 with respect to S4B2-models.
Suppose S4B2 � F . Then the set {¬F} is consistent, and hence included into
some maximal consistent set Γ . Naturally, F ∈ Γ . By the Truth Lemma, Γ � F .

Now we convert a given countermodel K = (W, R, A, �) for F into an appro-
priate topological space and find an interpretation under which F does not hold.
A Kripke topological space TK associated with K is a topological space with the
carrier W and open sets which are all subsets of W closed upward under R:

Y is open iff for all u ∈ Y , if uRv then v ∈ Y .

To make TK a topological S4B2-model it remains to define a test function

M(t, F ) = A(t, F ).

Given a Fitting model K = (W, R, A, �) for S4B2 we can also define a topological
interpretation ∗ of S4B2-language in TK:

p∗ = {u ∈ W | u � p} for a propositional letter p.

Any interpretation ∗ is extended to all S4B2-formulas in the standard way:

– (A ∨ B)∗ = A∗ ∪ B∗;
– (¬A)∗ = W \ A∗;
– (�A)∗ = I(A∗);
– (t:A)∗ = I(A∗) ∩ M(t, A).

From the definitions it is immediate that t:G→G holds at this model. Note that
due to monotonicity of the admissible evidence function A, for each t and F the
test sets M(t, G) are open in TK. Therefore t:G→�t:G also holds at the model.

Lemma 2 (The Main Lemma)

u � G ⇔ u ∈ G∗

Proof. Induction on G. The base case when G is atomic is covered by the defi-
nition. The Boolean connective case is straightforward.

Let G be �B. Suppose u � �B, then for all v ∈ W such that uRv, v � A as
well. By the Induction Hypothesis, v ∈ B∗ for all v ∈ W such that uRv. This
yields that the whole open cone Ou = {v | uRv} is a subset of B∗. Therefore,
u ∈ I(B∗) = (�B)∗.

Suppose u ∈ (�B)∗ = I(B∗). Since I(B∗) is open, v ∈ I(B∗) hence v ∈ B∗

for all v such that uRv. By the Induction Hypothesis, v � B for all v such that
uRv. Therefore, u � �B.

Let G be t:B. Suppose u � t:B. Then, by definition, u ∈ A(t, B) and v � B
for all v such that uRv. By the definition of a test function, u ∈ M(t, B). By
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the Induction Hypothesis, v ∈ B∗ for all v such that uRv, which means that
u ∈ I(B∗). Hence u ∈ I(B∗) ∩ M(t, B), i.e., u ∈ (t:B)∗.

Suppose u ∈ I(B∗) ∩ M(t, B). Then u ∈ M(t, B) hence u ∈ A(t, B). Further-
more, u ∈ I(B∗). Like in the case G = �B, we conclude that u � �B. Altogether
this yields u � t:B.

To conclude the proof of Theorem 1 consider a Fitting S4B2-model, where u � F .
By the Main Lemma, u ∈ F ∗, hence F is not valid in the topological S4B2-model
TK.

3.5 Completeness with Respect to Real Topology

Theorem 2. S4B0, S4B1, S4B2 are complete with respect to the real topology
R

n.

Proof. We will use the following main lemma from recent refinements of the
Tarski Theorem from [12,26,34] :

Lemma 3. There is an open and continuous map π from (0, 1) onto the Kripke
topological space corresponding to a finite rooted Kripke frame.

Such a map π preserves truth values of modal formulas at the corresponding
points. It suffices now to refine the proof of Theorem 1 to produce a finite rooted
Fitting counter-model for F and to define the test function M′(t, G) on (0, 1) as

M′(t, G) = π−1M(t, G).

The resulted topological model is a (0, 1)-countermodel for F . This construction
yields completeness with respect to the real topology R

n, for each n = 1, 2, 3, ....

4 Future Work

The next natural steps in this direction could be introducing operations on tests.
It also looks promising to introduce tests in systems of topological reasoning
about knowledge [13] and Dynamic Topological Systems [7,20].
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Abstract. We show that partial 2-tree canonization, and hence isomor-
phism testing for partial 2-trees, is in deterministic logspace. Our algo-
rithm involves two steps: (a) We exploit the “tree of cycles” property of
biconnected partial 2-trees to canonize them in logspace. (b) We analyze
Lindell’s tree canonization algorithm and show that canonizing general
partial 2-trees is also in logspace, using the algorithm to canonize bicon-
nected partial 2-trees.

1 Introduction

Computing canonical forms for graphs is a fundamental algorithmic problem.
The problem is closely related to the graph isomorphism problem GI. Let G
be a class of (encodings of) graphs closed under isomorphism. We say that f
computes a complete invariant for G, if ∀G, H ∈ G : G ∼= H ⇔ f(G) = f(H). A
complete invariant f for G that computes for any graph G ∈ G a graph f(G) that
is isomorphic to G is called a canonization for G. We call the graph f(G) the
canonical form of G (w.r.t. f) and denote it by canon(G). E.g. we could define
f(G) as the lexicographically least graph isomorphic to G. This canonizing func-
tion is computable in FPNP by prefix search, but it is NP-hard [8,18]. Whether
there is some canonizing function for graphs that is polynomial-time computable
is a long-standing open question. No better bound than FPNP is known for general
graphs (for any canonizing function). Clearly, GI is polynomial-time reducible
to graph canonization. It is an open question if the converse reduction holds.

The seminal paper of Babai and Luks [8] takes a general group-theoretic
approach to graph canonization. However, combinatorial methods have worked
well in various special cases. For example, for random graphs the Weisfeiler-
Lehman method [7,6] produces a canonical form with high probability. From
a complexity-theoretical viewpoint, a key result [17,14] we recall is that tree
canonization is complete for deterministic logspace.1 Indeed, Lindell’s logspace
upper bound for tree canonization is our main motivation for the present paper

1 Provided that the tree is given in the pointer notation; using the parenthesis notation
the problem is NC1-complete (see [14]).
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and, more generally, our motivation for studying the space bounded complexity
of Graph Isomorphism for partial k-trees.

The recent TC1 upper bound for isomorphism of partial k-trees by Grohe and
Verbitsky [10] raises the question about a tight complexity-theoretic classification
of the problem. In the present paper, we give a deterministic logspace algorithm
for canonizing partial 2-trees. The algorithm is based on ideas from Lindell’s tree
canonization algorithm and uses the combinatorial characterizations of partial
2-trees. This tightly classifies partial 2-tree isomorphism. The class of partial 2-
trees coincides with the class of series-parallel graphs and contains all outerplanar
graphs. Thus, we obtain logspace canonization algorithms for these graph classes.
Furthermore, partial 2-trees are planar graphs. However, we do not know if
planar graph isomorphism is in logspace (or in NL). In that direction, recently
Thierauf and Wagner gave a UL ∩ co-UL upper bound for planar 3-connected
graph isomorphism [20]. They also provide an NL algorithm for oriented graphs.

We note that Arnborg and Proskurowski gave a linear time and quadratic
space2 canonization algorithm for both partial 2-trees and partial 3-trees [5].
Their algorithm is based on a graph reduction technique and uses labels to
canonically record the reductions. However, this technique does not appear useful
for showing a logspace upper bound.

For partial k-trees in general, we don’t know of any better bound than TC1.
We do not know of any hardness result that would indicate that partial k-tree
isomorphism is not in deterministic logspace. However, the TC1 upper bound
suggests that we can put perhaps the problem in a natural complexity class
contained in TC1 like LOGCFL or DET, or in the logspace counting hierarchy
[3,2]. Recently, in [1] we have shown for full k-trees that isomorphism testing is
in the strongly unambiguous logspace class StUL ⊆ UL. The bound follows from
an FLStUL canonizing algorithm for full k-trees.

Due to lack of space, some proofs are omitted from this extended abstract.

1.1 Preliminaries

The class L consists of all languages accepted by a deterministic O(log n) space
bounded Turing machine. NL is defined in the same way by using nondetermin-
istic machines. FL contains all functions computable by deterministic O(log n)
space bounded Turing machines.

By graphs we mean finite simple graphs. For a graph G = (V, E), let V (G)
denote its vertex set V and E(G) denote its edge set E. For a vertex v ∈ V (G),
the set {w ∈ V (G) | {v, w} ∈ E(G)} of all neighbors of v is denoted by N(v).
For a subset U ⊆ V (G), we use G[U ] to denote the induced subgraph of G, where
V (G[U ]) = U and E(G[U ]) = {e ∈ E(G) | e ⊆ U}. For the graph G[V − U ] we
also use the notation G − U . We say that U separates two vertices v and w, if
v �= w and there is no path in G − U from v to w.

Two graphs G and H are isomorphic (in symbols G ∼= H) if there is a bi-
jection τ : V (G) → V (H), such that for all u, v ∈ V (G), {u, v} ∈ E(G) if and
2 They also have an O(n log n) time algorithm which they refer to as log-linear time

and space in their paper.
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only if {τ(u), τ(v)} ∈ E(H). In case the vertices of G and H are labeled (or
colored), then the isomorphism τ must also preserve the labels (resp. colors).
An automorphism of a (possibly vertex/edge colored) graph G = (V, E) is a
bijection ξ : V −→ V that is an isomorphism from G to itself. The set Aut(G)
of all automorphisms of a graph G is a group under permutation composition.
The Graph Isomorphism problem, denoted GI, is to decide if two input graphs
G and H are isomorphic. Further, we consider the following problems:

– Aut (automorphism group): On input a graph G, compute a generating set
for Aut(G).

– pGA (partially specified graph automorphism): Given a graph G and a list
of pairs of vertices (u1, v1), . . . , (ul, vl), does G have an automorphism ξ such
that ξ(ui) = vi for i = 1, . . . , l? Let sGA denote the search version of pGA.

An isomorphism φ : V (G) −→ V (canon(G)) from a graph G to its canon-
ical form canon(G) is called a canonical labeling. We assume V (canon(G)) =
{1, 2, . . . , |V (G)|}. Hence, the canonical labeling actually gives an ordering of
the vertices of G. For a canonical form, the set of isomorphisms from G to
canon(G) is the canonical labeling coset CL(G). Clearly, CL(G) = Aut(G)ξ, for
some isomorphism ξ from G to canon(G). Thus, CL(G) can be represented by
some ξ ∈ CL(G) together with a generating set for Aut(G). As shown by Gure-
vich, canonization of general graphs is polynomial-time equivalent to computing
a complete invariant [9]. We define two closely related problems on canonization.

– CL-Coset: Given a graph G compute the canonical labeling coset CL(G)
of G.

– Color-CL: Given a colored graph G, compute some isomorphism from G
to canon(G), i.e., compute a member of the canonical labeling coset CL(G)
of the colored graph G.

Notice that Color-CL is a search problem (i.e. there might exist more than
one solution for a given graph G). We assume that an oracle for Color-CL is
actually a functional oracle that returns for any query G some canonical labeling
in CL(G).

2 Relative Complexity of Computing Canonical Forms,
Canonical Labelings, and Labeling Cosets

It is well-known (see, e.g., [11,16]) that the problems Aut, pGA, and sGA are
all polynomial-time equivalent to Graph Isomorphism. Similarly, the problem
of computing canonical forms is easily seen to be polynomial-time equivalent to
the problem CL-Coset of computing the corresponding canonical labeling coset
as well as to Color-CL [8]. However, it is not clear whether these reductions
can also be performed in logspace. In the following we compare the different
problems w.r.t. logspace Turing reductions (denoted by ≤L

T ) and show that all
these problems reduce to the canonical labeling problem for colored graphs.
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Lemma 1. pGA ≤L
T Aut ≤L

T sGA ≤L
T Color-CL.

As Aut ≤L
T Color-CL we easily get the following consequence.

Corollary 2. CL-Coset ≤L
T Color-CL.

In order to canonize a given partial 2-tree G, we decompose G into its biconnected
components G1, . . . , Gr. Since G is a tree T of its biconnected components, we
will essentially canonize T using the biconnected component canonization as a
subroutine. Now, for this entire procedure to work in logspace, we design a de-
terministic logspace base machine that makes calls to subroutines that canonize
the biconnected partial 2-trees G1, . . . , Gr and T . As suggested by the reductions
in this section, it suffices to solve the Color-CL problem for G1, . . . , Gr and T
in order to be able to compute a canonical labeling of G.

3 Canonizing Biconnected Partial 2-Trees

First we recall the definition of (partial) k-trees (cf. [12]).

Definition 3. The class of k-trees is inductively defined as follows.
– A clique with k vertices (k-clique for short) is a k-tree.
– Given a k-tree G′ with n vertices, a k-tree G with n + 1 vertices can be

constructed by introducing a new vertex v and picking a k-clique C in G′

and then joining v to each vertex u in C. Thus, V (G) = V (G′) ∪ {v},
E(G) = E(G′) ∪ {{u, v} | u ∈ C}.

A partial k-tree is a subgraph of a k-tree.

In this section we give a logspace algorithm for biconnected partial 2-tree can-
onization. But first we state a useful characterization of partial 2-trees [15].

Definition 4. Let G = (V, E) be a graph. A vertex v ∈ V is an articulation
point if G − v has more connected components than G. G is biconnected if it
has no articulation point. A cell of G is a set of edges in a chordless cycle of G.
The cell-completion of G = (V, E) is the graph G = (V, E′) where E′ is obtained
from E by adding all edges {x, y} ⊆ V for which G − {x, y} has at least three
connected components.

Definition 5. A tree of cycles is a member of the class T C of graphs defined
inductively as follows:

– Every chordless cycle is an element of T C.
– Given a graph G in T C and a chordless cycle C, the graph obtained by

identifying an edge and its two end vertices of C with an edge and its two
end-vertices of G is also in T C.

Theorem 6. [15] A biconnected graph G is a partial 2-tree if and only if its
cell-completion G is a tree of cycles.
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We first consider Color-CL for colored biconnected partial 2-trees G. For this,
we exploit the special structure of G as explained in Definition 5 and Theorem 6.
More precisely, we now give logspace algorithms for computing the tree comple-
tion G of G and its decomposition into the “tree of cycles”. This will allow us to
again use ideas from Lindell’s tree canonization algorithm to solve the problem.

A logspace algorithm can check for each pair {x, y} ⊆ V if G − {x, y} has
three connected components. If this is the case and if {x, y} is not an edge in G
then the algorithm outputs {x, y} as a “red” edge in the cell-completion G. We
color {x, y} red to indicate that the edge is not present in G.

Lemma 7. Let G = (V, E) be a tree of cycles. Two distinct edges e1 = {x, y}
and e2 = {a, b} are in the same cell if and only if either of the following condi-
tions holds true:

1. The set {x, b} separates y from a and the set {y, a} separates x from b but
{y, b} does not separate x from a and {x, a} does not separate y from b.

2. The set {x, a} separates y from b and the set {y, b} separates x from a but
{y, a} does not separate x from b and {x, b} does not separate y from a.

Notice that the conditions stated in Lemma 7 can be verified by querying an
oracle for s-t connectivity and hence is in logspace [19]. As a consequence, for
any tree of cycles G we can compute the cells C1, C2, . . . , Cm of G in logspace.

Definition 8. Let G = (V, E) be a tree of cycles with cells C1, . . . , Cm. The
skeleton of G is the tree S(G) = (V ′, E′) with vertex set V ′ = {C1, . . . , Cm} ∪ E
and {Ci, e} ∈ E′ if and only if e ∈ Ci.

Notice that the bipartite graph S(G) = (V ′, E′) is a tree when G is a tree of
cycles. For two cells Ci and Cj in a tree of cycles G we have Ci ∩ Cj = {e}
precisely when {Ci, e} and {Cj , e} are edges in the skeleton S(G). Since we can
find the cells C1, C2, . . . , Cm of G in deterministic logspace, it follows that S(G)
can be computed in deterministic logspace.

Definition 9. Let e = {a, b} be an edge of a tree of cycles G. Suppose we orient
e as the ordered pair (a, b). This orientation naturally induces an orientation of
every edge on any cycle C containing e, by walking along C in the (a, b) direction.
Applying this step repeatedly yields a unique orientation of all edges. We call this
the orientation of G induced by (a, b).

The following symmetry property clearly holds for orientations: Let e = {a, b}
and e′ = {a′, b′} be two edges in a tree of cycles G. Then the orientation (a, b)
induces the orientation (a′, b′) if and only if the orientation (a′, b′) induces the
orientation (a, b).

Lemma 10. Let G be a tree of cycles and let e0 = {a, b} be an edge in G. Then
the orientation of any edge e′ = {x, y} of G induced by (a, b) can be computed
in deterministic logspace.
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Proof. Let C1, . . . , Cm be the cells of G and suppose that e0 ∈ C and e′ ∈ C′.
Let 2d be the distance of C′ from C in the skeleton S(G) of G and let C =
Ci0 , e1, Ci1 , e2, Ci2 , . . . , ed, Cid

= C′ be the path form C to C′ in S(G), where
Cit−1 ∩Cit = {et} for t = 1, . . . , d. If d = 0, then the orientation of e′ induced by
(a, b) is computable in logspace by traversing the nodes in the cycle C = C′. If
d ≥ 1, the algorithm determines the orientations of e1, . . . , ed one after another.
Once it knows the orientation of ed, the orientation of e′ can be determined in the
same way as in the case C = C′. Inductively suppose the algorithm knows Cit

(i.e., the index it), et and the orientation of et induced by (a, b). In order to find
Cit+1 , et+1 and the orientation of et+1 induced by (a, b) it finds (in logspace) a
vertex C′′ in the skeleton S(G) such that for some edge e′′ of G, Cit ∩C′′ = {e′′}
and the unique path in S(G) from Cit to C′ passes through C′′. Since S(G) is a
tree, it is clear that the unique choice for C′′ is Cit+1 and that e′′ = et+1. Also,
the orientation of et+1 induced by (a, b) can be determined from the orientation
of et by traversing the nodes in the cycle Cit . �

3.1 The Tree Representation for the Tree of Cycles

Let G be a colored tree of cycles, C be a given cell in G and let e = (a, b) be
an oriented edge in C. Let C1, . . . , Cm be the cells of G and let e1, . . . , el be the
oriented edges of G induced by (a, b). The tree representation of G with respect
to the cell C and the oriented edge (a, b) is a colored ordered tree T (G, C, a, b) =
(V, E) with root C, where V = {C1, . . . Cm} ∪ {e1, . . . , el} and E = {{ei, Cj} |
ei ∈ Cj}. We call the nodes C1, . . . , Cm “cell-nodes” and the nodes e1, . . . , el are
referred to as “edge-nodes”. Thus, we have cell-nodes and edge-nodes alternating
along any root to leaf path, starting with the cell-node C as root. The coloring
of T (G, C, a, b) and the ordering of the children of each cell-node Ci will be
described below (the children of the edge-nodes ei are unordered). Our goal
is to describe an appropriate canonical labeling (computable in logspace) of
T (G, C, a, b) from which we can extract (in logspace) a canonical labeling of the
colored tree of cycles G (for a given cell C and oriented edge (a, b)). Once we
do this, we can determine the overall canonical labeling as the one yielding the
lexicographically smallest tree of cycles over all root cells C as well as all oriented
edges (a, b) on C.

First, we notice certain restrictions on this tree representation enforced by the
cell structure and the orientation of edges. We claim that as soon as a root cell
C and an oriented edge (a, b) on C are fixed, the children of any cell-node Ci

can be totally ordered in a canonical way. To see how, we start with the root C.
Its children are the edge-nodes corresponding to the edges in the cycle C. We
designate (a, b) as the first child of C and the remaining children are ordered
by walking along C in the (a, b) direction. For any other cell-node Ci let (ai, bi)
be its parent edge-node in T (G, C, a, b). The children of Ci are the edge-nodes
corresponding to the remaining edges in Ci and they are ordered by walking
from node ai along C in the (ai, bi) direction.

Since some edges and vertices of G may be colored, we need to add this
information to the nodes of T (G, C, a, b). If {x, y} is an edge of G that is colored
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c, and (x, y) is the edge-node of T (G, C, a, b) corresponding to {x, y} then we
include the color c to the set of colors for edge-node (x, y). Further, for each
vertex v of G having color c, the color (1, c) is included in the color set of each
edge-node in T (G, C, a, b) of the form (v, u) and the color (c, 1) is added to the
color set of each edge-node of the form (u, v). This completes the description of
the tree representation T (G, C, a, b) of a tree of cycles G.

It is easy to see that any tree T isomorphic to T (G, C, a, b) contains enough
information to reconstruct the original tree of cycles G (up to isomorphism) from
T . In fact, as we will show next, G is even computable in logspace from T . We first
list a set of conditions that are necessary and sufficient for the existence of a tree
of cycles G having T as its tree representation. For a node v in T whose children
are totally ordered as u1, . . . , ul−1, the orientation-order of the neighbors of v
is defined as follows. If v is the root node r of T , then the orientation-order is
(u1, . . . , ul−1). If v �= r, then the orientation-order is (u0, u1, . . . , ul−1), where
u0 is the parent of v. In either case we say that the neighbors of v are color-
consistent, if ui has a color (c, 1) in its color set if and only if succ(ui) has the
color (1, c) in its color set, where succ(ui) denotes the cyclic successor to ui in
the orientation-order. Now it is not hard to prove the following lemma.

Lemma 11. Let G be a tree of cycles, C be a cell of G and let (a, b) be an
oriented edge on C. Then the tree representation T = T (G, C, a, b) fulfills the
following properties:
1. Every node at even distance from the root r of T has degree at least three.
2. The children of each node v at even distance from r are totally ordered and

the neighbors of v are color-consistent with respect to their orientation-order.
3. The nodes at odd distance from r are colored by a set of colors of the form

c, (1, c) or (c, 1) containing at most one color of the form c.

Further, for each tree T fulfilling these properties, a tree of cycles G′, a cell C
in G′ and an oriented edge (a, b) on C fulfilling T (G′, C, a, b) ∼= T is computable
in FL.

3.2 Isomorphism Ordering

We use colored tree canonization to canonize the tree representation T of a tree
of cycles. For that we encode the orientation-order using special colors c1, c2, . . .
where we assume that ci < ci+1. Let (u0, u1, . . . , ul−1) be the orientation-order
of the neighbors of a node v in T . If v is the root r of T then we color ui

with color ci+1 for i = 0, . . . , l − 1. If v �= r, then we color ui with color ci for
i = 1, . . . , l − 1. Notice that in the latter case the parent u0 of v does not get
any color due to the orientation-order of the neighbors of v (though u0 may get
some color due to the orientation-order of the neighbors of some other node).
We denote the (unordered) tree obtained from T by adding these special colors
by T̂ .

For an ordered set C of colors let TC denote the class of all rooted trees whose
nodes are colored with colors from C. We denote the color of a node v by col(v)
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and the number of its children by #v. The number of nodes in a graph G is
denoted as |G|. First we inductively define an ordering � on TC .

Definition 12. Let T, T ′ ∈ TC with roots r and r′, respectively. We say that
T � T ′ if either of the following conditions is fulfilled:
1. col(r) < col(r′).
2. col(r) = col(r′) and |T | < |T ′|.
3. col(r) = col(r′), |T | = |T ′| and #r < #r′.
4. col(r) = col(r′), |T | = |T ′|, #r = #r′ and (Ti1 , . . . , Tik

) � (T ′
j1 , . . . , T

′
jk

)
in the lexicographic sense, where T1, . . . , Tk are the subtrees rooted at the
children of r, T ′

1, . . . , T
′
k are the subtrees rooted at the children of r′, and

inductively Ti1 � · · · � Tik
and T ′

j1 � · · · � T ′
jk

.

For any two trees T, T ′ ∈ TC at least one of T � T ′ and T ′ � T holds. Further,
T ′ and T are isomorphic if and only if both T � T ′ and T ′ � T hold. The
ordering defined in Definition 12 is similar to the one defined in [17] except that
we give highest priority to colors of nodes to distinguish the subtrees rooted at
them. This isomorphism ordering of colored trees gives an isomorphism ordering
of the tree representations of the trees of cycles when we encode the orientation-
orders by colors. We can easily modify Lindell’s algorithm to take into account
the priority due to coloring and get a logspace algorithm for computing the
isomorphism order of colored trees in TC . By applying this algorithm we get
a deterministic logspace algorithm for computing the isomorphism order of the
tree representations of the trees of cycles.

3.3 Canonical Labeling of Biconnected Partial 2-Trees

We first explain how a colored tree T ∈ TC is traversed using the isomorphism
order defined above. The traversal starts at the root of T . Suppose we arrive at
a node v. Then the algorithm tries to move to the first child in the isomorphism
order, i.e., the child with minimal isomorphism order. Ties are broken using the
input order. If it fails to move to the first child (if v is a leaf node), it tries to go
back to the parent of v. When it comes back to the parent from a child it tries to
move to the next sibling in the isomorphism order. Again ties are broken using
the input order. If it fails to move to the next sibling (if it comes back from the
last child) then it tries to move to the parent (if the node has no parent, the
traversal stops).

To determine the canonical labeling of a tree T ∈ TC , the algorithm traverses
T and when it discovers a new node it outputs the node. Note that a node is new
if it comes through a successful first-child or next-sibling move. The list of nodes
in the traversal order serves as the canonical labeling of T . To find the canonical
labeling of the tree representation T of a tree of cycles G we first encode the
orientation-order using colors and then find the canonical labeling of the colored
tree as just described.

Now we can compute the canonical labeling of a tree of cycles G as follows.
The algorithm computes for any cell C in G and each oriented edge (a, b) of C
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the tree representation T (G, C, a, b). Then it determines the canonical labeling
for T̂ (G, C, a, b) and reconstructs from the relabeled tree representation in deter-
ministic logspace a tree of cycles G′ as stated in Lemma 11. G′ is our canonical
form canon(G, C, a, b) of G with respect to C and (a, b). The canonical form of G
is the lexicographically least such canon.Notice that also the canonical labeling
can be recovered by keeping track of the original vertices from the canonical
labeling of T̂ (G, C, a, b).

Clearly, the canonical labeling of the cell-completion G of a biconnected partial
2-tree G can serve as a canonical labeling of G because in G the edges that are
not present in G are colored “red”.

Theorem 13. For colored biconnected partial 2-trees a canonical labeling can
be computed in logspace.

4 Canonizing Partial 2-Trees

In this section we show that the problem Color-CL for partial 2-trees is in
logspace. We show this by designing a logspace canonical labeling algorithm
for partial 2-trees that is a combination of Lindell’s tree canonization algorithm
with the logspace canonization algorithm of Section 3 for the class of biconnected
partial 2-trees.

Theorem 14. The problem Color-CL for partial 2-trees is in logspace. I.e.
colored partial 2-trees are canonizable in logspace.

Proof (sketch). Let G = (V, E) be a colored input partial 2-tree for our can-
onization algorithm. Using Reingold’s logspace s-t connectivity algorithm for
undirected graphs [19] we can compute its biconnected components G1, . . . , Gr

and the set A of its articulation points. Consider the tree T (G) = (V ′, E′)
of biconnected components and articulation points defined as follows: V ′ =
{v1, . . . , vr} ∪ A, where vi corresponds to Gi for each i and E′ = {{a, vi} |
a is an articulation point in Gi}. We can assume that G, G1, . . . , Gr and T (G)
are given as input.

By distinguishing some articulation point a ∈ A as the root, the tree T (G)
becomes a rooted tree T (G, a) with root a, defined as follows. Based on Lindell’s
canonization method [17], given G with a vertex v ∈ V specially marked as
root, in the following steps we describe an inductive definition of an ordering
on such rooted trees T (G). Using this inductive definition we will be able to
compute a canonical labeling (and hence a canonical form) of G. We use #r(v)
to denote the number of children of the root r(v) in T (G, v). Further, for a
node v′ ∈ V ′ we denote the subgraph of G corresponding to the subtree of
T (G, v) originating from node v′ by G(v′). In case v′ = vi corresponds to some
biconnected component Gi, we assume that the parent ai ∈ A of vi in T (G, v)
(if it exists) is colored with the special color “red” in G(vi).
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Let G, G′ ∈ G with vertices v and v′ marked as root, respectively. We define
G � G′ if one of the following conditions holds:

1. size(G) < size(G′).
2. size(G) = size(G′) and #r(v) < #r(v′).
3. size(G) = size(G′), #r(v) = #r(v′) and v is an articulation point in G but

v′ is not an articulation point in G′.
4. size(G) = size(G′), #r(v) = #r(v′), either both or neither of v and v′

are articulation points in G and G′, respectively, and (G(v1), . . . , G(vs)) ≺
(G′(v′1), . . . , G

′(v′s)) in the lexicographic sense (G ≺ G′ means that G � G′

holds but not G′ � G), where v1, . . . , vs and v′1, . . . , v′s are the children of r(v)
and r(v′) in T (G, v) and T (G′, v′), respectively, and the corresponding graphs
are inductively ordered as G(v1) � · · · � G(vs) and G′(v′1) � · · · � G′(v′s).

5. If in item 4 we have G(vi) ≈ G′(v′i) for i = 1, . . . , s (where G ≈ G′ means
that both G � G′ and G′ � G hold) and if r(v) and r(v′) correspond
to biconnected components Gi and G′

j of G and G′, respectively, then let
a1, . . . , as and a′

1, . . . , a
′
s be the children of r(v) and r(v′) in T (G, v) and

T (G′, v′), respectively. Inductively find the indices 0 = i0 < i1 < · · · <
ik−1 < ik = s such that G(a1) ≈ · · · ≈ G(ai1 ) ≺ G(ai1+1) ≈ · · · ≈ G(ai2) ≺
G(ai2+1) ≈ · · · ≈ G(aik

) ≺ G(aik+1) ≈ · · · ≈ G(as). In the biconnected
component Gi color v with the special color “red” and color the articulation
point ai with color r if and only if ir−1 + 1 ≤ i ≤ ir. Similarly color the
vertices v′, a′

1, . . . , a
′
s in G′

j . Now canonize the colored biconnected graphs
Gi and G′

j (using the oracle for canonizing graphs in B(G)) and if Gi � G′
j

then order G � G′.

We claim that this inductive ordering defines a canonical form for the graph
G. It remains to argue that the canonical form can be computed in logspace,
basically using Lindell’s algorithm. As shown in Section 3, we can compute a
tree representation for biconnected partial 2-trees. If G is a partial 2-tree with
more than one biconnected component, then in the rooted tree defined above
each biconnected component B of G will have a fixed red node r (which is
an articulation point of G). Using this property, we can give a modified tree
representation T (B, r) for B in which r is the root, its children are the cells of B
containing r, for each such cell C its children will be an ordered list of vertices
(where the ordering is either forward or backward determined by orienting a fixed
edge incident on r), and so on. The vertices of B that are other articulation points
of G will be initially colored blue. In the overall tree structure, these blue nodes
will have as children the red nodes which are roots of the tree representation of
other biconnected components. An overview of the algorithm is now as follows:
We start Lindell’s algorithm on the tree T (G, a) rooted at articulation point a.
Every time we need to compare two trees rooted at two biconnected components
as in Step 5 of the inductive definition, we will essentially have to compare two
trees of the form T (B, r) and T (B′, r′). We will again use Lindell’s method here.
We classify the blue nodes into blocks, using the level numbers and the sizes of the
subgraphs rooted at them. We first recusively compare nodes that are identical
blocks of size 1 (crucially, we do not need any storage to do this recursion similar
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to Lindell) and order T (B, r) and T (B′, r′) as per this outcome. If all single blocks
turn out to have same isomorphism order, as recursively computed, we proceed
to run Lindell on the trees T (B, r) and T (B′, r′), where we need to orient an
edge on roots r and r′ and remember the orientation (in all 2 bits of space). The
rest of the computation proceeds exactly as in Lindell, where blocks of larger size
are recursively compared and the space is managed to be logarithmic. Finally,
notice that to canonize G we can run the above procedure to canonize T (G, a)
for each articulation point a and choose the lexicographically smallest amongst
them. Details of the algorithm and correctness proof will be given in the full
version. �

5 Recognizing Partial 2-Trees

Jakoby and Liskiewicz [13] proved that recognition of partial 2-trees is in SL.
Hence, it is in L by Reingold’s result [19]. Here we give a simple logspace al-
gorithm for recognizing partial 2-trees is based on Theorem 6 and Lemma 7.
By Theorem 6 it suffices to check that the cell-completion of each biconnected
component B of G is a tree of cycles. Clearly, the cell-completion B of B can be
computed in logspace as described in Section 3. In order to check that B = (V, E)
is a tree of cycles, the algorithm computes for each edge e = {x, y} in B a set Ce

consisting of all edges e′ = {a, b} for which either of the two conditions stated in
Lemma 7 is satisfied. Next it removes all duplicate occurrences of the sets Ce. Let
C1, . . . , Cm be the remaining sets. If |Ci ∩ Cj | > 1 for some 1 ≤ i < j ≤ m, then
we know that G cannot be a tree of cycles. Otherwise the algorithm checks for
i = 1, 2, . . . , m that the graph G[Vi] induced by the vertex set Vi of Ci is actually
a cycle by verifying that each node has degree 2 and the graph G[Vi] is connected.
Finally, the algorithm checks that the bipartite graph S(B) = (V ′, E′) is a tree,
where V ′ = {C1, . . . , Cm} ∪ E and E′ = {{Ci, e} | e ∈ Ci}. Recall from Defini-
tion 8 that S(B) is just the skeleton of B in case B is a tree of cycles. Now it is
easy to see that G is a partial 2-tree if and only if the cell-completion B of each
biconnected component B of G passes all the tests described above.

Theorem 15. Given a graph G there is a deterministic logspace algorithm to
decide if G is a partial 2-tree.
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A Triple Correspondence in Canonical Calculi:

Strong Cut-Elimination, Coherence, and
Non-deterministic Semantics

Arnon Avron and Anna Zamansky
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Abstract. An (n, k)-ary quantifier is a generalized logical connective,
binding k variables and connecting n formulas. Canonical systems with
(n, k)-ary quantifiers form a natural class of Gentzen-type systems which
in addition to the standard axioms and structural rules have only logical
rules in which exactly one occurrence of a quantifier is introduced. The se-
mantics for these systems is provided using two-valued non-deterministic
matrices, a generalization of the classical matrix. In this paper we use a
constructive syntactic criterion of coherence to characterize strong cut-
elimination in such systems. We show that the following properties of a
canonical system G with arbitrary (n, k)-ary quantifiers are equivalent:
(i) G is coherent, (ii) G admits strong cut-elimination, and (iii) G has a
strongly characteristic two-valued generalized non-deterministic matrix.

1 Introduction

The possibility to eliminate cuts is a crucial property of useful sequent calculi.
This property was first established by Gentzen (in his classical [10]) for sequent
calculi for classical and intuitionistic first-order logic. Since then many other cut-
elimination theorems, for many systems, have been proved by various methods1.
Now showing that a given sequent calculus admits cut-elimination is a difficult
task, often carried out using heavy syntactic arguments and based on many
case-distinctions. It is thus important to have some useful criteria that charac-
terize cut-elimination (i.e., conditions which are both necessary and sufficient
for having an appropriate cut-elimination theorem).

In this paper we give a constructive characterization of a general strong
form of cut-elimination for a very natural class of Gentzen-type systems called
canonical systems. These are systems which in addition to the standard axioms
and structural rules have only logical introduction rules of the ideal type, in
which exactly one occurrence of a connective or quantifier is introduced, and
no other connective or quantifier is mentioned in the formulation of the rule.

1 We note that by ‘cut-elimination’ we mean here just the existence of proofs without
(certain forms of) cuts, rather than an algorithm to transform a given proof to a
cut-free one (for the assumptions-free case the term “cut-admissibility” is sometimes
used, but this notion is too weak for our purposes).

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 52–63, 2008.
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For the propositional case canonical systems were first introduced and investi-
gated in [2]. There semantics for such systems was provided using two-valued
non-deterministic matrices (called 2Nmatrices)2. It was shown in [2] that for
propositional canonical systems there is an exact triple correspondence between
cut-elimination, the existence of a characteristic 2Nmatrix for them, and a con-
structive syntactic property called coherence. In [17] the same triple correspon-
dence was shown to hold also for canonical systems with unary quantifiers. The
next natural stage was to consider languages and systems with arbitrary (n, k)-
ary quantifiers. By an (n, k)-ary quantifier ([13,15]) we mean a generalized logical
connective, which binds k variables and connects n formulas. In particular, any
n-ary propositional connective is an (n, 0)-ary quantifier, the unary quantifiers
considered in [17] (including the standard first-order quantifiers ∃ and ∀) are
(1, 1)-quantifiers, bounded universal and existential quantifiers used in syllogis-
tic reasoning (∀x(p(x) → q(x)) and ∃x(p(x) ∧ q(x))) are (2,1)-ary quantifiers,
while the simplest Henkin quantifier3 QH is a (1,4)-quantifier:

QHx1x2y1y2ψ(x1, x2, y1, y2) :=
∀x1 ∃y1
∀x2 ∃y2

ψ(x1, x2, y1, y2)

The first steps in investigating canonical systems with (n, k)-ary quantifiers were
taken in [4]. There the semantics of 2Nmatrices and the coherence criterion were
extended to languages with (n, 1)-ary quantifiers. Then it was shown that coher-
ence is equivalent in this case to the existence of a characteristic 2Nmatrix, and
it implies (but is not equivalent to) cut-elimination. When canonical systems are
generalized to languages with arbitrary (n, k)-ary quantifiers, two serious prob-
lems emerge. The first problem is that the semantics of 2Nmatrices employed in
[17,4] is no longer adequate in case k > 1. The second problem is that even in case
of k = 1, coherence is not a necessary condition for standard cut-elimination,
and so the triple correspondence seems to be lost. Now the first problem was
solved in [3] by introducing generalized two-valued Nmatrices (2GNmatrices),
where a more complex approach to quantification is used. However, the problem
of finding an appropriate form of cut-elimination for which coherence is a nec-
essary condition, and reestablishing the triple correspondence was explicitly left
open in [4] and then also in [3].

In this paper we provide a full solution to the second problem4. This is
achieved in two main steps. The first is to include substitution as one of the

2 Non-deteministic matrices form a natural generalization of ordinary matrices, in
which the value assigned by a valuation to a complex formula can be chosen non-
deterministically out of a certain nonempty set of options.

3 It should be noted though that the canonical systems with (n, k)-ary quantifiers
studied in this paper are still not sufficient for treating Henkin quantifiers, as the
representation language is not expressive enough to capture dependencies between
variables; one direction is extending the representation language with function sym-
bols, which would lead to the inevitable loss of the decidability of coherence.

4 A partial solution for the restricted case k = 1 is already provided in [4].
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structural rules of a canonical system5. The second step is to extend cut-
elimination to deduction from assumptions (following [1,16]). For historical rea-
sons, reasoning with non-logical assumptions (in the form of sequents) is usually
reduced to pure provability of sequents. However, this is not always possible (the
resolution calculus, primitive recursive arithmetics, pure equality reasoning, and
disjunctive databases are four cases in point). Even when such reduction is pos-
sible, it is not necessarily desirable, as the case of first-order logic with equality
shows (see e.g. [16]). Thus it is in fact very natural to investigate and characterize
cut-elimination in the context of deduction from assumptions.

With the aid of the above two steps we again establish an exact triple cor-
respondence between coherence of canonical systems with arbitrary (n, k)-ary
quantifiers, their 2GNmatrices-based semantics, and a strong form of cut-
elimination for them. More specifically, we show that the following properties
of a canonical system G are equivalent: (i) G is coherent, (ii) G admits strong
cut-elimination, and (iii) G has a strongly6 characteristic 2GNmatrix.

2 Preliminaries

In what follows, L is a language with (n, k)-ary quantifiers, that is with quanti-
fiers Q1, ..., Qm with arities (n1, k1), ..., (nm, km) respectively. For any n > 0 and
k ≥ 0, if a quantifier Q in a language L is of arity (n, k), then Qx1...xk(ψ1, ..., ψn)
is an L-formula whenever x1, ..., xk are distinct variables and ψ1, ..., ψn are for-
mulas of L. Denote by FrmL (Frmcl

L ) the set of L-formulas (closed L-formulas).
Denote by TrmL (Trmcl

L) the set of L-terms (closed L-terms). We write Q−→x A

instead of Qx1...xkA, and ψ{−→
t /−→z } instead of ψ{t1/z1, ..., tk/zk}.

A set of sequents S satisfies the free-variable condition if the set of variables
occurring bound in S is disjoint from the set of variables occurring free in S.

In the following two subsections, we briefly reproduce the relevant definitions
from [4,3] of canonical rules with (n, k)-ary quantifiers and of the framework of
non-deterministic matrices. Note the important addition of the definition of full
canonical systems, which include the rule of substitution.

2.1 Full Canonical Systems with (n, k)-ary Quantifiers

We use the simplified representation language from [4,3] for a schematic repre-
sentation of canonical rules.

Definition 2.1. For k ≥ 0, n ≥ 1, Ln
k is the language with n k-ary predicate

symbols p1, ..., pn, the set of constants Con = {c1, c2, ..., } and the set of variables
V ar = {v1, v2, ..., }.
In this paper we assume for simplicity that Ln

k and L share their sets of variables
and constants.
5 See [1] for the general need for this step, e.g. for the foundations of the resolution

calculus, and for reasoning from assumptions in general.
6 See Defn. 2.15 below.
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Definition 2.2. A canonical rule of arity (n, k) has the form {Πi ⇒ Σi}
1≤i≤m/C, where m ≥ 0, C is either ⇒ Qv1...vk(p1(v1, ..., vk), ..., pn(v1, ..., vk)) or
Qv1...vk(p1(v1, ..., vk), ..., pn(v1, ..., vk)) ⇒ for some (n, k)-ary quantifier Q of L
and for every 1 ≤ i ≤ m: Πi ⇒ Σi is a clause7 over Ln

k .

For a specific application of a canonical rule we need to instantiate the schematic
variables by the terms and formulas of L. This is done using a mapping function:

Definition 2.3. Let R = Θ/C be an (n, k)-ary canonical rule, where C is of one
of the forms (Q−→v (p1(−→v ), ..., pn(−→v )) ⇒) or (⇒ Q−→v (p1(−→v ), ..., pn(−→v ))). Let Γ
be a set of L-formulas and z1, ..., zk - distinct variables of L. An 〈R, Γ, z1, ..., zk〉-
mapping is any function χ from the predicate symbols, terms and formulas of
Ln

k to formulas and terms of L, satisfying the following conditions:

– For every 1 ≤ i ≤ n, χ[pi] is an L-formula. χ[y] is a variable of L, and
χ[x] �= χ[y] for every two variables x �= y. χ[c] is an L-term, such that χ[x]
does not occur in χ[c] for any variable x occurring in Θ.

– For every 1 ≤ i ≤ n, whenever pi(t1, ..., tk) occurs in Θ, for every 1 ≤ j ≤ k:
χ[tj ] is a term free for zj in χ[pi], and if tj is a variable, then χ[tj ] does not
occur free in Γ ∪ {Qz1...zk(χ[p1], ..., χ[pn])}.

– χ[pi(t1, ..., tk)] = χ[pi]{χ[t1]/z1, ..., χ[tk]/zk}.

χ is extended to sets of Ln
k -formulas as follows: χ[Δ] = {χ[ψ] | ψ ∈ Δ}.

Definition 2.4. Let R = Θ/C be an (n, k)-ary canonical rule, where Θ =
{Πi ⇒ Σi}1≤i≤m and C has the form Q−→v (p1(−→v ), ..., pn(−→v )) ⇒. An application
of R is any inference step of the form:

{Γ, χ[Πi] ⇒ Δ, χ[Σi]}1≤i≤m

Γ, Qz1...zk (χ[p1], ..., χ[pn]) ⇒ Δ

where z1, ..., zk are variables, Γ, Δ are any sets of L-formulas and χ is some
〈R, Γ ∪ Δ, z1, ..., zk〉-mapping.
An application of a canonical rule of the form Θ/C′ there C′ has the form
⇒ Q−→v (p1(−→v ), ..., pn(−→v )) is defined similarly.

Example 2.5. The standard introduction rules for the (1, 1)-ary quantifier ∀
can be formulated as follows: {p(c) ⇒}/∀v1 p(v1) ⇒ and {⇒ p(v1)}/ ⇒ ∀v1 p(v1).
Applications of these rules have the forms:

Γ, A{t/w} ⇒ Δ

Γ, ∀w A ⇒ Δ
(∀ ⇒)

Γ ⇒ A{z/w}, Δ

Γ ⇒ ∀w A, Δ
(⇒ ∀)

where z is free for w in A, z is not free in Γ ∪ Δ ∪ {∀wA}, and t is any term
free for w in A.

7 By a clause we mean a sequent containing only atomic formulas.
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Notation 2.6 (Following [2,4]). Let −t = f, −f = t. Let ite(t, A, B) = A and
ite(f, A, B) = B. Let Φ, As (where Φ may be empty) denote ite(s, Φ ∪ {A}, Φ).
For instance, the sequents A ⇒ and ⇒ A are denoted by A−a ⇒ Aa for a = f
and a = t respectively. With this notation, an (n, k)-ary canonical rule has the
form {Σj ⇒ Πj}1≤j≤m/Q−→z (p1(−→z ), ..., pn(−→z ))−s ⇒ Q−→z (p1(−→z ), ..., pn(−→z ))s

for some s ∈ {t, f}. For further abbreviation, we denote such rule by {Σj ⇒
Πj}1≤j≤m/Q(s).

Definition 2.7. A full canonical calculus G is a Gentzen-type system, which con-
sists of (i) The α-axiom ψ ⇒ ψ′ for ψ ≡α ψ′, (ii) The standard structural rules
with the addition of the substitution rule, and (iii) Canonical inference rules.

The coherence criterion used in [3,4] can be straightforwardly extended to full
canonical calculi:

Definition 2.8. For two sets of clauses Θ1, Θ2 over Ln
k , Rnm(Θ1 ∪ Θ2) is a set

Θ1 ∪ Θ′
2, where Θ′

2 is obtained from Θ2 by a fresh renaming of constants and
variables which occur in Θ1.

Definition 2.9. (Coherence8) A full canonical calculus G is coherent if for
every two canonical rules of the form Θ1/ ⇒ A and Θ2/A ⇒, the set of clauses
Rnm(Θ1 ∪ Θ2) is classically inconsistent.

Example 2.10. Consider the calculus G1 consisting of the rules Θ1/∀v1 p(v1)⇒
and Θ2/ ⇒ ∀v1 p(v1) where Θ1 = {p(c) ⇒} and Θ2 = {⇒ p(v1)} (these rules are
from Example 2.5). Rnm(Θ1 ∪ Θ2) = {p(c) ⇒, ⇒ p(v1)} (note that no renaming
is needed here) is clearly classically inconsistent and so G1 is coherent.

Proposition 2.11. (Decidability of coherence) The coherence of a full
canonical calculus is decidable.

2.2 Generalized Non-deterministic Matrices

Our main semantic tool in this paper are generalized non-deterministic matrices
introduced in [3], which are a generalization of non-deterministic structures used
in [2,17,4].

Definition 2.12. A generalizednon-deterministic matrix (henceforth GNmatrix)
for L is a tuple M = 〈V , D, O〉, where: (i) V is a non-empty set of truth values, (ii)
D is a non-empty proper subset of V, and (iii) For every (n, k)-ary quantifier Q of
L, O9 includes a corresponding operation Q̃S : (Dk → Vn) → P+(V) for every
L-structure S = 〈D, I〉.

A 2GNmatrix is any GNmatrix with V = {t, f} and D = {t}.
8 The coherence criterion was first introduced in [2]. A related criterion also called

coherence was later used in [14], where linear logic is used to specify and reason
about a number of sequent systems.

9 Strictly speaking, the tuple 〈V, D, O〉 is not well-defined, since O is a proper class.
Since all our results remain intact if we concentrate only on countable models, this
technical problem can be overcome by assuming that the domains of all the structures
are prefixes of the set of natural numbers.
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The notion of an L-structure is defined standardly (see, e.g. [4]). In order to
interpret quantifiers, the substitutional approach is used, which assumes that
every element of the domain has a term referring to it. Thus given an L-structure
S = 〈D, I〉, the language L is extended with individual constants: {a | a ∈ D}.
Call the extended language L(D). The interpretation function I is extended to
L(D) as follows: I[a] = a. An S-substitution σ is any function from variables to
Trmcl

L(D). For an S-substitution σ and a term t (a formula ψ), the closed term
σ[t] (the sentence σ[ψ]) is obtained from t (ψ) by substituting every variable
x for σ[x]. We write10 ψ ∼S ψ′ if ψ′ can be obtained from ψ by renamings
of bound variables and by any number of substitutions of a closed term t for
another closed term s, so that I[t] = I[s].

Definition 2.13. Let S = 〈D, I〉 be an L-structure for a GNmatrix M. An
S-valuation v : Frmcl

L(D) → V is legal in M if it satisfies the following condi-
tions: v[ψ] = v[ψ′] for every two sentences ψ, ψ′ of L(D), such that ψ ∼S ψ′,
v[p(t1, ..., tn)] = I[p][I[t1], ..., I[tn]], and v[Qx1, ..., xk(ψ1, ..., ψn) is in the set
Q̃S [λa1, ..., ak ∈ D.〈v[ψ1{a1/x1, ..., ak/xk}], ..., v[ψn{a1/x1, ..., ak/xk}]〉] for ev-
ery (n, k)-ary quantifier Q of L.

Definition 2.14. Let S = 〈D, I〉 be an L-structure for an GNmatrix M. An
M-legal S-valuation v is a model of a sentence ψ in M, denoted by S, v |=M ψ,
if v[ψ] ∈ D. For an M-legal S-valuation v, a sequent Γ ⇒ Δ is M-valid in 〈S, v〉
if for every S-substitution σ: whenever S, v |=M σ[ψ] for every ψ ∈ Γ , there is
some ϕ ∈ Δ, such that S, v |=M σ[ϕ]. A sequent Γ ⇒ Δ is M-valid, denoted
by �M Γ ⇒ Δ, if for every L-structure S and every M-legal S-valuation v,
Γ ⇒ Δ is M-valid in 〈S, v〉. For a set of sequents S, S �M Γ ⇒ Δ if for every
L-structure S and every M-legal S-valuation v: whenever the sequents of S are
M-valid in 〈S, v〉, Γ ⇒ Δ is also M-valid in 〈S, v〉.
Definition 2.15. A system G is strongly sound for a GNmatrix M if for every
set of sequents S: S �G Γ ⇒ Δ entails S �M Γ ⇒ Δ. A system G is strongly
complete for a GNmatrix M if for every set of sequents S: S �M Γ ⇒ Δ entails
S �G Γ ⇒ Δ. A GNmatrix M is strongly characteristic for G if G is strongly
sound and strongly complete for M.

Note that strong soundness implies (weak) soundness11. A similar remark applies
to completeness and a characteristic GNmatrix.

In addition to L-structures for languages with (n, k)-ary quantifiers, we will
also use Ln

k -structures for the simplified languages Ln
k , using which the canonical

rules are formulated. To make the distinction clearer, we shall use the metavari-
able S for the former and N for the latter. Since the formulas of Ln

k are always
10 The motivation for this definition, in addition to capturing α-equivalence, is purely

technical and is related to extending the language with the set of individual constants
{a | a ∈ D}. Suppose we have a closed term t, such that I [t] = a ∈ D. But a also
has an individual constant a referring to it. We would like to be able to substitute
t for a in every context.

11 A system G is (weakly) sound for a GNmatrix M if �G Γ ⇒ Δ entails �M Γ ⇒ Δ.
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atomic, the specific 2GNmatrix for which N is defined is immaterial, and can
be omitted. Henceforth we may speak simply of validity of sets of sequents over
Ln

k .

Definition 2.16. Let N = 〈D, I〉 be a structure for Ln
k . The functional dis-

tribution of N is a function FDistN ∈ Dk → {t, f}n, such that: FDistN =
λa1, ..., ak ∈ D.〈I[p1][a1, ..., ak], ..., I[pn][a1, ..., ak]〉.

3 The Triple Correspondence

In this section we establish an exact triple correspondence between the coherence
of full canonical systems, their 2GNmatrices-based semantics and strong cut-
elimination, a version of cut-elimination for deduction with assumptions taken
from [1]:

Definition 3.1. Let G be a full canonical calculus and let S be some set of
sequents. A proof P of Γ ⇒ Δ from S in G is S-cut-free if all cuts in P are on
substitution instances of formulas from S.

Definition 3.2. A Gentzen-type calculus G admits strong cut-elimination if for
every set of sequents S and every sequent Γ ⇒ Δ, such that S∪{Γ ⇒ Δ} satisfies
the free-variable condition it holds that if S �G Γ ⇒ Δ, then Γ ⇒ Δ has an
S-cut-free proof in G.

Note that strong cut-elimination implies standard cut-elimination (which corre-
sponds to the case of an empty set S).

Remark: At this point the importance of the substitution rule should be
stressed. Consider for instance the canonical calculus with two standard (1, 1)-
ary rules for ∀ from Example 2.5. Consider the following deduction:

⇒ p(x)

⇒ ∀xp(x)
(⇒ ∀)

p(c) ⇒
∀xp(x) ⇒

(∀ ⇒)

⇒ (Cut)

The above application of Cut can only be eliminated using an explicit applica-
tion of the substitution rule. An alternative, less satisfactory solution (instead of
adding the substitution rule to canonical calculi explicitly,) would be considering
only sets of non-logical assumptions, which are closed under substitution12.

In [3] a strongly sound and (weakly) complete 2GNmatrix MG is defined for
every coherent canonical calculus G. This can be straightforwardly extended to
full canonical calculi. We strengthen this result in the sequel for full canonical
calculi by showing that MG is also strongly complete for G.

Definition 3.3. Let G be a coherent full canonical calculus. For every
L-structure S = 〈D, I〉, the GNmatrix MG contains the operation Q̃S defined

12 This was done in [4] for the restricted class of canonical systems with k = 1.
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as follows. For every (n, k)-ary quantifier Q of L, every r ∈ {t, f} and every
g ∈ Dk → {t, f}n:

Q̃S [g] =

⎧
⎪⎨

⎪⎩

{r} Θ/Q(r) ∈ G and there is an Ln
k − structure N = 〈DN , IN 〉

such that DN = D , FDistN = g and Θ is valid in N .

{t, f} otherwise

Proposition 3.4. If a full canonical calculus G is coherent, then it is strongly
sound for MG.

Proof: The proof is similar to the proof of Theorem 23 in [3], with the addition
of checking that the substitution rule is strongly sound for MG. In fact, it is
easy to see that the substitution rule is strongly sound for any 2GNmatrix M.

Now we come to the main result of this paper - establishing the correspondence:

Theorem 3.5 (The Triple Correspondence). Let G be a full canonical cal-
culus. Then the following statements concerning G are equivalent:

1. G is coherent.
2. G has a strongly characteristic 2GNmatrix.
3. G admits strong cut-elimination.

Proof: We first prove that (1) ⇒ (2). Suppose that G is coherent. By proposition
3.4, G is strongly sound for MG. For strong completeness, let S be some set of
sequents. Suppose that a sequent Γ ⇒ Δ has no proof from S in G. Then it
also has no S-cut-free proof from S in G. If S ∪ {Γ ⇒ Δ} does not satisfy the
free-variable condition, obtain S′ ∪{Γ ′ ⇒ Δ′} by renaming the bound variables,
so that S′ ∪ {Γ ′ ⇒ Δ′} satisfies the condition (otherwise, take Γ ′ ⇒ Δ′ and S′

to be Γ ⇒ Δ and S respectively). Then Γ ′ ⇒ Δ′ has no proof from S′ in G
(otherwise we could obtain a proof of Γ ⇒ Δ from S by using cuts on logical
axioms), and so it also has no S′-cut-free proof from S′ in G. By proposition 3.6,
S′ ��MGΓ ′ ⇒ Δ′. That is, there is an L-structure S and an MG-legal valuation
v, such that the sequents in S′ are MG-valid in 〈S, v〉, while Γ ′ ⇒ Δ′ is not.
Since v respects the ≡α-relation, the sequents of S are also MG-valid in 〈S, v〉,
while Γ ⇒ Δ is not. And so S��MGΓ ⇒ Δ. We have shown that G is strongly
complete (and strongly sound) for MG. Thus MG is a strongly characteristic
2GNmatrix for G.

Now we prove that (2) ⇒ (1). Suppose that G has a strongly characteristic
2GNmatrix M. Assume by contradiction that G is not coherent. Then there
exist two (n, k)-ary rules of the forms R1 = Θ1/ ⇒ A and R2 = Θ2/A ⇒ in G,
such that Rnm(Θ1∪Θ2) is classically consistent and A = Q−→v (p1(−→v ), ..., pn(−→v )).
Recall that Rnm(Θ1 ∪Θ2) = Θ1 ∪Θ′

2, where Θ′
2 is obtained from Θ2 by renaming

constants and variables that occur also in Θ1 (see defn. 2.8). For simplicity13 we

13 This assumption is not necessary and is used only for simplification of presentation,
since we can instantiate the constants by any L-terms.
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assume that the fresh constants used for renaming are all in L. Let Θ1 = {Σ1
j ⇒

Π1
j }1≤j≤m and Θ′

2 = {Σ2
j ⇒ Π2

j }1≤j≤r. Since Θ1 ∪ Θ′
2 is classically consistent,

there exists an Ln
k -structure N = 〈D, I〉, in which both Θ1 and Θ′

2 are valid.
Recall that we also assume that Ln

k is a subset of L14 and so the following are
applications of R1 and R2 respectively:

{Σ1
j ⇒ Π1

j }1≤j≤m

⇒ Q−→v (p1(
−→v ), ..., pn(−→v ))

{Σ2
j ⇒ Π2

j }1≤j≤m

Q−→v (p1(
−→v ), ..., pn(−→v )) ⇒

Let S be any extension of N to L and v - any M-legal S-valuation. It is easy
to see that the premises of the applications above are M-valid in 〈S, v〉 (since
the premises contain atomic formulas). Since G is strongly sound for M, both
⇒ Q−→v (p1(−→v ), ..., pn(−→v )) and Q−→v (p1(−→v ), ..., pn(−→v )) ⇒ should also be M-valid
in 〈S, v〉, which is of course impossible.

Next, we prove that (1) ⇒ (3). Let G be a coherent full canonical calculus.
Let S be a set of sequents, and let Γ ⇒ Δ be a sequent, such that S ∪{Γ ⇒ Δ}
satisfies the free-variable condition. Suppose that S �G Γ ⇒ Δ. We have already
shown above that MG is a strongly characteristic 2GNmatrix for G. Thus S �M
Γ ⇒ Δ. Now we need the following proposition, the proof of which is given in
Appendix A:

Proposition 3.6. Let G be a coherent full canonical calculus. Let S be a set of
sequents and Γ ⇒ Δ - a sequent such that S∪{Γ ⇒ Δ} satisfies the free-variable
condition. If Γ ⇒ Δ has no S-cut-free proof from S in G, then S��MGΓ ⇒ Δ.

By this proposition, Γ ⇒ Δ has an S-cut-free proof from S in G. Thus G admits
strong cut-elimination.

Finally, we prove that (3) ⇒ (1). Suppose that G admits strong cut-elimination.
Suppose by contradiction that G is not coherent. Then there are two canonical
rules of G of the forms: Θ1/ ⇒ A and Θ2/A ⇒, such that Rnm(Θ1 ∪ Θ2) is
classically consistent. Let Θ = Rnm(Θ1 ∪ Θ2). Then Θ ∪ {⇒} satisfy the free-
variable condition, since only atomic formulas are involved and no variables are
bound there. Since Θ �G⇒ A and Θ �G A ⇒, by using cut we get: Θ �G⇒. But
⇒ has no Θ-cut-free proof in G from Θ since Θ is consistent, in contradiction to
the fact that G admits strong cut-elimination.

Corollary 3.7. For every full canonical calculus, the question whether it admits
strong cut-elimination is decidable.

Remark: The results presented above are related to [8], where a general class of
sequent calculi with (n, k)-ary quantifiers and a (not necessarily standard) set of
structural rules, are defined. Canonical calculi are a particular instance of such
calculi which includes all of the standard structural rules. While handling a a
wider class of calculi than canonical systems (different combinations of structural
rules are allowed), [8] provides no semantics for them. Syntactic conditions are
given, which are sufficient and under certain additional limitations also necessary
14 This assumption is again not essential for the proof, but it simplifies the presentation.
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for modular cut-elimination, a particular version of cut-elimination for deduction
with non-logical assumptions containing only atomic formulas. In the context
of canonical systems, these conditions can be shown to be equivalent to our
coherence criterion, but (unlike coherence) they are not constructive.
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A Appendix: Proof of Proposition 3.6

Let Γ ⇒ Δ be a sequent which satisfies the free-variable condition. Suppose
that Γ ⇒ Δ has no S-cut-free proof from S in G. To show that S��MGΓ ⇒ Δ,
we will construct an L-structure S and an MG-legal valuation v, such that S is
MG-valid in 〈S, v〉, while Γ ⇒ Δ is not.

It is easy to see that we can limit ourselves to the language L∗, which is a
subset of L, consisting of all the constants and predicate and function symbols,
occurring in Γ ⇒ Δ. Let T be the set of all the terms in L∗ which do not
contain variables occurring bound in Γ ⇒ Δ. It is a standard matter to show
that Γ, Δ can be extended to two (possibly infinite) sets Γ ′, Δ′ (where Γ ⊆ Γ ′

and Δ ⊆ Δ′), satisfying the following properties:

1. For every finite Γ1 ⊆ Γ ′ and Δ1 ⊆ Δ′, Γ1 ⇒ Δ1 has no cut-free proof in G.
2. There are no ψ ∈ Γ ′ and ϕ ∈ Δ′, such that ψ ≡α ϕ.
3. If {Πj ⇒ Σj}1≤j≤m/Q(r) is an (n, k)-ary rule of G and Qz1...zk (A1, ..., An)

∈ ite(r, Δ′, Γ ′) (recall Notation 2.6), then there is some 1 ≤ j ≤ m satisfy-
ing the following condition. Let t1, ..., tm be all the Ln

k -terms occurring in
Πj ∪ Σj , where tj1 , ..., tjl

are all the constants and tjl+1 , ..., tjm are all the
variables. Then for every s1, ..., sl ∈ T there are some15 sl+1, ..., sm ∈ T, such
that whenever pi(tn1 , ..., tnk

) ∈ ite(r, Πj , Σj), then Ai{sn1/z1, ..., snk
/zk} ∈

ite(r, Γ ′, Δ′).
4. For every formula ψ occurring in S and every substitution instance ψ′ of ψ:

ψ′ ∈ Γ ′ ∪ Δ′.

Note that the last condition can be satisfied because cuts on substitution in-
stances of formulas from S are allowed in an S-cut-free proof.

Let S = 〈D, I〉 be the L∗-structure defined as follows: D = T, I[c] = c
for every constant c of L∗; I[f ][t1, ..., tn] = f(t1, ..., tn) for every n-ary func-
tion symbol f ; I[p][t1, ..., tn] = t iff p(t1, ..., tn) ∈ Γ ′ for every n-ary predicate
symbol p.

It is easy to show by induction on t that: (lem1) for every t ∈ T: I[σ∗[t]] = t.
Let σ∗ be any S-substitution satisfying σ∗[x] = x for every x ∈ T. (Note that

every x ∈ T is also a member of the domain and thus has an individual constant
referring to it in L∗(D)).

For an L(D)-formula ψ (an L(D)-term t), we will denote by ψ̂ (t̂) the L-
formula (L-term) obtained from ψ (t) by replacing every individual constant of
the form s for some s ∈ T by the term s.

Define the S-valuation v as follows: (i) v[p(t1, ..., tn)] = I[p][I[t1], ..., I[tn]], (ii)
If there is some C ∈ Γ ′∪Δ′, s.t. C ≡α

̂Q−→z (ψ1, ..., ψn), then v[Q−→z (ψ1, ..., ψn)] =
t iff C ∈ Γ ′. Otherwise v[Q−→z (ψ1, ..., ψn)] = t iff
Q̃S [λa1...ak ∈ D.{〈v[ψ1{−→

a /−→z }], ..., v[ψn{−→
a /−→z }]〉}] = {t}.

15 Note that in contrast to t1, ..., tm, s1, ..., sm are L-terms and not Ln
k -terms.
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The proof of the following lemmas is not hard and is left to the reader:

(lem2): For every L(D)-formula ψ: ψ ∼S σ∗[ψ̂].
(lem3): For every ψ ∈ Γ ′ ∪ Δ′: σ̂∗[ψ] = ψ.
(lem4): v is legal in MG.

Next we prove: (lem5) For every ψ ∈ Γ ′ ∪ Δ′: v[σ∗[ψ]] = t iff ψ ∈ Γ ′. If
ψ = p(t1, ..., tn), then v[σ∗[ψ]] = I[p][I[σ∗[t1]], ..., I[σ∗[tn]]]. Note16 that for
every 1 ≤ i ≤ n, ti ∈ T. By (lem1), I[σ∗[ti]] = ti, and by the definition of I,
v[σ∗[ψ]] = t iff p(t1, ..., tn) ∈ Γ ′. Otherwise ψ = Q−→z (ψ1, ..., ψn). If ψ ∈ Γ ′, then
by (lem3): σ̂∗[ψ] = ψ ∈ Γ ′ and so v[σ∗[ψ]] = t. If ψ ∈ Δ′ then by property 2 of
Γ ′∪Δ′ it cannot be the case that there is some C ∈ Γ ′, such that C ≡α σ̂∗[ψ] = ψ
and so v[σ∗[ψ]] = f .

Finally, we prove that for every sequent Σ ⇒ Π ∈ S, Σ ⇒ Π is MG-valid
in 〈S, v〉. Suppose by contradiction that there is some Σ ⇒ Π ∈ S, which is
not MG-valid in 〈S, v〉. Then there exists some S-substitution μ, such that for
every ψ ∈ Σ: S, v |=MG μ[ψ], and for every ϕ ∈ Π : S, v �|=MGμ[ϕ]. Note that for
every φ ∈ Σ ∪ Π , μ̂[φ] is a substitution instance of φ. By property 5 of Γ ′ ∪ Δ′:
μ̂[φ] ∈ Γ ′∪Δ′. By (lem5), if μ̂[φ] ∈ Γ ′ then v[σ∗[μ̂[φ]]] = t, and if μ̂[φ] ∈ Δ′ then
v[σ∗[μ̂[φ]]] = f . By (lem2), μ[φ] ∼S σ∗[μ̂[φ]]. Since v is MG-legal, it respects
the ∼S-relation and so for every φ ∈ Σ∪Π : v[μ[φ]] = v[σ∗[μ̂[φ]]]. Thus μ̂[Σ] ⊆ Γ ′

and μ̂[Π ] ⊆ Δ′. But μ̂[Σ] ⇒ μ̂[Π ] has an S-cut-free proof from S in G (note
that μ̂[Σ] ⇒ μ̂[Π ] is obtained from Σ ⇒ Π by applying the substitution rule),
in contradiction to property 1 of Γ ′ ∪ Δ′.

Thus, all sequents of S are MG-valid in 〈S, v〉. However, by (lem5): Γ ⇒ Δ
is not MG-valid in 〈S, v〉 (recall that Γ ⊆ Γ ′ and Δ ⊆ Δ′). Thus S��MGΓ ⇒ Δ.

16 This is obvious if ti does not occur in Γ ⇒ Δ. If it occurs in Γ ⇒ Δ, then since
Γ ⇒ Δ satisfies the free-variable condition, ti does not contain variables bound in
this set and so ti ∈ T by definition of T.
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Abstract. Given a set of N strings A = {α1, . . . , αN} of total length n
over alphabet Σ one may ask to find, for each 2 ≤ K ≤ N , the longest
substring β that appears in at least K strings in A. It is known that
this problem can be solved in O(n) time with the help of suffix trees.
However, the resulting algorithm is rather complicated (in particular, it
involves answering certain least common ancestor queries in O(1) time).
Also, its running time and memory consumption may depend on |Σ|.

This paper presents an alternative, remarkably simple approach to
the above problem, which relies on the notion of suffix arrays. Once
the suffix array of some auxiliary O(n)-length string is computed, one
needs a simple O(n)-time postprocessing to find the requested longest
substring. Since a number of efficient and simple linear-time algorithms
for constructing suffix arrays has been recently developed (with constant
not depending on |Σ|), our approach seems to be quite practical.

1 Introduction

Consider the following problem:

(LCS) Given a collection of N strings A = {α1, . . . , αN} over alphabet Σ
find, for each 2 ≤ K ≤ N , the longest string β that is a substring of at
least K strings in A.

It is known as a generalized version of the Longest Common Substring (LCS)
problem and has a plenty of practical applications, see [Gus97] for a survey.

Even in the simplest case of N = K = 2 a linear-time algorithm is not
easy. A standard approach is to construct the so-called generalized suffix tree T
(see [Gus97]) for α1$1 and α2$2, which is a compacted symbol trie that captures
all the substrings of α1$1, α2$2. Here $i are special symbols (called sentinels)
that are distinct and do not appear in α1 and α2. Then, nodes of T are examined
in a bottom-up fashion and those having sentinels of both types in their subtrees
are listed. Among these nodes of T let us choose a node v with the largest string
depth (which is the length of the string obtained by reading letters along the path
from root to v). The string that corresponds to v in T is the answer. See [Gus97]
for more details.
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In practice, the above approach is not very efficient since it involves comput-
ing T . Several linear-time algorithms for the latter task are known (possibly,
the most famous one is due to Ukkonen [Ukk95]). However, suffix trees are still
not very convenient. They do have linear space bound but the hidden constants
can be pretty large. Most of modern algorithms for computing suffix trees have
the time bound of O(n log |Σ|) (where n denotes the length of a string). Hence,
their running time depends on |Σ|. Moreover, achieving this time bound requires
using balanced search trees to store arcs. The latter data structures further in-
crease constants in both time- and space-bounds making these algorithms rather
impractical. Other options include employing hashtables or assuming that |Σ|
is small and using direct addressing to access arcs leaving each node. These
approaches have their obvious disadvantages.

If one assumes that N and K are arbitrary then additional complications arise.
Now we are interested in finding the deepest (in sense of string depth) node v in
T such that the tree rooted at v contains sentinels of at least K distinct kinds.
Moreover, this routine should run in parallel for all possible values of K and
take linear time. This seems to be an involved task. A possible solution requires
answering Least Common Ancestor (LCA) queries on T in O(1) time, e.g. using
a method from [BFC00]. Reader may refer to [Gus97] for a complete outline.

In this paper we present an alternative approach that is based on the notion
of suffix arrays. The latter were introduced by Manber and Myers [MM90] in an
attempt to overcome the issues that are inherent to suffix trees. The suffix array
(SA) of string α having length n is merely an array of n integers that indicate
the lexicographic order of non-empty suffixes of α (see Section 2 for a precise
definition). Its simplicity and compactness make it an extremely useful tool in
modern text processing. Originally, an O(n log n)-time algorithm for constructing
SA was suggested [MM90]. This algorithm is not very practical. Subsequently,
much simpler and faster algorithms for computing SA were developed. We par-
ticularly mention an elegant approach of Kärkkäinen and Sanders [KS03]. A
comprehensive practical evaluation of different algorithms for constructing SA
is given in [PST07].

We present two algorithms. The first one, which is simpler, assumes that pa-
rameter K is fixed. It first builds an auxiliary string α by concatenating strings αi

and intermixing them with sentinels $i (1 ≤ i ≤ N) and then constructs the suf-
fix array for string α. Also, an additional LCP array is constructed. Finally, a
sliding window technique is applied to these arrays to obtain the answer. Alto-
gether, the running time is linear and does not depend on |Σ|.

The second algorithm deals with all possible values of K simultaneously. Its
initial stage stage is similar: string α, suffix array for α, and LCP array are
constructed. Then, Cartesian tree (CT) is constructed from LCP array. Finally,
a certain postprocessing aimed to count the number of distinct types of nodes
appearing in subtrees of CT is used. It should be noticed that this postprocessing
does not require answering any least common ancestor queries.

The paper is organized as follows. Section 2 gives a formal background, intro-
duces useful notation and definitions. It also explains the notion of suffix arrays
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and indicates how an auxiliary LCP array is constructed in linear time. Section 3
presents the algorithm for the case of fixed K. Finally, Section 4 considers the
general case when the value of K is not fixed.

2 Preliminaries

We shall start with a number of definitions first. In what follows we assume that
a finite non-empty set Σ (called an alphabet) is fixed. The elements of Σ are
letters or symbols. A finite ordered sequence of letters (possibly empty) is called
a string.

We assume the usual RAM model of computation [AUH74]. Letters are treated
just as integers in range {1, . . . , |Σ|}, so one can compare any pair of them in
O(1) time. This lexicographic order on Σ is linear and can be extended in a
standard way to the set of strings in Σ. We write α < β to denote that α
lexicographically precedes β; similarly for other relation signs.

We usually use Greek symbols to denote strings. Letters in a string are
numbered starting from 1, that is, for a string α of length k its letters are
α[1], . . . , α[k]. The length k of α is denoted by |α|. The substring of α from po-
sition i to position j (inclusively) is denoted by α[i..j]. Also, if i = 1 or j = |α|
then these indices are omitted from the notation and we write just α[..j] and
α[i..]. String β = α[..j] is called a prefix of α. Similarly, if β = α[i..] then β is
called a suffix of α. For a set of strings S let lcp(S) denote the longest common
prefix of all strings in S.

Recall that A stands for the collection of the input strings αi. We start with
an almost trivial observation:

Proposition 1. Let B = {β1, . . . , βm} ⊆ A be an arbitrary subset of A obeying
m ≥ K. Let γi be an arbitrary suffix of βi for each 1 ≤ i ≤ m. Solving (LCS)
amounts to computing the longest string among

lcp(γ1, . . . , γm)

where maximum is taken over all possible choices of subsets B and suffixes {γi}.
Let us combine the strings in A as follows:

α = α1$1α2$2 . . . αN$N (1)

Here $i are pairwise distinct sentinel symbols not appearing in strings of A. We
assume that these sentinels are lexicographically smaller than other (normal)
symbols. The lexicographic order between sentinels is not important.

String α captures all needed information about set A. For each index i (1 ≤
i ≤ N) and a position j in αi (1 ≤ j ≤ |αi|) one may consider the corresponding
position p(i, j) in α:

p(i, j) :=
i−1∑

k=1

(|αk| + 1) + j
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suffixes SA sorted suffixes lcp
1 mississippi 11 i 1
2 ississippi 8 ippi 1
3 ssissippi 5 issippi 4
4 sissippi 2 ississippi 0
5 issippi 1 mississippi 0
6 ssippi 10 pi 1
7 sippi 9 ppi 0
8 ippi 7 sippi 2
9 ppi 4 sissippi 1

10 pi 6 ssippi 3
11 i 3 ssissippi

Fig. 1. String mississippi, its suffixes, and the corresponding suffix and LCP arrays

Positions in α of the form p(i, j) are called essential ; the remaining positions
(those containing sentinels) are called unessential.

Let us employ the following metaphor: for each 1 ≤ i ≤ N and 1 ≤ j ≤ |αi| we
say that position p(i, j) is of type i (it corresponds to the i-th string). Remaining
(unessential) positions k in α are said to be of type 0.

Now taking into account the properties of sentinels one can easily derive the
following claim from Proposition 1:

Proposition 2. Let P = {p1, . . . , pm} be an arbitrary set of essential positions
in α such that elements of P are of at least K distinct types. Solving (LCS)
amounts to computing the longest string among

lcp
(
α[p1..], . . . , α[pm..]

)

where maximum is taken over all possible choices of P .

This does not seem very promising at the first glance. However, the longest com-
mon prefix computation exhibits a nice structure when it is applied to suffixes
of a fixed string (in our case, string α).

To explain this structure we first introduce the notion of suffix arrays. Let ω
be an arbitrary string of length n. Consider its non-empty suffixes

ω[1..], ω[2..], . . . , ω[n..]

and order them lexicographically. Let SA(i) denote the starting position of the
suffix appearing on the i-th place (1 ≤ i ≤ n) in this order:

ω[SA(1)..] < ω[SA(2)..] < . . . < ω[SA(n)..]

Clearly, SA is determined uniquely since all suffixes of ω are distinct. An example
is depicted in Fig. 1.

Since SA is a permutation of {1, . . . , n} there must be an inverse correspon-
dence. We denote it by rank; that is, rank is also a permutation of {1, . . . , n}
and

SA(rank(i)) = i holds for all 1 ≤ i ≤ n.
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Historically, the first algorithm to compute SA was due to Manber and My-
ers [MM90]; this algorithm takes O(n log n) time. Currently, simple linear-time
algorithms for this task are known, see [PST07] for a list. The latter linear time
bounds do not depend on |Σ|.

However, knowing SA is not enough for our purposes. We also have to precom-
pute the lengths of longest common prefixes for each pair of consequent suffixes
(with respect to the order given by SA). More formally,

lcp(i) :=
∣∣lcp

(
ω[SA(i)..], ω[SA(i + 1)..]

)∣∣ for all 1 ≤ i < n.

This gives rise to array lcp of length n − 1; we call it the LCP array of ω. The
latter array not only enables to answer LCP queries for consequent (w.r.t. SA)
suffixes of ω but also carries enough information to answer any such query.
Formally [MM90]:

Lemma 1. For each pair 1 ≤ i < j ≤ n one has
∣∣lcp

(
ω[SA(i)..], ω[SA(j)..]

)∣∣ = min
i≤k<j

lcp(k)

Knowing the suffix array, LCP array may be constructed in O(n2) time by
a brute-force method. However, an elegant modification ([KLA+01], see also
[CR03]) allows to compute the longest common prefix for a pair of consequent
suffixes in O(1) amortized time. The key is to compute these values in a particular
order, namely

lcp(rank(1)), lcp(rank(2)), . . . , lcp(rank(n))

The efficiency of this approach relies on the following fact [KLA+01]:

Lemma 2. lcp(rank(i + 1)) ≥ lcp(rank(i)) − 1 for each 1 ≤ i < n such that
rank(i) < n and rank(i + 1) < n.

Hence, when computing the value of lcp(rank(i + 1)) one can safely skip
lcp(rank(i)) − 1 initial letters of ω[i + 1..] and ω[SA(rank(i + 1) + 1)..]. This
easily implies the required linear time bound for the whole computation.

3 Fixed K: Sliding Window

We now proceed by describing the algorithm that solves (LCS) for a fixed value
of K. There are several reasons for considering this case separately. Firstly, this
problem also seems natural and the resulting approach is somewhat simpler.
Secondly, the techniques that we develop for this special case turn out to be
useful for the general problem.

The algorithm works are follows. It first combines the input strings into
string α of length L (see (1)) and invokes the suffix array computation algo-
rithm thus obtaining the suffix array SA for α. It also constructs array lcp in
O(L) time as described in Section 2.
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Refer to Proposition 2 and consider an arbitrary set of essential positions
P = {p1, . . . , pm} that contains positions of at least K distinct types. Replace
these positions with ranks by putting ri := rank(pi) and, thus, forming the
set R = {r1, . . . , rm}. Lemma 1 implies the equality

∣∣lcp
(
α[p1..], . . . , α[pm..]

)∣∣ = min
R−≤j<R+

lcp(j)

where R− := min R and R+ := maxR.
Let us consider a segment Δ ⊆ [1, L] and call it K-good if for i ∈ Δ posi-

tions SA(i) are of at least K distinct essential types. This enables us to restate
Proposition 2 as follows:

Proposition 3. The length of the longest common substring that appears in at
least K input strings is equal to

max
Δ

min
Δ−≤j<Δ+

lcp(j)

where Δ = [Δ−, Δ+] ranges over all K-good segments.

This formula is already an improvement (compared to Proposition 2) since it
only requires to consider a polynomial number of possibilities. Moreover, we
shall indicate how maximum in Proposition 3 can be found in O(L) time.

To this aim, note that if a K-good segment Δ is already considered then any
Δ′ ⊃ Δ cannot give us a bigger value of minimum. For each i one may consider
the segment Δi = [Δ−

i , Δ+
i ] obeying the following properties:

– Δi starts at position i;
– Δi is K-good;
– Δi is the shortest segment obeying the above conditions.

Here index i ranges over [1, L0], where L0 ≤ L is the smallest integer such that
segment [L0 + 1, L] is not K-good.

Note that due to our assumption that sentinels are strictly less than normal
letters, the first N elements of SA correspond to unessential positions occupied
by the sentinels. The algorithm does not need to consider these positions and
only examines segments ΔN+1, . . . , ΔL0 .

Put
w(i) := min

Δ−
i ≤j<Δ+

i

lcp(j) for all N < i ≤ L0.

and consider the sequence:

w(N + 1), w(N + 2), . . . , w(L0) (2)

Once the maximum among (2) is found, the problem is solved. We construct a
pipeline with the first stage computing the sequence of segments

ΔN+1, ΔN+2, . . . , ΔL0

and the second stage calculating the respective minima (2)
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Put Δi = [Δ−
i , Δ+

i ]. The first stage works as follows. It initially sets Δ−
N+1 :=

N + 1 and then advances the right endpoint Δ+
N+1 until getting a K-good seg-

ment. Then, on each subsequent iteration i it puts Δ−
i := i, Δ+

i := Δ+
i−1 and

again advances the right endpoint Δ+
i until Δi becomes K-good. (In case, no

such segment can be extracted, it follows that i > L0, so the end is reached.)

Lemma 3. Δi is the shortest K-good segment starting at i.

Proof. We claim that for any K-good segment [i, j] one has j ≥ Δ+
i−1. Indeed,

suppose towards contradiction that j < Δ+
i−1. Since [i, j] is K-good then so is

[i − 1, j]. The latter, however, contradicts the minimality of Δi−1.

To test in O(1) time if the current candidate forms a K-good segment the al-
gorithm maintains an array of counters c(1), . . . , c(N). For each N < j ≤ L
put t(j) to be the type of position SA(j) in α (recall that all these positions
are essential). For each index i (1 ≤ i ≤ N) the entry c(i) stores the number
of positions j in the current segment such that t(j) = i. Also, the number of
non-zero entries of c (denoted by npos) is maintained.

Initializing c and npos for ΔN+1 is trivial. Then, when the algorithm puts
Δ−

i = Δ−
i−1 + 1 it decrements the entry of c that corresponds to position i − 1

(which has just been removed from the window) and adjusts npos, if necessary.
Similarly, when the current segment is extended to the right, certain entries of
c are increased and npos is adjusted. To see whether the current segment is K-
good one checks if npos ≥ K. This completes the description of the first stage
of the pipeline. Note that it totally takes O(L) time.

The second stage aims to maintain the values (2) dynamically. This is done
by the following (possibly folklore) trick. Consider a queue Q that, at any given
moment i, holds the sequence of keys

lcp(Δ−
i ), lcp(Δ−

i + 1), . . . , lcp(Δ+
i − 1)

Increasing index i the algorithm dequeues value lcp(Δ−
i ) from the head of Q

(to account for the increase of Δ−
i ) and then enqueues some (possibly none)

additional values to the tail of Q (to account for the increase of Δ+
i , if any). The

total number of these queue operations is O(L).
We describe a method for maintaining the minimum of keys in Q under in-

sertions and removals and serving each such request in O(1) amortized time. A
queue Q that holds a sequence (q1, . . . , qm) may be simulated by a pair of stacks
S1 and S2. A generic configuration of these stacks during this simulation is as
follows (here 0 ≤ s ≤ m):

S1 = ( qs, qs−1, . . . , q1 )
S2 = ( qs+1, qs+2, . . . , qm ) (3)

Here stack elements are listed from bottom to top. Initially Q is empty, hence so
are S1 and S2. To enqueue a new key x (which becomes qm+1) to Q one pushes x
onto S2. This takes O(1) time. To dequeue q1 from Q consider two cases. If s > 0
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then S1 is non-empty; pop the top element q1 from S1. Otherwise, one needs
to transfer elements from S2 to S1. This is done by popping elements from S2

one after another and simultaneously pushing them onto S1 (in the same order).
By (3) these operations preserve the order of keys in Q. Once they are complete,
S1 becomes non-empty and the first case applies. To estimate the running time
note that any enqueued element may participate in an S2-to-S1 transfer at most
once. Hence, an amortized bound of O(1) follows.

Our algorithm simulates Q via S1 and S2, as explained above. Each Si is ad-
ditionally augmented to maintain the minimum among the keys it contains. This
is achieved by keeping minima m1, m2 and a pair of auxiliary stacks M1, M2.
When a new key x is pushed to Si the algorithm saves the previous minimum mi

in M i and updates mi by mi := min(mi, x). When an element is popped from Si

the algorithm also pops mi from M i.
Altogether these manipulations with Q, Si, M i, and mi take time that is

proportional to the number of operations applied to Q. The latter is known to
be O(L). Hence, the algorithm computes the sequence of minima (2) and chooses
the maximum (call it M(K)) among these values in O(L) time, as claimed.

Let the above maximum be attained by a segment Δ = [Δ−, Δ+] ⊆ [N +1, L].
Suppose that position SA(Δ−) in string α corresponds to some position j in some
input string αi. Now the desired longest common substring is αi[j..j+M(K)−1].

4 Arbitrary K: Cartesian Tree

Now we go back to the original problem (LCS) and no longer assume that the
value of K is given in advance. Similarly to Section 3, we start by constructing
string α, suffix array SA of α, and the corresponding LCP array.

The cornerstone of the algorithm is a novel postprocessing, which combines
the above information. Firstly, we need to overcome the following technical issue.
Recall from the previous section that t(j) ∈ {1, . . . , N} denotes the type of
position SA(j) in string α (N < j ≤ L). Also, a segment Δ is called K-good
if t(j) gives at least K distinct values while j ranges over Δ. According to
Proposition 3 to estimate the length of the common substring corresponding to
segment Δ one needs to compute minj lcp(j) where j ranges over Δ without its
right endpoint.

To simplify the matters we construct a new pair of arrays lcp′ and t′ (whose
elements are numbered starting from 1) by intermixing elements of lcp and t
with artificial values as follows:

lcp′ := ( ∞, lcp(N + 1), ∞, lcp(N + 2), . . . , lcp(L − 1), ∞ )
t′ := ( t(N + 1), 0, t(N + 2), 0, . . . , 0, t(L) )

Now for arrays lcp′ and t′ it is clear that the same segment Δ should be used
both for calculating the number of distinct non-zero values among t′(j), j ∈ Δ
and the respective minima min (lcp′(j) : j ∈ Δ).

We remind the reader the notion of Cartesian trees (see, e.g., [BFC00]). Let
A = (a1, . . . , an) be an arbitrary (possibly empty) sequence of items, and let



72 M.A. Babenko and T.A. Starikovskaya

each ai be assigned a real number key(ai). We associate a tree CT (A) with A
by the following rules:

– if n = 0 then CT (A) is the null tree (having no nodes);
– if n > 0 then let ai denote an item in A with the smallest key key(ai)

(the choice of i may not be unique); now CT (A) is constructed by taking
ai as its root, recursively constructing trees CTL := CT (a1, . . . , ai−1) and
CTR := CT (ai+1, . . . , an), and attaching CTL to ai as its left child and CTR

as its right child.

Proposition 4. Consider a pair 1 ≤ i ≤ j ≤ n and let lca(ai, aj) denote the
least common ancestor of nodes ai and aj in CT (A). Then

min
i≤k≤j

key(ak) = key(lca(ai, aj)).

Let L′ denote the length of lcp′ and t′. We construct a Cartesian tree CT taking
positions i ∈ {1, . . . , L′} as nodes and using values lcp′(i) as keys. For a node v
in CT let CTv denote the subtree rooted at v and z(v) — the number of distinct
non-zero values of t′(u) for u ∈ CTv.

The next reformulation of (LCS) is an immediate consequence of Proposi-
tion 4:

Proposition 5. The length of the longest common substring that appears in at
least K input strings is equal to maxv lcp′(v), where v ranges over all nodes
of CT such that z(v) ≥ K.

This provides us with the following two problems: how to construct CT from
lcp′ values and how to compute z values. The first task is easily solvable in O(L)
time (see, e.g., [BFC00]); we shall describe this method below.

The second task is more involved. Instead of working directly with values of z
consider an integer-valued function ζ on the nodes of CT such that

z(v) =
∑

u∈CTv

ζ(u).

Clearly, ζ is uniquely determined by z and vice versa. We construct ζ and
CT incrementally by scanning arrays lcp′ and t′ and adding, at the i-th step
(1 ≤ i ≤ L′), node i with key lcp′(i) and type t′(i).

The algorithm maintains a stack S = (S(1), . . . , S(m)) that holds nodes of
CT contained on the rightmost path (that is, the path formed by walking from
the root of CT and taking the right child on each step until reaching a null
reference). Here m is the length of the rightmost path, S(1) is the root of CT
(the bottom of the stack), and S(m) is the last node on the rightmost path (the
top of the stack).

Adding the first node 1 to CT is straightforward. Suppose that nodes 1, . . . , i
are already added to CT and the corresponding values of ζ are computed. To
insert node i + 1 into CT the algorithm iteratively pops a sequence of nodes
S(m), S(m − 1), . . . , S(l) from the stack as long as the last popped node S(l)
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δ
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S = (a, b, c, d) l = 3
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α

β

γ

δ

S

S = (a, b, w)

Fig. 2. Inserting a new node w into a Cartesian tree. Here key(a) ≤ key(b) < key(w) ≤
key(c) ≤ key(d).

obeys lcp′(S(l)) ≥ lcp′(i + 1). In particular, if lcp′(S(m)) < lcp′(i + 1) then
l := m + 1 and no nodes are popped. Tree CT is adjusted as follows (see Fig. 2
for an example):

– the right child of i + 1 is set to null;
– the left child of i + 1 is set to S(l) if l ≤ m or to null if l > m;
– node i + 1 is added to the end of the rightmost path.

The total time that is necessary to perform these operations for node i + 1 is
O(2 + Δm), where Δm denotes the decrease of m. By amortization, this easily
yields a linear time bound for the total process.

Now we need to explain how the values of ζ are changed by the insertion. If
t′(i + 1) = 0 then it suffices to put ζ(i + 1) := 0. Otherwise, let t′(i + 1) �= 0.
Clearly, we may only need to change values ζ(S(1)), . . . , ζ(S(l − 1)) (if any) and
to initialize ζ(i+1); other values of ζ correspond to subtrees of CT that are not
affected by the insertion.

At any given moment we assign ranks to the nodes of CT by the following
rule: for each 1 ≤ i ≤ m node S(i) and all nodes in its left subtree are of rank i.
For each possible type j ∈ {1, . . . , N} let max-rank(j) denote the maximum
rank of a node in CT having type j. In case no node of type j exists, we put
max-rank(j) := −∞.

Two cases are possible. Firstly, suppose l′ := max-rank(t′(i + 1)) ≥ l. This
means that prior to insertion of node i + 1 the first node of type t′(i + 1) (with
regard to the in-order traversal) was occurring in CTS(l). Then, the step is com-
pleted by putting ζ(i + 1) := 0.
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Secondly, let l′ < l (in particular, this case applies when l′ = −∞). The
algorithm assigns ζ(i+1) := 1 and decreases the value ζ(S(l′)) by 1 (if l′ > −∞).

It is easy to see that these changes are correct and produce the required values
of ζ. However, it remains to explain how the max-rank values are computed.
To this aim, we need a data structure for maintaining an array max-rank =
(max-rank(1), . . . , max-rank(N)) of these values. In addition to the standard
read and write requests, this array should also be capable of performing trimming
as follows: given a value l put

max-rank(j) := min(max-rank(j), l) for all 1 ≤ j ≤ N.

This operation is invoked to adjust the maximum ranks each time node S(l) is
turned into a left child of node i + 1.

A possible implementation is based on keeping, for each index 1 ≤ j ≤ N , an
integer timestamp last-write(j) that keeps the moment of time when this entry
was last updated. Also, instead of performing it directly, the algorithm maintains
the timestamp last-trim of the latest trimming operation (together with the
corresponding trimming parameter l). Now to get the actual value max-rank(j)
one compares last-write(j) with last-trim to see if trimming applies to the
currently stored value. With this implementation, each read access, write access
or trimming takes O(1) time.

Therefore, we can construct CT and compute the values of ζ in linear time.
Then, the values of z are computed from ζ in a bottom-up fashion. Simultane-
ously, for each possible value of z(i) we accumulate the largest value of lcp′(i)
and construct the array

max-lcp′(k) := max
(
lcp′(i) : z(i) = k

)
for all 2 ≤ k ≤ N.

The length of the longest common substring corresponding to a certain value
of K is

M(K) := max
(
max-lcp′(k) : k ≥ K

)
for all 2 ≤ K ≤ N. (4)

Hence, all values M(2), . . . , M(N) may be computed by an obvious recurrence.
The longest substrings themselves may also be easily extracted. For each node

v of CT enumerate the nodes in CTv via an in-order traversal and put u− (resp.
v+) to be the first (resp. the last) node in CTv such that t′(v−) �= 0 (resp.
t′(v+) �= 0). Clearly, computing all nodes v+ and v− takes linear time.

Now consider a fixed value of K. Let the maximum in (4) be attained by
some k ≥ K. Next, let v denote a node in CT such that z(v) = k. Nodes
v− and v+ give rise to a k-good segment Δ = [Δ−, Δ+] ⊆ [N + 1, L] obeying
the equality min (lcp(j) : Δ− ≤ j < Δ+) = M(K). The corresponding longest
common substring is constructed from Δ in the same way as in Section 3.
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Abstract. We prove that every rational language of words indexed by
linear orderings is definable in monadic second-order logic. We also show
that the converse is true for the class of languages indexed by countable
scattered linear orderings, but false in the general case. As a corollary we
prove that the inclusion problem for rational languages of words indexed
by countable linear orderings is decidable.

1 Introduction

In [4,6], Bruyère and Carton introduce automata and rational expressions for
words on linear orderings. These notions unify naturally previously defined no-
tions for finite words, left- and right-infinite words, bi-infinite words, and ordinal
words. They also prove that a Kleene-like theorem holds when the orderings are
restricted to countable scattered linear orderings; recall that a linear ordering is
scattered if it does not contain any dense sub-ordering. Since [4], the study of
automata on linear orderings was carried on in several papers. The emptiness
problem and the inclusion problem for rational languages is addressed in [7,11].
The papers [5,2] provide a classification of rational languages with respect to
the rational operations needed to describe them. Algebraic characterizations of
rational languages are presented in [2,21,20]. The paper [3] introduces a new
rational operation of shuffle of languages which allows to deal with dense order-
ings, and extends the Kleene-like theorem proved in [4] to languages of words
indexed by all linear orderings.

In this paper we are interested in connections between rational languages
and languages definable in a logical formalism. The main motivations are, on
one hand, to extend the classical results to the case of linear orderings, and on
the other hand to get a better understanding of monadic second order (shortly:
MSO) theories of linear orderings. Let us recall the state-of-the-art. In his semi-
nal paper [8], Büchi proved that rational languages of finite words coincide with
languages definable in the weak MSO theory of (ω, <), which allowed him to

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 76–85, 2008.
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prove decidability of this theory. In [9] he proved that a similar equivalence
holds between rational languages of infinite words of length ω and languages de-
finable in the MSO theory of (ω, <). The result was then extended to languages
of words indexed by a countable ordinal [10]. What can be said about MSO the-
ories for linear orderings beyond ordinals ? Using the automata technique, Rabin
proved decidability of the MSO theory of the binary tree [19], from which he de-
duces decidability of the MSO theory of Q, which in turn implies decidability of
the MSO theory of countable linear orderings. Shelah [24] (see also [12,26]) im-
proved model-theoretical techniques that allow him to reprove almost all known
decidability results about MSO theories, as well as new decidability results for
the case of linear orderings. He proved in particular that the MSO theory of
R is undecidable. Shelah’s decidability method is model-theoretical, and up to
now no corresponding automata techniques are known. This led Thomas to ask
[26] whether there is an appropriate notion of automata for words indexed by
linear orderings beyond the ordinals. As mentioned in [4], this question was an
important motivation for the introduction of automata over words indexed by
linear orderings.

In this paper we study rational languages in terms of definability in MSO
logic. Our main result is that, assuming the axiom of choice, every rational lan-
guage of words indexed by linear orderings is definable in MSO logic. The proof
does not rely on the classical encoding of an accepting run of an automaton
accepting the language, but on an induction on the rational expression denoting
the language. As a corollary we prove that the inclusion problem for rational
languages of countable linear orderings is decidable, which extends [7] where
the result was proved for countable scattered linear orderings. We also study
the converse problem, i.e. whether every MSO-definable language of words in-
dexed by linear orderings is rational. A key argument in order to prove this kind
of results is the closure of the class of rational languages under complementa-
tion. Carton and Rispal [21] proved (using semigroup theory) that the class of
rational languages of words indexed by countable scattered orderings is closed
under complementation; building on this, we prove that every MSO-definable
language of words indexed by countable scattered linear orderings is rational,
giving thus the equivalence between rational expressions and MSO logic in this
case. On the other hand we show that for every finite alphabet A the language
of words over A indexed by scattered orderings is not rational, while its com-
plement is. This proves that the class of rational languages of words over linear
orderings is not closed under complementation, and as a corollary of the pre-
vious results that this class is strictly included in the class of MSO-definable
languages.

The paper is organized as follows: we recall in Section 2 some useful definitions
related to linear orderings. Section 3 introduces rational expressions for words
over linear orderings. Section 4 recalls useful notions related to MSO. In Section 5
we show that rational languages are MSO-definable. Section 6 deals with the
converse problem. We conclude the paper with some open questions.
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2 Linear Orderings

In this section we recall useful definitions and results about linear orderings. A
good reference on the subject is Rosenstein’s book [22].

A linear ordering J is an ordering < which is total, that is, for any j �= k
in J , either j < k or k < j holds. Given a linear ordering J , we denote by −J
the backwards linear ordering obtained by reversing the ordering relation. For
instance, −ω is the backwards linear ordering of ω which is used to index the
so-called left-infinite words.

The sum of orderings is concatenation. Let J and Kj for j ∈ J , be linear
orderings. The linear ordering

∑
j∈J Kj is obtained by concatenation of the

orderings Kj with respect to J . More formally, the sum
∑

j∈J Kj is the set L
of all pairs (k, j) such that k ∈ Kj. The relation (k1, j1) < (k2, j2) holds if and
only if j1 < j2 or (j1 = j2 and k1 < k2 in Kj1). The sum of two orderings K1
and K2 is denoted K1 + K2.

Given two elements j, k of a linear ordering J , we denote by [j; k] the interval
[min (j, k), max (j, k)]. The elements j and k are called consecutive if j < k and if
there is no element i ∈ J such that j < i < k. An ordering is dense if it contains
no pair of consecutive elements. More generally, a subset K ⊂ J is dense in J if
for any j, j′ ∈ J such that j < j′, there is k ∈ K such that j < k < j′.

A cut of a linear ordering J is a pair (K, L) of intervals such that J = K ∪ L
and such that for any k ∈ K and l ∈ L, k < l. The set of all cuts of the ordering J
is denoted by Ĵ . This set Ĵ can be linearly ordered by the relation defined by
c1 < c2 if and only if K1 � K2 for any cuts c1 = (K1, L1) and c2 = (K2, L2).
This linear ordering can be extended to J ∪ Ĵ by setting j < c1 whenever j ∈ K1
for any j ∈ J .

The consecutive elements of Ĵ deserve some attention. For any element j of J ,
define two cuts c−j and c+

j by c−j = (K, {j} ∪ L) and c+
j = (K ∪ {j}, L) where

K = {k | k < j} and L = {k | j < k}. It can be easily checked that the pairs of
consecutive elements of Ĵ are the pairs of the form (c−j , c+

j ).
A gap of an ordering J is a cut (K, L) such that K �= ∅, L �= ∅, K has no

greatest element and L has no least element. An ordering J is complete if it has
no gap.

3 Words and Rational Expressions

Given a finite alphabet A, a word (aj)j∈J is a function from J to A which maps
any element j of J to a letter aj of A. We say that J is the length |x| of the word
x. For instance, the empty word ε is indexed by the empty linear ordering J = ∅.
Usual finite words are the words indexed by finite orderings J = {1, 2, . . . , n},
n ≥ 0. A word of length J = ω is usually called an ω-word or an infinite word.
A word of length ζ = −ω +ω is a sequence . . . a−2a−1a0a1a2 . . . of letters which
is usually called a bi-infinite word.

The sum operation on linear orderings leads to a notion of product of words
as follows. Let J and Kj for j ∈ J , be linear orderings. Let xj = (ak,j)k∈Kj be a
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word of length Kj, for any j ∈ J . The product
∏

j∈J xj is the word z of length
L =

∑
j∈J Kj equal to (ak,j)(k,j)∈L. For instance, the word aζ = b−ωaω of length

ζ is the product of the two words b−ω and aω of length −ω and ω respectively.
We now recall the notion of rational sets of words indexed by linear orderings

as defined in [4,3]. The rational operations include of course the usual Kleene op-
erations for finite words which are the union +, the concatenation · and the star
operation ∗. They also include the omega iteration ω usually used to construct
ω-words and the ordinal iteration � introduced by Wojciechowski [28] for ordinal
words. Four new operations are also needed: the backwards omega iteration −ω,
the backwards ordinal iteration −�, a binary operation denoted � which is a kind
of iteration for all orderings, and finally a shuffle operation which allows to deal
with dense linear orderings.

We respectively denote by N , O and L the classes of finite orderings, the class
of all ordinals and the class of all linear orderings. For an ordering J , we denote
by Ĵ∗ the set Ĵ \ {(∅, J), (J, ∅)} where (∅, J) and (J, ∅) are the first and last
cut. Given two sets X and Y of words, define

X + Y = {z | z ∈ X ∪ Y },
X · Y = {x · y | x ∈ X, y ∈ Y },

X∗ = {∏
j∈{1,...,n} xj | n ∈ N , xj ∈ X},

Xω = {∏
j∈ω xj | xj ∈ X},

X−ω = {∏
j∈−ω xj | xj ∈ X},

X� = {∏
j∈α xj | α ∈ O, xj ∈ X},

X−� = {∏
j∈−α xj | α ∈ O, xj ∈ X},

X � Y = {∏
j∈J∪Ĵ∗ zj | J ∈ L, zj ∈ X if j ∈ J and zj ∈ Y if j ∈ Ĵ∗}.

We denote by A� the set of words over A indexed by linear orderings. Note
that we have A� = (A � ε) + ε.

For every finite alphabet A, every n ≥ 1, and all languages L1, . . . , Ln ⊆ A�,
we define sh(L1, . . . , Ln) as the set of words w ∈ A� that can be written as
w =

∏
j∈J wj , where J is a complete linear ordering without first and last

element, and there exists a partition (J1, . . . , Jn) of J such that all Ji’s are
dense in J , and for every j ∈ J , if j ∈ Jk then wj ∈ Lk.

An abstract rational expression is a well-formed term of the free algebra over
{∅} ∪A with the symbols denoting the rational operations as function symbols.
Each rational expression denotes a set of words which is inductively defined by
the above definitions of the rational operations. A set of words is rational if it can
be denoted by a rational expression. As usual, the dot denoting concatenation
is omitted in rational expressions.

Automata which recognize languages of words indexed by linear orderings
were introduced in [4]. In the latter paper a Kleene-like theorem was also shown
for the special case of languages of words indexed by countable scattered linear
orderings. Recall that a linear ordering is scattered if it does not contain any
dense sub-ordering. The general case of words indexed by all linear orderings
was proven in [3]. We refer e.g. to these papers for more details about automata;
in this paper we shall deal only with rational expressions.
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4 Monadic Second-Order Logic

In this section we recall useful elements of monadic second-order logic, and settle
some notations. For more details about MSO logic we refer e.g. to Thomas’
survey paper [27]. Monadic second-order logic is an extension of first-order logic
that allows to quantify over elements as well as subsets of the domain of the
structure.

Given a signature L, one can define the set of MSO-formulas over L as well-
formed formulas that can use first-order variable symbols x, y, . . . interpreted as
elements of the domain of the structure, monadic second-order variable symbols
X, Y, . . . interpreted as subsets of the domain, symbols from L, and a new bi-
nary predicate x ∈ X interpreted as “x belongs to X”. We call MSO sentence
any MSO formula without free variable. As usual, we will often confuse logical
symbols with their interpretation. Moreover we will use freely abreviations such
as ∃x ∈ X ϕ, ∀X ⊆ Y ϕ, ∃!tϕ, and so on.

Given a signature L and an L−structure M with domain D, we say that a
relation R ⊆ Dm × (2D)n is MSO-definable in M if and only if there exists a
MSO-formula over L, say ϕ(x1, . . . , xm, X1, . . . , Xn) which is true in M if and
only if (x1, . . . , xm, X1, . . . , Xn) is interpreted by an (m + n)−tuple of R.

Given a finite alphabet A, let us consider the signature LA = {<, (Pa)a∈A}
where < is a binary relation symbol and the Pa’s are unary predicates (over first-
order variables). One can associate to every word w = (aj)j∈J over A (where aj ∈
A for every j) the LA−structure Mw = (J ; <; (Pa)a∈A) where < is interpreted as
the ordering over J , and Pa(x) holds if and only if ax = a. In order to take into
account the case w = ε, which leads to the structure Mε which has an empty
domain, we will allow structures to be empty. Given a MSO sentence ϕ over the
signature LA, we define the language Lϕ as the set of words w over A such that
Mw |= ϕ. We will say that a language L over A is definable in MSO logic (or
MSO-definable) if and only if there exists a MSO-sentence ϕ over the signature
LA such that L = Lϕ.

5 Rational Languages are MSO-Definable

Büchi’s proof [8] that every rational language L of finite words is definable in
MSO logic relies on the encoding of an accepting run of an automaton A rec-
ognizing L. Given a word w, one expresses the existence of a successful path in
A labeled by w, by encoding each state of the path on a position of w, which is
possible because - up to a finite number of elements - the underlying ordering of
the path is the same as the one of the word. This property still holds when one
considers infinite words of length ω, and more generally of any ordinal length.
However it does not hold anymore for words indexed by all linear orderings,
since for a word of length J , the path of the automaton is defined on the set Ĵ
of cuts of J (see [4]), and in general Ĵ can be quite different from J - consider
e.g. the case J = Q for which J is countable while Ĵ is not. Thus in our situ-
ation there seems to be no natural extension of the classical Büchi’s encoding



Logic and Rational Languages of Words Indexed by Linear Orderings 81

technique. In order to overcome this issue, we use a proof by induction over
rational expressions.

Proposition 1. (Assuming the Axiom of Choice) For every finite alphabet A
and every language L ⊆ A�, if L is rational then it is definable in monadic
second-order logic.

Let us give a quick outline of the proof. One proves that for every rational
language L there exists a MSO formula ϕ(X) over the signature LA such that for
every word w over A indexed by some linear ordering J , we have w ∈ L if and only
if Mw satisfies ϕ when X is interpreted by J . This yields Proposition 1 since every
rational language L can then be defined by the MSO sentence ∃X(ϕ(X)∧∀x x ∈
X). The proof proceeds by induction on the rational expression denoting L; this
approach is not new, see e.g. [15] where it is used in the case of finite words.
The case of the empty word, as well as the one of singletons, union and product
operations, are easy. For the other rational operations one has to find a way to
express that the set X can be partitioned in some way in intervals. Consider
for instance the case of the ω-power operation. Assume that L is definable by
the MSO formula ϕ(X). Then Lω could be defined by a MSO formula which
express the existence of a partition of X in a sequence (Yi)i∈ω of intervals Yi

such that ϕ(Yi) holds for every i. Since the existence of such a partition cannot
be expressed directly in MSO, one reformulates this property as the existence
of a partition of X in two subsets X1, X2 such that every Yi corresponds to
an interval which consists in elements of X1 only, or elements of X2 only, and
which is maximal for inclusion among such intervals. These maximal intervals
are definable in MSO in terms of X, X1 and X2, and moreover one can express
that the order type of the sequence of these maximal intervals is ω. This allows
to find a MSO formula which defines Lω. The idea of interleaving finitely many
subsets in order to encode some partition of X in intervals is also used for the
other rational operations.

We illustrate Proposition 1 with several examples, over the alphabet A =
{a, b}.

Example 1. Let L1 be the set of words w = (aj)j∈J (with aj ∈ A) such that J
has a least element j0 with aj0 = a, and aj = b for some j ∈ J . This language
can be represented by the rational expression aA�bA�. It is also MSO-definable
by the sentence

∃x∃y(Pa(x) ∧ Pb(y) ∧ ¬∃z z < x).

Example 2. Let L2 be the set of words indexed by a linear ordering J such that
the set of positions j ∈ J for which wj = a (respectively wj = b) is dense in
J . This language can be represented by the rational expression sh(a, b, ε). It is
MSO-definable by the sentence

∀x∀y(x < y =⇒ ∃z∃t(x < z < y ∧ Pa(z) ∧ x < t < y ∧ Pb(t))).
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Example 3. The language L3 = aωa−ω is definable in MSO by the formula

∀xPa(x) ∧ ∃X1∃X2(∀x (x ∈ X1 ↔ x �∈ X2)
∧∀x∀y((x ∈ X1 ∧ y ∈ X2) → x < y)
∧Omega(X1) ∧ MinusOmega(X2))

where Omega(X1) (respectively MinusOmega(X2)) expresses that the order type
of X1 is ω (respectively −ω). One can show that the predicates Omega and
MinusOmega are MSO-definable.

Example 4. The language L4 of words whose length is a complete ordering can
be represented by the rational expression (ε + sh(a + b)) � (a + b). It is also
MSO-definable by the sentence

∀Y ((∃xϕ(x, Y )) =⇒ (∃x(ϕ(x, Y ) ∧ ∀z(ϕ(z, Y ) =⇒ x ≤ z))))

where ϕ(x, Y ) is an abbreviation for ∀y ∈ Y y ≤ x.

Example 5. Consider the language L5 of words over A whose length is a non-
scattered ordering. It follows from [22, chap. 4] that L5 consists in words w which
can be written as w =

∏
k∈K wk where K is a dense ordering, and wk �= ε for

every k ∈ K. From this decomposition one can deduce that a convenient rational
expression for L5 is sh(A�(a + b)A�, ε). The language L5 can also be defined by
the following MSO formula

∃X(∃x1 ∈ X ∃x2 ∈ X x1 < x2

∧∀y1 ∈ X ∀y2 ∈ X(y1 < y2 =⇒ ∃z ∈ X(y1 < z ∧ z < y2))).

Combining Proposition 1 and Rabin’s result [19] about the decidability of the
MSO theory of countable linear orderings, yields the following result.

Corollary 1. The inclusion problem for rational languages of words over count-
able linear orderings is decidable.

This improves [7] where the authors prove the result for words over scattered
countable linear orderings.

6 MSO-Definable Languages vs Rational Languages

In this section we consider the problem whether MSO-definable languages are
rational. The answer is positive if we consider words indexed by countable scat-
tered linear orderings. Indeed we can prove the following result.

Proposition 2. For every finite alphabet A and every language L of words over
A indexed by countable scattered linear orderings, L is rational if and only if it
is MSO-definable.
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As for the finite words case, the proof that L = Lφ for some MSO sentence φ
implies that L is rational relies on the construction of an automaton accepting
L, by induction on the structure of φ. The effectiveness of this construction,
together with the decidability of the emptiness problem for automata on words
indexed by countable scattered linear orderings [11], yield the following corollary.

Corollary 2. The monadic second order theory of countable scattered linear
orderings is decidable.

Note that the latter result is also a direct consequence of Rabin’s result [19] about
the decidability of the MSO theory of countable linear orderings (the property
“to be scattered” is expressible in the latter theory).

Proposition 2 does not hold anymore if we consider languages of words indexed
by all linear orderings. Indeed consider, for every finite alphabet A, the language
SA of words over A indexed by scattered linear orderings, i.e. the complement
of the language L5 of Example 5. Since L5 is definable in MSO, the same holds
for SA. However one can show by a pumping argument that no automaton can
recognize SA. This fact together with the equivalence between rational languages
and languages recognizable by automata [3] yield the following result.

Proposition 3. For every finite alphabet A, the language SA of words over A
indexed by scattered linear orderings is not rational.

On the other hand the language L5 was shown to be rational. Thus we can
deduce the following result from Propositions 1 and 3.

Corollary 3. For every finite alphabet A, the class of rational languages over
A is not closed under complementation, and is strictly included in the class of
MSO-definable languages.

7 Open Questions

Let us mention some related problems. It would be interesting to determine
which syntactic fragment of the monadic second-order theory captures rational
languages. The proof of Proposition 1, which uses an induction on the rational ex-
pression, gives rise to defining formulas where the alternation of (second-order)
quantifiers is unbounded. However if we consider the special form of formu-
las used in the proof, together with classical techniques of re-using variables
we can show that every rational language can be defined by MSO formulas of
the form ∀X1 . . . ∀Xm∃Y1 . . . ∃Yn∀Z1 . . . ∀Zp ϕ, where ϕ has no monadic second-
order quantifier. We already know that the ∀∃∀-fragment of MSO contains non-
rational languages, since by Proposition 3 the language of words indexed by
scattered orderings, which can be defined by a ∀-formula, is not rational. Thus it
would be interesting to know the expressive power of smaller syntactic fragments
with respect to rational languages, and in particular the existential fragment.
Recall that for the MSO theory of ω (and more generally any countable ordinal)
the existential fragment is equivalent in terms of expressive power to the full



84 N. Bedon et al.

theory. This comes from the fact that the formula encoding a successful run of
an automaton is existential (for second-order variables). In our context the ex-
istential fragment does not capture all rational languages, as one can prove e.g.
that the language aω is not existentially definable. We conjecture that the class
of languages definable by existential formulas is strictly included in the class of
rational languages.

Another related problem is the expressive power of first-order logic. For finite
words the McNaughton-Papert Theorem [14] shows that sets of finite words de-
fined by first-order sentences coincide with star-free languages. Schützenberger
gave another characterization of star-free sets, based on the equivalence of au-
tomata and an algebraic formalism, the finite monoids, for the definition of sets
of finite words. He proved that the star-free sets are exactly those definable by
a finite group-free monoid [23]. This double equivalence of Schützenberger, Mc-
Naughton and Papert was already extended to the infinite words by Ladner [13],
Thomas [25] and Perrin [17], to words whose letters are indexed by all the rel-
ative integers by Perrin and Pin [17,16,18], and to the countable ordinals case
by Bedon [1]. We already know [2] that a language of countable scattered linear
orderings is star-free if and only if its syntactic �-semigroup is finite and ape-
riodic. However, one can show that first-order definable languages of countable
scattered linear orderings do not coincide any more with star-free and aperiodic
ones [2,22]. It would be interesting to characterize languages which are first-order
definable.
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Abstract. The coloured Tutte polynomial by Bollobás and Riordan is,
as a generalization of the Tutte polynomial, the most general graph
polynomial for coloured graphs that satisfies certain contraction-deletion
identities. Jaeger, Vertigan, and Welsh showed that the classical Tutte
polynomial is #P-hard to evaluate almost everywhere by establishing
reductions along curves and lines.

We establish a similar result for the coloured Tutte polynomial on
integral domains. To capture the algebraic flavour and the uniformity
inherent in this type of result, we introduce a new kind of reductions,
uniform algebraic reductions, that are well-suited to investigate the evalu-
ation complexity of graph polynomials. Our main result identifies a small,
algebraic set of exceptional points and says that the evaluation problem
of the coloured Tutte is equivalent for all non-exceptional points, under
polynomial-time uniform algebraic reductions.

1 Introduction

Graph polynomials map directed or undirected graphs to polynomials in one or
more variables, such that this mapping is invariant under graph isomorphisms.
Their purpose is to study the combinatorial properties of graphs using alge-
braic and analytic properties of the associated polynomials. Probably the most
famous graph polynomials are the chromatic polynomial χ(G; x) and its gen-
eralization, the Tutte polynomial T (G; x, y). The chromatic polynomial is the
polynomial in the variable x that counts the number of proper x-colourings of a
given undirected graph (cf. [8] for an extensive modern exposition). Surprisingly,
χ(G; −1) has a combinatorial interpretation, too: It counts the number of acyclic
orientations [17].
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Certain evaluations of the Tutte polynomial T in two variables x and y have in-
terpretations in different fields of combinatorics. For example, T (G; 1, 1) counts
the number of spanning trees, T (G; 1, 2) counts the number of spanning sub-
graphs of an undirected graph G. Similarly the number of nowhere-zero flows,
acyclic and Eulerian orientations can be obtained. Furthermore, the chromatic
polynomial and the Jones polynomial of an alternating link can be derived from
the Tutte polynomial via suitable substitutions and very simple algebraic trans-
formations [5,18].

Due to its rich combinatorial content, it is natural to analyze variations and
generalization of the Tutte polynomial. Bollobás and Riordan [6] introduce the
coloured Tutte polynomial and prove that it is the most general graph invariant
that satisfies certain contraction-deletion identities. Related are the polynomials
by Kauffman [11] and Sokal [16]. While the classical Tutte polynomial is in two
variables, the coloured Tutte polynomial is defined on edge-coloured graphs,
introducing four variables for every colour, and also some additional variables
for initial conditions.

The purpose of this paper is the complexity analysis of and the reducibilities
between evaluations of the coloured Tutte polynomial. For this, we propose a
new kind of reductions, (uniform) algebraic reductions, that seems to be more
suited for the complexity analysis of graph polynomials: Graph polynomials have
two components, a combinatorial one, the graph, and an algebraic one, the val-
ues. So far, only the usual polynomial-time many-one or Turing reductions have
been used for the complexity analysis. If one wants to talk about evaluations
at irrational points like

√
2 or some root of unity –points that have meaningful

interpretations for certain graph polynomials– there is no natural way of repre-
senting these points in a discrete setting. Jaeger, Vertigan, and Welsh [10] just
adjoin the value they are interested in to Q, but also admit that this is an ad
hoc solution. Our reductions take care of this issue by also having two parts.

The combinatorial part of our reductions transforms the graph using a usual
polynomial-time computable function from Σ∗ → Σ∗, mapping encodings of
graphs to encodings of graphs. The algebraic part transforms the evaluation
points and values in polynomial time, but these transformations are now re-
stricted to be rational mappings and can be naturally extended to C.

Previous Results. Jaeger, Vertigan, and Welsh [10] have shown that, except
along one hyperbola and at four special rational and five special complex points,
computing the Tutte polynomial is #P-hard. To show this, they construct for
each non-exceptional evaluation point (a, b) a reduction to a point where evaluat-
ing the Tutte polynomial is already known to be #P-hard. All their reductions
are very similar and depend only, and in some sense uniformly, on the point
(a, b). However, this uniformity is not spelled out in their paper.

Recently, Lotz and Makowsky [13] proved that the coloured Tutte polynomial
is complete for Valiant’s algebraic complexity class VNP, and Goldberg and Jer-
rum [9] showed that the classical Tutte polynomial is inapproximable for large
parts of the Tutte plane. Although not spelling out the inherent algebraicity and
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uniformity, many reductions in graph polynomials are of that type, among them
are some reductions in matching polynomials [1], in the interlace polynomial [3],
and in the cover polynomial [2].

Our Contribution. In the first main part, we introduce the notion of uniform
and non-uniform algebraic reductions which spell out what Jaeger, Vertigan, and
Welsh [10] had in mind in capturing combinatorial and algebraic aspects of graph
polynomials (Sec. 3). For these reduction types, we prove that “#P-complete”
graph polynomials can be uniformly reduced to any #P-hard numerical graph
invariant (Sec. 4).

In the second main part, we establish the #P-hardness of the coloured Tutte
polynomial under uniform algebraic reductions on all but a few exceptional
evaluation points (Sec. 7 to 9). We also show in Sec. 7 how to carry over the inap-
proximability results of Goldberg and Jerrum [9] to the coloured Tutte polyno-
mial using a simple approximation-preserving reduction from the classical Tutte
polynomial.

The situation at the exceptional points for the coloured Tutte polynomial is
less clear than for the classical Tutte polynomial, because of the larger number of
possible colours involved. It seems that evaluating the coloured Tutte polynomial
at the exceptional points is computable in polynomial time, as is the case in the
classical Tutte polynomial. However, in [10] this is proven with sometimes very
different proofs, which do not exhibit a common feature.

Our results also confirm the Uniform Difficult Point Conjecture [15] for the
coloured Tutte polynomial, and our reductions can be used to analyze graph
polynomials in a more general context, as described in [14,15].

2 Preliminaries

Coloured graphs. Let IN = {0, 1, . . .}. The graphs in this paper are undirected
multigraphs G = (V, E) with parallel edges and loops allowed. By Λ, we denote
a fixed finite set of colours, and c : E → Λ is called colouring. We denote by G
the set of all graphs G and by Gc the set of all coloured graphs (G, c). We
write n(G) for the number of vertices, m(G) for the number of edges, and k(G)
for the number of connected components of G. Two coloured graphs are called
isomorphic if there is a bijective mapping on the vertices that transforms one
graph into the other, thereby maintaining the colours.

Polynomials. Polynomials p(x1, . . . , xv) are elements of a polynomial ring
Q[x1, . . . , xv]. We write Q(x1, . . . , xv) for its field of fractions.

Any univariate polynomial can be interpolated if sufficiently many point-value
pairs are known. For multivariate polynomials, this is not always true, since the
points must also be positioned nicely, e.g. in a grid. If, for a bivariate polynomial
p(x, y) of maximal degree d, the values at the points (xα, yα) for α = 1, . . . , n
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with n = (d + 1)2 are known, p can be interpolated if, in addition, the bivariate
Vandermonde matrix V2 is non-singular:

V2 =

⎡

⎢⎢⎢⎣

1 x1 y1 x1y1 · · · xi
1y

j
1 · · · xd

1y
d
1

1 x2 y2 x2y2 · · · xi
2y

j
2 · · · xd

2y
d
2

...
...

1 xn yn xnyn · · · xi
nyj

n · · · xd
nyd

n

⎤

⎥⎥⎥⎦ .

Graph invariants. A graph invariant is a function f : G → F , mapping
elements from G to some set F , such that all pairs of isomorphic graphs G
and G′ have the same image under f . If F ⊆ Q, then f is called a numeric
graph invariant. A parameterized numeric graph invariant (PNGI) is a function
f : G×INv → IN which is invariant under graph isomorphisms. If, for each G ∈ G,
the function f(G; ) is a polynomial, then f is called graph polynomial. In this
case, f has a natural extension to C, which we use sometimes. Graph invariants
and PNGI’s for coloured graphs are defined in an analogous manner.

The chromatic polynomial χ(G; x) is the polynomial in x with the property
that χ(G; Q), for Q ∈ IN, is the number of ways to colour the vertices of a graph
with Q colours such that adjacent vertices have different colours.

3 Uniform Algebraic Reductions for Graph Polynomials

We want to study reducibilities between evaluations of PNGI’s, that is, between
the parameter-free numeric graph invariants f(k) := f( ; k) for fixed k ∈ Cv.

It is widely accepted that the Tutte polynomial is combinatorially speaking
strictly more expressive than the chromatic polynomial. Under usual polynomial-
time Turing reductions, however, both graph polynomial are equivalent since
they are both #P-complete (if restricted to positive integers) and can thus be
reduced to each other. We now introduce a notion of uniform reducibility which
comes closer to capture the intuitively accepted hierarchy between graph poly-
nomials and PNGI’s.

Definition 1. Let f and g be two PNGI’s. Denote by v and w the numbers
of variables of f and g, respectively. Let x = x1, . . . , xv and y = y1, y2, . . . be
distinct variable symbols.

(i) We say f algebraically reduces to g uniformly, or f �p
AU g, if there exist

(a) a parameterized rational function A : G → Q(x, y),
(b) functions r : IN × G → G, and
(c) parameterized rational substitutions σ : IN → (Q(x))w,
all polynomial-time computable, such that, for every G ∈ G, the following
identity holds for all possible values of x:

f(G; x) = A(G)
[
yi := g

(
Gi; xi

)]
,
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where Gi = r(i, G) and xi = σ(i). The brackets indicate that the vari-
ables yi of the preceding polynomial are substituted by g(Gi; xi). So basi-
cally, for given G, we express f(G; x) in terms of a rational expression in x
and yi = g(Gi; xi), where the xi are again rational in x.

(ii) If all the graph transductions r(i, ) are the identity we say, that f is a
substitution instance of g and we write f �p

SUB g.
(iii) We say f (algebraically) parsimoniously many-one reduces to g in polyno-

mial time, or f �p g, if A(G) = y1 for all G ∈ G.
(iv) We say that f (non-uniformly) algebraically reduces to g if, for all fixed

k ∈ Qv, the parameter-free graph invariant f(k) = f( ; k) is uniformly
reducible to g, that is, f(k) �p

AU g for all k. So basically, every k has its
own Ak, rk, and σk.

(v) A meaningful way of algebraically reducing any function h : Σ∗ → IN to a
parameter-free numeric graph invariant g is by mapping the input x ∈ Σ∗

to graphs Gi = r(i, x) and then write h(x) as a rational function A(x) in
the oracle queries yi = g(Gi).

The function r transforms the given graph G into graphs Gi, the function σ
transforms the given point x into new points xi. Since the function A runs in
polynomial time, only a polynomial number of the variables yi can be introduced,
that is, only a polynomial number of oracle queries g(Gi; xi) take place. The
outputs of these queries are combined using a rational expression in the helper
variables yi, which get later substituted by the g(Gi; xi).

Our reductions are uniform because they are independent of x. Our reductions
are algebraic because the input substitutions before calling oracle g and the
processing of the oracle outputs are bound to be rational transformations.

In general, the numbers of variables v and w do not have to be equal. One
particularly important case is w = 0. Uniform algebraic reductions are similar
to straight-line programs with oracle g (cf. [13], e.g.).

It is clear what it means that the functions r are polynomial time computable,
and, as long as we work over Q, this is also clear for σ or A, using a binary
representation of the inputs. For ease of presentation, we restrict ourselves to Q,
but we can easily extend all our results to fields like IR or C since rational
functions over Q naturally extend to IR or C. Over IR or C, we can use the
BSS-model [4] or a uniform variant of Valiant’s model (cf. [7], e.g.) to define
polynomial-time computable rational functions. Since these are unit cost models,
the reductions become more powerful. However, the reductions in this work have
the nice feature that their restrictions to Q are polynomial-time computable in
ordinary bit models.

4 Hardness vs. Uniform Reductions

One way to state results about the complexity of a graph polynomial is to give
a dichotomy theorem as in [10]: the points are partitioned completely into #P-
hard points and easy points. But #P-hardness alone does not tell us, whether
or not we can reduce the evaluation at one point to the evaluation at another
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point. Furthermore, it is not clear whether hard points capture the whole graph
polynomial in a uniform way.

Recall that graph polynomials are functions f : G × INv → IN. Thus, encoding
the input of f in binary, the statement f ∈ #P makes sense. Furthermore, for
typical f one often knows some particular point k0 such that the numeric graph
invariant f(k0) = f( ; k0) is #P-hard (in the Tutte polynomial, this might a-
priori be the number of three-colourings). For such f , we prove that uniform
and non-uniform reducibility to a parameter-free numeric graph invariant and
the hardness of that invariant are equivalent.

Theorem 1. Let f ∈ #P be a graph polynomial in v variables such that f(k0)
is #P-hard under polynomial-time algebraic reductions, for some k0. Let g be a
parameter-free numeric graph invariant. The following statements are equivalent:

(i) It holds f �p
AU g.

(ii) For every k, it holds f(k) �p
A g.

(iii) The function g is #P-hard under polynomial-time algebraic reductions.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are trivial.
Now we prove (iii) ⇒ (i). From the assumptions, we get f �p

A g, where we see f
as a #P-function and the reduction in the sense of part (v) in Definition 1. Thus,
there exist a function r′ : IN × (G × INv) → G, mapping some parameter from IN
and instances of f to instances of g in polynomial time, and a parameterized
rational function A′ : G × INv → Q(y1, y2, . . . ) such that

f(G; j) = A′(G, j)
[
yi := g

(
Gi,j

)]
,

with Gi,j := r′(i, (G, j)) holds for all (G, j) ∈ G×INv. We assume that the reduc-
tion is such that, for all G, the non-zero variables yi are distinct for different j,
so we can write yi,j for the variable to be replaced by g(Gi,j).

Let dG be the maximal degree of the polynomial f(G; x). Given G ∈ G as an
input, we compute f(G; x) in a uniform way from g as follows. First we express
the values f(G; j) in terms of algebraic expressions A′(G, j) in the variables
yi,j = g(Gi,j) using the reduction from above, and we do that for all j in the
grid {0, 1, . . . , dG}v. Formally, the graph transductions r : IN × G → G interpret
the parameter as a pair 〈i, j〉 ∈ IN encoded as a nonnegative integer: We define
the graph transductions to be r(〈i, j〉, G) := Gi,j = r′(i, (G, j)).

Next we apply multivariate interpolation to the point-value pairs (j, f(G; j))
of the grid, that is, we choose A(G) to be an interpolation polynomial. Such
a polynomial can be derived from the v-variate Vandermonde matrix Vv with
evaluation points j and from the solution vector b with entries f(G; j). Using
the entries of V −1

v b as the coefficients of a polynomial in x, we get an explicit
representation of f(G; x) in terms of rational expressions in x and g. 	

For PNGI’s f that are not graph polynomials, the proof above does not work.
Furthermore, it is enough to assume that f is in the closure of #P under
polynomial-time algebraic reductions. Any natural graph polynomial seems to
have this weaker property.
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If we look at the special case g = f( ; k′) for fixed k′, we can answer the
question raised in the beginning of this section. Statement (iii) is the kind of
hardness result that is widely used for graph polynomials. At first glance, one
might conjecture (i) to be a much stronger property. But our theorem says that
this intuition is not true if we have #P-hardness under algebraic reductions.

5 The Bollobás-Riordan Polynomial

The coloured Tutte polynomial [6] or Bollobás-Riordan polynomial is the most
general graph polynomial which can be defined by a spanning tree expansion or
a contraction-deletion identity.

The Bollobás-Riordan polynomial of a coloured graph G is a polynomial in the
variables γk, Xλ, Yλ, xλ, and yλ for k ∈ IN and λ ∈ Λ. For a graph G, a colouring
c : E → Λ, and a (bijective) ordering of the edges Φ : E → {1, · · · , m}, we define
the weight of an edge e of colour λ with respect to a spanning forest F ⊂ E to
be

w(G, c, Φ, F, e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xλ if e is internally active,
Yλ if e is externally active,
xλ if e is internally inactive,
yλ if e is externally inactive.

Here we say that an edge {u, v} = e ∈ F is internally active if it is the first
edge of E (with respect to Φ) that touches the connected components of u and
v in F − e, and internally inactive, otherwise. An edge e ∈ E − F is said to be
externally active if it is the first edge of the unique cycle in F ∪ e, and externally
inactive, otherwise. The Bollobás-Riordan polynomial is defined as

Tcol(G, c, Φ) = γk(G)

∑

F ⊂ E(G)

∏

e∈E

w(G, c, Φ, F, e), (1)

where the sum is over all spanning forests of G. In order to remove the depen-
dence on the order, computation must be modulo some ideal I ′0. For an arbitrary
ideal I ⊃ I ′0, we define the quotient ring in which the coloured Tutte polyno-
mial lives as R = ZZ [γk, Xλ, Yλ, xλ, yλ : k ∈ IN, λ ∈ Λ]

/
I. In the case that R is

an integral domain, Bollobás and Riordan [6] prove that Tcol on R is a graph
invariant, i.e. independent from the order Φ if and only if, in the polynomial
ring R, it holds either

Xλyμ − yλXμ = xλYμ − Yλxμ = xλyμ − yλxμ (2)

for all colours λ and μ, or γk = 0 for all k, or Xλ = Yλ = 0 for all colours λ. (The
ideal I ′0 establishes exactly this situation). Let us write Tcol(G, c) = Tcol(G, c, Φ)
in R for an arbitrary ordering Φ since the ordering is now negligible. We abbre-
viate Tcol(G) = Tcol(G, c).
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In what follows, we assume that I is chosen in such a way that R is an integral
domain, that is, if pq = 0 then p = 0 or q = 0 in R, for all p, q ∈ R. Furthermore,
we assume that we are not in the second case, that is, we assume γk �= 0 and
either Xλ �= 0 or Yλ �= 0 for some k and λ. In the second case we would have
Tcol(G) = 0 for all graphs G which is not very interesting.

The Tutte polynomial T (G; x, y) of a graph G is the instance of the Bollobás-
Riordan polynomial with Xλ = x, Yλ = y, xλ = yλ = γk = 1 for all λ and k. It is
known that χ(G; x) = (−1)k(G)T (G; 0, 1 − x) holds. The standard #P-hardness
proof [12] for the chromatic polynomial χ actually uses algebraic reductions:

Lemma 1. The numerical graph invariantsχ( ; 0),χ( ; 1),χ( ; 2) are polynomial-
time computable, and all other χ( ; Q) are #P-hard under polynomial-time alge-
braic reductions.

6 Evaluations

An evaluation point σ : R → Q is an arbitrary ring homomorphism mapping
the variables that may occur in the coloured Tutte polynomial to rationals,
such that σ(xλyμγk) �= 0 for all λ, μ, and k. Note that this restriction excludes
only computationally trivial cases that can be eliminated in polynomial time by
applying the contraction-deletion identity [6] recursively.

For the values of the variables of colour λ, we write

(a, b, c, d) = σ|λ := (σ(Xλ), σ(Yλ), σ(xλ), σ(yλ)).

We also write σ|�=λ for the tuple of all other values (including σ(γk) for all k).
Let us define three important invariants in the fraction field of R:

qλ := (Xλ − xλ)/yλ , rλ := (Yλ − yλ)/xλ , and Qλ := qλrλ .

For an evaluation point σ, we define qσ = σ(qλ), rσ = σ(rλ), and Qσ = σ(Qλ)
for an arbitrary colour λ. Rather surprisingly, the following holds.

Lemma 2. The values qσ, rσ, and Qσ are well-defined, i.e., independent from
the choice of λ.

Proof. We prove the claim only for qσ. Using (2), we compute in R: yλyμqλ =
yλyμ(Xλ−xλ)/yλ = Xλyμ−xλyμ = yλXμ−yλxμ = yλyμ(Xμ−xμ)/yμ = yλyμqμ.
The fraction field of R is an integral domain, and the claim follows. 	

This lemma says that, for evaluation points from R → Q, not all value combi-
nations are allowed for the variables. To make this structure more concrete, we
define the sets

Lq,r :=
{

(a, b, c, d) ∈ Q4 : qd = a − c and rc = b − d
}

,

Pq,r :=
{

σ : σ|λ ∈ Lq,r for all λ ∈ Λ
}
.

From Lemma 2, we immediately get the following observation.
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Lemma 3. The set
⋃

q,r∈Q Pq,r and the set of all evaluations R → Q are equal.

We define the counting problem of evaluating the Bollobás-Riordan polynomial
as

σTcol : Gc → Q with G �→ σTcol(G) := σ
(
Tcol(G)

)
.

The numerical graph invariant σTcol evaluates the Bollobás-Riordan polynomial
of a given coloured graph G over R at the point σ.

Choosing an appropriate variable substitution in the coloured Tutte poly-
nomial yields the classical Tutte polynomial: We define a ring homomorphism
ϕ : R → Q[x, y] with ϕ(γk) = 1 and ϕ|λ = (x, y, 1, 1) for all k and λ. Bollobás
and Riordan [6] prove that ϕTcol(G) = T (G; x, y) holds, where T (G; x, y) is the
(classical) Tutte polynomial of G.

7 Simple Reductions

Our first simple reduction shows that we can ignore the choice of σ(γk) for the
rest of this paper.

Lemma 4. Let σ and σ′ be two evaluation points with σ|λ = σ′|λ for all colour λ.
It holds σ′Tcol �p

A σTcol.

Proof. Using (1) or alternatively (3.12) from [6], we drag γk out of the coloured
Tutte polynomial, σ′ (Tcol(G)/γk(G)

)
= σ

(
Tcol(G)/γk(G)

)
. We get σ′Tcol(G) =(

σ′(γk(G))/σ(γk(G))
) · σTcol(G). 	


Our second simple reduction relies on the homogeneity of variables. From (1) one
can see that Tcol(G) is homogeneous in the X, Y, x, y-variables, with a summed
degree of m in these variables. Furthermore, the variables X and x always have
together a summed degree of n−k, and Y and y have a summed degree of m−n+k,
correspondingly. Thus, for every s from the fraction field of R,

ηsTcol(G) = sm−n+kTcol(G),

where ηs is the ring homomorphism with ηs(Y ) = s · Y , ηs(y) = s · y, and that
leaves everything else identical. This gives us the following many-one reduction.

Lemma 5. For an arbitrary point σ, we have (σ◦ηs)Tcol �p
A σTcol for all s ∈ Q.

Note that qσ◦ηs = qσ/s and rσ◦ηs = rσ · s holds, meaning that qσ and rσ are in
general not invariant under ηs. However, this is true for Qσ = Qσ◦ηs .

Using the homogeneity reduction, we can easily see the following reduction.

Proposition 1. Let σ be an evaluation point with σλ = (a, b, c, d) for some
colour λ. Then T (a/c, b/d) �p

A σTcol.

Proof. Given input G, we compute T (G; a/c, b/d) from σTcol(G): We assign
colour λ to every edge, and we use Lemma 5 and its analogue for the X, x-
variables to get T (G; a/c, b/d) = σTcol(G)/

(
cn−kdm−n+k

)
. 	
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This reduction is an approximation-preserving many-one reduction. Therefore,
the inapproximability results by Goldberg and Jerrum [9] transfer immediately
to the coloured Tutte polynomial. Although it also gives hardness immediately,
as well, we prove it independently in the following, because the proof gives some
insights into the structure of the Bollobás-Riordan Polynomial.

8 Interpolation Using Parallel and Series Reduction

We use the parallel and series identities from Theorems 7 and 9 in [6] to obtain
algebraic reductions for the coloured Tutte polynomial.

When using rλ or qλ in the following, we actually always stay in the ring R
since the denominators cancel out.

Lemma 6. Let G be a coloured graph, let λ be a colour, and let Gα-fat-λ be the
graph obtained from G by replacing each edge of colour λ by α parallel edges of
the same colour λ.

Then fα,λ

(
Tcol(G)

)
= Tcol

(
Gα-fat-λ

)
where fα,λ is the unique ring homomor-

phism:

fα,λ(Xλ) = r−1
λ (Y α

λ − yα
λ ) + qλyα

λ , fα,λ(Yλ) = Y α
λ ,

fα,λ(xλ) = r−1
λ (Y α

λ − yα
λ ), fα,λ(yλ) = yα

λ , and
fα,λ|�=λ = id|�=λ.

Proof (sketch). The proof is by induction on α. The induction step uses Theo-
rem 7 from [6] which basically talks about the case α = 2. 	

Similarly, using Theorem 9 from [6], one can prove an analoguous lemma for
series reduction. Let gβ,λ be the ring homomorphism that moves points using
the β-stretching of a graph. The two lemma together establish parsimonious
reductions in the Bollobás-Riordan polynomial.

Lemma 7. Let α, β ∈ IN>0, λ ∈ Λ, and σ : R → Q be an evaluation point.
It holds

(
σ ◦ gβ,λ ◦ fα,λ

)
Tcol �p σTcol.

In the remainder of this section we interpolate the coloured Tutte polynomial
from the given data points (σ ◦ gβ,λ ◦ fα,λ), for different α and β (but fixed λ).

The main problem of the interpolation process is that, in contrast to the
situation in the classical Tutte polynomial, the parallel and series reductions do
not move evaluation points along a relatively simple one-dimensional variety.
Instead, all we can say is that the points produced by these reductions lie in the
variety Lq,r, which has two dimension.

We call an evaluation σ stuck in λ if, for σ|λ = (a, b, c, d), we have |a| ∈ {0, |c|}
and |b| ∈ {0, |d|}. For every fixed λ and c, d �= 0, there are exactly nine stuck
points.

Theorem 2. For q, r ∈ Q, let σ ∈ Pq,r be an evaluation point that is not stuck
in λ. Then, for all σ′ ∈ Pq,r with σ′|�=λ = σ|�=λ, it holds σ′Tcol �p

A σTcol.
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Proof (sketch). The rather technical proof works by showing that the Vander-
monde matrix V2 is non-singular for the data points given by the stretching or
fattening reductions. 	

For c = d = 1, this theorem specializes to the line interpolation theorem for the
classical Tutte polynomial [10]. In a suitable model of computation, the theorem
also works for IR and C.

9 Complexity of the Bollobás-Riordan Polynomial

The dichotomy theorem from the classical paper [10] says that evaluating the
Tutte polynomial over R is #P-hard, except for the special points (1, 1), (0, −1),
(−1, 0), (−1, −1) and one hyperbola (x − 1)(y − 1) = 1 in the Tutte plane,
where this is easy. For the Bollobás-Riordan polynomial, one expects a similar
dichotomy. The hyperbola becomes the variety Qσ = 1, and we extend the notion
of special points in a natural way: We say that σ is special if, for all colours λ
and for (a, b, c, d) = σ|λ, it holds

(a, b) ∈ {(c, d), (0, −d), (−c, 0), (−c, −d)} .

We classify the complexity of evaluating the Bollobás-Riordan polynomial in the
following way.

Main Theorem. Let σ be an evaluation point. It holds:

(i) If Qσ �= 1 and σ is not special, σTcol is #P-hard under Turing reductions.
(ii) If Qσ �= 1 and σ is not special, σTcol is #P-hard under algebraic reductions.
(iii) If Qσ = 1, then σTcol is polynomial-time computable.

Proof. (i) Let λ be a colour in which σ is non-special and write (a, b, c, d) =
σ|λ. By Proposition 1, T (a/c, b/d) �p

A σTcol. Since (a/c, b/d) neither lies
on the hyperbola (x − 1)(y − 1) = 1 nor is one of the special points (1, 1),
(0, −1), (−1, 0), (−1, −1) in the Tutte plane, it is #P-hard to evaluate
under Turing reductions [10].

(ii) There exists a colour λ in which σ is not stuck. This is because, for Qσ �∈
{0, 1, 2}, σ can only be stuck if it is of the form (−c, −d, c, d) and there-
fore special. Let ϕ be the evaluation point with ϕ|λ = (1 − Qσ, 0, 1, 1) and
ϕ|�=λ = σ|�=λ. Both σ and ϕ are evaluation points in Pq,r, so we can apply
Theorem 2 to get ϕTcol �p

A σTcol. The claim follows for Qσ �∈ {0, 1, 2} be-
cause χ(Qσ) = ϕTcol holds (cf. Sec. 5) and χ(Qσ) is #P-hard by Lemma 1.
For Qσ = 0, 2, we can use the reduction from (i): Hardness of such points
is proven in [10] by an algebraic reduction from reliability computations or
from the permanent, both of which are problems that can be proven to be
hard under algebraic reductions.

(iii) From [10], we know that ϕTcol = T (2, 0) is polynomial-time computable,
where ϕ|μ := (2, 0, 1, 1) for all μ. Furthermore, ϕ|μ is not stuck in any
colour, which allows us to apply Theorem 2 in series to each colour to get
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the reduction (σ ◦ ηs)Tcol �p
A ϕTcol. Here we choose s := qϕ/qσ = rσ/rϕ in

such a way, that (σ ◦ ηs) ∈ Pqϕ,rϕ . To finish the proof, we apply Lemma 5
and obtain σTcol = (σ ◦ ηs ◦ η1/s)Tcol �p

A (σ ◦ ηs)Tcol. 	

For the proof of (ii), we could have used (i) also for the cases where Qσ �= 0, 2
since the reductions in [10] are actually algebraic. Instead, we decided to give an
independent proof.

By Theorem 1, any non-special point with Qσ �= 1 is as hard as the whole
graph polynomial, even under polynomial-time uniform and algebraic reductions.

Corollary 1. For any non-special evaluation point σ with Qσ �= 1, we have
Tcol �p

AU σTcol. In particular, we have σ′Tcol �p
A σTcol for all points σ′.

Open Problem. Is σTcol polynomial-time computable if σ is special?
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Abstract. In 1964 Shapley observed that a matrix has a saddle point
whenever every 2×2 submatrix of it has one. In contrast, a bimatrix game
may have no Nash equilibrium (NE) even when every 2 × 2 subgame of
it has one. Nevertheless, Shapley’s claim can be generalized for bimatrix
games in many ways as follows. We partition all 2×2 bimatrix games into
fifteen classes C = {c1, . . . , c15} depending on the preference pre-orders
of the two players. A subset t ⊆ C is called a NE-theorem if a bimatrix
game has a NE whenever it contains no subgame from t. We suggest a
general method for getting all minimal (that is, strongest) NE-theorems
based on the procedure of joint generation of transversal hypergraphs
given by a special oracle. By this method we obtain all (six) minimal
NE-theorems.

1 Introduction, Main Concepts and Results

1.1 Bimatrix Games and Nash Equilibria

Let X1 and X2 be finite sets of strategies of players 1 and 2. Pairs of strategies
x = (x1, x2) ∈ X1 ×X2 = X are called situations. A bimatrix game U = (U1, U2)
is a pair of real-valued matrices Ui : X → R, i = 1, 2, with common set of entries
X . Value Ui(x) is interpreted as utility function (also called profit or payoff) of
player i ∈ {1, 2} in the situation x. A situation x = (x1, x2) ∈ X1 × X2 = X is
called a Nash equilibrium (NE) if

U1(x′
1, x2) ≤ U1(x1, x2) ∀x′

1 ∈ X1 and U2(x1, x
′
2) ≤ U2(x1, x2) ∀x′

2 ∈ X2;
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in other words, if no player can make a profit by choosing a new strategy if the
opponent keeps the old one. A bimatrix game U is called a zero sum or matrix
game if U1(x) +U2(x) = 0 for every x ∈ X . In this case the game is well-defined
by one of two matrices, say, by U1, and a NE is called a saddle point (SP).

1.2 Locally Minimal SP-Free Matrix and NE-Free Bimatrix Games

Standardly, we define a subgame as the restriction of U to a subset X ′ = X ′
1 ×

X ′
2 ⊆ X1 × X2 = X , where X ′

1 ⊆ X1 and X ′
2 ⊆ X2. In 1964 Shapley [8] noticed

that a matrix has a saddle point whenever each of its 2 × 2 submatrices has
one. Obviously, in this case, every submatrix has a SP, too. In other words, all
minimal SP-free matrices are of size 2 × 2. Moreover, all locally minimal SP-free
matrices are of size 2 × 2, too; in other words, every SP-free matrix of larger
size has a row or column whose elimination still results in an SP-free submatrix;
see [1]. Other generalizations of Shapley’s theorem can be found, for example,
in [6,7]. Let us also notice that a 2 × 2 matrix has no SP if and only if one of its
diagonals is strictly larger than the other.

The “naive generalization” of Shapley’s claim to bimatrix games fails: a 3× 3
game might have no NE even if each its 2 × 2 subgame has one; moreover, for
each n ≥ 3 a n × n bimatrix game might have no NE even if every its subgame
has one; see Example 1 in [6] or [1] and also examples given below. However, all
locally minimal NE-free games admit the following explicit characterization [1].

For the sake of brevity, let us denote situation (xi
1, x

j
2) by xi,j , where X1 =

{x1
1, x

2
1, . . .} and X2 = {x1

2, x
2
2, . . .}.

Given an integer n ≥ 2 and a bimatrix game U with |X1| ≥ n and |X2| ≥ n, let
us say that U has the canonical strong improvement n-cycle C0

n if each situation
x1,1, x2,2, . . . , xn−1,n−1, xn,n (respectively, x1,2, x2,3, . . . , xn−1,n, xn,1) is a unique
largest in its row with respect to U2 (in its column with respect to U1) and is the
second largest, not necessarily, unique, in its column with respect to U1 (in its
row with respect to U2). Any other strong improvement n-cycle Cn is obtained
from the canonical one C0 by arbitrary permutations of the rows of X1 and
columns of X2.

It is easy to see that if an n × n bimatrix game U has a strong improvement
cycle then U has no NE, yet, every proper subgame obtained from U by elimi-
nation of either one row or one column has a NE. In other words, U is a locally
minimal NE-free bimatrix game. Moreover, the inverse holds, too.

Theorem 1. ([1]). A bimatrix game U is a locally minimal NE-free game if and
only if U is of size n × n for some n ≥ 2 and it contains a strong improvement
n-cycle. �	
Thus, locally minimal NE-free games can be arbitrary large. Several examples
are given in Figures 2 - 6, where each game has the canonical strong improvement
cycle. Although it seems difficult to characterize or recognize the minimal NE-
free games (see [1]), yet, the above characterization of the locally-minimal ones
will be sufficient for us.
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1.3 Pre-orders

Given a set Y and a mapping P : Y 2 → {<, >, =} that assigns one of these three
symbols to every ordered pair y, y′ ∈ Y , we say that y is less or worse than y′

if y < y′, respectively, y is more or better than y′ if y > y′, and finally, y and y′

are equivalent or they make a tie if y = y′. Furthermore, P is called a pre-order
if the following standard properties (axioms) hold for all y, y′, y′′ ∈ Y :

symmetry: y < y′ ⇔ y′ > y, y = y′ ⇔ y′ = y, and y = y;
transitivity: y < y′ & y′ < y′′ ⇒ y < y′′, y < y′ & y′ = y′′ ⇒ y < y′′,
y = y′ & y′ < y′′ ⇒ y < y′′, y = y′ & y′ = y′′ ⇒ y = y′′,

A pre-order without ties is called a (linear or complete) order.
We use standard notation: y ≤ y′ if y < y′ or y = y′ and y ≥ y′ if y > y′ or

y = y′. Obviously, transitivity and symmetry still hold:
y ≤ y′ & y′ < y′′ ⇒ y < y′′, y < y′ & y′ ≤ y′′ ⇒ y < y′′,
y ≤ y′ & y′ ≤ y′′ ⇒ y ≤ y′′, and y ≤ y′ ⇔ y′ ≥ y.

In Figures 1-6 we use the following notation: an arrow from y to y′ for y > y′,
a line with two dashes for y = y′, and an arrow with two dashes for y ≥ y′.

1.4 Configurations; Fifteen 2-Squares

Let us notice that to decide whether a situation x = (x1, x2) ∈ X1 × X2 = X
is a NE in U , it is sufficient to know only two pre-orders: in the row x1 with
respect to U2 and in column x2 with respect to U1.

Given X1 and X2, let us assign a pre-order Pxi over X3−i to each xi ∈ Xi;
i = 1, 2, and call the obtained preference profile P = {Px1 , Px2 | x1 ∈ X1, x2 ∈
X2} a configuration or bi-pre-order.

Naturally, every bimatrix game U = (U1, U2) defines a unique configuration
P = P (U), where Pxi is the pre-order over X3−i defined by Ui; i = 1, 2. Clearly,
each configuration is realized by infinitely many bimatrix games. Yet, it is also
clear that to get all NE in game U it is enough to know its configuration P (U).

For brevity, we will refer to a 2 × 2 configuration as a 2-square. Up to permu-
tations and transpositions, there exist only fifteen different types of 2-squares.
They are listed in Figure 1 together with the corresponding bimatrix games (for
the first 6 squares). Four 2-squares c1, c2, c3, c4 have no ties; another four, c5,
c6, c7, c8 and the next five, c9, c10, c11, c12, c13, have, respectively, one and two
ties each; finally, c14 and c15 have 3 and 4 ties.

Fifteen 2-squares have 0, 2, 1, 1, 1, 2, 1, 2, 3, 2, 2, 2, 2, 3, and 4 NE, respectively.
Thus, only c1 has no NE. Shapley’s theorem asserts that each c1-free zero-sum
game (or configuration) has a NE. Let us note that 2-squares c1 - c6 are fre-
quent in the literature. For example, the non-zero-sum bimatrix games realizing
c2 and c4 may represent classical “family dispute” and “prisoner’s dilemma”;
respectively, c5 and c6 illustrate the concepts of the “promise” and “threat”.
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Fig. 1. Fifteen 2-squares

1.5 Dual or Transversal Hypergraphs

Let C be a finite set whose elements we denote by c ∈ C. A hypergraph H (on
the ground set C) is a family of subsets h ⊆ C that are called the edges of H . A
hypergraph H is called Sperner if containment h ⊆ h′ holds for no two distinct
edges of H . Given two hypergraphs T and E on the common ground set C, they
are called transversal or dual if the following properties hold:

(i) t ∩ e = ∅ for every t ∈ T and e ∈ E;
(ii) for every subset t′ ⊆ C such that t′ ∩ e = ∅ for each e ∈ E there exists an

edge t ∈ T such that t ⊆ t′;
(iii) for every subset e′ ⊆ C such that e′ ∩ t = ∅ for each t ∈ T there exists an

edge e ∈ E such that e ⊆ e′.

Property (i) means that edges of E and T are transversal, while (ii) and (iii)
mean that T contains all minimal transversals to E and E contains all minimal
transversals to T , respectively. It is well-known, and not difficult to see, that (ii)
and (iii) are equivalent whenever (i) holds. Although for a given hypergraph H
there exist infinitely many dual hypergraphs, yet, only one of them, which we will
denote by Hd, is Sperner. Thus, within the family of Sperner hypergraphs duality
is well-defined; moreover, it is an involution, that is, equations T = Ed and E =
T d are equivalent. It is also easy to see that dual Sperner hypergraphs have the
same set of elements. For example, the following two hypergraphs are dual:

E′ = {(c1), (c2, c3), (c5, c9), (c3, c5, c6)}, (1)

T ′ = {(c1, c2, c5), (c1, c3, c5), (c1, c2, c6, c9), (c1, c3, c9)}; (2)

as well as the following two:

E = {(c1), (c2, c3), (c5, c9), (c3, c5, c6), (c2, c4, c5, c6)}, (3)

T = {(c1, c2, c5), (c1, c3, c5), (c1, c2, c3, c9), (c1, c2, c6, c9), (c1, c3, c4, c9), (c1, c3, c6, c9)}.
(4)
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Fig. 2. NE-examples

1.6 Hypergraphs of Examples and Theorems

Let C = {c1, . . . , c15}. We call a subset e ⊆ C a NE-example if there is a NE-free
configuration P such that e is the set of types of 2-squares in P ; respectively,
a subset t ⊆ C is called a NE-theorem if a configuration has a NE whenever
it contains no 2-squares from t. Obviously, e ∩ t = ∅ for any NE-example e
and NE-theorem t, since otherwise e is a counterexample to t. Moreover, it is
well-known and easy to see that the hypergraphs of all inclusion-minimal (that
is, strongest) NE-examples ENE and NE-theorems TNE are transversal. Let us
consider c1 and four configurations in Figure 2. It is easy to verify that all five
contain canonical strong cycles and hence, they are locally minimal (in fact,
minimal) NE-free configurations. These five configurations are chosen because
they contain few types of 2-squares; the corresponding sets are given in Figure 2;
they form the hypergraph E defined by (3). Figure 2 shows that each edge of E
is a NE-example.

Let us consider the dual hypergraph T given by (4). We will prove that every
edge t ∈ T is a NE-theorem, thus, showing that the “research is complete”, that
is, E = ENE and T = TNE are the hypergraphs of all strongest NE-examples
and theorems.

Remark 1. Given a family of NE-examples E′, the dual hypergraph T ′ should
be viewed as a hypergraph of conjectures rather than theorems. Indeed, some
inclusion-minimal examples might be missing in E′; moreover, some examples
of E′ might be reducible. In this case some conjectures from the dual hyper-
graph T ′ = E

′d will fail, being too strong. For instance, let us consider E′

given by (1) in which the NE-example (c2, c4, c5, c6) is missing. (In fact, it is not
that easy to obtain a minimal 4 × 4 example without computer.) Respectively,
conjecture (c1, c3, c9) appears in T ′ = E

′d. This conjecture is too strong, so it
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fails. In T = TNE we substitute for it three weaker (but correct) NE-theorems
(c1, c3, c9, c2), (c1, c3, c9, c4), and (c1, c3, c9, c6). Thus, if it seems too difficult to
prove a conjecture, one should look for new examples.

1.7 Joint Generation of Examples and Theorems

Of course, this approach can be applied not only to NE-free bimatrix games.
In general, given a set of objects Q (in our case, configurations), list C of

subsets (properties) Qc ⊆ Q, c ∈ C (in our case, c-free configurations), the
target subset Q0 ⊆ Q (configurations that have a NE), we introduce a pair of
hypergraphs E = E(Q, Q0, C) and T = T (Q, Q0, C) (examples and theorems)
defined on the ground set C as follows:

(i) every set of properties assigned to an edge t ∈ T (a theorem) implies
Q0, that is, q ∈ Q0 whenever q satisfies all properties of t, or in other words,
∩c∈tQc ⊆ Q0; in contrast,

(ii) each set of properties corresponding to the complement C \ e of an edge
e ∈ E (an example) does not imply Q0, i.e., there is an object q ∈ Q \ Q0
satisfying all properties of C \ e, or in other words, ∩c �∈eQc ⊆ Q0.

If hypergraphs E and T are dual then we can say that “our understanding
of Q0 in terms of C is perfect”, that is, every new example e′ ⊂ C (theorem
t′ ⊆ C) is a superset of some old example e ∈ E (theorem t ∈ T ).

Without loss of generality we can assume that examples of e ∈ E and theorems
t ∈ T ) are inclusion-wise minimal in C; or in other words both hypergraphs E
and T are Sperner.

Given Q, Q0 and C, we try to generate hypergraphs E and T jointly [5]. Of
course, the oracle may be a problem: Given a subset C′ ⊆ C, it may be difficult to
decide whether C′ is a theorem (i.e., if q ∈ Q0 whenever q satisfies all properties
of C′) or an example (i.e., if there is a q ∈ Q \ Q0 satisfying all properties of
C \ C′). However, the stopping criterion, Ed = T , is well-defined and, moreover,
it can be verified in quasi-polynomial time [3].

Remark 2. Let us notice that containment ∩c∈tQc ⊆ Q0 might be strict. In other
words, theorem t gives sufficient but not always necessary conditions for q ∈ Q0.
We can also say that theorems t ∈ T give all optimal “inscribed approximations”
of Q0 ⊆ Q in terms of C.

Remark 3. In [4], this approach was illustrated by a simple model problem in
which Q is the set of 4-gons, Q0 is the set of squares, C is a set of six properties of
a 4-gon. Two dual hypergraphs of all minimal theorems T and examples E were
constructed. In [2], the same approach was applied to a more serious problem
related to families of Berge graphs.

1.8 Strengthening NE-Theorems; Main Results

We will prove all six NE-theorems t ∈ TNE . Formally, they cannot be strength-
ened, since t′ is not a NE-theorem whenever t′ ⊂ t ∈ TNE and the containment
t′ ⊂ t is strict. Still, we can get stronger claims in slightly different terms.
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Let us notice that for any t the class of t-free configurations (games) is hered-
itary. Indeed, if a configuration (game) is t-free then every subconfiguration
(subgame) of it is t-free, too. Hence, we can restrict ourselves by the locally
minimal NE-free examples, which are characterized by Theorem 1.

Now, let us consider NE-theorems (c1, c2, c5), (c1, c3, c5), and (c1, c2, c6, c9).
Formally, since 2-square c1 has no NE, it must be eliminated. Yet, in a sense,
it is the only exception. More precisely, we can strengthen the above three NE-
theorems as follows.

Theorem 2. The 2-square c1 is a unique locally minimal NE-free configuration
that is also (c2, c5)- or (c3, c5)-, or (c2, c6, c9)-free.

Furthermore, theorems (c1, c3, c9, c2), (c1, c3, c9, c4), (c1, c3, c9, c6) can be
strengthened, too. In fact, we will characterize explicitly the configurations
that are locally minimal NE-free and also (c3, c9)-free. This family is sparse
but still infinite. In particular, we obtain the following result. Let C(P ) de-
note the set of all types of 2-squares of configuration P ; furthermore, let C′ =
{c2, c4, c5, c6, c7, c8, c13, c1} and C′′ = C′ ∪ {c12}.

Theorem 3. Let P be a locally minimal NE-free n×n configuration that is also
(c3, c9)-free. Then

(i) n is even unless n = 1; (ii) if n = 2 then P is c1;
(iii) if n = 4 then P is a unique (c2, c4, c5, c6)-configuration in Figure 2;
(iv) if n = 6 then C(P ) = C′;
(v) if n = 8 then C′ ⊆ C(P ) ⊆ C′′ and there exist P with C(P ) = C′;
(vi) finally, if n ≥ 10 is even then C(P ) = C′′.

It is clear that this statement implies the remaining three NE-theorems:
(c1, c3, c9, c2), (c1, c3, c9, c4), and (c1, c3, c9, c6).

2 Proof of Theorems 2 and 3

As we already mentioned, we can restrict ourselves to the locally minimal NE-
free configurations. By Theorem 1, each such configuration P is of size n × n
for some n ≥ 2 and P contains a strong improvement cycle Cn. Without loss of
generality we can assume that Cn = C0

n is canonical. In particular,

xi,i+1 ≥ xi,j , xi,i+1 > xj,i+1, for j = i, xj,j ≥ xi,j , xj,j > xj,i+1, for j = i + 1.
(5)

Furthermore, if n = 2 then 2-square c1 is a unique NE-free configuration (in
fact, c1 is a strong 2-cycle). Hence, we will assume that n ≥ 3. Additionally,
we assume that P is t-free and consider successively the following subsets t :
(c2, c5), (c3, c5), (c2, c6, c9), and (c3, c9). Theorem 2 will follow, since in the first
three cases we get a contradiction. For t = (c3, c9) we will characterize the
corresponding configurations explicitly, thus proving Theorem 3.
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xi,i+1 xi,j

xj,jxj,i+1

Fig. 3. Locally minimal NE-free and (c2, c5)-
free configurations do not exist, except c1

(b)(a)

Fig. 4. Locally minimal NE-free and
(c2, c6, c9)- or (c3, c5)-free configura-
tions do not exist, except c1

2.1 Locally Minimal NE-Free and (c2, c5)-Free Configurations

Let us consider C0
n in Figure 3 (where n = 7). By (5), xi,i > xi,j (with respect

to U2) whenever j = i; in particular, xi,i > xi,i−1 for i ∈ [n] = {1, . . . , n},
where standardly, 0 ≡ n. Similarly, xi,i ≥ xj,i whenever j = i − 1 (with respect
to U1); in particular, xi,i ≥ xi+1,i for i ∈ [n] = {1, . . . , n}, where standardly,
n + 1 ≡ 1. Moreover, the latter n inequalities are also strict, since otherwise c5
would appear.

By similar arguments we show that xi,i+1 > xi,i+2 and xi,i+1 > xi−1,i+1 for
i = 1, . . . , n − 1; see Figure 3.

Next, let us notice that xi,i = xi−2,i for i = 2, . . . n. Indeed, xi,i ≥ xi−2,i,
since Cn is a strong cycle, and c2 would appear in case xi,i > xi−2,i.

Furthermore, xi,i+2 ≥ xi,i+3 for i = 1, . . . , n−3, since otherwise xi,i+2, xi,i+3,
xi+2,i+2, xi+2,i+3 would form a c5.

Next, let us notice that xi,i+3 = xi+1,i+3 for i = 1, . . . , n− 3. Indeed, xi,i+3 ≤
xi+3,i+3 = xi+1,i+3, and if xi,i+3 < xi+1,i+3 then xi,i+1, xi,i+3, xi+3,i+1, xi+3,i+3
would form a c2, by (5).

Similarly, by induction on j, we show that xi,i+j ≥ xi,i+j+1 and xi,i+j =
xi+1,i+j for 1 ≤ i ≤ n − 3 and 2 ≤ i + j ≤ n − 1.

In particular, xn,n = xn−2,n = xn−3,n = . . . = x2,n = x1,n in contradiction
with the strict inequality xn,n > x1,n obtained before. �	

2.2 Locally Minimal NE-Free and (c2, c6, c9)- or (c3, c5)-Free
Configurations

These two cases are easy. Let us consider C0
n in Figures 4 (a) and (b) (where

n = 3), corresponding respectively to the two cases. By definition, in both cases
x2,2 > x2,1 x1,1 ≥ x2,1. In case (b) we already got a contradiction, since four
above situations form c3 or c5.
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Fig. 5. Locally minimal NE-free and (c3, c9)-free configurations

In case (a) we have to proceed a little further. Clearly, x2,3 ≥ x2,1, x1,2 ≥ x1,3,
x2,3 > x1,3, and again we get a contradiction, since situations x1,1, x1,3, x2,1,
x2,3 form c9 if two equalities hold, c6 if exactly one, and c2 if none. �	

2.3 Locally Minimal NE-Free and (c3, c9)-Free Configurations

Let us consider C0
n in Figure 5 (where n = 8). By (5), for all i we have:

xi,i > xi,i+1, xi,i > xi,i−1, xi,i ≥ xi+1,i, xi,i ≥ xi−2,i;

xi,i+1 > xi+1,i+1, xi,i+1 > xi−1,i+1, xi,i+1 ≥ xi,i+2, xi,i+1 ≥ xi,i−1.

Furthermore, it is not difficult to show that

xi,i = xi+1,i and xi,i+1 = xi,i+2, (6)

since otherwise c3 appears, while

xi,i > xi−2,i and xi,i+1 > xi,i−1, (7)

since otherwise c9 appears; see Figure 5.
Standardly, we prove all four claims in (6) and (7) by induction introducing

situations in the following (alternating diagonal) order:
x2,1, x1,3, . . . , xi,i−1, xi−1,i+1, . . . , xn,n−1, xn−1,1, x1,n, xn,2.
Furthermore, x1,1 = x2,1 ≥ x4,1 unless n < 5; moreover, x2,1 = x4,1, since

otherwise situations x2,1, x4,1, x2,4, and x4,4 form c3.
Similarly, we prove that x1,3 = x1,5 unless n < 5.
Then let us recall that x4,5 ≥ x4,1 and conclude that x4,5 > x4,1, since other-

wise situations x1,1, x4,1, x1,5, and x4,5 form c9.
In general, it is not difficult to prove by induction that

xi,i = xi+1,i = xi+3,i = . . . = xi+2j−1,i, while xi−1,i > xi,i > xi+2j,i; (8)

xi,i+1 = xi,i+2 = xi,i+4 = . . . = xi,i+2j , while xi,i > xi,i+1 > xi,i+2j+1. (9)
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Fig. 6. Two examples from F6 and F8: horizontal (respectively, vertical) bars indicate
second largest elements with respect to U1 (respectively U2)

In both cases each sum is taken mod (n) (in particular, n = 0) and 1 ≤ j < n/2
(in particular, j takes values 1, 2, and 3 for n = 7 and n = 8).

If n > 1 is odd we immediately get a contradiction, since in this case, by (8),
x1,1 = xn−1,1, while, by (7), x1,1 > xn−1,1 for all n > 1. Yet, for each even n,
the family Fn of all locally minimal NE-free and (c3, c9)-free configurations is
not empty.

Up to an isomorphism, F2 (respectively, F4) consists of a unique configuration:
c1 in Figure 1 (respectively, (c2, c4, c5, c6) in Figure 2). Two larger examples, from
F6 and F8, are given in Figures 6 (a) and (b), respectively.

We already know that each configuration P ∈ F2k must satisfy (5) - (9). Yet,
P has one more important property:

xi,i+2j+1 = xi,i+2j′+1, xi+2j,i = xi+2j′,i (10)

for all i ∈ [n] and for all positive distinct j, j′ < n/2. Indeed, it is easy to see
that otherwise c9 appears; see Figure 6(a).

Let us denote by Gn the family of all configurations satisfying (5) - (10).
We already know that Fn ⊆ Gn and Fn = Gn = ∅ if n > 1 is odd. Let us
show that Fn = Gn for even n. Obviously, G4 consists of a unique configuration
(c2, c4, c5, c6) in Figure 2 and G2 = {c1}. Examples of configurations from G6 and
G8 are given in Figures 6 (a) and (b). It is easy to verify that each configuration
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of Gn contains eight 2-squares C′ = {c2, c4, c5, c6, c1, c7, c8, c13} whenever n ≥ 6;
see Figure 6 (a). Moreover, c12 appears, too, when n ≥ 10.

On the other hand, no configuration P ∈ Gn contains c9, c10, c11, c14, or
c15, since no 2-square in P can have two adjacent equalities. It is also easy to
verify that P cannot contain c3. Thus, P can contain only nine 2-squares of
C′′ = C′ ∪ {c12}. In particular, each P ∈ Gn is (c3, c9)-free; in other words,
Gn ⊆ Fn and, hence, Gn = Fn for each n. This implies Theorem 3 and provides
an explicit characterization for family Fn of locally minimal NE-free and (c3, c9)-
free configurations. �	
Remark 4. Interestingly, for even n each configuration P ∈ Fn = Gn contains
the same set of nine 2-squares C′′ if n ≥ 10; for P ∈ G8 there are two options: C′′

or C′ (see example in Figure 6 (b), where c12 does not appear); for P ∈ G6 only
C′; furthermore, G4 consists of a unique configuration (c2, c4, c5, c6) in Figure 2
and G2 only of c1; finally, Fn = Gn is empty if n > 1 is odd.

Acknowledgments. We are thankful to Kukushkin who promoted the idea of
generalizing Shapley’s (1964) theorem to bimatrix games and various concepts
of solution.
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Abstract. Deterministic graph grammars are finite devices which gen-
erate the transition graphs of pushdown automata. We define the notion
of synchronization by grammars, generalizing previous sub-classes such
as visibly and height-deterministic pushdown automata. The languages
recognized by grammars synchronized by a given grammar form an effec-
tive boolean algebra lying between regular languages and deterministic
context-free languages. We also provide a sufficient condition to obtain
the closure under concatenation and its iteration.

1 Introduction

In recent literature, several restrictions of pushdown automata have been stud-
ied in order to define classes of languages which generalize regular languages
while retaining good closure properties (namely closure under boolean opera-
tions, concatenation and its iteration). All these approaches consist in defining
a notion of synchronization between pushdown automata.

The first such approach is to partition the input alphabet between pushing,
popping and internal symbols, and to impose that stack movement only depend
on the type of symbol read, yielding the so-called visibly pushdown automata
[AM04]. This enforces that the stack height variation be entirely characterized
by the input word.

A first generalization is to replace the partition of the input alphabet by a
finite transducer assigning a weight to every input word. A pushdown automaton
is synchronized by a transducer if two initial computations ending in the same
configuration are labelled by words of the same weight, and we can only reach a
finite number of configurations by initial computations of a given weight [Ca06].

A last generalization, defining the height-deterministic pushdown automata,
is to synchronize a pushdown automaton by another pushdown automaton. The
notion of synchronization is simply that two initial computations with the same
input word end in configurations with the same height [NS07].

The classes of languages accepted by pushdown automata synchronized by
a given partition of the input alphabet [AM04], a finite transducer [Ca06] or
a pushdown automaton [NS07] are boolean algebras but, for the last two ap-
proaches, are not in general closed under concatenation and its iteration.

Instead of using the stack height of pushdown automata and doing a special
treatment of the ε-moves, a general approach is to define the synchronization at
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a graph level. The transition graphs of the pushdown automata are generated by
infinite parallel rewritings by (deterministic graph) grammars [MS85, Ca07]. The
weight of a vertex in the generated graph is defined as the minimal number of
steps of parallel rewritings necessary to produce it. The notion of synchronization
is defined for grammars generating deterministic graphs which can have vertices
of infinite in-degree. This allows a uniform treatment of real-time and non-real-
time deterministic pushdown automata.

A grammar G is synchronized by a grammar H if for any initial path of (the
graph generated by) G, there exists an initial path of H with the same label and
these paths end in vertices of same weight. By extending usual constructions
from finite automata to grammars, we show that the languages recognized by all
grammars synchronized with a given grammar form a boolean algebra containing
the regular languages, and we provide a simple sufficient condition for the closure
under concatenation and its iteration.

It appears that the boolean algebras yielded by the previous notions of syn-
chronization can all be captured using synchronization by grammars. We also
show that the family of balanced languages [BB02], which is not synchronized
according to the previous notions, fit our formalism.

2 Deterministic Graph Grammars

In this section, we recall the notion of deterministic graph grammar together
with the family of graphs they generate: the regular graphs. For these graphs,
we introduce the level of a vertex and for deterministic regular graphs, we define
the weight of the label of an initial path. We end with a classical result on their
recognized languages: the labels of their accepting paths are the context-free
languages, and are the deterministic (resp. and real-time) context-free languages
by restricting to deterministic regular graphs (resp. and of finite degree).

Let IN be the set of natural numbers. For a set E, we write |E| its cardinality,
2E its powerset and for any n ≥ 0, En = { (e1, . . ., en) | e1, . . ., en ∈ E } is the set
of n-tuples of elements of E. Thus E∗ =

⋃
n≥0 En is the free monoid generated

by E for the concatenation : (e1, . . ., em)·(e′1, . . ., e′n) = (e1, . . ., em, e′1, . . ., e
′
n),

and whose neutral element is the 0-tuple (). A finite set E of symbols is an
alphabet of letters, and E∗ is the set of words over E. Any word u ∈ En is of
length |u| = n and is also represented by a mapping from [n] := {1, . . ., n} into
E, or by the juxtaposition of its letters: u = u(1). . .u(|u|). The neutral element
is the word of length 0 called the empty word and denoted by ε.

Let F be a set of symbols called labels, ranked by a mapping � : F −→ IN
associating to each label f its arity �(f) ≥ 0, and such that

Fn := { f ∈ F | �(f) = n } is countable for every n ≥ 0.
We consider simple, oriented and labelled hypergraphs: a hypergraph G is a
subset of

⋃
n≥0 FnV n , where V is an arbitrary set, such that

its vertex set VG := { v ∈ V | FV ∗vV ∗ ∩ G �= ∅ } is finite or countable,
its label set FG := { f ∈ F | fV ∗ ∩ G �= ∅ } is finite.
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Any fv1. . .v�(f) ∈ G is a hyperarc labelled by f and of successive vertices
v1, . . ., v�(f) ; it is depicted for

�(f) ≥ 2 as an arrow labelled f and successively linking v1, . . ., v�(f) ;
�(f) = 1 as a label f on vertex v1 and f is called a colour of v1 ;
�(f) = 0 as an isolated label f called a constant.

This is illustrated in the figures throughout the paper. Note that a vertex v
is depicted by a dot named (v) where parentheses are used to differentiate a
vertex name from a vertex label (a colour).

For a subset E ⊆ F of labels, we write
VG,E := { v ∈ V | EV ∗vV ∗ ∩ G �= ∅ } = VG ∩ EV ∗

G

the set of vertices of G linked by a hyperarc labelled in E.
A graph G is a hypergraph whose labels are only of arity 1 or 2 : FG ⊂

F1 ∪ F2 .
Hence a graph G is a set of arcs av1v2 identified with the labelled transition

v1
a−→
G

v2 or directly v1
a−→ v2 if G is understood, plus a set of coloured vertices

f v. A tuple (v0, a1, v1, . . ., an, vn) for n ≥ 0 and v0
a1−→
G

v1 . . . vn−1
an−→
G

vn is

a path from v0 to vn labelled by u = a1. . .an ; we write v0
u

=⇒
G

vn or directly

v0
u

=⇒ vn if G is understood. For P, Q ⊆ VG and u ∈ F ∗
2 , we write

P
u

=⇒
G

Q if p
u

=⇒
G

q for some p ∈ P and q ∈ Q

and L(G, P, Q) := { u | P
u

=⇒
G

Q }
is the language recognized by G from P to Q. In these notations, we can replace
P (and/or Q) by a colour i to designate the subset VG,i . In particular i

u
=⇒

G
Q

means that there is a path labelled by u from a vertex coloured by i to a vertex
in Q, and L(G, i, f) is the label set of the paths from a vertex coloured by i to
a vertex coloured by f .

In this paper, we only use two colours i, f ∈ F1 to mark respectively the
initial vertices and the final vertices. For any graph G, we denote

L(G) := L(G, i, f) the language recognized by G

L(G, i) := L(G, i, VG) the complete language recognized by G.
Recall that the regular languages over an alphabet T ⊂ F2 form the set:

Rat(T ∗) := { L(G) | G finite ∧ FG ⊆ T ∪ {i, f} }.
A graph grammar R is a finite set of rules of the form fx1. . .x�(f) −→ H where
fx1. . .x�(f) is a hyperarc joining pairwise distinct vertices x1 �= . . . �= x�(f) and
H is a finite hypergraph with {x1, . . ., x�(f)} ⊆ VH ; we denote by
NR := { f ∈ F | ∃ x1,. . ., x�(f) fx1. . .x�(f) ∈ Dom(R) } the non-terminals of R,

the labels of the left hand sides,
TR := { f ∈ F − NR | ∃ P ∈ Im(R), VP,f �= ∅ } the terminals of R,

the labels of R which are not non-terminals,
FR := NR ∪ TR the labels of R.
We use grammars to generate graphs. Hence in the following, we may assume
that any terminal is of arity 1 or 2 : TR ⊂ F1 ∪ F2 .
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As for context-free grammars (on words), a graph grammar has an axiom: an
initial finite hypergraph. To indicate this axiom, we assume that any grammar
R has a unique constant non-terminal Z ∈ NR ∩ F0 ; the axiom of R is the
right hand side H of the rule of Z : Z −→ H .

To simplify, we add the condition that i only colours vertices of the axiom.
Starting from the axiom, we want that R generates a unique graph up to iso-

morphism. So we finally assume that any grammar R is deterministic meaning
that there is only one rule per non-terminal:

(X, H) , (Y, K) ∈ R ∧ X(1) = Y (1) =⇒ (X, H) = (Y, K).

For any rule X −→ H , we say that
VX ∩ VH are the inputs of H

and
⋃{ VY | Y ∈ H ∧ Y (1) ∈ NR } are the outputs of H .

To work with these grammars, it is simpler to assume that any grammar R is
terminal-outside [Ca07] : any terminal arc or colour in a right hand side links a
non input vertex:

H ∩ (TRVXVX ∪ TRVX) = ∅ for any rule (X, H) ∈ R.

We will use upper-case letters A, B, C, . . . for non-terminals and lower-case
letters a, b, c . . . for terminals. Here is an example of a (deterministic graph)
grammar R :

; ;

a

c

d

(x)

(y)

(z)

B

(x)

(y)

(z)

AAZ

b

b

i

f

(x)

(y)

(z)

B

(x)

(y)

(z)

A

A

b

b

c

b

b

For this grammar R, we have NR = {Z, A, B} , TR = {a, b, c, d} and x, y, z
are the inputs of the last two rules (the axiom rule having no input).

Given a grammar R, the rewriting −→
R

is the binary relation between hy-
pergraphs defined as follows: M rewrites into N , written M −→

R
N , if we can

choose a non-terminal hyperarc X = As1. . .sp in M and a rule Ax1. . .xp −→ H
in R such that N can be obtained by replacing X by H in M :

N = (M − X) ∪ h(H)
for some function h mapping each xi to si, and the other vertices of H
injectively to vertices outside of M ; this rewriting is denoted by M −→

R, X
N .

The rewriting −→
R, X

of a hyperarc X is extended in an obvious way to the rewrit-

ing −→
R, E

of any set E of non-terminal hyperarcs. The complete parallel rewriting

=⇒
R

is the rewriting according to the set of all non-terminal hyperarcs: M =⇒
R

N

if M −→
R, E

N where E is the set of all non-terminal hyperarcs of M .

Taking the previous grammar, we depict in the next figure the first four steps
of the parallel derivation from its constant non-terminal Z :
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Given a deterministic grammar R and a hypergraph H , we denote
[H ] := H ∩ TRV ∗

H = H ∩ (TRVHVH ∪ TRVH)
the set of terminal arcs and of terminal coloured vertices of H .
A graph G is generated by R (from its axiom) if G belongs to the following
set Rω of isomorphic graphs:

Rω := { ⋃
n≥0[Hn] | Z −→

R
H0 =⇒

R
. . . Hn =⇒

R
Hn+1 . . . } .

For instance by iterating indefinitely the previous derivation, we get the infinite
graph depicted below.

a

c

d

c

a

c

d

c

d

b

b

b

b

b

b

a

i

f

Grammars R and S are equivalent if they generate the same graph(s): Rω =
Sω. A regular graph is a graph generated by a (deterministic graph) grammar.
Given a (regular) graph G generated by a grammar R :

G =
⋃

n≥0[Hn] with Z −→
R

H0 =⇒
R

. . . Hn =⇒
R

Hn+1 . . .

we define the level �(s) of a vertex s ∈ VG , denoted also �R
G(s) to precise G

and R, as being
�(s) := min{ n | s ∈ VHn }

the minimal number of rewritings applied from the axiom to get s.
For any grammar R and for G ∈ Rω, we denote

L(R) := L(G) the language recognized by R

L(R, i) := L(G, i) the complete language recognized by R.
These languages are well-defined since generated graphs by a grammar are iso-
morphic. For instance, the previous grammar R recognizes the language L(R)
generated from A by the following context-free grammar:

A = bb + aAAd + aAccb
As the generated graph(s) by R is co-accessible from f (from any vertex, there
is a path to a final vertex), L(R, i) is the set of prefixes of the words in L(R).
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A graph G is (label) complete if for any arc label a ∈ FG ∩ F2 , any vertex
s ∈ VG is source of an a-arc: ∃ t, s

a−→
G

t. For a grammar R generating a

complete graph Rω, we have L(R, i) = (TR − {i, f})∗.
A graph G is deterministic if i colours a unique vertex, and two arcs with

the same source have distinct labels: r
a−→
G

s ∧ r
a−→
G

t =⇒ s = t.

For a deterministic graph G generated by R, we can define the weight ‖u ‖
R

of any word u ∈ L(R, i) by the level of the ending vertex of the initial path
labelled by u :

‖u ‖
R

:= �(s) for i
u

=⇒
G

s.

For the previous grammar R, we have ‖ ε ‖
R

= ‖ b ‖
R

= ‖ bb ‖
R

= 0 and
‖ a ‖

R
= ‖ abbc ‖

R
= ‖ abbbb‖

R
= 1 ; ‖ aa ‖

R
= 3.

The regular graphs of finite degree (any vertex is linked by a finite number of
edges) are the transition graphs of pushdown automata restricted to a regular
set of configurations. So the regular graphs of finite degree recognize the context-
free languages. By adding ε-transitions, any regular graph (allowing vertices of
infinite degree) recognizes a context-free language. Furthermore by identifying
vertices linked by ε-edges on the transition graphs of deterministic pushdown
automata, we get the deterministic regular graphs [Ca07].

Proposition 2.1. The grammars (resp. generating deterministic graphs, deter-
ministic graphs of finite degree) recognize the (resp. deterministic, deterministic
and real-time) context-free languages.

3 Synchronization of Grammars

We introduce the synchronization as a binary relation between grammars gener-
ating deterministic graphs. To each grammar R, we associate the family Sync(R)
of the languages recognized by its synchronized grammars. By applying stan-
dard constructions on finite automata to synchronized grammars, we show that
Sync(R) is an extension of the regular languages which remains a boolean al-
gebra (cf. Theorem 3.5).

In this section, we restrict to any grammar R generating a deterministic graph.
Note that the determinism of Rω is a first order sentence which is decidable.

A grammar R synchronizes a grammar S and we write R � S or S � R if
∀ u ∈ L(S, i) (u ∈ L(R, i) ∧ ‖u ‖

R
= ‖ u ‖

S
)

meaning that the label u of any initial path of the graph(s) generated by S is
the label of an initial path of the graph generated by R, and these paths end
in vertices of the same level. For instance the grammar of the previous section
synchronizes the following one:

; ;Z b A

i

f

(x)(x)

(y) (y)

A

a

c

B

(x) (x)

(y)

B

(y)
c

b

b

A
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whose generated graph(s) is represented below by vertices of increasing level (the
vertices of a same level are the vertices in a same vertical line).

b

b

b

c

c b

b

c

c

a

b

b

c

c

a

c

aai

f

Note that � is a reflexive and transitive relation which is not antisymmetric;
we denote �� the bi-synchronization relation:

R �� S if R � S and S � R.
So R �� S ⇐⇒ R � S ∧ L(R, i) = L(S, i). Let us give a basic property of �.

Lemma 3.1. R � S and Rω of finite degree =⇒ Sω of finite degree.

The grammar synchronization does not depend on colour f i.e. on final vertices.
For instance the language recognized by the previous graph is { anb(bcc)n | n ≥
0 } which has no common word with the language recognized by the graph of
the previous section. For each grammar R, we associate the following family:

Sync(R) := { L(R) ∩ L(S) | R � S } of synchronized languages by R.

In particular L(R) ∈ Sync(R)
Sync(R) = { L(S) | R � S } if any vertex of Rω is final.

Taking the following grammar R :

;Z

b

a

A

A

b

c c

(1) (1)

A

ff
i

generating the following (label) complete graph:

b

c

b

a
c

b

a
c

b

a
c

ff f f
i

its set Sync(R) is the family of visibly pushdown languages for a a pushing let-
ter, b a popping letter and c an internal letter [AM04]. This family is a boolean
algebra containing all the regular languages and closed under concatenation ·
and under its Kleene iteration ∗ . Except for the last two operations, we extend
these closure properties to Sync(R) for any grammar R, and we will give a
general condition on R such that Sync(R) is also closed under · and ∗ .

Due to Proposition 2.1 and Lemma 3.1, we have more families of synchronized
languages by allowing grammars generating graphs of infinite in-degree. For
instance the following grammar R :
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; ;

B

Z A

f
i

A

B

(1)(1)
A

b

a

B

B

(1)

(2)

(1)

(2)

c

d

e

has a family Sync(R) �= Sync(S) for any grammar S such that Sω is of finite
degree.

The closure properties of Sync(R) are just obtained by translating usual
constructions on finite automata to synchronized grammars.

Recall that the synchronization product G×H of two graphs G and H is the
graph

G×H := { (s, p) a−→ (t, q) | s
a−→
G

t ∧ p
a−→
H

q }
∪ { i(s, p) | is ∈ G ∧ ip ∈ H } ∪ { f(s, p) | fs ∈ G ∧ fp ∈ H } .

So L(G×H, i) = L(G, i) ∩ L(H, i) and L(G×H) = L(G) ∩ L(H).
By synchronization product of a grammar R by a finite deterministic au-

tomaton, we get that any regular language included in L(R) is a synchronized
language of R.

Lemma 3.2. For any grammar R and any regular language L, L(R) ∩ L ∈
Sync(R).

Proof
We want to define a grammar synchronized by R and recognizing L(R) ∩ L.

Let K be a finite deterministic graph (automaton) recognizing L : L(K) = L.
We order the vertices (states) of K : VK = {q1, . . ., qn} with n = |VK | .
To each non-terminal A ∈ NR of R, we associate a new symbol A′ of arity

�(A)×n except that Z ′ = Z.
To each non-terminal hyperarc As1. . .sm (with A ∈ NR and m = �(A)), we

associate the following hyperarc:
(As1. . .sm)′ := A′(s1, q1). . .(s1, qn) . . . (sm, q1). . .(sm, qn) .

The synchronization product of R by K is the following grammar:
R×K := { (

X ′ , [H ]×K ∪ { Y ′ | Y ∈ H ∧ Y (1) ∈ NR }) | (X, H) ∈ R }.
This grammar is synchronized by R.

As G×K ∈ (R×K)ω for any G ∈ Rω, the grammar R×K recognizes
L(R×K) = L(R) ∩ L(K) = L(R) ∩ L . �

The synchronization product of a grammar by a deterministic finite automaton
can be extended for two grammars synchronized by a given one.

Let S and S′ be grammars synchronized by R : R � S and R � S′.
To each non-terminal couple (A, B) ∈ NS×NS′ , we associate a new symbol

(A, B)′ of arity �(A)×�(B) except that (Z, Z)′ = Z.
To each non-terminal hyperarc As1. . .sm of S (A ∈ NS and m = �(A))

and each non-terminal hyperarc Bt1. . .tn of S′ (B ∈ NS′ and n = �(B)), we
associate the hyperarc:

(As1. . .sm , Bt1. . .tn)′ := (A, B)′(s1, t1). . .(s1, tn) . . . (sm, t1). . .(sm, tn) .
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The synchronization product S×S′ of S by S′ is the grammar of the rules
(X, Y )′ −→ [H ]×[K] ∪ { (fU, gV )′ | fU ∈ H ∧ f ∈ NS ∧ gV ∈ K ∧ g ∈ NS′ }

for each (X, H) ∈ S and (Y, K) ∈ S′.
The synchronization product of grammars synchronized by a grammar R is

used to deduce the closure by intersection of Sync(R).

Lemma 3.3. For any grammars R, S, S′, we have
S � R ∧ S′ � R =⇒ S×S′ �� S′×S � S and (S×S′)ω = Sω×S′ω

S � R =⇒ R×S �� S

Sync(R) is closed under intersection.

Proof
The grammar S×S′ is synchronized by S and S′ hence by R and

(S×S′)ω = Sω×S′ω := { G×G′ | G ∈ Sω ∧ G′ ∈ S′ω } .
Thus L(S×S′) = L(S) ∩ L(S′) and L(S×S′, i) = L(S, i) ∩ L(S′, i).
The closure under intersection of Sync(R) results from the equality:(

L(R) ∩ L(S)
) ∩ (

L(R) ∩ L(S′)
)

= L(R) ∩ L(S×S′).
Finally R×S � S and L(R×S, i) = L(S, i) thus R×S �� S. �

The closure under intersection of Sync(R) implies that
Sync(R) = { L(S) | R � S ∧ L(S) ⊆ L(R) }.

Using Lemma 3.3, we show that we have the same families of synchronized
languages by restricting to grammars R generating (deterministic) graphs Rω

which are accessible from i and co-accessible from f ; in that case, L(R, i) is
the set of prefixes of L(R).

For the closure under union, we define a generalized synchronization product
G⊗H of graphs G and H such that L(G⊗H, i) = L(G, i) ∪ L(H, i) and
L(G⊗H) = L(G) ∪ L(H).

As for the synchronization product S×S′ of grammars S and S′ synchronized
by a grammar R, we define the product S⊗S′ generating (S⊗S′)ω = Sω ⊗S′ω.

It follows the closure of Sync(R) under union and complement with respect
to L(R). This also permits to decide whether R synchronizes S.

Lemma 3.4. The synchronization relation � is recursive.

We summarize previous results.

Theorem 3.5. For any grammar R, the family Sync(R) of synchronized lan-
guages is an effective boolean algebra with respect to L(R), of deterministic
context-free languages, containing all the regular languages included in L(R).

Let us give another family of synchronized languages than the visibly pushdown
languages. Taking an internal letter c, two pushing letters a, b and their corre-
sponding popping letters a, b, the following grammar R :
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;;

(1)

(2)

A

(1)

(2)

b

c

b

a

a
BB

c
B

(1)

(1)
b

c
a b

BB

a

cZ A

i

f

defines by synchronization the family Sync(R) of balanced languages [BB02].
This family Sync(R) is not closed under · and ∗ . By extending standard

constructions on finite automata for the closure under · and ∗ , we will get fam-
ilies of synchronized languages closed under · and ∗ . However the constructions
need to extend the synchronization to grammars generating non deterministic
graphs.

4 Synchronization of Weighted Grammars

We generalize the notion of synchronization to grammars, called weighted gram-
mars, generating non-deterministic graphs. A grammar is weighted if in the
generated graph two initial paths with the same label end in vertices of same
weight. We show that weighted grammars can be in a certain sense determinized
(cf. Proposition 4.2) and hence do not allow to capture new boolean algebras.
However they allow to use on grammars the standard constructions for concate-
nation and its iteration (which introduce non-determinism). As a consequence,
we provide a simple sufficient condition for the boolean algebras, defined by syn-
chronization of grammars, to be closed under concatenation and iteration (cf.
Theorem 4.3).

In this section, a deterministic graph grammar R can generate a non deter-
ministic graph G ∈ Rω. We say that R is a weighted grammar if two initial
paths with the same label end in vertices of the same level:

i
u

=⇒
G

s ∧ i
u

=⇒
G

t =⇒ �(s) = �(t)

which allows to define the weight of any u ∈ L(R, i) as above:
‖u ‖

R
:= �(s) for i

u
=⇒

G
s.

Here is an example of a weighted grammar generating a non deterministic graph:

; ;
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(y)

(z)

(x)

(y)

(z)
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a

c

d

BAZ

b

b

i

f

(x)

(y)

(z)

B

(x)

(y)

(z)

c
A

b

b

b

b

b

Any grammar generating a deterministic graph is weighted. Any weighted gram-
mar generates a finite out-degree graph which can be of infinite in-degree. The
decidability that a grammar generates a deterministic graph can be extended to
the weighted property.

Lemma 4.1. We can decide whether a grammar is weighted.

The synchronization is generalized to weighted grammars R and S :
R � S if ∀ u ∈ L(S, i), u ∈ L(R, i) ∧ ‖u ‖

R
= ‖ u ‖

S

and Syncw(R) := { L(R) ∩ L(S) | R � S ∧ S weighted } .
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For instance the above grammar is synchronized by the grammar of the previous
section. A key property is that any weighted grammar can be determinized.

Proposition 4.2. Any weighted grammar can be transformed into an equivalent
bi-synchronized grammar generating a deterministic graph.

This implies that for any weighted grammar R, we can construct a grammar S
generating a deterministic graph such that Syncw(R) = Sync(S).

Weighted grammars have been introduced for the closure under · and ∗ of
Sync(R) for grammars R generating deterministic graphs.

We say that R is a cyclic grammar if Rω is deterministic and its initial vertex
is the unique final vertex. In that case L(R) is closed under concatenation.

Theorem 4.3. For any cyclic grammar R, the family Sync(R) is closed under ·
and under ∗ .

For instance taking the following cyclic grammar R :

;
b

c
a b

a

c

(1)

A

A A

(1)

Z

A

fi

the family Sync(R) is the closure under concatenation and under iteration of
the concatenation of the balanced languages [BB02].

5 Synchronization of Pushdown Automata

The synchronization of height-deterministic pushdown automata [NS07] and the
synchronization with a transducer [Ca06] define language families synchronized
by grammars.

We begin with the last approach of [NS07]. A (real-time) pushdown automa-
ton in a weak form S over an alphabet T of terminals is a finite set of rules of
the form:

Ap
a−→ q ; Ap

a−→ Aq ; Ap
a−→ ABq

with A, B ∈ P , p, q ∈ Q, a ∈ T , where P, Q are disjoint alphabets of respec-
tively stack letters and states. We associate to S a subset F ⊆ Q of final states,
and an initial configuration c = ⊥r for r ∈ Q and ⊥ ∈ P which cannot be
popped (⊥p

a−→ q is not a rule of S). The transition graph Tr(S) of S is the
set of its transitions

{ wu
a−→ wv | u

a−→
S

v ∧ w ∈ P ∗ } ∪ {i c} ∪ { fu | u ∈ P ∗F }
restricted to the vertices accessible from c. We denote L(S) := L(Tr(S)) the
language recognized by S, and we say that S is complete if L(Tr(S), i) = T ∗.

A complete pushdown automaton S is height-deterministic [NS07] if
c

u
=⇒

Tr(S)
xp ∧ c

u
=⇒

T r(S)
yq =⇒ |x| = |y|

meaning that two initial paths with the same label end in vertices of same
length. Finally two height-deterministic pushdown automata S and S′ are syn-
chronized if

c
u

=⇒
Tr(S)

xp ∧ c′ u
=⇒

Tr(S′)
yq =⇒ |x| = |y|
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and the family of languages synchronized by S is
Sync(S) := { L(S′) | S′ synchronized by S }.

As S is complete and Sync(S) does not depend on the final states of S, T ∗ ∈
Sync(S).

Any family Sync(S) can be obtained by synchronization with a grammar.

Proposition 5.1. Wecan transform any height-deterministic pushdown automa-
ton S into a grammar R with Rω deterministic of finite degree and Sync(R) =
Sync(S).

Any family Sync(S) contains T ∗, hence cannot be the set of balanced languages.
However and redefining Sync(S) := { L(S) ∩ L(S′) | S′ � S }, Proposition 5.1
remains true and its converse must be studied.

The synchronization of pushdown automata, and more generally grammars,
by a transducer [Ca06] can also be captured using synchronization by a linear
grammar : each right hand side has at most one non-terminal hyperarc. Taking
the visibly pushdown languages, the converse is false.

In conclusion, the synchronization by grammars strictly generalizes the known
synchronization notions of pushdown automata.

Many thanks to Arnaud Carayol and Antoine Meyer for their remarks and
comments on this paper.
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Lower Bounds for Depth-2 and Depth-3 Boolean

Circuits with Arbitrary Gates

Dmitriy Yu. Cherukhin
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Leninskie Gory, Moscow, 119992, Russia

Abstract. We consider depth-2 and 3 circuits over the basis consisting
of all Boolean functions. For depth-3 circuits, we prove a lower bound
Ω(n log n) for the size of any circuit computing the cyclic convolution.
For depth-2 circuits, a lower bound Ω(n3/2) for the same function was
obtained in our previous paper [10]. Here we present an improved proof
of this bound. Both lower bounds are the best known for depth-3 and
depth-2 circuits, respectively.

Keywords: Boolean function, circuit, complexity, depth, lower bound,
cyclic convolution.

1 Introduction

Proving circuit lower bounds is one of the central mathematical problem in
Computer Science. A considerable progress in this area has been made only
for weak types of circuits, i.e. circuits satisfying certain strong restrictions, like
monotone circuits or circuits of bounded depth over weak bases. For such circuits,
exponential lower bounds are known.

For more traditional models, which have structural (and not computational)
constraints, like formulas over the full basis, or switching and switching-and-
rectifier networks, only polynomial lower bounds are known. We classify such
circuits as medium strength circuits.

For the most practical model, namely, for unrestricted circuits over the full
basis, only linear lower bounds are known. We classify this model as the strong
one.

According to this classification, the circuits we consider in this paper are of
medium strength. Specifically, we consider bounded depth circuits having arbi-
trary gates. In this model, the size of a circuit is defined as the number of wires
in it. For every fixed depth d, there are explicit Boolean multi-output functions1

that require circuits of superlinear size (in the maximum of the number of inputs
and the number of outputs).

For d = 2, the best known lower bound is of the order n3/2. It was obtained in
our previous paper [10]. For d > 2, all known lower bounds are “almost” linear,

1 A Boolean multi-output function is a mapping from {0, 1}n to {0, 1}k (for certain
n, k).

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 122–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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that is, they are of the order nf(n) where f(n) is a function that grows slower
than any function of the form nε. For d = 3, the function f(n) is of order log n,
and for other d > 3 it is even smaller.

Note that every Boolean function of n variables is computed in our model by
a circuit of size n and depth 1 (recall that we allow arbitrary gates). Likewise,
any k-output Boolean function of n input variables can be computed by a circuit
of size nk and depth 1. Thus superlinear lower bounds could be obtained only
for k being an unbounded function of n. And there are no exponential lower
bounds (in max{n, k}) in our model.

In this paper, we present a slightly modified proof from the paper [10] of
Ω(n3/2) lower bound for the size of depth-2 circuits. The new result in this
paper is Ω(n log n) lower bound for the size of depth-3 circuits. The best lower
bound for depth-3 circuits known before was of the order n log log n [6]. To prove
the new lower bound we reduce depth-3 circuits to depth-2 circuits and then we
use a method similar to that of [10].

We obtain our lower bounds for the cyclic convolution function (see the defini-
tion below). The same function was used in [10]. Our method applies also to other
“multiplicative” functions, namely, to matrix multiplication (for depth-2 cir-
cuits) and to multiplication of polynomials over the field ZZ2. For multiplication-
of-matrices-n × n function, for depth-2 circuits, we are able to prove the lower
bound Ω(n3), which matches the (trivial) upper bound O(n3); see also new
paper [11].

2 Previous Results and Proof Methods

In all the previous papers known to the author, the proof of a circuit lower bound
(in the considered model) is based on a property of the graph underlying the cir-
cuit. Specifically, one defines a graph property such that any circuit computing
the given function has that property. Then one proves that the number of edges in
any graph having that property must exceed the lower bound one wants to show.

The graph property that is mostly used in this context is the following. A
circuit (with n input nodes and n output nodes) has the property if it is a
superconcentrator, that is, for every k � n every set of k inputs is connected to
every set of k outputs by a family of k vertex disjoint paths. For instance, every
circuit computing the convolution function must be a superconcentrator [1]. It
is known that the number of edges in every superconcentrator of constant depth
is superlinear in n, which implies superlinear lower bounds for the size of any
circuit of constant depth computing the convolution.

The first superlinear lower bound for superconcentrators of constant depth
(depth 2) is due to Pippenger [2]. His result was improved and generalized to
larger depths in a series of papers [3,5,6,8]. Now we know minimal size of a
superconcentrator for every specific depth (up to a multiplicative constant). For
the survey of these results, we refer to the paper [8].

For depth 2, the minimal number of edges in a superconcentrator is
Θ(n log2 n

log log n ), and for depth 3 it is Θ(n log log n). These bounds were also the
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best known lower bounds for depth-2 and 3 circuits in our model. The papers
[4,7,9] use even weaker graph properties than being a superconcentrator. Thus
the lower bounds in those papers are weaker than the above ones.

Our method also uses a property of the graph underlying the circuit. We do
not state that property explicitly, as we think that the property is not interesting
in its own right, at least not as much, as being a superconcentrator. The idea of
the proof (for depth-2 circuits) is the following. The function we consider (the
cyclic convolution) depends on two groups of variables, x̃ and ỹ. We pick a subset
I of the first group x̃ and a subset O of output variables. For every evaluation
of variables ỹ and remaining variables in x̃, we obtain a function from {0, 1}I to
{0, 1}O.

For cyclic convolution, there are many functions (for all choices of values of
ỹ and remaining variables from x̃) obtained in this way. Therefore, there must
be many edges in the circuit between inputs in I and outputs in O (to transmit
the controlling information from the inputs ỹ and remaining inputs from x̃). As
the depth equals 2, those edges are incident either to inputs, or to outputs. We
obtain our lower bound by summing the number of such edges over all choices
of I and O and taking into account the cyclic shifts.

Then we reduce depth-3 circuits to depth-2 circuits by modifying the under-
lying graph.

3 Basic Definitions and Main Results

A Boolean function of n variables is a function f : {0, 1}n → {0, 1}. A multi-
output Boolean function is a function f : {0, 1}n → {0, 1}k.

We define, for each integer n, an n-output Boolean function Hn = (h1, . . . , hn)
of 2n input variables. Each hj is a Boolean function of 2n variables that are the
same variables for all hj and are called x1, . . . , xn, y1, . . . , yn. The function hj

computes the value of the j-th output of Hn:

hj(x1, . . . , xn, y1, . . . , yn) = x1yj ⊕ x2yj+1 ⊕ . . . ⊕ xnyj−1 . (1)

We call Hn the cyclic convolution.
Now we are going to define the notion of a Boolean circuit of depth d with

arbitrary gates that has 2n inputs and n outputs (and that computes Hn). Such
circuit is identified by a triple (G, g, ≺) satisfying the following conditions.

1) G is a finite directed graph.
2) The graph G has 2n inputs and n outputs . A node is called an input if it

has no in-going edges. A node is called an output if it has no outgoing edges.
3) g is a mapping that assigns to each node v (which is not an input) a Boolean

function which is locally computed in v; let g[v] denote that function. The fan-in
of g[v] must be equal to the in-degree of v.

4) ≺ is a linear ordering on the nodes of G that has the following property: if
there is an edge from a node v to a node w then v ≺ w. This property implies
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that G has no directed cycles. We also assume that the maximal length of a
directed path in G is at most d.

Using the ordering ≺, we identify the edges going to a node v and the ar-
guments of g[v]: the in-going edges are ordered according to the order on their
origins.

Besides, using the ordering ≺ on inputs and outputs of the circuit, we identify
the inputs with variables x1, . . . , xn, y1, . . . , yn and the outputs with variables
z1, . . . , zn.

5) For every j = 1, . . . , n the function “globally” computed by output zj must
coincide with hj . In the following two paragraphs we define formally the notion
of the function f [v] that is globally computed in a node v.

If v is an input then we let f [v] be equal to the value of the variable identified
with that input.

Assume that v is not an input and let v1, . . . , vk be all nodes such that there
is an edge from vi to v. Number them so that v1 ≺ . . . ≺ vk (where ≺ is the
ordering in the definition of the circuit). Reasoning by induction (on the ordinal
number of v in the order ≺), we may assume that f [v1], . . . , f [vk] are defined.
Let

f [v](x̃) ≡ g[v](f [v1](x̃), . . . , f [vk](x̃)) , (2)

where x̃ = (x1, . . . , xn, y1, . . . , yn).
The number of edges in G is called the size of S; we use the notation L(S)

for the size of a circuit S.
In this paper, we prove the following theorems.

Theorem 1. If d = 2 then L(S) = Ω(n3/2).

Theorem 2. If d = 3 then L(S) = Ω(n log n).

In the rest of the paper, we prove these theorems. First we prove Lemma 1 (in
Section 4), which is the main complexity-theoretic ingredient in our method.
Then we derive certain its corollaries, and Theorem 1 is one of them. The other
one is used in the proof of Theorem 2. In Section 5, we present a general Lemma 2,
which generalizes a lemma from [5]. Finally, we prove Theorem 2 in Section 6.

We conclude this section by a remark. The set of nodes in a circuit can be
partitioned into levels . A node v is on the level k if k is the maximal length of
a directed path from an input to v. For instance, all inputs belong to level 0.
By our assumptions, the number of levels in the circuit S is at most d. With-
out loss of generality we may assume that, in the circuit S, all outputs be-
long to level d and every edge goes from a level i to the level i + 1 (for some
i < d).

Indeed, we can insert fictitious nodes into every edge going from a level i to
level j > i + 1. This transformation increases the number of edges at most d
times. As d is constant and the bounds of Theorems 1 and 2 are asymptotic, we
can afford such increase.
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4 Depth-2 Circuits. Lemma 1 and Its Corollaries

Assume that f and f1, . . . , fk are Boolean functions of variables ỹ = (y1, . . . , yn).
We say that f is expressible through f1, . . . , fk if for some Boolean function Φ
of k variables we have

f(ỹ) ≡ Φ(f1(ỹ), . . . , fk(ỹ)) .

As there are 22k

different functions Φ of k variables, there are at most that
much functions expressible through f1, . . . , fk. On the other hand, if f1, . . . , fk

are different variables, that bound is attained — we can express every of 22k

different functions of k variables through f1 = y1, . . . , fk = yk.
In this section, we assume that S is a circuit of depth d = 2. Recall that we

assume that every edge in S goes from a level i − 1 to the level i, for some i. In
this case we say that the edge belongs to level i. We number levels in S by 0,1,2,
where 0 is the bottom level (containing inputs) and 2 is the top level (containing
outputs). Let Li denote the number of edges in the i-th level. Some of the nodes
of the middle (i.e., first) level connected to all inputs will be called special. Let
L∗

2 stand for the number of edges in the second level that are not incident to
special nodes (that is, edges connecting outputs with non-special nodes). The
number L∗

2 depends on the choice of special nodes. The following Lemma holds
for every choice of special nodes, satisfying the above constraint.

Lemma 1. Let k and l be natural numbers and kl � n. Then we have

kL1 + lL∗
2 � nkl .

Proof. Let v be a vertex in G. Consider the function f [v] of the input vari-
ables that is globally computed in v. Define functions f0[v], f1[v], . . . , fn[v] of
variables y1, . . . , yn as follows. The function f0[v] is obtained by substituting
zeroes for all variables x1, . . . , xn in f [v]. The function fi[v] is obtained by sub-
stituting 1 for xi and zeroes for the remaining variables x1, . . . , xn in f [v]. Thus
f0[v], f1[v], . . . , fn[v] are sub-functions of f [v].

Let J be the set of the first l natural numbers that are congruent to 1 modulo
k, that is, J = {1, k + 1, . . . , lk − k + 1}. Let zj be j-th output node and F the
set of all functions fi[zj ], for 1 � i � k and j ∈ J . As j-th output of S computes
hj , the equality (1) implies that fi[zj ] is equal to yi+j−1. Note i + j − 1 takes all
values in the range 1, . . . , kl, as i ranges over 1, . . . , k, and j over J . Hence the
set F consists of independent variables y1, . . . , ykl.

Let Xi stand for the set of all nodes in the middle level that are connected
to the input xi and let Zj denote the set of nodes in the middle level connected
to the output zj. Note that by (2) the function f [zj] is expressible through the
functions f [v] for v ∈ Zj . Then the function fi[zj ] is expressible through the
functions fi[v] for v ∈ Zj, since substitutions of constants for variables preserve
equalities and thus the expressibility property.
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Let G denote the set of all the functions fi[v], where 1 � i � k, v ∈ Zj

and j ∈ J . It is easy to see that all functions from the set F are expressible
through the functions from G. However, F consists of kl independent variables.
Thus, there are 22kl

functions expressible through F . However, every function
expressible through F is also expressible through G (since the expressibility
property is transitive). Thus there are at least 22kl

functions expressible through
G, and hence

|G| � kl . (3)

We now come to the central point of the proof. If node v of the middle level
is not connected to the input xi, then the function f [v] does not depend on xi,
hence, fi[v] = f0[v]. Let us thus replace fi[v] by f0[v] everywhere in G where it
is possible. Now the set G contains only those functions fi[v] for which the node
v is connected to the input xi, i.e., v ∈ Xi. In addition, the set G contains the
functions f0[v] such that v ∈ Zj, j ∈ J , and the node v is not connected to at
least one of the inputs x1, . . . , xk.

Recall that every special node is connected to all inputs. Therefore, the set G
contains only the functions fi[v] for v ∈ Xi, 1 � i � k, and the functions f0[v]
for non-special v ∈ Zj and j ∈ J . Let Z∗

j be the set of non-special nodes from
Zj . Then

|G| �
k∑

i=1

|Xi| +
∑

j∈J

|Z∗
j | .

Together with (3) it yields

kl �
k∑

i=1

|Xi| +
∑

j∈J

|Z∗
j | . (4)

Note that the proof above does not change when i ranges not over 1, 2, . . . , k,
but over any other set obtained from it by a cyclic shift modulo n. Similarly,
we can change the range of j (i.e., the set J). For simplicity, we will shift i and
j synchronously. For each of the resulting n shifts an inequality similar to (4)
holds. Summing all these inequalities, we get

nkl � k
n∑

i=1

|Xi| + l
n∑

j=1

|Z∗
j | . (5)

To conclude the proof, we note that the first sum in (5) equals L1, and the
second one is L∗

2. �

Corollary 1 (Theorem 1). L(S) = Ω(n3/2).

Proof. Choose special nodes in an arbitrary way so that the above constraint is
satisfied (say, declare all nodes non-special). Applying the lemma to k = l = [

√
n]

we get

[
√

n]L(S) = [
√

n](L1+L2) � [
√

n](L1+L∗
2) � n·[√n]2 . �
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A by-product of the lemma is the following corollary that will be used in the
proof of our second theorem.

Corollary 2. If there are at most n
2 special nodes, then L1 · L∗

2 � n3

16 .

Proof. Note that there are at least n nodes in the middle level. It follows from
the information transmission between the inputs and the outputs. Namely, the
functions f1[z1], . . . , f1[zn] are in fact different variables; however, they are ex-
pressible through the functions f1[v] for nodes v from the middle level. Thus,
the middle level contains at least n nodes.

Therefore, by the assumption of our corollary there are at least n
2 non-special

nodes in the middle level. Every node of the middle level has an outgoing edge
(since they are not outputs), thus L∗

2 � n
2 . Furthermore, every input also has an

outgoing edge, thus L1 � n.
Let us distinguish three cases:

1. L1 � n2

2 ;
2. L∗

2 � n2;
3. L1 < n2

2 and L∗
2 < n2.

Case 1: We thus have L1 · L∗
2 � n2

2 · n
2 = n3

4 .
Case 2: Similarly, L1 · L∗

2 � n · n2 = n3.
Case 3: Choose k and l as follows:

k =

[(
n · L∗

2

L1

)1/2
]

, l =

[(
n · L1

L∗
2

)1/2
]

.

The condition of this case implies that nL1 � n2 > L∗
2 and nL∗

2 � n2

2 > L1.
Thus, both k and l are positive integer numbers.

Furthermore, kl � n. Applying lemma 1 and using the inequality [x] � x
2 for

x � 1, we get

n � L1

l
+

L∗
2

k
=

L1[(
n · L1

L∗
2

)1/2
] +

L∗
2[(

n · L∗
2

L1

)1/2
] �

� 2L1
(
n · L1

L∗
2

)1/2 +
2L∗

2(
n · L∗

2
L1

)1/2 = 4
(

L1L
∗
2

n

)1/2

.

Thus, L1L
∗
2 � n3

16 . �

5 Lemma 2

The following lemma is a generalization of a lemma by Pudlák [5, Lemma 4].
Its original proof was simplified by an anonymous referee.
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Lemma 2. Assume a1, . . . , an, b1, . . . , bn are nonnegative real numbers such
that a1 � . . . � an and

a1 + a2 + . . . + an � b1 + b2 + . . . + bn ,

a2 + . . . + an � b2 + . . . + bn ,

. . . (6)
an � bn .

Let ϕ: IR+ → IR+ be an increasing concave function. Then

ϕ(a1) + . . . + ϕ(an) � ϕ(b1) + . . . + ϕ(bn) .

Note that the requirement that ai’s and bi’s are nonnegative is redundant if these
numbers are in the domain of ϕ. We state this requirement since we will apply
this lemma just to the function

√
x, which is defined on nonnegative numbers.

Proof. First we prove that if a � b � ε > 0, then

ϕ(a) + ϕ(b) � ϕ(a + ε) + ϕ(b − ε) . (7)

In words: if the largest of the numbers of a, b is increased by ε, and the smallest
one is decreased by ε, then the sum ϕ(a) + ϕ(b) does not increase.

Indeed, denote δ = ε
a−b+2ε . Then by Jensen’s inequality

δϕ(b − ε) + (1 − δ)ϕ(a + ε) � ϕ(δ(b − ε) + (1 − δ)(a + ε)) =
ϕ(a + ε − δ(a − b + 2ε)) = ϕ(a) .

Similarly,
(1 − δ)ϕ(b − ε) + δϕ(a + ε) � ϕ(b) .

Summing the last two inequalities we get (7).
We prove this lemma by induction on n. The base is n = 1. In this case the

claim follows from (6) and the assumption that ϕ is increasing.
We now prove the induction step (n � 2). Increase a1 and decrease an by ε,

where ε is the maximum possible number such that all the inequalities (6) are
satisfied after this change. The sum ϕ(a1) + . . . + ϕ(an) does not increase due
to this change. This follows from the inequality a1 � an and the inequality (7).
Hence, if we are able to prove the claim for the new numbers a1, . . . , an, the
claim for the former numbers will follow.

We now prove the claim for the new numbers a1, . . . , an. By the maximality
of ε, at least one of the inequalities (6) (except for the first one) becomes an
equality. Indeed, increasing a1 by ε and decreasing an by ε does not change the
sum a1 + . . . + an. Thus the first inequality of the system (6) remains intact.
However, the left-hand side of all subsequent inequalities decreases. Thus the
maximality of ε implies that one of the subsequent inequalities has become an
equality.
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Thus, for some k � 2 we have

ak + . . . + an = bk + . . . + bn . (8)

Denote the system (6) by Φ(a1, . . . , an; b1, . . . , bn). Subtract the equality (8)
from the first k − 1 inequalities of this system. Then the system (6) splits into
two independent systems of the same type, namely,

Φ(a1, . . . , ak−1; b1, . . . , bk−1) ,

Φ(ak, . . . , an; bk, . . . , bn) .

Applying the induction hypothesis to these two systems, we get

ϕ(a1) + . . . + ϕ(ak−1) � ϕ(b1) + . . . + ϕ(bk−1) ,

ϕ(ak) + . . . + ϕ(an) � ϕ(bk) + . . . + ϕ(bn) .

Finally, summing the two last inequalities we get the desired claim. �

6 Circuits of Depth 3. Proof of Theorem 2

In this section we assume that d = 3. Denote the nodes of the second level (i.e.,
the level preceding the outputs) by v1, . . . , vt. Let d+(vi) be the number of edges
going into vi, and d−(vi) the number of edges going out vi. Define the number
ai as

ai = d+(vi) · d−(vi) , i = 1, . . . , t .

Re-numbering vi if needed, we can assume that a1 � a2 � . . . � at.
Let m = [n/2]. For each p = 1, 2, . . . , m, we transform the circuit S into a new

depth-2 circuit Sp that implements the same function Hn. Namely, we move the
nodes v1, . . . , vp−1 to the first level of the circuit and connect each input to each
such node (and we change the gates in v1, . . . , vp−1 so that the function globally
computed in vi is preserved).

Then we remove the nodes vp, . . . , vt from the circuit. To preserve the func-
tionality, we add new edges when eliminating vi. Namely, if there is an edge from
node w of the first level to node vi and an edge from vi to an output zj , then
we add a new edge directly from w to zj . We proceed this way for each pair
(w, zj). Thus eliminating vi results in adding ai new edges to the circuit. Then
we change the gates in each output w so that the function globally computed in
w is preserved. The resulting circuit is denoted by Sp.

The nodes v1, . . . , vp−1 will be special for Sp (recall the notion of a special node
from Sect. 4). The number of special nodes is at most n/2, thus we can apply
Corollary 2. Recall that Li denotes the number of edges of the i-th level, and L∗

2
denotes the number of edges of the second level leaving non-special nodes. We
specify the circuit for which we count the number of these edges in parentheses
(for example, L∗

2(Sp)). Corollary 2 yields

L1(Sp) · L∗
2(Sp) � n3

16
. (9)
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We now compute L1(Sp) and L∗
2(Sp). Every edge of the first level of Sp either

was there in S or was added. Since we have added edges connecting the 2n
inputs and the nodes v1, . . . , vp−1 the number of additional edges is 2n(p − 1).
Therefore,

L1(Sp) = L1(S) + 2n(p − 1) .

The edges of the second level that leave non-special nodes are exactly the edges
that we added to Sp when eliminating the nodes vp, . . . , vt, i.e.,

L∗
2(Sp) =

t∑

i=p

ai .

Denote θ = L1(S)
2n . By substituting the values for L1(Sp) and L∗

2(Sp) into the
inequality (9) we get

t∑

i=p

ai � n3

16(L1(S) + 2(p − 1)n)
=

n2

32(θ + p − 1)
. (10)

To apply Lemma 2, we introduce the numbers b1, . . . , bt as follows:

bp = n2

32

(
1

θ+p−1 − 1
θ+p

)
, p = 1, . . . , m − 1 ,

bm = n2

32

(
1

θ+m−1

)
, bm+1 = . . . = bt = 0 .

Note that the system (6) now follows from the inequalities (10) for different
values of p. Indeed, bi is defined as the difference between the two numbers from
the right-hand side of (10). Thus, after intermediate terms cancel in bp + . . .+bt,
we are left with the first number, which is on the right in (10). Note also that
the last inequalities of the system (6) that do not have matching inequalities
in (10) hold since bm+1 = . . . = bt = 0 and ai � 0.

Applying Lemma 2 to the function ϕ(x) =
√

x we get

t∑

i=1

√
ai �

m∑

i=1

(
n2

32

(
1

θ + i − 1
− 1

θ + i

))1/2

=
m∑

i=1

n

(32(θ + i − 1)(θ + i))1/2 �

n

4
√

2

m∑

i=1

1
θ + i

=
n

4
√

2
(ln(θ + m) − ln θ + O(1)) . (11)

On the other hand, by the definition of ai’s, we have

√
ai =

(
d+(vi) · d−(vi)

)1/2 � d+(vi) + d−(vi)
2

. (12)

Finally, note that the edges of the second level of S are exactly the edges
entering the nodes v1, . . . , vt, and the edges of the third level are the edges
leaving these nodes. Hence,

L2(S) =
t∑

i=1

d+(vi) , L3(S) =
t∑

i=1

d−(vi) .
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In total, by summing the inequalities (12) we get

t∑

i=1

√
ai � 1

2

t∑

i=1

(
d+(vi) + d−(vi)

)
=

1
2

(L2(S) + L3(S)) . (13)

To conclude, we consider the two possible cases: if θ � ln n, then L(S) �
L1(S) = 2θn � 2n lnn; otherwise (11) and (13) imply

L(S) � L2(S) + L3(S) = Ω
(

n

2
√

2
ln

(
1 +

m

θ

))
= Ω(n ln n) .

Therefore, in both cases L(S) = Ω(n log n), which proves Theorem 2.

7 Conclusion

We have a feeling that, using a more elaborate graph transformations, it is
possible to improve the known lower bounds for every fixed depth. The first step
in this direction would be a transformation of a depth-4 circuit into a depth-2
circuit. On the other hand, it is also interesting to generalize our method for
depth-2 circuits to circuits of larger depth.
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Abstract. We define a denotational semantics for Light Affine Logic
(LAL) which has the property that denotations of functions are polyno-
mial time computable by construction of the model. This gives a new
proof of polytime-soundness of LAL which is considerably simpler than
the standard proof based on proof nets and also is entirely semantical
in nature. The model construction uses a new instance of a resource
monoid; a general method for interpreting variations of linear logic with
complexity restrictions introduced earlier by the authors.

1 Introduction

In recent years, a large number of characterizations of complexity classes based
on logics and lambda calculi have appeared. At least three different principles
have been exploited, namely linear types [3,10], restricted modalities in the
context of linear logic [8,2,13] and non-size-increasing computation [9,1]. These
systems have been studied with different, often unrelated methodologies. In par-
ticular, proofs of soundness (any function which is representable in the system
lies in a complexity class) are usually quite complex and cannot be easily gener-
alized. As a consequence, unifying, reasonably simple frameworks for the anal-
ysis of quantitative properties of computation are desirable. This would help to
improve the understanding on existing systems, since proofs of soundness, espe-
cially conceptually simple ones, often shed light on the reasons why the system
under consideration enjoys certain quantitative properties.

While we take the significance of LAL itself more or less for granted in this
paper we may point out that it is the first system that characterises polynomial
time without recourse to explicit resource bounds as found e.g. in Bounded
Arithmetic and in addition allows one to define inductive datatypes as certain
fomulas by impredicative quantification. Functions acting on those datatypes
can thus be naturally represented as proofs via the well-known Curry-Howard
correspondence (e.g. logical implication corresponds to functional types). And,
noticeably, the class of representable first-order functions equals the polynomial
time functions. One can thus view LAL as the first resource-free and purely
proof-theoretic characterisation of polynomial time.

In a previous paper [7], we have introduced a new semantical framework which
consists of an innovative modification of realizability whereby realizers and their

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 134–145, 2008.
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runtime are bounded by elements of a certain algebraic structure, a resource
monoid. The axioms for resource monoids are such that for any resource monoid
the category of corresponding realizability sets is symmetric monoidal closed and
supports second-order quantification, i.e., impredicative polymorphism. With
particular resource monoids one can then realize further constructs and type for-
mers such as modalities or recursors. In [7] we have introduced resource monoids
and provided concrete instances for LFPL [9] and Elementary Affine Logic (EAL,
see [5]). A fairly complicated resource monoid for LAL with a consequently rather
technical and unenlightening proof of correctness has been presented in [7].

In this paper we provide a very simple resource monoid for LAL. Not only do
we obtain in this way a new, simpler, and conceptually appealing proof of poly-
time soundness (all definable functions on binary strings are polynomial time
computable) for LAL; we also find that the resource monoid we obtain is quite
natural; its members are triples (n, m, f) with n, m ∈ N and f a monotonically
increasing polynomial-time function; the monoid operation which interprets ten-
sor product is given by

(n, m, f) + (l, k, g) = (n + l, max(m, k), max(f, g)).

The order relation between these monoid elements is given by

(n, m, f) ≤ (l, k, g) ⇐⇒ (n ≤ l) ∧ (n + m ≤ l + k) ∧ (f ≤ g).

The interpretation of the modalities ! and § of LAL uses the functional f �→
λx.x2f(x2) which explains that bounding functions extracted from the interpre-
tation are polynomials whose degree grows exponentially with the nesting depth
of the modalities as is expected from the known proof based on proof nets and
also the known hardness examples. Some formulae which are not provable syn-
tactically can be justified in the semantics. An example is the distributive law
§(A ⊗ B) � §A ⊗ §B.

The formal similarity of our resource monoid with the one for LFPL from [7]
raises hopes for a system that somehow combines LFPL and LAL; we have to
admit that these hopes have not, as yet, materialised if one discounts trivial
solutions like the disjoint union of the two systems.

Related work. Semantic models for LAL exist [15,14]; however none of these
models yields a proof of polytime soundness. More generally, the method of
realizability has been used in connection with resource-bounded computation in
several places. The most prominent is Cook and Urquhart’s work [4], where terms
of a language called PVω are used to realize formulas of bounded arithmetic. The
contribution of that paper is related to ours in that realizability is used to show
“polytime soundness” of a logic. There are important differences though. First,
realizers in [4] are typed and very closely related to the logic that is being realized.
Second, the language of realizers PVω only contains first-order recursion and is
therefore too weak for systems with like LFPL or LAL that contain or define
recursion with higher-order result types. In contrast, we use untyped realizers
and interpret types as certain partial equivalence relations on those. This links
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our work to the untyped realizability model HEO (due to Kreisel [12]). This,
in turn, has also been done by Crossley et al. [6]. There, however, one proves
externally that untyped realizers (in this case of bounded arithmetic formulas)
are polytime, whereas our realizers are polytime bounded by construction.

2 Preliminaries

As in any realizability model, we need to introduce a language L in which to
write realizers. We stay abstract here: all the results presented in this paper hold
for every L satisfying some basic conditions, which we will now explain.

Let L ⊆ Σ∗ be the set of finite sequences over some finite alphabet Σ.
We assume a pairing function 〈·, ·〉 : L × L → L and a length function | · | :
L → N such that |〈x, y〉| = |x| + |y| + cp and |x| ≤ length(x) yet |x| =
Ω(length(x)ε) for some ε > 0, where length(x) is the number of symbols in
x and cp > 0 is a fixed constant. We assume a reasonable encoding of algo-
rithms as elements of L. We write {e}(x) for the (possibly undefined) applica-
tion of algorithm e ∈ L to input x ∈ L. We furthermore assume an abstract
time measure Time({e}(x)) ∈ N such that Time({e}(x)) is defined whenever
{e}(x) is and {e}(x) can be evaluated on a Turing machine in time bounded
by p(Time({e}(x)), |e|, |x|), where p : N

3 → N is a fixed polynomial. We re-
quire that algorithms manipulating higher-order functions and 0-1 strings can
be represented in L and their abstract time measures satisfy intuitive bounds.
For example, we assume the existence of ecomp (composition) and econtr (du-
plication, copying) such that for every x, y it holds that {ecomp}(〈x, y〉) = z
where |z| = |x| + |y| + O(1) and {z}(w) = {y}({x}(w)) and {econtr}(x) = 〈x, x〉.
Moreover, Time({econtr}(x)) = O(|x|) and Time({ecomp}(〈x, y〉)) = O(1) and
Time({z}(w)) = Time({x}(w)) + Time({y}({x}(w))) + O(1).

This abstract framework can be instantiated with call-by-value lambda terms
[7] or Turing machines [10]. Since the instantiation is irrelevant for our purposes
we do not give any details.

3 Resource Monoids and Length Spaces

In this section, we recall the notion of a resource monoid [7] and the corre-
sponding category of realizability sets, called length spaces, as well as its general
properties.

A resource monoid is a quadruple M = (|M |, +, ≤M , DM ) where
(i) (|M |, +) is a commutative monoid;
(ii) ≤M is a pre-order on |M | which is compatible with +;
(iii) DM : {(α, β) | α ≤M β} → N is a function such that for every α, β, γ

DM (α, β) + DM (β, γ) ≤ DM (α, γ)
DM (α, β) ≤ DM (α + γ, β + γ)

and, moreover, for every n ∈ N there is α such that DM (0, α) ≥ n.
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Given a resource monoid M = (|M |, +, ≤M , DM ), the function FM : |M | → N

is defined by putting FM (α) = DM (0, α).
We shall use elements of a resource monoid to bound data, algorithms, and

runtimes in the following way: an element ϕ bounds an algorithm e if FM (ϕ) ≥
|e| and, more importantly, whenever α bounds an input x to e then there must be
a bound β ≤M ϕ+α for the result y = {e}(x) and, most importantly, the runtime
of that computation must be bounded by DM (β, ϕ + α). So, in a sense, we have
the option of either producing a large output fast or to take a long time for a
small output. The “inverse triangular” law above ensures that the composition of
two algorithms bounded by ϕ1 and ϕ2, respectively, can be bounded by ϕ1 +ϕ2
or a simple modification thereof. In particular, the contribution of the unknown
intermediate result in a composition cancels out using that law. Another useful
intuition is that DM (α, β) behaves like the difference β − α, indeed, (β − α) +
(γ − β) ≤ γ − α.

A length space on a resource monoid M = (|M |, +, ≤M , DM ) is a pair A =
(|A|, �A), where |A| is a set and �A ⊆ |M | × L × |A| is a(n infix) relation
satisfying the following conditions:

(i) if α, e �A a, then FM (α) ≥ |e|;
(ii) for every a ∈ |A|, there are α, e such that α, e �A a;
(iii) if α, e �A a and α ≤M β, then β, e �A a;
(iv) if α, e �A a and α, e �A b, then a = b.

The last requirement implies that each element of |A| is uniquely determined by
the (nonempty) set of its realizers and in particular limits the cardinality of any
length space to the number of partial equivalence relations on L.

A morphism from length space A = (|A|, �A) to length space B = (|B|, �B)
(on the same resource monoid M = (|M |, +, ≤M , DM )) is a function f : |A| →
|B| such that there exist e ∈ L = Σ∗, ϕ ∈ |M | with FM (ϕ) ≥ |e| and whenever
α, d �A a, there must be β, c such that

(i) β, c �B f(a);
(ii) β ≤M ϕ + α;
(iii) {e}(d) = c;
(iv) Time({e}(d)) ≤ DM (β, ϕ + α).

We call e a realizer of f and ϕ a majorizer of f . The set of all morphisms from
A to B is denoted as Hom(A, B). If f is a morphism from A to B realized by e

and majorized by ϕ, then we will write f : A
e,ϕ−→ B or ϕ, e �A�B f .

Given two length spaces A = (|A|, �A) and B = (|B|, �B) on the same
resource monoid M , we define A ⊗ B = (|A| × |B|, �A⊗B) (on M) where
e, α �A⊗B (a, b) iff FM (α) ≥ |e| and there are f, g, β, γ with

f, β �A a
g, γ �B b
e = 〈f, g〉

α ≥M β + γ
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The following result is from [7]:

Theorem 1. The category of length spaces for any resource monoid is symmet-
ric monoidal closed with respect to the tensor product given above. In particular,
there is a neutral object I and for any two length spaces an exponential A � B.

3.1 Interpreting Multiplicative Affine Logic

We can now formally show that second order multiplicative affine logic (i.e.,
multiplicative linear logic plus full weakening) can be interpreted inside the
category of length spaces on any monoid M . Doing this will simplify the analysis
of LAL, since the latter can be obtained by enriching multiplicative affine logic
with two modalities. Formulae of (intuitionistic, second order) multiplicative
affine logic are generated by the following productions:

A ::= α | A � A | A ⊗ A | ∀α.A

where α ranges over a countable set of atoms. Rules are reported in Figure 1.
A realizability environment is a partial function assigning length spaces (on the

Identity, Cut and Weakening.

A � A
I

Γ � A Δ, A � B

Γ, Δ � B
U

Γ � A
Γ, B � A

W

Multiplicative Logical Rules.

Γ, A, B � C

Γ, A ⊗ B � C
L⊗

Γ � A Δ � B
Γ, Δ � A ⊗ B

R⊗

Γ � A Δ, B � C

Γ, Δ, A � B � C
L�

Γ, A � B

Γ � A � B
R�

Second Order Logical Rules.

� Γ, A[C/α] � B

Γ, ∀α.A � B L∀
Γ � A α /∈ FV (Γ )

Γ � ∀α.A R∀

Fig. 1. Intuitionistic Multiplicative Affine Logic

same resource monoid) to atoms. Realizability semantics �A�R
η of a formula A

on the realizability environment η is defined by induction on A:

�α�R
η = η(α)

�A ⊗ B�R
η = �A�R

η ⊗ �B�R
η

�A � B�R
η = �A�R

η � �B�R
η

�∀α.A�R
η = (|�∀α.A�R

η |, ��∀α.A�R
η

)
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where

|�∀α.A�R
η | =

∏

C∈U

|�A�R
η[α→C]|

α, e ��∀α.A�R
η

a ⇐⇒ ∀C.α, e ��A�R
η[α→C]

a

Here U stands for the class of all length spaces. Some care is needed when
defining the product since strictly speaking it does not exist for size reasons.
The standard way out is to let the product range over those length spaces whose
underlying set equals the set of equivalence classes of a partial equivalence rela-
tion on L. As already mentioned, every length space is isomorphic to one of that
form. When working with the product one has to insert these isomorphisms in
appropriate places which, however, we elide to increase readability.

If n ≥ 0 and A1, . . . , An are formulas, the expression �A1 ⊗ . . .⊗An�R
η stands

for I if n = 0 and �A1 ⊗ . . . ⊗ An−1�
R
η ⊗ �An�R

η if n ≥ 1.

4 Light Length Spaces

Light Affine Logic extends Multiplicative Affine Logic by two modalities ! and
§ which are governed by the rules in Figure 2. In LAL, we can use variations on

Exponential Rules and Contraction.

Γ, Δ � A

§Γ, !Δ � §A P§
A � B
!A �!B

P 1
!

� A
�!A

P 2
!

Γ, !A, !A � B

Γ, !A � B
C

Fig. 2. Intuitionistic Light Affine Logic

the usual impredicative encodings of natural numbers, lists, etc. For example,
binary lists can be encoded as cut-free proofs for

ListLAL ≡ ∀α.!(α � α) �!(α � α) � §(α � α)

while natural numbers correspond to proofs for

IntLAL ≡ ∀α.!(α � α) � §(α � α).

Now, let π be an LAL proof with conclusion ListLAL � ListLAL. If we cut π against
proofs corresponding to binary lists and we normalize the obtained proof, we get
a proof corresponding to a binary list. So any proof like π represents a function
from binary lists to binary lists. The above definition can be easily generalized
to the cases when π has conclusion in the form {!, §}jListLAL � {!, §}kListLAL.

But what is the expressive power of Light Affine Logic? The class of repre-
sentable functions include all the polytime functions (see [16]):
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Theorem 2 (Polytime Completeness). Every polytime function on binary
lists is represented by a LAL proof π : ListLAL � §nListLAL.

We will now describe a resource monoid with the property that the ensuing cate-
gory of length spaces provides structure for the interpretation of these modalities
while allowing us to extract polytime bounds for functions of basic type. For ease
of notation we denote max(m, n) by m | n:

Definition 1. The algebraic structure L is the quadruple (|L|, +, ≤L, DL) such
that:

• Elements of |L| ⊆ N × N × N
N are triples (n, m, f) such that f : N → N is a

monotonically increasing polytime function.
• For every (n, m, f), (l, k, g) ∈ |L|, (n, m, f) + (l, k, g) = (n + l, m | k, f | g).
• For every (n, m, f), (l, k, g) ∈ |L|, (n, m, f) ≤L (l, k, g) iff n ≤ l, n+m ≤ l+k

and f ≤ g.
• For every (n, m, f), (l, k, g) ∈ |L| such that (n, m, f) ≤L (l, k, g),

DL((n, m, f), (l, k, g)) = (l − n)g(l + k).

The triple (0, 0, 0) ∈ |L|, denoted 0L, is an identity for +.

The binary relation ≤L is trivially reflexive. Moreover, it is transitive:

Lemma 1 (Transitivity). If α, β, γ are in |L|, α ≤L β and β ≤L γ, then
α ≤L γ.

Proof. Let (n, m, f), (l, k, g), (p, q, h) ∈ |L|. Moreover, let (n, m, f) ≤L (l, k, g)
and (l, k, g) ≤L (p, q, h). Trivially:

n ≤ l ≤ p;
n + m ≤ l + k ≤ p + q;

f ≤ g ≤ h.

In other words (n, m, f) ≤L (p, q, h). ��
But ≤L is even compatible with +:

Lemma 2 (Compatibility). 0L ≤L α for every α ∈ |L|. Moreover, if α, β, γ
are in |L| and α ≤L β, then α + γ ≤L β + γ.

The following is now immediate.

Lemma 3. L is a resource monoid.

Definition 2. A light length space is a length space over the resource monoid
L. Given a light length space A = (|A|, �A), the light spaces !A = (|A|, �!A) and
§A = (|A|, �§A) both with underlying set |A|, are defined by:

(n, m, f), e �!A a ⇐⇒ ∃(l, k, g) ∈ |L|.(l, k, g), e �A a ∧ (1, l + k, g+) ≤L (n, m, f)

(n, m, f), e �§A a ⇐⇒ ∃(l, k, g) ∈ |L|.(lk, k, g), e �A a ∧ (l, k, g+) ≤L (n, m, f)

where g+(x) = x2g(x2).

The constructions ! and § on light length spaces serve to capture the exponential
modalities of light affine logic. Their definition is the crucial contribution of this
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paper. The relations �!A, �§A can equivalently be defined inductively by the
following rules:

α, e �!A a α ≤ β

β, e �!A a

α, e �§A a α ≤ β

β, e �§A a

(l, k, g), e �A a

(1, (l + k), g+), e �!A a

(lk, k, g), e �A a

(l, k, g+), e �§A a

Before we embark on the verification that these settings admit an interpretation
of all the constructions of LAL let us illustrate the definitions using the particular
length space N = (N, �N) where (l, k, g), e �N n if e encodes n and l ≥ n and
k ≥ 0 and g(x) ≥ c for c a constant large enough so that lc ≥ |e|. Note that the
constant c may be chosen independent of n. This length space is isomorphic to
the denotation in the model of the LAL-type ∀α.!(α � α) � §(α � α) which is
the LAL-version of Church numerals.

Then (l, k, g), e �N⊗N (n1, n2) if l ≥ n1+n2 and e = 〈e1, e2〉 where ei encodes
ni and g(x) ≥ c and lg(l + k) ≥ |e|. Note that the latter can be achieved by
choosing g(x) = c + d for some fixed constant d.

We see that the diagonal map n �→ (n, n) cannot be realized for then we
would need a fixed l0 such that l0 + l ≥ l + l for all l. Similarly, we see that all
realisable maps f from N to N must satisfy f(x) ≤ x + O(1). The runtime of
such a function is governed by the third (“g”) component of its realiser and is
hence an arbitrary polynomial.

On the other hand, the length space !N has (l, k, g), e �!N n if l ≥ 1 and
k ≥ n and g(x) ≥ cx2. Now note that lg(k) ≥ c(1 + k)2 ≥ cn ≥ |e|. On the
other hand, since the l-slot (first component) may be chosen 1 we find that the
diagonal map !N →!N⊗!N is realisable. The identity function from !N to N is
not realisable because the first component l0 of its realiser would have to satisfy
l0 + 1 ≥ n for all n.

Now consider the length space §N. We have (l, k, g), e �§N n if lk ≥ n and
g(x) ≥ cx2. We are now able to realise the identity from !N to §N noticing that,
in particular (1, n, λx.cx2), e �§N n when e encodes n. We also note that, for
instance the doubling function can be realised as a map from N to §N. To do
this, we need a realiser with first component l0 = 1. Given input n realised by
(n, 1, g) we then realise the result 2n by (n, 2, λx.cx2). We can even realise the
function 1/4n2 + O(n) but not n2. For this, two §-s are needed.

Proving light length spaces to be a model for LAL amounts to prove that
certain constructions involving the modalities ! and § can be justified in the
model. First of all, the diagonal map is a morphism, as can be easily proved:

Lemma 4. Given light length spaces A, B, there is the morphism: contr :!A →
!A⊗!A where contr(a) = (a, a).

Proof. The majoriser for the obvious realiser econtr is given by a suitably padded
version of (2, 0, x �→ 0). The central part of the verification is the observation that

2.(1, l + k, g+) = (2, 2(l + k), g+) ≤L (2, 0, x �→ 0) + (1, l + k, g+)
= (3, l + k, g+) ��

On the other hand, ! is a functor.
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Lemma 5 (Functoriality of !). If f : A
e,α−→ B, then there is β such that

f :!A
e,β−→!B.

Proof (of Lemma 5). Let α be (n, m, f) and suppose d, (l, k, g) �!A a. Then
(l, k, g) ≥L (1, p + q, h+), where d, (p, q, h) �A a. Observe that there must
be (i, j, r), c such that c, (i, j, r) �B f(a), (i, j, r) ≤L (n, m, f) + (p, q, h) and
Time({e}(d)) ≤ DL((i, j, r), (n, m, f) + (p, q, h)). As a consequence, c, (1, i +
j, r+) �!B f(a). But

(1, i + j, r+) ≤L (n + m + 1, m, f+) + (1, p + q, h+)

because:
• The inequality 1+i+j ≤ n+m+2+m | (p+q) holds, because if m ≤ q, then

1 + i + j ≤ 1+ n + p + m | q = 1 + n + p + q ≤ 2 +n +m + m | (p + q). and if
m > q, then 1+ i+ j ≤ 1+n+p+m | q = 1+n+p+m ≤ 2+n+m+p+q ≤
2 + n + m + m | (p + q).

• For every x ∈ N,

r+(x) = x2r(x2) ≤ x2(f | h)(x2)
≤ x2(f(x2) | h(x2)) = (x2f(x2) | x2h(x2))
= (f+(x) | h+(x)) = (f | h)+(x).

Moreover:
Time({e}(d)) ≤ DL((i, j, r), (n, m, f) + (p, q, h))

≤ (n + p)(f | h)(n + p + m | q)

≤ (n + m + 1) · (n + m + 2 + m | (p + q))2 · (f | h)((n + m + 2 + m | (p + q))2)

= (n + m + 1) · (f | h)+(n + m + 2 + m | (p + q))

= (n + m + 1) · (f+ | h+)(n + m + 2 + m | (p + q))

= DL((1, i + j, r+), (n + m + 2, m | (p + q), f+ | h+))

≤ DL((1, i + j, r+), (n + m + 1, m, f+) + (1, p + q, h+))

This means that f :!A
e,(n+m+1,m,f+)−→ !B. ��

Notice that the distributive law !A⊗!B �!(A ⊗ B) cannot be proved in the
syntax and is not validated in the model either. Indeed, its introduction would
collapse LAL to elementary affine logic, which is elementary time complete. The
modality § is a functor itself:

Lemma 6 (Functoriality of §). If f : A
e,α−→ B, then there is β such that

f : §A e,β−→ §B.

Proof (of Lemma 6). Let α be (n, m, f) and suppose d, (l, k, g) �§A a. Then
(l, k, g) ≥L (p, q, h+), where d, (pq, q, h) �A a. Observe that there must be
(i, j, r), c such that c, (i, j, r) �B f(a), (i, j, r) ≤L (n, m, f) + (pq, q, h) and
Time({e}(d)) ≤ DL((i, j, r), (n, m, f) + (pq, q, h)). As a consequence, we obtain
c, (n, m, f) + (pq, q, h) �B f(a). But notice that

(n, m, f) + (pq, q, h) = (n + pq, m | q, f | h)
≤L (((m + 1) | q)(n + 1 + p), (m + 1) | q, f | h).
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which implies c, (n + 1 + p, (m + 1) | q, (f | h)+) �§B f(a). Now:

(n + 1 + p, (m + 1) | q, (f | h)+) = (n + 1, m + 1, f+) + (p, q, h+)
≤L (n + 2, m + 1, f+) + (l, k, g).

Moreover:

Time({e}(d)) ≤ DL((i, j, r), (n, m, f) + (pq, q, h))

≤ (n + pq)(f | h)(n + pq + m | q)

≤ (n + p + 2 + q(m + 1))2(f | h)((n + p + 2 + q | (m + 1))2)

= (f | h)+(n + p + 2 + q | (m + 1))

= (f+ | h
+)(n + p + 2 + q | (m + 1))

= (p + n + 2 − (p + n + 1))(f+ | h+)(n + p + 2 + q | (m + 1))

= DL((n + 1 + p, (m + 1), (f | h)+), (n + 2, m + 1, f+) + (p, q, h+))

= DL((n + 1 + p, (m + 1), (f | h)+), (n + 2, m + 1, f
+) + (l, k, g)).

This means that f : §A e,(n+2,m+1,f+)−→ §B. ��

The following lemma whose proof we elide establishes the remaining properties
required to model LAL: distributivity of § over ⊗ and the dereliction axiom
relating the two modalities.

Lemma 7. Given light length spaces A, B, there are morphisms: derelict :!A →
§A and distr : §A ⊗ §B → §(A ⊗ B) where, for every a ∈ |A| and b ∈ |B|,
derelict(a) = a and distr(a, b) = (a, b).

As anticipated in the introduction, a principle which cannot be proved syntac-
tically, can be justified in the semantics:

Lemma 8. Given light length spaces A1, A2, there is a morphism codistr :
§(A1 ⊗ A2) → §A1 ⊗ §A2 where codistr (a1, a2) = (a1, a2).

Proof. Let ecodistr = eid . We know {eid}(d) takes constant time.
Suppose that 〈d1, d2〉, γ �§(A1⊗A2) (a1, a2). We have γ ≥L (l, k, f+) and

(lk, k, f) ≥L (l1, k1, f1)+(l2, k2, f2) where di, (li, ki, fi) �Ai ai for i = 1, 2. By up-
ward closure we also have di, (li, k, fi) �Ai ai and then di, (�li/k�, k, f+

i ) �§Ai ai

and finally 〈d1, d2〉, (�l1/k� + �l2/k�, k, f+) �§Ai⊗§A2 (a1, a2). But now

(�l1/k� + �l2/k�, k, f+) ≤L (2, 0, 0) + (l, k, f+)

so that a realiser for ecodistr may be given by padding (2, 0, 0) so as to cover the
(constant) runtime of this algorithm.

This shows that light length spaces are not fully complete as a model of LAL.
On the other hand, results like Lemma 8 are potentially very interesting, since
soundness holds for any extension of LAL which can be interpreted in the model.
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4.1 Interpreting Light Affine Logic

Interpretations of the modalities § and ! are the obvious ones: �!A�R
η =!�A�R

η and
�§A�R

η = §�A�R
η . Since all the axioms needed are justifiable in our semantics, we

get:

Theorem 3. Light length spaces form a model of LAL.

As a consequence, we can prove that the set of functions which can be represented
in LAL is a subset of the class of polytime functions:

Corollary 1 (Soundness). Let π be an LAL proof with conclusion of the form
� {!, §}jListLAL � {!, §}kListLAL and let f : B → B be the function induced by
�π�R. Then f is computable in polynomial time.

Proof (Sketch). Intuitively, this is clear since runtimes of realizers are always
bounded by the third components of majorizers. A slight complication arises
from the fact that the third component of the argument to a map also influences
the runtime; indeed, without this feature maps like application from (A � B)⊗A
to B could not be interpreted in the model. However, we can define a light length
space of binary lists B whose realisers have constant third component analogous
to the light length space N in the motivation after Definition 2. We then show
using definable iterators that this length space is isomorphic to the denotation
of the type B above. It is, however, obvious that all functions on B are polytime.
For details see [11] where such an argument has been carried out in detail for
Bounded Linear Logic. ��

5 Conclusions

We have introduced a new model for LAL based on realizability. This allows us to
give a simplified proof of soundness for the same logic. As any kind of semantics,
our model can be used to identify certain axioms as not derivable in LAL (if it’s
not in the model it can’t be in the syntax). Examples of such principles are the
identification of the two modalities or commutation of the-modality with tensor.
More interestingly, there are formulas which are syntactically not provable but
are justified in the semantics. The fact that our semantics has polynomial time
computability built-in means that such formulas can be added to LAL without
compromising soundness for polynomial time. One example of such a formula
has been given in Lemma 8 (distributivity of § over tensor.). We are confident
that more examples can be found; of particular interest would be principles that
enable more algorithms to be expressed in their natural form.
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Abstract. We sketch the proof of the following result: the subword com-
plexity of arbitrary morphic sequence is either Θ(n2), or O(n3/2).

1 Introduction

Morphisms and morphic sequences are well known and well studied in combina-
torics on words (e. g., see [1]). We study their subword complexity.

Let Σ be a finite alphabet. A mapping ϕ: Σ∗ → Σ∗ is called a morphism if
ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ Σ∗. A morphism is determined by its values on
single-letter words. A morphism is non-erasing if |ϕ(a)| ≥ 1 for each a ∈ Σ, and
is called coding if |ϕ(a)| = 1 for each a ∈ Σ. Let |ϕ| denote maxa∈Σ |ϕ(a)|.

Let ϕ(s) = su for some s ∈ Σ, u ∈ Σ∗, and suppose ∀n ϕn(u) is not empty.
Then an infinite sequence ϕ∞(s) = limn→∞ ϕn(s) is well-defined and is called
pure morphic. Sequences of the form ψ(ϕ∞(s)) with coding ψ are called morphic.

In this paper we study a natural combinatorial characteristics of sequences,
namely subword complexity. Subword complexity of a sequence β is a function
pβ: N → N where pβ(n) is the number of all different n-length subwords occurring
in β. For a survey on subword complexity, see, e. g., [2]. Pansiot showed [4] that
the subword complexity of an arbitrary pure morphic sequence adopts one of
the five following asymptotic behaviors: O(1), Θ(n), Θ(n log log n), Θ(n log n),
or Θ(n2). Since codings can only decrease subword complexity, the subword
complexity of every morphic sequence is O(n2). We formulate the following main
result.

Theorem 1. The subword complexity pβ of a morphic sequence β is either
pβ(n) = Θ(n1+ 1

k ) for some k ∈ N, or pβ(n) = O(n log n).

Note that for each k the complexity class Θ(n1+ 1
k ) is non-empty [3].

However in this extended abstract we show the technics used in the proof of
this main result considering the following weaker case of Theorem 1.

Theorem 2. The subword complexity pβ of a morphic sequence β is either
pβ(n) = Θ(n2), or pβ(n) = O(n3/2).

We give an example of a morphic sequence β with pβ = Θ(n3/2) in Section 6.
Let Σ be a finite alphabet, ϕ: Σ∗ → Σ∗ be a morphism, ψ: Σ∗ → Σ∗ be a

coding, α be a pure morphic sequence generated by ϕ, and β = ψ(α) be a morphic

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 146–157, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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sequence. By Theorem 7.7.1 from [1] every morphic sequence can be generated
by a non-erasing morphism, so further we assume that ϕ is non-erasing.

To prove Theorem 2, we prove the following two propositions:

Proposition 1. If there are evolutions of 2-blocks arising in α that are not
continuously periodic, the subword complexity of β is Ω(n2).

Proposition 2. If all the evolutions of 2-blocks arising in α are continuously
periodic, the subword complexity of β is O(n3/2).

Most part of the paper is devoted to formulation of what k-blocks, evolutions
and continuously periodic evolutions are. Similarly, one can generalize the no-
tion of a continuously periodic evolution of k-blocks to each k ∈ N, generalize
Propositions 1 and 2 to an arbitrary k, and thus prove Theorem 1. (Actually,
the notion of continuously periodic evolution of k-blocks needs more technical
details, but Propositions 1 and 2 can be reformulated easily: 2-blocks, n2 and
n3/2 should be replaced by k-blocks, n1+1/(k−1) and n1+1/k, respectively). How-
ever, the full detailed proof of Theorem 1 (and Theorem 2 as well) needs much
more space and will be published elsewhere.

We will speak about occurrences in α. Strictly speaking, we call a pair of a
word γ and a location i in α an occurrence if the subword of α that starts from
position i in α and is of length |γ| is γ. This occurrence is denoted by αi...j if
j is the index of the last letter that belongs to the occurrence. In particular,
αi...i denotes a single-letter occurrence, and αi...i−1 denotes an occurrence of the
empty word between the (i − 1)-th and the i-th letters. Since α = α1α2α3 . . . =
ϕ(α) = ϕ(α1)ϕ(α2)ϕ(α3) . . ., ϕ might be considered either as a morphism on
words (which we call abstract words sometimes), or as a mapping on the set of
occurrences in α. Usually we speak of the latter, unless stated otherwise.

We call a finite word γ p-periodic with left (resp. right, complete) period δ
if |δ| = p and γ = δδ . . . δδ1...k (resp. γ = δp−k+1...pδ . . . δ, γ = δ . . . δ). If δ is
known, we will shortly call γ a left (resp. right, completely) δ-periodic word. δ
will be always considered as an abstract word. The subword γ|γ|−k+1...|γ| is called
the incomplete occurrence, where 0 ≤ k < |δ|. All the same is with sequences of
symbols or numbers.

The function ra: N → N, ra(n) = |ϕn(a)| is called the growth rate of a. Let
us define orders of letters with respect to ϕ. We say that a ∈ Σ has order k if
ra(n) = Θ(nk−1), and has order ∞ if ra(n) = Ω(qn) for some q > 1 (q ∈ R).

Consider a directed graph G defined as follows. Vertices of G are letters of Σ.
For every a, b ∈ Σ, for each occurrence of b in ϕ(a), construct an edge a → b. For
instance, if ϕ(a) = abbab, we construct two edges a → a and three edges a → b.
Fig. 1 shows an example of graph G.

Using the graph G, one can prove the following

Lemma 1. For every a ∈ Σ, either a has some order k < ∞, or has order ∞.
For every a of order k < ∞, either a never appears in ϕn(a) (and then a is called
pre-periodic), or for each n a unique letter bn of order k occurs in ϕn(a), and
the sequence (bn)n∈Z≥0 is periodic (then a is called periodic). If a is a periodic
letter of order k > 1, then at least one letter of order k − 1 occurs in ϕ(a).
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a b c

d

e

Fig. 1. An example of graph G for the following morphism ϕ: ϕ(a) = aab, ϕ(b) = c,
ϕ(c) = cde, ϕ(d) = e, ϕ(e) = d. Here a is a letter of order ∞, b is a pre-periodic letter
of order 2, c is a periodic letter of order 2, d and e are periodic letters of order 1.

2 Blocks and Semiblocks

A (possibly empty) occurrence αi...j is a k-block if it consists of letters of order
≤ k, and the letters αi−1 and αj+1 both have order > k. The letter αi−1 is
called the left border of this block and is denoted by LB(αi...j). The letter αj+1
is called the right border of this block and is denoted by RB(αi...j).

The image under ϕ of a letter of order ≤ k cannot contain letters of order > k.
Let αi...j be a k-block. Then ϕ(αi...j) is a suboccurrence of some k-block which
is called the descendant of αi...j and is denoted by Dc(αi...j). The l-th superde-
scendant (denoted by Dcl(αi...j)) is the descendant of . . . of the descendant of
αi...j (l times).

Let αs...t be a k-block in α. Then a unique k-block αi...j such that Dc(αi...j) =
αs...t, is called the ancestor of αs...t and is denoted Dc−1(αs...t). The l-th super-
ancestor (denoted by Dc−l(αs...t)) is the ancestor of . . . of the ancestor of αs...t (l
times). If Dc−1(αs...t) does not exist (it can happen only if αs−1 and αt+1 belong
to an image of the same letter), then αs...t is called an origin. A sequence E of
k-blocks, E0 = αi...j , E1 = Dc(αi...j), E2 = Dc2(αi...j), . . . , El = Dcl(αi...j), . . .,
where αi...j is an origin, is called an evolution.

Lemma 2. The set of all abstract words that can be origins in α, is finite.

Corollary 1. The set of all possible evolutions in α (considered as sequences of
abstract words rather than sequences of occurrences in α), is finite.

Now we define atoms inside k-blocks. The l-th left and right atoms exist in
a k-block Em, where E is an evolution, iff m ≥ l > 0. First, define the l-th
atoms inside the k-block El. Let El = αi...j . There is a suboccurrence αs...t =
ϕ(Dc−1(αi...j)) inside of it. The occurrence αi...s−1 that comes from the image
of the left border of the ancestor, is called the l-th left atom of the block and is
denoted by LAl(αi...j). Similarly, the occurrence αt+1...j = RAl(αi...j) is called
the l-th right atom of the block. Then, LAl(Em) = ϕm−l(LAl(El)), and the same
for right atoms. See Fig. 2.

Let E be an evolution of k-blocks. Consider a sequence LB(E0), . . . , LB(El), . . .
All these letters are of order > k, and the letter LB(El+1) is the rightmost letter
of order > k in ϕ(LB(El)). Hence, not later than starting from LB(E|Σ|), this
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αi−1 αi αs−1 αs αt αt+1 αj αj+1

︸ ︷︷ ︸
ϕ(Dc−1(αi...j))

︸ ︷︷ ︸
LAl(αi...j)

︸ ︷︷ ︸
RAl(αi...j)

︸︷︷︸
LB(αi...j)

︸︷︷︸
RB(αi...j)

ϕ(LB(Dc−1(αi...j)))︷ ︸︸ ︷
ϕ(RB(Dc−1(αi...j)))︷ ︸︸ ︷

︸ ︷︷ ︸
a k-block El

Fig. 2. Structure of a k-block

sequence (of abstract letters) is periodic. Its period length is denoted by LBP(E).
The same can be said about the sequence of right borders (the period length is
RBP(E)). Their l. c. m. is denoted by BP(E). The exact place of the evolution
where both sequences become periodic (i. e. both of them have reached at least
the first positions of their first periods) is denoted by F(E). The block EF(E) is
called first pre-stable. The block EF(E) and all its superdescendants are called
pre-stable.

Notice that LAl+1(El+1) depends only on LB(El), not on the whole El. Hence,
the sequence LAF(E)+1(EF(E)+1), . . . , LAl(El), . . . is periodic with a period of
length LBP(E) if considered as a sequence of abstract words. Consider one of its
periods, e. g., LAF(E)+1(EF(E)+1), . . . , LAF(E)+LBP(E)(EF(E)+LBP(E)). There are
three possible cases.

Case I. At least one of these words contains a letter of order k.
Case II. None of these words contain a letter of order k, but at least one of

them is not empty.
Case III. All these words are empty.
Similarly, cases I, II and III are defined for right borders and atoms. These

cases happen independently at right and at left, in any combination.
Now we define the core of a pre-stable k-block (notation: C). Consider the

first pre-stable k-block of the evolution. Its core is the whole block. Then, the
core of El+1 is ϕ(C(El)). Thus, C(EF(E)+l) = ϕl(EF(E)). The suboccurrence in
the block between the core and its left (right) border is called its left (right)
component.

We know that F(E) ≤ |Σ|. Thus | C(EF(E))| ≤ D := 2|ϕ||Σ|+1.

Lemma 3. Consider a k-block and its evolution. If case I holds at right (at left),
the right (left) component has growth rate Θ(nk). If case II or III holds, it has
growth rate O(nk−1).

Now we introduce semiblocks to consider evolutions of words that grow ‘at one
side’ (at left or at right only), while evolutions of blocks represent sequences of
words that grow (that may have atoms) ‘at both sides’.

Let αi...j be a (possibly empty) occurrence in α consisting of letters of order
≤ k, and suppose αj+1 has order > k. Suppose also that j − i + 1 ≤ D. Then
αi...j is called a right k-semiblock, and αj+1 is called its right border (a left
border of a right k-semiblock does not exist). The image of the k-semiblock
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under ϕ prolonged right upto the leftmost letter of order > k is also called a
k-semiblock — the descendant of αi...j . Evolution of right k-semiblocks, with
arbitrary k-semiblock of length ≤ D as an origin, is defined analogously to how
it was defined for k-blocks.

Left k-semiblocks and their evolutions are defined in a similar way.
The length of origins of k-semiblock evolutions is bounded by definition, so the

set of all k-semiblock evolutions (considered as sequences of abstract words) is
finite. Like an evolutional sequence of borders of k-block, an evolutional sequence
of left (right) borders of left (right) k-semiblock is eventually periodic with pre-
period not greater than |Σ|.

Pre-stable k-semiblocks and the first pre-stable k-semiblocks are defined anal-
ogously to those of k-blocks. All the notation we introduced for k-blocks, is used
for k-semiblocks as well. Fig. 3 shows the structure of a k-semiblock.

αi αt αt+1 αj αj+1

︸ ︷︷ ︸
ϕ(Dc−1(αi...j))

︸ ︷︷ ︸
RAl(αi...j)

︸︷︷︸
RB(αi...j)

ϕ(RB(Dc−1(αi...j)))︷ ︸︸ ︷

︸ ︷︷ ︸
a right k-semiblock El

Fig. 3. Structure of a right k-semiblock

The core (C) of a k-semiblock is defined similarly too. Namely, let E be an
evolution of k-semiblocks. Consider the first pre-stable k-semiblock of E . Its core
is the whole semiblock. Then, the core of El+1 is ϕ(C(El)). Thus, C(EF(E)+l) =
ϕl(EF(E)). The suboccurrence in the semiblock between the core and its left
border is called its left component.

3 1-Blocks and 1-Semiblocks

Now we will consider 1-blocks and 1-semiblocks more accurately.
From the fact that every 1-block or 1-semiblock consists of letters of order

1 only, and from Corollary 1, it follows that all core lengths are bounded by a
single constant that depends on ϕ and Σ only. For an evolution E , cores of the
block EF(E)+|Σ| and its descendants consist of periodic letters only.

A core of 1-block or 1-semiblock is called its (unique) central kernel.
Consider a 1-block or a right 1-semiblock El where E is an evolution and

l ≥ |Σ|. The concatenation RpreP(El) := RAl−|Σ|+1(El) . . . RAl−1(El)RAl(El) is
called the right pre-period of El. Left pre-periods are defined similarly. All letters
in the right component of a 1-block or a 1-semiblock outside its right pre-period
are periodic.

The left (right) component of a 1-block or a 1-semiblock except its left (right)
pre-period is called the left (right) repetition (notation: LR, RR).
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Lemma 4. Let E be an evolution of 1-blocks or left 1-semiblock, l > F(E)+ |Σ|.
Then there are such abstract words LP(El) (for each l), that LR(El) is a left
LP(El)-periodic word and:

The sequence LP(EF(E)+|Σ|), . . . , LP(El), . . . is periodic. In particular, lengths
of these words are bounded by a constant that depends on Σ and ϕ only.

The lengths of the incomplete occurrences become periodic starting
from LR(EF(E)+|Σ|). The sequence (of abstract words) LpreP(EF(E)+|Σ|), . . . ,
LpreP(El), . . . is periodic. Lengths of these words are bounded by a con-
stant that depends on Σ and ϕ only. The sequence (of abstract words)
C(EF(E)+|Σ|), . . . , C(El), . . . is also periodic.

Let E be an evolution of 1-blocks or of 1-semiblocks. If case I holds at left or
at right, we say that El is stable if l ≥ F(E) + |Σ| + 2 BP(E)|Σ|!. If case III
holds both at left and at right (case II is impossible for 1-blocks), El is stable if
l ≥ F(E) + |Σ|. If El is stable then:

1. It is pre-stable.
2. The pre-periods LpreP(El) and RpreP(El) and the core C(El) belong to the

periodic parts of the corresponding sequences from Lemma 4.
3. If case I holds at left or at right, LR(El) and RR(El) consist of at least two

their periods (when considered as left LP(El)-periodic and right RP(El)-periodic
words, respectively).

The least number l such that El is stable is denoted by S(E).
The following lemma is an easy corollary of Lemma 4.

Lemma 5. Let E be an evolution of 1-blocks or 1-semiblocks. The sequence
| LR(ES(E))|, . . . , | LR(El)|, . . . considered modulo s, is periodic for all s ∈ N.

Fig. 4 shows the detailed structure of a 1-block.

· · · · · ·C(El)LP(El)LP(El) RP(El) RP(El)(a) (b)LpreP(El) RpreP(El)

︸ ︷︷ ︸
LR(El)

︸ ︷︷ ︸
RR(El)

left component︷ ︸︸ ︷ right component︷ ︸︸ ︷

Fig. 4. Detailed structure of the 1-block El: (a), (b) — the incomplete occurrences of
periods

4 2-Blocks

Now consider 2-blocks more accurately. First, let us give definitions concerning 2-
blocks that are necessary to define continuously periodic evolutions. Through this
section, we will give examples based on the following morphism ϕ: ϕ(s) = saca,
ϕ(a) = bad, ϕ(b) = dbd, ϕ(c) = ece, ϕ(d) = d, ϕ(e) = e. Then ϕ∞(s) = α =
s aca badecebad dbdbaddeeceedbdbadd . . .. Here s is a letter of order 4, a is a letter
of order 3, b and c are letters of order 2 and d and e are letters of order 1. Consider
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an evolution E of 2-blocks, whose origin is α3...3 = c. A 2-block El where l is
large enough looks as follows:

dd..d︸ ︷︷ ︸
left component

ee..ecee..e︸ ︷︷ ︸
core

dd..db . . . bdd..dbdd..db . . . ddbdddbdb︸ ︷︷ ︸
right component

.

Here case I holds at left and case II holds at right. Intervals denoted by . . . may
contain many intervals denoted by ..

First, let us define stable 2-blocks. We will impose requirements on the number
of iterations to be made from the beginning of the evolution, to guarantee for
the block to be stable.

If a 2-block is stable, it is required to be pre-stable. Other requirements depend
on the case that holds at left and at right of the given block.

Case I (e. g., at right). Consider an alphabet Σ′ which is Σ without all the letters
of order 1. Let us define a morphism ϕ′ as follows: for a ∈ Σ′, to obtain ϕ′(a),
we take the word ϕ(a) and remove all the letters of order 1 from it. Let α′ be
a new pure morphic sequence generated by ϕ′. (If α is non-periodic, then α′ is
infinite.) In other words, α′ is obtained from α by removing all letters of order 1.
All the 2-blocks in α become 1-blocks in α′. In the example, the corresponding
1-block in α′ is cbb . . . b. For a given 2-block in α to be stable, we require the
corresponding 1-block in α′ to be stable too.

Let E be an evolution of 2-blocks in α, α′
s...t be the 1-block corresponding to

αi...j ∈ E . Consider an occurrence of RP(α′
s...t) in α′

s...t. We may assume that
the number of atoms it consists of is divisible by BP(E). A suboccurrence in
αi...j containing all the letters of RP(α′

s...t) and all the letters of order 1 to the
right of RP(α′

s...t) upto the closest letter of order 2, is called a pseudo-period. In
the example, both left and right borders are always a, and BP(E) = 1. Thus,
a right pseudo-period is an occurrence bdd..d (the amount of d’s may differ in
different pseudo-periods).

For a given 2-block to be stable, its right component is required to contain at
least two pseudo-periods. Moreover, all the 1-blocks inside two leftmost of them
should be stable.

Now consider an occurrence of the empty word immediately at left of
RB(EF(E)). This occurrence is a right 1-semiblock (an origin). It is called the
right outer central 1-semiblock of EF(E) and is denoted by RO(EF(E)). Then,
RO(El+1) := Dc(RO(El)). For a 2-block El to be stable, we require RO(El) to be
stable too. In the example, the right outer central semiblock is the occurrence
dd..d between the letters e and b (the leftmost in the right component).

Case II (at right). If case II holds, the right component consists of the right outer
central 1-semiblock (and noting else). For a 2-block to be stable, we require this
1-semiblock to be stable. In the example, case II holds at left, thus the left
component of the block is its left outer semiblock.

Case III. No more requirements.
There are still other requirements concerning the core. If it contains letters of
order 1 only, all these letters are required to become periodic. Let it contain
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some letters of order 2. Consider C(EF(E)). Its length is not greater than D, so
its suboccurrence between its right end and the rightmost letter of order 2 may
be considered as a left 1-semiblock. It is called the right inner central 1-semiblock
(notation: RI). Then, RI(El+1) := Dc(RI(El)). In the example, the right inner
1-semiblock is the word ee..e between the letter c and the right component. For
the 2-block El to be stable, we require LI(El) and RI(El) to be stable. Moreover,
the letters of order 2 inside C(El) should be periodic, all the 1-blocks between
them have to be stable too.

These are all the requirements we impose on 2-block to be stable. The least
number l such that El is stable is denoted by S(E).

Now we define left and right pre-periods of 2-blocks. Let αi...j be a stable
2-block and α′

s...t be the corresponding 1-block. If case I holds (e. g. at right),
the occurrence αu...j is called the right pre-period (RpreP) if u is the maximal
index such that

1. RpreP(α′
s...t) is contained in αu...j .

2. 1-blocks between letters of order 2 in the right component of αi...j outside
αu...j are all stable.

3. αu is a letter of order 2.

Notice that αu...j is then completely inside the last L atoms, where L = |Σ| +
max{S(F) : F is an evolution of 1-blocks}. Hence, the sequence (of abstract
words) RpreP(ES(E)), . . . , RpreP(El), . . . is periodic. In the example, the right
pre-period is really long since all the 1-blocks outside it are stable, and the
length of a stable 1-block is greater than |Σ|! = 120. However, its structure can
be written as follows: bd..dbd..d . . . ddbdb.

If case II holds, RpreP(αi...j) := RpreP(RO(αi...j)). If case III holds, the right
pre-period is the occurrence of the empty word immediately at left of αj+1.

Now we define central kernels of stable 2-blocks. Let αi...j be a 2-block.
There may be two kinds of central kernels: ones that are suboccurrences of

C(αi...j) and ones that are outside it. To define central kernels inside C(αi...j),
consider two cases. If it consists of letters of order 1 only, it is called a central
kernel itself. Let C(αi...j) contain letters of order 2. Then, if αi...j is stable,
C(αi...j) can be decomposed into LI(αi...j), RI(αi...j) and some 1-blocks between
them (they all evolute together with the 2-block). Central kernels of the 2-block
are all the cores, left and right pre-periods of these 1-blocks and semiblocks and
letters of order 2 themselves. In the example, central kernels inside the core are
the occurrences of the word eeeee immediately at left and at right of c, the letter
c itself and two occurrences of the empty word between the core and the left and
the right components.

To define central kernels of αi...j at right (or at left) of C(αi...j), consider cases
I, II and III again. If case I holds at right, central kernels at right of C(αi...j)
are RpreP(RO(αi...j)) and C(RO(αi...j)). If case II holds, the only central kernel
at right is C(RO(αi...j)). In case III there are no more cental kernels. In the
example, central kernels outside the core are the occurrence of the word ddddd
immediately at left of the leftmost letter b and two occurrences of the empty
word between the core and the left and the right components once more.



154 R. Deviatov

Central kernels of a block or a semiblock, as well as its right and left pre-
periods, are called simple kernels. A concatenation of consecutive simple kernels
(with no simple kernel immediately at left and at right of it) is called kernel.

The following remarks are easy corollaries of Lemma 4 and the definition of
central kernels. Every kernel of a stable 2-block El corresponds to some kernel of
El+1, and vice versa. Thus, we have evolutional sequences of kernels concerned
with E . (The amount of these sequences equals the amount of kernels in each
El). These sequences are periodic. A part of El between its (consecutive) central
kernels is actually either an empty word or a (left or right) repetition of some
1-block or semiblock αs...t. The part of El+1 between the corresponding central
kernels is the (left or right, respectively) repetition of Dc(αs...t).

The part of a 2-block between its rightmost (leftmost) central kernel and its
right (left) pre-period is called the right (left) pseudorepetition of the 2-block
(notation: RpR, LpR).

Now we can give an example of a 2-block with all its parts marked:

(ddddd)︸ ︷︷ ︸
LpreP

d..d︸︷︷︸
LpR︸ ︷︷ ︸

left component = LO

()()e..(eeeee)︸ ︷︷ ︸
LI

(c)(eeeee)..e︸ ︷︷ ︸
RI︸ ︷︷ ︸

core

()()d..(ddddd)︸ ︷︷ ︸
RO

b . . .

a pseudo-period︷︸︸︷
bd..d︸ ︷︷ ︸

RpR

(bd..db . . . ddbdb)︸ ︷︷ ︸
RpreP︸ ︷︷ ︸

right component

.

Here parentheses denote simple kernels and lines above denote kernels. Fig. 5
shows a detailed structure of a 2-block in a more general case.

These are all the notions concerning 2-blocks that are necessary to define
continuously periodic evolutions. We have to say another several words concern-
ing left and right pseudorepetitions. Let αi...j be a 2-block that belongs to an
evolution E and such that case I holds at right. Consider then all the 1-blocks
between the letters of order 2 in RpR(αi...j). The sequence of evolutions they
belong to is denoted by ER(αi...j). ER(αi...j) (EL(αi...j)) is considered beginning
at left (resp. at right).

Let l be divisible by BP(E) and l−BP(E) > F(E). Consider the concatenation
of (right) atoms RAl−BP(E)(El) . . . RAl−1(El)RAl(El). This concatenation does
not depend on l. It may contain some pre-periodic letters of order 2, but the
same atoms of the |Σ|-th and further superdescendants of El do not contain
them. The same atoms of El+|Σ| form some sequence of periodic letters of order
2, separated by 1-blocks, and all of them do not depend on l. 1-blocks inside the
same atoms of El+|Σ|+m are exactly the m-th superdescendants of ones inside
El+|Σ|, new 1-blocks will no longer arise in that atoms.

All we have said above and Lemma 4 imply the following lemma:

Lemma 6. Let El be a 2-block such that case I holds at right, and let α′
s...t

be the corresponding 1-block. Consider all the letters of order 2 inside its right
component. These letters, except for not more than Q rightmost ones that form
RpreP(α′

s...t), form a pl-periodic sequence. Here Q is a constant that depends on
Σ and ϕ only. pl possibly depends on l, but the sequence (pl)∞l=S(E) is periodic.
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αi

︸ ︷︷ ︸
C(LO)

︸ ︷︷ ︸
RpreP(LO)=RpreP(αi...j)

︸ ︷︷ ︸
LO(αi...j) (which is the left component itself)

(a)
︷ ︸︸ ︷kernel︷ ︸︸ ︷

left component of αi...j

2 2αs αt

︸ ︷︷ ︸
C(LI)

︸ ︷︷ ︸
C(RI)

︸ ︷︷ ︸
RpreP(LI)

︸ ︷︷ ︸
LpreP(RI)

︸ ︷︷ ︸
LpreP(αs...t)

︸ ︷︷ ︸
C(αs...t)

︸ ︷︷ ︸
RpreP(αs...t)

︸ ︷︷ ︸
LI(αi...j)

︸ ︷︷ ︸
the 1-block αs...t

︸ ︷︷ ︸
RI(αi...j)

kernel︷ ︸︸ ︷ kernel︷ ︸︸ ︷kernel︷ ︸︸ ︷
(a)

︷ ︸︸ ︷
(b)

︷ ︸︸ ︷

core of αi...j

2 2 2 2221b 1b 1b1b· · · αj

︸ ︷︷ ︸
C(RO)

︸ ︷︷ ︸
RpreP(RO)

︸ ︷︷ ︸
pseudo-period

︸ ︷︷ ︸
pseudo-period

︸ ︷︷ ︸
RpreP(αs...t)

︸ ︷︷ ︸
RO(αi...j)

︸ ︷︷ ︸
pseudorepetition

(b)
︷ ︸︸ ︷ kernel︷ ︸︸ ︷ kernel︷ ︸︸ ︷

right component of αi...j

Fig. 5. Detailed structure of the 2-block αi...j , where case II holds at left and case I
holds at right: 2 denotes a letter of order 2, 1b denotes a 1-block, two letters (a) denote
two parts of a single kernel, two letters (b) denote another kernel. Central kernels are
filled.

Everything we have said about components of 1-blocks, can be said about this
sequence too.

During the evolution (as l grows), ER(El) is prolonged to the right (and is not
changed elsewhere). The amount of blocks added at right per iteration is periodic
(the period length is BP(E)). Thus we can get an infinite sequence, which is
denoted by ER(E).

ER(E) is a periodic sequence if it is considered as sequence of abstract words
with known left and right borders. If two 1-blocks inside ER(El) are at the same
places in two consecutive periods of ER(E), then one of them is the BP(E)-th
superdescendant of another.

The following lemma is a corollary of the periodicities we have noticed above.

Lemma 7. Let E be an evolution of 2-blocks, s ∈ N. The sequences
|ES(E)|, . . . , |El|, . . . and | RpR(ES(E))|, . . . , | RpR(El)|, . . . modulo s are periodic.
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5 Continuously Periodic Evolutions

Let E be an evolution of k-blocks (k = 1, 2) or k-semiblocks (k = 1). Let case
II or III hold at right. Let k0 be the order of a := RB(ES(E)). Then ϕ(a) con-
tains a letter of order k0 − 1. Hence, the part of ϕBP(E)(RB(ES(E))) outside
DcBP(E)(ES(E)) will be longer than one letter and will start with a again. Thus
we can construct an abstract sequence (it is built like a pure morphic sequence
and can be prolonged infinitely) starting with a. It is called the right bounding
sequence of ES(E) (notation: RBS). If we consider ES(E)+m (1 ≤ m ≤ BP−1) in-
stead of ES(E), we can build another sequence in the similar way. These sequences
are also called right bounding sequences. These sequences are abstract, they are
not occurrences in α. However, there is a beginning of one of these sequences in
α at right of each block El, and the lengths of these beginnings grow as evolution
passes. Moreover, the length of this beginning is Θ(lk0 ).

Left bounding sequences are defined in a similar way.
Consider all the evolutions E of 1-blocks and 1-semiblocks. Consider all the

words ψ(LP(El)) and ψ(RP(El)) (where El is stable and case I holds at left and at
right, respectively). If one of these encoded periods is completely p-periodic itself
(where p is less than its length), consider the smallest its complete period instead
of it. This (finite due to Lemma 4) set of words is called the set of admissible
periods. A cyclic shift of an admissible period is also called an admissible period.
Since the set of admissible periods is finite, we assume they are enumerated in
some way.

The following definition is very significant for the proof.

Definition 1. Let E be an evolution of k-blocks (k = 1, 2) or k-semiblocks (k =
1) such that |El| → ∞ as l → ∞ (it means that either the core contains letters
of order > 1 or case I or II holds at left or at right). E is called continuously
periodic if for every stable block El = αi...j it is possible to choose some (actually,
not more than three) of its kernels αi1...j1 , . . . , αis...js so that:

1. The total amount of letters of order k in any of the words αjt...it+1 , grows
unboundedly as l → ∞ (thus, in particular, no two central kernels can be chosen);

2. All the words ψ(αjt...it+1), are (left or right) γ-periodic for some admissible
periods γ;

3. If js < j, then case II or III should hold at right (and if E is an evolution
of semiblocks, they should be right ones), the infinite word ψ(αjs...j RBS(El)) is
periodic and its period is admissible,
And similar condition at left.

In fact, Lemma 4 implies that all the evolutions of 1-blocks or 1-semiblocks are
continuously periodic.

After we gave the definition of a continuously periodic evolution, the state-
ments of Propositions 1 and 2 are completely formulated.
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6 An Example

Here we give an example of a sequence with complexity Θ(n3/2).
Let Σ = {1, 2, 3, 4}. Consider the following morphism ϕ: ϕ(4) = 43, ϕ(3) =

32, ϕ(2) = 21, ϕ(1) = 1 and the following coding ψ: ψ(4) = 4, ψ(3) =
3, ψ(2) = ψ(1) = 1. Then ϕ∞(4) = α = 433232213221211322121121113 . . .,
and ψ(ϕ∞(4)) = β = 433131113111111311111111113 . . . In α there is a unique
evolution E of 2-blocks, whose origin is the occurrence of the empty word between
4 and 3. Case I holds at left, so |El| = Θ(l2). It is clear that E is continuously pe-
riodic evolution, since ψ(El) consists of repeating letters 1. Proposition 2 asserts
pβ = O(n3/2). Let us show pβ = Ω(n3/2).

Indeed, β consists of alternating letters 3 and 2-blocks El. Given a subword
βi...j of length n, consider the longest 2-block βs...t that is completely inside it.
If the longest 2-block in another subword βi′...j′ is of another length or if it is
of the same length but starts from the different location in βi′...j′ than βs...t in
βi...j , the words βi...j and βi′...j′ are obviously distinct.

Assume 3n/4 > |βs...t| > n/2. Then there are Θ(
√

n) possibilities for its
length. There are Θ(n) possibilities for its location in βi...j , thus we obtain
Θ(n

√
n) different subwords of length n in β. Therefore, pβ(n) = Ω(n3/2), and

hence pβ(n) = Θ(n3/2).
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Abstract. The universal cover TG of a connected graph G is the unique
(possible infinite) tree covering G, i.e., that allows a locally bijective ho-
momorphism from TG to G. Universal covers have major applications
in the area of distributed computing. It is well-known that if a graph G
covers a graph H then their universal covers are isomorphic, and that the
latter can be tested in polynomial time by checking if G and H share the
same degree refinement matrix. We extend this result to locally injective
and locally surjective homomorphisms by following a very different ap-
proach. Using linear programming techniques we design two polynomial
time algorithms that check if there exists a locally injective or a locally
surjective homomorphism, respectively, from a universal cover TG to a
universal cover TH . This way we obtain two heuristics for testing the
corresponding locally constrained graph homomorphisms. As a conse-
quence, we have obtained a new polynomial time algorithm for testing
(subgraph) isomorphism between universal covers, and for checking if
there exists a role assignment (locally surjective homomorphism) from a
given tree to an arbitrary fixed graph H .

1 Introduction

In this paper, we consider simple, undirected, possibly infinite but connected
graphs. See [5] for undefined graph terminology. A (graph) homomorphism f :
G → H from a graph G = (VG, EG) to a graph H = (VH , EH) is a mapping VG →
VH such that (f(u), f(v)) ∈ EH whenever (u, v) ∈ EG. Graph homomorphisms
have a great deal of applications in graph theory, computer science and other
fields, see the monograph [16].

A graph homomorphism f from a graph G to a graph H can be required
to satisfy some local constraint [9]. If, for every u ∈ VG the restriction of f ,
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i.e. the mapping fu : N(u) → N(f(u)), is bijective, we say that f is locally
bijective [1,19], and we write G B−→ H . If, for every u ∈ VG, fu is injective, we
say that f is locally injective [10,11], and we write G I−→ H . If, for every u ∈ VG,
fu is surjective, we say that f is locally surjective [13,20], and we write G S−→ H .

Locally bijective homomorphisms, also called graph coverings, originally arose
in topological graph theory [22], and have applications in distributed comput-
ing [4], in recognizing graphs by networks of processors [2], and in construct-
ing highly transitive regular graphs [3]. Locally injective homomorphisms, also
called partial graph coverings, have been studied due to their applications in
models of telecommunication [11], in distance constrained labelings of graphs
with applications to frequency assignment [12], and as indicators of the exis-
tence of homomorphisms of derivate graphs (line graphs) [24]. Locally surjective
homomorphisms, also called role assignments, have applications in distributed
computing [6] and social science [8,26].

The main computational question is whether for every graph H the problem
of deciding if an input graph G has a homomorphism of given type ∗ = B, I
or S to the fixed graph H can be classified as either NP-complete or polyno-
mially solvable. For the locally surjective homomorphisms this classification is
known [13], with the problem for every connected H on at least three vertices
being NP-complete. For the locally bijective and injective cases there are many
partial results, see e.g. [11,19], but even conjecturing a classification for these
two cases is problematic. In this paper, we continue the study started in [14] in
order to get more insight in the structure of these computational issues.

1.1 Problem Formulation

The existence of a locally constrained homomorphism imposes a partial order on
the class of connected graphs C for each of the three local constraints B, I, and
S [14]. We can relax these three orders in two different ways. This leads to two
different heuristics for testing if G

∗−→ H for two given graphs G and H under
each type ∗ = B, I, S.

Firstly, we can transform the partial orders from the domain of finite graphs
to the domain of matrices. An equitable partition of a connected graph G is a
partition of its vertex set in blocks B1, . . . , Bk such that each vertex in each
Bi has the same number mi,j of neighbors in Bj , and we call the k × k matrix
M = (mi,j)1≤i,j≤k a degree matrix of G. We say that a vertex u is of the i-th
sort if u ∈ Bi. Equitable partitions are well-known in algebraic graph theory,
see e.g. [15]. Note that the degree refinement matrix of G is the degree matrix
corresponding to the equitable partition of G with the smallest number of blocks
(which are ordered in a unique way), and an adjacency matrix of G can be seen
as a degree matrix with the maximum number of rows.

Let M be the set of all degree matrices. We define three relations (M, ∃B−−→),
(M, ∃I−→) and (M, ∃S−→) imposed on the set of degree matrices by the existence of
graph homomorphisms of the corresponding local constraint, i.e., M ∃∗−→ N if and
only if there exist two graphs G, H ∈ C with degree matrix M, N , respectively,
such that G

∗−→ H . All three relations are partial orders [14], and a successful
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matrix comparison of each type is a necessary condition for the corresponding
graph comparison.

Secondly, we can transform the partial orders from the domain of finite graphs
to the domain of possibly infinite trees. The universal cover TG of a connected
graph G is the only tree that allows a locally bijective homomorphism TG

B−→ G.
A generic construction of the universal cover takes as vertices of TG all finite
walks in G that start from an arbitrary fixed vertex in G and that does not
traverse the same edge in two consecutive steps. Two such vertices are adjacent in
TG if the associated walks differ only in the presence of the last edge. The required
homomorphism TG

B−→ G can be taken as the mapping that assigns every walk
its last vertex. One can easily see that the universal cover is unique up to an
isomorphism (in particular, if we take walks that start in another fixed vertex).
As a matter of fact, if two subtrees of a universal cover rooted at two different
vertices are isomorphic to depth n−1, then they are isomorphic to all depths [25].
Universal covers are also called infinite unfoldings or views of graphs and have
applications in finite automata theory[23], distributed computing [18,27] and
existential pebble games [7].

Also universal covers can be equipped with a structure that impose a necessary
condition for the existence of a locally constrained homomorphism. There are two
options: either the existence of a locally constrained homomorphism or a simple
inclusion (as a subtree). In the latter case, TG = TH , TG ⊆ TH , and TG ⊇ TH

are necessary conditions for G B−→ H , G I−→ H and G S−→ H , respectively, see [14]
for more details.

Moreover, a result in [14] states that the universal cover TG is equal to the
universal cover TM of any degree matrix M of G which is constructed in the
following way. We take as root a vertex corresponding to row 1 of M , thus of
the 1st sort, and inductively adding a new level of vertices while maintaining the
property that each vertex of the i-th sort has exactly mi,j neighbors of the j-th
sort. Hence, a successful universal cover comparison is a necessary condition for
the corresponding graph comparison as well. More precisely, we have shown the
forward implications in the following theorem.

Theorem 1. Let G and H be connected graphs with degree matrices M and N ,
resp. Then the following holds:

G B−→ H =⇒ M ∃B−−→ N ⇐⇒ TG
B−→ TH ⇐⇒ TG = TH

G I−→ H =⇒ M ∃I−→ N =⇒ TG
I−→ TH ⇐⇒ TG ⊆ TH

G S−→ H =⇒ M ∃S−→ N =⇒ TG
S−→ TH =⇒ TG ⊇ TH

The backward implications in Theorem 1 for locally bijective homomorphism are
consequences of the theorem of Leighton [21]. The equivalence TG

I−→ TH ⇐⇒
TG ⊆ TH follows form the fact that a locally injective homomorphisms between
two trees is indeed globally injective [14].

Observe that C4 	 ∗−→ C3 while both graphs allow the 1 × 1 degree matrix
M = (2). This example excludes the implication G

∗−→ H ⇐= M ∃∗−→ N for
∗ = B, I, S. If G itself is a tree then TG = G. We then find that TG

S−→ TH 	⇐=
TG ⊇ TH for the choice G = P4, H = P3, since P4 ⊇ P3 but P4 	 S−→ P3. This
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example shows that the relations TG
S−→ TH and TG ⊇ TH are different. By

using linear programming techniques, the backward implication M ∃I−→ N ⇐=
TM

I−→ TN can be excluded [14]. So, the inclusion of universal covers does not
imply the relation on matrices for the locally injective constraint. What about
the remaining backward implication?

Question 1. Does there exist a counter example for the backward implication
M ∃S−→ N ⇐= TG

S−→ TH in Theorem 1?

The problem of deciding G
∗−→ H is NP-complete for all three local constraints,

and remains NP-hard for many particular fixed targets H , as we mentioned ear-
lier on. We have shown that M ∃B−−→ N can be verified in polynomial time, but
so far only membership to the class NP could be shown for the matrix compar-
ison problem M ∃∗−→ N for ∗ = I, S [14]. It is not expected that a polynomial
algorithm would solve these two problems. Testing if TG = TH can be done in
polynomial time by checking if G and H share the same the degree refinement
matrix [2]. Especially given the above, it would be useful to have a polynomial
heuristic for checking the other universal problem comparisons as well.

Question 2. How hard is it to decide if TG
I−→ TH (or equivalently TG ⊆ TH)

holds and to decide if TG
S−→ TH holds for two given connected graphs G and H?

In this paper we answer Question 1 in Section 2 as well as Question 2 in Section 3.

2 Excluding the Remaining Implication

We show that the relation TM
S−→ TN lies strictly between M ∃S−→ N and TM ⊇

TN .

Proposition 1. For degree matrices

M =

⎛

⎜⎜⎝

2 1 0 0
3 0 1 0
0 1 0 2
0 0 1 0

⎞

⎟⎟⎠ and N =
(

0 1
2 1

)

it holds that TM
S−→ TN but M 	 ∃S−→ N .

Proof. Observe first that N is a matrix of a finite tree TN and no other con-
nected simple graph allows this degree matrix. The infinite tree TM consist of
pairwise disjoint paths that are of infinite length and induced by vertices of the
first sort (white vertices). These paths are linked by vertices of the second sort
(each is adjacent to three paths) and every vertex of the second sort is joined
to the middle vertex of a unique P3. The trees TM and TN together with a
homomorphism witnessing TM

S−→ TN are depicted in Fig. 1.
This homomorphism is obtained inductively. We first map one infinite white

path into TN such that the sorts of the images alternate. Every vertex u of the
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TM
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b e
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TN

a1 c1

b2

e2

f1d1

b3b2 e2d4

f4

a4

c4

e3

b b b ba a a a

Fig. 1. Showing TM
S−→ TN . White vertices in TM are of the 1st sort. Sorts of the

remaining vertices are indicated by subscripts.

second sort in TM must be mapped on a vertex of the second sort in TN so that
the homomorphism can be extended to the pending claw.

Then, depending of whether the image of the already processed neighbor of
u was of the first or of the second sort, we extend the mapping to the two
infinite white paths that contains the remaining two neighbors of u. Both cases
are depicted in Fig. 1.

Now, in order to obtain a contradiction, assume that a finite graph G with
degree matrix M and a mapping f : G S−→ TN exists (recall that the target graph
TN is unique for this choice of N). Consider the vertices of the first sort of G,
call them red. These red vertices induce a disjoint union of cycles in G.

Denote by a the number of red vertices u such that f(u) is of the first sort in
TN and call them light-red. Analogously, let b be the number of red vertices v
such that f(v) is of the second sort, and call them dark-red. Since N prescribes
that both red neighbors of every light-red u must be dark we have a ≤ b.

On the other hand, due to the pending claws (which also exist in G), every
vertex of the third sort in G is mapped to a vertex of the second sort in TN ,
and every vertex of the fourth sort in G is mapped to a vertex of the first sort
in TN . Then every vertex u′ of the second sort in G is mapped to a vertex of
the second sort in TN . Since already its neighbor of the third sort is mapped to
a vertex of the second sort in TN , u′ must have at least two light-red neighbors
and, consequently, at most one dark-red neighbor. Hence, a ≥ 2b which is in
contradiction with a ≤ b. We conclude that M 	 ∃S−→ N . �

3 Testing Locally Injective and Surjective
Homomorphisms between Universal Covers

In this section we focus on the decision problems whether TM
∗−→ TN holds

for local constraints ∗ = I, S. As the algorithms are almost the same for both
constraints, we treat both cases simultaneously, pointing only at the differences
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where the particular local constraint plays different role. We first need some new
terminology. For an integer k ≥ 1 we define [k] := {1, 2, . . . , k} and abbreviate
[k] × [l] by [k × l].

Definition 1. Let M and N be two degree matrices of order k and l, resp.
We say that a vector pr,s consisting of kl nonnegative integers is a distribution
row for indices (r, s) ∈ [k × l] if the condition 1 holds. A distribution row pr,s

is called injective if in addition condition 2 holds. It is called surjective if in
addition conditions 3 and 4 hold.

l∑

j=1

pr,s
i,j = mr,i for all i ∈ [k], (1)

k∑

i=1

pr,s
i,j ≤ ns,j for all j ∈ [l], (2)

ns,j ≥ 1 =⇒
k∑

i=1

pr,s
i,j ≥ ns,j for all j ∈ [l], (3)

ns,j = 0 =⇒
k∑

i=1

pr,s
i,j = 0 for all j ∈ [l]. (4)

As an example, consider the matrices M and N from Proposition 1. The locally
surjective homomorphism from TM and TN in Figure 1 defines exactly the follow-
ing surjective distribution rows pr,s = (pr,s

1,1, p
r,s
1,2, p

r,s
2,1, p

r,s
2,2, p

r,s
3,1, p

r,s
3,2, p

r,s
4,1, p

r,s
4,2):

p1,1 = (0, 2, 0, 1, 0, 0, 0, 0)
p1,2 = (2, 0, 0, 1, 0, 0, 0, 0)
p2,2 = (2, 1, 0, 0, 0, 1, 0, 0)
p3,2 = (0, 0, 0, 1, 0, 0, 2, 0)
p4,1 = (0, 0, 0, 0, 0, 1, 0, 0)

Distribution rows play a central role in the NP algorithms for the degree matrix
comparison problems M ∃I−→ N and M S−→ N [14]. Suppose G

∗−→ H via f is
indeed a witness for M ∃∗−→ N for ∗ ∈ {I, S}. Let f map u ∈ VG of the r-th sort
to v ∈ VH of the s-th sort, and denote the number of neighbors of the i-th sort
in NG(u) that are mapped to neighbors of the j-th sort in NH(v) by pr,s

i,j . Then
the vector pr,s defined by entries pr,s

i,j is a (surjective or injective) distribution
row that we call suitable. Our NP algorithms try to identify suitable distribution
rows. The difficulty is that there may be exponentially many distribution rows.
Therefore, these algorithms could only use the nondeterministic choice of suitable
distribution rows to verify whether M ∃∗−→ N holds for ∗ = I, S, respectively,
see [14] for more details. However, for the decision problem on the existence
of a locally constrained homomorphism between universal covers we prove that
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we may reduce the number of suitable distribution rows to only a polynomial
number. For showing this we need some more terminology. For a degree matrix
M we say that matrix rows r and i are adjacent if mr,i > 0.

Definition 2. We say that a distribution row pr,s is a witness of type (s, j) for
(adjacent) matrix rows r and i if pr,s

i,j ≥ 1.

Definition 3. We say that a distribution row pr,s respects the allowed set X ⊆
[k × l] if pr,s

i′,j′ ≥ 1 implies (i′, j′) ∈ X for all (i′, j′) ∈ [k × l].

Note that if pr,s is a witness of type (s, j) for matrix rows r and i that respects an
allowed set X then (i, j) ∈ X . We need the following lemma for our algorithms.

Lemma 1. For given r and i the existence of an injective or surjective witness
pr,s of type (s, j) respecting an allowed set X can be tested in a polynomial time.

Proof. We can do this by translating the problem to the integer flow problem.
It is well-known [17] that this problem can be solved in polynomial time on flow
networks with integer edge capacities (if such a network has a flow, then this
flow may be assumed to be integer). We first define our auxiliary flow network F
and then explain it afterwards. We let VF = {p, ui′ , vj′ , q | (i′, j′) ∈ [k × l]} and
EF = {(p, ui′), (ui′ , vj′ ), (vj′ , q) | (i′, j′) ∈ [k × l]}. The sought flow g goes from p
to q and must satisfy the following edge constraints:

g(p, ui′) = mr,i′

g(ui′ , vj′ )

⎧
⎪⎨

⎪⎩

≥ 1 if (i′, j′) = (i, j)
= 0 if (i′, j′) /∈ X

≥ 0 otherwise

for ∗ = I : g(vj′ , q) ≤ ns,j′

for ∗ = S : g(vj′ , q)

{
≥ ns,j′ if ns,j′ ≥ 1
= 0 if ns,j′ = 0

We claim that F has an integer flow g if and only if there exists an injective, or
respectively, surjective witness pr,s of type (s, j) for r and i respecting X . First
suppose F allows an integer flow g. Choose pr,s

i′,j′ = g(ui′ , vj′ ) for all (i′, j′) ∈ [k×
l]. Because

∑l
j′=1 pr,s

i′,j′ =
∑l

j′=1 g(ui′ , vj′ ) = g(p, ui′) = mr,i′ for all i′ ∈ [k], pr,s

is a distribution row. For all j′ ∈ [l],
∑k

i′=1 pr,s
i′,j′ =

∑k
i′=1 g(ui′ , vj′ ) = g(v′j , q),

which is at most ns,j′ if ∗ = I, at least ns,j′ if ∗ = S and ns,j′ ≥ 1, and 0
otherwise, pr,s is injective or surjective, respectively. Since pr,s

i,j = g(ui, vj) ≥ 1,
pr,s is a witness. Finally, since pr,s

i′,j′ = g(ui′ , vj′) = 0 for all (i′, j′) /∈ X , pr,s

respects X .
Now suppose there exists an injective, or respectively, surjective witness pr,s

of type (s, j) for r and i respecting X . By Definition 2, pr,s
i,j ≥ 1. It is easy to

verify that pr,s satisfies the other edge constraints in F as well. Hence F allows
pr,s as integer flow. �

Our two algorithms can now be presented as one generic iterative algorithm.
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Algorithm 1. The test whether TM
∗−→ TN holds for ∗ = I or S

Input: Degree matrices M and N
Parameter: Local constraint ∗ ∈ {I, S}
initialize Xr,s = {(i, j) | mr,i > 0 and ns,j > 0} for all (r, s) ∈ [k × l];
repeat

foreach (r, s) ∈ [k × l] and (i, j) ∈ Xr,s do
if (r, i) has no witness of type (s, j) respecting Xr,s then

remove (i, j) from Xr,s and remove (r, s) from X i,j;
end

end
until no removal happens during the whole foreach loop ;
if there exists an r ∈ [k] with Xr,s empty for all s ∈ [l] then

return TM 	 ∗−→ TN

else
return TM

∗−→ TN

end

Theorem 2. Algorithm 1 is correct and runs in polynomial time.

Proof. For each Xr,s, one iteration of Algorithm 1 takes polynomial time due
to Lemma 1. Since the number of different allowed sets Xr,s is kl, a complete
iteration, i.e., an iteration over all Xr,s, then takes polynomial time as well. At
the start of the algorithm each Xr,s contains at most kl elements, and after each
complete iteration the size of each Xr,s has never increased. Since the algorithm
finishes as soon as all Xr,s have stable size, the number of iterations is at most
kl. We conclude that Algorithm 1 runs in polynomial time.

We now show that Algorithm 1 is correct. Suppose TM
∗−→ TN via f . Then f

induces witnesses of type (s, j) for all adjacent matrix rows r, i such that (r, i)
has a witness of type (s, j) if and only if (i, r) has a witness of type (j, s). Hence
f defines nonempty sets Xr,s for all matrix rows r.

It remains to show that if Algorithm 1 terminates in the affirmative state,
then a locally constrained homomorphism f : TM

∗−→ TN can be constructed.
Pick an arbitrary vertex u ∈ TM . Let u be of the r-th sort. By definition of the
algorithm, there exists a (final) allowed set Xr,s 	= ∅. Define f(u) = v for any
v ∈ TN that is of the s-th sort. Choose an arbitrary (i, j) ∈ Xr,s. By definition
of Xr,s, we can find a witness pr,s for (r, i) of type (s, j) respecting Xr,s.

We use pr,s to extend f . By definition of pr,s, for every pr,s
i′,j′ ≥ 1, we can let f

map pr,s
i′,j′ different neighbors of u that all are of the i′-th sort onto neighbors of v

that all are of the j′-the sort in such a way that, from N(u) to N(v), f is injective
when ∗ = I, and surjective when ∗ = S. Whenever the mapping f is defined
along an edge (u, u′), we iteratively extend f to the whole neighborhood N(u′)
of u′ by the same procedure as above in case N(u′) � {u}. We only have to make
sure to choose a witness pi′,j′

for (i′, r) of type (j′, s), where u, u′, f(u) and f(u′)
are of the r, i′, s- and j′-th sort respectively. Then pi′,j′

r,s ≥ 1 by definition of a
witness, and indeed we can use pi′,j′

to extend our mapping f that already maps
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u ∈ N(u′) of the r-th sort to v ∈ N(f(u′)) of the s-th sort. The reason why such
a witness pi′,j′

exists follows from the reciprocal removal of pairs (i′, j′) from
Xr,s and (r, s) from X i′,j′

. When the condition of the repeat loop is satisfied,
it holds that

(r, i′) has a witness of type (s, j′) respecting Xr,s

if and only if
(i′, r) has a witness of type (j′, s) respecting X i′,j′

. �
We are even able to construct in polynomial time a locally constrained homo-
morphism f : TM

∗−→ TN if Algorithm 1 approves that TM
∗−→ TN . This can

be seen as follows. We use the method described in the proof of Theorem 2 to
construct f . Finding witnesses respecting certain allowed sets can be done in
polynomial time using the flow network of the proof of Lemma 1. If f is defined
along edge (u, u′) then we always choose for the same extension of f on N(u′),
i.e., how we extend f only depends on the sort of u and the sort of u′. As it is
sufficient to keep only at most kl possibilities, the claim follows.

4 Conclusions

We have answered questions 1 and 2 of Section 1.1 in Proposition 1 and Theo-
rem 2, respectively. We conclude with some other applications.

The H-Role Assignment problem asks whether G S−→ H for a graph G and
a fixed target graph H . This problem is NP-complete for all connected graphs H
on at least three vertices [13]. It becomes polynomially solvable for every fixed
target H when restricted to the class of trees. This follows from Theorem 2, and
the fact that T 	 S−→ G if T is a tree and G contains a cycle, together with the
fact that TG = T for every tree G. Since TG

I−→ TH if and only if TG ⊆ TH ,
Algorithm 1 tests for infinite subtree isomorphism as well. Since TG = T for
every tree G, it can also be used for (sub-)tree isomorphism for finite trees,
especially if these trees can be encoded in terms of degree (refinement) matrices
independent of their original size (as otherwise much faster algorithms exist).
Finally, we note that there exist matrices that are not the degree matrix of
a finite graph. If such a matrix M has the property that mi,j > 0 whenever
mj,i > 0 then it still possible to construct a universal cover TM of M (or disjoint
submatrices of M) in the same way as before. Algorithm 1 can then be used for
universal cover comparison of those matrices as well.

Acknowledgments. We thank Jan Arne Telle for fruitful discussions on this topic.
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Abstract. The logic S4LP combines the modal logic S4 with the justi-
fication logic LP, both axiomatically and semantically. We introduce a
simple restriction on the behavior of constants in S4LP, having no effect
on the LP sublogic. Under this restriction some powerful derived rules
are established. Then these are used to show completeness relative to a
semantics having what we call the local realizability property: at each
world and for each formula true at that world there is a realization also
true at that world, where a realization is the result of replacing all modal
operators with explicit justification terms. This is a part of a project to
understand the deeper aspects of Artemov’s Realization Theorem.

1 Introduction

Logics of knowledge, Hintikka style, are familiar tools, [1]. Recently a family
of justification logics has been created. In these, instead of a modal opera-
tor, known, there is an infinite family of explicit reasons by which something
is known. There are justification logic analogs of several standard single-knower
Hintikka style logics, and work proceeds on multiple-knower versions. Connec-
tions between Hintikka logics and explicit logics are quite close, via Realization
Theorems. They say any theorem of a standard Hintikka logic of knowledge can
be realized, its knowledge operators can be replaced with explicit justifications,
to produce a theorem of the corresponding explicit logic of knowledge. Thus the
usual knowledge operators carry hidden explicit content.

Justification logics began with an analog of S4, due to Sergei Artemov, [2]. The
motivation was to create an arithmetic semantics for propositional intuitionistic
logic, completing a project begun by Gödel. Artemov succeeded in this. The jus-
tification logic created was called LP, for “logic of proofs;” explicit justifications
represent formal arithmetic proofs. It was soon realized that proofs were only
one kind of justification, and LP was one of a family of similar logics. In order
to keep the discussion manageable here, I will frame it in terms of LP, thinking
of it as a representative member of the family but having historical precedence.
The work, in fact, applies to a range of logics.

The Realization Theorem connects LP with S4. Each theorem of S4 has a
realization—a replacement of modal operators with explicit justification terms
that produces a theorem of LP. (The converse is also true, and trivial.) Indeed,

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 168–179, 2008.
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a realization can be chosen that is normal, negative occurrences of necessity
can be replaced with distinct variables. Moreover a realization can be extracted
constructively from a proof in S4. Given this fundamental relationship between
S4 and LP, it is natural to consider a logic that combines of LP and S4, so that
both explicit and implicit notions of knowledge are present. This has been done,
it is known as S4LP, [3,4]. Axiomatically, one simply provides the machinery of
S4, the machinery of LP, and a connecting axiom saying that explicit knowledge
implies implicit knowledge (see Section 3.1). S4LP is a conservative extension of
both S4 and LP. The Realization Theorem becomes a result about this single
logic, rather than one connecting two different ones. Unfortunately, the only
proofs known for the single-logic version of the Realization Theorem detour
through the older proofs, via conservativity. (Unfortunately too, this paper does
not shed any fresh light on this important issue.)

A Hintikka/Kripke semantics for S4 is standard. In [5,6] a semantics for LP
was presented, combining justification logic machinery originating in [7] with the
usual S4 semantics. This semantics has been adapted to S4LP in two distinct
ways. First, one can use the LP semantics without change, since there is an under-
lying Kripke structure for the interpretation of the modal operator. Axiomatic
soudness is in [3,4] and a completeness theorem is in [8]. The second semantics is
the single agent version of an n-agent logic of knowledge with explicit common
knowledge, [9,10]. In this, separate accessibility relations are used for the modal
operator and for explicit justification terms. Again, soundness and completeness
results have been shown. We are not concerned here with the two-accessibility-
relation version of S4LP semantics, but only the single accessibility version, as
investigated in [3,4,8]. In this, justifications can be thought of as supplying an
analysis of an individual’s knowledge, and the connection between justifications
and the modal/knowledge operator can be expected to be quite close.

We say an S4LP model meets the local realizability condition provided, at
each possible world of the model, each formula that is true at that world has a
realization that is also true at that world (normaliity is not required). The main
result of this paper is that axiomatic S4LP is complete with respect to models
meeting the local realizability condition, provided a certain condition is placed
on the constant specifications allowed. What was called strong completeness for
LP in [6] is an easy corollary.

I want to thank Sergei Artemov for comments on an earlier draft of this paper.

2 The Logic LP

We begin with a sketch of the oldest justification logic, LP, from [2]. First, the
language and an axiom system, and then a standard semantics.

2.1 LP Axiomatically

Justification terms or proof terms are built up from variables, x1, x2, . . . , and
constant symbols, c1, c2, . . . . They are built up using the following operation
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symbols: + and ·, both binary infix, and !, unary prefix. The reader is referred
to [2] and to [11] for a discussion of the intended meaning of these.

Formulas are built up from propositional letters, P1, P2, . . . , and a falsehood
constant, ⊥, using ⊃, together with an additional rule of formation, t:X is a for-
mula if t is a justification term and X is a formula. Read it as “t is a justification
for X .” Other propositional connectives are introduced as abbreviations.

Axiom (schemes) for LP, and rules, are as follows.

Classical Axioms: all tautologies
Truth Axioms: t:X ⊃ X
+ Axioms: t:X ⊃ (t + u):X

u:X ⊃ (t + u):X
· Axioms: t:(X ⊃ Y ) ⊃ (u:X ⊃ (t · u):Y )
! Axioms: t:X ⊃!t:t:X

Modus Ponens:
X X ⊃ Y

Y

Axiom Necessitation: If X is an axiom and c is a constant:
c:X

A constant specification C is an assignment of axioms to constants; take it
to be a set of formulas of the form c :X , where c is a constant and X is an
axiom. A proof meets constant specification C provided that whenever c :X is
introduced using the Axiom Necessitation rule, then X is an axiom that C assigns
to constant c. A constant specification can be given ahead of time, or can be
created during the course of a proof. In this paper we will assume a constant
specification has been fixed ahead of time. Various conditions can be imposed
on constant specifications. A constant specification is axiomatically appropriate
if all instances of axiom schemes have proof constants—here this will always be
assumed. Another common condition is being injective: at most one formula is
associated with each constant. We will need a condition, given in Section 4, that
conflicts with injectivity, but which is nonetheless natural to consider.

2.2 LP Semantics

The usual semantics for LP comes from [6], and amounts to a blending of an
earlier semantics from [7] with the usual Hintikka semantics for logics of knowl-
edge. A model is M = 〈G, R, A, V〉, where 〈G, R〉 is a frame, with R a reflexive
and transitive relation on G. V maps propositional variables to subsets of G. The
item not standard in Kripke models is A, an admissible evidence function. For
each justification term t and formula X , A(t, X) is some subset of G. Intuitively,
A(t, X) is the set of worlds at which t is admissible evidence for X . This does not
mean conclusive evidence—just evidence that is relevant. Admissible evidence
functions must meet certain conditions which we give next. (In earlier work a
related mapping E , called an evidence function, was used in place of A. The
change in notation is essentially cosmetic.)
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Constant Specification Condition. For the given constant specification C, if
c:X ∈ C then A(c, X) = G. If this condition is met, we say A meets constant
specification C.

· Condition. A(s, X ⊃ Y ) ∩ A(t, X) ⊆ A(s · t, Y ).
+ Condition. A(s, X) ∪ A(t, X) ⊆ A(s + t, X).
R Closure Condition. ΓRΔ and Γ ∈ A(t, X) imply Δ ∈ A(t, X).
! Condition. A(t, X) ⊆ A(!t, t:X).

Let M = 〈G, R, A, V〉 be an LP model. M, Γ � X is read: formula X is true
at world Γ ∈ G, of LP model M. The conditions for it are as follows.

Atomic Condition. For a propositional letter P , M, Γ � P if Γ ∈ V(P ).
Classical Conditions. M, Γ � X ⊃ Y iff M, Γ 
� X or M, Γ � Y . Also

M, Γ 
� ⊥.
Justification Condition. M, Γ � t:X iff Γ ∈ A(t, X) and M, Δ � X for all

Δ ∈ G with ΓRΔ.

We say X is true at world Γ if M, Γ � X , and otherwise X is false at Γ . X
is valid in a model M if X is true at every world of it.

The Justification Condition says we have t:X at Γ if X is knowable at Γ in
the Hintikka sense, and t is admissible evidence for X at Γ . If Hintikka semantics
captures true belief, then the present machinery captures is justified true belief.

The semantics just given is the weak model semantics ; there is a stronger
version. A model M is fully explanatory provided, if M, Δ � X for all Δ ∈ G
with ΓRΔ then there is some justification t such that M, Γ � t:X . That is, M
is fully explanatory provided Hintikka-knowability of X at Γ implies there is a
justification for X at Γ . Fully explanatory is examined in Section 6.

In [6] soundness and completeness was shown. If C is an axiomatically appro-
priate constant specification, then X has an axiomatic proof using C if and only
if X is valid in every weak LP model meeting C if and only if X is valid in every
fully explanatory LP model meeting C. Being fully explanatory is an interesting
condition that has not yet found applications. This is a puzzling circumstance,
which the results of this paper will only make more puzzling.

3 The Logic S4LP

LP and S4 are connected intimately via the Realization Theorem, as noted in
the Introduction. So it is natural to consider a logic combining the two, S4LP,
originating in [3,4].

3.1 S4LP Axioms

First, the language of LP is extended with the formation rule: if X is a formula,
so is �X . Next, the axiomatization of LP as given in Section 2.1 is extended
with S4 machinery, and a connecting axiom.
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� Axioms: �X ⊃ X
�(X ⊃ Y ) ⊃ (�X ⊃ �Y )
�X ⊃ ��X

Connecting Axiom: t:X ⊃ �X

The usual necessitation rule is added.

� Necessitation:
X
�X

Finally, it is assumed that the LP Axiom Necessitation rule also applies to
the new axioms just added, and that constant specifications also take these new
axioms into account.
� Necessitation can be shown to be a redundant rule, but doing so involves

proving an Internalization Theorem, whose statement and proof we skip here.

3.2 An S4LP Semantics

As was noted in the Introduction, there are two semantics for S4LP, with different
motivations. One, from [9,10], allows not just one but multiple agents, each
with its own knowledge operator, Ki, but with justifications meaningful to all
and playing the role of justified common knowledge. In this semantics one has
multiple accessibility relations, one for each agent, and one for justification terms.
If there is a single agent the logic reduces to S4LP; there are two relations,
one Hintikka style to supply an interpretation for �, the other is combined
with an admissible evidence function as in Section 2.2. Both weak and strong
completeness theorems are provable. However, this is not the semantics that will
concern us here, and it will not be mentioned further.

The semantics examined in this paper understands knowledge as having an
explicit (justification term) aspect and an implicit (modal) aspect. Justification
terms provide an analysis of our knowledge, rather than being the items of
knowledge we share with other agents. This approach is from [3,4,8]. There is a
single accessibility relation for both implicit and explicit knowledge. Now details.

First, LP models are fundamental. These are as in Section 2.2. This provides
the semantics for justification terms. But since we are using an extended language
now, we can also adopt the following, familiar from modal logic.

Necessitation Condition. M, Γ � �X iff M, Δ � X for all Δ ∈ G with
ΓRΔ.

In other words, justification terms are interpreted using the accessibility relation
and the admissible evidence function, while the modal operator uses the acces-
sibility relation but does not take the admissible evidence function into account.
The Justification Condition now can be given a somewhat simpler expression:
M, Γ � t:X iff Γ ∈ A(t, X) and M, Γ � �X .

As with LP, we can introduce notions of weak and strong models, but now
the Fully Explanatory condition is simpler to state: for each Γ and for each
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X , if M, Γ � �X then for some justification term t we have M, Γ � t :X .
Equivalently, if M, Γ � �X then there is some t such that Γ ∈ A(t, X).

Axiomatic soundness comes from [3,4]. Completeness of S4LP with respect to
the weak model semantics for S4LP is in [8]. Completeness with respect to the
strong model semantics, with models satisfying the fully explanatory condition,
is an open problem. Here it will be a special case of a more general result, but
the general result requires a special condition on constant specifications.

4 Some Derived S4LP Rules

The rules presented here will be used in our S4LP completeness proof in the
next section. But we must impose a restriction on constant specifications that
is at odds with injectivity. We begin with the replacement of terms containing
a variable with a � operator.

Definition 1. Let Z be a formula, and let x be a variable. Z(x/�) is the result
of replacing every justification term in Z that contains x with �:

A(x/�) = A for A atomic
[X ⊃ Y ](x/�) = [X(x/�) ⊃ Y (x/�)]

[�X ](x/�) = �[X(x/�)]

[t:X ](x/�) =
{

t:[X(x/�)] if x does not occur in t
�[X(x/�)] if x occurs in t

If we replace justification terms containing variable x with � this turns axioms
into axioms except for the · Axiom, where the results are theorems but not
axioms. We now modify the formulation of S4LP by adding these theorems to
our axiom list. This affects the role of constants in applications of the Axiom
Necessitation Rule, and keeps things simpler than they otherwise would be.

New Axioms. From now on our axiomatization of S4LP also contains the fol-
lowing two schemes: t:(X ⊃ Y ) ⊃ (�X ⊃ �Y ) and �(X ⊃ Y ) ⊃ (u:X ⊃ �Y )

Lemma 1. If Z is an axiom of S4LP, so is Z(x/�) for every variable x.

Proof. We give one case as an example. Consider the axiom t:X ⊃ (t + u):X .
There are three subcases.

1. x does not occur in either t or u. Then [t:X ⊃ (t+u):X ](x/�) = [t:X(x/�) ⊃
(t + u):X(x/�)], which is also a + axiom.

2. x occurs in u but not in t. Then [t:X ⊃ (t + u):X ](x/�) = [t:X(x/�) ⊃
�X(x/�)], which is a connecting axiom.

3. x occurs in t. Then [t:X ⊃ (t + u):X ](x/�) = [�X(x/�) ⊃ �X(x/�)], a
classical axiom.

Definition 2 (� Closed). Let C be a constant specification for S4LP. C is �
closed provided, whenever c:Z ∈ C then also c:Z(x/�) ∈ C, for each variable x.
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Note that a constant specification that is � closed cannot be injective (though
it may be when restricted to LP formulas, not containing �). Here is the main
result concerning � closed constant specifications.

Theorem 1. Suppose the constant specification C is � closed. If Z is provable
in S4LP using constant specification C, so is Z(x/�), for each variable x.

Proof. By induction on axiomatic proof length. Lemma 1 takes care of axioms.
Modus ponens and � Necessitation are straightforward. Axiom Necessitation is
covered by the assumption that the constant specification is � closed.

If we do not assume the constant specification is � closed, it is still true that if
Z is provable in S4LP so is Z(x/�), but using a modified constant specification.

Corollary 1. Assuming a constant specification that is � closed, the following
is a derived rule of S4LP. If x does not occur in A or B:

x:A ⊃ B
�A ⊃ B

This corollary points out a similarity in behavior between the � operator in
S4LP and the existential quantifier in first-order logic. This similarity has been
an important motivating factor in the development of justification logics.

5 Completeness

We begin with a definition of local realizability and a statement of the complete-
ness theorem. The completeness proof has similarities with one often used for
first-order modal logic with the Barcan formula.

Definition 3. For a formula X of S4LP, a realization is a formula X ′ whose
structure is like that of X, but in which every occurrence of � has been replaced
with a justification term:

A realizes A if A is atomic
X ′ ⊃ Y ′ realizes X ⊃ Y if X ′ realizes X and Y ′ realizes Y

t:X ′ realizes t:X if X ′ realizes X

t:X ′ realizes �X if t is a term and X ′ realizes X

This extends the usual notion of LP realization. Ordinarily it is S4 formulas that
are realized, while here we include a case covering justification terms which are
not part of the language of S4. We are not considering normal realizations.

Definition 4. Let M = 〈G, R, A, V〉 be an S4LP model. M meets the local
realizability condition provided: for every world Γ ∈ G and for every formula X,
if M, Γ � X then there is some realization X ′ of X such that M, Γ � X ′.
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Theorem 2 (Completeness). Let C be a constant specification that is � closed
(Definition 2). If Z0 is not provable using C then Z0 is false at some world of
an S4LP model meeting C and meeting the local realizability condition.

The rest of this section contains the proof of Completeness. C is a � closed
constant specification fixed for the section (the first few results don’t use �
closure). For a set S of formulas and a formula X , we write S � X if there is
some finite subset {Y1, . . . , Yn} of S such that (Y1 ∧ . . . ∧ Yn) ⊃ X is a theorem
of S4LP using C. With this definition the deduction theorem and compactness
are immediate. We say S is inconsistent if S � ⊥, and consistent if it is not
inconsistent. Maximal consistency has its usual meaning.

Definition 5. Let X be a formula, and assume an occurrence of � in X has
been designated. Let t be a justification term. By X(t) we mean the result of
replacing the designated occurrence of � in X with t.

Say X is �(P ⊃ x:�Q) ⊃ �R and the designated occurrence of � is marked with
a dot. Then X(t) = �(P ⊃ x:t:Q) ⊃ �R. The notation X(t) is incomplete since
which occurrence of � in X is designated is understood, and is not represented
in the notation itself.

Definition 6. A set S of formulas has the � instantiation property provided,
for every formula X with a designated occurrence of �, if S ∪ {X} is consistent
then there is some term t such that S ∪ {X(t)} is also consistent.

In canonical models, maximally consistent sets are possible worlds. We will re-
quire the � instantiation property too. For maximally consistent sets the � in-
stantiation property becomes: if X ∈ S then there is some t such that X(t) ∈ S.
This is what we need, but the more general version comes in along the way.

Definition 7. Let S be a set of formulas. S� is {X | �X ∈ S}.
Proposition 1. Suppose S is a maximally consistent set of formulas that has
the � instantiation property. Then S� also has the � instantiation property.

Proof. Assume the hypothesis. Let X be a formula with a designated occurrence
of �. Suppose S� ∪ {X} is consistent. We show that for some t, S� ∪ {X(t)} is
consistent. For convenience we use the defined modal operator ♦.

Since S� ∪ {X} is consistent, so is S ∪ {♦X} by the following argument. If it
were not consistent, S,♦X � ⊥, and so S � (♦X ⊃ ⊥), that is, S � �¬X . Since
S is maximal, �¬X ∈ S, hence ¬X ∈ S�, so S� ∪ {X} is not consistent.

Since S has the � instantiation property, for some justification term t, S ∪
{♦X(t)} is consistent.

Since S∪{♦X(t)} is consistent, so is S�∪{X(t)}, which finishes the argument.
Again we have a proof by contradiction. Suppose S� ∪ {X(t)} is not consistent.
Then S�, X(t) � ⊥, so S� � ¬X(t). Then for some Y1, . . . , Yn ∈ S�, the formula
(Y1∧. . .∧Yn) ⊃ ¬X(t) is provable. Using the Rule of Necessitation and standard
modal theorems, (�Y1 ∧ . . .∧�Yn) ⊃ �¬X(t) is provable. Since Y1, . . . , Yn ∈ S�,
we must have �Y1, . . . ,�Yn ∈ S, and since S is maximally consistent, we must
also have �¬X(t) ∈ S, contradicting the fact that S ∪{¬�¬X(t)} is consistent.
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Next we address the problem of extending a set that has the � instantiation
property to a maximally consistent set that still has this property.

Lemma 2. Let S be a set of formulas with the � instantiation property, and
F be a finite set of formulas. If S ∪ F is consistent then S ∪ F also has the �
instantiation property.

Proof. Let X be a formula with a designated occurrence of�. Assume S∪F∪{X}
is consistent. We show that for some t, S ∪ F ∪ {X(t)} is also consistent. The
argument is very simple.

Say F = {Y1, . . . , Yn}. Then S ∪ {Y1 ∧ . . . ∧ Yn ∧ X} is consistent. Since
S has the � instantiation property for some t, S ∪ {Y1 ∧ . . . ∧ Yn ∧ X(t)} is
consistent, using the original designated occurrence of � in X . But this implies
that S ∪ F ∪ {X(t)} is consistent.

Proposition 2. If S is a consistent set of formulas that has the � instantiation
property, then S can be extended to a set that is maximally consistent and has
the � instantiation property.

Proof. Assume S is consistent and has the � instantiation property. We extend
S using a modified Lindenbaum construction. Enumerate all formulas , say X0,
X1, . . . . Then define a sequence of sets of formulas, S0, S1, . . . , in which each
set extends its predecessor, is consistent, and has the � instantiation property.

To start, S0 = S.
Suppose Sn has been defined, is consistent, and has the � instantiation prop-

erty. If Sn∪{Xn} is not consistent, set Sn+1 = Sn. Otherwise, proceed as follows.
Xn has a finite number of � occurrences, say k of them. Choose one of them as
designated. Sn ∪ {Xn} is consistent and, by Lemma 2, it has the � instantia-
tion property. Then, using the designated occurrence of �, there must be some
justification term t such that Sn ∪ {Xn, X1

n} is consistent, where X1
n = Xn(t).

By Lemma 2 this set too has the � instantiation property. Now repeat this with
a different designated occurrence of � in Xn, getting a set Sn ∪ {Xn, X1

n, X2
n},

consistent and with the � instantiation property. And so on for each of the k
occurrences of � in Xn. Let Sn+1 = Sn ∪ {Xn, X1

n, X2
n, . . . , Xk

n}.
Let S = S0 ∪ S1 ∪ S2 ∪ . . .. As usual, S is maximally consistent. But also

it has the � instantiation property by the following argument. Suppose X is a
formula with a designated occurrence of �, and suppose S ∪ {X} is consistent.
Say X = Xn. Then S ∪ {Xn} is consistent and so at stage n of the construction
above, not only is Xn = X in Sn+1, but also X(t) is in Sn+1 for some justification
term t, and hence X(t) is in S, so trivially S ∪ {X(t)} is consistent.

All results so far say: some set has the � instantiation property provided some
other set does. We do not yet know there are any such sets at all (except for
inconsistent ones). This is taken care of by the following Lemma and Proposition.

Lemma 3. Let F be a consistent finite set of formulas, and let X be a single
formula with a designated occurrence of �. Then F ∪{X ⊃ X(x)} is consistent,
where x is a variable that does not occur in F or in X.
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Proof. Assume the hypothesis, but also assume F ∪ {X ⊃ X(x)} is not consis-
tent, where x does not occur in F or in X . Then [

∧
F ∧(X ⊃ X(x))] ⊃ ⊥ is prov-

able. By Theorem 1 we also have provability of {[
∧

F ∧(X ⊃ X(x))] ⊃ ⊥}(x/�),
but this is just [

∧
F ∧ (X ⊃ X)] ⊃ ⊥, and it follows that F is not consistent.

Proposition 3. If F is a finite, consistent set then F extends to a consistent
set with the � instantiation property.

Proof. Enumerate the formulas, X0, X1, X2, . . . . We define a chain F0, F1, F2,
. . . of consistent finite sets, as follows.

F0 = F .
Assume Fn has been defined. Consider formula Xn. Choose an occurrence of

� in Xn and take it to be designated (if there are none, this step is vacuous).
Let x be a variable that does not occur in the finite set Fn or in Xn. Then
Fn ∪ {Xn ⊃ Xn(x)} is consistent, by Lemma 3. Extend this set by consistently
adding an instantiation implication for a different designated occurrence of � in
Xn, and so on until each occurrence has had a corresponding implication added.
Call the resulting set Fn+1. Clearly it is finite and consistent.

Set F ∗ to be ∪nFn. Then F ∗ is consistent, has the � instantiation property.

Completeness for LP was proved in [6], and that proof was extended to S4LP,
as usually formulated, in [8]. Now we modify that proof to establish our main
result, which we restate here for convenience.

Theorem 2. Let C be a constant specification that is � closed (Definition 2).
If Z0 is not provable using C then Z0 is false at some world of an S4LP model
meeting C and meeting the local realizability condition.

Proof. Since Z0 is not provable, {¬Z0} is consistent. Using Proposition 3, this set
extends to a set that has the � instantiation property, and by Proposition 2, this
further extends to a set that is maximally consistent and has the � instantiation
property. Call this set Γ0.

Construct a model as follows. Let G be the set of all maximally consistent
sets of formulas that have the � instantiation property. (Note that Γ0 ∈ G.) If
Γ ∈ G, let Γ � = {X | �X ∈ Γ}, and set ΓRΔ if Γ � ⊆ Δ. This gives us a frame,
〈G, R〉. It is easily shown to be reflexive and transitive. Define a mapping A by
setting A(t, X) = {Γ ∈ G | t:X ∈ Γ}. Finally, define a mapping V by specifying
that for an atomic formula P , Γ ∈ V(P ) if and only if P ∈ Γ . This gives us a
structure M = 〈G, R, A, V〉. We begin by showing that M is an S4LP model.

First we verify that A, meets the · Condition. Suppose we have Γ ∈ [A(s, X ⊃
Y )∩A(t, X)]. By the definition of A, we must have t:X ∈ Γ and s:(X ⊃ Y ) ∈ Γ .
Since s:(X ⊃ Y ) ⊃ (t:X ⊃ (s · t):Y ) is an S4LP axiom, and Γ is maximally
consistent, it follows that (s · t):Y ∈ Γ , and hence Γ ∈ A(s · t, Y ).

Next we verify the R Closure Condition. Suppose Γ, Δ ∈ G and ΓRΔ. Also
assume Γ ∈ A(t, X). By definition of A, we have t:X ∈ Γ . But t:X ⊃!t:t:X
is an S4LP axiom, and so is !t:t:X ⊃ �t:X , so we have �t:X ∈ Γ , and hence
t:X ∈ Γ � ⊆ Δ. Then Δ ∈ A(t, X).
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Verifying that A meets the + and ! Conditions is similar, and is omitted.
Likewise it is straightforward to check that M meets constant specification C.

We have now verified that M is an S4LP model.
Next, a Truth Lemma can be shown: for each formula X and each Γ ∈ G

X ∈ Γ ⇐⇒ M, Γ � X (1)

Many of the cases are familiar from standard S4 completeness proofs. I’ll verify
only one. Suppose (1) is known for X , and we are considering the formula t:X .

Suppose first that t:X ∈ Γ . Then, using the Connecting Axiom, t:X ⊃ �X ,
�X ∈ Γ , and so X ∈ Γ �. Then if Δ is an arbitrary member of G with ΓRΔ we
have Γ � ⊆ Δ and hence X ∈ Δ. By the induction hypothesis, M, Δ � X . Also
since t:X ∈ Γ , we have Γ ∈ A(t, X). It follows that M, Γ � t:X .

Next, suppose M, Γ � t:X . This case is trivial. Part of the definition of �
tells us Γ ∈ A(t, X), and by definition of A for M, we must have t:X ∈ Γ .

Thus we have the Truth Lemma. It follows immediately that M meets the
local realizability condition. Here is the argument. Suppose M, Γ � X . Then by
the Truth Lemma, X ∈ Γ . Designate an occurrence of � in X . Since members of
G have the � instantiation property, for some t, Γ ∪ {X(t)} is consistent, hence
X(t) ∈ Γ since Γ is maximal. If there are occurrences of � in X(t) repeat this
step, eliminating a second occurrence. And so on. When all occurrences of � are
gone, we have a realization X ′ of X , with X ′ ∈ Γ . But then M, Γ � X ′, by the
Truth Lemma again.

Since ¬Z0 ∈ Γ0, and Γ0 ∈ G, we have M, Γ0 
� Z0, completing the proof.

6 Conclusion

S4LP is an explicit/implicit analog of S4. In a similar way explicit/implicit
analogs of weaker logics can be introduced, essentially by dropping axioms from
S4LP. The results of this paper carry over to the analogs of K4, T, and K. In
the other direction one can strengthen LP from an S4 counterpart to an S5 one,
but it requires adding machinery. This affects what is needed for a completeness
proof [12,13], and the status of an explicit/implicit version of S5 has not been
checked yet.

The LP semantics in Section 2.2 comes from [5,6] in two versions, weak and
strong. The weak version is basic in this paper. For the strong version an ad-
ditional condition is placed on models. An LP model M = 〈G, R, A, V〉 is fully
explanatory provided, for each world Γ ∈ G, if M, Δ � X for every Δ ∈ G such
that ΓRΔ, then M, Γ � t:X for some justification term t. Strong models are
weak models that are fully explanatory. LP is complete with respect to strong
models, using a proof that very closely mirrors the usual proof of completeness
for modal logics. Conventionally one shows that if {�X1, . . . ,�Xn, ¬�Y } is con-
sistent, then so is {X1, . . . , Xn, ¬Y }. In the LP case one shows that, for fixed
choice of t1, . . . , tn, if {t1:X1, . . . , tn:Xn, ¬u:Y } is consistent for every choice of
u, then {X1, . . . , Xn, ¬Y } is also consistent.
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The work of this paper provides a second proof of strong completeness for LP,
along completely different lines, as follows. Suppose X is a formula of LP, and X
is not LP provable using an axiomatically appropriate constant specification C. It
is simple to extend C to a constant specification that is axiomatically appropriate
for all of S4LP and is � closed. Call the extension C∗. Then X is not provable
in S4LP using C∗ either, since an LP counter model for X easily extends to
an S4LP countermodel for X , using the weak notion of S4LP model from [8].
Since X is not provable in S4LP using C∗, by the completeness proof of the
present paper, X is falsified at some world of an S4LP model meeting the local
realizability condition. If we ignore � in such a model we have an LP model, and
local realizability immediately gives us the fully explanatory condition.

It is curious that the fully explanatory condition can be approached from
such seemingly different directions—via a generalization of a standard modal
argument, and via a generalization of a Henkin completeness argument. It is
also curious that no use has been found for the condition. This report ends on a
note of genuine puzzlement.
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Abstract. Some 25 years ago Valiant introduced an algebraic model
of computation in order to study the complexity of evaluating families
of polynomials. The theory was introduced along with the complexity
classes VP and VNP which are analogues of the classical classes P and
NP. Families of polynomials that are difficult to evaluate (that is, VNP-
complete) includes the permanent and hamiltonian polynomials.

In a previous paper the authors together with P. Koiran studied the
expressive power of permanent and hamiltonian polynomials of matri-
ces of bounded treewidth, as well as the expressive power of perfect
matchings of planar graphs. It was established that the permanent and
hamiltonian polynomials of matrices of bounded treewidth are equivalent
to arithmetic formulas. Also, the sum of weights of perfect matchings of
planar graphs was shown to be equivalent to (weakly) skew circuits.

In this paper we continue the research in the direction described above,
and study the expressive power of permanents, hamiltonians and per-
fect matchings of matrices that have bounded pathwidth or bounded
cliquewidth. In particular, we prove that permanents, hamiltonians and
perfect matchings of matrices that have bounded pathwidth express ex-
actly arithmetic formulas. This is an improvement of our previous re-
sult for matrices of bounded treewidth. Also, for matrices of bounded
weighted cliquewidth we show membership in VP for these polynomials.

1 Introduction

In this paper we continue the work that was started in [8]. Our focus is on easy
special cases of otherwise difficult to evaluate polynomials, and their relation
to various classes of arithmetic circuits. It is conjectured that the permanent
and hamiltonian polynomials are hard to evaluate. Indeed, in Valiant’s model
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[17,18] these families of polynomials are both VNP-complete (VP and VNP
are analogues of the classical classes P and NP). In the boolean framework
they are complete for the complexity class �P [19]. However, for matrices of
bounded treewidth the permanent and hamiltonian polynomials can efficiently
be evaluated - the number of arithmetic operations being polynomial in the size
of the matrix [4].

The sum of weights of perfect matchings in a weighted (undirected) graph is
another hard to evaluate polynomial, but for planar graphs it can be evaluated
efficiently due to Kasteleyn’s theorem [11].

By means of reductions these evaluation methods can all be seen as general-
purpose evaluation algorithms for certain classes of polynomials. As an example,
if an arithmetic formula represents a polynomial P then one can construct a
matrix A of bounded treewidth such that:

(i) The entries of A are variables of P , or constants from the underlying field.
(ii) The permanent of A is equal to P .

It turns out that the converse holds as well. Here we would like to study to
what extent this can be done, when the matrix A has bounded pathwidth or
bounded cliquewidth instead of bounded treewidth. In [8] the following results
(with abuse of notation) were established:

(i) permanent/hamiltonian(bounded treewidth matrix) ≡ arithmetic formulas.
(ii) perfect matchings(planar matrix) ≡ arithmetic skew circuits.

One can also by similar proofs show that:

(iii) perfect matchings(bounded treewidth matrix) ≡ arithmetic formulas.

In this paper we establish the following results:

(i) per/ham/perfect matchings(bounded pathwidth matrix) ≡ arithmetic skew
circuits of bounded width ≡ arithmetic weakly skew circuits of bounded
width ≡ arithmetic formulas.

(ii) arithmetic formulas ⊆ per/ham/perf. match.(bounded weighted cliquewidth
matrix) ⊆ VP.

Weighted cliquewidth is a natural extension of cliquewidth for weighted graphs
defined in this paper. It differs from the cliquewidth of the underlying unweighted
graph since this notion is not adapted to our problematic.

Overview of paper: The second section of the paper introduces definitions used
throughout the paper and gives some small technical results related to graph-
widths. Sections 3 and 4 are devoted to our main results, namely the expres-
siveness of the permanent, hamiltonian, and perfect matchings of graphs of
bounded pathwidth and of bounded weighted cliquewidth respectively. We prove
in Section 3 that the permanent, hamiltonian, and perfect matchings limited to
bounded pathwidth graphs express arithmetic formulas. In Section 4, we show
that for all three polynomials the complexity is between arithmetic formulas and
VP for graphs of bounded weighted cliquewidth.
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Due to space restriction, we had to remove several proofs that can be found
in the full version [9]. We will not emphasize this point but all reductions can
be done in polynomial time (most of them can be done in linear time).

2 Definitions and Preliminary Results

2.1 Arithmetic Circuits

Definition 1. An arithmetic circuit is a finite, acyclic, directed graph. Vertices
have indegree 0 or 2, where those with indegree 0 are referred to as inputs. A
single vertex must have outdegree 0, and is referred to as output. Each vertex
of indegree 2 must be labeled by either + or ×, thus representing computation.
Vertices are commonly referred to as gates and edges as arrows.

In this paper various subclasses of arithmetic circuits will be considered: For
weakly skew circuits we have the restriction that for every multiplication gate, at
least one of the incoming arrows is from a subcircuit whose only connection to the
rest of the circuit is through this incoming arrow. For skew circuits we have the
restriction that for every multiplication gate, at least one of the incoming arrows
is from an input gate. For formulas all gates (except output) have outdegree 1.
Thus, reuse of partial results is not allowed.

For a detailed description of various subclasses of arithmetic circuits, along
with examples, we refer to [15].

Definition 2. The size of a circuit is the total number of gates in the circuit.
The depth of a circuit is the length of the longest path from an input gate to the
output gate.

2.2 Pathwidth and Treewidth

Since the definition of pathwidth is closely related to the definition of treewidth
(bounded pathwidth is a special case of bounded treewidth) we also include the
definition of treewidth in this paper. Treewidth for undirected graphs is most
commonly defined as follows:

Definition 3. Let G = 〈V, E〉 be a graph. A k-tree-decomposition of G is:

(i) A tree T = 〈VT , ET 〉.
(ii) For each t ∈ VT a subset Xt ⊆ V of size at most k + 1.
(iii) For each edge (u, v) ∈ E there is a t ∈ VT such that {u, v} ⊆ Xt.
(iv) For each vertex v ∈ V the set {t ∈ VT |v ∈ Xt} forms a (connected) subtree

of T .

The treewidth of G is the smallest k such that there exists a k-tree-decomposition
for G.

A k-path-decomposition of G is then a k-tree-decomposition where the “tree”
T is a path (each vertex t ∈ VT has at most one child in T ).
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The pathwidth (treewidth) of a directed, weighted graph is naturally defined
as the pathwidth (treewidth) of the underlying, undirected, unweighted graph.
The pathwidth (treewidth) of an (n × n) matrix M = (mi,j) is defined as the
pathwidth (treewidth) of the directed graph

2.3 Cliquewidth, NLCwidth and m-Cliquewidth

We have seen that the definition of pathwidth and treewidth for weighted graphs
was straightforwardly defined as the width of the underlying, unweighted graph.
This is a major difference compared to cliquewidth. We can see that if we consider
non-edges as edges of weight 0 then every weighted graph has a clique (which
has bounded cliquewidth 2) as its underlying, unweighted graph.

One motivation for studying bounded cliquewidth matrices was to obtain effi-
cient algorithms for evaluating polynomials like the permanent and hamiltonian
for such matrices. For this reason, it is not reasonable to define the cliquewidth
of a weighted graph as the cliquewidth of the underlying, unweighted graph, be-
cause then computing the permanent of a matrix of cliquewidth 2 is as difficult
as the general case. Hence, we put restrictions on how weights are assigned to
edges: Edges added in the same operation between vertices having the same pair
of labels will all have the same weight.

We now recall the definitions of cliquewidth, NLCwidth and m-cliquewidth
for undirected, unweighted graph, and then introduce the new notions of W -
cliquewidth, W -NLCwidth and W -m-cliquewidth which are variants of the pre-
ceding ones for weighted, directed graphs.

For the definitions of W -cliquewidth, W -NLCwidth and W -m-cliquewidth, we
will consider simple, weighted, directed graphs where the weights are in some set
W . Below, operations solely for the weighted case are indicated by bold font. In
the three following constructions, a (directed) arc from a vertex x to a vertex y
is only added by relevant operations if there is not already an arc from x to y.

Definition 4 ([3,5]). A graph G has cliquewidth (W -cliquewidth) at most
k iff there exists a set of source labels S of cardinality k such that G can be
constructed using a finite number of the following operations (named clique op-
erations or W -clique operations):

(i) vera, a ∈ S (basic construct: create a single vertex with label a).
(ii) ρa→b(H), a, b ∈ S (rename all vertices with label a to have label b instead).
(iii) ηa,b(H), a, b ∈ S, a �= b (add edges between all pairs of vertices where one

of them has label a and the other has label b).
(iii)’ αw

a,b(H), a, b ∈ S, a �= b, w ∈ W (add arcs of weight w from all vertices
with label a to all vertices with label b).

(iv) H ⊕ H ′ (disjoint union of graphs).

Definition 5 ([20]). A graph G has NLCwidth (W -NLCwidth) at most k iff
there exists a set of source labels S of cardinality k such that G can be constructed
using a finite number of the following operations (named NLC operations or W -
NLC operations):
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(i) vera, a ∈ S (basic construct: create a single vertex with label a).
(ii) ◦R(H) for any mapping R from S to S (for every source label a ∈ S

rename all vertices with label a to have label R(a) instead).
(iii) H ×E H ′ for any E ⊆ S2 (disjoint union of graphs to which are added

edges between all couples of vertices x ∈ H (with label lx), y ∈ H ′ (with
label ly) having (lx, ly) ∈ E).

(iii)’ H ×E H ′ for any partial function E : S2 × {−1, 1} → W (disjoint union
of graphs to which arcs of weight w are added for each couple of vertices
x ∈ H, y ∈ H ′ whose labels lx, ly are such that E(lx, ly, s) = w; the arc is
from x to y if s = 1 and from y to x if s = −1).

One important distinction between cliquewidth, NLCwidth on one side and m-
cliquewidth (to be defined below) on the other side is that in the first two each
vertex is assigned exactly one label, and in the last one each vertex is assigned
a set of labels (possibly empty).

Definition 6 ([6]). A graph G has m-cliquewidth (W -m-cliquewidth) at most
k iff there exists a set of source labels S of cardinality k such that G can be
constructed using a finite number of the following operations (named m-clique
operations or W -m-clique operations):

(i) verA (basic construct: create a single vertex with a set of labels A, A ⊆ S).
(ii) H ⊗E,h,h′ H ′ for any E ⊆ S2 and any h, h′ : P(S) → P(S) (disjoint

union of graphs to which are added edges between all couples of vertices
x ∈ H, y ∈ H ′ whose sets of labels Lx, Ly contain a couple of labels lx, ly
such that (lx, ly) ∈ E. Then the labels of vertices from H are changed via
h and the labels of vertices from H ′ are changed via h′).

(ii)’ H ⊗E,h,h′ H ′ for any partial function E : S2 × {−1, 1} → W and any
h, h′ : P(S) → P(S) (disjoint union of graphs to which arcs of weight w
are added for each couple of vertices x ∈ H, y ∈ H ′ whose sets of labels
Lx, Ly contain lx, ly such that E(lx, ly, s) = w; the arc is from x to y if
s = 1 and from y to x if s = −1. Then the labels of vertices from H are
changed via h and the labels of vertices from H ′ are changed via h′).

In the last operation for W -m-cliquewidth, there is a possibility that two (or
more) arcs are added from a vertex x to a vertex y during the same operation
and then the obtained graph is not simple. For this reason, we will consider as
well-formed terms only the terms where this does not occur.

It is stated in [6] (a proof sketch of some of this result is given in [6], and one
of the inequalities is proven in [10]) that

mcwd(G) ≤ wdNLC(G) ≤ cwd(G) ≤ 2mcwd(G)+1 − 1.

Hence, cliquewidth, NLC-width and m-cliquewidth are equivalent with respect
to boundedness.

The following theorem shows that the inequalities between the three
widths are still valid in the weighted case. It justifies our definitions of weighted
cliquewidth. A proof of this result can be obtained by collecting the ideas in
[6,10] and combining them with our weighted definitions.
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Theorem 1. For any weighted graph G,

Wmcwd(G) ≤ WwdNLC(G) ≤ Wcwd(G) ≤ 2Wmcwd(G)+1 − 1.

The three preceding constructions of graphs can be extended to weighted graphs
with loops by adding the basic constructs verloopw

a or verloopw
A which creates

a single vertex with a loop of weight w and label a or set of labels A. One can
then easily show the following result.

Let G be a weighted graph (directed or not) with loops. Let Unloop(G) denote
the weighted graph (directed or not) obtained from G by removing all loops.
Then:
– Wcwd(G) = Wcwd(Unloop(G)).
– WwdNLC(G) = WwdNLC(Unloop(G)).
– Wmcwd(G) = Wmcwd(Unloop(G)).

2.4 Permanent and Hamiltonian Polynomials

In this paper we take a graph theoretic approach to deal with permanent and
hamiltonian polynomials. The reason for this is that a natural way to define
pathwidth, treewidth or cliquewidth of a matrix M , is by the width of the graph
with adjacency matrix M , also see e.g. [13].

Definition 7. A cycle cover of a directed graph is a subset of the edges, such
that these edges form disjoint, directed cycles (loops are allowed). Furthermore,
each vertex in the graph must be in one (and only one) of these cycles. The
weight of a cycle cover is the product of weights of all participating edges.

Definition 8. The permanent of an (n × n) matrix M = (mi,j) is the sum of
weights of all cycle covers of GM .

The permanent of M is usually defined by the formula per(M) =
∑

σ∈Sn

∏n
i=1

mi,σ(i) but here we emphasize on the graph theoretic approach. The equivalence
with Definition 8 is clear since any permutation can be written down as a product
of disjoint cycles, and this decomposition is unique. The hamiltonian polynomial
ham(M) is defined similarly, except that we only sum over cycle covers consisting
of a single cycle (hence the name).

There is a natural way of representing polynomials by permanents. Indeed,
if the entries of M are variables or constants from some field K, f = per(M)
is a polynomial with coefficients in K (in Valiant’s terminology, f is a projec-
tion of the permanent polynomial). In the next section we study the power of
this representation in the case where M has bounded pathwidth or bounded
cliquewidth.

2.5 Connections between Permanents and Sum of Weights of
Perfect Matchings

Another combinatorial characterization of the permanent is by sum of weights of
perfect matchings in a bipartite graph. We will use this connection to deduce re-
sults for the permanent from results for the sum of weights of perfect matchings,
and reciprocally.
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Definition 9. Let G be a directed graph (weighted or not). We define the inside-
outside graph of G, denoted IO(G), as the bipartite, undirected graph (weighted
or not) obtained as follows:

– we split each vertex u ∈ V (G) in two vertices u+ and u−;
– each arc uv (of weight w) is replaced by an edge between u+ and v− (of

weight w). A loop on u (of weight w) is replaced by an edge between u+ and
u− (of weight w).

It is well-known that the permanent of a matrix M can be defined as the sum
of weights of all perfect matchings of IO(GM ). We can see that the adjacency

matrix of IO(GM ) is
(

0 M
M t 0

)
. The two following lemmas can be easily proved.

Lemma 1. If G has treewidth (pathwidth) k, then IO(G) has treewidth (path-
width) at most 2k + 1.

Lemma 2. If G has W -cliquewidth k, then IO(G) has W -cliquewidth at most
2k.

3 Expressiveness of Matrices of Bounded Pathwidth

In this section we study the expressive power of permanents, hamiltonians and
perfect matchings of matrices of bounded pathwidth. We will prove that in each
case we capture exactly the families of polynomials computed by polynomial
size skew circuits of bounded width. A by-product of these proofs will be a proof
of the equivalence between polynomial size skew circuits of bounded width and
polynomial size weakly skew circuits of bounded width. This equivalence can not
be immediately deduced from the already known equivalence between polynomial
size skew circuits and polynomial size weakly skew circuits in the unbounded
width case [16] (the proofs in [16] use a combinatorial characterization of the
complexity of the determinant as the sum of weights of s, t-paths in a graph of
polynomial size with distinguished vertices s and t. The additional difficulties to
extend these proofs to circuits and graphs of bounded width would be equivalent
to the ones we deal with). We will then prove that skew circuits of bounded width
are equivalent to arithmetic formulas.

Definition 10. An arithmetic circuit ϕ has width k ≥ 1 if there exists a finite
set of totally ordered layers such that:

- Each gate of ϕ is contained in exactly 1 layer.
- Each layer contains at most k gates.
- For every non-input gate of ϕ if that gate is in some layer n, then both inputs

to it are in layer n + 1.

Theorem 2. The polynomial computed by a weakly skew circuit of bounded
width can be expressed as the permanent of a matrix of bounded pathwidth. The
size of the matrix is polynomial in the size of the circuit. All entries in the matrix
are either 0, 1, constants of the polynomial, or variables of the polynomial.
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Proof. Let ϕ be a weakly skew circuit of bounded width k ≥ 1 and l > 1 the
number of layers in ϕ. The graph G we construct will have pathwidth at most
4 · k − 1 (each bag in the path-decomposition will contain at most 4 · k vertices)
and the number of bags in the path-decomposition will be l − 1. G will have two
distinguished vertices s and t, and the sum of weights of all directed paths from
s to t equals the value computed by ϕ.

Since ϕ is a weakly skew circuit we consider a decomposition of it into disjoint
subcircuits defined recursively as follows: The output gate of ϕ belongs to the
main subcircuit. If a gate in the main subcircuit is an addition gate, then both of
its input gates are in the main subcircuit as well. If a gate g in the main subcircuit
is a multiplication gate, then we know that at least one input to g is the output
gate of a subcircuit which is disjoint from ϕ except for its connection to g. This
subcircuit forms a disjoint multiplication-input subcircuit. The other input to g
belongs to the main subcircuit. If some disjoint multiplication-input subcircuit
ϕ′ contains at least one multiplication gate, then we make a decomposition of
ϕ′ recursively. Note that such a decomposition of a weakly skew circuit is not
necessarily unique, because both inputs to a multiplication gate can be disjoint
from the rest of the circuit, and any one of these two can be chosen as the one
that belongs to the main subcircuit.

Let ϕ0, ϕ1, . . . , ϕd be the disjoint subcircuits obtained in the decomposition
(ϕ0 is the main subcircuit). The graph G will have a vertex vg for every gate g of
ϕ and d + 1 additional vertices s = s0, s1, . . . , sd (t will correspond to vg where
g is the output gate of ϕ). For every gate g in the subcircuit ϕi, the following
construction will ensure that the sum of weights of directed paths from si to vg

is equal to the value computed at g in ϕ.
For the construction of G we process the decomposition of ϕ in a bottom-up

manner. Let subcircuit ϕi be a leaf in the decomposition of ϕ (so ϕi consists
solely of addition gates and input gates). Assume that ϕi is located in layers
topi through boti (1 ≥ topi ≥ boti ≥ l) of ϕ. First we add a vertex si to G in bag
boti − 1, and for each input gate with value w in the bottom layer boti of ϕi we
add a vertex to G also in bag boti − 1 along with an edge of weight w from si to
that vertex. Let n range from boti − 1 to topi: Add the already created vertex
si to bag n − 1 and handle input gates of ϕi in layer n as previously described.
For each addition gate of ϕi in layer n we add a new vertex to G (which is
added to bags n and n−1 of the path-decomposition of G). In bag n we already
have two vertices that represent inputs to this addition gate, so we add edges of
weight 1 from both of these to the newly added vertex. The vertex representing
the output gate of the circuit ϕi is denoted by ti. The sum of weighted directed
paths from si to ti equals the value computed by the subcircuit ϕi.

Let ϕi be a subcircuit in the decomposition of ϕ that contains multiplication
gates. Addition gates and input gates in ϕi are handled as before. Let g be
a multiplication gate in ϕi in layer n and ϕj the disjoint multiplication-input
subcircuit that is one of the inputs to g. We know that vertices sj and tj already
are in bag n, so we add an edge of weight 1 from the vertex representing the
other input to g to the vertex sj , and an edge of weight 1 from tj to a newly
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created vertex vg that represents gate g, and then vg is added to bags n and
n − 1.

For every b (1 ≥ b ≥ l − 1) we need to show that only a constant number
of vertices are added to bag b during the entire process. Every gate in layer b
of ϕ is represented by a vertex, and these vertices may all be added to bag b.
Every gates in layer b + 1 are also represented by a vertex, and all of these may
be added to bag b (because they are used as input here). In addition to this, a
number of si vertices are also added to bag b. For each gate of subcircuit ϕj in
layer b or b+1, we have the corresponding sj vertex in bag b. In total up to 4 ·k
vertices are added to bag b.

Note that in layer 1 of ϕ we just have the output gate. This gate is represented
by the vertex t of G which is in bag 1 of the path-decomposition.

The sum of weights of all directed paths from s to t in G can by induction be
shown to be equal to the value computed by ϕ. The final step in the reduction
to the permanent polynomial is to add an edge of weight 1 from t back to s and
loops of weight 1 at all nodes different from s and t. ��
With a longer proof one can show that the graph constructed in the preceding
proof has pathwidth at most

⌊7·k
2

⌋ − 1. Also, it can be modified to work for the
hamiltonian polynomial as well, by adapting the idea in [14]: For the permanent
polynomial each bag in the path-decomposition contains at most 4 · k vertices;
for each of these vertices we now need to introduce one extra vertex in the same
bag. In addition each bag must contain 2 more vertices in order to establish a
connection to adjacent bags in the path-decomposition. In total each bag now
contains at most 8 · k + 2 vertices.

Theorem 3. The polynomial computed by a weakly skew circuit of bounded
width can be expressed as the sum of weights of perfect matchings of a sym-
metric matrix of bounded pathwidth. The size of the matrix is polynomial in the
size of the circuit. All entries in the matrix are either 0, 1, constants of the
polynomial, or variables of the polynomial.

Proof. It is a direct consequence of Theorem 2 and Lemma 1. ��
Theorem 4. The hamiltonian of a matrix of bounded pathwidth can be expressed
as a skew circuit of bounded width. The size of the circuit is polynomial in the
size of the matrix.

Proof. Let M be a matrix of bounded pathwidth k and let GM be the underlying,
directed graph. Each bag in the path-decomposition of GM contains at most k+1
vertices. We refer to one end of the path-decomposition as the leaf of the path-
decomposition and the other as the root (recall that path-decompositions are
special cases of tree-decompositions).

We process the path-decomposition of GM from the leaf towards the root.
The overall idea is the same as the proof of Theorem 5 in [8] - namely to con-
sider weighted partial path covers (i.e. partial covers consisting solely of paths)
of subgraphs of GM that are induced by the path-decomposition of GM . During
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the processing of the path-decomposition of GM at every level distinct from the
root, new partial path covers are constructed by taking one previously gener-
ated partial path cover and then add at most (k + 1)2 new edges, so all the
multiplication gates we have in our circuit are skew. For any bag in the path-
decomposition of GM we only need to consider a number of partial path covers
that depends solely on k, so the circuit we produce has bounded width. At the
root we add sets of edges to partial path covers to form hamiltonian cycles. ��
By a similar proof, one can show the following theorem.

Theorem 5. The sum of weights of perfect matchings of a symmetric matrix of
bounded pathwidth can be expressed as a skew circuit of bounded width. The size
of the circuit is polynomial in the size of the matrix.

Theorem 6. The permanent of a matrix of bounded pathwidth can be expressed
as a skew circuit of bounded width. The size of the circuit is polynomial in the
size of the matrix.

Proof. It is a direct consequence of Theorem 5 and Lemma 1. ��
The following corollary can be deduced from Theorem 2 and Theorem 6.

Corollary 1. A family of polynomials is computable by polynomial size skew
circuits of bounded width if and only if it is computable by polynomial size weakly
skew circuits of bounded width.

We need the following theorem from [1] to prove the equivalence between polyno-
mial size skew circuits of bounded width and polynomial size arithmetic formulas.

Theorem 7. Any arithmetic formula can be computed by a linear bijection
straight-line program of polynomial size that uses three registers.

This result of Ben-Or and Cleve is a generalisation of the celebrated result of
Barrington in boolean complexity proving the equivalence between NC1 and
bounded width branching programs.

Let R1, . . . , Rm be a set of m registers, a linear bijection straight-line (LBS)
program is a vector of m initial values given to the registers plus a sequence of
instructions of the form

(i) Rj ← Rj + (Ri × c), or
(ii) Rj ← Rj − (Ri × c), or
(iii) Rj ← Rj + (Ri × xu), or
(iv) Rj ← Rj − (Ri × xu),

where 1 ≤ i, j ≤ m, i �= j, 1 ≤ u ≤ n, c is a
constant, and x1, . . . , xn are variables (n is
the number of variables). We suppose with-
out loss of generality that the value com-
puted by the LBS program is the value in
the first register after all instructions have
been executed.

Theorem 8. A family of polynomials is computed by polynomial size skew cir-
cuits of bounded width if and only if it is a family of polynomial size arithmetic
formulas.
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4 Expressiveness of Matrices of Bounded Weighted
Cliquewidth

In this section we study the expressive power of permanents, hamiltonians and
perfect matchings of matrices that have bounded weighted cliquewidth. We first
prove that every arithmetic formula can be expressed as the permanent, hamil-
tonian, or sum of perfect matchings of a matrix of bounded W -cliquewidth using
the results for the bounded pathwidth matrices and the following lemma.

Lemma 3. Let G be a weighted graph (directed or not) with weights in W . If G
has pathwidth k, then G has W -cliquewidth at most k + 2.

Theorem 9. Every arithmetic formula can be expressed as the permanent of a
matrix of W -cliquewidth at most 25 and size polynomial in n, where n is the
size of the formula. All entries in the matrix are either 0, 1, constants of the
formula, or variables of the formula.

Proof. Let ϕ be a formula of size n. Due to the proof of Theorem 8, we know
that it can be computed by a skew circuit of width 6 and size O(nO(1)). Hence
it is equal to the permanent of a graph of size O(nO(1)), pathwidth at most
4 · 6 − 1 = 23 by Theorem 2, and W -cliquewidth at most 23 + 2 = 25 by
Lemma 3. ��
Similarly, one obtains the two following results.

Theorem 10. Every arithmetic formula can be expressed as the hamiltonian of
a matrix of W -cliquewidth at most (8 · 6 + 2 − 1) + 2 = 51 and size polynomial
in n, where n is the size of the formula. All entries in the matrix are either 0,
1, or constants of the formula, or variables of the formula.

Theorem 11. Every arithmetic formula can be expressed as the sum of weights
of perfect matchings of a symmetric matrix of W -cliquewidth at most 25 · 2 = 50
and size polynomial in n, where n is the size of the formula. All entries in the
matrix are either 0, 1, constants of the formula, or variables of the formula.

We can modify the constructions for bounded treewidth graphs expressing for-
mulas in [8] to obtain results similar to the ones above. These modifications
require more work than the preceding proofs but we obtain smaller constants
since we obtain graphs of W -cliquewidth at most 13/34/26 (instead of 25/51/50)
whose permanent/hamiltonian/sum of perfect matchings are equal to formulas.

Due to our restrictions on how weights are assigned in our definition of
bounded W -cliquewidth it is not true that weighted graphs of bounded treewidth
also have bounded W -cliquewidth. In fact, if one tries to follow the proofs in [5,2]
that show that graphs of bounded treewidth have bounded cliquewidth, then
one obtains that a weighted graph G of treewidth k has W -cliquewidth at most
3 · (|WG| + 1)k−1 or 3 · (Δ + 1)k−1. WG denotes the set of weights on the edges
of G and Δ is the maximum degree of G. Weighted trees still have bounded
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weighted cliquewidth (the bound is 3). But we can show that there exist families
of weighted graphs with treewidth two and unbounded W -cliquewidth [12].

We now turn to the upper bound on the complexity of permanent, hamil-
tonian, and perfect matchings of graphs of bounded weighted cliquewidth. We
show that in all three cases the complexity is at most the complexity of VP.

The decision version of the hamiltonian cycle problem has been shown to be
polynomial time solvable in [7] for matrices of bounded cliquewidth. Here we
extend these ideas in order to compute the hamiltonian polynomial efficiently
(in VP) for bounded W -m-cliquewidth matrices.

Definition 11. A path cover of a directed graph G is a subset of the edges of G,
such that these edges form disjoint, directed, non-cyclic paths in G. We require
that every vertex of G is in (exactly) one path. For technical reasons we allow
“paths” of length 0, by having paths that start and end in the same vertex. Such
constructions do not have the same interpretation as a loop. The weight of a
path cover is the product of weights of all participating edges (in the special case
where there are no participating edges the weight is defined to be 1).

Theorem 12. The hamiltonian of an n×n matrix of bounded W -m-cliquewidth
can be expressed as a circuit of size O(nO(1)) and thus is in VP.

Proof. Let M be an n×n matrix of bounded W -m-cliquewidth. By G we denote
the underlying, directed, weighted graph for M . The circuit is constructed based
on the parse tree T for G (T is the parse tree of a term over the W -m-clique
algebra which constructs the graph G with a bounded number of labels). By Tt

we denote the subtree of T rooted at t for some node t ∈ T . By Gt we denote
the subgraph of G constructed from the parse tree Tt.

The overall idea is to produce a circuit that computes the sum of weights of
all hamiltonian cycles of G. To obtain this there will be non-output gates that
compute weights of all path covers of all Gt graphs, and then we combine these
subresults. Of course, the total number of path covers can grow exponentially
with the size of Gt, so we will not “describe” path covers directly by the edges
participating in the covers. Instead we describe a path cover of some Gt graph by
the labels associated with the start- and end-vertices of the paths in the cover.
Such a description do not uniquely describe a path cover, because two different
path covers of the same graph can contain the same number of paths and all
these paths can have the same labels associated. However, we do not need the
weight of each individual path cover. If multiple path covers of some graph Gt

share the same description, then we just compute the sum of weights of these
path covers.

For a leaf in the parse tree T of G we construct a single gate of constant weight
1, representing a path cover consisting of a single “path” of length 0, starting
and ending in a vertex with the given labels. Per definition this path cover has
weight 1.

For an internal node t ∈ T the grammar rule describes which edges to add
and how to relabel vertices. We obtain new path covers by considering a path



192 U. Flarup and L. Lyaudet

cover from the left child of t and a path cover from the right child of t: For each
such pair of path covers consider all subsets of edges added at node t, and for
every subset of edges check if the addition of these edges to the pair of path
covers will result in a valid path cover. If it does, then add a gate that computes
the weight of this path cover, by multiplying the weight of the left path cover,
the weight of the right path cover and the total weight of the newly added edges.
After all pairs of path covers have been processed, check if any of the resulting
path covers have the same description - namely that the number of paths in
some path covers are the same, and that these paths have the same labels for
start- and end-vertices. If multiple path covers have the same description then
add addition gates to the circuit and produce a single gate which computes the
sum of weights of all these path covers.

For the root node r of T we combine path covers from the children of r to
produce hamiltonian cycles, instead of path covers. Finally, the output of the
circuit is a summation of all gates computing weights of hamiltonian cycles.

Proof of correctness: The first step of the proof is by induction over the height
of the parse tree T . We will show that for each non-root node t of T there is
for every path cover description of Gt a corresponding gate in the circuit that
computes the sum of weights of all path covers of Gt with that description. For
the base cases - leaves of T - it is trivially true.

For the inductive step we consider two disjoint graphs that are being connected
with edges at a node t of the parse tree T . Edges added at node t are only added
in here, and not at any other nodes in T , so every path cover of Gt can be split
into 3 parts: A path cover of Gtl

, a path cover of Gtr and a polynomial number
of edges added at node t. Consider a path cover description along with all path
covers of Gt that have this description. All of these path covers can be split into
3 such parts, and by our induction hypothesis the weights of the path covers of
Gtl

and Gtr are computed in already constructed gates.
In order to complete the proof of correctness we have to handle the root t of

T in a special way. At the root we do not compute weights of path covers, but
instead compute weights of hamiltonian cycles. Every hamiltonian cycle of G
can (similarly to path covers) be split into 3 parts: A path cover of Gtl

, a path
cover of Gtr and a polynomial number of edges added at the root of T . By our
induction hypothesis all the needed weights are already computed.

The size of the circuit is polynomial since at each step the number of path cover
descriptions is polynomially bounded once the W -m-cliquewidth is bounded. ��
By a similar proof, one can prove the following theorem.

Theorem 13. The sum of weights of perfect matchings of an n × n symmetric
matrix of bounded W -NLCwidth can be expressed as a circuit of size O(nO(1))
and thus is in VP.

Theorem 14. The permanent of an n × n matrix of bounded W -m-cliquewidth
can be expressed as a circuit of size O(nO(1)) and thus is in VP.

Proof. It is a direct consequence of Theorem 13 and Lemma 2. ��
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Abstract. We study the group-valued and semigroup-valued conserva-
tion laws in cellular automata (CA). We provide examples to distinguish
between semigroup-valued, group-valued and real-valued conservation
laws. We prove that, even in one-dimensional case, it is undecidable if a
CA has any non-trivial conservation law of each type. For a fixed range,
each CA has a most general (group-valued or semigroup-valued) conser-
vation law, encapsulating all conservation laws of that range. For one-
dimensional CA the semigroup corresponding to such a most general
conservation law has an effectively constructible finite presentation, while
for higher-dimensional ones no such effective construction exists.

1 Introduction

Conservation laws in physics are numerical invariants of the dynamics of a sys-
tem. In cellular automata, a similar concept has already been defined and studied
(see e.g. [8, 3, 14, 5, 6]). We first choose a finite window, through which we can
recognize the pattern made by the states of a finite number of cells on the lattice.
We associate a real value to each possible local pattern that may be seen through
this window, resembling the “energy” (or “mass”, or . . . ) of that pattern. The
total “energy” of a configuration is obtained by sliding this window all over the
lattice and summing up the energy values of the local patterns we see. We have
a conservation law for that energy provided the evolution of the CA preserves
the total energy of each configuration.

In physics, conservation laws are used to write equations about the dynamics
of the system. Each conserved quantity extracts certain information about the
dynamics. In many cases, different conservation laws extract enough information
to allow the reconstruction of the whole dynamics. In other cases, conservation
laws concretize the physicist’s insight into the behavior of the system by refuting
those sequences of events that do not respect their preservation.

We study what happens if instead of mere real numbers, we allow energy
valuations from a commutative group or semigroup. A remarkable (but trivial)
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fact is that for each CA and a fixed window, there is a most general conservation
law that extracts whatever information can be expressed in terms of conservation
laws using that window. Any other more specific conservation law using that
window can be derived from that by applying an algebraic homomorphism.

We provide examples that the group-valued conservation laws give strictly
more information than the real-valued ones, and examples in which the semigroup-
valued conservation laws are strictly more general than the group-valued ones.
Needless to say, the semigroup-valued conservation laws can be quite expressive.
Nevertheless, we prove that for one-dimensional CA, the most general conserva-
tion law of each range, and a finite presentation of the corresponding semigroup
can be effectively constructed. This is a good news, because the Word Problem
for commutative semigroups is also decidable (see e.g. [1]). Therefore the whole
theory, in one-dimensional case, turns out to be algorithmically effective! For ex-
ample we can effectively determine whether two (finite) configurations have the
same total energy, or if a given CA conserves a given energy valuation. In higher
dimensions, however, no such construction for the most general semigroup-valued
conservation laws is possible.

Increasing the size of our window, we obtain more and more general (more and
more discriminating) conservation laws. We may ask if there is a large enough
window that provides the absolutely most general conservation law amongst all.
This we still cannot answer adequately. However, we show that there are CA
whose non-trivial conservation laws require very large windows. In fact, we prove
that it is undecidable (even in one-dimensional case) whether a CA has any non-
trivial conservation law at all, answering a formerly open question (see [10]). This
is valid, no matter we are looking for real-valued, group-valued, or semigroup-
valued conservation laws.

We note that the concept of the most general conservation law is closely
related to the Conway’s tiling group [4, 16], when we look at the space-time
diagram of CA as tilings of the plane. Unlike Conway’s group, in this paper we
restrict our study to commutative groups or semigroups. That is because non-
commutative conservation laws in higher-than-one dimensional CA do not make
much sense. Furthermore, in the non-commutative case, the Word Problem is
undecidable even for groups, and we much prefer to stay in the algorithmic realm.

2 Preliminaries

A cellular automaton (CA) is a collection of identical cells arranged regularly on
a lattice where a natural notion of neighborhood is present. Each cell is assigned
a state from a finite number of possible states. The state of the cells are updated
synchronously, in discrete time steps, according to a local update rule, which
takes into account the current state of each cell and its neighbors.

The cells are often indexed by Z
d (d ≥ 1), where we obtain a d-dimensional

CA. The state set is a finite set S. An assignment c : Z
d → S of states to the

cells of the lattice is referred to as a configuration (of the lattice). For each state
q ∈ S, a q-uniform configuration is a configuration with all cells in state q, and
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a q-finite configuration is one in which all cells but finitely many of them are in
the state q. The set of all q-finite configurations is denoted by Cq[S]. A pattern
over a finite set A ⊆ Z

d is an assignment p : A → S. We use the notation g|X
for the restriction of a mapping g to a subset X of its domain. Therefore, for
example, c|A denotes the pattern seen over A ⊆ Z

d in the configuration c ∈ SZ
d

.
The neighborhood is specified by a finite set N ⊆ Z

d. The neighborhood of a
cell i ∈ Z

d is the set i+N = {i+a : a ∈ N}. The local update rule is a function
f : SN → S. The local rule f naturally induces a mapping F : SZ

d → SZ
d

, called
the global mapping, that maps each configuration c, to its follower configuration
F (c), which when starting from c, appears on the lattice after one time-step.
Namely, F (c)[i] � f(c|i+N ); i.e., the state of the cell i in F (c) is the result of
the application of the local rule on the pattern of the neighborhood of i in c. We
often identify a CA with its global mapping. A quiescent state is a state q ∈ S
such that F maps the q-uniform configuration to itself; i.e., f(qN ) = q. If q is a
quiescent state, the image of every q-finite configuration is also q-finite.

For any a ∈ Z
d, the translation by a is the operator σa : SZ

d → SZ
d

defined
by (σac)[i] � c[a + i]. Notice that σa is a CA with neighborhood {a}. When
d = 1, we may write σ for σ1.

Let A ⊆ Z
d be a finite set. The A-block-presentation of a configuration c ∈ SZ

d

is a configuration e ∈ (
SA

)Z
d

where e[i] = c|i+A. That is, the state of the cell i
in e is the overall state of the cells i + A in c.

One-dimensional CA have a natural representation (upto translations) using
edge-labeled De Bruijn graphs. The De Bruijn graph of order k (k > 0) over an
alphabet S, is a graph Bk[S] with vertex set V = Sk and edge set E = Sk+1,
where for any a, b ∈ S and u ∈ Sk−1, there is an edge aub from au to ub.

Let F : SZ → SZ be a one-dimensional CA with neighborhood [−l, r] =
{−l, −l + 1, . . . , r} and local rule f : S[−l,r] → S. For any k ≥ l + r, the
CA can be represented on the De Bruijn graph Bk[S] with labeling λ : E →
Sk−(l+r) which is defined as follows. For every edge u0u1 · · · uk ∈ Sk+1, let
λ(u0u1 · · · uk) = vlvl+1 · · · vk−r where vi = f(u[i − l, i + r]). The edge sequence
p = {p[i]}i∈Z

of each bi-infinite path on Bk[S] is the [0, k]-block-presentation
of a unique configuration c ∈ SZ, while its label sequence λ(p) = {λ(p[i])}i∈Z

is the [l, k − r]-block-presentation of F (c). Conversely, for every configuration
c ∈ SZ, there is a unique infinite path on Bk[S] whose edge sequence is the
[0, k]-block-presentation of c.

A two-counter machine is a finite automaton equipped with two unbounded
counters. The machine can increase or decrease the value of each counter, and can
test if either has value zero. Two-counter machines are known to be equivalent
in power with Turing machines — any algorithm can be implemented on a two-
counter machine (see e.g. [11]).

3 Universal Conservation Law

Let F : SZ
d → SZ

d

be a CA, and to avoid cumbersome technicalities, let us
assume that the CA has a quiescent state q. Let Φ be a commutative (additive)
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semigroup, and W ⊆ Z
d a finite set, and assume that to each pattern p ∈ SW

we have associated a value μ(p) ∈ Φ as its energy. We would like to define the
total energy M(c) of a configuration c ∈ SZ

d

as the sum
∑

i∈Zd

μ(c|i+W ) (1)

by sliding the window W over c and adding up all the local energy values we see.
However, there is no uniform way to interpret an infinite sum over a semigroup!
To overcome this, we choose the following approach: we assume that Φ contains
an identity element 0, and that μ(qW ) = 0. Then the above sum will have a
natural meaning for all q-finite configurations — only finite number of the terms
have values other than 0. For all other configurations we leave the total energy
undefined.1

We say that the CA conserves the energy valuation μ, if

M(F (c)) = M(c) (2)

for every q-finite configuration c. Then M is a Φ-valued conserved energy defined
using window W , and (2) is a conservation law for the CA. More concisely, the
conservation law can be identified by the pair (Φ, μ).

Notice that the values of M do not depend on the displacement of the window.
That is, for every translation σa, M ◦ σa = M . The conservation of M by a
CA F means further that its value is constant over the orbits of F ; i.e., M ◦
F = M . Therefore, the kernel of M is a partition of the orbits of F . The finer
this partition, the more information the conservation law extracts about the
dynamics of the CA.

An energy function which assigns the same value to every finite configuration
is trivially conserved by every CA. We call such a conservation law trivial. Note
that the total energy mapping M : Cq[S] → Φ of a conservation law is not
necessarily onto (even if the local energy function μ is onto). The uncovered
part of Φ bears no information about the dynamics of F . Hence it is convenient
to name the realizable sub-monoid Φ̆ � M(Cq[S]) of Φ. So (Φ, μ) is trivial, if and
only if, the realizable sub-monoid Φ̆ is trivial.

Let us now fix a CA F : SZ
d → SZ

d

with a quiescent state q, and a finite
window W ⊆ Z

d. Every conserved energy valuation μ for F satisfies (2) for every
q-finite configuration c. The key observation in this paper is that the largest
semigroup generated by the (formal) values of μ for which (2) holds for every
q-finite configuration c provides the most general conservation law for F defined
using window W .

Put it precisely, let Σ � SW −{qW } be the set of non-quiescent patterns on W ,
and let us denote by N

Σ the free commutative (additive) monoid generated by Σ.
Define the energy assignment μ◦ : SW → N

Σ with μ◦(qW ) = 0, and μ◦(p) = p for
any other pattern p over W , and let M◦ : Cq[S] → N

Σ be the corresponding total
energy. Let ∼= ⊆ N

Σ × N
Σ be the coarsest monoid congruence where M◦(F (c))

1 This is not the only possible approach, but it sounds most natural to us.
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∼= M◦(c) for every q-finite c. Define ΦF � N
Σ/∼= and let h∼= : N

Σ → ΦF be the
natural homomorphism. Define μF : W → ΦF with μF = h∼= ◦ μ◦. Clearly the
pair (ΦF , μF ) identifies a conservation law, because

MF (F (c)) = h∼=(M◦(F (c))) = h∼=(M◦(c)) = MF (c) (3)

Furthermore, for every conservation law (Φ, μ) with window W , there is a monoid
homomorphism h : ΦF → Φ so that μ = h ◦ μF ; schematically,

(SZ, F )
MF ��

M

��������������
ΦF

h

���
�
�
�

Φ

(4)

One can verify that using Φ̆F instead of ΦF , the choice of h would be unique.
It is easy to see that when W ′ ⊆ W ⊆ Z

d, the most general conservation
law based on window W ′ is a factor of the most general conservation law based
on window W ; i.e., (Φ(W )

F , μ
(W )
F ) is more general than (Φ(W ′)

F , μ
(W ′)
F ). That is

because every energy valuation on W ′ can be seen also as a energy valuation on
W , by adding some dummy elements to W ′.

Following a similar trail of reasoning, if instead of semigroup-valued energies
we consider group-valued energies, we can define the most general group-valued
conservation law (GF , ρF ) based on W for F . Likewise, we define the realiz-
able subgroup ĞF � PF (Cq[S]) of GF , where PF is the total energy mapping
corresponding to ρ. The conservation law (ĞF , ρF ) satisfies a similar universal
property (4) among group-valued conservation laws.

Example 1 (Spreading 1’s). Consider the one-dimensional CA F with state set
{0, 1}, neighborhood {−1, 0, 1}, and local rule f(a, b, c) = a∨b∨c ; see Fig. 1 for
a typical snapshot. The time axis in the figure goes downward. It is easy to see
that every group-valued conservation law for F is trivial. Notice that every non-
quiescent finite configuration eventually turns into a single ever-growing block
of ones. In contrast, F has a non-trivial semigroup-valued conservation law. Let
Φ = {0, 1} be the commutative semigroup with binary operation a + b � a ∨ b.
Let W = {0} be the singleton window, and μ : {0, 1} → Φ be the identity. Under
this energy valuation, the 0-uniform has total energy 0, while every other 0-finite
configuration has total energy 1.

Example 2 (XOR). The second example is again a one-dimensional CA F ′ with
binary state set, and neighborhood {−1, 0, 1}. The local rule is the XOR rule
f ′(a, b, c) = a+b+c (mod 2). Figure 2 shows a typical snapshot. A well-known
property of the XOR CA (and in general every linear CA) is its replicating behav-
ior. Specifically, every finite pattern, after a finite number of steps, is replicated
into three copies with large 0 blocks in between (Fig. 2 depicts an example. This
is easy to verify using generating functions; see e.g. [15]). This implies that F ′
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Fig. 1. A space-time snapshot from the CA in Ex. 1

Fig. 2. A space-time snapshot from the CA in Ex. 2

cannot have any non-trivial real-valued conservation law. On the other hand, G
preserves the parity of the configurations. Let G = Z2 be the binary cyclic group,
and consider the identity energy function ρ : {0, 1} → Z2 on window {0}. The
total energy P (c) is simply the parity of the number of 1’s in c, and is preserved
by F ′.

4 Semigroup-Valued Conservation Laws

The definition of the most general conservation law of certain range, given above,
is based on an infinite presentation of the corresponding semigroup. A standard
theorem from the theory of semigroups states that any finitely generated com-
mutative semigroup has a finite presentation (see e.g. [7]). A question arises that
how one can find such a finite presentation. A finite presentation is needed if,
for example, we want to algorithmically verify whether two configurations have
the same total energy. It turns out there is no algorithm to construct such a
finite presentation for the semigroup of the most general conservation law in
2- or higher-dimensional CA. In one-dimensional case, we can construct these
semigroups effectively.

Let F : SZ
d → SZ

d

be a CA with a quiescent state q ∈ S. Clearly, (q, q) is
a quiescent state for the product F × F . Let Φ = {0, 1} be the Boolean semi-
group with a + b � a ∨ b, for any a, b ∈ Φ. Define the range-{0} energy valuation
μ : S × S → Φ with

μ(a, b) =
{

0 if a = b,
1 otherwise. (5)
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The energy μ is conserved by F × F , if and only if, F is injective on finite
configurations. According to the Garden-of-Eden theorem [12, 13], F is injective
on finite configurations if and only if it is surjective. However, when d ≥ 2, it
is undecidable whether a given d-dimensional CA is surjective [9]. Therefore no
algorithm could verify, for a given F , whether F × F conserves μ.

Theorem 1. There is no algorithm, that given a 2- or higher-dimensional CA
F with state set S, and an energy valuation μ : S → Φ from a finitely presented
commutative semigroup Φ, determines if F conserves μ.

Corollary 1. There is no algorithm, that given a 2- or higher-dimensional CA
F , computes a finite presentation of the semigroup ΦF and the energy valuation
μF of the most general conservation law for F with window {0}.
Let us now focus on one-dimensional CA. Let F : SZ → SZ be a 1d CA. Without
loss of generality we assume that F has a neighborhood [−l, r] = {−l, −l +
1, . . . , r} with l+r ≥ 0. Let q be the designated quiescent state of F . Let W ⊆ Z

be a finite set, and μ : SW → Φ be an energy valuation on window W with values
from a commutative monoid Φ. Again without loss of generality we assume that
W = [0, m) = {0, 1, . . . , m − 1}.

For k = l + r+m, consider the k’th order De Bruijn representation (Bk[S], λ)
of F . This has a vertex qk, with a loop edge qk+1 which is labeled by qm. Any
path corresponding to a q-finite configuration starts by circulating in this loop,
and after possibly passing through a finite number of other edges, eventually
returns back to this loop.

To each edge u0u1 · · · uk ∈ Sk+1 let us assign two elements

α(u0u1 · · · uk) � μ(u0u1 · · · um−1) (6)

and
β(u0u1 · · ·uk) � μ(vlvl+1 · · · vl+m−1) (7)

from ΦF , where vlvl+1 · · · vk−r = λ(u0u1 · · · uk) is the label of u0u1 · · · uk. The
total energy of a q-finite configuration x can be calculated by adding up the val-
ues of α over the edges of the corresponding bi-infinite path on Bk[S]. Likewise,
the sum of β values on this path gives the total energy of F (x). Note that the ini-
tial and final parts of such a path, where it is circulating in the loop qk+1 do not
contribute to the total energy, because μ(qm) = 0. For any path p = p1p2 · · · pn

(pi is the i’th edge of the path), let us use the notation α(p) for the sum of the
values of α over the edges of p; i.e.,

α(p) �
n∑

i=1

α(pi) (8)

and similarly for β.
The requirements imposed by the conservation of μ can now be translated in

terms of the values of α and β over finite paths on the graph Bk[S]: The pair
(Φ, μ) specifies a conservation law, if and only if, for any finite path p starting
and ending at vertex qk, α(p) = β(p).
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Proposition 1. Let G be a (finite, directed) graph with vertex set V and edge
set E, and Δ a finite symbol set. Let α, β : E → Δ and A, B ⊆ V . Let Φ be the
largest commutative monoid generated by Δ, satisfying the equations

α(p) = β(p) (9)

for any finite path p starting from A and ending at B. Then, there is an al-
gorithmically constructible finite subset of the above equations, such that any
commutative monoid generated by Δ satisfying those equations is a factor of Φ.

From Prop. 1, we immediately obtain what we were after in this section:

Theorem 2. For any one-dimensional CA F and any finite window W ⊆ Z,
the semigroup ΦF of the most general conservation law for F based on W is
effectively finitely presentable.

This does not say much about the realizable sub-monoid Φ̆F ⊆ ΦF . For exam-
ple, it is not even clear if Φ̆F is finitely generated or not. Following a similar
construction, however, one can decide whether Φ̆F is trivial or not.

Proposition 2. Let F be a one-dimensional CA, and (Φ, μ) a semigroup-valued
conservation law for F . It is decidable whether Φ̆ is trivial.

5 Group-Valued Conservation Laws

Group-valued conservation laws are more easily tractable. There is a simple
algorithm which tests whether a given CA F (of any dimension) conserves a
given group-valued energy function ρ. (This is similar to the real-valued case;
see e.g. [10]). In particular, for any fixed window W one can effectively construct
the most general group-valued conservation law (G(W )

F , ρ
(W )
F ) based on W . The

next challenge would be to classify all conservation laws, based on all windows.
For example, given a CA, is it possible to decide if it has any conservation law at
all? In this section we prove that the answer to the latter question is negative.

Lemma 1. Let F : SZ
d → SZ

d

be a 1d CA with a designated quiescent state q.
Suppose that F is nilpotent over q-finite configurations. Then F does not have
any non-trivial (real-valued/group-valued/semigroup-valued) conservation law.

Theorem 3 (Blondel, Cassaigne and Nichitiu [2]). Given a two-counter
machine A with 2 counters and no halting state, it is undecidable whether A has
a periodic orbit.

Theorem 4. There is no algorithm that given a one-dimensional cellular automa-
ton F determines if F has a non-trivial (real-valued/group-valued/semigroup-
valued) conservation law.

Sketch of the proof. We show how to reduce the problem of whether a given
counter machine has a periodic orbit to finding out if a 1d CA has any non-
trivial conservation law. Since the former is undecidable, we conclude that so is
the latter.
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Let A be a two-counter machine with state set Q, two registers x1 and x2,
and transition function δ : Q × {0, 1}2 → Q × {1, 2}× {−, 0, +}. We construct a
CA F with a designated quiescent state q such that

a) if A has a periodic configuration, F has a non-trivial (real-valued) conserva-
tion law, while

b) if A has no periodic orbit, F is nilpotent over q-finite configurations (hence,
has no non-trivial conservation law).

The CA F has two states L and R which are end-markers. In the interval
between a left end-marker L and a right end-marker R, the CA simulates the
machine A. The CA also constantly verifies the syntax of the block between
two end-markers, to make sure it corresponds with an actual simulation. If a
syntax error is found, or if the simulation overflows the end-markers, the CA
erases the whole block, by replacing the cell contents with q. Blocks not having
end-markers are also erased.

If the machine A has no periodic orbit, every syntactically correct simulation
of A on a finite block eventually overflows the boundaries. Therefore, every q-
finite configuration eventually goes quiescent; i.e., F is nilpotent over q-finite
configurations.

On the other hand, if A has a periodic configuration, one can choose a suf-
ficiently large simulation block in F which evolves periodically, and never over-
flows. Let us fix a snapshot of such a periodic simulation block (including its
end-markers), and denote it by B. Since no new end-marker is ever created by
F , and since the end-markers block the flow of information inwards and outwards
the simulation blocks, we can argue that if a simulation block in a configuration
eventually turns into B, it does so independent of the rest of the configuration,
and after a bounded number of steps. Let us denote by B the set of all simulation
blocks that eventually turn into B. This is a stable set. Once we know that a
block from B occurs in a certain position on a configuration c, we also know
that a block from B occurs in the same position on any pre-image of c. This
immediately gives a non-trivial (real-valued) conservation law that states that
the number of occurrences of blocks from B is conserved by F . 	


6 Conclusion and Open Problems

In this paper we examined a number of algorithmic problems that arise from
studying the algebraic conservation laws for cellular automata. The semigroup-
valued conservation laws are highly expressive, still not so tractable. The group-
valued conservation laws are more expressive than the real-valued ones, yet as
accessible as they are.

Since reversible CA are particularly attractive for modeling physical processes,
it would be useful to examine the same problems in the restricted case of re-
versible CA. In particular, is it decidable whether a given reversible CA has any
conservation law? Notice that our proof of Theorem 4 takes advantage of the
existence of very long transients to construct CA whose conservation laws need
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very large windows. We conjecture that every reversible CA has a non-trivial
conservation law with a relatively small window.
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[3] Boccara, N., Fukś, H.: Number-conserving cellular automaton rules. Fundamenta
Informaticae 52, 1–13 (2002)

[4] Conway, J.H., Lagarias, J.C.: Tiling with polyominoes and combinatorial group
theory. Journal of Combinatorial Theory A 53, 183–208 (1990)
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Lower Bounds on Frequency Estimation of

Data Streams�

(Extended Abstract)

Sumit Ganguly

Indian Institute of Technology, Kanpur

Abstract. We consider a basic problem in the general data streaming
model, namely, to estimate a vector f ∈ Z

n that is arbitrarily updated
(i.e., incremented or decremented) coordinate-wise. The estimate f̂ ∈ Z

n

must satisfy ‖f̂ − f‖∞ ≤ ε‖f‖1, that is, ∀i (|f̂i−fi| ≤ ε‖f‖1). It is known
to have Õ(ε−1) randomized space upper bound [6], Ω(ε−1 log(εn)) space
lower bound [4] and deterministic space upper bound of Ω̃(ε−2) bits.1

We show that any deterministic algorithm for this problem requires space
Ω(ε−2(log‖f‖1)(log n)(log−1(ε−1)) bits.

1 Introduction

A data stream σ over the domain [1, n] = {1, 2, . . . , n} is modeled as a sequence of
records of the form (pos, i, δv), where, pos is the current sequence index, i ∈ [1, n]
and δv ∈ {+1, −1}. Here, δv = 1 signifies an insertion of an instance of i and
δv = −1 signifies a deletion of an instance of i. For each data item i ∈ [1, n], its
frequency (freq σ)i is defined as

∑
(pos,i,δv) ∈ stream δv. The size of σ is defined

as |σ| = max{‖freq σ′‖∞ | σ′ prefix of σ}. In this paper, we consider the general
stream model, where, the n-dimensional frequency vector freq σ ∈ Z

n. The data
stream model of processing permits online computations over the input sequence
using sub-linear space. The data stream computation model has proved to be
a viable model for a number of application areas, such as network monitoring,
databases, financial data processing, etc..

We consider the problem ApproxFreq(ε): given a data stream σ, return f̂ ,
such that err(f̂ , freq σ) ≤ ε, where, the function err is given by (1). Equivalently,
the problem may be formulated as: given i ∈ [1, n], return f̂i such that |f̂i −
(freq σ)i| ≤ ε · ‖freq σ‖1, where, ‖f‖1 =

∑
i∈[1,n]|fi|.

err(f̂ , f) def=
‖f̂ − f‖∞

‖f‖1
≤ ε. (1)

The problem ApproxFreq(ε) is of fundamental interest in data streaming appli-
cations. For general streams, this problem is known to have a space lower bound
� The full version of the paper together with all proofs that could not be included here

due to lack of space may be found at arXiv:cs/0701004v3.
1 The Õ and Ω̃ notations suppress poly-logarithmic factors in n, log ε−1, ‖f‖∞ and

log δ−1, where, δ is the error probability (for randomized algorithm).

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 204–215, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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of Ω(ε−1 log(nε)) [4], a randomized space upper bound of Õ(ε−1) [6], and a de-
terministic space upper bound of Õ(ε−2) bits [9]. For insert-only streams (i.e.,
freq σ ≥ 0), there exist deterministic algorithms that use O((ε−1)(log(mn)))
space [7,14,15]; however extensions of these algorithms to handle deletions in
the stream are not known.

Mergeability. Data summary structures for summarizing data streams for fre-
quency dependent computations (e.g., approximate frequent items, frequency
moments, etc.; formally defined in Section 2) typically exhibit the property of
arbitrary mergeability. If D is a data structure for processing a stream and Dj ,
j = 1, . . . , k for k arbitrary, be the respective current state of the structure
after processing streams Sj , then, there exists a simple operation Merge such
that Merge(D1, . . . , Dk) reconstructs the state of D that would be obtained by
processing the union of streams Sj , j = 1, 2, . . . , k. For randomized summaries,
this might require initial random seeds to be shared. Thus, a summary of a
distributed stream can be constructed from the summaries of the individual
streams, followed by the Merge operation. Almost all known data streaming
structures are arbitrarily mergeable, including, sketches [3], Countsketch [5],
Count-Min sketches [6], Flajolet-Martin sketches [8] and its variants, k-set[10],
CR-precis structure [9] and random subset sums [13]. In this paper, we ask the
question, namely, when are stream summaries mergeable?

Contributions. We present a space lower bound of Ω(ε−2(logε−1)−1(log m)(log n))
bits for any deterministic uniform algorithm An for the problem ApproxFreq(ε)
over input streams of size m over the domain [1, n]. The uniformity is in the sense
that An must be able to solve ApproxFreq(ε) for all general input streams over
the domain [1, n]. The lower bound implies that the CR-precis structure [9]
is nearly space-optimal for ApproxFreq(ε), up to poly-logarithmic factors.
The uniformity requirement is essential since there exists an algorithm that
solves ApproxFreq(ε) for all input streams σ with |σ| ≤ 1 using space
O(ε−1polylog(n)) [11].

We also show that for any deterministic and uniform algorithm An over gen-
eral streams, there exists another algorithm Bn such that (a) the state of Bn

is arbitrarily mergeable, (b) Bn uses at most O(log n) bits of extra space than
An, and, (c) for every input stream σ, the output of Bn on σ is the same as the
output of An on some stream σ′ such that freq σ = freq σ′. In other words, if
An correctly solves a given frequency dependent problem, so does Bn; further,
the state of Bn is arbitrarily mergeable and Bn uses O(log n) bits of extra space.
This shows that deterministic data stream summaries for frequency dependent
computation are essentially arbitrarily mergeable.

2 Stream Automaton

In this section, we define a stream automaton and study some basic properties.

Definition 1 (Stream Automaton). A stream automaton An over the do-
main [1, n] is a deterministic Turing machine that uses two tapes, namely, a
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two-way read-write work-tape and a one-way read-only input tape. The input tape
contains the input stream σ. After processing its input, the automaton writes an
output, denoted by outputAn

(σ), on the work-tape. ��
Effective space usage. We say that a stream automaton uses space s(n, m) bits
if for all input streams σ having |σ| ≤ m, the number of cells (bits) on the
work-tape in use, after having processed σ, is bounded by s(n, m). In particular,
this implies that for m ≥ m′, s(n, m) ≥ s(n, m′). The space function s(n, m)
does not count the space required to actually write the answer on the work-
tape, or to process the s(n, m) bits of the work-tape once the end of the input
tape is observed. The proposed model of stream automata is non-uniform over
the domain size n, (and uniform over the stream size parameter m = |σ|),
since, for each n ≥ 1, there is a stream automata An for solving instances of a
problem over domain size n. This creates a problem in quantifying effective space
usage, particularly, for low-space computations, that is, s(n, m) = o(n log m).
Let Q(An) denote the set of states in the finite control of the automaton An.
If |Q(An)| ≥ m2n, then, for all m′ ≤ m, the automaton can map the frequency
vector isomorphically into its finite control, and s(n, m) = 0. This problem is
caused by non-uniformity of the model as a function of the domain size n, and
can be avoided as follows. We define the effective space usage of An as

Space(An, m) def= s(n, m) + log s(n, m) + |Q(An)| .

Although, the model of stream automata does not explicitly allow queries, this
can be modeled by a stream automaton’s capability of writing vectors as answers,
whose space is not counted towards the effective space usage. So if {qi}i∈I denotes
the family of all queries that are applicable for the given problem, where, I is a
finite index set of size p(n) then, the output of the automaton can be thought
of as the p(n)-dimensional vector outputAn

(σ).
A frequency dependent problem over a data stream is characterized by a fam-

ily of binary predicates Pn(f̂ , freq σ), f̂ ∈ Z
p(n), n ≥ 1, called the characteristic

predicate for the domain [1, n]. Pn defines the acceptability (or good approx-
imations) of the output. A stream automaton An solves a problem provided,
for every stream σ, Pn(outputAn

(σ), freq σ) holds. For example, the character-
istic predicate corresponding to the problem ApproxFreq(ε) is err(f̂ , f) ≤ ε,
where, f̂ ∈ Z

n and err(·, ·) is defined by (1). Examples of frequency dependent
problems are approximating frequencies and finding frequent items, approximate
quantiles, histograms, estimating frequency moments, etc..

Given stream automata An and Bn, Bn is said to be an output restriction
of A, provided, for every stream σ, there exists a stream σ′ such that, freq σ =
freq σ′ and outputBn

(σ) = outputAn
(σ′). The motivation of this definition is the

following straightforward lemma.

Lemma 1. Let Pn be the characteristic predicate of a frequency-dependent prob-
lem over data streams and suppose that a stream automaton An solves Pn. If Bn

is an output restriction of An, then, Bn also solves Pn. ��
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Notation. Fix a value of the domain size n ≥ 2. Each stream record of the
form (i, 1) and (i, −1) is equivalently viewed as ei and and −ei respectively,
where, ei = [0, . . . , 0, 1 (position i), 0 . . . , 0] is the ith standard basis vector of
R

n. A stream is thus viewed as a sequence of elementary vectors (or its inverse).
The notation σ ◦ τ refers to the stream obtained by concatenating the stream
τ to the end of the stream σ. In this notation, freq ei = ei, freq − ei = −ei

and freq σ ◦ τ = freq σ + freq τ . The inverse stream corresponding to σ is
denoted as σr and is defined inductively as follows: er

i = −ei, −er
i = ei and and

(σ ◦ τ)r = τr ◦ σr. The configuration of An is modeled as the triple (q, h, w),
where, q is the current state of the finite control of An, h is the index of the
current cell of the work tape, and w is the current contents of the work-tape.
The processing of each record by An can be viewed as a transition function
⊕An(a, v), where, a is the current configuration of An, and v is the next stream
record, that is, one of the ei’s. The transition function is written in infix form
as a ⊕An v. We assume that ⊕An associates from the left, that is, a ⊕An u1 ◦ u2
means (a ⊕An u1) ⊕An u2. Given a stream automaton An, the space of possible
configurations of An is denoted by C(An). Let Cm(An) denote the subset of
configurations that are reachable from the initial state o and after processing
an input stream σ with |σ| = ‖freq σ‖∞ ≤ m. We now define two sub-classes of
stream automata.

Definition 2. A stream automaton An is said to be path independent, if for
each configuration s of An and input stream σ, s⊕An σ is dependent only on freq σ
and s. A stream automaton An is said to be path reversible if for every stream σ
and configuration s, s ⊕An σ ◦ σr = s, where, σr is the inverse stream of σ. ��
Overview of Proof. The proof of the lower bound on the space complexity of
ApproxFreq(ε) proceeds in three steps. A subclass of path independent stream
automata, called free automata is defined and is proved to be the class of path
independent automata whose transition function ⊕An can be modeled as a linear
mapping of R

n, with input restricted to Z
n. We then derive a space lower bound

for ApproxFreq(ε) for free automata (Section 4.1). In the second step, we show
that a path independent automaton that solves ApproxFreq(ε) can be used to
design a free automaton that solves ApproxFreq(4ε)(Section 4.2). In the third
step, we prove that for any frequency-dependent problem with characteristic
predicate Pn and a stream automaton An that solves it, there exists an output-
restricted stream automaton Bn that also solves Pn, is path-independent, and,
Space(Bn, m) ≤ Space(An, m)+O(log n). This step has two parts— the property
is first proved for the class of path-reversible automata An (Section 5) and then
generalized to all stream automata (Section 6). Combining the results of the
three steps, we obtain the lower bound.

3 Path-Independent Stream Automata

In this section, we study the properties of path independent automata. Let An

be a path-independent stream automaton over the domain [1, n] and let ⊕ ab-
breviate ⊕An . Define the function + : Z

n × C(An) → C(An) as follows.
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x + a = a ⊕ σ where, freq σ = x.

Since An is a path independent automaton, the function x + a is well-defined.
The kernel MAn of a path independent automaton is defined as follows. Let the
initial configuration be denoted by o.

MAn = {x ∈ Z
n | x + o = 0 + o}

The subscript An in MAn is dropped when An is clear from the context.

Lemma 2. The kernel of a path independent automaton is a sub-module of Z
n.

Proof. Let x ∈ M . Then, 0+ o = −x+ x + o = −x + o, or −x ∈ M . If x, y ∈ M ,
then, 0 + o = x + o = x + y + o, or, x + y ∈ M . So M is a sub-module of Z

n. ��
The quotient set Z

n/M = {x + M | x ∈ Z
n} together with the well-defined

addition operation (x + M) + (y + M) = (x + y) + M , forms a module over Z.

Lemma 3. Let M be the kernel of a path independent automaton An. The map-
ping x+M �→ x+o is a set isomorphism between Z

n/M and the set of reachable
configurations {x + o | x ∈ Z

n}. The automaton An gives the same output for
each y ∈ x + M , x ∈ Z

n.

Proof. y ∈ x + M iff x − y ∈ M or −y + x + o = o, or, x + o = y + o. Thus,
An attains the same configuration after processing both x and y and therefore
An gives the same output for both x and y. Since, x + o = y + o iff x − y ∈ M ,
which implies that the mapping x + M �→ x + o is an isomorphism. ��
Let Z

n
m denote the subset {−m, . . . , m}n of Z

n.

Lemma 4. Let An be a path independent automaton with kernel M . Then,

Space(An, m) ≥ � log|{x + M | x ∈ Z
n
m}|  ≥ (n − dimM) log(2m + 1).

Proof. The set of distinct configurations of An after it has processed a stream
with frequency x ∈ Z

n
m is isomorphic to {x + M | x ∈ Z

n
m}. The number of

configurations using workspace of s = s(n, m) is at most |QAn | · s ·2s. Therefore,

2Space(An,m) = |QAn | · s · 2s ≥ ∣∣{x + M | x ∈ Z
n
m}∣∣ . (2)

We now obtain an upper bound on the size |M ∩Z
n
m|. Let b1, b2, . . . , br be a basis

for M . The set

Pm = {α1b1 + . . . + αrbr | |αi| ≤ m and integral, i = 1, 2, . . . , n}

defines the set of all integral points generated by b1, b2, . . . , br with multipliers
in {−m, . . . , m}. Thus,

|M ∩ Z
n
m| ≤ |Pm| = (2m + 1)r . (3)
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It follows that

∣∣{x + M | x ∈ Z
n
m}∣∣ ≥ |Zn

m|
|M ∩ Zn

m| ≥ (2m + 1)n−r .

Since, r = dimM , substituting in (2) and taking logarithms, we have

Space(An, m) ≥ log
∣∣{x + M | x ∈ Z

n
m}∣∣ ≥ (n − r) log(2m + 1) . ��

Lemma 5 shows that given a sub-module M , a path-independent automaton
with a given M as a kernel can be constructed using nearly optimal space. The
transition function (x + M) + (y + M) = (x + y) + M implies that the state of
a path independent automaton is arbitrarily mergeable.

Lemma 5. For any sub-module M of Z
n, one can construct a path-independent

automaton with kernel M that uses nearly optimal space s(n, m) = log|{x + M |
x ∈ [−m . . .m]n}| + O(log n) and uses nO(1) states in its finite control. ��
Proof. Let M be a given sub-module of Z

n with basis b1, . . . , br (say). It is
sufficient to construct a path independent automaton whose configurations are
isomorphic to E = Z

n/M . Since, Z
n is free, Z

n/M is finitely generated using
any basis of Z

n. Therefore, the basic module decomposition theorem states that

Z
n/M = Z/(q1) ⊕ · · · ⊕ Z/(qr) . (4)

where, q1|q2|· · · |qr. (Here, ⊕ refers to the direct sum of modules.) The finite con-
trol of the automaton stores q1, . . . , qr and the machinery required to calculate 1
mod qj and −1 mod qj for each j. For the frequency vector f , the residue vector
f + M is maintained as a vector of residues with respect to the qj ’s as given by
(4). Since, (4) is a direct sum, hence, the space used by this representation is
optimal and equal to |{x + M | x ∈ [−m . . . m]n}|. ��
Definition 3 (Free Automaton). A path independent automaton An with
kernel M is said to be free if Z

n/M is a free module. ��
Lemma 6 shows that the transition function ⊕ of a free automata can be repre-
sented as a linear mapping and is proved in the full version [12].

Lemma 6. Let An be free automaton with kernel M . There exists a unique
vector subspace M e of R

n of the smallest dimension containing M . The map-
ping x + M �→ x + M e is an injective mapping from Z

n/M to R
n/M e. If

dim Z
n/M = r, then, there exists an orthonormal basis V = [V1, V2] of R

n such
that rank(V1) = r, rank(V2) = n − r, M e is the linear span of V2 and R

n/M e is
the linear span of V1. ��

4 Frequency Estimation

In this section, we present a space lower bound for ApproxFreq(ε) using
path-independent automaton. Recall that a stream automaton An solves
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ApproxFreq(ε), provided, after processing any input stream σ with freq σ = x,
An returns a vector x̂ ∈ R

n satisfying err(x̂, x) = ‖x̂−x‖∞
‖x‖1

≤ ε. In general, if an
estimation algorithm returns the same estimate u for all elements of a set S,
then, err(u, S) is defined as maxy∈S err(u, y). Given a set S, let min�1(S) denote
the element in S with the smallest �1 norm: min�1(S) = argminy∈S ‖y‖1.

Lemma 7. If S ⊂ Z
n and there exists h ∈ R

n such that err(h, S) ≤ ε, then
err(min�1(S), S) ≤ 2ε. ��

4.1 Frequency Estimation Using Free Automata

In this section, let An be a free automaton with kernel M that solves the problem
ApproxFreq(ε).

Lemma 8. Let M be a sub-module of Z
n. (1) if there exists h such that

err(h, M)≤ε, then, err(0, M)≤ ε, and, (2) if err(0, M) ≤ ε then err(0, Me) ≤ ε.

For a free automaton An with kernel M and corresponding n × r orthonormal
matrix V1 whose columns are a basis for R

n/M e (as given by Lemma 6), the
minimum �2 estimator is defined as

x̄2 = est2(x) = V1V
T
1 x . (5)

It is easy to show that the �2 estimator is well-defined. It is called the minimum
�2 estimator since it returns a point in the coset x + M e that is closest to the
origin in terms of the �2 distance. We now show that there is a subset J of the
set of the standard unit vectors {e1, e2, . . . , en} such that |J | = Θ(n) and the
minimum �2 estimator is nearly optimal for the unit vectors in J . We first prove
a technical lemma.

Lemma 9. For any real C ≥ 1, let JC = {i : 1 ≤ i ≤ n and ‖V1V
T
1 ei‖1 ≥ C}.

Then, |JC | ≤ n
C .

Proof. Since, V1 has orthonormal columns, ‖V1‖2 = ‖V1V
T
1 ‖2 = 1. By a standard

identity between norms, we have ‖V1V
T
1 ‖F ≤ √

n‖V1V
T
1 ‖2 =

√
n. Therefore,

|JC | · C ≤
∑

i∈JC

‖V1V
T
1 ei‖1 ≤ ‖V1V

T
1 ‖2

F ≤ n, or, |JC | ≤ n

C
. ��

Lemma 10. Let An be a free automaton that solves ApproxFreq(ε) . Then
∃ J ′ ⊂ {1, 2, . . . , n}, |J ′| ≥ �n/2 such that for i ∈ J ′, err(est2(ei), ei) ≤ 3ε.

Proof. For C > 1, let J ′
C be the index set J ′

C = {i : ‖V1V
T
1 ei‖1 < C}.

err(est2(ei), ei) =
‖est2(ei) − ei‖∞

‖ei‖1
=

‖est2(ei) − ei‖∞
‖est2(ei) − ei‖1

· ‖est2(ei) − ei‖1

= err(0, est2(ei) − ei) · ‖est2(ei) − ei‖1 .



Lower Bounds on Frequency Estimation of Data Streams 211

The vector w = est2(ei) − ei ∈ M e. By Lemma 8, part (1), err(0, M) ≤ ε. By
Lemma 8, part (2), err(0, w) ≤ err(0, M e) ≤ ε. Further, for i ∈ J ′

C ,

‖est2(ei) − ei‖1 ≤ ‖est2(ei)‖1 + ‖ei‖1 < C + 1

since, i ∈ J ′
C and est2(ei) = V1V

T
1 ei. Combining, for i ∈ J ′

C

err(est2(ei), ei) < ε(C + 1) < 3ε

by choosing C = 2. By Lemma 9 it follows that |J ′
C | = n − |JC | ≥ n − n/2. ��

The following theorem is needed in the next proof.

Theorem 1 (Alon [1,2]). There exists a positive constant c so that the follow-
ing holds. Let B be an n by n real matrix with bi,i ≥ 1

2 for all i and |bi,j | ≤ ε for
all i �= j, where, 1

2
√

n
≤ ε < 1

4 . Then rank(B) ≥ c log n
ε2 log(1/ε) . ��

Lemma 11. Let 1
2
√

n
≤ ε < 1

12 and let An be a free stream automaton that

solves ApproxFreq(ε). Then, n − dim(M e) = Ω( log n
ε2 log(ε−1) ).

Proof. By Lemma 10, there exists J ′ ⊂ {1, 2, . . . , n} such that |J ′| ≥ �n/2
and err2(ei) ≤ 3ε for i ∈ J ′. Let V1 be the n × r orthonormal matrix given by
Lemma 6 spanning R

n/M e. Define Y to be the |J ′| × r sub-matrix of V1 that
includes the ith row of V1 for each i ∈ J ′. Let U = Y T which is an r × |J ′|
matrix. For i ∈ J ′,

err(est2(ei), ei) ≤ 3ε, or,
‖V1V

T
1 ei − ei‖∞
‖ei‖1

= ‖V1V
T
1 ei − ei‖∞ ≤ 3ε .

Therefore, for j, k ∈ {1, 2, . . . , |J ′|}, |UT
j Uk| ≤ 3ε if j �= k and |UT

j Uj −1| ≤ 3ε.
The matrix UUT satisfies the premises of Theorem 1. Therefore,

n − dim(M e) = rank(V1) ≥ rank(U) = rank(UUT ) = Ω

(
log n

ε2 log ε−1

)
. ��

Lemma 12. Let 1
2
√

n
≤ ε < 1

12 . Suppose An be a free automaton that uses
s(n, m) bits on the work-tape to solve ApproxFreq(ε). Then, s(n, m) =
Ω( (log n)(log m)

ε2 log ε−1 ).

Proof. Let M = kernel of An. By Lemma 11, n − dimM e = Ω
(

log n
ε2(log ε−1)

)
. By

Lemma 4, s(n, m) = Ω((n − dimM) log m). Since, dimM = dim M e, the result
follows. ��

4.2 General Path Independent Automata

We now show that for the problem ApproxFreq(ε), it is sufficient to con-
sider free automata. Let An be a path-independent automaton that solves
ApproxFreq(ε) and has kernel M . Suppose that Z

n/M is not free. Let M ′

be the module that removes the torsion from Z
n/M , that is, M ′ = {x ∈ Z

n |
∃a ∈ Z, a �= 0 and ax ∈ M}.
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Lemma 13. Z
n/M ′ is torsion-free. ��

Fact 14. Let b1, b2, . . . , br be a basis of M ′. Then, ∃ α1, . . . , αr ∈ Z − {0} such
that α1b1, . . . , αrbr is a basis for M . Hence, M e = (M ′)e. ��
We show that if a path independent automaton with kernel M can solve
ApproxFreq(ε), then a free automaton with kernel M ′ ⊃ M can solve
ApproxFreq(4ε).

Lemma 15. Suppose An is a path independent automaton for solving
ApproxFreq(ε) and has kernel M . Then, there exists a free automaton Bn with
kernel M ′ such that M ′ ⊃ M , Z

n/M ′ is free, and err(min�1(x + M ′), x) ≤ 4ε .

Lemma 16. Suppose 1
2
√

n
≤ ε < 1

48 . Let An be a path independent automa-
ton that solves ApproxFreq (ε). If An has kernel M , then, n − dimM =
Ω

(
log n

ε2 log(1/ε)

)
.

Proof. By Lemma 15, there exists a free automaton A′
n with kernel M ′ ⊃ M that

solves ApproxFreq(4ε). Therefore, n − dimM ≥ n − dimM ′ = Ω
(

log n
ε2 log ε−1

)
,

by Lemma 12. ��

5 Path Reversible Automata

In this section, we show that given a path reversible automaton An, one can
construct a path independent automaton Bn that is an output restriction of
An and Space(Bn, m) ≤ Space(An, m) + O(log n). Let An be a path reversible
automaton. For f ∈ Z

n, define φAn(f) = {s | ∃σ s.t. o⊕σ = s and freq σ = f}.
The kernel of An is defined as follows: M = MAn = {f | o ∈ φAn(f)}. Let
C = C(An) be the set of reachable configurations from the initial state o of An

and let Cm = Cm(An) denote the subset of C(An) that are reachable from the
initial state o on input streams σ with |σ| ≤ m. Define a binary relation over C
as follows: s ∼ t if there exists f ∈ Z

n such that s, t ∈ φAn(f).

Lemma 17. 1. M is a sub-module of Z
n.

2. If f − g ∈ M then φAn(f) = φAn(g), and, if φAn(f) ∩ φAn(g) is non-empty,
then, f − g ∈ M .

3. The relation ∼ over C is an equivalence relation.
4. The map [s] �→ f + M , for s ∈ φAn(f), is well-defined, 1-1 and onto.

Let Bn be a path independent stream automaton whose configurations are the
set of cosets of M and whose transition is defined as by the sum of the cosets,
that is, f + (x + M) = (f + x) + M , constructed using Lemma 5. Its output on
an input stream σ is defined as:

outputBn
(σ) = choice {output of An in configuration s | s ∈ φAn(freq σ)}

where, choice S returns some element from its argument set S.
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Lemma 18. Bn is an output restriction of An.

We can now prove the main lemma of the section.

Lemma 19. Let An be a path reversible automaton with kernel M . Then, there
exists a path independent automaton Bn with kernel M that is an output restric-
tion of An such that log|Cm(An)| + O(log n) ≥ Space(Bn, m), for m ≥ 1.

Proof. Let Bn be constructed in the manner described above. By Lemma 18,
is an output-restriction of An. Since the map [s] → f + M , for s ∈ φAn(f)
is 1-1 and onto (Lemma 17, part 4), therefore, for every m, each reachable
configuration of Bn after processing streams σ with freq σ ∈ [−m . . .m]n can
be associated with a disjoint aggregate of configurations of An. The number
of reachable configurations of Bn after processing streams with frequency in
[−m . . .m]n is |{x + M | x ∈ [−m . . . m]n}|. Thus, |C(An)| ≥ |{x + M | x ∈
[−m . . .m]n}|. By Lemma 5, Space(Bn, m) = log |{x +M | x ∈ [−m . . .m]n}| +
O(log n). Combining, we obtain the statement of the lemma. ��

Remarks. The above procedure transforms a path reversible automaton An to
a path-independent automaton Bn such that log|Cm(An)| + O(log n) ≥ Space
(Bn, m), for all m ≥ 1. However, the arguments only use the property that
the transition function ⊕An is path reversible, and the fact that the subset of
reachable configurations Cm(An) on streams of size at most m is finite. The
argument is more general and also applies to computation performed by an
infinite-state deterministic automaton in the classical sense that returns an out-
put after it sees the end of its input, with set of states C, initial state o and a
path-reversible transition function ⊕′

An
. The above argument shows that such an

automaton An can be simulated by a path-independent stream automaton Bn

with finite control and additional space overhead of O(log n) bits, such that Bn

is an output-restriction of An. We will use this observation in the next section.

6 Path Non-reversible Automata

In this section, we show that corresponding to every general stream automaton
An, there exists a path reversible automaton A′

n that is an output-restriction
of A′

n, such that Space(An, m) ≥ log|Cm(A′
n)|. By Lemma 19, corresponding to

any path reversible automaton A′
n, there exists an output-restricted and path

independent automaton Bn, such that log|Cm(A′
n)| ≥ Space(Bn, m) − O(log n).

Together, this proves a basic property of stream automata, namely, that, for
every stream automaton An, there exists a path-independent stream automaton
Bn that is an output-restriction of An and Space(Bn, m) ≤ Space(An, m) +
O(log n). We construct the path-reversible automaton A′

n only to the extent
of designing a path-reversible transition function ⊕A′

n
, a set of configurations

C(A′
n) and specifying the output of A′

n if the end of the stream is met while
at any s ∈ C(A′

n). As per the remarks at the end of the previous section, this
is sufficient to enable the construction of the path-independent automaton Bn
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from A′
n. We explain the basic idea here; a formal presentation is given in the

full version [12].
We construct a transition function ⊕′ from ⊕ over a space {α(s) | s ∈ C},

where, α(s) is an equivalence class over C (see [12] for details; informally, s ∼α t,
if there exist infinitely many pairs of streams σ, σ′ such that s ⊕ σ = t ⊕ σ′ and
freq σ = freq σ′ = 0). A transition function ⊕′ is now constructed such that (a)
s ⊕′ σ = α(s ⊕ σ), and, (b) ⊕′ is path reversible, stated in Lemma 20.

Lemma 20. For s ∈ C, α(s) ⊕′ ei ◦ −ei = α(s) and α(s) ⊕′ −ei ◦ ei = α(s). ��
A path reversible automaton A′

n is defined as follows. Initially A′
n is in the

state α(o). After reading a stream record (one of the ei’s or −ei’s), A′
n uses

the transition function ⊕′ instead of ⊕ to process its input. However, s ⊕′ σ =
α(s ⊕ σ), where, α(t) is a set (possibly infinite) of states that cause An to
transit from configuration t on some input σ′, with freq σ′ = 0. Equivalently,
this can be interpreted as if σ′ has been inserted into the input tape just after
An reaches the configuration s and before it processes the next symbol–hence,
A′

n is an output-restriction of An and is equally correct for frequency-dependent
computations. This is the main idea of this construction. Thus, transitions of
⊕′ are equivalent to inserting some specifically chosen strings σ1, σ2, . . ., each
having freq = 0, after reading each letter (i.e., ±ei) of the input. The output
of A′

n on input stream σ is identical to the output of An on the stream σ′,
where, σ′ is obtained by inserting zero frequency sub-streams into it. Therefore,
freq (σ′) = freq (σ) and A′

n is an output restriction of An. By Lemma 20, the
transition function ⊕′ is path reversible. Let C′ = C(A′

n) and C′
m = Cm(A′

n).
Since, α(s) is an equivalence class over C(An), the map s �→ α(s) implies that
|C′

m| = |{α(s) | s ∈ Cm}| ≤ |Cm|. Starting from A′
n, one can construct a

path independent automaton Bn as per the discussion in Section 5. Theorem 2
summarizes this discussion.

Theorem 2 (Basic property of computations using stream automata).
For every stream automaton An, ∃ a path-independent stream automaton Bn that
is an output-restriction of An and Space(Bn, m) ≤ Space(An, m) + O(log n).

Proof. Let ⊕′ be the transition function of the path-reversible automaton con-
structed as described above and let Bn be the path-independent automaton
obtained by translating ⊕′ using the procedure of Section 5. Let Cm and C′

m

denote the number of reachable configurations of An and A′
n, respectively, over

streams with frequency vector in [−m . . .m]n. Let sA = sA(n, m). Let M be the
kernel of Bn. Then,

|QA|sA2sA ≥ |Cm| ≥ |C′
m| ≥ |{x + M | x ∈ [−m . . .m]n}| ≥ (2m + 1)n−dim M

where, the last two inequalities follow from Lemma 19. Taking logarithms, Space
(An, m) ≥ log|{x + M | x ∈ [−m . . .m]n}| ≥ Space(Bn, m) − O(log n), by
Lemma 5. ��
Theorem 3. Suppose that 1

2
√

n
≤ ε < 1

48 and let An be a stream automaton

that solves ApproxFreq(ε). Then, Space(An, m) = Ω
(

log m log n
ε2 log(1/ε)

)
.
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Proof. By Theorem 2, there exists a path independent automaton Bn that
is an output-restriction of An and Space(An, m) ≥ Space(Bn, m) − O(log n).
By Lemma 1, Bn solves ApproxFreq(ε). If M is the kernel of Bn, then by
Lemma 4, Space(Bn) = Ω((n−dimM)(log(2m+1)). By Lemma 16, n−dimM =
Ω

(
ε−2(log(1/ε))−1 log n

)
. Thus,

Space(An, m) = Ω((n−dimM) log m)−O(log n) = Ω
(

(log m)(log n)
ε2 log(1/ε)

)
. ��

Since, any path-independent automaton is arbitrarily mergeable (see text before
Lemma 5), Theorem 2 also establishes the claim regarding arbitrary mergeability
made in Section 1.

Acknowledgements.The author thanks Piotr Indyk and KrantiKumar Potana-
palli for useful discussions.
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Abstract. A function f of a graph is called a complete graph invariant
if two given graphs G and H are isomorphic exactly when f(G) = f(H).
If additionally, f(G) is a graph isomorphic to G, then f is called a
canonical form for graphs. Gurevich [9] proves that any polynomial-time
computable complete invariant can be transformed into a polynomial-
time computable canonical form. We extend this equivalence to the
polylogarithmic-time model of parallel computation for classes of graphs
having either bounded rigidity index or small separators. In particular,
our results apply to three representative classes of graphs embeddable
into a fixed surface, namely, to 3-connected graphs admitting either a
polyhedral or a large-edge-width embedding as well as to all embeddable
5-connected graphs. Another application covers graphs with treewidth
bounded by a constant k. Since for the latter class of graphs a com-
plete invariant is computable in NC, it follows that graphs of bounded
treewidth have a canonical form (and even a canonical labeling) com-
putable in NC.

1 Introduction

We write G ∼= H to indicate that G and H are isomorphic graphs. A complete
invariant is a function f on graphs such that f(G) = f(H) if and only if G ∼= H .
If, in addition, f(G) is a graph isomorphic to G, then f is called a canonical form
for graphs. For a given graph G and a one-to-one map σ on the vertices of G,
we use Gσ to denote the isomorphic image of G under σ. A canonical labeling
assigns to each graph G a map σ so that the function f defined as f(G) = Gσ

is a complete invariant. Note that f is even a canonical form. Thus, the notion
of a canonical labeling is formally stronger than that of a canonical form which
in turn is formally stronger than that of a complete invariant.

Obviously, a polynomial-time computable complete invariant can be used to
decide in polynomial time whether two given graphs are isomorphic. Conversely,
it is not known whether a polynomial-time decision algorithm for graph iso-
morphism implies the existence of a polynomial-time complete invariant (cf. the
discussion in [2, Sect. 5]). However, for many classes of graphs for which we

� Supported by an Alexander von Humboldt fellowship.

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 216–227, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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have an efficient isomorphism test, we also have a canonical labeling algorithm
of comparable complexity (see, e.g., [17,14]); but this often requires substantial
additional efforts (cf., e.g., [3,1]).

Gurevich [9] proves that a polynomial-time computable complete graph in-
variant can be used to compute a canonical labeling in polynomial time. This
result is really enlightening because there are approaches to the graph isomor-
phism problem which are based on computing a graph invariant and, without an
extra work, do not provide us with a canonical form. An important example is
the k-dimensional Weisfeiler-Lehman algorithm WLk. Given an input graph G,
the algorithm outputs a coloring of its vertices in polynomial time (where the
degree of the polynomial bounding the running time depends on k). WLk always
produces the same output for isomorphic input graphs. Whether the algorithm
is able to distinguish G from every non-isomorphic input graph H depends on
whether the dimension k is chosen large enough for G. In particular, k = 1
suffices for all trees T . However, notice that the coloring computed by WL1 on
input T partitions the vertex set of T into the orbits of the automorphism group
of T and hence WL1 does not provide a canonical labeling unless T is rigid (i.e.,
T has only the trivial automorphism). We mention that an appropriate modifi-
cation of the 1-dimensional Weisfeiler-Lehman algorithm to a canonical labeling
algorithm is suggested in [11].

The reduction of a canonical labeling to a complete invariant presented in [9]
(as well as in [11]) is inherently sequential and thus leaves open the following
question.

Question 1. Suppose that for the graphs in a certain class C we are able to com-
pute a complete invariant in NC. Is it then possible to compute also a canonical
labeling for these graphs in NC?

For several classes of graphs, NC algorithms for computing a complete invariant
are known (see, e.g., [4,17,14,10]). For example, in [10] it is shown that a k-
dimensional Weisfeiler-Lehman algorithm making logarithmically many rounds
can be implemented in TC1 ⊆ NC2 and that such an algorithm succeeds for
graphs of bounded treewidth. Similar techniques apply also to planar graphs
but for this class a canonical labeling algorithm in AC1 is known from an earlier
work [17]. Nevertheless, also in this case it is an interesting question whether
the approach to the planar graph isomorphism problem suggested in [10], which
is different from the approach of [17], can be adapted for finding a canonical
labeling. Finally, Question 1 even makes sense for classes C for which we don’t
know of any NC-computable complete invariant since such an invariant may be
found in the future.

We notice that a positive answer to Question 1 also implies that the search
problem of computing an isomorphism between two given graphs in C, if it
exists, is solvable in NC whenever for C we have a complete invariant in NC
(notice that the known polynomial-time reduction of this search problem to the
decision version of the graph isomorphism problem is very sequential in nature,
see [12]).
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As our main result we give an affirmative answer to Question 1 for any class
of graphs having either small separators (Theorem 2) or bounded rigidity index
(Theorem 5). A quite general example for a class of graphs having small separa-
tors is the class of graphs whose treewidth is bounded by a constant. Since, as
mentioned above, a complete invariant for these graphs is computable in TC1

[10], Theorem 2 immediately provides us with an NC (in fact TC2) canonical
labeling algorithm for such graphs (Corollary 3). As a further application we
also get a TC2 algorithm for solving the search problem for pairs of graphs in
this class (Corollary 4).

Regarding the second condition we mention the following representative clas-
ses of graphs with bounded rigidity index:

– 3-connected graphs having a large-edge-width embedding into a fixed surface
S (Corollary 7).1

– 3-connected graphs having a polyhedral embedding into a fixed surface S
(Corollary 9).

– 5-connected graphs embeddable into a fixed surface S (Corollary 10).
As shown by Miller and Reif [17], the canonization problem for any hereditary
class of graphs C (meaning that C is closed under induced subgraphs) AC1

reduces to the canonization problem for the class of all 3-connected graphs in
C. Thus, with respect to the canonization problem, the 3-connected case is of
major interest.

The rest of the paper is organized as follows. In Sect. 2 we provide the nec-
essary notions and fix notation. Graphs with small separators are considered in
Sect. 3 and graphs with bounded rigidity index are considered in Sect. 4. Section
5 summarizes our results and discusses remaining open problems.

2 Preliminaries

The concept of polylogarithmic parallel time is captured by the hierarchy of
complexity classes NC =

⋃
i≥1 NCi, where NCi consists of functions computable

by DLOGTIME-constructible boolean circuits of polynomial size and depth
O(logi n). The class ACi is the extension of NCi to circuits with unbounded
fan-in and TCi is a further extension allowing threshold gates as well. Recall also
that AC0 ⊆ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ AC1 and NCi ⊆ ACi ⊆ TCi ⊆ NCi+1,
where L (resp. NL) is the set of languages accepted by (non)deterministic Turing
machines using logarithmic space. Alternatively, the ACi level of the NC hier-
archy can be characterized as the class of all functions computable by a CRCW
PRAM with polynomially many processors in time O(logi n).

The vertex set of a graph G is denoted by V (G). The set of all vertices adjacent
to a vertex v ∈ V (G) is called the neighborhood of v and denoted by Γ (v).

A colored graph G, besides the binary adjacency relation, has unary relations
U1, . . . , Un defined on V (G). If a vertex v satisfies Ui, we say that v has color
i. A vertex is allowed to have more than one color or none. It is supposed that
the number of colors is equal to the number of vertices in a graph, though some
1 This result is actually stated in a stronger form, without referring to a parameter S.
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of the color relations may be empty. A colored graph 〈G, U1, . . . , Un〉 will be
called a coloring of the underlying graph G. An isomorphism between colored
graphs must preserve the adjacency relation as well as the color relations. Thus,
different colorings of the same underlying graph need not be isomorphic.

We consider only classes of graphs that are closed under isomorphism. For a
given class of graphs C we use C∗ to denote the class containing all colorings of
any graph in C.

Let C be a class of graphs and let f be a function mapping graphs to strings
over a finite alphabet. We call f a complete invariant for C if for any pair of
graphs G and H in C we have G ∼= H exactly when f(G) = f(H). A canonical
labeling for C assigns to each graph G on n vertices a one-to-one map σ : V (G) →
{1, . . . , n} such that f(G) = Gσ is a complete invariant for C. Note that a
complete invariant f originating from a canonical labeling has an advantageous
additional property: f(G) �= f(H) whenever G is in C and H is not. Moreover,
it provides us with an isomorphism between G and H whenever f(G) = f(H).

The notions of a complete invariant and of a canonical labeling are easily
extensible to colored graphs. In our proofs, extending these notions to colored
graphs will be technically beneficial and, at the same time, will not restrict the
applicability of our results. In fact, any available complete-invariant algorithm
for some class of graphs C can be easily extended to C∗ without increasing the
required computational resources. In particular, this is true for the parallelized
version of the multi-dimensional Weisfeiler-Lehman algorithm suggested in [10].

3 Small Separators

For a given graph G and a set X of vertices in G, let G − X denote the graph
obtained by removing all vertices in X from G. A set X is called a separator if
every connected component of G−X has at most n/2 vertices, where n denotes
the number of vertices of G. A class of graphs C is called hereditary if for every
G ∈ C, every induced subgraph of G also belongs to C.

Theorem 2. Let C be a hereditary class of graphs such that for a constant r,
every graph G ∈ C has an r-vertex separator. Suppose that C∗ has a complete
invariant f computable in TCk (resp. ACk) for some k ≥ 1. Then C has a
canonical labeling in TCk+1 (resp. ACk+1).

Proof. Having f in our disposal, we design a canonical labeling algorithm for C.
Let G be an input graph with vertex set V (G) = {1, . . . , n} and assume that G
has an r-vertex separator. We describe a recursive algorithm for finding a canon-
ical renumbering σ : {1, . . . , n} → {1, . . . , n}. In the following, the parameter d
refers to the recursion depth. Initially d = 1. Further, set R = 2r + r.

For a given sequence s = (v1, . . . , vr) of vertices, let Gs denote the coloring of
G in which vi receives color (d − 1)R + i.

For each sequence s = (v1, . . . , vr) in parallel we do the following. First of all,
we check if the set {v1, . . . , vr} is a separator. We are able to do this in AC1

since checking if two vertices are in the same connected component reduces to
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the s-t-connectivity problem, which is easily solvable in NL, and the remaining
job can be easily organized in TC0. If the verification is positive, we mark the
sequence s as separating. If no such sequence s is separating, i.e., G has no r-
vertex separator, we terminate and output the identity permutation. Otherwise,
for each separating sequence s in parallel we compute f(Gs). Then in AC1 we
find a sequence s = (v1, . . . , vr) for which the value f(Gs) is lexicographically
minimum. For this purpose we use the fact that lexicographic comparison can
be done in AC0 and employ a known TC0 sorting algorithm.

At this stage we are able to determine the renumbering σ only in a few points.
Namely, we set σ(vi) = (d − 1)R + i for each i ≤ r.

To proceed further, let F1, . . . , Fm be the connected components of G − X
where X = {v1, . . . , vr}. We color each v /∈ X by its adjacency pattern to X ,
that is, by the set of all neighbors of v in X , encoding this set by a number
in the range between (d − 1)R + r + 1 and dR. Each Fj , regarded as a colored
graph, will be called an X-flap. For each X-flap Fj in parallel, we now com-
pute f(Fj) and establish the lexicographic order between these values. At this
stage we fix the following partial information about the renumbering σ under
construction: σ(u) < σ(v) whenever we have f(Fl) < f(Fj) for the two flaps Fl

and Fj containing u and v, respectively. Thus, we split V (G) \ X into blocks
V (F1), . . . , V (Fm) and determine the renumbering σ first between the blocks. It
may happen that for some flaps we have f(Fl) = f(Fj). We fix the σ-order be-
tween the corresponding blocks arbitrarily. Note that the output will not depend
on a particular choice made at this point.

It remains to determine σ inside each block V (Fj). We do this in parallel. For
Fj with more than r vertices we repeat the same procedure as above with the
value of d increased by 1. If F = Fj has t ≤ r vertices, we proceed as follows. Let
a be the largest color present in F . We choose a bijection τ : V (F ) → {1, . . . , t}
and define σ on V (F ) by σ(u) < σ(v) if and only if τ(u) < τ(v). To make the
choice, with each such τ we associate the colored graph Fτ obtained from F
by adding new colors, namely, by coloring each v ∈ V (F ) with color a + τ(v).
For each τ we compute f(Fτ ) and finally choose the τ minimizing f(Fτ ) in the
lexicographic order. Note that, if the minimum is attained by more than one τ ,
the output will not depend on a particular choice.

Finally, we have to estimate the depth of the TC (resp. AC) circuit imple-
menting the described algorithm. At the recursive step of depth d we deal with
graphs having at most n/2d−1 vertices. It follows that the circuit depth does not
exceed logk

2 n + logk
2(n/2) + logk

2(n/4) + · · · + logk
2(r) ≤ logk+1

2 n. ��
It is well known that all graphs of treewidth t have a (t+1)-vertex separator [21].
By [10], this class has a complete invariant computable in TC1 and therefore is
in the scope of Theorem 2.

Corollary 3. For each constant t, a canonical labeling for graphs of treewidth
at most t can be computed in TC2.

Theorem 2 also has relevance to the complexity-theoretic decision-versus-search
paradigm. Let C be a class of graphs. It is well known (see, e.g., [12]) that, if we
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are able to test isomorphism of graphs in C∗ in polynomial time, we are also able
to find an isomorphism between two given isomorphic graphs in C in polynomial
time. As the standard reduction is very sequential in nature, it is questionable
if this implication stays true in the model of parallel computation. Nevertheless,
a canonical labeling immediately provides us with an isomorphism between two
isomorphic graphs.

Corollary 4. For each constant t, an isomorphism between isomorphic graphs
of treewidth at most t can be computed in TC2.

4 Bounded Rigidity Index

In this section we show that the canonization problem for any class of graphs
with bounded rigidity index NC reduces to the corresponding complete invariant
problem. Further we show that certain embeddability properties of a given class
of graphs C imply a bound on the rigidity index of the graphs in C.

4.1 Canonizing Rigid Graphs

A set S ⊆ V (G) of vertices is called fixing if every non-trivial automorphism of
G moves at least one vertex in S. The rigidity index of a graph G is defined to
be the minimum cardinality of a fixing set in G and denoted by rig(G).

Theorem 5. Let C be a class of graphs such that for a constant r, we have
rig(G) ≤ r for all G ∈ C. Suppose that C∗ has a complete invariant f computable
in ACk, for some k ≥ 1. Then C has a canonical labeling also in ACk.

Proof. Let an input graph G with vertex set V (G) = {1, . . . , n} be given. We
describe an algorithm that uses f as a subroutine in order to find a canonical
renumbering σ : {1, . . . , n} → {1, . . . , n} for G, provided that G ∈ C.

For a given sequence s = (v1, . . . , vr) of vertices, let Gs denote the coloring of
G in which vi receives color i. If v is another vertex, Gs,v denotes the coloring
where vertex v additionally gets color r + 1.

For each such sequence s in parallel we do the following. For each v in parallel
we compute f(Gs,v). If all the values f(Gs,v), v ∈ V (G), are pairwise distinct,
which is decidable in AC0, mark s as fixing. If no fixing sequence s of length r
exists, which implies G /∈ C, we terminate and output the identity permutation.
Otherwise, for each fixing sequence s in parallel, we compute f(Gs) and deter-
mine a sequence s = (v1, . . . , vr) for which f(Gs) is lexicographically minimum
(as was already mentioned in the proof of Theorem 2, this can be done in TC0).
The output permutation σ is now computed as follows. For each i ≤ r, we set
σ(vi) = i. To determine σ everywhere else, we sort the values f(Gs,v) for all
v ∈ V (G) \ {v1, . . . , vr} lexicographically and set σ(v) to be the number of v in
this order increased by r. ��
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4.2 Basics of Topological Graph Theory

A detailed exposition of the concepts discussed in this section can be found in
[19]. We are interested in embeddability of an abstract graph G into a surface
S. All surfaces are supposed to be 2-dimensional, connected, and closed.

In an embedding Π of G into S, each vertex v of G is represented by a point
on S (labeled by v and called vertex of the Π-embedded graph G) and each
edge uv of G is drawn on S as a continuous curve with endpoints u and v.
The curves are supposed to be non-self-crossing and any two such curves either
have no common point or share a common endpoint. A face of Π is a connected
component of the space obtained from S by removing the curves. We consider
only cellular embeddings meaning that every face is homeomorphic to an open
disc. A closed walk in a graph is a sequence of vertices v1v2 · · · vk such that vi

and vi+1 are adjacent for any i < k, and v1 and vk are adjacent as well. Notice
that some of the vertices may coincide. We will not distinguish between a closed
walk v1v2 · · · vk and any cyclic shift of it or of its reversal vkvk−1 · · · v1. A closed
walk v1v2 · · · vk is called Π-facial, if there exists a face F of Π , such that the
vertices v1, v2, . . . , vk occur in this order as labels along the boundary of F .

Two embeddings Π and Π ′ of G into S are called equivalent if they can be
obtained from each other by a homeomorphism of S onto itself (respecting vertex
labels). Since such a homeomorphism takes faces of one embedding to faces of
the other embedding, we see that equivalent embeddings have equal sets of facial
walks. In fact, the converse is also true: if the set of the Π-facial walks is equal
to the set of the Π ′-facial walks, then Π and Π ′ are equivalent. This follows
from the fact that up to homeomorphism, the surface S is reconstructible from
the set of facial walks by attaching an open disc along each facial walk.

A closed walk v1v2 · · · vk can be alternatively thought of as the sequence of
edges e1e2 · · · ek where ei = vivi+1 (i < k) and ek = v1vk. Every edge either ap-
pears in two Π-facial walks (exactly once in each) or has exactly two occurrences
in a single Π-facial walk. An embedding Π is called polyhedral if every Π-facial
walk is a cycle (i.e., contains at most one occurrence of any vertex) and every
two Π-facial walks either have at most one vertex in common or share exactly
one edge (and no other vertex).

Let Aut(G) denote the automorphism group of G. For a given automorphism
α ∈ Aut(G), let Πα denote the embedding of G obtained from Π by relabeling
the vertices according to α. Note that Πα and Π are not necessarily equiva-
lent (they are topologically isomorphic, that is, obtainable from one another by
a surface homeomorphism which is allowed to ignore the vertex labeling). An
embedding Π is called faithful if Πα is equivalent to Π for every automorphism
α ∈ Aut(G).

Recall that a graph G is k-connected if it has at least k + 1 vertices and stays
connected after removing any set of at most k − 1 vertices. We now summarize
known results showing that, for k ≥ 3, the flexibility of embedding a k-connected
graph into certain surfaces is fairly restricted.

The Whitney Theorem. [23] Up to equivalence, every 3-connected planar
graph has a unique embedding into the sphere.
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The Mohar-Robertson Theorem. [18] Up to equivalence, every connected 2

graph has at most cS polyhedral embeddings into a surface S, where cS is a
constant depending only on S.

A closed curve in a surface is contractible if it is homotopic to a point. The edge-
width of an embedding Π is the minimum length of a non-contractible cycle in
the Π-embedded graph. Π is called a large-edge-width embedding (abbreviated
as LEW embedding) if its edge-width is larger than the maximum length of a
Π-facial walk.

The Thomassen Theorem. [22] (see also [19, Corollary 5.1.6]) Every 3-connec-
ted graph having a LEW embedding into a surface S has, up to equivalence, a
unique embedding into S. Moreover, such a surface S is unique.

Note that if a graph has a unique embedding into a surface (as in the Whitney
Theorem or the Thomassen Theorem), then this embedding is faithful.

As we have seen, an embedding is determined by its set of facial walks (up
to equivalence). We will need yet another combinatorial specification of an em-
bedding. To simplify the current exposition, we restrict ourselves to the case of
orientable surfaces.

Let G be a graph and let T be a ternary relation on the vertex set V (G) of G.
We call R = 〈G, T 〉 a rotation system of G if T fulfills the following two conditions:

(1) If T (a, b, c) holds, then b and c are in Γ (a), the neighborhood of a in G.
(2) For every vertex a, the binary relation T (a, ·, ·) is a directed cycle on Γ (a)

(i.e., for every b there is exactly one c such that T (a, b, c), for every c there is
exactly one b such that T (a, b, c), and the digraph T (a, ·, ·) is connected on Γ (a)).

An embedding Π of a graphG into an orientable surface S determines a rotation
system RΠ = 〈G, TΠ〉 in a natural geometric way. Namely, for a ∈ V (G) and
b, c ∈ Γ (a) we set TΠ(a, b, c) = 1 if, looking at the neighborhood of a in the Π-
embedded graph G from the outside of S, b is followed by c in the clockwise order.

The conjugate of a rotation system R = 〈G, T 〉, denoted by R∗, is the rotation
system 〈G, T ∗〉, where T ∗ is defined as T ∗(a, b, c) = T (a, c, b). This notion has two
geometric interpretations. First, (RΠ)∗ is a variant of RΠ where we look at the
Π-embedded graph from the inside rather than from the outside of the surface
(or, staying outside, just change the clockwise order to the counter-clockwise
order). Second, (RΠ)∗ = RΠ∗ where Π∗ is a mirror image of Π .

It can be shown that two embeddings Π and Π ′ of G into S are equivalent if
and only if RΠ = RΠ′ or RΠ = R∗

Π′ (see [19, Corollary 3.2.5]).
Further, for a given rotation system R = 〈G, T 〉 and automorphism α ∈

Aut(G), we define another rotation system Rα = 〈G, T α〉 by T α(a, b, c) =
T (α−1(a), α−1(b), α−1(c)). It is not hard to see that Rα

Π = RΠα . If R = 〈G, T 〉
and R′ = 〈G, T ′〉 are two rotation systems of the same graph G and R′ = Rα for
some α ∈ Aut(G), then this equality means that α is an isomorphism from R′

onto R (respecting not only the binary adjacency relation but also the ternary
relations of these structures).
2 It is known that only 3-connected graphs have polyhedral embeddings.
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4.3 Rigidity from Non-flexible Embeddability

Let α be a mapping defined on a set V . We say that α fixes an element x ∈ V if
α(x) = x. Furthermore, we say that α fixes a set X ⊆ V if α fixes every element
of X .

Lemma 6. If a graph G has a faithful embedding Π into some surface S, then
rig(G) ≤ 3.

Proof. Clearly, G is connected as disconnected graphs don’t have a cellular em-
bedding. If G is a path or a cycle, then rig(G) ≤ 2. Otherwise, G contains some
vertex v with at least 3 neighbors. Notice that a facial walk cannot contain a
segment of the form uvu. Therefore, some facial walk W contains a segment uvw,
where u and w are two different neighbors of v. As v has at least one further
neighbor that is distinct from u and w, uvw cannot be a segment of any other
facial walk than W .

We now show that {u, v, w} is a fixing set. Assume that α is an automorphism
of G that fixes the vertices u, v and w. We have to prove that α is the identity.

Note that v1v2 · · · vk is a Π-facial walk if and only if α(v1)α(v2) · · · α(vk) is a
Πα-facial walk. Since Π and Πα are equivalent and hence, have the same facial
walks, α takes each Π-facial walk to a Π-facial walk. It follows that α takes W
onto itself. Since α fixes two consecutive vertices of W , it actually fixes W .

Call two Π-facial walks W1 and W2 adjacent if they share an edge. Suppose
that adjacent facial walks W1 and W2 share an edge u1u2 and that α fixes W1.
Since u1u2 cannot participate in any third facial walk, α takes W2 onto itself.
Since u1 and u2 are fixed, α fixes W2, too.

Now consider the graph whose vertices are the Π-facial walks with the adja-
cency relation defined as above. It is not hard to see that this graph is connected,
implying that α is the identity on the whole vertex set V (G). ��
By the Thomassen Theorem and by Lemma 6 it follows that every 3-connected
LEW embeddable graph has rigidity index at most 3. Hence we can apply The-
orem 5 to obtain the following result.

Corollary 7. Let C be any class consisting only of 3-connected LEW embed-
dable graphs. If C∗ has a complete invariant computable in ACk, k ≥ 1, then C
has a canonical labeling in ACk.

Noteworthy, the class of all 3-connected LEW embeddable graphs is recognizable
in polynomial time [19, Theorem 5.1.8].

Lemma 8. If a connected graph G has a polyhedral embedding into a surface
S, then we have rig(G) ≤ 4c, where c is the total number of non-equivalent
polyhedral embeddings of G into S.

Proof. To simplify the current exposition, we prove the lemma only for the case
that S is orientable. Let a ∈ V (G) be a vertex in G. We call two rotation systems
R = 〈G, T 〉 and R′ = 〈G, T ′〉 of G a-coherent if the binary relations T (a, ·, ·) and
T ′(a, ·, ·) coincide.
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Claim 1. Let ab be an edge in G. Then any isomorphism α between two a-
coherent rotation systems R = 〈G, T 〉 and R′ = 〈G, T ′〉 of G that fixes both a
and b, fixes also Γ (a).
Proof of Claim. Since α fixes a, it takes Γ (a) onto itself. Since T (a, ·, ·) =
T ′(a, ·, ·), α is an automorphism of this binary relation. The latter is a directed
cycle and α must be a shift thereof. Since α fixes b, it has to fix the whole cycle. �
Let R1, . . . , R2c (where Ri = 〈G, Ti〉) be the rotation systems representing all
polyhedral embeddings of G into S (i.e., each of the c embeddings is represented
by two mutually conjugated rotation systems). Pick an arbitrary edge xy in G.
For each i, 1 < i ≤ 2c, select a vertex xi so that Ri and R1 are not xi-coherent
and the distance between x and xi is minimum (it may happen that xi = x).
Furthermore, select yi and zi in Γ (xi) so that T1(xi, yi, zi) �= Ti(xi, yi, zi). We
will show that {x, y, y2, z2, . . . , y2c, z2c} is a fixing set. Assume that α ∈ Aut(G)
fixes all these vertices. We have to show that α is the identity.

Notice that Rα
1 is a polyhedral embedding of G into S because so is R1.

Therefore Rα
1 = Rk for some k ≤ 2c. Suppose first that Rk and R1 are x-

coherent. We will apply Claim 1 repeatedly to R = Rk and R′ = R1. We first
put a = x and b = y and see that α fixes Γ (x). If the distance between x and
xk is more than 1, we apply Claim 1 once again for xx′ being the first edge of
a shortest path P from x to xk (now a = x′ and b = x; we have α(x′) = x′

as x′ ∈ Γ (x), and Rk and R1 are x′-coherent by our choice of xk). Applying
Claim 1 successively for all edges along P except the last one, we arrive at the
conclusion that α(xk) = xk. This also applies for the case that Rk and R1 are
not x-coherent, when we have xk = x by definition.

It follows that α is an isomorphism between the cycles Tk(xk, ·, ·) andT1(xk, ·, ·).
Our choice of yk and zk rules out the possibility that k ≥ 2 and we conclude that
k = 1. In other words, R and R′ are coherent everywhere. Therefore, we are able to
apply Claim 1 along any path starting from the edge ab = xy. Since G is connected,
we see that α is the identity permutation on V (G). ��
By the Mohar-Robertson Theorem and Lemma 8 it follows that every connected
graph having a polyhedral embedding into a surface S has rigidity index bounded
by a constant depending only on S.3 Applying Theorem 5, we obtain the follow-
ing result.

Corollary 9. Let C be any class containing only graphs having a polyhedral
embedding into a fixed surface S. If C∗ has a complete invariant computable in
ACk, k ≥ 1, then C has a canonical labeling in ACk.

We conclude this section by applying a ready-to-use result on the rigidity index
of 5-connected graphs that are embeddable into a fixed surface S.

The Fijavž-Mohar Theorem. [7] The rigidity index of 5-connected graphs
embeddable into a surface S is bounded by a constant depending only on S.

3 As we recently learned, this result has been independently obtained in [7] by using
a different argument.
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Corollary 10. Let C be the class of 5-connected graphs embeddable into a fixed
surface S. If C∗ has a complete invariant computable in ACk, k ≥ 1, then C has
a canonical labeling in ACk.

5 Conclusion and Open Problems

For several important classes of graphs, we provide NC Turing-reductions of
canonical labeling to computing a complete invariant. As a consequence, we get
a canonical labeling NC algorithm for graphs with bounded treewidth by using
a known [10] NC-computable complete invariant for such graphs.

We also consider classes of graphs embeddable into a fixed surface. Though we
currently cannot cover this case in full extent, we provide NC reductions between
the canonical labeling and complete invariant problems for some representative
subclasses (namely, 3-connected graphs with either a polyhedral or an LEW
embedding as well as all embeddable 5-connected graphs).

To the best of our knowledge, complete invariants (even isomorphism tests)
in NC are only known for the sphere but not for any other surface. The known
isomorphism tests and complete-invariant algorithms designed in [5,13,15,16,8]
run in sequential polynomial time. Nevertheless, the hypothesis that the com-
plexity of some of these algorithms can be improved from P to NC seems rather
plausible. By this reason it would be desirable to extend the reductions proved
in the present paper to the whole class of graphs embeddable into S, for any
fixed surface S. As a first step in this direction one could consider the class of
4-connected toroidal graphs.4

A more ambitious research project is to find an NC-reduction of the canonical
labeling problem to computing a complete invariant for classes of graphs that
are defined by excluding certain graphs as minors or, equivalently, for classes of
graphs closed under minors. A polynomial-time canonization algorithm for such
classes has been worked out by Ponomarenko [20]. Note that any class of graphs
with bounded treewidth as well as any class consisting of all graphs embeddable
into a fixed surface is closed under minors.

Acknowledgement. We thank Gašper Fijavž and Bojan Mohar for sending us
their manuscript [7].
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Abstract. The principal result of Justification Logic is the Realization
Theorem, which states that behind major epistemic modal logics there
are corresponding systems of evidence/justification terms sufficient for
reading all provable knowledge assertions as statements about justifica-
tions. A knowledge/belief modality is self-referential if there are modal
sentences that cannot be realized without using self-referential evidence
of type “t is a proof of A(t).” Building on an earlier result that S4 and its
justification counterpart LP describe knowledge that is self-referential,
we show that the same is true for K4, D4, and T with their justifica-
tion counterparts whereas for K and D self-referentiality can be avoided.
Therefore, no single modal axiom from the standard axiomatizations of
these logics is responsible for self-referentiality.

1 Introduction

The modality in GL corresponds to provability in the formal arithmetic, which
is known to be self-referential. But it is not clear how to formulate this property
by means of the modal language itself.

By contrast, the language of justification logic (see [3]) provides a natural
way to formulate what it means for the modality in a modal logic to be self-
referential. Instead of using existential statements �F , read as “there exists a
proof of F ,” justification logics employ an explicit justification construct t : F ,
read “term t serves as a justification for F .” In this setting, self-referentiality
clearly occurs when a term t proves something about itself:

� t :F (t) . (1)

Not only are such constructions allowed by the language, but there are also
many theorems of this type, notably with t = c being an atomic justification, a
constant.

Definition 1. Let F be a justification formula. The forgetful projection ◦ turns
it into a modal formula by replacing each occurrence of justification terms in F
by �, (t :G)◦ = � (G◦), while leaving all Boolean connectives and sentence letters
intact.

The forgetful projection of a set X of justification formulas is a set of modal
formulas X◦ = {F ◦ | F ∈ X}.

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 228–239, 2008.
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A logic L can be viewed as a set of L-theorems. Then

Definition 2. A modal logic ML is said to be a forgetful projection of a justi-
fication logic JL if JL◦ = ML.

It was shown in [1] that the forgetful projection of the first justification logic, LP,
is exactly S4, i.e., LP◦ = S4. This statement is typically called the Realization
Theorem because this equality essentially states two things:

1. Replacing each justification term in an LP-theorem by � yields an S4-
theorem.

2. Vice versa, it is possible to realize all occurrences of � in an S4-theorem by
justification terms in such a way that the resulting justification formula is
valid. This process of restoring terms hidden in �’s is called Realization.

For each of the modal logics K, D, T, K4, D4, S4, K5, K45, KD45, S5 a justifica-
tion counterpart was developed, so that its forgetful projection is exactly this
modal logic (see [1, 3, 4, 8, 9]).

In particular, since � �A for any axiom A in a modal logic ML, there must be
some term t in its justification counterpart JL such that � t : (Ar), where Ar is
a realization of A. In most cases, an axiom of ML is realized by an axiom of JL.
Justifications for axioms are called justification constants, and, unless we have
a reason to track or restrict their use, we typically postulate that each constant
justifies all axioms. Thus, � c : A(c), where A(c) is an axiom that contains at
least one occurrence of c.

A natural question to ask is whether such self-referential constants are
necessary for the Realization Theorem to hold. Apart from being direct as
in � c :A(c), self-referentiality may also occur as a result of a cycle of references:

� c2 :A1(c1), . . . , � cn :An−1(cn−1), � c1 :An(cn) . (2)

If direct self-referentiality is expendable, we should ask whether such self-refere-
ntial cycles are still needed for the Realization.

It was shown in [5] that the realization of S4 in LP does require direct self-
referentiality of constants. In this paper, we prove the following:

– Realization of K4 in J4, of D4 in JD4, and of T in JT requires direct self-
referentiality;

– Realization of K in J and of D in JD can be performed without any self-
referential cycles.

Sect. 2 describes several justification logics and their forgetful projections. At
the end of the section, we propose a precise definition of self-referentiality in
modal logics. Epistemic semantics for the justification logics from Sect. 2 is de-
scribed in Sect. 3. Using this semantics, in Sect. 4, we prove that the Realization
Theorem for K4, D4, and T requires self-referentiality. Sect. 5 demonstrates how
to avoid self-referentiality while realizing logics K and D. Sect. 6 analyzes the
significance of these results and outlines directions for future research.
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2 Justification Logics and Self-referentiality Defined

The first justification logic, LP, was introduced in [1], where its forgetful projec-
tion was shown to be S4 (see also [2]). Justification counterparts for K, D, T, K4,
and D4 were developed and the Realization Theorem for them was proven in [4].
Realizations of several modal logics with the Negative Introspection Axiom were
considered in [3, 8, 9], but their self-referential properties are outside the scope
of this paper, which focuses on the modal logics

K, D, T, K4, D4, S4 (3)

and their respective justification counterparts

J, JD, JT, J4, JD4, LP . (4)

We will show that for the first two pairs of the modal logic with its justification
counterpart self-referentiality can be avoided whereas the last four pairs require
direct self-referentiality.

The language of justification logic is that of propositional logic enriched by a
new construct t : F , where F is any formula and t is a justification term. Jus-
tification terms are built from justification constants a, b, c, . . . and justification
variables x, y, z, . . . by means of three operations: a unary operation ! and two
binary operations + and ·.1

All six justification logics from (4) share the following axioms and rules

A1. Classical propositional axioms and rule modus ponens
A2. Application Axiom s : (F → G) → (t :F → (s · t) :G)
A3. Monotonicity Axiom s :F → (s + t) :F , t :F → (s + t) :F
R4. Axiom Internalization Rule: for each axiom A and each justification con-

stant c, formula c :A is again an axiom.

These axioms and rules alone yield the basic justification logic J whose forgetful
projection is K, the weakest normal modal logic. It is easy to see that the forgetful
projection of axioms of J yields theorems of K. Just as other modal logics from (3)
are obtained by adding axiom schemes to K, so their justification counterparts
from (4) can be obtained by adding corresponding justification schemes to J.
In each case, the added modal axiom scheme is the forgetful projection of the
respective justification scheme2:

Modal Justification Name of To Be Added
Scheme Scheme Justification Scheme in Logics

�F → F t :F → F A4. Factivity JT, LP

�F → ��F t :F → ! t : (t :F ) A5. Positive Introspection J4, JD4, LP
�⊥ → ⊥ t :⊥ → ⊥ A7. Consistency JD, JD4

1 Operation ! is only used in J4, JD4, and LP.
2 Axiom numbering is mostly inherited from [3].
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It is important to note that the modal Seriality Axiom in the last row of the
table is a single axiom, whereas its realization requires an axiom scheme A7.

Theorem 1 (Realization Theorem, [1, 4])

J◦ = K JD◦ = D JT◦ = T

J4◦ = K4 JD4◦ = D4 LP◦ = S4

For each justification logic, a family of weaker logics is defined with a supervised
use of rule R4. Note that this rule has a different scope in different justification
logics because they have different axiom sets. Thus, the following definition of a
constant specification depends on the respective logic. In particular, a constant
specification for LP may not be a constant specification for J.

Definition 3. A constant specification CS for a justification logic L is any set
of formulas c :A that can be introduced by the Axiom Internalization Rule R4 of
this logic. The only requirement is for such a set to be downward closed, i.e., if
c1 :c2 :A ∈ CS, then c2 :A ∈ CS.

Definition 4. Let CS be a constant specification for a justification logic L.
By LCS we understand the logic obtained by replacing R4 in logic L by the rule

R4CS . � c :A where c :A ∈ CS .

Each logic L from (4) is essentially LT CS with the total constant specification,
i.e., with every constant justifying all axioms.

Definition 5. A constant specification CS for a justification logic is called self-
referential if

{c2 :A1(c1), . . . , cn :An−1(cn−1), c1 :An(cn)} ⊂ CS (5)

for some constants ci and axioms Ai(ci) with at least one occurrence of ci.
A constant specification CS is directly self-referential if c :A(c) ∈ CS.
A constant specification is axiomatically appropriate if every axiom A of the

logic has at least one constant c such that c :A ∈ CS.

The total constant specification is always directly self-referential. Therefore, the
standard proofs of the Realization Theorem only show that Realization is pos-
sible when direct self-referentiality is used. Our task is to determine whether
Realization can be achieved without self-referentiality.

Definition 6. Let a modal logic ML be the forgetful projection of a justification
logic JL, i.e., JL◦ = ML. We call the modal logic ML directly self-referential if
(JLCS)◦ �= ML for any CS that is not directly self-referential.

We call ML self-referential if (JLCS)◦ �= ML for any CS that is not self-
referential.

S4 was shown in [5] to be directly self-referential.3 In this paper, we will prove
that K4, D4, and T are also directly self-referential whereas K and D are not
self-referential.
3 The term “directly” was not used in [5].
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3 Epistemic Models for Justification Logics

Self-referentiality of K4, D4, and T will be established by a semantic argument.
Unlike [5], where M-models were used, here we will employ more general F-
models, which are based on Kripke models and thus are closer to the standard
epistemic semantics. These F-models were first developed for LP; soundness and
completeness of LP w.r.t. them can be found in [6]. The adaptation of these mod-
els to J, JT, and J4 first appeared in [6]. Soundness and completeness arguments
for J and JD can be found in [8], for JT and J4 in [3]. The F-models for JD4 are,
perhaps, first developed in this paper.

Definition 7 (F-models for JCS). An F-model for JCS is a quadruple M =
〈W, R, A, v〉, where W �= ∅ is a set of worlds; R ⊆ W × W is an accessibility
relation; valuation v : SLet → 2W assigns to a sentence letter P a set v(P ) ⊆ W
of all worlds where this sentence letter is deemed true; finally, the admissible
evidence function A : Tm×Fm → 2W assigns to a pair of a term t and a formula
F a set A(t, F ) ⊆ W of all worlds where t is deemed admissible evidence for F .
The admissible evidence function A must satisfy several closure conditions:

C2. A(t, F → G) ∩ A(s, F ) ⊆ A(t · s, G)
C3. A(t, F ) ∪ A(s, F ) ⊆ A(t + s, F )
CS. A(c, A) = W for every c :A ∈ CS.

The forcing relation � is defined as follows:

– M, w � P iff w ∈ v(P ) where P is a sentence letter;
– Boolean cases are standard;
– M, w � t :F iff 1) M, u � F for all wRu and 2) w ∈ A(t, F ).

The closure conditions C2 and C3 are required to validate axioms A2 and A3
respectively, which is reflected in the numbering. Note that w ∈ A(t, F ) in no
way implies that F itself is true. Rather w ∈ A(t, F ) means that at world w
term t is acceptable, although not necessarily conclusive, evidence for F .

Definition 8 (F-models for JDCS , JTCS , J4CS , JD4CS , LPCS). An F-model for
these logics must satisfy all conditions for an F-model for JCS plus additional
requirements that depend on the additional axioms of the respective logic:

– For JTCS and LPCS , axiom t :F → F requires R to be reflexive.
– For JDCS and JD4CS , axiom t :⊥ → ⊥ requires R to be serial .
– For J4CS , JD4CS , and LPCS , axiom t :F → ! t : t :F requires R to be transi-

tive. In addition, two more closure conditions are imposed on A:
C5. A(t, F ) ⊆ A(! t, t :F )
Monotonicity . wRu and w ∈ A(t, F ) imply u ∈ A(t, F )

Theorem 2 (Completeness Theorem, [3, 6], RK). JCS , JTCS , J4CS , and
LPCS are sound and complete w.r.t. their F-models. JDCS and JD4CS are sound
w.r.t. their F-models; completeness also holds provided CS is axiomatically ap-
propriate.

Proof. The cases of JCS , JTCS , J4CS , and LPCS are covered in [3]. The proof for
JDCS and JD4CS can be found in [7]. ��
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4 Self-referential Cases: S4, D4, T, and K4

In [5], direct self-referentiality of knowledge encompassed by S4 and LP was
proven by constructing an LPCS-counter-model for any potential realization of
S4 � �(P → �P ), or equivalently, of S4 � ¬�¬(P → �P ), where CS was the
maximal constant specification for LP without directly self-referential constants.

We will employ a similar argument for weaker logics using F-models instead
of M-models.

Theorem 3. Realization of D4 in JD4 and of T in JT requires direct self-
referentiality.

Proof. Note that Φ = ¬�¬(P → �P ) is derivable in both D4 and T.4 Therefore,
we can use the same argument, namely show that no potential realization of Φ is
valid in JD4CS- or JTCS-models respectively for the respective maximal CS with-
out directly self-referential constants. The proof for these two logics is uniform
(and can, in fact, be applied to S4/LP too).

Let L ∈ {JD4, JT} and CS be the maximal constant specification for L with-
out directly self-referential constants. For any pair of terms t and t′ used in
place of the two �’s in Φ, we will construct an F-model for LCS that falsifies
¬t : [¬(P → t′ :P )], thus showing that no realization of Φ is LCS-valid. (Note that
only soundness is used in this argument.)

Given t and t′, consider the following F-model for LCS : M = 〈W, R, A, v〉
with the Kripke frame 〈W, R〉 that consists of a single reflexive world w. Such R
is obviously serial, reflexive, and transitive, thus making the frame suitable for
JD4, JT, and LP alike. Let v(P ) = W = {w}, i.e., M, w � P . The truth values
of other sentence letters are not important.

Since w is the only world in the model, we can write � F instead of M, w � F ;
A(s, F ) instead of w ∈ A(s, F ); ¬A(s, F ) instead of w /∈ A(s, F ).

The admissible evidence function A depends on terms t and t′. We require
A(t, ¬(P → t′ :P )). An admissible evidence function for either logic must sat-
isfy closure conditions C2, C3, and CS-closure; additionally for JD4CS and LPCS ,
Monotonicity and C5 must hold. Monotonicity is trivially satisfied. Let A be the
minimal admissible evidence function with A(t, ¬(P → t′ :P )) that satisfies all
the necessary closure conditions. Minimality here means that A(s, F ) only if it
can be derived from A(t, ¬(P → t′ : P )) using the closure conditions for the
logic.

It suffices to show ¬A(t′, P ) to falsify ¬t : [¬(P → t′ : P )]. Indeed, � t′ : P if
¬A(t′, P ). Given � P , it yields � ¬(P → t′ :P ). Finally, with this formula true
at the only world and with A(t, ¬(P → t′ :P )), we will have � t : [¬(P → t′ :P )].

¬A(t′, P ) follows from the following technical lemma. Let A0 be the minimal
admissible evidence function for the logic (without the A(t, ¬(P → t′ : P )) re-
quirement). Clearly, A0(s, F ) implies A(s, F ) as the closure conditions used are
the same, with A having one additional ad hoc requirement.

4 The idea to use this formula for these logics is due to Melvin Fitting.
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Lemma 1. For any subterm s of term t′:

1. If A0(s, F ), then LCS � F and F does not contain occurrences of t′.
2. If A(s, F ), but ¬A0(s, F ), then F has at least one occurrence of t′. Moreover,

the only such implication is F = ¬(P → t′ :P ).5

Proof (Sketch). The proof is by induction on the size of s. Essentially, we show
that all the closures due to C2, an analog of modus ponens, happen within A0,
so that outside of it the closure derivation is, in a sense, “cut-free.”

The fact that CS has no directly self-referential constants is used in the proof
of Claim 1 of the lemma: whenever A0(c, A), we have c :A ∈ CS; thus, neither c
nor term t′, whose subterm c is, can occur in the axiom A.

The full proof can be found in the Appendix. ��

It remains to apply Lemma 1 to term t′ itself. LCS � P , so by Lemma 1.1,
¬A0(t′, P ). But then, since t′ does not occur in P , by Lemma 1.2, ¬A(t′, P ). ��

Theorem 4. Realization of K4 in J4 requires direct self-referentiality.

Proof. The Hilbert formulation of D4 is obtained from that of K4 by adding
the Seriality Axiom. Therefore, K4 � �T → �(P → �P ),6 or equivalently,
Ψ = �¬(P → �P ) → �⊥ is derivable in K4.

For any potential realization Ψr = t : [¬(P → t′ : P )] → k : ⊥, we construct
an F-model for J4CS that falsifies Ψr, thus showing that no realization of Ψ is
J4CS-valid. Like in the cases of JD4CS and JTCS from Theorem 3, here CS is the
maximal constant specification for J4 without directly self-referential constants.

By contrast, the falsifying model here consists of a single irreflexive world.
As in such a model any F is vacuously true at all accessible worlds, � s : F iff
A(s, F ). Again, A is taken to be the minimal one with A(t, ¬(P → t′ : P )).
Valuation v is unimportant. We need to show ¬A(k, ⊥).

Lemma 2. Let A be the minimal admissible evidence function with A(r, B) in
a single-world F-model for J4CS . If A(s, G), then B, r :B �J4CS G.

Proof (Sketch). The proof is by induction on the closure derivation of A(s, G)
from A(r, B). It can be easily restored by an interested reader.

The intuition might tell you that r : B is not necessary as an additional hy-
pothesis. The following example due to Vladimir Krupski shows otherwise: if
A(x, P ) then A(! x, x :P ), but surely P �J4CS x :P . ��

If A(k, ⊥), then, by Lemma 2, ¬(P → t′ : P ), t : [¬(P → t′ : P )] �J4CS ⊥.
But this cannot be the case since in the proof of Theorem 3 we constructed an
F-model with both hypotheses being true. It was a JD4CS-model, so it must also
be a J4CS-model since fewer restrictions are imposed on the latter and the CS
for the latter is a subset of the CS for the former. A contradiction. ��
5 We consider ¬G to be an abbreviation of G → ⊥.
6 The idea to use this formula for K4 is due to Melvin Fitting.



Self-referentiality of Justified Knowledge 235

5 Non-self-referential Cases: D and K

In this section, we will show that (JDCS)◦ = D and (JCS)◦ = K for some non-
self-referential constant specifications CS.

To construct such constant specifications, we will divide the set of constants
into levels indexed by non-negative integers, with each level consisting of count-
ably many constants. Let �(c) denote the level of constant c. For either logic, let

CS = {c :A ∈ T CS | for all constants a that occur in A, �(a) < �(c)} . (6)

This constant specification is axiomatically appropriate.

Lemma 3 (Internalization Property). Let LCS be a justification logic with
an axiomatically appropriate CS. Then, for any derivation F1, . . . , Fn �LCS B
there exists an evidence term t(x1, . . . , xn) such that

x1 :F1, . . . , xn :Fn �LCS t(x1, . . . , xn) :B . (7)

Proof. A step-by-step translation from the given derivation into the target one.
A � c :A where A is an axiom or A = c′ :A′

Fi � xi :Fi hypotheses
D → G D

G
� s1 : (D → G) s2 :D

(s1 · s2) :G
by A2 and modus ponens twice

��
Since the constant specification (6) has infinitely many constants on each level,
it is always possible to choose a fresh constant c in the second line of the proof.

Theorem 5. It is possible to realize D in JD and K in J without self-referentiality.

Proof. We will prove that (JDCS)◦ = D and (JCS)◦ = K for the CS from (6).
Since LCS ⊆ L, we have (JDCS)◦ ⊆ JD◦ = D and (JCS)◦ ⊆ J◦ = K.

To show the other inclusion, we will reprove the Realization Theorem us-
ing the CS from (6). One of the ways to prove Realization is by step-by-step
transformation of a cut-free Gentzen derivation of a modal theorem F into a
Hilbert derivation of its realization F r. Here � Γ ⇒ Δ is being transformed
into Γ r � ∨

Δr.7 A detailed description can be found in [2, 4, 5]. Axioms of the
Gentzen modal system are restricted to ⊥ ⇒ and P ⇒ P for sentence letters P
to have a better control over where and how �’s are introduced. All occurrences
of � in the Gentzen modal derivation are divided into families of related occur-
rences. A cut-free derivation preserves polarity of formulas, so there are positive
and negative families of �’s. We realize each negative family by a fresh justi-
fication variable. A positive family is realized by a sum of auxiliary variables
v1 + . . . + vn, one variable per each use of the modal rules to introduce a �

from this family. If all �’s from a positive family are introduced by Weakening,
the family is instantiated by a fresh justification variable. The transformation is
done by induction on the depth of the Gentzen derivation.
7 As always, the empty disjunction is interpreted as ⊥.
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The Gentzen axioms, propositional rules, and Contraction can be translated
using the standard propositional translation from Gentzen into Hilbert. Since the
reasoning involved is purely propositional, neither Axiom Internalization is used,
nor are new constants introduced. Weakening does not require Axiom Internal-
ization either; it may bring constants from other branches, but never a fresh
constant. Thus, new constants are introduced by Axiom Internalization only to

translate modal rules. The only modal rule for logic K is
C1, . . . , Cn ⇒ B

�C1, . . . , �Cn ⇒ �B
.

In addition, logic D has
C1, . . . , Cn, D ⇒

�C1, . . . , �Cn, �D ⇒ (see, for instance, [10]). To trans-

late both rules we use the Internalization Property (Lemma 3).
Consider the K-rule first. By IH, we already have a Hilbert derivation of

Cr
1 , . . . , Cr

n � Br. By Lemma 3, x1 : Cr
1 , . . . , xn : Cr

n � t : Br for some t, where
each xi is the chosen realization of the negative � in front of Ci. We then substi-
tute t for the auxiliary variable that corresponds to this modal rule in the sum
realization of the � in front of B throughout the Hilbert proof.

The D-rule is similar. Here x1 : Cr
1 , . . . , xn : Cr

n, xn+1 : Dr � t : ⊥ is obtained
after Internalization. Using axiom A7, t : ⊥ → ⊥, and modus ponens, we can
derive ⊥. Since no positive � is introduced, there is no global substitution of
auxiliary variables.

The proof of Lemma 3 shows that the Axiom Internalization Rule in the in-
ternalized derivation appears only where axioms or Axiom Internalization Rule
instances were in the original derivation. We are free to pick a fresh constant
every time. So how can a self-referential cycle appear if we always pick fresh
constants? Where does it appear for stronger modal logics? When a term t sub-
stitutes for an auxiliary variable v, which appears in an Axiom Internalization
instance c : A(v), the constant c can a priori occur in t. As shown in Sect. 4
and [5], this cannot be avoided in many logics with other modal Gentzen rules.

We show how to avoid such occurrences of c in t for K and D while staying
within (6). Let us define the depth of an occurrence of � in a modal formula F
by induction on the size of F : the outer � in �G has depth 0 in �G; for any oc-
currence of � inside G, its depth in �G is obtained by adding 1 to its depth in G.

Let us also define the level of an occurrence of � in a Gentzen derivation as
its depth in the formula in which it occurs plus the number of modal rules used
on its branch after this occurrence. It is easy to prove that

Lemma 4. In a Gentzen K or D derivation of ⇒ G, levels of all occurrences
of � from a given family are equal to the depth of the family’s occurrence in G.

Let N be the largest level of �’s in the given cut-free derivation. As we showed,
a new constant can be introduced only during Internalization while translating
a modal rule. For all rules of level i, let us always use constants of level N − i.
When constants introduced later on a branch refer to constants introduced on
this branch earlier, the former have larger levels because the levels of modal rules
decrease toward the root of the derivation. It remains to show that the substi-
tution of terms for auxiliary variables does not violate the level structure of (6).
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Indeed, every time a modal rule is used on a branch, all �’s it introduces have
the level of this rule, say m, which is strictly smaller than the levels of all �’s
already on the branch. Suppose the Internalization used to translate this modal
rule introduced an Axiom Internalization c : A(v) with an auxiliary variable v.
This v corresponds to a family of �’s already present on the branch, which must
have a larger level l > m. Wherever the modal rule corresponding to v occurs,
by Lemma 4, it has the same level l. Therefore, when a term t substitutes for v,
all the constants in t will have level N − l < N − m = �(c). Thus, substitutions
do not violate the conditions of our constant specification. ��

6 Conclusions and Future Research

Further studies of self-referentiality can develop in various directions. We still
do not know an example when self-referentiality is required, but direct self-
referentiality can be avoided.

Self-referentiality results can be used to prove structural properties of Gentzen
modal derivations, e.g., the unavoidability of double introduction of the same
family of �’s on the same branch for directly self-referential modal logics.

It remains to see what triggers self-referentiality. It appears that self-refer-
entiality is tied to the ability to mix levels of �’s in a Gentzen derivation, but
we need a larger sample set to make any definite conclusions. We conjecture
that the statement of Lemma 4 can be viewed as a purely modal formulation
of a sufficient criterion for non-self-referentiality. It would be interesting to see
whether it is also necessary.
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Appendix

Lemma 1

For any subterm s of term t′:

1. If A0(s, F ), then LCS � F and F does not contain occurrences of t′.
2. If A(s, F ), but ¬A0(s, F ), then F has at least one occurrence of t′. Moreover,

the only such implication is F = ¬(P → t′ :P ).

Proof. The proof is by induction on the size of s.

(A) Case s = x, a justification variable.
1. For any F , we have ¬A0(x, F ), so Claim 1 is vacuously true.
2. A(x, F ) only if t = x and F = ¬(P → t′ :P ), which does contain t′ and
is the only allowed implication.

(B) Case s = c, a justification constant.
1. If A0(c, F ), formula F must be either an axiom or an instance of the
Axiom Internalization Rule. In either case, F is derivable. At the same
time, CS is not directly self-referential, so F cannot contain occurrences of
c, a subterm of t′. Thus, F cannot contain t′ either.
2. A(c, F ), but ¬A0(c, F ) only if t = c and F = ¬(P → t′ :P ), which does
contain t′ and is the only allowed implication.

(C) Case s = s1 + s2 .
1. If A0(s1+s2, F ), then, by the closure condition C3, A0(si, F ) for some
i = 1, 2. By IH, F is a theorem that does not contain t′.
2. If A(s1+s2, F ), but ¬A0(s1+s2, F ), then either

(α) t = s1 + s2 and F = ¬(P → t′ :P ), which satisfies Claim 2, or else
(β) by C3, A(si, F ), but ¬A0(si, F ) for some i = 1, 2. By IH, F contains t′,

and, if an implication, is ¬(P → t′ :P ).
(D) Case s = s1 · s2 .

1. If A0(s1 · s2, F ), by C2, there must exist a formula G such that
A0(s1, G → F ) and A0(s2, G). By IH, both G → F and G are derivable,
hence F is derivable by modus ponens. By IH, G → F does not contain t′,
thus neither can F .
2. If A(s1 ·s2, F ), but ¬A0(s1 ·s2, F ), there are several possibilities:

(α) t = s1 · s2 and F = ¬(P → t′ :P ), which satisfies Claim 2; or else
by C2, there should exist a G such that either
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(β) A(s1, G → F ) and A(s2, G) while ¬A0(s1, G → F ) or
(γ) A(s1, G → F ) and A(s2, G) while ¬A0(s2, G).
We will show that both subcases (β) and (γ) are inconsistent.
In subcase (β), by IH, Claim 2 for subterm s1, G → F = ¬(P → t′ :
P ) = (P → t′ : P ) → ⊥. So G = P → t′ : P , which is another implication.
Hence, by IH, Claim 2 for s2, we should have A0(s2, G), which contradicts
the IH, Claim 1 for s2 since P → t′ :P contains t′. The contradiction shows
impossibility of subcase (β).
In subcase (γ), by IH, Claim 2 for s2, formula G should contain t′. Then
G → F would also contain t′. Hence, by IH, Claim 1 for s1, we should
have ¬A0(s1, G → F ), and we are back in the impossible subcase (β). So
subcase (γ) is also impossible.

(E) Case s = ! s1 (only for logics J4CS , JD4CS , and LPCS).
1. If A0(!s1, F ), then, by C5, F = s1 : G for some G such that A0(s1, G).
By IH, Claim 1, G is a theorem that does not contain t′. A0(s1, G) implies
that A′(s1, G) = W in any model M′ = 〈W ′, R′, A′, v′〉 for LCS . In any such
model, M′, w′ � G for all w′ ∈ W ′ by the Soundness part of Theorem 2.
By definition of �, it follows that M′, w′ � s1 :G for any world w′ ∈ W ′ in
any M′. By the Completeness part of Theorem 2, s1 :G is derivable.
Since G does not contain t′ and s1 is a proper subterm of t′, formula s1 :G
cannot contain t′ either.
2. If A(!s1, F ), but ¬A0(!s1, F ), then either

(α) t = ! s1 and F = ¬(P → t′ :P ), which satisfies Claim 2, or else
(β) by C5, F = s1 : G for some G such that A(s1, G), but ¬A0(s1, G).

By IH, Claim 2, G contains t′, thus so does s1 : G, which is not an
implication. ��
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Abstract. While visibly pushdown languages properly generalise reg-
ular languages and are properly contained in deterministic context-free
languages, the complexity of their membership problem is equivalent to
that of regular languages. However, the corresponding counting prob-
lem could be harder than counting paths in a non-deterministic finite
automaton: it is only known to be in LogDCFL.

We investigate the membership and counting problems for generalisa-
tions of visibly pushdown automata, defined using the notion of height-
determinism. We show that, when the stack-height of a given PDA can be
computed using a finite transducer, both problems have the same complex-
ity as for visibly pushdown languages. We also show that when allowing
pushdown transducers instead of finite-state ones, both problems become
LogDCFL-complete; this uses the fact that pushdown transducers are suf-
ficient to compute the stack heights of all real-time height-deterministic
pushdown automata, and yields a candidate arithmetization of LogDCFL
that is no harder than LogDCFL(our main result).

1 Introduction

There is a close connection between complexity classes and formal language
theory. Over the years, various language classes have been studied from the
complexity theoretic perspective. Capturing the complexity of membership has
been the goal in this approach. The study of language classes and their com-
plexity under meaningful closures was first started by Sudborough [1,2]. In [1],
he showed that the nondeterministic linear context-free languages or LIN are
complete for the complexity class NL (nondeterministic log-space). In [2], he de-
fined two interesting complexity classes, namely LogCFL and LogDCFL, as the
log-space closures of context-free languages (CFLs) and their deterministic coun-
terparts (DCFLs) respectively. Ibarra, Jiang and Ravikumar [3] further studied
subclasses of CFL such as DLINLL(1) (the deterministic counterpart of LIN de-
fined by LL(1) linear grammars), Dyck2 and bracketed expressions and showed
that they are contained in NC1. Holzer and Lange [4] showed that deterministic
linear context-free languages (DLIN), as defined via LR(1) linear grammars, are
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equivalent to those accepted by deterministic 1-turn automata DPDA1-turn (de-
terministic pushdown automata that never push after a pop move). They showed
that deciding membership in a DLIN language is complete for L, in contrast to
the result of [3]. Barrington made an important contribution to the above study
[5], showing that the class of regular languages, REG, is complete for the circuit
complexity class NC1 comprising of polynomial size log depth bounded fan-in
and-or circuits. (As the classes get smaller, completeness is via not L -reductions
but appropriate weaker notions such as AC0-many-one-reductions.) See [6] for
an overview of these results.

Visibly pushdown automata (VPA) are real-time pushdown automata whose
stack behaviour is dictated solely by the input letter under consideration. They
are also referred to as input-driven PDA. The membership problem for VPL was
considered in [7,8,9]; [9] shows that languages accepted by such PDA are in NC1.
A rigorous language-theoretic study of VPA was done in [10], where it is shown
that they can be determinised. Thus they lie properly between REG and DCFLs,
and their membership problem is complete for NC1.

A related line of study is understanding the power of counting. It is easy to see
from the proof of [1] that counting the number of parse trees in a linear grammar,
#LIN, is equivalent to counting accepting paths in an NL machine. At the lower
end, however, though Barrington’s result showed that deciding membership in
REG (and hence in the language of a nondeterministic finite-state automaton or
NFA) is equivalent to NC1, counting the number of accepting paths in an NFA
(#NFA) is not yet known to be equivalent to arithmetic NC1, #NC1. In [11],
a one-way containment is shown: #NFA ⊆ #NC1, but to this day the converse
reduction remains open1. A natural question to ask is what generalisation of NFA
can capture #NC1 in this setting. In [12], it was claimed that the generalisation
to VPA adds no power, #VPA is equivalent to #NFA. However, this claim was
later retracted in [13], where it is shown, however, that #VPA functions can be
computed in LogDCFL (and are hence presumably weaker than #PDA functions).

Our starting point in this note is a careful examination of what makes mem-
bership and path-counting easier in VPA than in general PDA. The intention is to
identify a largest possible class of PDA for which the technique used for VPA can
still be applied. This technique exploits the fact that, despite nondeterminism,
all paths on a given input word have the same stack-profile, and furthermore,
this profile is very easily computable. One can view the partitioning of the input
alphabet as height advice being provided to an algorithm for deciding member-
ship. This naturally leads to the conjecture that PDA possessing easy-to-compute
height advice functions should be easier than general PDA. The real-time height-
deterministic PDA defined by Nowotka and Srba ([14]), rhPDA, are a natural
candidate: they are defined as precisely those PDA that possess height advice
functions. They also very naturally generalise a subclass of the synchronised
PDA defined by Caucal ([15]), namely the subclass where the synchronisation
function is the stack-height, and, as in general synchronised PDA, is computable

1 [11] shows a weaker converse: every #NC1 function can be expressed as the difference
of two #NFA functions.
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by a finite-state transducer. We provide a parameterised definition of rhPDA
that captures this generalisation: the complexity of the transducer computing
the height advice function is the parameter. We then examine the complexity of
membership and path-counting at either end of the parameterisation.

A related model equivalent to VPA is that of nested word automata (NWA),
defined in [16] with a view to applications in software verification and XML
document processing. [17] defines motley word automata (MWAs) as a general-
isation of NWAs. Our techniques can be used to show that the equivalence is
indeed very strong: deciding membership and counting accepting paths in NWA
and MWA are NC1-equivalent to the same problems over VPA.

2 Preliminaries

A pushdown automaton (PDA) over Σ is a tuple P = (Q, q0, F, Γ, Σ, δ) where Q
is a finite set of control states, q0 ∈ Q the initial state, F ⊆ Q a set of accepting
states, Γ a finite alphabet of stack symbols, Σ a finite alphabet of labels and δ
a finite set of transition rules pU

a−→ qV with p, q ∈ Q, U, V ∈ Γ ∗ and a ∈ Σ.
In the following, we will only consider weak PDA, whose rules are such that
|UV | ≤ 1.2

A configuration of P is a word of the form pW with p ∈ Q and W ∈ Γ ∗, where
p is the current control state and W is the current stack content read from top
to bottom. The stack height at configuration pW is |W |.

The semantics of P are defined with respect to its transition graph GP =
{pUW

a−→ qV W | pU
a−→ qV ∈ δ, W ∈ Γ ∗}. A run of P on input word w ∈ Σ∗

from configuration pW is a path in GP between vertex pW and some vertex
qW ′, written pW

w−→ qW ′. Such a run is successful (or accepting) if pW = q0
and q belongs to the set F of accepting states of P . By L(GP , S, T ) where S, T

are sets of vertices of GP , we mean all words w ∈ Σ∗ such that c
w−→ c′ for some

configurations c ∈ S, c′ ∈ T . The language of P is the set of all words w over
which there exists an accepting run; i.e. it is the language L(GP , {q0}, FΓ ∗).

A visibly pushdown automaton (VPA) over Σ is a weak PDA P where Σ is
partitioned as Σc ∪Σr ∪Σi, and for all p ∈ Q, a ∈ Σ, p

a−→ qγ ⇒ a ∈ Σc (a push
move/call), pγ

a−→ q ⇒ a ∈ Σr (a pop move/return) and p
a−→ q ⇒ a ∈ Σi

(an internal move). VPA can be nondeterministic, i.e. δ need not be a function.
VPA are equivalent to the earlier notion of input-driven automata when run on
well-matched strings, and their languages can be easily reduced to input-driven
languages, as observed in [12,13].

For any class C of automata, its arithmetic version #C is defined as follows:

#C = {f : Σ∗ → N | for some M ∈ C, f(x) = #accM (x) for all x ∈ Σ∗}
Proposition 1 ([11,13]). The following inclusions hold:

#NFA ⊆ #NC1 ⊆ L ⊆ LogDCFL #NFA ⊆ #VPA ⊆ LogDCFL

2 This is only for simplicity, as all results go through for arbitrary U, V ∈ Γ ∗.
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(A containment F ⊆ C involving both a function class F and a language class C
means: ∀f ∈ F , Lf ∈ C, where Lf = {〈x, i, b〉 | the ith bit of f(x) is b}.)

3 Revisiting the VPL in NC1 Proof

In [9], Dymond proved that the membership problem for VPL is in NC1. Dy-
mond’s proof transforms the problem of recognition/membership to efficiently
evaluating an expression whose values are binary relations on a finite set and
whose operations are functional compositions and certain unary operations de-
pending on the inputs. This transformation is done in NC1. Containment in
NC1 follows from the result, due to Buss [18], that the evaluation of formulae
involving expressions as k-ary functions over a finite domain is in NC1.

For a VPA, on an input w, the stack height after processing i letters, h(i, w)
(or simply h(w) if i = |w|), is the same across any run. Define a set of binary
relations, denoted ⇒i,j for 1 ≤ i ≤ j ≤ |w|, on surface configurations (q, γ) ∈
Q×Γ (state and stack-top pair). These relations are expected to capture all cases
where surface configurations are reachable from one another without accessing
the previous stack profiles. A unary operation, and a composition operation,
are defined on these relations. Given a string w, the main work is to figure
out the correct indices for the relations and then the appropriate operations.
But that can be accomplished essentially by computing stack heights for various
configurations, which is easy for VPL.

As pointed out in [9], the above transformation works for more than VPAs.

Remark 1 ([9]). Dymond’s NC1 membership algorithm works for any pushdown
automaton M satisfying the following three conditions.

– There should be no ε-moves.
– Accepting runs should end with an empty stack (and a final state).
– There should exist an NC1-computable function h such that for w ∈ Σ∗ and

0 ≤ i ≤ |w|, h(i, w) is the height of the stack after processing the first i
symbols of w. If M is non-deterministic, then h(i, w) should be consistent
with some run ρ of M on w; further, if M accepts w, then ρ should be an
accepting run.

Clearly, VPA satisfy these conditions. By definition, they have no ε-moves.
Though they may not end with an empty stack, this can be achieved by ap-
propriate padding that is computable in TC0, see for instance [12,13]. (TC0 is
a subclass of NC1 consisting of polynomial size constant depth circuits where
each gate is allowed unbounded fan-in, and gates compute majority and not.)
Though VPA may be nondeterministic, all runs have the same height profile, and
the function h(i, w) can in fact be computed in TC0.

Since any computation up to NC1 can be allowed for Dymond’s proof to go
through, VPL do not fully exploit Dymond’s argument. We explore a natural
generalisation of VPA allowing us to define natural classes for which Dymond’s
scheme or its precursor from [8] may work for deciding membership, and then
examine the power of counting in these models.
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4 More General Height Functions: Height-Determinism

Adding a pushdown stack to an NFA significantly increases the complexity of
both membership (regular to context-free) and path-counting (#NFA to #PDA).
However, if stack operations are restricted to an input-driven discipline, as in
VPA, then membership is no harder than for NFA, and path-counting seems easier
than over general PDA. What is being exploited is that, despite nondeterminism,
all paths on a given input word have the same stack-profile, and this profile is
computable in NC1 (and even in TC0). One can view the partitioning of the
input alphabet as height advice being provided to an algorithm for deciding
membership. This naturally leads to the question: what can be deduced from the
existence of such height advice, independently of how this function is computed?

The term height-determinism, coined by [14], captures precisely this idea. A
PDA is height-deterministic if the stack height reached after any partial run
depends only on the input word w which has been read so far, and not on
non-deterministic choices performed by the automaton. Consequently, in any
(real-time) height-deterministic pushdown automaton (rhPDA), all runs on a
given input word have the same stack profile. Another way to put it is that for
any rhPDA P , there should exist a height-advice function h from Σ∗ to integers,
such that h(w) is the stack-height reached by P on any run over w.

Any rhPDA that accepts on an empty stack and whose height-advice function
h is computable in NC1 directly satisfies the conditions in Remark 1, and hence
its membership problem lies in NC1. In this section, we explore some sub-classes
of rhPDA and discuss the complexity of their membership and counting problems.

Let us first give a formal definition of rhPDA.

Definition 1 (rhPDA, [14]). A real-time (weak) pushdown automaton3 P =
(Q, q0, F, Γ, Σ, δ) is called height-deterministic if it is complete (does not get
stuck on any run), and ∀w ∈ Σ∗, q0

w−→ qα and q0
w−→ qβ imply |α| = |β|.

The robustness of this notion is illustrated by the fact that rhPDA retain most
good properties of VPA, even when the actual nature of the height-advice func-
tion is left unspecified. This had already been obtained in [15] for a slightly
different class (which the authors of [14] admittedly used as a starting point in
the elaboration of their paper).

Proposition 2 ([14,15]). Any rhPDA can be determinised. Consequently, for
a fixed h, the class of languages accepted by rhPDA and whose height advice
function is h forms a boolean algebra (and properly includes regular languages).
Moreover, language equivalence between two rhPDA with the same height-advice
function is decidable.

All these results are effective as soon as h is computable. Since any deterministic
real-time PDA is also height-deterministic, another consequence of the fact that
rhPDA can be determinised is that the whole class rhPDA accepts precisely the
class of real-time DCFL.
3 In [14], the definition involves rules of the form pX

a−→ qα where α ∈ {ε, X} ∪
{Y X|Y ∈ Γ}. This is not an essential requirement for the results presented here.
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4.1 Instances of Height-Deterministic PDA

The definition of a rhPDA leaves the exact nature of the height-advice function
h unspecified. This is troublesome, since h could be arbitrarily complex. We
consider some classes of specific height-advice functions, the simplest being VPA.

Following the framework developed by Caucal [15], we consider classes T
of transducers mapping words to integers. A transducer T over Σ and Z is a
transition system (C, c0, F, (Σ ×Z), δ), where c0 denotes the initial configuration
and F a set of final configurations, and whose transitions described by δ are
labelled with pairs (a, k), where a is a letter and k an integer. The first component
of any such label is considered as an input, and the second component as an
output. A run c0(a1, k1)c1 . . . cn−1(an, kn)cn is associated to the pair (w, k) =
(a1 . . . an, k1+ . . .+kn). Such a transducer defines a relation gT ⊆ Σ∗×Z defined
as the set of all pairs (w, k) labelling an accepting run in T .

In our setting, we only consider both input-complete and input-deterministic
transducers (i.e. transducers whose underlying Σ-labelled transition system is
deterministic and complete), in which all configurations are final (in which case
we omit F in the definition). Consequently, for any such transducer T the relation
gT is actually a function, and is defined over the whole set Σ∗. The transition
graph GP of a PDA P is said to be compatible with a transducer T if for every
vertex s of GP , if u, v ∈ L(GP , {q0}, {s}) then gT (u) = gT (v).

One may consider several kinds of transducers. The simplest class is finite-
state transducers (FST), where the configuration space C is simply a finite set
of control states (often written Q). One may also consider pushdown transducers
(PDT) whose underlying Σ-labelled transition system is a PDA transition graph,
or even more complex transducers (for instance defined using Turing machines).

Definition 2. For any class T of complete deterministic transducers, rhPDA(T )
is the class of rhPDA whose height function h can be computed by a transducer
T in T , in the sense that h(w) = |gT (w)| (absolute value of gT (w)) for all w.

The height-advice function of any VPA running on well-matched strings can be
computed by a single-state transducer, that reads letters and outputs +1 or −1
or 0 depending on whether the letter is in Σc or Σr or Σi. However, note that
such single-state transducers can also compute stack-heights for languages that
are provably not in VPL. Also, allowing more than one state in a FST provably
enlarges the class of languages.

Example 1. The language EQ(a, b) = {w | |w|a = |w|b} is not accepted by any
VPA for any partition of {a, b}. But a single-state transducer can compute the
stack-height of the obvious DPDA acceptor: it outputs +1 on a and −1 on b.

The language REV = {wcwR | w ∈ {a, b}∗} is not a VPL. The obvious DPDA
acceptor has a height function computable by a two-state transducer: one state
has +1 on a and b, the other has −1 on a and b, and moves to second state on c.
It is easy to see that for any PDA accepting REV, two states in the transducer
are essential for computing stack height.
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Further, [14] provided a separating example in rhPDA but not in rhPDA(FST);
from Proposition 3 below, it follows that this language is in fact in rhPDA(PDT).
In the remainder of this section, we will focus on the classes rhPDA(FST) and
rhPDA(PDT), and also to some extent on the class rhPDA(rDPDA1-turn), where
the transducer is a 1-turn PDT.

The class we define as rhPDA(FST) is a restricted (and simpler) subclass of
the synchronised pushdown automata considered by Caucal in [15]. Even though
Caucal’s results require, for a PDA to be synchronised by a transducer T , that the
transition graph of P ′ satisfy some additional geometric properties with respect
to gT , these properties are always satisfied when only considering stack-height4.
One can thus see rhPDA(FST) as the intersection of rhPDA with synchronised
PDA. As an aside, we note that [14] considers the class rhPDA(FST) as equivalent
to synchronised PDA. This is not guaranteed to be true and has to be proved,
since [15] also permits synchronisation by norms other than stack-height.

Finally, we note that since, by definition, rhPDA are complete, it is in fact un-
necessary to consider more complex transducers than deterministic and complete
PDTs. Formally:

Proposition 3. For any rhPDA P whose height-advice function is h, there ex-
ists a deterministic and complete pushdown transducer T such that h(w) = gT (w)
for all w ∈ Σ∗. That is, every rhPDA is in rhPDA(PDT).

4.2 Complexity of the Membership Problem

As we already mentioned, rhPDA have exactly the same power as real-time DPDA
in terms of accepted languages. This settles the complexity of the membership
question for the whole class rhPDA (and thus also for rhPDA(PDT)): it is in
LogDCFL, and since the hardest DCFL ([2]) is hard for the class LogDCFL and
is accepted by a real-time DPDA, it is also hard for LogDCFL.

We observe easy bounds on the complexity of the height-advice function.

Lemma 1. For a complete deterministic transducer T computing function gT ,

1. If T is a FST, then gT is computable in NC1.
2. If T is a rDPDA1-turn, then gT is computable in L.
3. If T is a PDT, then gT is computable in LogDCFL.

This allows us to apply Dymond’s algorithm for rhPDA(FST).

Lemma 2. For any fixed rhPDA(FST), the membership problem is in NC1.

This membership algorithm exploits Dymond’s construction better than VPA,
as the height function requires a possibly NC1-complete computation (predicting
states of the transducer). Recall that for VPA, the height function is computable
in TC0, a subclass of NC1.
4 In the terminology of [15], this is due to the fact that all transition graphs of push-

down automata are regular by stack height.
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In [8], the membership problem for VPLs is shown to be in L. We observe that
their algorithm can be more explicitly implemented as Lg where g is the height
function of the VPL. In this form, it can be generalised to any rhPDA having
height function g, as stated in Theorem 1 below. The proof follows from Lemmas
3 and 4, and the result, along with Lemma 1, yields the next corollary.

Theorem 1. For any fixed rhPDA P with height function g, the membership
problem is in Lg.

Corollary 1

1. The membership problem for rhPDA(rDPDA1-turn) is in L.
2. The membership problem for rhPDA is in LogDCFL.

The class rhPDA(rDPDA1-turn) referred to here contains languages accepted by
real-time DPDA1-turn as well as languages accepted by rhPDA(FST). It is con-
tained in DCFLs. The upper bound for rhPDA follows from [14], where it is shown
that rhPDA as a language class equals the DCFLs accepted by DPDA with no
ε-moves, and so is a proper subclass of DCFLs.

Lemma 4 uses the algorithm from [8] to establish the LgT bound for well-
matched inputs, and Lemma 3 brings the input in that form.

Lemma 3. For every rhPDA(T ) P over an alphabet Σ, there is a corresponding
rhPDA(T ′) P ′ over an alphabet Σ′ and a LgT ′ many-one reduction f such that
for every x ∈ Σ∗, #accP (x) = #accP ′(f(x)), and f(x) is well-matched.

Lemma 4 (Algorithm 2 of [8], stated differently). Let P = (Q, Σ, Qin, Γ,
δ, QF ) be a rhPDA(T ) accepting well-matched strings. Given an input string x,
checking if x ∈ L(P ) (membership test for L(P )) can be done in LgT .

4.3 Complexity of the Counting Problem

The aspect of rhPDA which interests us in this study is that it is a nondetermin-
istic model capturing the deterministic class LogDCFL. It thus provides a way of
arithmetising LogDCFL, simply by counting the number of accepting paths on
each word in a rhPDA. We call the class of such functions #rhPDA. In particular,
we consider the classes #rhPDA(FST) and #rhPDA(PDT).

We have seen that although rhPDA(FST) properly generalises VPA, the mem-
bership problem has the same complexity as that over VPA. It turns out that
even the path-counting problem has the same complexity.

Theorem 2. #rhPDA(FST) ≡ #VPA (via NC1 many-one reductions).

Proof Sketch. VPA are contained in rhPDA(FST), so we only need to show that
computing #rhPDA(FST) functions reduces to computing #VPA functions.

Let P be an rhPDA with height-advice computed by FST T . A naive approach
would be to construct a single PDA P ′ that simulates (P, T ) by running PDA P
along with transducer T . However, such a PDA P ′ will not necessarily be a VPA.
Now consider the string rewritten using an enriched alphabet which consists of
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the input letter along with a tag indicating whether P should push or pop. On
this enriched alphabet, if the tags are correct, then a PDA that simulates the
original PDA P (i.e. ignores the tags) behaves like a VPA. But by Lemma 1, the
correct tags for any word can be computed in NC1. �
Theorem 3 shows that membership and counting for rhPDA have the same com-
plexity, a situation rather unusual for nondeterministic complexity classes.

Theorem 3. #rhPDA is in LogDCFL.

The proof of this theorem proceeds in several stages. To compute a #rhPDA
function f on input x, we first compute f(x) modulo several small (logarithmic)
primes, and then reconstruct f(x) from these residues. This is the standard
Chinese remainder technique (see for instance [19]), stated formally below.

Lemma 5 (folklore). Let P be a fixed rhPDA. There is a constant c ≥ 0,
depending only on P , such that given input x, the number of accepting paths
of P on input x can be computed in logarithmic space with oracle access to the
language Lres defined below. (Here pi denotes the ith prime number.)

Lres = {〈x, i, j, b〉|1 ≤ i ≤ |x|c, the jth bit of #accP (x) mod pi is b }
We now show that Lres can be computed by a polynomial time DAuxPDA ma-
chine – a deterministic polynomial time PDA with O(log n) auxiliary space, this
model characterises LogDCFL – making oracle queries to the height-advice func-
tion gT . This follows from the technique of [8] as used in [13] to show that #VPA
functions are in LogDCFL.

Lemma 6. If P is any rhPDA and T a PDT computing its height-advice func-
tion, then Lres is in LogDCFLgT .

Lemmas 1 and 6 together imply that Lres is in LogDCFL(LogDCFL). This is not
adequate for us, since it is not known whether LogDCFL(LogDCFL) ⊆ LogDCFL.
(Relativising a space-bounded class is always tricky. Here, we have a pushdown
class with auxiliary space, making the relativisation even more sensitive.) How-
ever, we further note that the LogDCFLgT machine accepting Lres makes oracle
queries which all have short representations: each query can be written in loga-
rithmic space. (Strictly speaking, the input x is also part of the query. But for
eliminating the oracle, this plays no role.) In such a case, we can establish a
better bound, which may be of independent interest:

Lemma 7. Let L(MA) be the language accepted by a poly-time DAuxPDA M
which makes O(log n)-bits oracle queries to a language A ∈ LogDCFL. Then
L(MA) ∈ LogDCFL.

Combining these lemmas proves Theorem 3, since L(LogDCFL) equals LogDCFL.

5 Related Models: Nested and Motley Words

In [16], Alur and Madhusudan defined nested word automata (NWA) as an equiv-
alent model for VPA, motivated by applications in software verification and XML



On the Complexity of Membership and Counting 249

document processing. In [17], Blass and Gurevich defined motley word automata
(MWAs) as a generalisation of NWAs. The definitions of models of NWA and
MWA are orthogonal to the notion of height-determinism. However, we observe
that their complexity bounds are the same as that of VPL for both membership
and counting problems.

We begin with definitions of NWA and MWA.
A nested relation ν of width n, for n ≥ 0, is a binary relation over [1, n] such

that (1) if ν(i, j) then i < j; (2) if ν(i, j) and ν(i′, j′) then either {i, j} = {i′, j′}
or {i, j} ∩ {i′, j′} = ∅, and (3) if ν(i, j) and ν(i′, j′) and i < i′ then either j < i′

or j′ < j.
If ν is a nested relation with ν(i, j), then i is the call-predecessor of j and j is

the return-successor of i. The definition requires that each position has at most
one call-predecessor or at most one return-successor but not both.

A nested word over an alphabet Σ is a pair (w, ν) such that w ∈ Σ∗, and ν
is a nested relation of width |w|. A position k ∈ [1, |w|] of w is a call position if
(k, j) ∈ ν for some j, a return position if (i, k) ∈ ν for some i, and an internal
position otherwise.

Definition 3 (NWA). A nested word automaton (NWA) A over an alphabet Σ
is a tuple (Q, q0, F, Σ, δ) where Q is a finite set of states, q0 ∈ Q is the initial
state, F ⊆ Q is a set of final states , δ = 〈δc, δi, δr〉 is a set of transitions such
that δc ⊆ Q×Σ ×Q, δi ⊆ Q×Σ ×Q and δr ⊆ Q×Q×Σ×Q are the transitions
for call, internal and return positions respectively.

A starts in state q0 and reads the word left to right. At a call or internal position,
the next state is determined by the current state and input symbol, while at a
return position, the next state can also depend on the state just before the
matching call-predecessor. A run ρ of the automaton A over a nested word
nw = (a1 . . . an, ν) is a sequence q0, . . . , qn over Q such that for each 1 ≤ j ≤ n,

– if j is a call position, then (qj−1, aj , qj) ∈ δc

– if j is a internal position, then (qj−1, aj , qj) ∈ δi

– if j is a return position with call-predecessor k, then (qj−1, qk−1, aj, qj) ∈ δr.

A accepts the nested word nw if qn ∈ F . The language L(A) of a nested-word
automaton A is the set of nested words it accepts.

A motley word mw of dimension d over Σ is a tuple (w, ν1, . . . , νd), where
w ∈ Σ∗ and ν1, . . . , νd are nested relations of width |w|.
Definition 4 (MWA). A motley word automaton (MWA) A of dimension d is
a direct product A1 × . . . × Ad of d NWA A1, . . . , Ad.5

A run of A on dimension d motley word mw = (w, ν1, . . . , νd) with |w| = n is a
sequence (q1

0 , . . . , qd
0), . . . , (q1

n, . . . , qd
n) of states of A such that every (qk

0 , . . . , qk
n)

is a run of Ak on the nested word (w, νk). A run of A on mw is accepting (or mw
is accepted by A) if each of the d constituent runs is. L(A) is defined as usual.
5 As NWA are in general non-deterministic, so are motley automata. A MWA A1 ×

. . . × Ad is deterministic if every nested word automata Ak is so.
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The languages of nested/motley words accepted by NWA or MWA are called
regular nested/motley languages. Regular motley languages strictly generalise
regular nested languages [17], since for some i �= j, the same position can be a
call-position for νi and a return position for νj .

It is shown in [16] (Theorem 6) that for a fixed NWA, the membership question
is in NC1. The analogous question for a fixed MWA is easily seen to have the same
complexity, since it involves answering membership questions for d different, but
fixed, NWAs, where d is the dimension of the MWA.

In both models, NWA and MWA, non-determinism is allowed in the definition.
We show that path-counting in NWA and MWA is equivalent to that in VPA. This
does not follow from the equivalence of membership testing; rather, it requires
that the equivalence be demonstrated by a parsimonious reduction.

Theorem 4. Deciding membership and counting accepting paths in NWA and
MWA are equivalent, via NC1-many-one reductions, to the corresponding prob-
lems over VPA.

6 Conclusion

We have studied a range of real-time height-deterministic pushdown automata
lying between visibly and real-time deterministic pushdown automata. Fig. 1
depicts the relations between language classes, Fig. 2 shows their closures under
appropriate reductions, and Fig. 3 shows the corresponding counting classes.
(Dashed arrows indicate incomparability, dotted arrows containment, and solid
arrows proper containment.)

Some open questions remain. First, it would be interesting to investigate ad-
ditional classes lying between rhPDA(FST) and rhPDA(PDT). Also, the only
known upper bound for #VPL, #rhPDA(FST) and #rhPDA(rDLIN), is LogDCFL.
It would be interesting to refine this bound. Finally, all of our results concern
height-deterministic PDA. However, [15] allows PDA to be synchronised by func-
tions other than stack-height. It is not clear how many of our proofs carry over.

VPL ��
��

�������� rhPDA(FST) �� rhPDA(rDLIN) ��
��

���
�
� rhPDA

�����������

REG

�����������
�� rDLIN ��

		������������
DLIN �� DCFL

Fig. 1. Summary of language classes

NC1, REG, VPL,
rhPDA(FST),
DLINLL(1)

�� rhPDA(rDLIN) �� L,
DLINLR(1)

��
rhPDA,
DCFL,
LogDCFL

Fig. 2. Summary of language classes closures
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NC1 �� #NFA �� #VPL,
#rhPDA(FST)

�� #rhPDA(rDLIN) �� #rhPDA �� LogDCFL

Fig. 3. Summary of counting classes
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Abstract. The main purpose of this paper is to suggest that public key
encryption can be secure against the “encryption emulation” attack (on
the sender’s encryption) by computationally unbounded adversary, with
one reservation: a legitimate receiver decrypts correctly with probability
that can be made arbitrarily close to 1, but not equal to 1.

1 Summary of Our Claims

We thought it would make sense to summarize, for the reader’s convenience,
our two main claims in a separate section, before proceeding to a narrative
introduction.

In Section 3, we describe a public-key encryption protocol that allows Bob
(the sender) to send secret information to Alice (the receiver), encrypted one bit
at a time, so that:

1. Assuming that Eve (the adversary):
(a) is computationally unbounded,
(b) knows everything about Bob’s encryption algorithm and hardware,
(c) does not know Alice’s algorithm for creating public key, then:
she cannot decrypt any single bit correctly with probability > 3

4 by emulating
Bob’s encryption algorithm.
We note that the assumption (c) is not in line with what is called “Kerckhoffs’
assumptions”, or “Kerckhoffs’ principle” (see e.g. [3]), which is considered
mandatory in practical cryptography. However, the assumption (a) is not
encountered in real life either, so this claim of ours should be considered
from a purely theoretical point of view, although we speculate in the end of
the Introduction that this claim may be of interest in real-life non-commercial
cryptography.

The second claim is in line with Kerckhoffs’ assumptions.
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2. Assuming that Eve:
(a) knows everything about Alice’s and Bob’s algorithms and hardware (Ker-
ckhoffs’ assumptions),
(b) is exponentially, but not superexponentially, computationally superior
to Alice and Bob, then:
she cannot decrypt any single bit correctly with probability significantly
higher than 3

4 by using the encryption emulation attack in the broad sense
(i.e., where she can emulate both the sender’s and the receiver’s algorithms).
We do not want to be too formal here about what “exponentially, but not
superexponentially, computationally superior” means. Intuitively, the reader
can think of the following interpretation: if Alice and Bob are capable of
performing at most n operations per second, then Eve can perform at most
Cn operations per second for some fixed constant C independent of n.
More specifically, we show that there is a k-step algorithm for the receiver
(Alice) to obtain her public key that takes time O(k3), whereas the adversary
who would like to emulate this algorithm with all possible randomness would
have to take time O(kk).

Our focus in this paper is on claim (1) because, in our opinion, it is more
interesting from the theoretical point of view.

2 Introduction

In this paper we continue to explore how non-recursiveness of a decision problem
(as opposed to computational hardness of a search problem) can be used in public
key cryptography. This line of research was started in [6] (note that the earlier
protocol of Magyarik and Wagner [2] was not based on non-recursiveness of a
decision problem, contrary to what the title of their paper may suggest; this was
recently pointed out in [1]). One of the problems with the paper [6] is that it is
somewhat too heavy on combinatorial group theory, at least for a non-expert.
Most of that group theory is needed to separate the receiver (Alice) and the
adversary (Eve) in power. This is, indeed, a very non-trivial problem that opens
several interesting research avenues.

Here our primary focus is on the “encryption emulation” attack on the sender’s
(Bob’s) transmissions. We suggest that Bob’s encryption can be made reasonably
secure against the “encryption emulation” attack by computationally unbounded
adversary, with one reservation: a legitimate receiver decrypts correctly with
probability that can be made arbitrarily close to 1, but not equal to 1.

First we recall what the “encryption emulation” attack on the sender’s en-
cryption is:

Eve emulates the encryption algorithm over and over again, each time
with fresh randomness, until the transmission to be attacked is obtained;
this will happen eventually with overwhelming probability. The correct-
ness of the scheme then guarantees that the corresponding secret key (as
obtained by the adversary performing key generation) allows to decrypt
illegitimately.
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This attack would indeed work fine (at least, for computationally unbounded
adversary) if the correctness of the scheme was perfect. However, if there is a
gap, no matter how small (it can be easily made on the order of 10−200, see [6]),
between 1 and the probability of correct decryption by a legitimate receiver, then
this gap can be very substantially “amplified” for the adversary, thus making
the probability of correct illegitimate decryption anything but overwhelming. To
explain how and why this is possible, we do not really need to introduce any
serious group theory.

We emphasize at this point that when we talk about security against “compu-
tationally unbounded adversary” in this paper, we do not claim security against
the “encryption emulation” (or any other) attack on the receiver’s public key or
decryption algorithm, but we only claim security against the encryption emula-
tion attack on the sender’s transmission. It seems that the problem of security
of the sender’s encryption algorithm is of independent interest. Of course, in
commercial applications to, say, Internet shopping or banking, both the sender’s
and the receiver’s algorithms are assumed to be known to the adversary (“Kerck-
hoffs’ assumptions”), and the receiver’s decryption algorithms (or algorithms for
obtaining public keys) are usually more vulnerable to attacks. However, in some
other applications, say, to electronic signatures (not to mention non-commercial,
e.g. military applications), decryption algorithms or algorithms for generating
public keys (by the receiver) need not be public, whereas encryption algorithms
(of the sender) always are. It is therefore important to have a consensus in the
cryptographic community on the first of the two security claims in Section 1 of
the present paper.

Thus, in Section 3, we present a protocol which is reasonably secure against the
encryption emulation attack on the sender’s transmission by a computationally
unbounded adversary who has complete information on the algorithm(s) and
hardware that the sender uses for encryption. More precisely, in our protocol
the sender transmits his private bit sequence by encrypting one bit at a time,
and the receiver decrypts each bit correctly with probability that can be made
arbitrarily close to 1, but not equal to 1. At the same time, the (computationally
unbounded) adversary decrypts each bit (by emulating the sender’s encryption
algorithm) correctly with probability at most 3

4 .
There are essentially no requirements on the sender’s computational abilities;

in fact, encryption can be done by hand, which can be a big advantage in some
situations; for example, a field operative can receive a public key from a command
center and transmit encrypted information over the phone, without even using a
computer. In the same scenario, there is nothing about the receiver’s algorithms
(or even about the general setup) that has to be known to the public. The only
public information that comes from the receiver in this scenario is the encrypting
instructions that she transmits to the sender (along with the public key).

In Section 5, we use the same protocol to address the second claim from our
Section 1; in particular, we allow the adversary to emulate both the encryption
and decryption algorithms. More precisely, here we allow the adversary to em-
ulate the receiver’s algorithm for obtaining the public key. If such an attack is
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successful, the adversary recovers the receiver’s private key used for decryption,
and then the encryption emulation attack on the sender’s encryption will al-
low the adversary to decrypt correctly with the same probability as the receiver
would. We show however that there is an algorithm for the receiver to obtain
her public key that takes time O(k3) (where k is the complexity of the public
key), whereas the adversary who would like to emulate this algorithm with all
possible randomness would have to take time O(kk).

3 Encryption Protocol

In this section, we describe an encryption protocol with the following features:

(F1) Bob encrypts his secret bit by a word in a public alphabet X .
(F2) Alice (the receiver) decrypts Bob’s transmission correctly with probability

that can be made arbitrarily close to 1, but not equal to 1.
(F3) The adversary, Eve, is assumed to have no bound on the speed of compu-

tation or on the storage space.
(F4) Eve is assumed to have complete information on the algorithm(s) and hard-

ware that Bob uses for encryption. However, Eve cannot predict outputs
of Bob’s random numbers generator (the latter could be just coin tossing,
say). Neither does she know Alice’s algorithm for obtaining public keys.

(F5) Eve cannot decrypt Bob’s secret bit correctly with probability > 3
4 by

emulating Bob’s encryption algorithm.

Once again: in this section, we only claim security against the “encryption
emulation” attack (by computationally unbounded adversary) on the sender’s
transmissions. This does not mean that the receiver’s private keys in our protocol
are insecure against real-life (i.e., computationally bounded) adversaries, but this
is the subject of Section 5. Here we prefer to focus on what is secure against
computationally unbounded adversary since this paradigm shift looks important
to us (at least, from the theoretical point of view).

We also have to reiterate that the encryption protocol which is presented in
this section is probably not very suitable for commercial applications (such as
Internet shopping or banking) due to a large amount of work required from Alice
to receive just one bit from Bob. Bob, on the other hand, may not even need a
computer for encryption.

Now we are getting to the protocol description. In one round of this protocol,
Bob transmits a single bit, i.e., Alice generates a new public key for each bit
transmission.

(P0) Alice publishes two group presentations by generators and defining relators:

Γ1 = 〈x1, x2, . . . , xn | r1, r2, . . . , rk〉

Γ2 = 〈x1, x2, . . . , xn | s1, s2, . . . , sm〉.
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One of them defines the trivial group, whereas the other one defines an
infinite group, but only Alice knows which one is which. In the group
that is infinite, Alice should be able to efficiently solve the word problem,
i.e., given a word w = w(x1, x2, . . . , xn), she should be able to determine
whether or not w = 1 in that group. There is a large and easily accessible
pool of such groups (called small cancellation groups), see [6] for discussion.

Bob is instructed to transmit his private bit to Alice as follows:

(P1) In place of “1”, Bob transmits a pair of words (w1, w2) in the alphabet
X = {x1, x2, . . . , xn, x−1

1 , . . . , x−1
n }, where w1 is selected randomly, while

w2 is selected to be equal to 1 in the group G2 defined by Γ2.

(P2) In place of “0”, Bob transmits a pair of words (w1, w2), where w2 is selected
randomly, while w1 is selected to be equal to 1 in the group G1 defined by
Γ1.

Now we have to specify the algorithms that Bob should use to select his words.

Algorithm “0” (for selecting a word v = v(x1, . . . , xn) not equal to 1 in a Γi)
is quite simple: Bob just selects a random word by building it letter-by-letter,
selecting each letter uniformly from the set X = {x1, . . . , xn, x−1

1 , . . . , x−1
n }. The

length of such a word should be a random integer from an interval that Bob
selects up front, based on his computational abilities. In the end, Bob should
cancel out all subwords of the form xix

−1
i or x−1

i xi.

Algorithm “1” (for selecting a word u = u(x1, . . . , xn) equal to 1 in a Γi) is
slightly more complex. It amounts to applying a random sequence of operations
of the following two kinds, starting with the empty word:

1. Inserting into a random place in the current word a pair hh−1 for a random
word h.

2. Inserting into a random place in the current word a random conjugate g−1rig
of a random defining relator ri.

In the end, Bob should cancel out all subwords of the form xix
−1
i or x−1

i xi.
The length of the resulting word should be in the same range as the length of the
output of Algorithm “0”. We do not go into more details here because all claims
in this section remain valid no matter what algorithm for producing words equal
to 1 is chosen, as long as it returns a word whose length is in the same range as
that of the output of Algorithm “0”.

Now let us explain why the legitimate receiver (Alice) decrypts correctly with
overwhelming probability. Suppose, without loss of generality, that the group
G1 is trivial, and G2 is infinite. Then, if Alice receives a pair of words (w1, w2)
such that w1 = 1 in G1 and w2 �= 1 in G2, she concludes that Bob intended to
transmit a “0”. This conclusion is correct with probability 1. If Alice receives
(w1, w2) such that w1 = 1 in G1 and w2 = 1 in G2, she concludes that Bob
intended to transmit a “1”. This conclusion is correct with probability which is
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close to 1, but not equal to 1 because it may happen, with probability ε > 0,
that the random word w2 selected by Bob is equal to 1 in G2. The point here
is that, if G2 is infinite, this ε is negligible and, moreover, for “most” groups
G2 this ε tends to 0 exponentially fast as the length of w2 increases. For more
precise statements, see [6]; here we just say that it is easy for Alice to make sure
that G2 is one of those groups.

4 Emulating Encryption

Now we are going to discuss Eve’s attack on Bob’s transmission. Under our
assumptions (F3), (F4) Eve can identify the word(s) in the transmitted pair
which is/are equal to 1 in the corresponding group(s), as well as the word, if
any, which is not equal to 1. Indeed, for any particular transmitted word w she
can use the “encryption emulation” attack, as described in our Introduction:
she emulates algorithms ‘0” and “1” over and over again, each time with fresh
randomness, until the word w is obtained. Thus, Eve is building up two lists,
corresponding to two algorithms above. Our first observation is that the list
that corresponds to the Algorithm “0” is useless to Eve because it is eventually
going to contain all words in the alphabet X = {x1, . . . , xn, x−1

1 , . . . , x−1
n }, with

overwhelming probability. Therefore, Eve may just as well forget about this list
and concentrate on the other one, that corresponds to the Algorithm “1”. Now
the situation boils down to the following: if the word w appears on the list, then
it is equal to 1 in the corresponding group Gi. If not, then not.

It may seem that Eve should encounter a problem detecting w �= 1: how
can she conclude that w does not appear on the list if the list is infinite (more
precisely, of a priori unbounded length) ? This is where our condition (F4) plays
a role: if Eve has complete information on the algorithm(s) and hardware that
Bob uses for encryption, then she does know a bound on the size of the list.

Thus, Eve can identify the word(s) in the transmitted pair which is/are equal
to 1 in the corresponding group(s), as well as the word, if any, which is not equal
to 1. There are the following possibilities now:

1. w1 = 1 in G1, w2 = 1 in G2;
2. w1 = 1 in G1, w2 �= 1 in G2;
3. w1 �= 1 in G1, w2 = 1 in G2.

It is easy to see that one of the possibilities (2) or (3) cannot actually occur,
depending on which group Gi is trivial. Then, the possibility (1) occurs with
probability 1

2 (either when Bob wants to transmit “1” and G1 is trivial, or when
Bob wants to transmit “0” and G2 is trivial). If this possibility occurs, Eve cannot
decrypt Bob’s bit correctly with probability > 1

2 because she does not know
which group Gi is trivial. If Eve knew Alice’s algorithm for generating the public
key as well as Alice’s hardware capabilities, then Eve would be able to find out
which Gi is trivial, but we specifically consider attacks on the sender’s encryption
in this paper. We just note, in passing, that for a real-life (i.e., computationally
bounded) adversary to find out which presentation Γi defines the trivial group
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is by no means easy and deserves to be a subject of separate investigation; we
discuss this in the next section. Here we just say that there are many different
ways to efficiently construct very complex presentations of the trivial group,
some of them involving a lot of random choices. See e.g. [5] for a survey on the
subject.

In any case, our claim (F5) was that Eve cannot decrypt Bob’s bit correctly
with probability > 3

4 by emulating Bob’s encryption algorithm, which is obvi-
ously true in this scheme since the probability for Eve to decrypt correctly is, in
fact, precisely 1

2 · 1
2 + 1

2 ·1 = 3
4 . (Note that Eve decrypts correctly with probability

1 if either of the possibilities (2) or (3) above occurs.)
Someone may say that 3

4 is a rather high probability of illegitimate decryp-
tion, even though this is just for one bit. Recall however that we are dealing
with computationally unbounded adversary, while Bob can essentially do his en-
cryption by hand! All he needs is a generator of uniformly distributed random
integers in the interval between 1 and 2n (the latter is the cardinality of the
alphabet X). Besides, note that with the probability of correctly decrypting one
bit equal to 3

4 , the probability to correctly decrypt, say, a credit card number
of 16 decimal digits would be on the order of 10−7, which is comparable to the
chance of winning the jackpot in a lottery. Of course, there are many tricks that
can make this probability much smaller, but we think we better stop here be-
cause, as we have pointed out before, our focus here is on the new paradigm
itself.

5 Encryption/Decryption Emulation Attack by a
Computationally Superior Yet Bounded Adversary

In this section, we show that Eve would need a serious computational power
(superexponential compared to that of Alice) to run an emulation attack on
Alice’s algorithm for generating a public key if this algorithm is sophisticated
enough. This attack is similar to the emulation attack on Bob’s encryption that
we considered before:

Eve emulates Alice’s algorithm for generating a public key over and over
again, each time with fresh randomness, until the actual public key is
obtained; this will happen eventually with overwhelming probability.

Obviously, if this attack is successful, then the encryption emulation attack
on the sender’s encryption, as described in the Introduction, will allow Eve to
decrypt Bob’s bit correctly with overwhelming probability because Eve would
know, just like Alice does, which public presentation Γi is a presentation of the
trivial group.

Thus, we are going to focus on the above attack and describe a particular
algorithm that Alice can use to generate a presentation of the trivial group,
such that emulating this algorithm with all possible randomness would entail
going over superexponentially many possibilities.
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The algorithm itself is quite simple, and it produces special kinds of pre-
sentations of the trivial group. It is known (see e.g. [4], [5]) that the following
presentations define the trivial group:

〈x, y| x−1ynx = yn+1, w = 1〉,
where n ≥ 1 and w is any word in x and y with exponent sum 1 on x. Let us
assume that the length of w is k, a sufficiently large integer selected by Alice,
which can be considered a measure of complexity of the above presentation.
Technically, the integer n, too, influences complexity of the presentation, but it
is less important to us, so we will consider n fixed (and rather small) in what
follows.

Now we are going to describe a k-step algorithm that Alice can use to obtain
a presentation of complexity O(k3) that would define the trivial group.

1. At the first step, Alice selects a presentation of the form

〈x1, y1| x−1
1 yn

1 x1 = yn+1
1 , w1 = 1〉,

with a random word w1 in x1 and y1 of length k, having exponent sum 1 on
x1.

2. At the ith step, 1 < i < k, Alice adds two new generators, xi and yi, and
a new relator wi, which is a random word in xi and yi of length k, having
exponent sum 1 on xi. Also, she adds the relation x−1

i yn
i xi = yn+1

i . The
resulting presentation still defines the trivial group; in particular, xi = 1
and yi = 1 in this group. After that, Alice “mixes” new generators with old
ones by inserting x±1

i and y±1
i in k random places in each old relator. The

idea is to have roughly k generators with index i in each old relator.
3. The kth step is special. Alice adds two new generators, xk and yk, and

two relators, x−1
k ykxky−2

k and wk of small length (say, between 3 and 6)
having exponent sum 1 on xk. The resulting group is therefore still trivial;
in particular, all generators are equal to 1 in this group. Then Alice adds
roughly k more relators to this presentation, where each relator is a random
word of length 1, 2, or 3 in the generators x1, y1, . . . , xk, yk. The only thing
Alice takes care of is that each generator occurs in at least one of these new
relators. Then Alice mixes these new relators with each other and with the
two relators x−1

k ykxky−2
k and wk by using operations of the following kinds:

ri → rirj , or ri → rir
−1
j , or ri → rjri, or ri → r−1

j ri for different relators
ri, rj , until all relators will have roughly k occurrences of each generator.

4. Finally, Alice randomly renames the generators to hide the order of steps.

It is fairly obvious that the complexity of the resulting presentation is O(k3),
whereas to emulate all possible randomness in the above algorithm Eve would
have to take time O(kk) because she would have to explore, in particular, random
(sub)words of length k on 2k letters (and their inverses).
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6 A Challenge

Here we offer a computational challenge to illustrate one of our points, namely,
that Eve might need a serious computational power to detect a presentation of
the trivial group among two given presentations.

Let

Γ1=〈x, y, z | x−1zy−1x−1yxzx−1y−1xyz−1, y−1x−1yxz−1x−1y−1xyxzx−1y−1x,
xy−1z2x−1y−2x3z−1x−1y〉,
Γ2=〈x, y, z | x−1zy−1x−1yxzx−1y−1xyz−1, y−1x−1yxz−1x−1y−1xyx−1zxy−1x,
xy−1z2x−1y−2x3z−1x−1y〉.
The question is: which Γi is a presentation of the trivial group?
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Abstract. A threshold gate is a linear function of input variables with
integer coefficients (weights). It outputs 1 if the value of the function
is positive. The sum of absolute values of coefficients is called the total
weight of the threshold gate. A perceptron of order d is a circuit of depth
2 having a threshold gate on the top level and conjunctions of fan-in at
most d on the remaining level.

For every n and d ≤ D ≤ εn1/6 we construct a function computable
by a perceptron of order d but not computable by any perceptron of

order D with total weight 2o(nd/D4d). In particular, if D is a constant,
our function is not computable by any perceptron of order D with total

weight 2o(nd). Previously functions with this properties were known only
for d = 1 (and arbitrary D) [2] and for D = d [12].

1 Introduction

A threshold gate with input Boolean variables x1, . . . , xn is a Boolean function
of the form sgn(

∑n
i=1 wixi − t), where w1, w2, . . . , wn, t are integers, called the

weights and the threshold, respectively, and sgn stands for the sign function:
sgn(x) = 1 if x is positive, sgn(x) = 0 otherwise.

The sum of absolute values of all coefficients,
∑

i |wi| + |t|, is called the total
weight of the threshold gate.

In this paper we consider circuits composed of threshold gates (threshold
circuits). More specifically we prove exponential lower bounds for the size of
threshold circuits of a special kind (called perceptrons) computing certain ex-
plicit functions. There are two ways to define the size of a threshold circuit: we
take weights of wires into account or we do not. In our lower bounds, we adopt
the first way. That is, we define the size of a threshold circuit as the sum of total
weights of its gates. This is equivalent to allowing only weights ±1 on wires and
defining the size as the total number of wires in the circuit.

The threshold circuits considered in this paper are of constant depth. The first
exponential lower bound for such circuits is the bound for circuits composed of
NOTs, ANDs and ORs (of unbounded fan-in) from [15,7]. (Note that AND and
OR are indeed a special kind of threshold gates.) The next exponential bound
� Work is partially supported by grant 06-01-00122 from Russian Federation Basic

Research Fund.
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was obtained for bounded depth circuits containing ANDs, ORs, NOTs and
MOD p gates (where p is a prime number)) [13,14].1 (Note that every MODm
gate can be computed by a threshold circuits of constant depth and polynomial
size.) For MODm gates with a composite m no super-polynomial bounds are
known, even for depth-2 circuits.

For general depth-2 threshold circuits, there is an exponential lower bound
for the size of any circuit computing the inner product of n bit strings [6] (recall
that we take weights into account). Later this result was improved in [11]: the
exponential lower bound holds even if we do not count the weights on wires from
the inputs (but count the weight of the top threshold gate). There are no known
super-polynomial lower bounds for the number of gates in depth-2 threshold
circuits (i.e. if we do not count weights at all).

In this paper we consider perceptrons, which are depth-2 threshold circuits of
a special kind. A perceptron of order d is a circuit of depth 2 having a threshold
gate on the top level and conjunctions of fan-in at most d on the remaining
level. A perceptron of order 1 is just a threshold gate. The total weight of a
perceptron is the total weight of its threshold gate. Since the conjunction of
Boolean variables corresponds to the product of them, a perceptron of order d
is the sign of degree d integer polynomial. Perceptrons were studied intensively
in sixties in the artificial intelligence community (see [9]), as a simplest model
of a neuron. On the other hand, they arise quite naturally in Computational
Complexity Theory [3].

We will prove lower bounds for the total weights of perceptrons in terms of
their order d and the number of input variables n. As size is bigger than total
weight, our bounds hold for size as well. Note that there is a Boolean function
of n variables that is not computable by any perceptron of order less than n
(for example, the parity function, see [9]). In this paper we are interested only
in functions that are computable by perceptrons of small order d and such that
any perceptron of order d or a bigger order computing the function has large
total weight. For example, we are not interested in the inner product (studied
in [6,11])—that function is not computable by perceptrons of order less than n,
as parity reduces to it.

We know three results of this kind. H̊astad in [8] constructed a function of n
variables, that is computable by a threshold gate, but any such threshold gate
has total weight at least nΩ(n). Note that by result of Muroga [10], if a Boolean
function is computed by a threshold gate, it can be computed by a threshold
gate of total weight nO(n) (see also [8]). Thus H̊astad’s bound is tight up to a
factor in the exponent. The second result is due to Beigel [2]. He exhibited a
function of n variables that is computable by a threshold gate with total weight
2n, and for every D any perceptron of order D computing that function has total
weight 2Ω(n/D3). His lower bound is not tight: it differs from Muroga’s upper
bound in that the base of the power is 2 instead of n. On the other hand, he
proved a lower bound for any order D and not only for D = 1. The third result

1 The gate MODm on inputs x1, . . . , xn outputs 1 if the number of 1s among x1, . . . , xn

is divisible by m.
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is from our previous paper [12]. We have generalized there H̊astad result to any
d: for every d � 1 there is a perceptron of order d such that every perceptron
of order d that computes the same function f has total weight at least nΩ(nd)

(the constant hidden in Ω-notation depends on d). This bound is also tight up
to a factor in the exponent. Indeed, Muroga’s upper bound for d = 1 easily
generalizes to all d. That is, every perceptron of order d with n input variables is
equivalent to a perceptron of order d and total weight nO(nd), where the constant
hidden in O-notation depends on d. (Assume that conjunctions on the bottom
level are different and every variable appears in each conjunction at most once.
Thus there are at most O(nd) functions on the bottom level of a perceptron of
order d. Consider them as independent variables. In this way the upper bound
for the total weight of threshold gates translates to the upper bound nO(dnd) for
perceptrons.)

Is it possible to generalize Beigel’s result to arbitrary d? Namely, is it true
that for all d and n there is a function f computable by a perceptron of order d
and such that for all D any perceptron of order D computing f has total weight
nΩ(nd) (or 2Ω(nd), as in Beigel’s result)? The constant in Ω(nd) does not depend
on n, but may depend on D and d? This question is open for every d > 1.

In this paper, we make a step towards answering this question in positive. For
all n and d � D � εn1/6 we construct a function computable by a perceptron
of order d, but not computable by a perceptron of order at most D with total
weight 2o(nd/D4d). This result is still not optimal for two reasons: (1) the base of
the power is constant, and not n, and (2) the constructed function depends on
D. But there is an essential progress compared to the results of [2], [12]. Indeed,
we obtain lower bound 2Ω(nd) for all d, and not only for d = 1, as in [2], and our
lower bound is true for perceptrons whose order is in a rather wide range, and
not only for perceptrons of order d, as in [12].

The constant in Ω(nd) in our result is of the order Ω(D−4d). This makes our
bound valuable for non-constant D. For example, we can fix arbitrary d and
let D = log n. In this case we obtain a sequence fn of functions computable by
a perceptron of order d and such that every perceptron of order at most log n

computing fn has total weight 2Ω(nd/ log4d n). In particular, this lower bound
holds for perceptrons of any constant order.

2 The Result

Let [n] denote the set of first n natural numbers, {1, 2, . . . , n}.
Our functions are generalizations of the function used by Beigel [2] for similar

purposes:

Definition 1 ([2]). For an x∈{0, 1}n the Boolean function ODD-MAX-BIT(x)
is 1 if the rightmost 1 in x has an odd index. (If x has no ones then let, say,
ODD-MAX-BIT(x) = 0.)

Now we are going to define our function. The function depends on three natural
parameters n, d and D, where d � D. The first two parameters indicate the
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number of variables (more specifically, it has nd variables). The meaning of d
and D is the following: the function is computed be a perceptron of order d (of
large weight) and is not computable by any perceptron of order at most D that
has small total weight (we will explain further what is “small” and “large” in
this context).

We partition dn input variables into d groups of equal size n: (x1, x2, . . . , xd)
where xi = (xi

1, x
i
2, . . . , x

i
n). Each evaluation of xi identifies a set of natural

numbers Xi = {j|xi
j = 1}. And conversely, each subset Xi of [n] defines a unique

assignment of Boolean values to xi. Therefore we will assume in the sequel that
our function maps d-tuples (X1, . . . , Xd) of subsets of [n] to {0, 1}.

Similar to ODD-MAX-BIT(x), the value of our function on a tuple
(X1, . . . , Xd) depends only on the largest tuple (α1, . . . , αd) in the set X1 ×
· · · × Xd, with respect to some total order on [n]d. The ordering relation we will
use is quite complicated, it plays the key role in our proof.

First we define D + 1 different total orders on the set [n]. The first one, <1,
is the normal order: 1, 2, . . . , n. Other orders are cyclic shifts of this one. More
specifically, partition the set [n] into D+1 contiguous blocks u1, . . . , uD+1 having
equal sizes: ui = (i − 1) n

D+1 + 1, . . . , i n
D+1 (if n is not a multiple of D + 1, then

the sizes of blocks may differ by 1). For any i = 2, . . . , D + 1, the order <i is
obtained from the normal order by exchanging the first i − 1 blocks and the
last D +2− i blocks: ui, . . . , uD+1, u1, . . . , ui−1

2. Let numi(t) denote the ordinal
number of t w.r.t. the order <i (here i = 1, . . . , D + 1 and t ∈ [n], the ordinal
number of the least element is 1).

The order on [n]×. . .×[n] (d times) we will use is essentially the lexicographical
order. However, there is an important difference. In the lexicographical order, all
the components of two given d-tuples in [n]d are compared w.r.t. a fixed order.
In contrast, we will compare kth components of given tuples w.r.t. an order from
the list <1, . . . , <D+1 which depends on the compared tuples and on k. More
specifically, it depends on the ordinal number of k − 1st component of the given
tuples in the order which is used to compare their k − 1st components.

The first components α1 and β1 of two given d-tuples, (α1, . . . , αd) and
(β1, . . . , βd), are compared w.r.t. the order <1. If they are not equal, we have
already compared the tuples. Otherwise, we compare the second components.
The recursive rule to choose the next order is as follows.

Assume that the order <ik
(to compare kth components) is already defined

and it happens that αk = βk. The order to compare (k + 1)st is determined by
the ordinal number of αk (which coincides with βk by the assumption) in the
order <ik

. Namely,

ik+1 ≡
⌈

numik
(αk)

2

⌉
(mod(D + 1)).

2 Actually, it only matters that the largest n/(D+1) elements are different in all orders.
We prefer to fix a particular easily described set of orders having this property.
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In other words, as αk increases from the minimum to the maximum (w.r.t. <ik
),

the number ik+1 takes all the values

1, 1, 2, 2, . . . , (D+1), (D+1), 1, 1, . . . , (D+1), (D+1), . . . (1)

in the specified order.
It is important that, for every tuple α, the orders used to compare α’s com-

ponent to components of other tuples β depend only on α and on the number
of the component.

By construction, the defined binary relation on [n]d is asymmetric and total.
It is easy to verify that it is transitive. Thus it is a strict total order.

It is instructive to analyze the case d = 2. Represent pairs (α1, α2) by points
on the plane.

�

�

� � � � ��

� �

��

× ×

× ×

× ×

α1

α2

1 2 3 n. . .

· · ·1

2

n

The case d = 2.

The first component α1 is associated with the horizontal axis, and the second
component α2 with the vertical axis. We have two rules to compare the pairs:

Rule 1. The more left the pair is, the smaller it is.

Rule 2. In every column the minimal pair is marked by “×” and the arrows
indicate the direction from small pairs to large ones. (In the two leftmost columns
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the minimal pairs are in the bottom row. In the following two columns they are
in the rows number n

D+1 , in the next two columns they are in the row number
2n

D+1 and so on.) Above the minimal pair, the higher the pair is, the larger it
is. The same holds for the pairs below it. The pair at the bottom follows the
topmost pair.

In the case d > 2 the order is not so easy. However, as we will reason by
induction, we will always consider only two consecutive coordinates. Thus we
will be in the situation that is similar to the case d = 2. The only difference is
that the order on the first coordinate might be different from <1.

To define our function we need one more notation. Let α = (α1, . . . , αd)
be a d-tuple from [n]d and k ∈ [d]. Note that we have assigned to each tuple
α = (α1, . . . , αd) certain orders <i1 , . . . , <id

. Let oddk(α) = 1 if numik
(αk) is

odd and oddk(α) = 0 otherwise.
For X ⊆ [n] let maxi(X) denote the ordinal number of the maximal element

X w.r.t. the order <i, that is maxi(X) = maxt∈X numi(t).
We are going to define our function now. Its value on the tuple (X1, . . . , Xd)

depends only on the maximal tuple in X1 × . . . × Xd.

Definition 2. Let X = (X1, . . . , Xd) be a tuple of non-empty subsets of [n]. Let
α = (α1, . . . , αd) the largest tuple in X1 × . . . × Xd (w.r.t. above defined order
on [n]d). We define our function as follows:

ODD-MAX-BITD
d (X) = odd1(α) ⊕ odd2(α) ⊕ . . . ⊕ oddd(α).

If at least one Xi is empty, we let ODD-MAX-BITD
d (X) = 0.

Lemma 1. The function ODD-MAX-BITD
d is computed by a perceptron of order

d.

Proof. First note that a tuple α = (α1, . . . , αd) is in X1 × . . .×Xd iff the AND of
all variables x1

α1
, . . . , xd

αd
evaluates to 1. We will denote this AND by AND(α).

Let t1, t2, . . . , tnd be the enumeration of all tuples in [nd] in the increasing
order. Then ODD-MAX-BITD

d (X) is equal to the sign of the sum
∑

j

(−1)odd1(tj)+...+oddd(tj) · 2j · AND(tj).

Indeed, for all tj /∈ X1 × . . . × Xd we have AND(tj) ≡ 0. Thus only those tj
in X1 × . . . × Xd make a contribution to the displayed sum. The coefficients 2j

are chosen so that the contribution of the largest tuple is greater than the total
contribution of all other tuples.

The next theorem is our main result.

Theorem 1. The function ODD-MAX-BITD
d (X) is not computed be any per-

ceptron of order at most D and of total weight w provided

D6 + D5 log(n + 1) < δn, (2)

w < 2( εn
D4 )d

. (3)

Here, ε, δ are small positive constants.
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Proof. Assume that a perceptron of order at most D and of total weight w
computes our function and the inequality (2) is fulfilled. We will prove that the
inequality (3) is false.

Consider the polynomial C representing the perceptron. In what follows we
will substitute only 0 and 1 for its variables. Thus we will identify its input
values with d-tuples of subsets of [n] and we will write C(X1, . . . , Xd). W.l.o.g.
we assume that C is a multi-linear polynomial (i.e. of degree at most 1 in each
variable). The value of C on any Boolean assignment does not exceed the total
weight of the perceptron. Thus it suffices to find X1, . . . , Xd such that

|C(X1, . . . , Xd)| � 2( εn
D4 )d

.

We present first a sketch of the construction of such X1, . . . , Xd (Section 2.1)
and then a formal proof (Section 2.2).

2.1 A Sketch of the Construction

Our plan is the following. We will build a sequence of Ω
(
( εn

D4 )d
)

d-tuples of
subsets of [n]. The absolute value of C on almost every tuple in that sequence
will exceed at least 2 times its absolute value on the preceding one. For the
remaining few tuples, C’s value may decrease compared to the C’s value on the
preceding tuple. The total decrease in C’s value due to “bad” tuples will not
affect the total increase in C’s value due to “good” tuples. As the absolute value
of C on the first tuple is at least 1, its value on the last assignment will be
exponential in the length of the sequence.

How will we obtain a tuple on which C’s value is twice more than that on
the preceding one? Let us fix values of all X1, . . . , Xd−1 (and Xd remains free).
The function ODD-MAX-BITD

d (X1, . . . , Xd) becomes essentially the function
ODD-MAX-BIT(Xd) and the polynomial C becomes a polynomial in xd

1 , . . . , x
d
n

of degree at most D. The only difference between ODD-MAX-BITD
d (X1, . . . , Xd)

and ODD-MAX-BIT(Xd) is that the order <i on [n] used in the definition of
ODD-MAX-BITD

d might be different from the order <1, which is used in the defi-
nition of ODD-MAX-BIT(Xd). A lemma of Beigel from [2] (Lemma 2) states that
if max(X) is not very close to n then it is possible to change the set X so that the
absolute value of the polynomial sign representing ODD-MAX-BIT(X) increases
at least 2 times and max(X) increases only a little. In this result, it is important
that the same order on [n] is used in the definition of ODD-MAX-BIT(X) and
in the definition of max(X). Applying Beigel’s result to the order <i, we obtain
a way to increase C’s value.

Here is a more detailed exposition of our plan in the case d = 2. Let us start
with X0

1 = {1}, X0
2 = {1}. Fix the first coordinate X0

1 . Beigel’s result (Lemma 2)
implies that if the maximal element in X0

2 is small enough (as in our case), then
it is possible to change Ω(n) times the value X2 so that each change doubles the
absolute value of C(X0

1 , X2). Hence there is X1
2 such that

|C(X0
1 , X1

2 )| � 2Ω(n)|C(X0
1 , X0

2 )|.
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Then we fix the second coordinate X1
2 and change X1 so that (a) the value of

C decreases only a little and (b) w.r.t. the new order on the second coordinate,
the maximal element in X1

2 is again small. Thus we can again use Lemma 2 to
obtain X2

2 such that

|C(X1
1 , X2

2 )| � 2Ω(n)|C(X1
1 , X1

2 )|.
We will show that this procedure can be repeated Ω(n) times. Therefore at the
end we will get X

Ω(n)
1 , X

Ω(n)
2 such that

|C(XΩ(n)
1 , X

Ω(n)
2 )| � 2Ω(n2)|C(X0

1 , X0
2 )| � 2Ω(n2).

An analysis will show that the constant in Ω(n2) is of order Ω(D−8) and thus
we obtain w � |C(XΩ(n)

1 , X
Ω(n)
2 )| � 2Ω(n2/D8).

How does the argument change in the case d = 3? We first fix the first coor-
dinate X0

1 = {1}. The function ODD-MAX-BITD
d (X0

1 , X2, X3) essentially coin-
cides with the similar function of X2, X3, that is, with the function
ODD-MAX-BITD

d (X2, X3) Therefore it is possible to use the inequality proved
in the case d = 2. Then we fix the second and the third coordinates and change
the first one so that (a) the value of C decreases only a little and (b) we can again
use the inequality proved in the case d = 2. We will prove that this procedure
can be repeated 2Ω(n) times.

Thus our proof will proceed by induction on d (called k in Lemma 4).

2.2 A Formal Proof

First we state a Lemma which was essentially proved in [2]. Let f(X) be a
polynomial with integer coefficients in variables x1, . . . , xn of degree at most D.
Recall that we identify assignments of Boolean values to variables x1, . . . , xn and
subsets X of [n]. Thus we use the notation f(X) instead of f(x1, . . . , xn).

Lemma 2 ([2]). There is a positive constant γ such that the following holds.
Let A, B be disjoint subsets of [n] such that |B| � γD2. Assume that for every
non-empty M ⊆ B we have sgn(f(A)) �= sgn(f(A ∪ M)). Then there is M ⊆ B
with

|f(A ∪ M)| � 2|f(A)|.
This lemma will enable to increase the value of C at the expense of increasing
X1, . . . , Xd. And the next one will enable to decrease the size of Xi so that C(X)
decreases not very much.

Lemma 3. Let f(X) be a polynomial of n variables of degree at most D with
integer coefficients. Let X0 ⊆ [n] be an input to f . Then there exists an input
X1 such that |X1| � D and

|f(X1)| � |f(X0)|
2D(D+1)(n + 1)D

.
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Proof. Every monomial of f has the form w(S) · ∏
i∈S xi, where S is a subset

of [n] and w(S) is an integer number.3 Using this notation we can express the
value f(X0) as f(X0) =

∑
S⊆X0 w(S).

There are at most (n + 1)D monomials in f . Hence there exists a set S ⊆ X0

such that |S| � D and |w(S)| � |f(X0)|
(n+1)D .

Consider the minimal S with such properties and distinguish two cases:

1. For any proper subset S1 � S we have |w(S1)| � |w(S)|
2D+1 . Then

∑

S1

|w(S1)| � 2D |w(S)|
2D+1 =

|w(S)|
2

.

Hence |f(S)| � |w(S)| − ∑
S1

|w(S1)| � |w(S)|
2 � |f(X0)|

2(n+1)D .

2. There exists proper subset S1 � S such that |w(S1)| > |w(S)|
2D+1 . In this case

we replace S by S1 and repeat the construction. Since the cardinality of S
decreases after each repetition, we will have at most D iterations.

At the end we will obtain set X1 such that |f(X1)| � |f(X0)|
2D(D+1)(n+1)D .

With these lemmas at hand we are able to prove the key lemma.

Lemma 4. Let X0
1 , . . . , X0

d be a tuple of subsets of [n] and let α = (α1, . . . , αd)
denote the maximal tuple in X0

1 × . . . × X0
d . Let <l be the order used to com-

pare the kth component of α. Assume that numl(αk) � Dn
D+1 . Then there are

X ′
k, X ′

k+1, . . . , X
′
d such that

|C(X0
1 , . . . , X ′

k, . . . , X ′
d)| � 2( εn

D4 )d−k+1

|C(X0
1 , . . . , X0

k , . . . , X0
d)|.

Here ε is a positive constant.

Proof. The proof goes by downward induction on k. The base of induction is
k = d. For k = d the inequality is obtained by εn/D4 applications of Lemma 2
to the polynomial f(X) = C(X0

1 , . . . , X0
d−1, X).

More specifically, the function ODD-MAX-BITD
d (X0

1 , . . . , X0
d−1, X) either co-

incides with ODD-MAX-BIT(X), or coincides with its negation. Here we as-
sume that in the definition of ODD-MAX-BIT the elements in [n] are arranged
w.r.t. the order <l. Thus the polynomial f(X) sign-represents the function
ODD-MAX-BIT(X). Let A = X0

d and let B stand for the set of γD2 numbers in
[n] obtained as follows. Let s be the ordinal number of maxl(A) w.r.t. the order
<l. Include in B all the elements with ordinal numbers s+1, s+3, . . . , s+2γD2−1
w.r.t. <l. For every non-empty M ⊂ B we have ODD-MAX-BIT(X0

d ∪ M) �=
ODD-MAX-BIT(X0

d). Therefore the assumptions of Lemma 2 are fulfilled and
there is M ⊆ B with |f(X0

d ∪ M)| � 2|f(X0
d)|. Change X0

d to X0
d ∪ M and

repeat the argument. Each iteration increases X0
d by at most 2γD2, thus we

3 W.l.o.g. we may assume that f is a multilinear polynomial.
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can make n/(D + 1)2γD2 iterations. Thus we obtain X ′
d such that |f(X ′

d)| �
2Ω(n/D3)|f(Xd

0 )| (even with a smaller exponent 3 in D3 than claimed 4).
To show the lemma for k < d we repeat several times the following three

steps.

Step 1. Consider the polynomial f(X) = C(X0
1 , . . . , X0

k , X, . . . , X0
d) (we fix all

inputs except for Xk+1). Apply Lemma 3 to this polynomial and to X0 = X0
k+1.

The resulting set X1 has at most D elements and

|C(X0
1 , . . . , X1, . . . , X1

d)| � 2−(D(D+1)+D log(n+1))|C(X0
1 , . . . , X0

k , . . . , X0
d)|.

Replace X0
k+1 by X1.

Step 2. The goal of this step is to change X0
k so that the ordinal number of X0

k+1
be at most Dn

D+1 in the order on k + 1st component associated with the largest
element of X0

1 × . . . × X0
d .

Since the cardinality of X0
k+1 is at most D, there is an order <i such that

the ordinal number of the largest element in X0
k+1 w.r.t. this order is at most

nD/(D + 1). Indeed, the latter means that X0
k+1 is disjoint with the set of D

largest elements in that order. And our orders are defined so that the sets of D
largest elements are pair-wise disjoint for all D + 1 orders. Thus no D-element
set can intersect all of them.

Adding to X0
k only one element among 2(D +1) elements following its largest

element w.r.t. the order <l, we can change the order on k + 1st component so
that the new order be the order <i from the previous paragraph. However such
change of X0

k may decrease C(X0
1 , . . . , X0

d) very much, and we do not want that.
So we need again Lemma 2. This time we apply it to the polynomial

f(X) = C(X0
1 , . . . , X, X0

k+1, . . . , X
0
d)

and to A = X0
k . We also have to specify the set B from the conditions of the

lemma. We have to choose B carefully, as we need that after replacing A by
A ∪ M the new order on the k + 1st component be <i.

Let U stand for the set of 2γD2(D + 1) numbers that follow the maximal
element of X0

k w.r.t. the order <l:

U = {x|x ∈ [n], numl(αk) + 1 � numl(x) � numl(αk) + 2γD2(D + 1)}.

Note that the rule (1) to define the order on k + 1st component is periodic
with period 2(D + 1). In every period, every order occurs twice: it occurs once
with an odd index and once with an even index. Therefore U has exactly 2γD2

elements that will define the order <i on k + 1st component, call Ui the set of
such numbers. Exactly half of numbers in Ui occur with an odd index. Let B0
stand for the set of such numbers and let B1 = Ui \ B0.

We claim that the conditions of Lemma 2 are fulfilled for A = X0
k and for B

equal either to B0 or to B1. Indeed, all elements in Ui are greater than maxl(A).
Thus for every non-empty M ⊆ Ui we have maxl(A∪M) = maxl(M). Moreover,
all the components of the maximal element of X0

1 ×· · ·×(A∪M)×· · ·×X0
d , except
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for the kth one, do not depend on M . Indeed, its first k−1 component coincides
with corresponding components of the maximal element in X0

1 ×· · ·×A×· · ·×X0
d

and all elements of Ui define the same order on the k + 1th component. This
implies that the function ODD-MAX-BITD

d (X0
1 , . . . , A ∪ M, . . . , X0

d) is equal
either to ODD-MAX-BIT(A ∪ M) or to its negation (where ODD-MAX-BIT is
defined w.r.t. the order <l). W.l.o.g. assume that the first case holds. Then for
all non-empty M ⊆ Ui the sign of f(A∪M) is equal to ODD-MAX-BIT(A∪M).
The function ODD-MAX-BIT(A ∪ M) depends only of the parity of the index
of maximal element of M (w.r.t. <l). Thus the sign of f(A ∪ M) is constant for
all non-empty M ⊆ B0 and the same holds for subsets of B1. And for subsets of
B1 the sign of f(A ∪ M) is different from that for subsets of B0. Let B = B0 if
the sign of f(A ∪ M) is different from that of f(A) for non-empty M ⊆ B0 and
let B = B1 otherwise.

Now we can apply Lemma 2 to obtain M ⊆ B with |f(A ∪ M)| � 2|f(A)|.
Replace X0

k by X0
k ∪ M (we have a little bit more than needed, as the absolute

value of C is even doubled).
Step 3. Note that after Step 2 the tuple X0

1 , . . . , X0
d satisfies the condi-

tions of Lemma 4 for k + 1. Applying the induction hypothesis, we obtain
X1

k+1, X
1
k+2, . . . , X

1
d with

|C(X0
1 , . . . , X1

k , . . . , X1
d)| � 2( εn

D4 )d−k

|C(X0
1 , . . . , X1

k , X0
k+1 . . . , X0

d)|. (4)

How the first k coordinates of the maximal element of X1 × · · · × Xd have
been changed due to making Steps 1, 2 and 3? The first k − 1 components have
remain intact and the kth component has increased by at most 2γD2(D + 1)
w.r.t. <l. At the start, by conditions of the lemma, the ordinal number of kth
component was less than nD

D+1 . Thus we can repeat these three steps n
2γD2(D+1)2

times. Choose ε so that n
2γD2(D+1)2 � 2εn

D4 . Then the number of iterations is at
least 2εn

D4 .
During each iteration the absolute value of C first decreases by a factor of at

most 2D(D+1)+D log(n+1) on Step 1 and then increases by a factor of 2( εn
D4 )d−k

on
Step 3. We can assume that the constant δ in the inequality (2) is so small that
the exponent in the first factor is less than εn/2D4. Thus, after each iteration,
the absolute value of C increases by a factor of

2( εn
D4 )d−k− εn

2D4 � 2( εn
D4 )d−k/2.

Raising this factor to the power of the number of iterations, we obtain the desired
factor 2( εn

D4 )d−k+1
.

Let us finish the proof of the theorem. Let in Lemma 4 X0
1 = . . . = X0

d = {1} and
k = 1. The conditions of the lemma are fulfilled and hence there are X ′

1, . . . , X
′
d,

with
|C(X ′

1, . . . , X
′
d)| � 2( εn

D4 )d

|C({1}, . . . , {1})| � 2( εn
D4 )d

.

Now we can fix parameters in Theorem 1 and obtain the following results.
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Theorem 2. Let D(n) = no(1). Then for any ε > 0 the function
ODD-MAX-BITD(n)

d (X) is computable by a perceptron of order d, but is not
computable by any perceptron of order at most D(n) with total weight 2nd−ε

.

Theorem 3. Let d and D be constants. Then the function ODD-MAX-BITD
d (X)

is computable by a perceptron of order d, but is not computable by a perceptron of
order at most D with total weight 2o(nd).

Acknowledgements. I am grateful to Nikolay Vereshchagin and to Harry
Buhrman for drawing my attention to this problem.
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Lambek Grammars with One Division Are

Decidable in Polynomial Time

Yury Savateev�

Department of Mathematical Logic, Faculty of Mechanics and Mathematics,
Moscow State University, Moscow, 119991, Russia

Abstract. Lambek grammars provide a useful tool for studying formal
and natural languages. The generative power of unidirectional Lambek
grammars equals that of context-free grammars. However, no feasible al-
gorithm was known for deciding membership in the corresponding formal
languages. In this paper we present a polynomial algorithm for deciding
whether a given word belongs to a language generated by a given unidi-
rectional Lambek grammar.

1 Introduction

Lambek calculus and Lambek categorial grammars were first introduced in [4].
Lambek calculus uses syntactic types that are built from primitive types using
three binary connectives: multiplication, left division, and right division. Natural
fragments of Lambek calculus are the product-free Lambek calculus, which does
not use multiplication, and the unidirectional Lambek calculus, which has only
one connective left: a division (left or right).

The Lambek calculus is intended for specifying formal languages (sets of fi-
nite words over a finite alphabet); this is done in the framework of categorial
grammars, where all language-specific information is put in a lexicon and the
derivation rules are the same for all languages.

Lambek categorial grammars have a designated type (usually primitive) and
assign different types to elements of an alphabet (to one element one can assign
several types). The grammar accepts a word if there are assignments for the
elements of the alphabet in the word such that the sequent with a string of these
assignments as the antecedent and the designated type as the succedent is deriv-
able in Lambek calculus. Depending on which fragment of Lambek calculus is
used, one can study product-free Lambek grammars and unidirectional Lambek
grammars.

Categorial grammars based on the original Lambek calculus recognize exactly
the context-free languages that do not contain the empty word (this was proved
by M. Pentus in [7]). The same holds for both of the product-free and the
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unidirectional Lambek calculus (the last result was proved by W. Buszkowski
in [2]).

Of course, for linguistic applications it is important to have efficient algorithms
that find out whether a sequence of symbols is accepted by a given grammar. In
fact, for a given calculus in the framework of categorial grammars there are two
important algorithmic problems. The first one concerns derivability in the calcu-
lus, and the second one is about acceptability by a grammar (the second problem
has an additional degree of nondeterminism, since in categorial grammar an el-
ement of the alphabet may be associated with several syntactic types; here the
input consists of a grammar and a word). For every variant of the calculus these
problems obviously lie in NP. For the original Lambek calculus both problems
are NP-complete (see [6]). A polynomial algorithm for determining derivability
in the unidirectional calculus was presented in [8].

The algorithm presented in [8] goes as follows. At first, one decomposes the
given types into atomic building blocks, labels them with natural numbers (which
indicate how deeply the atomic building block is nested in denominators of di-
vision operators), and puts them in a certain order (which reflects the group-
theoretic interpretation of the division operator). Next, one evaluates an auxil-
iary predicate of ‘acceptability’ for all substrings of the string of labelled atomic
building blocks. Doing this in the manner of dynamic programming leads to a
straightforward cubic algortihm for deciding derivability in the unidirectional
Lambek calculus.

One might expect that the acceptability problem is harder, since in general
one word corresponds to exponentially many Lambek calculus sequents, whose
derivability determines whether the word is accepted (at least one of the se-
quents must be derivable). Fortunately, the algorithm from [8] can be extended
to provide a polynomial-time solution for this more general problem.

For each of these variants of Lambek calculus we assume that antecedents of
sequents are just strings of types without any additional structure (i.e., we have
full associativity). However, non-associative variants of Lambek calculus (see [5])
can be studied too. In [1] it was proven that the grammar acceptability problem
for non-associative product-free Lambek grammars can be solved in polynomial
time. In [3] the polynomiality was proven for the derivability problem for full
non-associative Lambek calculus. There are open questions concerning variants
that have restricted associativity, for example only left associativity.

In this paper we prove that for the unidirectional Lambek grammar the ac-
ceptability problem is decidable in deterministic polynomial time and present an
algorithm for it. Concerning the three associative fragments, now only the case
of the product-free Lambek calculus remains open.

2 Lambek Calculus L

The original Lambek calculus can be constructed as follows. Let P = {p0, p1, . . .}
be a countable set of what we call primitive types. Let Tp be the set of types
constructed from primitive types with three binary connectives /, \, and ·. We
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will denote primitive types by small letters (p, q, r, . . .) and types by capital
letters (A, B, C, . . .). By capital greek letters (Π , Γ , Δ,. . .) we will denote finite
(possibly empty) sequences of types. Expressions like Π → A where Π is not
empty are called sequents.

Axioms and rules of L:

A → A

(→ /)
ΠA → B

Π → B/A
(→ \)

AΠ → B

Π → A\B

(/ →)
Π → A ΓBΔ → C

Γ (B/A)ΠΔ → C
(\ →)

Π → A ΓBΔ → C

ΓΠ(A\B)Δ → C

(· →)
ΓABΔ → C

Γ (A · B)Δ → C
(→ ·)Γ → A Δ → B

ΓΔ → A · B .

(Here Γ and Δ can be empty, but Π must be non-empty).
In this paper we will only consider the unidirectional Lambek calculus L\,

which is a similar calculus but with only one connective \ (so it has a smaller
set of types, Tp(\)). It only has the axiom and two rules, (→ \) and (\ →). The
choice of \ over / is arbitrary: all the constructions and proofs can be rewritten
for L/.

3 Unidirectional Lambek Grammars

We assume that a finite alphabet Σ and a distinguished type B ∈ Tp(\) are
given (usually when Lambek grammars are defined the distinguished type is
said to be in P, but the algorithm we will present works for all B ∈ Tp(\)).
An unidirectional Lambek grammar is a mapping f such that, for all t ∈ Σ,
f(t) ⊂ Tp(\) and f(t) is finite.

The language generated by the Lambek grammar is defined as the set of all
words x1 . . . xn over the alphabet Σ for which there exists a sequent A1 . . . An →
B such that Ai ∈ f(xi) for all i � n and L\ � A1 . . . An → B. We shall denote
this language by L(Σ, B, f).

In [2] it was proven that the languages generated by unidirectional Lambek
grammars are exactly all context-free languages without the empty word.

4 Representation of Sequents

We will use the representation of sequents as strings of atoms used in [8].
Let Atn be the set of atoms or primitive types with superscripts, {p(i)|p ∈

P, i ∈ N}. We will consider the set of strings of atoms Atn∗. We will denote
strings by A, B, and so on; ε will denote the empty string. Let (·)+2 be the
operation on Atn∗ satisfying the following conditions:

(p(i))+2 = p(i+2)

(AB)+2 = (A)+2(B)+2 .
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Consider γ, γ : Tp(\) → Atn∗, two mappings from types to strings of atoms
defined by

γ(p) = p(1) γ(p) = p(2)

γ(A\B) = γ(A)γ(B) γ(A\B) = γ(B)(γ(A))+2.

Also define γ(Π) for Π ∈ Tp(\)∗ as follows: if Π = A1A2 . . . An, then γ(Π) =
γ(A1)γ(A2) . . . γ(An). It is readily seen that for any n > 0 the string γ(A1 . . . An)
ends in p(1) and the total number of atoms with superscript 1 in it equals n.

Here are some examples of how γ and γ work:

γ
(
(p\q)

)
= p(2)q(1)

γ
(
(p\q)

)
= q(2)p(3)

γ
(
((s\q)\(r\p))

)
= q(2)s(3)r(2)p(1)

γ
(
((s\q)\(r\p))

)
= p(2)r(3)s(4)q(3)

γ
((

p\(q\(r\(s\(t\u))))
)(

((((p\q)\r)\s)\t)\u
))

=

= p(2)q(2)r(2)s(2)t(2)u(1)t(2)r(4)p(6)q(5)s(3)u(1)

Now we define two subsets of Atn∗: plus-strings and minus-strings. We will write
A

+ and B
− to denote that A is a plus-string and B is a minus-string. These two

sets are the smallest sets that satisfy the following recursive conditions:

(ε)+

(p(1))+

(p(2))−

A
+, B+ ⇒ (AB)+

A
−, B+, B �= ε ⇒ (AB)+

A
−, B+ ⇒ (A(B)+2)− .

We will use the following notational convention: + and − can relate to parts
of a string. For example when we write A

+
BC

−, this means “we have a string
of the form ABC such that A

+ and C
−”.

The mapping γ is a bijection between sequences from Tp(\)∗ and non-empty
plus-strings. And γ is a bijection between Tp(\) and minus-strings.
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In the calculus S the derivable objects are of the form → A, where A is from
Atn∗. Axioms and rules of S are the following:

→ p(1)p(2)

(S1)
→ A

+
B

+p(2)

→ Bp(2)(A)+2

(S2)
→ A

+
B
− → C

+
D

+p(2)

→ CABDp(2) .

Here A, B, and D must be non-empty.

Lemma 1 (Equivalence between L\ and S). For every A ∈ Tp(\) and
Π ∈ Tp(\)∗ we have

L\ � Π → A ⇐⇒ S �→ γ(Π)γ(A) .

And conversely for B, C ∈ Atn∗ such that B
+ and C

− we have

S �→ BC ⇐⇒ L\ � γ−1(B) → γ−1(C) .

The proof of Lemma 1 can be found in [8].

Lemma 2 (Derivability Criterion for S). Suppose A, B ∈ Atn∗, A+, and
B
−. Then S �→ AB if and only if all atoms in AB can be divided into pairs

satisfying the following conditions:

1. A pair consists of p(i) and p(i+1). In other words, atoms in a pair correspond
to the same primitive type, their superscripts differ by 1, and the atom with
lesser superscript stays to the left (the string is thought to be written from
left to right).

2. If atoms of the string are mapped to different points on a straight line with the
same order (the atom lies between two others on a string iff the corresponding
point for that atom lies between corresponding points for the other two), then
lines connecting points corresponding to atoms in a pair, can be drawn in the
upper semiplane simultaneously without intersections. In other words, atoms
in any two pairs can only follow each other in one of the following orders:

. . . p(i) . . . p(i+1) . . . q(j) . . . q(j+1) . . .

. . . p(i) . . . q(j) . . . q(j+1) . . . p(i+1) . . .

3. If the superscript of the leftmost atom in a pair equals 2l (is even), then there
is an atom with superscript less than 2l between the elements of the pair.

Proof. (⇒). Consider a derivation of → AB in S. Divide the atoms into pairs
throughout all the strings used in the derivation as follows: the atoms in one
axiom form a pair, and the string resulting from an application of a rule has the
same pairing as the premises (all atoms from the premises go over to the result).
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By induction on the rules of S one can easily prove that such a pairing satisfies
all necessary conditions.

(⇐) We will use induction on the length of the string AB. For strings of length
2 the proof is trivial.

Suppose that A
+, B

−, and AB has a pairing satisfying all necessary conditions.
Since B is a minus-string, it can be either p(2) or p(2)(C)+2 for some plus-string
C. In the second case S �→ CAp(2) ⇔ S �→ AB (there is only one variant for
the last step in the derivation of the string → AB for long B), so we can prove
the derivability of strings of length n only for those that have short B.

The string Ap(2) is of the form Dq(1)r(2)
Es(1)p(2), where E 
 1. It is readily

seen that if a proper pairing exists, then s = p, r = q, and these atoms form two
pairs from the proper pairing.

There are two possibilities: either E 
 2 or there is an atom with superscript
2 in E.

If E 
 2, then Dq(1)q(2)
E is a shorter string having a proper pairing, (Dq(1))+,

and (q(2)
E)−. By the induction assumption it means that S �→ Dq(1)q(2)

E. By
applying rule S2 to this string and → p(1)p(2) we get → Dq(1)q(2)

Ep(1)p(2).
Now let us suppose that there is an atom with superscript 2 in E. Let E be

of the form E
′′t(2)E′, where E

′′ 
 2. The paired atom for this t(2) is some t(1)

standing to the left of q(1). Then the string is of the following form:

Dt(1)D′′q(1)q(2)
E
′′t(2)E′p(1)p(2) .

Note that (D′t(1)t(2)E′p(1))+, (p(2))−, (D′′q(1))+, (q(2)
E
′′)−, and the pairings for

Dt(1)t(2)E′p(1)p(2) and D
′′q(1)q(2)

E
′′ taken from the pairing for the whole string

Dt(1)D′′q(1)q(2)
E
′′t(2)E′p(1)p(2) satisfy all necessary conditions. By the induction

assumption it means that S �→ Dt(1)t(2)E′p(1)p(2) and S �→ D
′′q(1)q(2)

E
′′. Then

by applying rule S2 to these strings we can get → Dt(1)D′′q(1)q(2)
E
′′t(2)E′p(1)p(2).

This exactly means that S �→ Ap(2).
Thus in both cases we have proved that S �→ Ap(2). The proof is now

complete. ��

For example, the string

p(1)p(2)q(2)r(1)r(2)s(3)s(4)q(3)

has a proper pairing, thus S �→p(1)p(2)q(2)r(1)r(2)s(3)s(4)q(3) and by Lemma 2

L\ � p(p\(q\r)) → ((s\q)\(s\r)) .

The strings

p(1)q(2)

p(1)q(2)p(2)r(1)r(2)q(3)

p(1)p(2)p(2)p(3)q(2)r(1)r(2)q(3)
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do not have proper pairings, thus

S ��→ p(1)q(2)

S ��→ p(1)q(2)p(2)r(1)r(2)q(3)

S ��→ p(1)p(2)p(2)p(3)q(2)r(1)r(2)q(3) .

By Lemma 1 this also means that

L\ �� p → q

L\ �� p(q\(p\r)) → (q\r)

L\ �� p(p\((p\p)\(q\r))) → (q\r) .

5 The Algorithm for Grammar Acceptance

Let (Σ, B, f) be a Lambek grammar. For every letter a ∈ Σ, let ka denote
|f(a)|, and for j � ka let Aa

j be the j-th possible type assignment for a. In other
words, f(a) = {Aa

1 , . . . , A
a
ka} for every a ∈ Σ. Suppose we are given a word

x = x1 . . . xn ∈ Σ+. Our goal is to check whether there are numbers mi � kxi

such that L\ � Ax1
m1

. . . Axn
mn

→ B. Since L\ and S are equivalent (Lemma 1), we
can seek mi that satisfy S �→ γ(Ax1

m1
) . . . γ(Axn

mn
)γ(B) instead.

For every letter a ∈ Σ and i � ka, let A
a
i = γ(Aa

i ). Let Qa be the following
string of elements of the set Atn ∪ {∗, 〈, 〉}:

〈∗A
a
1 ∗ . . . ∗ A

a
ka∗〉 .

In other words, Qa consists of Atn strings for every possible type assignment for
a, separated by asterisks and enclosed in angle brackets. Also let B = γ(B).

Let W x ∈ (Atn ∪ {∗, 〈, 〉})∗ be the following string:

Qx1 . . . Qxn〈∗B .

(Note: angle brackets in strings used in this construction are not assumed to be
balanced.)

For 1 � i � |W x|, let W x
i denote the i-th symbol of W x. For 1 � i < j � |W x|,

let W x
[i,j] denote the substring of W x that starts at the i-th symbol and ends at

the j-th. (Symbols can be atoms, asterisks, or angle brackets, W x
[1,|W x|] = W x).

Let M(i, j), where 1 � i < j � |W x|, be a function with the following
properties: M(i, j) = 1 if one of the following holds:

1. W x
[i,j] lies in Atn∗ and has a pairing satisfying all the conditions from the

derivability criterion (a proper pairing).
2. W x

[i,j] is of the form 〈. . .〉 . . . 〈V ∗ C, where C ∈ Atn∗, V contains no angle
brackets, there are g pairs of matched angle brackets, for the h-th pair of
them there is a substring of the form ∗Dh∗ in between them such that Dh ∈
Atn∗, and the string D1 . . .DgC has a proper pairing.
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3. W x
[i,j] is of the form D ∗ U〉 . . . 〈V ∗ C where C, D ∈ Atn∗, U and V contain

no angle brackets, there are g pairs of matched angle brackets, for the h-th
pair of them there is a substring of the form ∗Eh∗ in between them such that
Eh ∈ Atn∗, and the string DE1 . . . EgC has a proper pairing.

In all other cases M(i, j) = 0.
The whole string W x is of the second form. So, if M(1, |W |) = 1, then in

each of the n pairs of angle brackets there is a substring of the form ∗Dj∗ such
that D1 . . . DnB has a proper pairing. All of the substrings of the said form in
j-th pair of angle brackets are Atn strings for different type assignments for
xj . This means that they can be taken as the required A

xj
mi such that S �→

γ(Ax1
m1

) . . . γ(Axn
mn

)γ(B) (Obviously (D1 . . . Dn)+ and B
−). This exactly means

that x ∈ L(Σ, B, f). Also if M(1, |W |) = 0, then x /∈ L(Σ, B, f).
We will calculate M(i, j) dynamically. First we declare that for all i < n

M(i, i + 1) = 1 only if W x
i = p(2k+1) and W x

i+1 = p(2k+2) for some p ∈ P and
k ∈ N (and 0 in all other cases).

How do we calculate M(i, j), if we already know all M(g, h) for all g and h
such that 1 � g < h � n and h − g < i − j? There are several cases:

1. W x
i , W x

j ∈ Atn. If there exists g such that i < g < j − 1, W x
g ∈ Atn,

W x
g+1 ∈ Atn, M(i, g) = 1, and M(g + 1, j) = 1, then we put M(i, j) = 1.

2. W x
i = p(m), W x

j = p(m+1) for some p ∈ P and m ∈ N. If M(i+1, j − 1) = 1,
m is odd or m is even and there exists g such that i < g < j and the
superscript of W x

g is less then m, then we put M(i, j) = 1.
3. W x

[i,j] is of the form p(1) ∗ U〉〈V ∗ p(2) where U and V contain no angle
brackets. Then we put M(i, j) = 1.

4. W x
[i,j] is of the form 〈. . .〉 . . . 〈. . . p(j). If there exists g such that i < g < j,

W x
g = ∗, W x

[i+1,g] contains no angle brackets, and M(g + 1, j) = 1, then we
put M(i, j) = 1.

5. W x
[i,j] is of the form p(1) ∗ . . .〉 . . . 〈. . . p(2). If M(g, j − 1) = 1, where g is

the position in W x of the first left angle bracket in W x
[i,j], then we put

M(i, j) = 1.

In all other cases we put M(i, j) = 0.

Lemma 3 (Correctness of the algorithm). The described algorithm cor-
rectly computes M(i; j).

Proof. Let us call substrings W x
[i,j] for which M(i, j) = 1 ‘accepted’. We will

prove that the algorithm correctly finds all accepted substrings by induction on
the length of the substring. We will refer to ‘forms’ of the accepted substrings:
these are the forms used in definition of the function M(i, j). Every accepted
substring ends with an atom that participate in the pairing for it. There are no
accepted substrings that contain asterisks but no angle brackets.

For substrings of length 2 it is obvious: accepted substrings of the length 2
can only be of the first form and can only have the form p(2k+1)p(2k+2) for some
p ∈ P and k ∈ N. The algorithm finds all of them correctly.
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Let us now consider substrings W x
[i,j] of length l > 2 such that for all l′ < l

the algorithm finds accepted strings of the length l′ correctly.

1. The substring W x
[i,j] is of the first form, i.e., lies in Atn∗. There is a pairing

for all atoms of the substring that satisfy all conditions of the derivability
criterion. There are two possible cases depending on wether leftmost and
rightmost atoms form a pair. If they do not, then W x

[i,j] can be divided in
two shorter substrings each of them having a proper pairing. If they do then
W x

[i+1,j−1] is a shorter substring with a proper pairing. By the induction
assumption these shorter substrings are already found by the algorithm, and
thus it will accept W x

[i,j] (case 1 or 2 of the algorithm description).
2. The substring W x

[i,j] is of the second form. If it is accepted, there exists a
substring of the form ∗D1∗ in between the first pair of angle brackets such
that D1 participates in the pairing. Let i′ be the position of the first atom
of D1. The substring W x

[i′,j] is a substring of the third form, it is shorter
than W x

[i,j], and it is accepted. Therefore by the induction assumption it is
already found by the algorithm, and thus it will accept W x

[i,j] (case 4 of the
algorithm description).

3. The substring W x
[i,j] is of the third form. The atom W x

i participates in the
pairing for the substring W x

[i,j]. Let the pair for W x
i be some atom W x

i′ . First,
let us consider the case i′ �= j. Then obviously i′ < j − 1, or there will be no
possible pair for W x

j . The atom W x
i′ has a superscript bigger than 1. This

means that W x
i′+1 is also an atom, because asterisks can go only after atoms

with superscript one, since W x is constructed of Atn strings for Lambek
types. This means that W x

[i,i′ ] and W x
[i′+1,j] are both of the first or the third

form, are shorter, and accepted. Therefore by the induction assumption they
are already found by the algorithm, and thus it will accept W x

[i,j] (case 1 of
the algorithm description).

Now let us suppose that W x
i and W x

j form a pair. Suppose that super-
script of W x

i is bigger then 1. This means that superscript of W x
j is more

than 2, and it cannot be the leftmost in an Atn string for a Lambek type.
Therefore both W x

i+1 and W x
j−1 are atoms. Thus substring W x

[i+1,j−1] is of
the third form, is shorter, and accepted. Therefore by the induction assump-
tion it is already found by the algorithm, and thus it will accept W x

[i,j] (case
2 of the algorithm description). The only case left is when the superscript
of W x

i is 1 and consequently the superscript of W x
j is 2. If there are no

matched angle brackets in W x
[i,j], the substring W x

[i,j] is accepted only if it
is of the form p(1) ∗ U〉〈V ∗ p(2), because if W x

j−1 is an atom, there is atom
with superscript 2 in W x

[i,j] that must participate in the pairing, but there is
no possible pair for it. If W x

j is of the form p(1) ∗ U〉〈V ∗ p(2) it is accepted
by case 3 of the algorithm description. Now suppose, that W x

j is of the form
p(1) ∗ . . .〉 . . . 〈. . . p(2). Let us consider the part of the string that participates
in the pairing and lies in between the rightmost pair of matched angle brack-
ets. Its rightmost atom has superscript 1, so it’s pair must stay to the right
of it, and therefore it stays to right of the last left angle bracket. This means
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that there are atoms besides W x
j that participate in the pairing and stay

to right of the last left angle bracket. Therefore W x
j−1 is also an atom. This

means that the substring W x
[j′,j−1], where j′ is the position in W x of the first

left angle bracket in W x
[i,j], is of the second form, is shorter and accepted.

Therefore by the induction assumption it is already found by the algorithm,
and thus it will accept W x

[i,j] (case 5 of the algorithm description). ��

We can check all the conditions for W x
[i,j] for each case in O(j − i) steps. There

are O(|W |2) substrings. Thus we can calculate M(1, n) in O(|W x|3) time.

Acknowledgements. I am most grateful to Professor M. Pentus for his con-
stant attention to my work.

References

1. Aarts, E., Trautwein, K.: Non-associative Lambek categorial grammar in polynomial
time. Mathematical Logic Quarterly 41, 476–484 (1995)

2. Buszkowski, W.: The equivalence of unidirectional Lambek categorial grammars
and context-free grammars. Zeitschrift für mathematische Logik und Grundlagen
der Mathematik 31(4), 369–384 (1985)

3. de Groote, P.: The non-associative Lambek calculus with product in polynomial
time. In: Murray, N.V. (ed.) Automated Reasoning with Analytic Tableaux and
Related Methods, pp. 128–139. Springer, Heidelberg (1999)

4. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65(3), 154–170 (1958)

5. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of
Language and Its Mathematical Aspects, Proc. Symposia Appl. Math., vol. 12, pp.
166–178. Amer. Math. Soc, Providence, RI (1961)

6. Pentus, M.: Lambek calculus is NP-complete. Theoretical Computer Science 357(1–
3), 186–201 (2006)

7. Pentus, M.: Lambek grammars are context free. In: Proceedings of the 8th Annual
IEEE Symposium on Logic in Computer Science, pp. 429–433 (1993)

8. Savateev, Y.: The derivability problem for lambek calculus with one division. Tech-
nical report, Utrecht University, Artificial Intelligence Preprint Series no. 56 (2006)



Cryptanalysis of Stickel’s Key Exchange Scheme

Vladimir Shpilrain�

Department of Mathematics, The City College of New York, New York, NY 10031
shpil@groups.sci.ccny.cuny.edu

http://www.sci.ccny.cuny.edu/~shpil

Abstract. We offer cryptanalysis of a key exchange scheme due to
Stickel [11], which was inspired by the well-known Diffie-Hellman pro-
tocol. We show that Stickel’s choice of platform (the group of invertible
matrices over a finite field) makes the scheme vulnerable to linear alge-
bra attacks with very high success rate in recovering the shared secret
key (100% in our experiments). We also show that obtaining the shared
secret key in Stickel’s scheme is not harder for the adversary than solving
the decomposition search problem in the platform (semi)group.

1 Introduction

In this paper, we offer cryptanalysis of a key exchange scheme due to Stickel [11].
His protocol is reminiscent of the well-known Diffie-Hellman protocol (see e.g.
[3]), although formally it is not a generalization of the latter. We show in our
Section 4 that Stickel’s choice of platform (the group of invertible matrices over
a finite field) makes the protocol vulnerable to linear algebra attacks. It appears
that even such a seemingly minor improvement as using non-invertible matrices
instead of invertible ones would already make Stickel’s protocol significantly less
vulnerable, at least to linear algebra attacks.

Perhaps more importantly, we show in Section 3 that to obtain the shared
secret key in Stickel’s scheme, the adversary does not have to solve any dis-
crete logarithm-type problem; instead, he/she can solve the apparently easier
decomposition search problem in the platform (semi)group G which is:

Given a recursively presented (semi)group G, two recursively generated
sub(semi)groups A, B ≤ G, and two elements u, w ∈ G, find two elements
x ∈ A and y ∈ B that would satisfy x · w · y = u, provided at least one
such pair of elements exists.

We give some background on this problem in Section 3, and in Section 4
we describe a platform-specific attack on Stickel’s scheme which boils down to
solving a system of 1922 linear equations with 961 unknowns over a finite field
F2m . Finally, in Section 5 we give a couple of simple suggestions on improving
Stickel’s scheme.
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2 Stickel’s Protocol

Let G be a public non-abelian finite group, a, b ∈ G public elements such that
ab �= ba. The key exchange protocol goes as follows. Let N and M be the orders
of a and b, respectively.

1. Alice picks two random natural numbers n < N, m < M and sends u = anbm

to Bob.
2. Bob picks two random natural numbers r < N, s < M and sends v = arbs

to Alice.
3. Alice computes KA = anvbm = an+rbm+s.
4. Bob computes KB = arubs = an+rbm+s.

Thus, Alice and Bob end up with the same group element K = KA = KB

which can serve as the shared secret key.
When it comes to implementation details, the exposition in [11] becomes some-

what foggy. In particular, it seems that the author actually prefers the following
more general version of the above protocol.

Let w ∈ G be public.

1. Alice picks two random natural numbers n < N, m < M , an element c1 from
the center of the group G, and sends u = c1a

nwbm to Bob.
2. Bob picks two random natural numbers r < N, s < M , an element c2 from

the center of the group G, and sends v = c2a
rwbs to Alice.

3. Alice computes KA = c1a
nvbm = c1c2a

n+rwbm+s.
4. Bob computes KB = c2a

rubs = c1c2a
n+rwbm+s.

Thus, Alice and Bob end up with the same group element K = KA = KB.
We note that for this protocol to work, G does not have to be a group; a

semigroup would do just as well (in fact, even better, as we argue in Section 5).
In [11], it was suggested that the group of invertible k×k matrices over a finite

field F2l is used as the platform group G. We show in Section 4 that this choice
of platform makes the protocol vulnerable to linear algebra attacks, but first, in
Section 3, we discuss a general (i.e., not platform-specific) approach to attacking
Stickel’s protocol. We emphasize that this general approach works if G is any
semigroup, whereas the attack in Section 4 is platform-specific; in particular, it
only works if G is a group, but may not work for arbitrary semigroups.

3 Preliminary Cryptanalysis of Stickel’s Protocol

Recall that Alice transmits u = c1a
nwbm to Bob.

Our first observation is: to get a hold of the shared secret key K in the end,
it is sufficient for the adversary (Eve) to find any elements x, y ∈ G such that
xa = ax, yb = by, u = xwy. Indeed, having found such x, y, Eve can use Bob’s
transmission v = c2a

rwbs to compute:

xvy = xc2a
rwbsy = c2a

rxwybs = c2a
rubs = K.
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This implies, in particular, that multiplying by ci does not enhance the secu-
rity of the protocol. More importantly, this also implies that it is not necessary
for Eve to recover any of the exponents n, m, r, s; instead, she can just solve a
system of equations xa = ax, yb = by, u = xwy, where a, b, u, w are known and
x, y unknown elements of the platform (semi)group G. This shows that, in fact,
Stickel’s protocol departs from the Diffie-Hellman protocol farther than it seems.
Moreover, solving the above system of equations in G is actually nothing else but
solving the (subsemigroup-restricted) decomposition search problem which is:

Given a recursively presented (semi)group G, two recursively generated
sub(semi)groups A, B ≤ G, and two elements u, w ∈ G, find two elements
x ∈ A and y ∈ B that would satisfy x · w · y = u, provided at least one
such pair of elements exists.

In reference to Stickel’s scheme, the sub(semi)groups A and B are the central-
izers of the elements a and b, respectively. The centralizer of an element g ∈ G
is the set of all elements c ∈ G such that gc = cg. This set is a subsemigroup of
G; if G is a group, then this set is a subgroup.

There are several key exchange protocols that directly use the alleged hardness
of the decomposition search problem in various (semi)groups, see e.g. [2], [7],
[8], [9]. So far, no particular (semi)group has been recognized as providing a
secure platform for any of those protocols. Several attacks on the decomposition
search problem in various “abstract” groups (i.e., in groups given by generators
and defining relators) were reported, see e.g. [1], [4], [5]. It appears likely that
semigroups of matrices over specific rings can generally make good platforms, as
we argue in [6]. Stickel, too, used matrices in his paper [11], but he has made
several poor choices, as we are about to see in the next Section 4. Also, Stickel’s
scheme is at most as secure as those schemes that are directly based on the
alleged hardness of the decomposition search problem, because there are ways
to attack Stickel’s scheme without attacking the relevant decomposition search
problem; for instance, Sramka [10] has offered an attack aimed at recovering
one of the exponents n, m, r, s in Stickel’s protocol. Our attack that we describe
in Section 4 is more efficient, but on the other hand, it is aimed at recovering
the shared secret key only, whereas Sramka’s attack is aimed at recovering a
private key.

4 Linear Algebra Attack

Now we are going to focus on the particular platform group G suggested by
Stickel in [11]. In his paper, G is the group of invertible k × k matrices over a
finite field F2l , where k = 31. The parameter l was not specified in [11], but
from what is written there, one can reasonably guess that 2 ≤ l ≤ k. The choice
of matrices a, b, w is not so important for our attack; what is important is that
a and b are invertible. We note however that the choice of matrices a and b in
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[11] (more specifically, the fact that the entries of these matrices are either 0 or
1) provides an extra weakness to the scheme as we will see at the end of this
section.

Recall from our Section 3 that it is sufficient for Eve to find at least one
solution of the system of equations xa = ax, yb = by, u = xwy, where a, b, u, w
are known and x, y unknown k × k matrices over F2l . Each of the first two
equations in this system translates into a system of k2 linear equations for the
(unknown) entries of the matrices x and y. However, the equation u = xwy does
not translate into a system of linear equations for the entries because it has a
product of two unknown matrices. We therefore have to use the following trick:
multiply both sides of the equation u = xwy by x−1 on the left (here is where
we use the fact that x is invertible!) to get

x−1u = wy.

Now, since xa = ax if and only if x−1a = ax−1, we denote x1 = x−1 and
replace the system of equations mentioned in the previous paragraph by the
following one:

x1a = ax1, yb = by, x1u = wy.

Now each equation in this system translates into a system of k2 linear equa-
tions for the (unknown) entries of the matrices x1 and y. Thus, we have a total
of 3k2 linear equations with 2k2 unknowns. Note however that a solution of
the displayed system will yield the shared key K if and only if x1 is invertible
because K = xvy, where x = x−1

1 .
Since u is a known invertible matrix, we can multiply both sides of the equa-

tion x1u = wy by u−1 on the right to get x1 = wyu−1, and then eliminate x1
from the system:

wyu−1a = awyu−1, yb = by.

Now we have just one unknown matrix y, so we have 2k2 linear equations for
k2 entries of y. Thus, we have a heavily overdetermined system of linear equations
(recall that in Stickel’s paper, k = 31, so k2 = 961). We know that this system
must have at least one non-trivial (i.e., non-zero) solution; therefore, if we reduce
the matrix of this system to an echelon form, there should be at least one free
variable. On the other hand, since the system is heavily overdetermined, we can
expect the number of free variables to be not too big, so that it is feasible to
go over possible values of free variables one at a time, until we find some values
that yield an invertible matrix y. (Recall that all entries of y are either 0 or 1;
this is an extra weakness of Stickel’s scheme that we mentioned before.) Note
that checking the invertibility of a given matrix is easy because it is equivalent
to reducing the matrix to an echelon form. In fact, in all our experiments there
was just one free variable, so the last step (checking the invertibility) was not
needed because if there is a unique non-zero solution of the above system, then
the corresponding matrix y should be invertible.
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5 Suggestions on Improving Stickel’s Scheme

The most obvious suggestion on improving Stickel’s scheme is, as we mentioned
before, to use non-invertible elements a, b, w; this implies, in particular, that the
platform should be a semigroup with (a lot of) non-invertible elements. If one is
to use matrices, then it makes sense to use the semigroup of all k × k matrices
over a finite ring (not necessarily a field!). Such a semigroup typically has a lot of
non-invertible elements, so it should be easy to choose a, b, w non-invertible, in
which case the linear algebra attack from the previous section would not work.
One more advantage of not restricting the pool to invertible matrices is that
one can use not just powers aj of a given public matrix in Stickel’s protocol,
but arbitrary expressions of the form

∑p
i=1 ci · ai, where ci are constants, i.e.

elements of the ground ring.
Of course, there is no compelling reason why matrices should be employed

in Stickel’s scheme, but as we have explained in Section 3, with an abstract
platform (semi)group G, Stickel’s scheme is broken if the relevant decomposition
search problem is solved, and so far, no particular abstract (semi)group has been
recognized as resistant to known attacks on the decomposition search problem.

6 Conclusions

1. We have shown that obtaining the shared secret key K in Stickel’s scheme is
not harder for the adversary than solving the decomposition search problem
in the platform (semi)group G.

2. We have described an efficient linear algebra attack, with 100% success rate
(according to our experiments), on Stickel’s scheme with parameters sug-
gested in [11].

3. We have suggested possible improvements of Stickel’s scheme related to the
choice of platform; our main suggestion is to use a semigroup with a lot of
non-invertible elements instead of a group.
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Combinatorial Complexity of Regular Languages

Arseny M. Shur

Ural State University

Abstract. We study combinatorial complexity (or counting function)
of regular languages, describing these functions in three ways. First, we
classify all possible asymptotically tight upper bounds of these functions
up to a multiplicative constant, relating each particular bound to certain
parameters of recognizing automata. Second, we show that combinato-
rial complexity equals, up to an exponentially small term, to a func-
tion constructed from a finite number of polynomials and exponentials.
Third, we describe oscillations of combinatorial complexity for factorial,
prefix-closed, and arbitrary regular languages. Finally, we construct a
fast algorithm for calculating the growth rate of complexity for regular
languages, and apply this algorithm to approximate growth rates of com-
plexity of power-free languages, improving all known upper bounds for
growth rates of such languages.

1 Introduction

The combinatorial complexity CL(n) of a language L is the number of words
(strings) of length n in L. This is the most natural counting function associated
with a language. Along with other functions of this kind appeared in the liter-
ature, such as subword/factor, palindromic, arithmetical, pattern, and maximal
pattern complexities, it characterizes the richness of the language. In particular,
the study of the behaviour of combinatorial complexity helps to understand the
structure of languages and to discover the lack of some important properties
such as the properties to be regular, context-free, generated by morphism, or
freely generated as a subset of a free semigroup.

The combinatorial complexity (under different names) has been intensively
studied for many languages and particular classes of languages. Probably the first
results in this direction were obtained by Morse and Hedlund [20]. A systematic
study of combinatorial complexity was initiated by Ehrenfeucht and Rozenberg
in [12]; they focused mostly on an important, but narrow class of D0L-languages.
A representative selection of results on complexity can be found in Sect. 9 of [6].
A massive related research on growth functions of algebraic structures, such as
groups, semigroups, rings and graded algebras (see, e.g., [19,15,28,29]) should
also be mentioned here.

Chomsky’s hierarchy and its refinements provide very natural classes to study
from the complexity point of view. In particular, combinatorial complexity of reg-
ular languages was studied already by Chomsky and Miller [7]. It was discovered
independently by several authors that for context-free languages (and hence, for

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 289–301, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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regular ones) a dichotomy theorem holds: the complexity of such a language
grows either exponentially or polynomially (the earliest reference is [27]).

All possible polynomial complexity functions of context-free languages were
described in [1]. Another result of [1] states that each of these functions is also
the combinatorial complexity of some regular language. However, in the general
case no satisfactory description is known even for regular languages. A coarse
estimation of the behaviour of the combinatorial complexity for regular languages
was made in Sect. 4 of [16]. The main goal of this paper is to obtain a complete
description of the combinatorial complexity of regular languages.

A handy classification of combinatorial complexity in this particular case
seems very important. Another reason is the study of factorial (that is, closed
under taking factors) languages. Most of the complexity studies concentrates on
factorial languages, which naturally arise from “negative” properties of words,
such as the property “to avoid some regularity”. The growth rate of the combi-
natorial complexity of an arbitrary recursive factorial language can be estimated
with any precision by means of regular languages. In this paper we use the
obtained description to develop a simple and efficient algorithm for such estima-
tion. Hopefully, our results will make it possible to process some non-factorial
languages in a similar way.

Our description of the combinatorial complexity of regular languages consists
of two parts. The “coarse” part is given by Theorem 2. Combinatorial complexity
is not necessary monotone, so Theorem 2 classifies all possible supremum asymp-
totic behaviours up to a multiplicative constant and relates these behaviours to
certain parameters of recognizing automata. Theorem 3, which is the “finer”
part of our description, reveals that the combinatorial complexity of a regular
language is exponentially close to a function constructed from a finite number
of polynomials and exponentials.

Using this description, we classify the behaviour of combinatorial complexity
in terms of oscillations and show the main distinctions in such behaviour for
factorial, prefix-closed, and arbitrary regular languages (Theorem 4).

In the last section, we provide a fast algorithm estimating the growth rate of
a given regular language with any prescribed precision. We show how to apply
this algorithm to approximate growth rates of factorial languages and briefly
discuss the results of computational experiments. In particular, we improve all
previously known upper bounds of the growth rates for power-free languages.

2 Preliminaries

We recall necessary notation and definitions. For more background, see [9,14,18].

1. Languages and automata. Words and languages over a finite alphabet Σ
are considered. A word u is a factor (respectively prefix, suffix) of the word w
if w can be represented as v̄uv̂ (respectively uv̂, v̄u) for some (possibly empty)
words v̄ and v̂. As usual, we write Σn for the set of all n-letter words and
Σ∗ for the set of all words over Σ. The languages, obtained from the language
L ∈ Σ∗ by closing under taking prefixes (suffixes, factors) are denoted by pr(L)
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(respectively, suf(L) and fact(L)). A language is prefix-closed (suffix-closed,
factorial) if it coincides with its corresponding closure.

A word w is forbidden for the language L if it is a factor of no element of L.
The set of all minimal (with respect to the factorization order) forbidden words
for a language is called the antidictionary of this language. If a factorial language
L over the alphabet Σ has the antidictionary M , then the following equalities
holds:

L = Σ∗ − Σ∗MΣ∗, M = ΣL ∩ LΣ ∩ (Σ∗ − L).

We see that any antidictionary determines a unique factorial language, which is
regular if the antidictionary is also regular (in particular, finite).

We consider deterministic finite automata (dfa’s) with partial transition func-
tion. An automaton (deterministic or nondeterministic) is consistent if each of
its vertices is contained in some accepting path. We view dfa as a digraph, some-
times even omitting the labels of edges and vertices. For a dfa, the number of
words of length n in the recognized language obviously equals the number of
accepting paths of length n in the automaton. So, to calculate combinatorial
complexity we count paths rather than words. For a fixed automaton, we denote
the number of (u, v)-paths of length n by Puv(n) and the number of paths of
length n starting at the vertex u by Pu(n).

2. Complexity. For an arbitrary language L, we are mostly interested in the
asymptotic behaviour of its combinatorial complexity. To compare functions,
we use the standard O-, Ω-, and Θ-notation. To study the supremum asymp-
totic behaviour of non-monotonic complexity functions, we also use the notation
f(n) = Ω̄(g(n)) iff there exist a sequence {ni}∞1 and a constant C > 0 such
that f(ni) ≥ Cg(ni) for all i, and f(n) = Θ̄(g(n)) iff f(n) = O(g(n)) and
f(n) = Ω̄(g(n)). As usual, we call a complexity function polynomial if it is
Ω̄(np) and O(np̂) for some p, p̂ ≥ 0, and exponential if it is Ω̄(αn) and O(α̂n) for
some α, α̂ > 1. For short, we often use expressions like “polynomial language”.

Another useful characteristic of the asymptotic behaviour of a nonnegative-
valued function is its growth rate lim sup

n→∞
(f(n))1/n. The growth rate sometimes

gives less precision than a Θ-expression, but usually is easier to determine. We
usually refer to growth rate of a language rather than the growth rate of its
complexity function.

3. Digraphs and linear algebra. A strongly connected component (scc) of
a digraph G is a maximal w.r.t. inclusion subgraph G′ such that there exists
a path from any vertex of G′ to any other vertex of G′. A digraph is strongly
connected, if it consists of a unique scc. A component digraph Ĝ of a digraph
G is the acyclic digraph obtained from G by contracting all edges within each
scc. Thus, the vertices of Ĝ can be considered as scc’s of G. There is a natural
projective map from G onto Ĝ, mapping any vertex to its scc. This map allows
one to define the projection of a path in G, which is a path in Ĝ.

The adjacency matrix of a digraph is nonnegative, hence the classical Perron-
Frobenius Theorem is applicable to this matrix. This theorem is formulated
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below for irreducible matrices. We mention that among the adjacency matrices
of digraphs exactly those of strongly connected digraphs are irreducible.

Theorem 1 (Perron, Frobenius). Let M be an irreducible nonnegative ma-
trix, and α be the maximum absolute value of an eigenvalue of M . Then (1) α
is itself an eigenvalue of M ; (2) all eigenvalues of M with the absolute value α
are simple; (3) if there are exactly k such eigenvalues λ1, . . . , λk, then λj = αεj

k,
where j = 1, . . . , k, and εk = e(2πi/k) is the first kth degree root of unit; (4) M
has a (strictly) positive eigenvector corresponding to α.

The mentioned eigenvalue α is referred to as the Frobenius root of M . If M
is the adjacency matrix of a digraph G, then α is called the index of G. Note
that α is an algebraic number. A well-known result states that the index of a
digraph equals maximum of the indices of its scc’s. The scc’s of index 0 are
singletons and that of index 1 are simple cycles. The indices of other scc’s are
strictly greater than 1. The number k of eigenvalues with maximum absolute
value is called the imprimitivity number of the matrix (or of the digraph). For
digraphs, this number equals the greatest common divisor of lengths of all cycles.
We are ready to state our first result, which classifies combinatorial complexity
of regular languages w.r.t. Θ̄-notation.

Theorem 2. Let a regular language L be recognized by a consistent dfa A. Then
CL(n) = Θ̄(nmαn), where α is the index of A, and m+1 is the maximum number
of scc’s of index α connected by a single path in A.

Now turn to the “finer” description of combinatorial complexity of regular lan-
guages. For polynomial languages the following result was proved in [1]:

for an arbitrary polynomial context-free language L there exist positive inte-
gers N and r, and polynomials p0(n), . . . , pr−1(n) with rational coefficients
such that for all n > N the equality CL(n) = pn mod r(n) holds.

The main difference between the polynomial case and the general one is the
following. In the polynomial case, any complexity function is asymptotically equal
to a function constructed of a finite number of given polynomials. In the general
case, due to the presence of exponentials, such precision is impossible. Neverthe-
less, any complexity function still asymptotically behaves as a function, “finitely
constructed” in a similar way.

We start with the key definition. As usual, N0 stands for the set of nonnegative
integers, R

+ denotes the set of nonnegative real numbers, and “asymptotically”
means “for all values of n greater than some constant”.

Definition 1. Let F (n) : N0→R
+ be an arbitrary function, r be a positive in-

teger. The set {f0(n), . . . , fr−1(n)} of (non-strictly) increasing functions from
N0 to R

+ is called an asymptotic set for F (n), if for each set Ni = {n ∈ N0 |
n mod r = i} either fi(n) ≡ 0 and F (n) is asymptotically zero on the set Ni

or fi(n) �≡ 0 and there exists a real constant γi > 1 such that the inequality∣∣∣ F (n)
fi(n) − 1

∣∣∣ < γ−n
i holds asymptotically on Ni.

Each function fi(n) is called an asymptotic function for F (n) on the set Ni.
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We point out that condition (2) is stronger, than the equivalence of F and fi

(on the set Ni). Indeed, we require not only that the ratio F (n)
fi(n) tends to 1 as n

approaches infinity along Ni, but also that it tends to 1 with exponential rate.
Now our second result can be formulated.

Theorem 3. For any regular language L there exist a positive integer r, al-
gebraic numbers α0, . . . , αr−1 ∈ [1, ∞), and polynomials p0(n), . . . , pr−1(n) with
algebraic real coefficients such that {p0(n)αn

0 , . . . , pr−1(n)αn
r−1} is an asymptotic

set for the complexity function CL(n).

3 Theorem 2 and Its Corollaries

Sketch of the proof. Two lemmas on digraphs are needed.

Lemma 1. Let s, u and v be three vertices of a digraph. If Psu(n) = Θ̄(f(n)),
and there exists an (u, v)-path, Psv(n) = Ω̄(f(n)). If, moreover, a (v, u)-path
also exists, then Psv(n) = Θ̄(f(n)).
Lemma 2. Let G be a non-singleton strongly connected digraph, α be its index,
and r be its imprimitivity number. Then Puv(n) = Θ̄(αn) for arbitrary vertices
u, v of G. Moreover, Puv(n) admits an asymptotic set {μ0α

n, . . . , μr−1α
n}, where

μ0, . . . , μr−1 are nonnegative constants.

To count paths, we fix a consistent automaton A recognizing the language L.
Let s be the initial vertex of A, and D be the component digraph of A. By the
consistency of A, D has a single source, which is the scc containing the initial
vertex of A, and each sink of D contains a terminal vertex of A.

Suppose that Ps(n) = Θ̄(f(n)). For any path (s→u1→ . . .→ur) we build its
projection. Since D is acyclic, there are only finitely many different projections.
Hence, we can show that there exists a maximal path d in D with Θ̄(f(n)) paths
from s projected onto it. Using Lemma 1, we then get CL(n) = Θ̄(f(n)).

Thus, it remains to estimate the number of paths from s projected onto d.
This can be done by induction on the length of d. The inductive base is provided
by Lemma 2. To verify the inductive step, some (not very extensive) calculations
are needed.

Remark 1. It follows readily from the proof of Theorem 2, that if two consistent
dfa’s are isomorphic as unlabeled digraphs, then the combinatorial complexities
of languages they recognize both are Θ̄(f(n)) for some function f(n).

Corollary 1. There exists a function f(n) such that CL(n) = Θ̄(f(n)) for some
context-free language L and CR(n) �= Θ̄(f(n)) for any regular language R.

Proof. Take the context-free language D of all strings of properly placed paren-
theses (binary Dyck language). We get CD(n) = Θ̄

( 2n

n3/2

)
, whence the result.

Thus, the coincidence of combinatorial complexity of context-free and regular
languages holds only for polynomial languages.

Now, what can be said about asymptotic behaviour of factorial regular lan-
guages? It appears that there are no additional resctrictions.
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Proposition 1. If a regular language L has the complexity Θ̄(f(n)) for some
function f , then the languages pr(L), suf(L), and fact(L) have the complexity
Θ̄(f(n)) as well.

Remark 2. In the general case, the gap between CL(n) and Cfact(L)(n) can be
arbitrarily large. To see this, take an infinite word and consider the language of
all its prefixes and the language of all its finite factors.

Proposition 2. For an integer m ≥ 0 and an algebraic number α ≥ 1, a facto-
rial regular language over a k-letter alphabet with complexity Θ̄(nmαn) exists iff
there exists a digraph with maximal outdegree k and Θ̄(nmαn) paths of length n.

4 Theorem 3 and Its Corollaries

Sketch of the proof. Suppose that the language L is recognized by a consistent
dfa A with the adjacency matrix A, and χ(λ) = λk + ak−1λ

k−1 + . . . + a0 is the
characteristic polynomial of A. By the textbook Hamilton-Cayley theorem, χ(A)
is zero matrix, hence x·χ(A) = 0 for any vector x. We fix a vector x and consider
the vector function F(n) = xAn. This function satisfies the linear homogeneous
recurrence relation with constant coefficients

F(n) = −ak−1F(n−1) − . . . − a0F(n−k),

By the main theorem on such relations, the function F(n) can be represented
in the closed form using the roots of χ(λ). More precisely, let λ1, . . . , λs be all
eigenvalues of A and d1, . . . , ds be their multiplicities. Then

F(n) = (b11+b12n+ . . .+b1d1n
d1−1)λn

1 + . . . + (bs1+ . . . +bsdsn
ds−1)λn

s ,

where the constant vectors b11, . . . ,bsds can be uniquely determined.
Next we observe that for x = (1, 0, . . . , 0) the function CL(n) equals the sum

of the functions fu(n) = (F(n))u over the set of terminal vertices. By Theorem 2,
CL(n) = Ω̄(αn), where α is the index of A. As the number of summands is finite,
fu(n) = Ω̄(αn) for some u. By some calculations heavily using Theorem 1 we
find an asymptotic set of the required form for fu(n). Finally we show that if
the functions fu(n) and fv(n) have such asymptotic sets, so does the function
fu(n) + fv(n). Thus, the required asymtotic set can be easily obtained.

The following corollaries are used in Sect. 6 to justify a method of calculating
the growth rates of arbitrary regular languages. Note that the finiteness of all
the β’s in Corollary 2 yields the equality of all exponentials in the asymptotic
set for CL(n), as well as the equality of degrees of all polynomials in this set.

Corollary 2. Let a factorial language L be recognized by a consistent automaton
A with the imprimitivity number k. Then each of the sequences

{
CL(nk+i+1)

CL(nk+i)

}∞

1
,

where i = 0, . . . , k−1, converges to a nonnegative (possibly infinite) limit βi. If
all these limits are finite, then the number (β0· . . . ·βk−1)1/k is the growth rate

of L. In particular, if k = 1, then the whole sequence
{

CL(n+1)
CL(n)

}∞

1
converges to

the growth rate of L.
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Corollary 3. Suppose that, in terms of Corollary 2, all the numbers β0, . . . ,
βk−1 are finite. Let d be the degree of all polynomials in the asymptotic set for
the complexity function CL(n). Then
1)

∣∣∣CL(nk+i+1)
CL(nk+i) − βi

∣∣∣ = O(γn) for any i = 0, . . ., k−1 and some γ < 1, if d = 0;

2)
∣∣∣CL(nk+i+1)

CL(nk+i) − βi

∣∣∣ = Θ( 1
n ) for any i = 0, . . . , k−1, if d > 0.

5 Oscillation of Complexity Functions

The complexity functions of languages behave in a very different manner, from
straightforward f(n) = 2n to somewhat complicated and irregular. The “irregu-
larity” is usually expressed by oscillation between relatively high and relatively
low values. We are going to study the oscillation property for regular languages
on the basis of the results of two previous sections.

There are only a few papers studying the behaviour of complexity functions.
They deal with subword complexity of infinite words (combinatorial complexity
of the language of finite factors of such words). Cassaigne [5] proved that for
any infinite word of linear subword complexity, this complexity has bounded
variation. Thus, no “big” oscillation occur in this case. On the other hand, Balogh
and Bollobas [2] constructed a binary infinite word whose subword complexity
oscillates between linear and “almost exponential” (of type Θ̄(2n/ log n) ) growth.

It is convinient to express the oscillation property of the function f in terms
of the ratio f(n+1)

f(n) . The function f is called oscillating (resp. non-oscillating),

if the limit lim
n→∞

f(n+1)
f(n) does not exist (resp. exists). We say that an oscillating

function f is wild, if lim sup
n→∞

f(n+1)
f(n) = ∞ or lim inf

n→∞
f(n+1)

f(n) = 0. One can prove

that the limit lim
n→∞

f(n+1)
f(n) , if exists, coincides with the growth rate of f .

Theorem 4. All possible types of combinatorial complexity for arbitrary, prefix-
closed, and factorial regular languages w.r.t. oscillation property are listed in the
following table (W=wild, O=oscillating, N=non-oscillating):

Regular languages Bounded Polynomial Exponential
Arbitrary W,O,N W,O,N W,O,N
Prefix-closed O,N O,N O,N
Factorial O,N N O,N

Proof. Except for three non-trivial examples, the statements of the theorem are
either obvious or easily follow from Theorem 3. The examples follow.

1. Bounded factorial languages with oscillating complexity. Balogh and Bollobas
[2] constructed an infinite sequence {Bs} of languages over the binary alphabet
such that CBs(n) oscillates between the constants (2s−1) and s2. We prove that
these languages are regular.
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Fig. 1. Consistent dfa recognizing prefix-closed language K. All vertices are terminal.
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Fig. 2. Consistent dfa recognizing factorial language Em with oscillating complexity
of type Θ̄(nmαn). All vertices are terminal.

2. Polynomial prefix-closed languages with oscillating complexity. Fig. 1 exhibits
a dfa recognizing a prefix-closed regular language K such that CK(n) = 3

2n +
O(1) for odd n and CK(n) = n + O(1) for even n.
3. Exponential factorial languages with oscillating complexity. Consider the lan-
guage Em ⊆ {a, b}∗ (m ≥ 0) defined by the following rule: any word from Em

has no factors a2, b4, and at most m occurences of the factor abba (these oc-
curences can overlap). Such a language is obviously factorial, and is recognized
by the dfa in Fig. 2. In view of Lemma 2, an imprimitivity number greater than
1 is required for some scc of the automaton as a necessary condition for oscilla-
tion. Non-singleton scc’s of the given dfa have imprimitivity number 2, and the
oscillation of combinatorial complexity can be proved.

Combining Theorems 3 and 4 we get the following important corollary.

Corollary 4. An asymptotic set for the complexity of a prefix-closed (in partic-
ular, factorial) regular language has the form {p0(n)αn, . . . , pr−1(n)αn}, where
the degrees of all polynomials pi(n) coincide.

6 Application to Upper Bounds

In the last section of this paper we use Corollaries 2 and 3 to obtain an effi-
cient general method of finding upper bounds to the growth rates of factorial
languages. The idea to use languages with finite antidictionary for this purpose
is by no means new. It is attributed to Brandenburg [3] and was used by many
others. We show how this idea can be made much more efficient.

Recall how to use the languages with finite antidictionary to estimate the
complexity of a given factorial language L ⊆ Σ∗ (see [25] for more properties of
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such estimations). Let M be the antidictionary of L. Consider a family {Mi} of
finite subsets of M such that

M1 ⊆ M2 ⊆ . . . ⊆ Mn ⊆ . . . ⊆ M, M1 ∪ M2 ∪ . . . ∪ Mn ∪ . . . = M.

(We shall take for Mi the set of all words of M with lengths at most i.) Denote
by Li the factorial language over Σ having the antidictionary Mi. One has

L ⊆ . . . ⊆ Li ⊆ . . . ⊆ L1, L1 ∩ L2 ∩ . . . ∩ Ln ∩ . . . = L,

and for any n, there is i such that L ∩ Σn = Li ∩ Σn. Then

CL(n) = . . . = CLi(n) ≤ . . . ≤ CL1(n).

Hence the sequence CLi(n) converges to CL(n) from above. Thus, we can choose
i as big as we can operate with, and estimate the complexity of the language Li.
Since Li is regular, its growth rate equals the Frobenius root of some nonnegative
matrix, and can be calculated in finite time with any fixed precision. But this
time can be pretty big, thus preventing us from getting good bounds.

For efficient calculation of the growth rates we provide an algorithm GRate.
Its idea is simple: we use the automaton A recognizing a language L to count
consequently CL(1), . . . , CL(N) for some N and return αN = CL(N)/CL(N−1)
as an approximation of the growth rate (Corollary 2). If A is strongly connected
with the imprimitivity number 1, then we actually follow a well-known iterative
method of finding the Frobenius root (see, e.g., [13]), but without explicit use of
the matrix. The difference (αN − αN−1) in this case decreases at the same rate
as the approximation error (this rate is exponential by Corollary 3(1) ), so one
can easily regulate the number N of iterations required to achieve the desired
precision (some actual values of N in our experiments, taken for δ = 10−10, are
shown in Table 1). Furthermore, only a little gadget is needed to operate the
case of arbitrary imprimitivity number. Splitting A into scc’s and processing
them separately we satisfy the first condition. Finally we get

Theorem 5. The growth rate of a regular language given by a consistent dfa A
can be calculated with any precision δ, 0 < δ < 1, in time Θ(− log δ·|A|) using
Θ(|A|) additional space.

We have implemented algorithm GRate to estimate the growth rates of languages
of bounded exponent. To introduce this well-known in combinatorics of words
class of languages we need a few definitions. If a word w ∈ Σ∗ is viewed as a
function {1, . . . , n} → Σ, then a period of w is any period of this function. The
exponent of the word w is the ratio of the length of w to its least period. A
factorial language L is said to be of bounded exponent, if the exponents of all
its words are bounded from above by some constant.

The word is β-free, if the exponents of all its factors are strictly less than
the number β, and β+-free, if these exponents are less than or equal to β. By
β-free (β+-free) languages we mean the languages of all β-free (respectively β+-
free) words over some alphabet. Such languages are the most intensively studied
languages of bounded exponent. The study of the binary 3-free (cube-free) and
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ternary 2-free (square-free) languages can be traced back to the celebrated work
of Thue [26], who prove their infiniteness. The first estimations of growth rates
of these languages were made by Brandenburg [3] and then the bounds with
increased precision were given in a series of papers, see [11,22,21], for example.
The binary 2+-free (overlap-free) language was also introduced by Thue and
has appeared in numerous works since then. The binary (7/3)+-free language
recently attracted attention as it lies on the borderline between polynomial and
exponential β-free languages in the binary case [17]. And this list would not be
complete without an infinite series of threshold languages, first studied by Dejean
[10]. The threshold language for a k-letter alphabet is the minimal infinite β-
or β+-free language for this alphabet. It is known that binary 2+-free, ternary
(7/4)+-free, and 4-ary (7/5)+-free languages are threshold ones. For k ≥ 5 De-
jean conjectured in 1972 that the k-ary (k/(k−1))+-free language is threshold;
this conjecture has been proved in most but not all cases, see, e.g. [4].

For a β-free (or β+-free) language L over a k-letter alphabet we construct a
finite antidictionary Mi by some optimized search, build a consistent dfa Ai for
the language Li applying the algorithm of [8] to Mi, and then apply GRate to
Ai, getting the approximated growth rate of L. We also note that the symmetry
of L allows to modify the mentioned algorithm of [8] such that the size of the
obtained automaton will be approximately k! times less than the size of Ai.

Finally, we present Table 1 with our main numerical results on upper bounds
for growth rates of β-free and β+-free languages. Most of the obtained bounds are
quite close to the growth rates of target languages. This conclusion is justified by
the fast convergence of growth rates of approximating languages (see the “Delta”
column) and confirmed by some independent studies. For example, Richard and
Grimm [22] used the method of differential approximants to suggest 1,301762 as
the growth rate for ternary 2-free language with the admissible error ± 2·10−6,
and our last approximation is well inside the range.

From Table 1 some conclusions can be made about the behaviour of the growth
rate as a function in β over a fixed alphabet. “Big” jumps of the growth rate
appear between β-free and β+-free languages for a rational β with small denom-
inator. This jumps are due to “allowance” of short factors with the exponent
β (like the factor a3 when we move from 3-free to 3+-free binary language). In
the binary case, Table 1 gives a very representative picture of this property. The
point of the first big jump of the growth rate is of certain interest.

Observation 1. For k = 3, 4, 5 growth rate jumps by more than a unit in the
point βk = (k−1)/(k−2).

This effect is certainly caused by the following fact. For (k−1)/(k−2)-free words,
any consecutive (k−1) letters should be distinct, thus leaving only one “degree
of freedom” for a letter in the word: it either is distinct from (k−1) previous
letters, or coincide with the first of them. When the exponent (k−1)/(k−2) is
allowed, a letter gets a second degree of freedom, since it may coincide also with
the second of the previous (k−1) letters. We conjecture that this “jumping”
property holds for all k ≥ 3.
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Table 1. Upper bounds for growth rates. The columns from left to right contain: size
of the alphabet, exponent, the best previously known bound; then the parameters of
our approximation follow: maximum length of forbidden words, number of words in the
antidictionary, number of vertices in the “reduced” dfa, number of iterations needed
for the precision 10−10, the growth rate, and the variation “Delta” of the obtained
growth rate w.r.t. the growth rate of the approximation by a dfa of size ≈ |Ai|/2k! .

k β Previous i |Mi| |Ai|/k! N Growth rate Delta

2 (7/3)+ 1,2299 [17] 127 269684 9195979 210 1,22064487 7·10−8

2 5/2 - 115 70066 2224353 200 1,22950218 1·10−7

2 (5/2)+ - 93 387068 10069765 115 1,366301114 7·10−9

2 8/3 - 83 73016 1725995 115 1,3762704 2·10−8

2 (8/3)+ - 75 108500 2328649 105 1,45086113 1·10−8

2 3 1,4576 [22] 93 375576 10676055 100 1,45757728694 5·10−11

2 3+ - 49 26094 384650 50 1,795126410 3·10−9

3 (7/4)+ - 99 1224483 9161729 210 1,2456148 4·10−6

3 2 1,3017886 [21] 96 1377033 10970070 160 1,30176215 3·10−7

3 2+ - 29 1086837 2564335 40 2,6058795 6·10−7

4 (7/5)+ - 191 347080 1105491 2500 1,069721 2·10−4

4 (3/2) - 150 125440 358485 900 1,09697 2·10−4

4 (3/2)+ - 28 5594032 2379474 50 2,280727 8·10−5

5 (5/4)+ - 99 1087765 365963 210 1,158901 1·10−4

5 (4/3) - 83 138565 42368 200 1,16508 1·10−3

5 (4/3)+ - 27 27777685 1920804 50 2,250161 5·10−4

6 (6/5)+ - 67 1012116 38796 200 1,225441 2·10−4

We conclude with another interesting result of our experiments with approx-
imations of β-free and β+-free languages. This result is not numerical.

Observation 2. Some approximating languages are oscillating. Namely, poly-
nomial binary β-free or β+-free languages have oscillating approximations.

The discovered oscillations were predictable. In [24], we gave a description of all
approximating languages Li for the famous Thue-Morse language, which forms a
proper subset of the 2+-free binary language. A precise form of the non-singleton
component in the automaton for any language Li was found. This component
has big imprimitivity number, and hence, a “strong potential” for oscillation. On
the other hand, if a binary word w of exponent less than (7/3) can be extended
to both sides to an arbitrarily long word, the exponent of which is also less
than (7/3), then w must belong to the Thue-Morse language [23]. Hence, the
approximating languages for the binary languages from 2+-free to (7/3)-free are
expected to behave in a similar way as the approximating languages for Thue-
Morse. For the first few approximations, the non-singleton scc’s are the same for
Thue-Morse, 2+-free, and (7/3)-free languages. By a careful analysis, this result
probably can be extended to all approximations of these languages.
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Abstract. The remarkable results of Foster and Vohra was a starting
point for a series of papers which show that any sequence of outcomes can
be learned (with no prior knowledge) using some universal randomized
forecasting algorithm and forecast-dependent checking rules. We show
that for the class of all computationally efficient outcome-forecast-based
checking rules, this property is violated. Moreover, we present a proba-
bilistic algorithm generating with probability close to one a sequence with
a subsequence which simultaneously miscalibrates all partially weakly
computable randomized forecasting algorithms.

According to the Dawid’s prequential framework we consider partial
recursive randomized algorithms.

1 Introduction

Let a binary sequence ω1, ω2, . . . , ωn−1 of outcomes is observed by a forecaster
whose task is to give a probability pn of a future event ωn = 1. The evaluation of
probability forecasts is based on a method called calibration: informally, following
Dawid [1] forecaster is said to be well-calibrated if for any p∗ the event ωn = 1
holds in 100p∗% of moments of time as he choose pn ≈ p∗. (see also [2]).

Let us give some notations. Let Ω be the set of all infinite binary sequences,
Ξ be the set of all finite binary sequences and λ be the empty sequence. For
any finite or an infinite sequence ω = ω1 . . . ωn . . ., we write ωn = ω1 . . . ωn (we
put ω0 = ω0 = λ). Also, l(ωn) = n denotes the length of the sequence ωn. If
x is a finite sequence and ω is a finite or infinite sequence then xω denotes the
concatenation of these sequences, x � ω means that x = ωn for some n.

In the measure-theoretic framework we expect that the forecaster has a
method for assigning probabilities pn of a future event ωn = 1 for all possi-
ble finite sequences ω1, ω2, . . . , ωn−1. In other words, all conditional probabilities

pn = P (ωn = 1|ω1, ω2, . . . , ωn−1)

must be specified and the overall probability distribution in the space Ω of all
infinite binary sequences will be defined. But in reality, we should recognize that
we have only individual sequence ω1, ω2, . . . , ωn−1 of events and that the corre-
sponding forecasts pn whose testing is considered may fall short of defining a full
probability distribution in the whole space Ω. This is the point of the prequen-
tial principle proposed by Dawid [1]. This principle says that the evaluation of a
probability forecaster should depend only on his actual probability forecasts and

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 302–313, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



On Sequences with Non-learnable Subsequences 303

the corresponding outcomes. The additional information contained in a proba-
bility measure that has these probability forecasts as conditional probabilities
should not enter in the evaluation. According to Dawid’s prequential framework
we do not consider numbers pn as conditional probabilities generated by some
overall probability distribution defined for all possible events. In such a way, a
deterministic forecasting system is a partial recursive function f : Ξ → [0, 1]. We
suppose that a valid forecasting system f is defined on all finite initial fragments
ω1, . . . , ωn−1, . . . of an analyzed individual sequence of outcomes.

First examples of individual sequences for which well-calibrated deterministic
forecasting is impossible (non-calibrable sequences) were presented by Oakes [6]
(see also Shervish [9]). Unfortunately, the methods used in these papers, and
in Dawid [1], [2], do not comply with prequential principle; they depend on
some mild assumptions about the measure from which probability forecasts are
derived as conditional probabilities. The method of generation the non-calibrable
sequences with probability arbitrary close to one presented in V’yugin [11] also is
based on the same assumptions. In this paper we modify construction from [11]
for the case of partial deterministic and randomized forecasting systems do not
corresponding to any overall probability distributions.

Oakes [6] showed that any everywhere defined forecasting system f is not
calibrated for a sequence ω = ω1ω2 . . . defined

ωi =
{

1 if pi < 0.5
0 otherwise

and pi = f(ω1 . . . ωi−1), i = 1, 2, . . . .
Foster and Vohra [3] showed that the well-calibrated forecasts are possible if

these forecasts are randomized. By a randomized forecasting system they mean a
random variable f(α; x) defined on some probability space Ωx supplied by some
probability distribution Prx, where x ∈ Ξ is a parameter. As usual, we omit the
argument α. For any infinite ω, these probability distributions Prωi−1 generate
the overall probability distribution Pr on the direct product of probability spaces
Ωωi−1 , i = 1, 2, . . . .

It was shown in [3], [4] that any sequence can be learned: for any Δ > 0, a
universal randomized forecasting system f was constructed such that for any
sequence ω = ω1ω2 . . . the overall probability Pr of the event

∣∣∣∣∣
1
n

n∑

i=1

I(p̃i)(ωi − p̃i)

∣∣∣∣∣ ≤ Δ (1)

tends to one as n → ∞, where p̃i = f(ωn−1) is the random variable, I(p) is the
characteristic function of an arbitrary subinterval of [0, 1]; we call this function
a forecast-based checking rule.

Lehrer [5] and Sandrony et al. [8] extended the class of checking rules to
combination of forecast- and outcome-based checking rules: a checking rule is
a function c(ωi−1, p) = δ(ωi−1)I(p), where δ : Ξ → {0, 1} is an outcome-based
checking rule, and I(p) is a characteristic function of a subinterval of [0, 1]. They
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also considered a more general class of randomized forecasting systems - random
variables p̃i = f(α; ωi−1, pi−1), where pi−1 = p1, . . . , pi−1 is the sequence of past
realized forecasts.

For k = 1, 2, . . . , let {δk} be any sequence of outcome-based checkng rules and
{Ik} be any sequence of characteristic functions of subintervals of [0, 1]. Sandrony
et al. [8] defined a randomized universal forecasting system which calibrates all
checking rules {δkIk}, k = 1, 2, . . . , i.e., such that for any Δ > 0 and for any
sequence ω = ω1ω2 . . . , the overall probability of the event (1) tends to one as
n → ∞, where p̃i = f(ωn−1, pi−1) and I(p̃i) is replaced on δk(ωi−1)Ik(p̃i) for all
k = 1, 2, . . . .

In this paperwe consider the class of all computable (partial recursive) outcome-
based checking rules {δk} and a slightly different class of randomized forecasting
systems: our forecasting systems are random variables p̃i = f(α; ωi−1) do not de-
pending on past realized forecasts (this take a place for the universal forecasting
systems defined in [3] and [10] 1 ). Concurrently, such a function can be undefined
outside ω, it requires that any well defined forecasting system must be defined
on all initial fragments of an analyzed sequence of outcomes. This peculiarity is
important, since we consider forecasting systems possessing some computational
properties: there is an algorithm computing the probability distribution function
of such forecasting system. This algorithm when fed to some input can never finish
its work, and so, is undefined on this input.

In this case, a universal randomized forecasting algorithm which calibrates all
computationally efficient outcome-forecast-based checking rules does not exist.
Moreover, we construct a probabilistic generator (or probabilistic algorithm) of
non-learnable (in this way) sequences. This generator outputs with probability
close to one an infinite sequence such that for each randomized forecasting sys-
tem p̃i = f(α; ωi−1) some computable outcome-based checking rule δ selects an
infinite subsequence of ω on which the property (1) fails for some characteris-
tic function I with the overall probability one, where the overall probability is
associated with the forecasting system f .

2 Miscalibrating the Forecasts

We use standard notions of the theory of algorithms. This theory is system-
atically treated in, for example, Rogers [7]. We fix some effective one-to-one
enumeration of all pairs (triples, and so on) of nonnegative integer numbers. We
identify any pair (t, s) and its number 〈t, s〉; let p(〈t, s〉) = t.

A function φ : A → R is called (lower) semicomputable if {(r, x) : r < φ(x)}
(r is a rational number) is a recursively enumerable set. A function φ is upper
semicomputable if −φ is lower semicomputable. Standard argument based on
1 Note that the algorithm from [8] can be modified in a fashion of [3], i.e., such that

at any step of the construction past forecasts can be replaced on measures with finite
supports defined on previous steps. Since these measures are defined recursively in the
process of the construction, they can be eliminated from the condition of the universal
forecasting algorithm.
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the recursion theory shows that there exist the lower and upper semicomputable
real functions φ−(j, x) and φ+(k, x) universal for all lower semicomputable and
upper semicomputable functions from x ∈ Ξ; in particular every computable
real function φ(x) can be represented as φ(x) = φ−(j, x) = φ+(k, x) for all x, for
some j and k. Let φ−

s (j, x) be equal to the maximal rational number r such that
the triple (r, j, x) is enumerated in s steps in the process of enumerating of the
set {(r, j, x) : r < φ(j, x), r is rational} and equals −∞, otherwise. Any such
function φ−

s (j, x) takes only finite number of rational values distinct from −∞.
By definition, φ−

s (j, x) ≤ φ−
s+1(j, x) for all j, s, x, and φ−(j, x) = lim

s→∞ φ−
s (j, x).

An analogous non-increasing sequence of functions φ+
s (k, x) exists for any upper

semicomputable function.
Let i = 〈t, k〉. We say that a real function φi(x) is defined on x if given

any degree of precision - positive rational number κ > 0, it holds |φ+
s (t, x) −

φ−
s (k, x)| ≤ κ for some s; φi(x) undefined, otherwise. If any such s exists then

for minimal such s, φi,κ(x) = φ−
s (k, x) is called the rational approximation (from

below) of φi(x) up to κ; φi,κ(x) undefined, otherwise.
To define a measure P on Ω, we define values P (z) = P (Γz) for all intervals

Γz = {ω ∈ Ω : z � ω}, where z ∈ Ξ, and extend this function on all Borel
subsets of Ω in a standard way.

We use also a concept of computable operation on Ξ
⋃

Ω (see [12]). Let F̂ be
a recursively enumerable set of ordered pairs of finite sequences satisfying the
following properties: (i) (x, λ) ∈ F̂ for each x; (ii) if (x, y) ∈ F̂ , (x′, y′) ∈ F̂
and x � x′ then y � y′ or y′ � y for all finite binary sequences x, x′, y, y′. A
computable operation F is defined as follows

F (ω) = sup{y | x � ω and (x, y) ∈ F̂ for some x},

where ω ∈ Ω
⋃

Ξ and sup is in the sense of the partial order � on Ξ.
A probabilistic algorithm is a pair (L, F ), where L(x) = L(Γx) = 2−l(x) is the

uniform measure on Ω and F is a computable operation. For any probabilistic
algorithm (L, F ) and a set A ⊆ Ω, we consider the probability L{ω : F (ω) ∈ A}
of generating by means of F a sequence from A given a uniformly distributed
sequence ω.

A partial randomized forecasting system f is weakly computable if its weak
probability distribution function ϕn(ωn−1) = Prn{f(ωn−1) < 1

2} is a partial
recursive function from ωn−1.

Any function δ : Ξ → {0, 1} is called an outcome-based selection (or checking)
rule. For any sequence ω = ω1ω2 . . . , the selection rule δ selects a sequence of in-
dices ni such that δ(ωni−1) = 1, i = 1, 2, . . . , and the corresponding subsequence
ωn1ωn2 . . . of ω.

The following theorem is the main result of this paper. In particular, it shows
that the construction of the universal forecasting algorithm from Sandrony et
al. [8] is computationally non-efficient in a case when the class of all partial
recursive outcome-based checking rules {δk} is used.

Theorem 1. For any ε > 0 a probabilistic algorithm (L, F ) can be constructed,
which with probability ≥ 1 − ε outputs an infinite binary sequence ω = ω1ω2 . . .
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such that for every partial weakly computable randomized forecasting system f
defined on all initial fragments of the sequence ω there exists a computable se-
lection rule δ defined on all these fragments and such that for ν = 0 or for ν = 1
the overall probability of the event

lim sup
n→∞

∣∣∣∣∣
1
n

n∑

i=1

δ(ωi−1)Iν(p̃i)(ωi − p̃i)

∣∣∣∣∣ ≥ 1/16 (2)

equals one, where I0 and I1 are the characteristic functions of the intervals [0, 1
2 )

and [12 , 1], p̃i = f(ωi−1) is a random variable, i = 1, 2, . . . , and the overall
probability distribution is associated with f .

Proof. For any probabilistic algorithm (L, F ), we consider the function

Q(x) = L{ω : x � F (ω)}. (3)

It is easy to verify that this function is lower semicomputable and satisfies:
Q(λ) ≤ 1; Q(x0) + Q(x1) ≤ Q(x) for all x. Any function satisfying these prop-
erties is called semicomputable semimeasure. For any semicomputable semimea-
sure Q a probabilistic algorithm (L, F ) exists such that (3) holds. Though the
semimeasure Q is not a measure, we consider the corresponding measure on the
set Ω

Q̄(Γx) = inf
n

∑

l(y)=n,x�y

Q(y).

We will construct a semicomputable semimeasure Q as a some sort of network
flow. We define an infinite network on the base of the infinite binary tree. Any
x ∈ Ξ defines two edges (x, x0) and (x, x1) of length one. In the construction
below we will mount to the network extra edges (x, y) of length > 1, where
x, y ∈ Ξ, x � y and y �= x0, x1. By the length of the edge (x, y) we mean the
number l(y) − l(x). For any edge σ = (x, y) we denote by σ1 = x its starting
vertex and by σ2 = y its terminal vertex. A computable function q(σ) defined
on all edges of length one and on all extra edges and taking rational values is
called a network if for all x ∈ Ξ

∑

σ:σ1=x

q(σ) ≤ 1.

Let G be the set of all extra edges of the network q (it is a part of the domain
of q). By q-flow we mean the minimal semimeasure P such that P ≥ R, where
the function R is defined by the following recursive equations R(λ) = 1 and

R(y) =
∑

σ:σ2=y

q(σ)R(σ1) (4)

for y �= λ. A network q is called elementary if the set of extra edges is finite and
q(σ) = 1/2 for almost all edges of unit length. For any network q, we define the
network flow delay function (q-delay function)

d(x) = 1 − q(x, x0) − q(x, x1).



On Sequences with Non-learnable Subsequences 307

The construction below works with all computable real functions φt(x), x ∈ Ξ,
t = 1, 2, . . . . We suppose that for any computable function φ there exist infinitely
many programs t such that φt = φ. 2 Any pair i = 〈t, s〉 is considered as a
program for computing the rational approximation φt,κs(ωn−1) of φt from below
up to κs = 1/s.

By the construction below we visit any function φt on infinitely many steps
n. To do this, we use the function p(n): for any positive integer number i we
have p(n) = i for infinitely many n.

Let β be a finite sequence and 1 ≤ k < l(β). A bit βk of the sequence β is
called hardly predictable by a program i = 〈t, s〉 if φt,κs(βk−1) is defined and

βk =
{

0 if φt,κs(βk−1) ≥ 1
2

1 otherwise

Lemma 1. Let i = 〈t, s〉 be a program and μ be an arbitrary sufficiently small
positive real number. Then for any binary sequence x of length n the portion of
all sequences γ of length K = (2 + μ)i�n (in the set of all finite sequences of
length K) such that

1) φt,κs(xγk) is defined for all 0 ≤ k < K,
2) the number of hardly predictable bits of γ by the forecasting program i is

less than in,
is ≤ 2−2μ2in+O(log(in)) for all sufficiently large n.

Proof. Any function σ(x), where x ∈ Ξ and σ(x) ∈ {A, B}, is called labelling
if σ(x0) �= σ(x1) for all x ∈ Ξ. For any γ of length K and for any k such that
1 ≤ k < K, define σ(γk+1) = A and σ(γkγ̄k+1) = B if the bit γk+1 of the
sequence xγ is hardly predictable, where we denote θ̄ = 1 − θ for any binary bit
θ. Since φt,κs(xγk) is defined for all 0 ≤ k < K, then σ(γk+1) is also defined for
all these k. This partial labelling σ can be easily extended on the set of all binary
sequences of length K in many different ways. We fix some such extension. Then
the total number of all γ satisfying 1)-2) does not exceed the total number of all
binary sequences of length K with ≤ in labels A. Therefore, for all sufficiently
large n, the portion of these γ does not exceed

∑

i≤in

(
K

i

)
2−K ≤ 2−(1−H(1/2−μ))2in+O(log(in)) ≤ 2−2μ2in+O(log(in)),

where H(r) = −r log r − (1 − r) log(1 − r). �
In the following we put μ = 1/ log(i + 1).

We define an auxiliary relation B(i, qn−1, σ, n) and a function β(x, qn−1, n).
Let x, β ∈ Ξ. The value of B(i, qn−1, (x, β), n) is true if the following conditions
hold:

– n ≥ (1 + (2 + log−1(i + 1))i�)l(x);
– l(β) = n and x � β;

2 To obtain this property, we can replace the sequence φt(x) on a sequence φ′
〈t,s〉(x) =

φt(x) for all s.
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– dn−1(βj) < 1 for all j such that 1 ≤ j < n;
– for all j, l(x) < j ≤ (1 + (2 + log−1(i + 1))i�)l(x), the value φt,κs(βj−1) is

computed in ≤ n steps, and for at least il(x) of these j the bit βj is hardly
predictable by the program i = 〈t, s〉.

The value of B(i, qn−1, (x, β), n) is false, otherwise. Define

β(x, qn−1, n) = min{y : p(l(y)) = p(l(x)), B(p(l(x)), qn−1, (x, y), n)}.

Here min is considered for lexicographical ordering of strings; we suppose that
min ∅ is undefined.

Construction. Let ρ(n) = (n+n0)2 for some sufficiently large n0 (the value n0
will be specified below in the proof of Lemma 5).

Using the mathematical induction by n, we define a sequence qn of elementary
networks. Put q0(σ) = 1/2 for all edges σ of length one.

Let n > 0 and a network qn−1 is defined. Let dn−1 be the qn−1-delay function
and let Gn−1 be the set of all extra edges. We suppose also that l(σ2) < n for
all σ ∈ Gn−1.

Let us define a network qn. At first, we define a network flow delay function
dn and a set Gn. The construction can be split up into two cases.

Let w(i, qn−1) be equal to the minimal m such that p(m) = i and m > l(σ2)
for each extra edge σ ∈ Gn−1 such that p(l(σ1))) < i.

The inequality w(i, qm) �= w(i, qm−1) can be induced by some task j < i that
mounts an extra edge σ = (x, y) such that l(x) > w(i, qm−1) and p(l(x)) =
p(l(y)) = j. Lemma 2 (below) will show that this can happen only at finitely
many steps of the construction.

Case 1. w(p(n), qn−1) = n (the goal of this part is to start a new task i = p(n)
or to restart the existing task i = p(n) if it was destroyed by some task j < i at
some preceding step).

Put dn(y) = 1/ρ(n) for l(y) = n and define dn(y) = dn−1(y) for all other y.
Put also Gn = Gn−1.

Case 2. w(p(n), qn−1) < n (the goal of this part is to process the task i = p(n)).
Let Cn be the set of all x such that w(i, qn−1) ≤ l(x) < n, 0 < dn−1(x) < 1,
the function β(x, qn−1, n) is defined 3 and there is no extra edge σ ∈ Gn−1 such
that σ1 = x.

In this case for each x ∈ Cn define dn(β(x, qn−1, n)) = 0, and for all other y
of length n such that x � y define

dn(y) =
dn−1(x)

1 − dn−1(x)
.

Define dn(y) = dn−1(y) for all other y. We add an extra edge to Gn−1, namely,
define

Gn = Gn−1 ∪ {(x, β(x, qn−1, n)) : x ∈ Cn}.

3 In particular, p(l(x)) = i and l(β(x, qn−1, n)) = n.
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We say that the task i = p(n) mounts the extra edge (x, β(x, qn−1, n)) to the
network and that all existing tasks j > i are destroyed by the task i.

After Case 1 and Case 2, define for any edge σ of unit length

qn(σ) =
1
2
(1 − dn(σ1))

and qn(σ) = dn(σ1) for each extra edge σ ∈ Gn.

Case 3. Cases 1 and 2 do not hold. Define dn = dn−1, qn = qn−1, Gn = Gn−1.
As the result of the construction we define the network q = lim

n→∞ qn, the
network flow delay function d = lim

n→∞ dn and the set of extra edges G = ∪nGn.
The functions q and d are computable and the set G is recursive by their

definitions. Let Q denotes the q-flow.
The following lemma shows that any task can mount new extra edges only

at finite number of steps. Let G(i) be the set of all extra edges mounted by the
task i, w(i, q) = limn→∞ w(i, qn).

Lemma 2. The set G(i) is finite, w(i, q) exists and w(i, q) < ∞ for all i.

Proof. Note that if G(j) is finite for all j < i, then w(i, q) < ∞. Hence, we must
prove that the set G(i) is finite for any i. Suppose that the opposite assertion
holds. Let i be the minimal such that G(i) is infinite. By choice of i the sets
G(j) for all j < i are finite. Then w(i, q) < ∞.

For any x such that l(x) ≥ w(i, q), consider the maximal m such that for
some initial fragment xm � x there exists an extra edge σ = (xm, y) ∈ G(i). If
no such extra edge exists define m = w(i, q). By definition, if d(xm) �= 0 then
1/d(xm) is an integer number. Define

u(x) =

⎧
⎨

⎩

1/d(xm) if d(xm) �= 0, l(x) ≥ w(i, q)
ρ(w(i, q)) if l(x) < w(i, q)
0 otherwise

By construction the integer valued function u(x) has the property: u(x) ≥ u(y)
if x � y. Besides, if u(x) > u(y) then u(x) > u(z) for all z such that x � z and
l(z) = l(y). Then the function

û(ω) = min{n : u(ωi) = u(ωn) for all i ≥ n}
is defined for all ω ∈ Ω. It is easy to see that this function is continuous. Since
Ω is compact space in the topology generated by intervals Γx, this function
is bounded by some number m. Then u(x) = u(xm) for all l(x) ≥ m. By the
construction, if any extra edge of ith type was mounted to G(i) at some step then
u(y) < u(x) holds for some new pair (x, y) such that x � y. This is contradiction
with the existence of the number m. �

An infinite sequence α ∈ Ω is called an i-extension of a finite sequence x if x � α
and B(i, qn−1, x, αn, n) is true for almost all n.

A sequence α ∈ Ω is called i-closed if d(αn) = 1 for some n such that p(n) = i,
where d is the q-delay function. Note that if σ ∈ G(i) is some extra edge (i.e. an
edge of ith type) then B(i, qn−1, σ, n) is true, where n = l(σ2).
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Lemma 3. Let for any initial fragment ωn of an infinite sequence ω some i-
extension exists. Then either the sequence ω will be i-closed in the process of
the construction or ω contains an extra edge of ith type (i.e. σ2 � ω for some
σ ∈ G(i)).

Proof. Let a sequence ω is not i-closed. By Lemma 2 the maximal m exists such
that p(m) = i and d(ωm) > 0. Since the sequence ωm has an i-extension and
d(ωm) < 1, by Case 2 of the construction a new extra edge (ωm, y) of ith type
must be mounted to the binary tree. By the construction d(y) = 0 and d(z) �= 0
for all z such that ωm � z, l(z) = l(y), and z �= y. By the choice of m we have
y � ω. �

Lemma 4. It holds Q(y) = 0 if and only if q(σ) = 0 for some edge σ of unit
length located on y (this edge satisfies σ2 � y).

Proof. The necessary condition is obvious. To prove that this condition is suffi-
cient, let us suppose that q(yn, yn+1) = 0 for some n < l(y) but Q(y) �= 0. Then
by definition d(yn) = 1. Since Q(y) �= 0 an extra edge (x, z) ∈ G exists such
that x � yn and yn+1 � z. But, by the construction, this extra edge can not be
mounted to the network ql(z)−1 since d(zn) = 1. This contradiction proves the
lemma. �

For any semimeasure P define EP = {ω ∈ Ω : ∀n(P (ωn) �= 0)} - the support set
of P . It is easy to see that P̄ (EP ) = P̄ (Ω). By Lemma 4 EQ = Ω \ ∪d(x)=1Γx.

Lemma 5. It holds Q̄(EQ) > 1 − 1
2ε.

Proof. We bound Q̄(Ω) from below. Let R be defined by (4). By definition of
the network flow delay function, we have

∑

u:l(u)=n+1

R(u) =
∑

u:l(u)=n

(1 − d(u))R(u) +
∑

σ:σ∈G,l(σ2)=n+1

q(σ)R(σ1). (5)

Define an auxiliary sequence Sn =
∑

u:l(u)=n

R(u) − ∑
σ:σ∈G,l(σ2)=n

q(σ)R(σ1). At

first, we consider the case w(p(n), qn−1) < n. If there is no edge σ ∈ G such that
l(σ2) = n then Sn+1 ≥ Sn. Suppose that some such edge exists. Define

P (u, σ) ⇐⇒ l(u) = l(σ2)&σ1 � u&u �= σ2&σ ∈ G.

By definition of the network flow delay function, we have
∑

u:l(u)=n

d(u)R(u) =
∑

σ:σ∈G,l(σ2)=n

d(σ2)
∑

u:P (u,σ)

R(u) =

=
∑

σ:σ∈G,l(σ2)=n

d(σ1)
1 − d(σ1)

∑

u:P (u,σ)

R(u) ≤
∑

σ:σ∈G,l(σ2)=n

d(σ1)R(σ1) =

=
∑

σ:σ∈G,l(σ2)=n

q(σ)R(σ1). (6)
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Here we used the inequality
∑

u:P (u,σ)
R(u) ≤ R(σ1) − d(σ1)R(σ1) for all σ ∈ G

such that l(σ2) = n. Combining this bound with (5) we obtain Sn+1 ≥ Sn.
Let us consider the case w(p(n), qn−1) = n. Then

∑
u:l(u)=n

d(u)R(u) ≤ ρ(n) =

(n + n0)−2. Combining (5) and (6) we obtain Sn+1 ≥ Sn − (n + n0)−2 for all n.

Since S0 = 1, this implies Sn ≥ 1 −
∞∑

i=1
(i + n0)−2 ≥ 1 − 1

2ε for some sufficiently

large constant n0. Since Q ≥ R, it holds

Q̄(Ω) = inf
n

∑

l(u)=n

Q(u) ≥ inf
n

Sn ≥ 1 − 1
2
ε.

Lemma is proved. �

Lemma 6. There exists a set U of infinite binary sequences such that
Q̄(U) ≤ ε/2 and for any sequence ω ∈ EQ \ U for each partial computable fore-
casting system the condition (2) holds.

Proof. Let ω be an infinite sequence and let f be a partial computable forecasting
system such that the corresponding φt(ωn−1) is defined for all n. Let i = 〈t, s〉
be a program for computing the rational approximation φt,κs from below up to
κs = 1/s.

If d(ωm) = 1 for some m such that p(m) = i then for every β of length
(1 + (2 + log−1(i + 1)�i)m such that ωm � β there are < im bits hardly
predictable by the forecasting program i.

We show that Q̄-measure of all intervals generated by such β becomes arbi-
trary small for all sufficiently large i. Since there are no extra edges σ such that
ωm � σ1, the measure Q̄ when restricted on interval Γωm is proportional to the
uniform measure. Then by Lemma 1, where μ = log−1(i + 1), Q̄-measure of all
such β decreases exponentially by im. Therefore, for each j there exists a number
mj such that Q̄(Uj) ≤ 2−(j+1), where Uj is the union of all intervals Γβ defined
by all β of length (1 + (2 + log−1(i + 1))i�)m for m ≥ mj containing < im bits
hardly predictable by the forecasting program i = p(m). Define U = ∪j>kUj ,
where k = − log2 ε − 1�. We have Q̄(U) < ε/2.

Define a selection rule γ as follows:

– define γ(ωj−1) = 1 if σ1 � ωj−1 � σ2 for some σ ∈ G(i) and the jth bit of
σ2 is hardly predictable by the forecasting program i;

– define γ(ωj−1) = 0 otherwise.

We also define two selection rules Jν , where ν = 0, 1,

Jν(ωj−1) =
{

1 − ν if φt,κs(ωj−1) < 1
2

ν if φt,κs(ωj−1) ≥ 1
2

Suppose that ω �∈ U and φt(ωn) is defined for all n. Then ω is an i-extension
of ωn for each n. Since for each n the sequence ωn is not i-closed, by Lemma 3
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there exists an extra edge σ ∈ G(i) such that σ2 � ω. In the following, let
m = l(σ1), n = (1 + (2 + log−1(i + 1))i�)m.

Then by the construction the selection rule δν(ωj−1) = γ(ωj−1)Jν(ωj−1), for
ν = 0 or for ν = 1, selects from a fragment of ω of length n a subsequence
ωt1 , . . . , ωtl

of length l ≥ im/2. Since by definition these bits are hardly pre-
dictable, we have ωtj = 1 for all j such that 1 ≤ j ≤ l if ν = 0, and ωtj = 0 for
all these j if ν = 1.

Let p̃j = f(ωj−1), j = 1, 2, . . . , be an arbitrary computable randomizing
forecasting system (it is a random variable) defined on all initial fragments of
ω = ω1ω2 . . . . Then φ(ωj−1) = Pr{p̃j ≥ 1

2} is a computable real function. By
definition φ = φt for infinitely many t and

φt,κs(ω
j−1) ≤ φt(ωj−1) ≤ φt,κs(ω

j−1) + κs. (7)

for all s and j. Consider two random variables, for ν = 0 and for ν = 1,

ϑn,ν =
n∑

j=1

δν(ωj−1)Iν(p̃j)(ωj − p̃j).

Suppose that l ≥ im/2 holds for ν = 0. Then using (7) we obtain

E(ϑn,0) ≥
n∑

j=m+1

δ0(ωj−1)Pr{p̃j <
1
2
}1
2

− m ≥

≥ im

4
(
1
2

− κs) − m (8)

Since n = (1 + (2 + log−1(i + 1))i�)m, i can be arbitrary large and we visit any
pair i = 〈t, s〉 infinitely often, we obtain from (8)

lim sup
n→∞

1
n

E(ϑn,0) ≥ 1/16. (9)

Analogously, if ν = 1 we obtain

lim inf
n→∞

1
n

E(ϑn,1) ≤ −1/16. (10)

The martingale strong law of large numbers says that for ν = 0, 1 with Pr-
probability one

1
n

n∑

j=1

δν(ωj−1)Iν(p̃j)(ωj − p̃j) − 1
n

E(ϑn,ν) → 0 (11)

as n → ∞. Combining (9), (10) and (11) we obtain (2).
Lemma 6 and Theorem 1 are proved. �

The following theorem is a generalization of the result from V’yugin [11] for
partial defined computable deterministic forecasting systems.
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Theorem 2. For any ε > 0 a probabilistic algorithm (L, F ) can be constructed,
which with probability ≥ 1 − ε outputs an infinite binary sequence ω = ω1ω2 . . .
such that for every partial deterministic forecasting algorithm f defined on all
initial fragments of the sequence ω a computable outcome-based selection rule δ
exists defined on all these fragments such that

lim sup
n→∞

∣∣∣∣∣
1
n

n∑

i=1

δ(ωi−1)(ωi − f(ωi−1))

∣∣∣∣∣ ≥ 1/8. (12)

The proof of this theorem is based on the same construction.
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Algorithms for Multiterminal Cuts
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Abstract. Given a graph G = (V, E) with n vertices and m edges,
and a subset T of l vertices called terminals, the Edge (respectively,
Vertex) Multiterminal Cut problem is to find a set of k edges (non-
terminal vertices), whose removal from G separates each terminal from
all the others. These two problems are NP-hard for l ≥ 3 but well-
known to be polynomial-time solvable for l = 2 by the flow technique.
In this paper, we show that Edge Multiterminal Cut is polynomial-time
solvable for k = O(log n) by presenting an O(2klT (n, m)) algorithm,
where T (n, m) = O(min(n2/3, m1/2)m) is the running time of finding
a minimum (s, t) cut in an unweighted graph. We also give two algo-
rithms for Vertex Multiterminal Cut that run in O(lkT (n, m)) time and
O((k!)2T (n, m)) time respectively. The former one indicates that Vertex
Multiterminal Cut is solvable in polynomial time for l being a constant
and k = O(log n), and the latter one improves the best known algorithm

of running time O(4k3
nO(1)). When l = 3, we show that the running

times can be improved to O(1.415kT (n, m)) for Edge Multiterminal Cut
and O(2.059kT (n, m)) for Vertex Multiterminal Cut. Furthermore, we
present a simple idea to solve another important problem Multicut by
finding minimum multiterminal cuts. Our algorithms for Multicuts are
also faster than the previously best algorithm.

Based on a notion farthest minimum isolating cut, we present some
properties for Multiterminal Cuts, which help shed light on the structure
of optimal cut problems, and enables us to design efficient algorithms for
Multiterminal Cuts, as well as some other related cut problems.

Keywords: Graph Algorithm, Multiterminal Cut, Multicut, Fixed
Parameter Tractability.

1 Introduction

Given a graph G = (V, E) with |V | = n and |E| = m, positive integers k and l,
and a set T ⊂ V of l vertices, called terminals, the Edge (respectively, Vertex)
Multiterminal Cut problem is to find a subset S of k edges (non-terminal vertices)
such that all terminals in T are in different components of G − S. These two
Multiterminal Cut problems are fundamental network design problems and have
applications in VLSI system design, parallel computing, distributed computing,
clustering, and many others [5], [18], [4].

E.A. Hirsch et al. (Eds.): CSR 2008, LNCS 5010, pp. 314–325, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Dahlhaus et al. [5] initiated the study of the Multiterminal Cut problems
by establishing their NP-hardness for each fixed l ≥ 3 and giving a (2 − 2/l)-
approximation algorithm for Edge Multiterminal Cut. For Edge Multiterminal
Cut, Calinescu et al. [2] used a novel geometric relaxation to obtain a (1.5−1/l)-
approximation algorithm. And the current best approximation algorithm is the
(1.3438 − εl)-approximation algorithm developed by Karger et al. [14]. Garg
et al. [9] obtained a (2 − 2/l)-approximation algorithm for Vertex Multitermi-
nal Cut, and Naor and Zosin [17] gave a 2-approximation algorithm for the
Multiterminal Cut problems in directed graphs. In terms of exact algorithms,
the Multiterminal Cut problems for l = 2 degenerate to the well known Mini-
mum Edge/Vertex Cut problems and can be solved in polynomial time by flow
techniques and some other techniques. For l ≥ 3, Dahlhaus et al. [5] gave
an O((4l)ln(2l−1) log n) algorithm for solving Edge Multiterminal Cut in pla-
nar graphs, which was later improved to O(ll(n − l)2ln log(n − l)) by Yeh [18].
Marx [16] obtained an O(4k3

nO(1)) algorithm for Vertex Multiterminal Cut in
general graphs.

In this paper, we revisit the exact algorithms for Multiterminal Cuts. To make
them tractable, we put much attention to the scenarios where the size k of the
multiterminal cut is small. This view of point has drawn much attention in NP-
hard problems recently, such as Feige and Mahdian’s work [8] on finding small
balanced cuts, Marx’s work [15] on the closest substring problem with small
distances, and so on. Those who are familiar with Parameterized Complexity [7]
will find our results positive on the fixed parameterized tractability of finding the
minimum multiterminal cuts.

We show that Edge Multiterminal Cut can be solved in O(ck|I|O(1)) time (c
is a constant and |I| is the input size of the problem), which implies that when
the size of the solution is O(log |I|), Edge Multiterminal Cut can be solved in
polynomial time. When the number l of terminals is a constant, Vertex Mul-
titerminal Cut has a similar result. We prove that Vertex Multiterminal Cut
can be solved in O(lkT (n, m)) time. We also present an alternative algorithm
for Vertex Multiterminal Cut with running time O( (k!)2

2k T (n, m)), which directly
improves the previously known result of O(4k3

nO(1)) [16]. The running times of
our algorithms are in the form of O(f(k)|I|O(1)), where f(k) is a computable
function. It shows that Edge Multiterminal Cut and Vertex Multiterminal Cut
are fixed parameter tractable when k is taken as a parameter, which is a positive
result in Parameterized Complexity.

Most of our algorithms are based on a simple observation: There are two
cases for each element (an edge, or a vertex for the vertex version) in the farthest
minimum isolating cut for a terminal (See definition in Section 2): in the solution
set or not. We arbitrarily choose one element and branch at it by either including
it in the solution set or excluding it from the solution set. In the former branch,
the size of the current solution set increases by 1; in the latter branch, we can
get an equivalent graph, in which the size of the farthest minimum isolating cut
for the same terminal will increase. Since the sizes of the solution set and all
the minimum isolating cuts are bounded by k if a solution exists, we can build
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a bounded search tree to solve Multiterminal Cuts. The rest of this paper is
organized as follows:

In Section 2, we first introduce some basic techniques and present some struc-
tural properties of optimal cut problems. Farthest minimum isolating cut is a
frequently used notion in our algorithms. Based on it, we can identify a small
set of edges (vertices) in various ways to branch upon in enumerating possi-
ble minimum multiterminal cuts. In Section 3, we present an O(2

l−2
l−1 klT (n, m))

algorithm for Edge Multiterminal Cut (See Theorem 1). That algorithm only
works for the edge version, because it will use the property of a 2-approximation
solution of Edge Multiterminal Cut and this property does not hold in the
vertex version. In Section 4, we show that Vertex Three-terminal Cut can be
solved in O(2.059kT (n, m)) (See Theorem 2) and Vertex Multiterminal Cut
can be solved in O(lkT (n, m)) (See Theorem 3). In Section 5, an alternative
algorithm for Vertex Multiterminal Cut with running time O( (k!)2

2k T (n, m)) is
given (See Theorem 4). Furthermore, in Section 6, we show that our results will
lead to an O(p2l2kT (n, m)) algorithm for Edge Multicut, where p = min(

√
2l, k)

and O((2l)l+k/2T (n, m)) or O( (k!)2ll

2k−l T (n, m)) algorithm for Vertex Multicut. For
most cases, our results improve the previously known result of O(2kl4k3

nO(1))
[16] on Multicuts.

2 Definitions and Structural Properties

It is easy to transform an Edge Multiterminal Cut problem to a Vertex Multi-
terminal Cut problem in polynomial time by using some standard techniques.
But no polynomial reduction in the opposite direction is found, which implies
that the edge version might be easier than the vertex version. In this paper our
algorithms for the edge version are also faster than those for the vertex version.
There are certain relations between those two versions as they have similar defi-
nitions and properties. Our algorithms for the vertex version are still applicable
to the edge version and so on. Considering their similarities, we will not discuss
the two versions separately. In the following sections, if no explicit statement is
given, the defined terms are applicable for both the edge and vertex version. For
the vertex version cut problems, some references [1], [12] also discuss the case
that terminals can be selected into the solution set. They call it unrestricted
vertex version when terminals can be moved into the solution set, and restricted
vertex version when terminals are not allowed to be deleted. An unrestricted
vertex terminal cut instance can be reduced to a restricted vertex version in-
stance simply by adding, for each terminal ti, a new terminal t′i adjacent only to
ti. And with some modifications our algorithms for the restricted vertex version
are still applicable for the unrestricted vertex version. So we do not discuss the
unrestricted vertex version problem individually. In this paper, vertex version
always means restricted vertex version. The proofs of the main claims in this
section can be found in the full version paper.



Algorithms for Multiterminal Cuts 317

2.1 Basic Definitions

In this paper, k always denotes the upper bound of the solution size and l
denotes the number of terminals (or the number of terminal pairs in Multicut
problems). T = {t1, t2, · · · , tl} is the terminal set, T−i = T − {ti} is the set
of terminals except ti, S is the deletion set or solution set, the edge or vertex
set to be deleted in our algorithms. We will require |S| ≤ k. E(G) and V (G)
denote the edge set and vertex set of graph G respectively. We call an edge (non-
terminal vertex) subset an edge (vertex) multiterminal cut, if deleting it separates
the l terminals. Among all the multiterminal cuts, those with the minimum
size are called minimum multiterminal cuts. A minimal multiterminal cut is a
multiterminal cut in case that any of its proper subsets is not a multiterminal
cut. If with no explicit statement, multiterminal cuts in this paper always mean
minimal multiterminal cuts. And we assume that the initial graph is connected.

We call a subset Ci of edges (vertices) an isolating cut for terminal ti, if
deleting Ci separates ti from all other terminals T−i. A minimum isolating cut
for ti is an isolating cut for ti with the minimum size. Usually the minimum
isolating cut is not unique and can be found by using the methods for the
Minimum (s, t) Cut problem.

After deleting a minimal multiterminal cut S, the graph is separated into
several components, each of which contains at most one terminal (For the edge
version, there are right l components). Let Ti be the component containing ter-
minal ti and Ci ⊆ S be the edge (vertex) set incident on (adjacent to) the vertices
in Ti. Then Ci is an isolating cut for ti. For a minimal edge multiterminal cut S,
each edge in S will appear in two isolating cuts Ci’s, since each edge connects
two components. We have that

∑l
i=1 |Ci| = 2|S|. But minimal vertex multiter-

minal cuts have no such a good property. A vertex in a vertex multiterminal cut
may appear in more than 2 such isolating cuts. This difference is the main point
that makes the faster algorithms in Section 3 suitable only for the edge version
but not for the vertex version.

In our algorithms, we often branch at an edge (vertex) by either including
or excluding it in the solution set. When an edge (vertex) is not allowed to be
selected into the solution set, we can implement it by shrinking the edge (dissolv-
ing the vertex). Shrinking an edge means that we identify the two endpoints of it
keeping all edges, including possible parallel edges, incident on the two endpoints
and delete the self-loops. To dissolve a vertex we will delete this vertex and all
the edges incident on it, and add an edge between any two of its neighbors if
there is not an edge between them. See Figure 1 for an illustration of these two
operations. Sometimes we will contract a subgraph into a single vertices, i.e., we
replace this subgraph with a single vertex, keeping all the edges incident on it
(also keeping the parallel edges).

2.2 Farthest Minimum Isolating Cuts

A notion, called farthest minimum isolating cut, is frequently used in our algo-
rithms. Based on this notion, we present some properties of multiterminal cuts,
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which provide a deeper understanding about the structure of cut problems and
faster algorithms for finding small multiterminal cuts. A minimum isolating cut
Ci for terminal ti splits the graph into two partitions. One that contains ti is
called the residual of Ci and denoted by Ri. The other one is the remaining part
containing T−i, and is called the outside of Ci. The farthest minimum isolating
cut for terminal ti is the minimum isolating cut that makes the residual Ri of
the maximum cardinality over all the minimum isolating cuts. Here we use ‘the
minimum isolating cut’ as opposed to ‘a minimum isolating cut’, since the far-
thest minimum isolating cut for a given terminal is unique. The uniqueness is
discussed in many flow monographs and used in some references [13], [5], [11]. It
can be easily derived from the Max flow/Min cut theorem [13]. How fast we can
find the farthest minimum isolating cut is directly related to the running time
of our algorithms since finding the farthest minimum isolating cut is a subrou-
tine in our algorithms. The farthest minimum isolating cut for ti can be found
in linear time, if a maximum flow from ti to T−i is given. Many algorithms
for the Minimum (s, t) Cut problem just find the farthest minimum isolating
cut for s or t. (Note that given a maximum flow, in the residual graph some
vertices, including s, can not reach t. Let X be the set of all the vertices can
reach t in the residual graph, then edges between V − X and X is the farthest
minimum isolating cut for s). There are many fast algorithms computing max
flow/min cut. Reader can refer to [10] as a survey. In this paper, we will simply
use Dinic’s O(min(n2/3, m1/2)m) algorithm [6] finding max flows in unweighted
graphs. Thus, T (n, m) = O(min(n2/3, m1/2)m). And we use Ci to denote the
farthest minimum isolating cut for ti, when no ambiguity will be aroused.

Lemma 1. The farthest minimum isolating cut for ti will not change in the
graph when e shrinks (dissolves, for the vertex version) , where e is an edge (a
vertex) not in the farthest minimum isolating cut for ti.

Lemma 2. Let S be a minimum edge (respectively, vertex) multiterminal cut of
graph G, Ci be a minimum isolating cut for terminal ti, and Ri be the residual
of Ci, i ∈ {1, 2, · · · , l}. Suppose |S ∩ E(Ri)| = p (|S ∩ V (Ri)| = p). Then G has
a minimum multiterminal cut S′ such that S′ ∩ E(Ri) = ∅ (S′ ∩ V (Ri) = ∅),
and |S′ ∩ Ci| ≥ p.

Corollary 1. Let Ci be the farthest minimum isolating cut for terminal ti in G,
and G′ be the graph after merging Ri into a new terminal t′i. Then any minimum
multiterminal cut in G′ is a corresponding minimum multiterminal cut in G.

Lemma 2 and Corollary 1 imply that we can find a minimum multiterminal cut
in part of the graph, the outside of a minimum isolating cut and the cut itself,
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ignoring the residual. Note that Lemma 2 can also be inferred from the proof of
Goldschmidt and Hochbaum’s main theorem in [11]. And Dahlhaus et al. [5] also
proved results similar to Lemma 2 and Corollary 1 when they discuss reducing
the instance size. However their arguments only work for edge version. Our proof
in the full version paper is suitable for both the edge and the vertex versions.

Then we give another important definition of the ith layer farthest isolating
cut. For the edge version, if the farthest minimum edge isolating cut Ci is not
incident on any other terminals except ti, i.e., no endpoint of an edge in Ci is a
terminal except ti, we can contract the residual Ri together with cut Ci into a
new terminal t

(2)
i without merging two terminals together. Let G(2) be the new

graph after contracting Ri and Ci. Now we find the farthest minimum isolating
cut C

(2)
i for terminal t

(2)
i in G(2). We call the corresponding set of C

(2)
i in the

original graph G the second layer farthest isolating cut (or just the second layer)
for terminal ti in G. Similarly, we can calculate the third layer C

(3)
i , the forth

layer C
(4)
i and so on, if they exist. The ith layer farthest isolating cut for the

vertex version can be defined in the same way. To avoid merging two terminals
together or having no vertex cut anymore we say that the jth layer exists if the
(j −1)th layer C

(j−1)
i is not incident on (adjacent to) any other terminals except

ti. And the first layer C
(1)
i is just regarded as Ci.

Lemma 3. Let C
(j)
i and C

(j+1)
i be the jth and (j + 1)th layer farthest isolating

cuts for terminal ti in graph G respectively. Then |C(j+1)
i | ≥ |C(j)

i | + 1 and
|C(j)

i | ≥ j.

3 Algorithms for Edge Multiterminal Cut

In this section we present an algorithm for Edge Multiterminal Cut with running
time O(2

l−2
l−1 klT (n, m)). We will describe the algorithm in terms of the edge

version. Initially let the solution set S be an emptyset. The main steps of our
algorithm are listed as follows:

Step 1: Reduce the graph by iteratively choosing a terminal ti, calculating the
farthest minimum isolating cut Ci for it, and contracting the residual Ri into a
new terminal t′i until all the l terminals are chosen. (Remind that we will keep
parallel edges when contract Ri. And for convenience, we just use ti to denote
the new terminal t′i in the new graph)
Step 2: Let B =

⋃l
i=1 Ci. If |B| ≤ (k − |S|) l

l−1 , return a solution S ←− S +
(B−Ci′) directly and stop the algorithm, where Ci′ satisfying |Ci′ | = maxl

i=1 |Ci|.
Else goto the next step.
Step 3: Delete all the edges that directly connect two terminals and move them
into the solution set S (Note that all of those edges are in B).
Step 4: Branch at an edge e in B by including it in the solution set S or excluding
it from the solution set: in the former branch, we delete it in the current graph;
in the latter branch, we just shrink it.
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Step 5: Loop Step 1-4 until one of the following three stop conditions is satis-
fied: (1) All the l terminals are separated away, and at that time output S as a
solution; (2) |S| > k; (3) 2|S| + ∑l

i=1 |Ci| > 2k.

Lemma 4. The above algorithm finds an edge multiterminal cut of size ≤ k if
it exists.

The first two stop conditions in Step 5 are intuitive. The last one seems a bit
complicated. We will explain it in the following analysis of correctness of the
algorithm.

According to Corollary 1, we can reduce the graph in Step 1. When |B| ≤
(k − |S|) l

l−1 and |Ci′ | = maxl
i=1 |Ci|, |B − Ci′ | ≤ (k − |S|) l

l−1
l−1

l = k − |S|,
S + (B − Ci′) is solution with size at most k. In this case, we will find a solution
in Step 2 directly. To separate all the terminals, the edges that directly connect
two terminals must be deleted. We can put such edges into S directly in Step
3. Now we consider set B. There are two situations for each edge in B: in the
solution or not. If the edge is in the solution then we can add it into S directly
and delete it in the graph and reduce the parameter k by 1; if it is not, shrinking
it will not cause problems according to Lemma 1. So we will cover all cases. Stop
condition (1) and (2) in Step 5 are easy to understand. We prove that when
2|S| +

∑l
i=1 |Ci| > 2k, there is not a valid multiterminal cut (a multiterminal

cut with size at most k) containing current solution set S. Suppose S′ ⊇ S
is a valid multiterminal cut containing the current solution set S. Obviously,
S′′ = S′ − S is a multiterminal cut for the current graph. Let S′

i ⊆ S′′ be the
minimal isolating cut for terminal ti contained in S′′. |Ci| ≤ |S′

i|, and then

∑l

i=1
|Ci| ≤

∑l

i=1
|S′

i| = 2|S′′| = 2|S′| − 2|S| ≤ 2k − 2|S|. (1)

So 2|S| +
∑l

i=1 |Ci| ≤ 2k. When 2|S| +
∑l

i=1 |Ci| > 2k, we can stop this sub-
branch.

Next, we prove that this algorithm always stops. Let p′ = 2|S| +
∑l

i=1 |Ci|.
We show that p′ will increase in each iteration. Since the upper bound of p′ is
finite (stop condition 3), the algorithm always stops. Only Step 3 and Step 4
will possibly affect p′. We show that p′ will not change in Step 3 and increase
by at least 1 in each subbranch of Step 4. In Step 3, when an edge is selected
into S,

∑l
i=1 |Ci| decreases by 2 and |S| increases by 1. p′ will not change. In

Step 4, when we include an edge e ∈ Ci in S, |S| increases by 1. Now we prove
that in this subbranch

∑l
i=1 |Ci| decreases by 1. After deleting e, C′

i = Ci − {e}
is the farthest minimum isolating cut for terminal ti. And for any j (j �= i),
the size of the farthest minimum isolating cut C′

j will not decrease. Note that
C′′

j = C′
j

⋃{e} is still an isolating cut for terminal tj . Assume to the contrary
that |C′

j | ≤ |Cj | − 1, then |C′′
j | ≤ |Cj |. But C′′

j �= Cj , in contradiction with the
uniqueness of the farthest minimum isolating cut. So

∑l
i=1 |Ci| decreases by 1.

Since
∑l

i=1 |Ci| decreases by 1 and |S| increases by 1, totally p′ increases by 1.
When e shrinks, it is easy to see that the farthest minimum isolating cut for ti
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will increase its size by at least 1 and other farthest minimum isolating cuts will
not change according to Lemma 1. Totally

∑l
i=1 |Ci| will increase by at least 1.

Thus, in each subbranch of Step 4, p′ will increase by at least 1.
As for the time complexity of the algorithm, we build a recurrence relation

related to a parameter p = 2k − p′. In each branch, no matter whether the edge
is included in S or not, p′ increases by 1 and then p decreases by 1. In each
iteration we need to find at most l farthest minimum isolating cuts to get B. So
we have

B(p) ≤ B(p − 1) + B(p − 1) + O(lT (n, m)), (2)

where B(p) is the running time of our algorithm when the parameter is p, and
T (n, m) is the running time of finding a farthest minimum isolating cut.

It is easy to verify that

B(p) = O(2plT (n, m)) (3)

satisfies (2).
We only need to confirm an upper bound for p, and then we can get the time

complexity for this algorithm. Recall p = 2k−∑l
i=1 |Ci|−2|S|. In the beginning,

S is an empty set. We look at B =
⋃l

i=1 Ci the union of all the farthest minimum
isolating cuts. For any i ∈ {1, 2, · · · , l}, B − Ci is a multiterminal cut. Suppose
|Ci′ | = maxl

i=1 |Ci|. Then |Ci′ | ≥ 1
l

∑l
i=1 |Ci| ≥ 1

l |B|. If |B − Ci′ | ≤ k, then
we find a solution directly in Step 2. Else

∑
i�=i′ |Ci| ≥ |B − Ci′ | > k, then

∑l
i=1 |Ci| > k + |Ci′ | ≥ k + 1

l

∑l
i=1 |Ci|,

∑l
i=1 |Ci| > l

l−1k. So

p = 2k −
∑l

i=1
|Ci| − 2|S| < l−2

l−1k. (4)

Combining (3) and (4), we get that B(p) = O(2
l−2
l−1 klT (n, m)).

Theorem 1. Edge Multiterminal Cut can be solved in O(2
l−2
l−1 klT (n, m)) time.

Corollary 2. Edge Three-terminal Cut can be solved in O(1.415kT (n, m)) time.

4 Algorithms for Vertex Multiterminal Cut

In this section we show that when l is a constant and k = O(log n), Vertex Mul-
titerminal Cut is also polynomial-time solvable by presenting an O(lkT (n, m))
algorithm for it. The algorithm is based on the algorithm for Edge Multitermi-
nal Cut presented in Section 3. We prove that the idea in Section 3 can still
be used for solving Vertex Multiterminal Cut, but the running time may cost
more. In the next two sections, we will describe the algorithms in terms of the
vertex version, although they are applicable to both Vertex Multiterminal Cut
and Edge Multiterminal Cut.

We only need to modify the stop conditions of the algorithm in Section 3 as
the following Step 5′ and describe the algorithm in terms of the vertex version.
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Step 5′: Loop Step 1-4 until one of the following three stop conditions is satis-
fied: (1) All the l terminals are separated away, and at that time output S as a
solution; (2) |S| > k; (3) l|S| + ∑l

i=1 |Ci| > lk.

The third stop condition is changed. The reason lies in that for vertex version
problems a vertex in a multiterminal cut may appear in more than 2 isolating
cut Ci’s, as opposed to exact 2.

The proof of the algorithm is also based on the analysis in Section 3. We only
need to show that when l|S| +

∑l
i=1 |Ci| > lk, there is not a valid multiter-

minal cut containing S and the algorithm always stops. Since each vertex in a
multiterminal cut may appear in up to l isolating cuts Ci’s, we modify (1) to∑l

i=1 |Ci| ≤ ∑l
i=1 |S′

i| ≤ l|S′′| = l|S′| − l|S| ≤ lk − l|S|. Then in the same way
we can prove it. We also can prove that this algorithm always stops by showing
that p = lk − l|S| − ∑l

i=1 |Ci| will decrease in each iteration.
Only Step 3 and Step 4 will possibly affect p. In Step 3, when an edge is

selected into S,
∑l

i=1 |Ci| decreases by at most l and |S| increases by 1. p will
not increase. In Step 4, when we include a vertex v ∈ Ci in S, |S| increases by
1. By the same way discussed in Section 3 we can prove that in this subbranch∑l

i=1 |Ci| decreases by 1. Since
∑l

i=1 |Ci| decreases by 1 and |S| increases by
1, totally p decreases by l − 1. When v is dissolved, |S| does not change and∑l

i=1 |Ci| increases by at least 1. In this subbranch p will decrease by at least 1.
We get the following recurrence relation

B(p) ≤ B(p − 1) + B(p − (l − 1)), (5)

where B(p) is the number of search paths in the search tree of our algorithm
with parameter p.

In the beginning, S is an empty set and
∑l

i=1 |Ci| > l
l−1k.

p = lk − Σl
i=1|Ci| − l|S| < (l − 1)k − 1

l−1k. (6)

When l = 3, it is easy to verify that B(p) = O(2.059k) satisfies (5) and (6).

Theorem 2. Vertex Three-terminal Cut can be solved in O(2.059kT (n, m))
time.

For general l, we will relax more to get a simplified running time bound.

B(p) ≤ B(p − 1) + B(p − (l − 1)) ≤ B(p − 2) + 2B(p − (l − 1))
≤ · · · ≤ B(p − (l − 1)) + (l − 1)B(p − (l − 1)) = lB(p − (l − 1)).

B(p) < l

⌈ p
l−1

⌉

< l
k−

⌊
k

(l−1)2

⌋

≤ lk.

Theorem 3. Vertex Multiterminal Cut can be solved in O(lkT (n, m)) time.

5 A Simple Algorithm For Multiterminal Cut

In this section, we present a simple algorithm for Vertex Multiterminal Cut with
running time O( (k!)2

2k T (n, m)). The exponential part of the running time is only
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related to parameter k. When k is sufficiently less than l, this algorithm may be
faster than the algorithm in Section 4.

Our algorithm involves the following two iterative steps until a solution is
found or the size of the current solution set is greater than k: first, find a vertex
candidate set B in the current graph such that at least one vertex in B is in
a solution, if a solution dose exist; second, we branch at each vertex in B by
including it in the current solution set and deleting it from the graph. Our algo-
rithm guarantees that the size of B is bounded by k(k−1)

2 . So we get the running
time O(k!(k−1)!

2k kT (n, m)), where kT (n, m) is the time required for finding B.
ti is an arbitrarily selected terminal. Let the candidate set B be

∑b
j=1 C

(j)
i ,

where C
(j)
i is the jth layer of ti and b is the smallest number satisfying that:

the (b + 1)th layer C
(b+1)
i does not exist or |C(b+1)

i | > k. It is easy to see that
B contains at least one vertex in a solution if it exists by the definition of the
layers in Section 2.2. Let R

(j)
i be the residual of C

(j)
i (j = 1, · · · , b) and S be a

minimum multiterminal cut. Note that if (V (R(j)
i )∪C

(j)
i )∩S = ∅, we can merge

R
(j)
i and C

(j)
i into a new terminal and then consider C

(j+1)
i . Else we know that

C
(j)
i contains at least one vertex in a minimum multiterminal cut by Lemma 2.

Now we only need to confirm an upper bound for |B|. According to Lemma 3,
|C(1)

i | < |C(2)
i | < · · · < |C(b)

i | < k (We also ignore the trivial case |C(b)
i | = k).

Then |B| =
∑b

j=1 |C(j)
i | ≤ k(k−1)

2 .
To find the candidate set B we need at most b ≤ k farthest minimum isolating

cut computations. So we get the recurrence relation

B(k) ≤ k(k−1)
2 B(k − 1) + O(kT (n, m)), (7)

where B(k) is the running time of our algorithm when the parameter is k.
B(k) = O( (k!)2

2k T (n, m)) satisfies (7).

Theorem 4. Vertex Multiterminal Cut can be solved in O( (k!)2

2k T (n, m)) time.

Remark. Our algorithms for Vertex Multiterminal Cut are still applicable to
Multiterminal Cut in hypergraphs. In a Hypergraph Multiterminal Cut prob-
lem, we are asked to delete at most k hyperedges to separate l given terminals.
It is trivial to extend lemmas in Section 2 and algorithms in Section 4 and
Section 5 for Vertex Multiterminal Cut to the corresponding results for Hyper-
graph Multiterminal Cut. Theorem 3 and Theorem 4 still hold for Hypergraph
Multiterminal Cut. The only difference is that in the running time T (n, m)
should be the time bound for finding minimum (s, t) cuts in hypergraphs.

6 Improvements on Multicuts

The Multicut problem is another important graph cut problem and extensively
studied in the literature [4], [1], [12]. In this problem, l pairs of terminals, instead
of l terminals, are given, and we are required to separate each of the l pairs by
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deleting at most k edges or vertices. Multiterminal Cut can be regarded as a spe-
cial case of Multicut. For each pair of terminals in a Multiterminal Cut problem,
we set it as a terminal pair and then get an equivalent Multicut problem.

We present a simple idea to solve Multicut by solving Multiterminal Cuts as
a subroutine. Given a minimum multicut, the graph is separated into several
connected components after the minimum multicut is removed. Initially let each
component be a compatible set. We iteratively merge two compatible sets into one
compatible set when there is no terminal pair in the union of the two compatible
sets until no more compatible set can be merged. There are l terminal pairs, so at
last there are at most

√
2l compatible sets left (Note that a complete graph with

l edges has at most
√

2l vertices). We consider such a Multiterminal Cut problem
I ′: the graph is the same graph as the Multicut problem I, and the union of all
the terminals in each compatible set is a terminal for the Multiterminal Cut
problem I ′. A multiterminal cut of I ′ obviously splits all the l terminal pairs
of I and the minimum multicut of I is still a multiterminal cut of G′. Thus, a
minimum multiterminal cut of I ′ will be a minimum multicut of I. There are
at most 2l different terminals in the Multicut problem and each one will be in
one of the

√
2l compatible sets. We try all the

√
2l

2l
= (2l)l possibilities. Then

we can solve a Multicut problem by solving at most (2l)l Multiterminal Cut
problems. We also note that in the edge version cut problems, the initial graph
is connected and by deleting one edge we can get at most one component more.
So the number of compatible sets for edge cut problems is not greater than k+1.
For Edge Multicut, the number of compatible sets is bounded by min(

√
2l, k+1).

Theorem 5. Edge Multicut can be solved in O(p2l2kT (n, m)) time, where p =
min(

√
2l, k + 1).

Theorem 6. Vertex Multicut can be solved in O(min( (k!)2

2k ,
√

2l
k
)(2l)lT (n, m))

time.

The best previous result on Multicut was O(2kl4k3
nO(1)) [16]. Our result on Edge

Multicut has greatly improved it. And in most cases, such as when 2k > l, our
algorithms for Vertex Multicut are also faster than the best previous algorithm.

7 Remarks

In this paper, based on the notion farthest minimum isolating cut, we have
presented several simple and improved algorithms for Multiterminal Cuts. This
notion is helpful for us to characterize the structure of optimal cut problems and
design fast algorithms. In addition, we have proved that Edge Multiterminal Cut
can be solved in polynomial time when k = O(log n) and a comparatively weaker
result for Vertex Multiterminal Cut.

The initial version of this paper was presented at the Institute for Theoretical
Computer Science of Tsinghua University in 2006. Recently, Chen et al. [3] de-
veloped an O(4kkn3) algorithm for Vertex Multiterminal Cut by using different
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techniques, indicating Vertex Multiterminal Cut also can be solved in polyno-
mial time when k = O(log n). They extended our result on Edge Multiterminal
Cut to Vertex Multiterminal Cut. But our algorithms for Edge Multiterminal
Cut and Vertex {3,4}-terminal Cuts are still the fastest algorithms.
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Two Sources Are Better Than One for

Increasing the Kolmogorov Complexity of
Infinite Sequences

Marius Zimand�

Department of Computer and Information Sciences, Towson University, Baltimore,
MD, USA

Abstract. The randomness rate of an infinite binary sequence is charac-
terized by the sequence of ratios between the Kolmogorov complexity and
the length of the initial segments of the sequence. It is known that there
is no uniform effective procedure that transforms one input sequence into
another sequence with higher randomness rate. By contrast, we display
such a uniform effective procedure having as input two independent se-
quences with positive but arbitrarily small constant randomness rate.
Moreover the transformation is a truth-table reduction and the output
has randomness rate arbitrarily close to 1.

Keywords: Kolmogorov complexity, Hausdorff dimension.

1 Introduction

It is a basic fact that no function can increase the amount of randomness (i.e.,
entropy) of a finite structure. Formally, if X is a distribution on a finite set
A, then for any function f mapping A into A, the (Shannon) entropy of f(X)
cannot be larger than the entropy of X . As it is usually the case, the above fact
has an analogue in algorithmic information theory: for any finite binary string
x and any computable function f , K(f(x)) ≤ K(x) + O(1), where K(x) is the
Kolmogorov complexity of x and the constant depends only on the underlying
universal machine. The above inequality has an immediate one-line proof, but
the analoguous statement when we move to infinite sequences is not known to
hold. For any σ ∈ [0, 1], we say that an infinite binary sequence x has randomness
rate σ, if K(x(1 : n)) ≥ σn for all sufficiently large n, where x(1 : n) denotes the
initial segment of x of length n.1 The question becomes: if x has randomness rate
0 < σ < 1, is there an effective transformation f such that f(x) has randomness
rate greater than that of x? Unlike the case of finite strings, infinite sequences
� The author is supported by NSF grant CCF 0634830. Part of this work was done

while visiting University of Auckland, New Zealand.
1 The randomness rate of x is very close to the notion of constructive Hausdorff dimen-

sion of x [Lut03, May02, Rya84, Sta05]; however since this paper is about handling
randomness and not about measure-theoretical issues we prefer the randomness ter-
minology.
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with positive randomness rate possess an infinite amount of randomness (even
though it is sparsely distributed) and thus it cannot be ruled out that there may
be a way to concentrate it and obtain a sequence with higher randomness rate.

This is a natural question, first raised by Reimann [Rei04], which has received
significant attention recently (it is Question 10.1 in the list of open questions
of Miller and Nies [MN06]). So far, there exist several partial results, mostly
negative, obtained by restricting the type of transformation. Reimann and Ter-
wijn [Rei04, Th 3.10] have shown that for every constant c < 1, there exists a
sequence x such that if f is a many-one reduction, then the randomness rate
of f(x) cannot be larger than c. This result has been improved by Nies and
Reimann [NR06] to wtt-reductions. More precisely, they showed that for all ra-
tional c ∈ (0, 1), there exists a sequence x with randomness rate c such that
for all wtt-reductions f , f(x) has randomness rate ≤ c. Bienvenu, Doty, and
Stephan [BDS07] have obtained an impossibility result for the general case of
Turing reductions, which, however, is valid only for uniform reductions. Building
on the result of Nies and Reimann, they show that for every Turing reduction f
and all constants c1 and c2, with 0 < c1 < c2 < 1, there exists x with random-
ness rate ≥ c1 such that f(x), if it exists, has randomness rate < c2. In other
words, loosely speaking, no effective uniform transformation is able to raise the
randomness rate from c1 to c2. Thus the question “Is there any effective trans-
formation that on input σ ∈ (0, 1], ε > 0, and x, a sequence with randomness
rate σ, produces a string y with randomness rate σ + ε ?” has a negative an-
swer. On the positive side, Doty [Dot07] has shown that for every constant c
there exists a uniform effective transformation f able to transform any x with
randomness rate c ∈ (0, 1] into a sequence f(x) that, for infinitely many n, has
the initial segments of length n with Kolmogorov complexity ≥ (1 − ε)n (see
Doty’s paper for the exact statement). However, since Doty’s transformation f
is a wtt-reduction, it follows from Nies and Reimann’s result that f(x) also has
infinitely many initial segments with no increase in the Kolmogorov complexity.

In the case of finite strings, as we have observed earlier, there is no effec-
tive transformation that increases the absolute amount of Kolmogorov complex-
ity. However, some positive results do exist. Buhrman, Fortnow, Newman, and
Vereshchagin [BFNV05] show that, for any non-random string of length n, one
can flip O(

√
n) of its bits and obtain a string with higher Kolmogorov complex-

ity. Fortnow, Hitchcock, Pavan, Vinodchandran, and Wang [FHP+06] show that
for any 0 < α < β < 1, there is a polynomial-time procedure that on input
x with K(x) > α|x|, using a constant number of advice bits (which depend
on x), builds a string y with K(y) ≥ β|y| and y is shorter than x by only a
multiplicative constant.

Our main result concerns infinite sequences and is a positive one. Recall that
Bienvenu, Doty and Stephan have shown that there is no uniform effective way
to increase the randomness rate when the input consists of one sequence with
positive randomness rate. We show that if instead the input consists of two such
sequences that are independent, then such a uniform effective transformation
exists.
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Theorem 1. (Main Result) There exists an effective transformation f : Q ×
{0, 1}∞×{0, 1}∞ → {0, 1}∞ with the following property: If the input is τ ∈ (0, 1]
and two independent sequences x and y with randomness rate τ , then f(τ, x, y)
has randomness rate 1 − δ, for all δ > 0. Moreover, the effective transformation
is a truth-table reduction.

Effective transformations are essentially Turing reductions that are uniform in
the parameter τ ; see Section 2. Two sequences are independent if they do not
contain much common information; see Section 3.

One key element of the proof is inspired from Fortnow et al.’s [FHP+06],
who showed that a randomness extractor can be used to construct a procedure
that increases the Kolmogorov complexity of finite strings. Their procedure for
increasing the Kolmogorov complexity runs in polynomial time, but uses a small
amount of advice. To obtain the polynomial-time efficiency, they had to use the
multi-source extractor of Barak, Impagliazzo, and Wigderson [BIW04], which
requires a number of sources that is dependent on the initial min-entropy of
the sources and on the desired quality of the output. In our case, we are not
concerned about the efficiency of the transformation (this of course simplifies
our task), but, on the other hand, we want it completely effective (with no
advice), we want it to work with just two sources, and we want it to handle
infinite sequences. In place of an extractor, we provide a procedure with similar
functionality, using the probabilistic method which is next derandomized in the
trivial way by brute force searching. Since we handle infinite sequences, we have
to iterate the procedure infinitely many times on finite blocks of the two sources
and this necessitates solving some technical issues related to the independence
of the blocks.

2 Preliminaries

We work over the binary alphabet {0, 1}. A string is an element of {0, 1}∗ and
a sequence is an element of {0, 1}∞. If x is a string, |x| denotes its length. If x
is a string or a sequence and n, n1, n2 ∈ N, x(n) denotes the n-th bit of x and
x(n1 : n2) is the substring x(n1)x(n1 + 1) . . . x(n2). The cardinality of a finite
set A is denoted ‖A‖. Let M be a standard Turing machine. For any string x,
define the (plain) Kolmogorov complexity of x with respect to M , as

KM (x) = min{|p| | M(p) = x}.

There is a universal Turing machine U such that for every machine M there is
a constant c such that for all x,

KU (x) ≤ KM (x) + c. (1)

We fix such a universal machine U and dropping the subscript, we let K(x)
denote the Kolmogorov complexity of x with respect to U . For the concept of
conditional Komogorov complexity, the underlying machine is a Turing machine
that in addition to the read/work tape which in the initial state contains the
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input p, has a second tape containing initially a string y, which is called the
conditioning information. Given such a machine M , we define the Kolmogorov
complexity of x conditioned by y with respect to M as

KM (x | y) = min{|p| | M(p, y) = x}.

Similarly to the above, there exist universal machines of this type and they
satisfy the relation similar to Equation 1, but for conditional complexity. We
fix such a universal machine U , and dropping the subscript U , we let K(x | y)
denote the Kolmogorov complexity of x conditioned by y with respect to U .

We briefly use the concept of prefix-free complexity, which is defined similarly
to plain Kolmogorov complexity, the difference being that in the case of prefix-
free complexity the domain of the underlying machines is required to be a prefix-
free set.

Let σ ∈ [0, 1]. A sequence x has randomness rate σ if K(x(1 : n)) ≥ σ · n, for
almost every n (i.e., the set of n’s violating the inequality is finite).

An effective transformation f is represented by a two-oracle Turing machine
Mf . The machine Mf has access to two oracles x and y, which are binary se-
quences. When Mf makes the query “n-th bit of first oracle?” (“n-th bit of second
oracle?”), the machine obtains x(n) (respectively, y(n)). On input (τ, 1n), where
τ is a rational (given in some canonical representation), Mf outputs one bit. We
say that f(τ, x, y) = z ∈ {0, 1}∞, if for all n, Mf on input (τ, 1n) and working
with oracles x and y halts and outputs z(n). (Effective transformations are more
commonly called Turing reductions. If τ would be embedded in the machine Mf ,
instead of being an input, we would say that z is Turing-reducible to (x, y). Our
approach emphasizes the fact that we want a family of Turing reductions that
is uniform in the parameter τ .) In case the machine Mf halts on all inputs and
with all oracles, we say that f is a truth-table reduction.

3 Independence

We need to require that the two inputs x and y that appear in the main result
are really distinct, or in the algorithmic-information theoretical terminology,
independent.

Definition 1. Two infinite binary sequences x, y are independent if for all nat-
ural numbers n and m,

K(x(1 : n)y(1 : m)) ≥ K(x(1 : n)) + K(y(1 : m)) − O(log(n) + log(m)).

The definition says that, modulo additive logarithmic terms, there is no shorter
way to describe the concatenation of any two initial segments of x and y than
having the information that describes the initial segments.

It can be shown that the fact that x and y are independent is equivalent to
saying that for every natural numbers n and m,

K(x(1 : n) | y(1 : m)) ≥ K(x(1 : n)) − O(log(n) + log(m)). (2)
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and
K(y(1 : m) | x(1 : n)) ≥ K(y(1 : m)) − O(log(n) + log(m)). (3)

Thus, if two sequences x and y are independent, no initial segment of one of
the sequence can help in getting a shorter description of any initial segment of
the other sequence, modulo additive logarithmical terms. The notion of indepen-
dence for infinite sequences is extensively studied in [CZ08], where the notion
from Definition 1 is called finitary-independence to distinguish it from a stronger
type of independence.

In our main result, the input consists of two sequences x and y that are
independent and that have Kolmogorov rate σ for some positive constant σ < 1.
We sketch an argument showing that such sequences exist. In our sketch we take
σ = 1/2.

We start with an arbitrary random (in the Martin-Löf sense) sequence x.
Next using the machinery of Martin-Löf tests relativized with x we infer the
existence of a sequence y that is random relative to x. From the theory of
Martin-Löf tests, we deduce that there exists a constant c such that for all
m, H(y(1 : m) | x) ≥ m − c, where H(·) is the prefix-free version of complex-
ity. Since H(y(1 : m)) ≤ m + O(log m), for all m, we conclude that H(y(1 :
m) | x) ≥ H(y(1 : m)) − O(log m), for all m. Therefore, H(y(1 : m)) |
x(1 : n)) ≥ H(y(1 : m) | x) − O(log n) ≥ H(y(1 : m)) − O(log n + log m),
for all n and m. Since the prefix-free complexity H(·) and the plain com-
plexity K(·) are within O(log m) of each other, it follows that K(y(1 : m)) |
x(1 : n)) ≥ K(y(1 : m)) − O(log n + log m)), for all n and m. This implies
K(x(1 : m)y(1 : n)) ≥ K(x(1 : n)) + K(y(1 : m)) − O(log(n) + log(m)), for all
n, m. Next we construct x′ and y′ by inserting in x and respectively y, the bit
0 in all even positions, i.e., x′ = x10x20 . . . (where xi is the i-th bit of x) and
y′ = y10y20 . . .. Clearly, K(x(1 : n)) and K(x10 . . . xn0) are within a constant
of each other, and the same holds for y and y′. It follows that x′ and y′ are
independent and have randomness rate 1/2.

4 Proof of Main Result

4.1 Proof Overview

We present in a simplified setting the main ideas of the construction. Suppose
we have two independent strings x and y of length n such that K(x) = σn
and K(y) = σn, for some σ > 0. We want to construct a string z of length
m such that K(z) > (1 − ε)m. The key idea (borrowed from the theory of
randomness extractors) is to use a function E : {0, 1}n × {0, 1}n → {0, 1}m

such that every large enough rectangle of {0, 1}n ×{0, 1}n maps about the same
number of pairs into all elements of {0, 1}m. We say that such a function is
regular (the formal Definition 2 has some parameters which quantify the degree
of regularity). To illustrate the idea, suppose for a moment that we have a
function E : {0, 1}n × {0, 1}n → {0, 1}m that, for all subsets B ⊆ {0, 1}n with
‖B‖ ≈ 2σn, has the property that any a ∈ {0, 1}m has the same number of
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preimages in B × B, which is of course ‖B × B‖/2m. Then for any A ⊆ {0, 1}m,
E−1(A) ∩ (B × B) has size ‖B×B‖

2m · ‖A‖. Let us take z = E(x, y) and let us
suppose that K(z) < (1− ε)m. Note that the set B = {u ∈ {0, 1}n | K(u) = σn}
has size ≈ 2σn, the set A = {v ∈ {0, 1}m | K(v) < (1 − ε)m} has size < 2(1−ε)m

and that x and y are in E−1(A) ∩ (B × B). By the above observation the set
E−1(A)∩(B×B) has size ≤ 2σn·2σn

2εm . Since E−1(A)∩(B×B) can be enumerated
effectively, any pair of strings in E−1(A)∩B ×B can be described by its rank in
a fixed enumeration of E−1(A) ∩ B × B. In particular (x, y) is such a pair and
therefore K(xy) ≤ 2σn− εm. On the other hand, since x and y are independent,
K(xy) ≈ K(x) + K(y) = 2σn. The contradiction we have reached shows that in
fact K(z) ≥ (1 − ε)m.

A function E having the strong regularity requirement stated above may not
exist. Fortunately, using the probabilisticmethod, it canbe shown (see Section 4.3)
that, for all m ≤ n0.99σ, there exist a function E : {0, 1}n × {0, 1}n → {0, 1}m

such that all strings a ∈ {0, 1}m have at most 2(‖B × B‖/2m) preimages in any
B×B as above (instead of (‖B×B‖/2m) preimages in the ideal, but not realizable,
setting we used above). Once we know that it exists, such a function E can be
found effectively by exhaustive search. Then the argument above, with some minor
modifications, goes through. In fact, when we apply this idea, we only know that
K(x) ≥ σn and K(y) ≥ σn and therefore we need the function E to satisfy a
stronger variant of regularity. However, the main idea remains the same.

Thus there is an effective way to produce a string z with Kolmogorovcomplexity
(1 − ε)m from two independent strings x and y of length n and with Kolmogorov
complexity σn. Recall that, in fact, the input consists of two independent infinite
sequences x and y with randomness rate τ > 0. To take advantage of the procedure
sketched above which works for finite strings, we split x and y into finite strings
x1, x2, . . . , xn, . . ., and respectively y1, y2, . . . , yn, . . ., such that the blocks xi and
yi, of length ni, have still enough Kolmogorov complexity, say (τ/2)ni, conditioned
by the previous blocks x1, . . . , xi−1 and y1, . . . , yi−1. The splitting of x and y into
blocks and the properties of the blocks are presented in Section 4.2. Then using
a regular function Ei : {0, 1}ni × {0, 1}ni → {0, 1}mi, we build zi = Ei(xi, yi).
By modifying slightly the argument described above, it can be shown that K(zi |
x1, . . . , xi−1, y1, . . . , yi−1) > (1 − ε)mi, i.e., zi has high Kolmogorov complexity
even conditioned by the previous blocks x1, . . . , xi−1 and y1, . . . , yi−1. It follows
that K(zi | z1, . . . , zi−1) is also close to mi. We finally take z = z1z2 . . ., and using
the above property of each zi, we infer that for every n, the prefix of z of length n
has randomness rate > (1 − ε)n. In other words, z has randomness rate (1 − ε),
as desired.

4.2 Splitting the Two Inputs

The two input sequences x and y from Theorem 1 are broken into finite blocks
x1, x2, . . . , xi, . . . and respectively y1, y2, . . . , yi, . . .. The division is done in such
a manner that xi (respectively, yi) has high Komogorov complexity rate con-
ditioned by the previous blocks x1, . . . , xi−1 (respectively by the blocks y1, . . . ,
yi−1). The following lemma shows how this division is done.
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Lemma 1. (Splitting lemma) Let x ∈ {0, 1}∞ with randomness rate τ , for some
constant τ > 0. Let 0 < σ < τ . For any n0 sufficiently large, there is n1 > n0
such that

K(x(n0 + 1 : n1) | x(1 : n0)) > σ(n1 − n0).

Furthermore, there is an effective procedure that on input n0, τ and σ calculates
n1.

Proof. Let σ′ be such that 0 < σ′ < τ − σ. Take n1 =
⌈1−σ

σ′

⌉
n0. Suppose

K(x(n0 + 1 : n1) | x(1 : n0)) ≤ σ(n1 − n0). Then x(1 : n1) can be reconstructed
from: x(1 : n0), the description of x(n0+1 : n1) given x(1 : n0), n0, log n0 bits for
delimiting these pieces of information, extra constant number of bits describing
the procedure. So

K(x(1 : n1)) ≤ n0 + σ(n1 − n0) + 2 log n0 + O(1)
= σn1 + (1 − σ)n0 + 2 logn0 + O(1)
≤ σn1 + σ′n1 + 2 logn0 + O(1)
< τn1 (if n0 suffic. large) ,

(4)

which is a contradiction if n1 is sufficiently large. �

Now we define the points where we split x and y, the two sources. Take a,
the point from where the Splitting Lemma holds. For the rest of this section
we consider b =

⌈1−σ
σ′

⌉
. The following sequence represents the cutting points

that will define the blocks. It is defined recursively, as follows: t0 = 0, t1 = a,
ti = b(t1 + . . .+ ti−1). It can be seen that ti = ab(1+ b)i−2, for i ≥ 2. Finally, we
define the blocks: for each i ≥ 1, xi := x(ti−1+1 : ti) and yi = y(ti−1+1 : ti), and
ni := |xi| = |yi| = ab2(1+b)i−3 (the last equality holds for i ≥ 3). We also denote
by x̄i the concatenation of the blocks x1, . . . , xi and by ȳi the concatenation of
the blocks y1, . . . , yi.

Lemma 2

1. K(xi | x̄i−1) > σni, for all i ≥ 2 (and the analogue relation holds for the
yi’s).

2. log |xi| = Θ(i) and log |x̄i| = Θ(i), for all i (and the analogue relation holds
for the yi’s).

Proof. The first point follows from the Splitting Lemma 1, and the second point
follows immediately from the definition of ni (which is the length of xi) and of
ti (which is the length of x̄i). �

The following facts state some basic algorithmic-information theoretical prop-
erties of the blocks x1, x2, . . . . and y1, y2, . . .. The proof is available in the
full version of this paper; it is based on the Symmetric Information Theorem
|K(vu)− (K(u)+K(v | u))| ≤ O(log K(u)+ logK(v)) (for example, see Alexan-
der Shen’s lecture notes [She00]).

Lemma 3. For all i and j, (a)
∣∣K(xi | x̄i−1ȳj) − K(xi | x̄i−1)

∣∣ < O(i + j). (b)∣∣K(yi | x̄j ȳi−1) − K(yi | ȳi−1)
∣∣ < O(i + j). (c) K(xiyi | x̄i−1ȳi−1) ≥ K(xi |

x̄i−1ȳi−1) + K(yi | x̄i−1ȳi−1) − O(i).
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4.3 Regular Functions

The construction of z from x and y proceeds block-wise: we take as inputs the
blocks xi and yi and, from them, we build zi, the i-th block of z. The input strings
xi and yi, both of length ni, have Kolmogorov complexity σni, for some positive
constant σ, and the goal is to produce zi, of length mi (which will be specified
later), with Kolmogorov complexity (even conditioned by z1z2 . . . zi−1) at least
(1 − ε)mi, for positive ε arbitrarily small. This resembles the functionality of
randomness extractors and, indeed, the following definition captures a property
similar to that of extractors that is sufficient for our purposes.

Definition 2. A function f : {0, 1}n ×{0, 1}n → {0, 1}m is (σ, c)-regular, if for
any k1, k2 ≥ σn, any two subsets B1 ⊆ {0, 1}n and B2 ⊆ {0, 1}n with ‖B1‖ = 2k1

and ‖B2‖ = 2k2 have the following property: for any a ∈ {0, 1}m,

‖f−1(a) ∩ (B1 × B2)‖ ≤ c

2m
‖B1 × B2‖.

Remarks: Let [N ] be the set {1, . . . , N}. We identify in the standard way {0, 1}n

with [N ], where N = 2n. We can view [N ] × [N ] as a table with N rows and
N columns and a function f : [N ] × [N ] → [M ] as an assignment of a color
chosen from [M ] to each cell of the table. The function f is (σ, c)-regular if in
any rectangle of size [K] × [K], with k ≥ σn, no color appears more than a
fraction of c/M times. (The notion of regularity is interesting for small values
of c because it says that in all rectangles, unless they are small, all the colors
appear approximately the same number of times; note that if c = 1, then all the
colors appear the same number of times.)

We show using the probabilistic method that for any σ > 0, (σ, 2)-regular
functions exist. Since the regularity property for a function f (given via its
truth table) can be effectively tested, we can effectively construct (σ, 2)- regular
functions by exhaustive search

We take f : [N ] × [N ] → [M ], a random function. First we show that with
positive probability such a function satisfies the definition of regularity for sets
A and B having size 2k, where k is exactly �σn�. Let’s temporarily call this
property the weak regularity property. We will show that in fact weak regularity
implies the regularity property as defined above (i.e., the regularity should hold
for all sets B1 and B2 of size 2k1 and respectively 2k2 , for k1 and k2 greater or
equal �σn�).
Lemma 4. For every σ > 0 and for every N that is sufficiently large, if M ≤
N0.99σ, then it holds with probability > 0 that f satisfies the (σ, 2)- weak regu-
larity property as defined above.

Proof. Fix B1 ⊆ [N ] with ‖B1‖ = Nσ (to keep the notation simple, we ignore
truncation issues). Fix B2 ⊆ [N ] with ‖B2‖ = Nσ. Let j1 ∈ B1×B2 and j2 ∈ [M ]
be fixed values. As discussed above, we view [N ]×[N ] as a table with N rows and
N columns. Then B1 ×B2 is a rectangle in the table, j1 is a cell in the rectangle,
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and j2 is a color out of M possible colors. Clearly, Prob(f(j1) = j2) = 1/M . By
Chernoff bounds,

Prob
((

no. of j2-colored cells in B1 × B2

Nσ · Nσ
− 1

M

)
>

1
M

)
< e−(1/M)·Nσ ·Nσ·(1/3).

By the union bound

Prob( the above holds for some j2 in [M ] ) < Me−(1/M)·Nσ ·Nσ·(1/3). (5)

The number of rectangles B1 × B2 is

(
N

Nσ

) · ( N
Nσ

) ≤
((

eN
Nσ

)Nσ
)2

= e2Nσ · e2Nσ·(1−σ) ln N . (6)

Note that if there is no rectangle B1 × B2 and j2 as above, then f satisfies
the weaker (σ, 2)-regularity property. Therefore we need that the product of the
right hand sides in equations (5) and (6 ) is < 1. This is equivalent to

(1/M) · N2σ · 1/3 − ln(M) > 2Nσ + 2Nσ · (1 − σ) ln N,

which holds true for M ≤ N0.99σ, and N sufficiently large. �

As promised, we show next that weak regularity implies regularity.

Lemma 5. Let f : {0, 1}n ×{0, 1}n → {0, 1}m such that for every B1 ⊆ {0, 1}n

with ‖B1‖ = 2k, for every B2 ⊆ {0, 1}n with ‖B2‖ = 2k, and for every a ∈
{0, 1}m it holds that ‖f−1(a) ∩ (B1 × B2)‖ ≤ p.

Then for every k1 ≥ k and every k2 ≥ k, for every B′
1 ⊆ {0, 1}n with ‖B′

1‖ =
2k1 , for every B′

2 ⊆ {0, 1}n with ‖B′
2‖ = 2k2 , and for every a ∈ {0, 1}m it holds

that ‖f−1(a) ∩ (B′
1 × B′

2)‖ ≤ p.

Proof. We partition B′
1 and B′

2 into subsets of size 2k. So, B′
1 = A1∪A2∪. . .∪As,

with ‖Ai‖ = 2k, i = 1, . . . , s and B2 = C1 ∪ C2 ∪ . . . ∪ Ct, with ‖Cj‖ = 2k,
j = 1, . . . , t. Then,

‖f−1(a) ∩ (B′
1 × B′

2)‖ =
∑s

i=1
∑t

j=1‖f−1(a) ∩ (Ai × Cj)‖
≤ ∑s

i=1
∑t

j=1 p · ‖Ai × Cj‖
= p · ‖B′

1 × B′
2‖.

4.4 Increasing the Randomness Rate

We proceed to the proof of our main result, Theorem 1. We give a “global”
description of the effective mapping f : Q×{0, 1}∞×{0, 1}∞ → {0, 1}∞. It will
be clear how to obtain the n-th bit of the output in finitely many steps, as it is
formally required.
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Construction
Input: τ ∈ Q ∩ (0, 1], x, y ∈ {0, 1}∞ (the sequences x and y are oracles to
which the procedure has access).
Step 1: Split x into x1, x2, . . . , xi, . . . and split y into y1, y2, . . . , yi, . . ., as
described in Section 4.2 taking σ = τ/2 and σ′ = τ/4.
For each i, let |xi| = |yi| = ni (as described in Section 4.2).
By Lemma 2, K(xi | x̄i−1) > σni and Kx(yi | ȳi−1) > σni.
Step 2: As discussed in Section 4.3, for each i, construct by exhaustive search
Ei : {0, 1}ni ×{0, 1}ni → {0, 1}mi a (σ/2, 2)-regular function, where mi = i2.
We recall that this means that for all k1, k2 ≥ (σ/2)ni, for all B1 ⊆ {0, 1}ni

with ‖A‖ ≥ 2k1 , for all B2 ⊆ {0, 1}ni with ‖B2‖ ≥ 2k2 , and for all a ∈
{0, 1}mi,

‖E−1
i (a) ∩ B1 × B2‖ ≤ 2

2mi
‖B1 × B2‖.

We take zi = Ei(xi, yi).
Finally z = z1z2 . . . zi . . ..

It is obvious that the above procedure is a truth-table reduction (i.e., it halts
on all inputs).

In what follows we will assume that the two input sequences x and y have
randomness rate τ and our goal is to show that the output z has randomness
rate (1 − δ) for any δ > 0.

Lemma 6. For any ε > 0, for all i sufficiently large, K(zi | x̄i−1ȳi−1) ≥ (1 −
ε) · mi.

Proof. Suppose K(zi | x̄i−1ȳi−1) < (1 − ε) · mi.
Let A = {z ∈ {0, 1}mi | K(z | x̄i−1ȳi−1) < (1 − ε) · mi}. We have ‖A‖ <

2(1−ε)mi.
Let t1, t2, B1, B2 be defined as follows: t1 = K(xi | x̄i−1ȳi−1), t2 = K(yi |

x̄i−1ȳi−1), B1 = {x ∈ {0, 1}ni | K(x | x̄i−1ȳi−1) ≤ t1}, and B2 = {y ∈ {0, 1}ni |
K(y | x̄i−1ȳi−1) ≤ t2}.

Since K(xi | x̄i−1) > σni, and taking into account Lemma 3, it follows that
t1 > σni − O(i) > (σ/2)ni, for all i sufficiently large. By the same argument as
above, t2 > (σ/2)ni. We have ‖B1‖ ≤ 2t1+1. Take B′

1 such that ‖B′
1‖ = 2t1+1

and B1 ⊆ B′
1. We also have ‖B2‖ ≤ 2t2+1. Take B′

2 such that ‖B′
2‖ = 2t2+1 and

B2 ⊆ B′
2. The bounds on t1 and t2 imply that B′

1 and B′
2 are large enough for Ei

to satisfy the regularity property on them. In other words, for any a ∈ {0, 1}mi,
‖E−1

i (a) ∩ B′
1 × B′

2‖ ≤ 2
2mi

‖B′
1 × B′

2‖. So,

‖E−1
i (A) ∩ B1 × B2‖ ≤ ‖E−1

i (A) ∩ B′
1 × B′

2‖
=

∑
a∈A‖E−1

i (a) ∩ B′
1 × B′

2‖
≤ 2(1−ε)mi 2

2mi
‖B′

1 × B′
2‖

≤ 2t1+t2−εmi+3.

There is an algorithm that, given (x1, x2, . . . , xi−1), (y1, y2, . . . , yi−1), (1− ε)mi,
t1 and t2, enters an infinite loop during which it enumerates the elements of the
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set E−1
i (A) ∩ B1 × B2. Therefore, the Kolmogorov complexity of any element

of E−1
i (A) ∩ B1 × B2 is bounded by its rank in some fixed enumeration of

this set, the binary encoding of the input (including the information needed to
separate the different components), plus a constant number of bits describing
the enumeration procedure.

Formally, for every (u, v) ∈ E−1
i (A) ∩ B1 × B2,

K(uv|x̄i−1ȳi−1)≤t1+t2−εmi+2(log(1−ε)mi+log t1+log t2)+O(1)=t1+t2−Ω(i2).

We took into account that mi = i2, log t1 = O(i), and log t2 = O(i). In particu-
lar,

K(xiyi | x̄i−1ȳi−1) ≤ t1 + t2 − Ω(i2).

On the other hand, by Lemma 3,

K(xiyi | x̄i−1ȳi−1) ≥ K(xi | x̄i−1ȳi−1) + K(yi | x̄i−1ȳi−1) − O(i)
= t1 + t2 − O(i).

The last two inequations are in conflict, and thus we have reached a
contradiction. �

The following lemma concludes the proof of the main result.

Lemma 7. For any δ > 0, the sequence z obtained by concatenating in order
z1, z2, . . ., has randomness rate at least 1 − δ.

Proof. Take ε = δ/4. By Lemma 6, K(zi | x̄i−1ȳi−1) ≥ (1 − ε) · mi, for all i
sufficiently large. This implies K(zi | z1 . . . zi−1) > (1−ε)mi−O(1) > (1−2ε)mi

(because each zj can be effectively computed from xj and yj). By induction, it
can be shown that K(z1 . . . zi) ≥ (1−3ε)(m1 + . . .+mi). For the inductive step,
we have
K(z1z2 . . . zi)≥K(z1 . . . zi−1)+K(zi | z1 . . . zi−1)−O(log(m1 + . . . + mi−1)+log(mi))

≥ (1 − 3ε)(m1 + . . . + mi−1) + (1 − 2ε)mi − O(log(m1 + . . . + mi))
> (1 − 3ε)(m1 + . . . + mi).

Now consider some z′ which is between z1 . . . zi−1 and z1 . . . zi, i.e., for some
strings u and v, z′ = z1 . . . zi−1u and z1 . . . zi = z′v. Suppose K(z′) < (1−4ε)|z′|.
Then z1 . . . zi−1 can be reconstructed from:

(a) the descriptor of z′, which takes (1−4ε)|z′| ≤ (1−4ε)(m1 + . . .+mi) bits,
(b) O(1) bits for describing the reconstruction procedure.
This implies that

K(z1 . . . zi−1) ≤ (1 − 4ε)(m1 + . . . + mi) + O(1)
= (1 − 4ε)(m1 + . . . + mi−1) + (1 − 4ε)mi + O(1)
=

(
1 − 4ε + (1 − 4ε) mi

m1+...+mi−1

) · (m1 + . . . + mi−1) + O(1)
< (1 − 3ε)(m1 + . . . + mi−1).

(The last inequality holds if mi

m1+...+mi−1
goes to 0, which is true for mi = i2.)

This is a contradiction.
Thus we have proved that for every n sufficiently large, K(z(1 : n)) >

(1 − δ)n. �
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The main result can be stated in terms of constructive Hausdorff dimension, a
notion introduced in measure theory. The constructive Hausdorff dimension of
a sequence x ∈ {0, 1}∞ turns out to be equal to lim inf K(x(1:n))

n (see [May02,
Rya84, Sta05]).

Corollary 1. For any τ > 0, there is a truth-table reduction f such that if
x ∈ {0, 1}∞ and y ∈ {0, 1}∞ are independent and have constructive Hausdorff
dimension at least τ , then f(x, y) has Hausdorff dimension 1. Moreover, f is
uniform in the parameter τ .

We next observe that Theorem 1 can be strengthened by relaxing the require-
ment regarding the independence of the two input sequences. For a function
g : N → R

+, we say that two sequences x ∈ {0, 1}∞ and y ∈ {0, 1}∞ have
dependency g, if for all natural numbers n and m,

K(x(1 : n)) + K(y(1 : m)) − K(x(1 : n)y(1 : m)) ≤ O(g(n) + g(m)).

In Theorem 1, the assumption is that the two input sequences have dependency
g(n) = log n. Using essentially the same proof as the one that demonstrated
Theorem 1, one can obtain the following result.

Theorem 2. For any τ > 0, there exist 0 < α < 1 and a truth-table reduction
f : {0, 1}∞ × {0, 1}∞ → {0, 1}∞ such that if x ∈ {0, 1}∞ and y ∈ {0, 1}∞ have
dependency nα and randomness rate τ , then f(x, y) has randomness rate 1 − δ,
for any positive δ. Moreover, f is uniform in the parameter τ .

In Theorem 1 it is required that the initial segments of x and y have Kolmogorov
complexity at least τ · n, for a positive constant τ . We do not know if it is pos-
sible to obtain a similar result for sequences with lower Kolmogorov complexity.
However, using the same proof technique, it can be shown that if x and y have
their initial segments with Kolmogorov complexity only Ω(log n), then one can
produce an infinite sequence z that has very high Kolmogorov complexity for
infinitely many of its prefixes.

Theorem 3. For any δ > 0, there exist a constant C and a truth-table reduction
f : {0, 1}∞ × {0, 1}∞ → {0, 1}∞ with the following property:

If the input sequences x and y are independent and satisfy K(x(1 : n)) >
C · log n and K(y(1 : n)) > C · log n, for every n, then the output z = f(x, y)
satisfies K(z(1 : n)) > (1 − δ) · n, for infinitely many n. Furthermore, there is
an infinite computable set S, such that K(z(1 : n)) > (1− δ) ·n, for every n ∈ S.

Acknowledgments

The author thanks Ted Slaman for bringing to his attention the problem of
extracting Kolmogorov complexity from infinite sequences, during the Dagstuhl
seminar on Kolmogorov complexity in January 2006. The author is grateful to
Cristian Calude for insightful discussions.



338 M. Zimand

References

[BDS07] Bienvenu, L., Doty, D., Stephan, F.: Constructive dimension and weak
truth-table degrees. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007.
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Abstract. The problem of short term electric load forecasting is considered in 
the case when a part of input variables is given in a nonnumeric form. Novel 
neuro-fuzzy network architecture and learning algorithms are proposed, which 
enable high-rate processing of information given in different measurements 
scales (quantitative, ordinal, and nominal). Types and parameters of the 
employed membership functions may be determined by the amount of available 
explicit prior knowledge. Experimental comparison to a traditional neural 
network confirms superiority of the proposed approach. 

1   Introduction 

Short term electric load forecasting (STLF) is an integral part of management and 
planning in power supply companies. Currently, two approaches to STLF problems 
are widely employed: traditional forecasting techniques (regression, correlation, 
spectral analysis, Box-Jenkins method, exponential smoothing, adaptive predictors, 
etc.) and advanced techniques based on artificial intelligence and data mining 
methods. Traditional forecasting techniques have advantages of simplicity of use and 
wide range of available software implementations. However, because electric load 
often depends on influencing factors in a complicated nonlinear manner, it is not 
always possible to achieve acceptable forecasting accuracy. 

A good alternative to traditional approaches is to apply computational intelligence 
methods, first of all, artificial neural networks and fuzzy inference systems. Their 
efficiency is based on universal approximation capabilities and ability to learn during 
the forecasting process. These methods have proven their efficiency in solution of a 
wide range of problems related to forecasting in power systems [1-12]. The use of 
computational intelligence techniques may be complicated when part of the 
information is given not in a quantitative form, but in the ordinal or nominal scale. 
Traditional neural or neuro-fuzzy networks are poorly suited for processing of the 
information given in a form like “bad, normal, good weather”, “weak or strong wind”, 
“cloudy, fog, clear”, etc.  

This paper addresses the problem of synthesis of a forecasting neuro-fuzzy 
network, which is able to process information given in different scales, and its 
learning algorithm with high convergence rate and ability to process information in 
real time. 
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2   Architecture of Forecasting Neuro-fuzzy Network 

The proposed neuro-fuzzy network has a four-layer feedforward architecture depicted 
in fig. 1. 

From the receptive (zero) layer information is fed to the first hidden layer of delays 
and input signals fuzzification. Here, the forecasted signal’s history is formed along 
with membership functions of factors, given in different measurement scales. From 
this layer’s output, information in numeric form is fed to the second and third hidden 
layers formed by elementary Rosenblatt-type neurons. The output layer is formed by a 
single neuron with nonlinear activation function, which produces the forecast. 

The following information is given to the input of the first hidden layer: 

• quantitative variables: 
− current value of the forecasted signal ( )y k  (here k = 0, 1, 2,…, N is a discrete 

time, N – data set length); 
− air temperature; 

• ordinal variables: 
− relative humidity in the form «low – medium – high»; 
− wind speed in the form «calm – weak – strong – storm»; 
− cloudiness in the form «clear – light – heavy»; 
− hour index: 0, 1, 2, …, 23; 
− day of week in the form «Monday – Tuesday – … – Sunday»; 

• nominal variables: 
− type of day in the form «weekday – weekend – holiday – regional holiday»; 
− type of weather in the form «fair – fog – rain – snow». 

At first, variables are scaled to the interval [0, 1] by the following transformation: 

min

max min

l l
l

l l

x x
x

x x

−
=

−
, 

( )max minl l l l lx x x x x 1= − − , 

 

where lx  – is the value of the l-th input variable in the original scale: MWh, °С; lx  – 

scaled value of the l-th input variable; min max,l lx x  – minimum and maximum values of 

the l-th input variable in original scale. 
Then, in the first hidden layer using delay elements 1z− , the forecasted signal’s 

history is formed: ( )y k 1− , ( )y k 2− , ( )y k 24− , ( )y k 48− , ( )y k 168− , 

( )y k 336− , which is fed to the second hidden layer in the form [ ] ( )1
1o k , [ ] ( )1

2o k , 

[ ] ( )1
3o k , [ ] ( )1

4o k , [ ] ( )1
5o k , [ ] ( )1

6o k . Different delays may be used for other forecasting 

horizons. 
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Fig. 1. Forecasting neuro-fuzzy network architecture 

In the same layer, air temperature, hour index, relative humidity, wind speed, 
cloudiness and type of day are fuzzified using triangular membership functions 
uniformly distributed in the interval [0, 1]: 

[ ], , ,l 2 l
l1 l l 2

l 2

c x
x 0 c

c
μ −

= ∈  

,
,

,

,
,

,

, , ,

, , ,

, , ,

l l i 1
l l i 1 li

li l i 1

l i 1 l
li l li l i 1

l i 1 li

l

x c
x c c

c c

c x
x c c

c c

i 2 p 1

μ

−
−

−

+
+

+

−⎧
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⎪ −⎪ ⎡ ⎤= ∈⎨ ⎣ ⎦−⎪
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, , ,l

l l

l

l l p 1
l p l l p 1

l p 1

x c
x c 1

1 c
μ −

−
−

−
⎡ ⎤= ∈ ⎣ ⎦−

 

 

where lic – position of the center of the i-th membership function of the l-th variable, 

pl – number of membership functions of the l-th variable. Triangular membership 
functions are employed because of their computational simplicity and easy 

satisfaction of condition ( ) ,
lp

li l l
i 1

x 1 xμ
=

= ∀∑ . 

Fig. 2 shows fuzzification of air temperature with seven triangular membership 
functions, temperatures lying outside of the interval [–30°С, 30°С] are projected onto 
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[0, 1]. The choice of the shape and centers of membership functions may be subject to 
specific weather conditions at the location, for which the STLF problem is being 
solved. This will require, for instance, explicit knowledge of temperature sensitivity 
zones that may be hard to obtain. In this paper we only demonstrate the possibility of 
such fuzzification, therefore the simplest (uniform) option is shown. 

liμ

lx

1 

0 
–30°C 

1/6 
–20°C 

2/6
–10°C

3/6
0°C

4/6
10°C

5/6
20°C

1 
30°C  

Fig. 2. Air temperature fuzzification 

The inputs to the second hidden layer are obtained by fuzzification of variables in 
the first hidden layer as shown in fig. 3. 

l1μ

l 2μ

, ll p 1μ −

, ll pμ

( )lx k

[ ] ( )1
io k

[ ] ( )1
i 1o k+

[ ] ( )
l

1
i p 2o k+ −

[ ] ( )
l

1
i p 1o k+ −

 
Fig. 3. Fuzzification of inputs to the second hidden layer 

Fuzzification of nominal variables is performed in the same manner except for the 
use of singleton membership functions as shown in fig. 4. Basically, singleton 
membership functions provide a transparent means of conversion of a single nominal 
variable into a set of independent numeric flags. 
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liμ
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0 
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1/3
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2/3 
rain 

1 
snow  

Fig. 4. Fuzzification of the type of weather 

Thus, fuzzification with different types of membership functions provides a 
consistent method for conversion of nonnumeric variables in a quantitative form. The 
choice of a particular set of membership functions for a given variable depends on 
availability of explicit knowledge about the variable’s physical interpretation and 
relations between its states. When the states of the variable are completely independent 
(or the dependency is not known, like in the case of nominal variables in our study), 
singleton membership functions are employed. When some explicit knowledge is 
available (e.g., states ranking for ordinal variables), this knowledge can be coded by an 
appropriate set of overlapping membership functions: triangular, bell-shaped, etc. 
Centers and shape parameters of these functions can be determined by experts or can be 
extracted from available data using intelligent data mining techniques. 

At the output of the first hidden layer signals [ ] [ ] [ ], , ,1 1 1
1 2 no o o…  are formed, which are 

fed to the second hidden layer in the form of ( )n 1 1+ × -vector 

[ ] [ ] [ ] [ ]( ), , , ,
T

2 1 1 1
1 2 nx 1 o o o= … , where the unity component represents bias signal. 

The second hidden layer of the proposed neuro-fuzzy network consists of n 

identical neurons with nonlinear sigmoidal activation functions [ ] , , , ,2
j j 1 2 nψ = …  and 

contains ( )n n 1+  tuned synaptic weights [ ]2
jiw . The output signal of the j-th neuron of 

the second hidden layer is 

[ ] [ ] [ ]( ) [ ] [ ] [ ]
n

2 2 2 2 2 2
j j j j ji i

i 0

o u w xψ ψ
=

⎛ ⎞= = ⎜ ⎟
⎝ ⎠
∑  

 

(here [ ] [ ]2 2
j0 jw θ≡ – bias of the j-th neuron), and the output of the layer – 

[ ] [ ] [ ] [ ]( )2 2 2 2o W x= Ψ , (1) 

where [ ] ( )2o n 1− × -vector signal, which is fed to the third hidden layer in the form 

[ ] [ ]( ),
T

3 2 Tx 1 o= , [ ] [ ]{ } ( )diag2 2
j n nψΨ = − × -matrix activation function, 

[ ] ( )2W n n 1− × + -matrix of tuned synaptic weights. 
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The third hidden layer consists of 2n+1 neurons and forms the following signals 

[ ] [ ] [ ]( ) [ ] [ ] [ ]
n

3 3 3 3 3 3
j j j j ji i

i 0

o u w xψ ψ
=

⎛ ⎞= = ⎜ ⎟
⎝ ⎠
∑ , 

 

[ ] [ ] [ ] [ ]( )3 3 3 3o W x= Ψ , (2) 

where [ ] [ ]{ } ( ) ( )( )diag3 3
j 2n 1 2n 1ψΨ = − + × + -matrix activation function, 

[ ] ( ) ( )( )3W 2n 1 n 1− + × + -matrix of tuned synaptic weights, [ ] ( )( )3o 2n 1 1− + × -

vector signal, which is fed to the output layer in the form [ ] [ ]( ),
T

4 3 Tx 1 o= . 

The output layer consists of a single neuron that forms scalar forecasting signal 

[ ] [ ]( ) [ ] [ ] [ ] [ ] [ ] [ ]( )ˆ
2n 1

4 4 4 4 4 4 4 T 4
i i

i 0

y u w x w xψ ψ ψ
+

=

⎛ ⎞= = =⎜ ⎟
⎝ ⎠
∑ , (3) 

where [ ] ( )( )4w 2n 2 1− + × -vector of tuned synaptic weights. 

Combining relations (1)-(3), one obtains the transfer function of the whole network 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]( )( )( )ˆ 4 4 T 3 3 2 2 2y w W W xψ= Ψ Ψ . 
 

3   Network Training 

The network training is performed according to standard local quadratic criterion  

( ) ( ) ( ) ( )( )ˆ
221 1

E k e k y k y k
2 2

= = −  
 

using sigmoidal activation function 

[ ] [ ] ( )( ) [ ] ( )S

S S

u k

1
u k

1 e γ
ψ

−
=

−
, 

 

where parameter γ>0, setting steepness of the activation function, can also be tuned, S 
= 2, 3, 4 – layer index. 

Omitting for brevity intermediate results, we obtain the following relations for 
updating network weights: 

− traditional backpropagation procedure: 

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )S S S S S
j j jw k 1 w k k k x kη δ+ = + ; (4) 
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− applying one-step modification of Levenberg-Marquardt algorithm [13], we obtain: 

[ ] ( ) [ ] ( )
[ ] ( ) [ ] ( )

[ ] ( )

S S
S S j
j j 2

S

k x k
w k 1 w k

x k

δ
+ = + , (5) 

which structurally coincides with optimal Kaczmarz algorithm [14]; 
− to improve learning stability at the nearly flat ends of sigmoidal activation 

functions, regularized Chan-Fallside algorithm [15] can be used: 

[ ] ( ) [ ] ( ) [ ] [ ] ( ) [ ] ( ) [ ] ( )S S S S S S
j j j jw k 1 w k k x k w k 1η δ ρ+ = + + − , (6) 

Where [ ] constS 0η = > , [ ] ( )
[ ] [ ] ( )( )

[ ] ( )
[ ] ( ) [ ] ( )

S S
hj jS S 1 S 1

j i ijS
i 1j

u k
k k w k

u k

ψ
δ δ + +

=

∂
=

∂
∑ , 

 [ ] ( ) ( )
[ ] [ ] ( )( )

[ ] ( )
( )

[ ] ( )

4 4

4

4 4

u k E k
k e k

u k u k

ψ
δ

∂ ∂
= =

∂ ∂
, 1 0ρ> ≥  – regularization parameter, 

[ ] ( ) [ ] ( ) [ ] ( )S S Sw k 1 w k w k 1− = − − , h – number of neurons. 

Choice of a particular modification of the learning algorithm will depend to a large 
extent on statistical properties of the data set and therefore is left to a specific 
application. 

4   Experimental Results 

To validate theoretical findings, we conducted hourly forecasting for 24 hours ahead 
of the time series describing electric load of the Burshtyn energy island (Western 
Ukraine) using the proposed neuro-fuzzy network (NFN) and traditional multilayer 
perceptron (MLP) network with a similar architecture (the same number of hidden 
layers and neurons in each layer). For the MLP network, ordinal variables are 
converted to the numeric form by incrementally assigning an integer (1, 2, 3, …) for 
each subsequent rank; nominal variables are presented as a set of 1/0 flags for each 
possible state. Having the data set of one year, we used 10 months for training 
(January-October, 2006) and 2 months for testing (November-December, 2006). 
MAPE (Mean Absolute Percentage Error) is used as the forecasting quality measure. 

( ) ( )
( )

ˆ
%

N

k 0

y k y k1
MAPE 100

N 1 y k=

−
=

+ ∑ i . 
 

Forecasting results are given in table 1 (best results are given in bold) and fig. 5, 6 
(only one week of data is visualized for the sake of readability). 

Table 1.  

 Training set Test set 
Multilayer perceptron 3.11% 3.25% 
Proposed neuro-fuzzy network 2.24% 2.31% 
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Analysis of graphs and forecasting errors shows that the proposed approach 
provides better forecasting accuracy comparing to traditional technique, producing 
lower mean and peak errors. 

 

 
Fig. 5. Forecasting results using MLP (solid line – original series, dotted line – forecast) 

 
Fig. 6. Forecasting results using NFN (solid line – original series, dotted line – forecast) 
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5   Conclusions 

The presented neuro-fuzzy network for short term electric load forecasting allows 
processing of information given in different scales (quantitative, ordinal, and 
nominal) by means of fuzzification of input variables. Types of the applied 
membership functions, their count and parameters may be chosen by expert judgment, 
based on statistical properties of the data set, or experimentally. Available prior 
knowledge about characteristics of input variables may be incorporated in this 
process. In this paper we used equally spaced triangular and singleton activation 
functions for the sake of simplicity, just demonstrating the basic idea. 

The proposed approach can be further modified to handle multiple interconnected 
time series, describing for example, electric load for several regions joined by 
common power system, or electric load, thermal power, water and gas consumption in 
one region, etc. To achieve this, it is necessary to expand input and output signal 
vectors, modifying the proposed network architecture and learning algorithms 
accordingly, which is a topic for our further research. 
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Invariant Generation for P-Solvable Loops with
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Abstract. We discuss interesting properties of a general technique for inferring
polynomial invariants for a subfamily of imperative loops, called the P-solvable
loops, with assignments only. The approach combines algorithmic combinatorics,
polynomial algebra and computational logic, and it is implemented in a new soft-
ware package called Aligator. We present a collection of examples illustrating
the power of the framework.

1 Introduction

Techniques for automatically checking and finding loop invariants and intermediate as-
sertions have been studied and developed since the early works of [5,9,3]. Following the
“trend” of developing powerful algorithms for automatically inferring polynomial in-
variants, in our work we apply advanced methods from symbolic summation [24,16,10]
together with polynomial algebra algorithms [2,23].

Based on the shape of the loop body and on the structure of assignment statements,
in [12] we defined a certain family of loops with assignments, sequencing and con-
ditionals, called P-solvable, for which all test conditions are ignored and the value of
each program variable can be expressed as a polynomial of the initial values of vari-
ables, the loop counter, and some new variables where there are algebraic dependencies
among the new variables. For such loops we derived a systematic method for generat-
ing polynomial loop invariants of the form p1 = 0 ∧ · · · ∧ pr = 0, where p1, . . . , pr

are polynomials over the program variables. In the sequel we will call a polynomial
equality any equality of the form p = 0, where p is a polynomial, thus an invariant is
polynomial if it is a conjunction of polynomial equalities.

Our approach is implemented in a new software package Aligator [12], on top
of the computer algebra system Mathematica. Aligator stands for automated loop
invariant generation by algebraic techniques over the rationals, and supports algebraic
reasoning about loops. We successfully tried it on many programs working on numbers.

Moreover, our approach to polynomial invariant generation is shown to be complete
for some special cases. By completeness we mean that it generates a polynomial in-
variant p1 = 0 ∧ · · · ∧ pr = 0 such that any other polynomial invariant is a logical
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consequence of p1 = 0 ∧ · · · ∧ pr = 0. Using polynomial ideal theory, q = 0 is a
logical consequence of p1 = 0∧· · ·∧pr = 0 if and only if q is in the ideal generated by
{p1, . . . , pr}. Since any ideal has a finite basis, the completeness of our approach equiv-
alently means the generation of a basis {p1, . . . , pr} for the ideal of all polynomials q
such that q = 0 is an invariant. Our method thus first derives such a polynomial basis
{p1, . . . , pr}, from which the polynomial loop invariant is constructed by taking the
conjunction of the polynomial equalities pi = 0. If the loop does not have (non-trivial)
polynomial invariants, the method returns True as loop invariant corresponding to the
{} polynomial basis. For a detailed presentation of the soundness and completeness
aspects of our approach we refer to [12,13].

The generated polynomial loop invariant, together with user-asserted non-polynomial
invariants, can be used further in the verification of (partial) correctness of programs.

In this paper, we focus our attention on P-solvable loops with only assignment state-
ments. Several properties of such loops will be presented, followed by motivating ex-
amples. The case of affine loops is separately discussed. The examples from the paper
highlight the power and limitations of our method. More examples and experimental
results can be found in [12].

The current paper extends our conference paper [13] in two aspects.

– We give a detailed comparison with related work on generating polynomial invari-
ants for loops with assignments only (see Sections 2 and 4).

– Most importantly, in Section 4 we present interesting properties of P-solvable loops
with assignments only. Firstly, we extend the framework by relaxing the P-solvable
constraints of an imperative loop, and show the applicability of our approach to
such cases as well. Next, we present the usage of the method in deriving auto-
matically combinatorial identities for algorithms implementing special numbers,
and finally we focus our attention on a special case of P-solvable loops, called the
affine loops.

All theoretical results as well as comparison with related work are illustrated by exam-
ples. The purpose of this paper is to demonstrate the applicability and the usefulness
of several algebraic and combinatorial techniques for automatic generation of polyno-
mial invariants, and, in more general terms, to emphasize the power of combining tech-
niques from computational logic with techniques from computer algebra for program
verification.

The rest of the paper is structured as follows. Section 2 presents related work on
polynomial invariant generation for loops with assignments only. Section 3 contains
a short overview of our approach to invariant generation, and briefly introduces the
reader to the algebraic considerations used throughout the paper. In Section 4 we discuss
properties of P-solvable loops with assignments only, and demonstrate the results by a
number of examples. Section 5 concludes the work.

2 Related Work

In [9], M. Karr proposed a general technique for finding affine relationships among
program variables. However, Karr’s work used quite complicated operations (trans-
formations on invertible/non-invertible assignments, affine union of spaces) and had
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a limitation on arithmetical operations among the program variables. For these reasons,
extension of his work has recently become a challenging research topic.

One line of work uses a generic polynomial relation of an a priori fixed degree
[14,15,21,8,19]. The coefficients of this polynomial are replaced by variables, and con-
straints over the values of the coefficients are derived. The solution space of this con-
straint system characterizes the coefficients of all polynomial invariants up to the fixed
degree. However, in case when the program has polynomial invariants of different de-
grees, these approaches have to be applied separately for the different degrees. This is
not the case of our algorithm. Our restriction is not on the degree of sought polynomial
relations, but on the type of assignments (recurrence equations) present in the loop body.
The shape of assignments restricts our approach to the class of P-solvable loops, and
thus we cannot handle loops with arbitrary polynomial assignments, nor tests in loop
condition. However, for P-solvable loops with assignments only our method returns
the generator set of all polynomial relations (of different degrees) among the program
variables by the application of our method only once.

A different line of research imposes structural constraints on the assignment state-
ments of the loop. Based on the theory of Gröbner basis, in [20] a fixpoint procedure for
invariant generation is presented for so–called simple loops having solvable mappings
with positive rational eigenvalues. This fixpoint is the ideal of polynomial invariants.
The restriction of assignment mappings being solvable with positive rational eigenval-
ues ensures that the program variables can be polynomially expressed in terms of the
loop counter and some auxiliary rational variables. Hence, the concept of solvable map-
ping is similar to the definition of P-solvable loop. However, contrarily to [20], in our
approach we compute closed form solutions of program variables for a wider class of
recurrence equations (assignment statements). The restriction on the closed form solu-
tion for P-solvable loops brings our approach also to the case of having closed forms
as polynomials in the loop counters and additional new variables, but, unlike [20], the
new variables can be arbitrary algebraic numbers, and not just rationals.

3 Overview

We begin with a brief overview of our approach to invariant generation for P-solvable
loops with assignments only. We present the algebraic notions used later in the paper,
and also fix some relevant notation. Further, a short description of our invariant gener-
ation algorithm will be given. More details can be found in [12,13].

We assume that K is a field of characteristic zero (e.g. Q, R, etc.), and by K̄ we
denote its algebraic closure. Throughout this paper, X = {x1, . . . , xm} (m > 1) de-
notes the set of loop variables, K[X ] is the ring of polynomials in the variables X with
coefficients from K, and n ∈ N stands for the loop counter.

P-solvable Loops. In our approach for generating polynomial invariants, test conditions
in the loops are ignored. When we ignore conditions of loops, we will deal with non-
deterministic programs. Using regular-expression like notation, in [12] we introduced
the syntax and semantics of the class of non-deterministic programs that we consider.
We called this class basic non-deterministic programs. Essentially, when we omit the
condition b from a conditional statement If[b Then S1 Else S2], where S1 and S2
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are sequences of assignments, we will write it as If[. . . Then S1 Else S2] and mean
the basic non-deterministic program S1|S2. Similarly, we omit the condition b from
a loop While[b, S], where S is a sequence of assignments, and write it in the form
While[. . . , S] to mean the basic non-deterministic program S∗.

In our work, we developed a systematic method for generating (all) polynomial
invariants for loops of such a non-deterministic syntax and semantics. Namely, we
identified a class of loops with assignments, sequencing and conditionals, called the
P-solvable loops, for which tests are ignored, and the value of each loop variable is
expressed as a polynomial in the initial values of variables (those when the loop is en-
tered), the loop counter, and some new variables, where there are polynomial relations
among the new variables. A precise definition of P-solvable loops can be found in [12].

Polynomial Ideals and Invariants. A non-empty subset I ⊆ K[X ] is an ideal of K[X ]
if p1 + p2 ∈ I for all p1, p2 ∈ I and pq ∈ K[X ] for all p ∈ I and q ∈ K[X ]. As
observed in [18], the set of polynomials p such that p = 0 is a polynomial invariant
forms a polynomial ideal, called polynomial invariant ideal.

By Hilbert’s basis theorem [1], any ideal, and in particular thus the polynomial in-
variant ideal, has a finite basis. Using the Buchberger Algorithm [2], a special ideal
basis called Gröbner basis {p1, . . . , pr} (pi ∈ K[X ]) of the polynomial invariant ideal
can be effectively computed. Hence, the conjunction of the polynomial equations cor-
responding to the polynomials from the computed basis (i.e. pi(X) = 0) characterizes
completely the polynomial invariants of the loop. Namely, any other polynomial invari-
ant can be derived as a logical consequence of p1 = 0 ∧ · · · ∧ pr = 0.

In the process of deriving a basis for the polynomial invariant ideal, we rely on
efficient methods from algorithmic combinatorics, as presented below.

Sequences and Recurrences. From the assignments statements of a P-solvable loop,
recurrence equations of the variables are built and solved, using the loop counter n as
the recurrence index.

In what follows, f : N → K defines a (univariate) sequence of values f(n) from K

(n ∈ N). A recurrence equation for the sequence f is a rational function defining the
values of f(n + r) in terms of the previous values f(n), f(n − 1), . . . , f(n + r − 1),
where r ∈ N is called the order of the recurrence. A solution of the recurrence equation
f(n), that is a closed-form solution, expresses the value of f(n) as a function of the
summation variable n and some given initial values, e.g. f(0), . . . , f(r −1). A detailed
presentation of sequences and recurrences can be found in [4,7]. In our research, we
only consider special classes of recurrence equations, as follows.

A C-finite recurrence f(n) is of the form f(n+ r) = a0(n)f(n)+a1(n)f(n+1)+
. . . + ar−1(n)f(n + r − 1), where the constants a0, . . . , ar−1 ∈ K do not depend on
n. The closed form of a C-finite recurrence can always be computed [24,4], and it is a
linear combination of polynomials in n and algebraic exponential sequences θn ∈ K̄,
with θ ∈ K̄, where there exist polynomial relations among the exponential sequences.
By adding any linear combination of polynomials and exponential sequences in n to the
rhs of a C-finite recurrence, we obtain an inhomogeneous linear recurrence f(n+ r) =
a0(n)f(n)+ a1(n)f(n + 1)+ . . .+ ar−1(n)f(n + r − 1)+

∑
i qi(n)θn

i with constant
coefficients, where qiK̄[n], θi ∈ K̄. Such recurrences can be transformed into C-finite
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ones, and thus their closed forms can be always computed. For solving such recurrences,
we rely on our Mathematica implementation integrated into Aligator. For example,
the closed form of f(n + 1) = 4f(n) + 2 is f(n) = 4nf(0) − 2

3 (4n − 1), where f(0)
is the initial value of f(n).

A Gosper-summable recurrence f(n) is of the form f(n + 1) = f(n) + h(n),
where the sequence h(n) can be a product of rational function-terms, exponentials,
factorials and binomials in the summation variable n (all these factors can be raised
to an integer power). The closed form solution of a Gosper-summable recurrence can
be exactly computed using the decision algorithm given by [6]. In our research, we
use a Mathematica implementation of the Gosper-algorithm given by the RISC Com-
binatorics group [16]. For example, the closed form of f(n + 1) = f(n) + n5 is
f(n) = f(0) − 1

12n2 + 5
12n4 − 1

2n5 + 1
6n6, where f(0) is the initial value of f(n).

In our work, we only consider P-solvable loops whose assignment statements de-
scribe Gosper-summable or C-finite recurrences. Thus, the closed forms of loop vari-
ables can be computed as presented above.

Algebraic Dependencies. As mentioned already, the closed form solutions of the vari-
ables of a P-solvable loop are polynomial expressions in the summation variable n
and algebraic exponential sequences in the summation variable n. We thus need to re-
late this sequences in a polynomial manner, such that the exponential sequences can
be eliminated from the closed forms of the loop variables, and polynomial invariants
can be subsequently derived. In other words, we need to compute the algebraic depen-
dencies among the exponential sequences θn

1 , . . . , θn
s ∈ K̄ of the algebraic numbers

θ1, . . . , θs ∈ K̄ present in the closed forms.
An algebraic dependency (or algebraic relation) of these sequences over K̄ is a poly-

nomial p ∈ K̄[y1, . . . , ys] in s distinct variables y1, . . . , ys, such that p(θn
1 , . . . , θn

s ) =
0, ∀n ∈ N. Computing algebraic dependencies reduces thus to compute a Gröbner basis
of the ideal of all algebraic dependencies. We integrated in our framework a Mathemat-
ica implementation for deriving such a basis [10]. For example, θn

1 θn
2 −1 = 0 generates

the ideal of algebraic dependencies among the exponential sequences of θ1 = 4 and
θ2 = 1

4 , whereas there is no algebraic dependency among the exponential sequences of
θ1 = 4 and θ2 = 3.

Invariant Generation for P-solvable Loops with Assignments Only. We have now
all necessary ingredients to synthesize our invariant generation algorithm for P-solvable
loops with assignments only. This is achieved in Algorithm 3.1. Algorithm 3.1 starts
first with extracting and solving the recurrence equations of the P-solvable loop’s vari-
ables X . Next, the ideal A of algebraic dependencies among the exponential sequences
from the derived closed forms is computed. Finally, from the polynomial closed form
system and A, the loop counter and the exponential sequences are eliminated, using
Gröbner basis computation. The polynomial invariant ideal G is thus derived.

P-solvable Loops with Assignments Only
Input: P-solvable loop with only assignment statements S
Output: The polynomial invariant ideal G � K[X ]
Assumption: The recurrence equations of X are of order at least 1, n ∈ N, X0 are
the initial values of X

Algorithm 3.1.
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1 Extract and solve the recurrence equations of the loop variables. We obtain:
⎧
⎪⎨

⎪⎩

x1[n] = q1(n, θn
1 , . . . , θn

s )
...
xm[n] = qm(n, θn

1 , . . . , θn
s )

, where
θj ∈ K̄, qi ∈ K̄[n, θn

1 , . . . , θn
s ],

qi are parameterized by X0,
j = 1, . . . , s, i = 1, . . . , m

2 Compute the ideal A of algebraic dependencies among n, θn
1 , . . . , θn

s .
3 Denote z0 = n, z1 = θn

1 , . . . , zs = θn
s .

4 Consider I = 〈x1 − q1, . . . , xm − qm)〉 + A � K̄[z0, z1, . . . , zs, x1, . . . , xm]
5 return G = I ∩ K[x1, . . . , xm].

Steps 1 and 2 of Algorithm 3.1 are essential. If the recurrence equations determined
by the assignments of the loop cannot be solved using the techniques presented on page
353, or the algebraic dependencies among exponential sequences of the closed form
system cannot be computed, Algorithm 3.1 does not succeed in generating polynomial
invariants.

EXAMPLE 3.1. Consider the program fragment taken from [17], implementing an al-
gorithm for computing the sum of the first n integers at power 5.

x := 0; y := 0; While[y 
= k, y := y + 1; x := x + y5].

By applying Algorithm 3.1 and using Aligator, the polynomial invariants of the
above loop are obtained as follows.
Step 1:

{
y[n + 1] = y[n] + 1
x[n + 1] = x[n] + y[n]5 =⇒

{
y[n] =

Gosper
y[0] + n

x[n] =
Gosper

x[0] − 1
12n2 + 5

12n4 − 1
2n5 + 1

6n6

where y[0], x[0] denote the initial values of y, x before the loop.

Steps 2, 3: z0 = n, A = 〈z0 − n〉.
Steps 4,5: The Gröbner basis computation with z0 � x � y yields:

G = 〈12 x + y2 − 5 y4 + 6 y5 − 2 y6 − 12 x[0] − y[0]2 + 5 y[0]4 − 6 y[0]5 + 2 y[0]6〉,
that is

G = 〈12x + y2 − 5y4 + 6y5 − 2y6〉,
by initial value substitutions.

We thus derived the polynomial loop invariant

12x + y2 − 5y4 + 6y5 − 2y6 = 0,

from which any other polynomial invariant can be inferred.

Note that the closed form solution of loop variables is the strongest invariant that can be
obtained, other properties can be derived from it. However, the strongest invariant con-
tains non-polynomial expressions and the quantifier over the loop counter. Therefore,
although all other invariants do logically follow from the strongest one, they cannot be
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derived from it in a constructive sense, for example, by a theorem prover. To obtain a
tractable class of invariants, that is polynomial ones, from the strongest invariant we
apply techniques from algorithmic combinatorics and polynomial algebra, as presented
above. In fact, additional polynomial dependencies among loop variables stem from the
desire of obtaining the strongest polynomial invariant.

4 P-Solvable Loop Properties and Examples

In this section interesting properties of P-solvable loops will be presented, justified by
motivating examples. Algorithm 3.1 can be applied only for P-solvable loops. (i) The
solvability of the recurrence equations of loop variables yielding a polynomial closed
form system in n, and (ii) the existence of polynomial relations among the exponential
sequences in n are crucial requirements of our approach to invariant generation. Without
fulfilling these conditions, Algorithm 3.1 fails in generating polynomial invariants.

In what follows, we relax condition (ii) and prove that such loops do not have poly-
nomial invariants. In other words, we prove that the “failure” of our method is actually
a “correct” behavior due to the non-existence of valid polynomial relations among the
loop variables.

THEOREM 4.1. Given an imperative loop with assignment statements only.
If the closed form system of the recursively changed loop variables {x1, . . . , xm} is as
in step 1 of Algorithm 3.1, with the property that there are no algebraic dependencies
among the exponential sequences θn

i , then the loop has no polynomial invariant.

Proof. Consider a loop with closed form system as in step 1 of Algorithm 3.1, with the
property that there are no algebraic dependencies among θn

1 , . . . , θn
s . Using notation

from Algorithm 3.1, we thus have A = ∅.
Let’s assume there is a polynomial relation g ∈ K[X ] among x1, . . . , xm such that

g = 0 is a polynomial invariant, i.e. it is valid at any loop iteration n. Using the closed
form solutions of X , we derive that g ∈ A whenever evaluated at (x1, . . . , xm) =
(q1, . . . , qm), contradicting the assumption that A = ∅.

EXAMPLE 4.2. Consider the loop While[. . . , x := 4x; y = 3y]. The recurrence equa-
tions of the loop are C-finite, thus solvable, and their closed form solutions involve the
exponential sequence 3n and 4n. As mentioned on page 353, there are no algebraic de-
pendencies among these sequences. Hence, by Theorem 4.1, the loop has no polynomial
invariant.

In the process of automatically inferring polynomial invariants for P-solvable loops,
techniques from symbolic summations are involved. Hence, Algorithm 3.1 can be ap-
plied on a rich class of practical imperative loops with assignments, implementing non-
trivial algorithms working on numbers. From these assignments, the values of variables
are expressed in terms of their previously computed values, and the loop is thus modeled
by means of recurrence equations.

Moreover, using recurrence equations of order greater or equal to 2, we are able to
handle imperative loops where auxiliary variables are used in order to refer to values of
variables computed at finitely many loop iterations before (the number of previous loop
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iterations is given by the order of the recurrence). Such a loop behavior is presented
below.

PROPOSITION 4.3. Given the P-solvable loop:

While[. . . , t := r; r := b ∗ r + a ∗ q; q := t; x := a ∗ x],

where t, r, q, x are loop variables and a, b ∈ K are constants.
Then there is always a polynomial invariant p ∈ K[r, q, x] among r, q and x.

Proof. Denoting by n ≥ 0 the loop counter, the given imperative loop can be expressed
in terms of C-finite recurrence equations as follows.

⎧
⎨

⎩

r[n + 2] = b ∗ r[n + 1] + a ∗ r[n]
q[n + 2] = r[n + 1]
x[n + 2] = a ∗ x[n + 1].

(1)

The recurrence of r is of order 2. Therefore, in its closed form computation two initial
values of r are needed (that are the initial values of r and q before entering the loop).
Thus, the one-to-one correspondence between the loop counter and the recurrence index
does not hold anymore, but, denoting by j the recurrence index, we have j = n + 1,
where j ≥ 1 and n ≥ 0.

Solving (1) reduces to solving C-finite recurrences, and thus can always be solved.
The derived closed forms are linear combinations of polynomials in j and algebraic
exponential sequences, whose algebraic dependencies are obtained using the method
discussed on page 353. Hence, (1) is P-solvable. Applying Algorithm 3.1, the polyno-
mial invariant among the loop variables r, q, x is:

−a2 x2 q[0]4 − 2 a b x2 q[0]3 r[0] + 2 a x2 q[0]2 r[0]2 − b2 x2 q[0]2 r[0]2 +
2 b x2 q[0] r[0]3 − x2 r[0]4 + a2 q4 x[0]2 + 2 a b q3 r x[0]2 − 2 a q2 r2 x[0]2 +
b2 q2 r2 x[0]2 − 2 b q r3 x[0]2 + r4 x[0]2 = 0.

Note that computing the above invariant requires computation of algebraic dependen-
cies among arbitrary algebraic sequences, and thus not just rationals. Hence, [20] would
fail in generating polynomial relations as invariants. Moreover, [14,21] would need to
guess first the degree of the polynomial, i.e. in this case 4, and then, fixing to 4 the de-
gree of the generic polynomial invariant, a large number of constraints on the unknown
coefficients of the polynomial would be generated. Proposition 4.3 highlights thus one
of the advantages of combining algorithmic combinatorics and polynomial algebra for
inferring invariant properties.

By substituting concrete values for the symbolic constants a and b, (1) generates a
rich class of interesting examples. For example, taking a = b = 1 (and simplifying the
loop body), we derive polynomial invariants for a loop implementing the computation
of Fibonacci numbers, as presented below.

EXAMPLE 4.4. Fibonacci Numbers [7,12].
Given the program fragment:

r := 1; q := 0; While[. . . , t := r; r := r + q; q := t].
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By applying Algorithm 3.1 and using Aligator, we obtain the polynomial invariant

q4+2q3 r−q2 r2−2q r3+r4−q[0]4−2q[0]3 r[0]+q[0]2 r[0]2+2q[0] r[0]3−r[0]4 = 0,

that is −1 + q4 + 2 q3r − q2r2 − 2 q r3 + r4 = 0, by initial values substitutions.

Similarly to Proposition 4.3, using recurrences of order 1, 2, 3, . . . , our work thus offers
an algorithmic approach for inferring polynomial invariants of programs computing
other special numbers, e.g. the Tribonacci numbers.

EXAMPLE 4.5. Tribonacci numbers [22,12].
Given the program fragment:

r := 1; a := 1; b := 0; While[. . . , s := t; t := r; r := r + a + b; a := t; b := s ].

By applying Algorithm 3.1 and using Aligator, we obtain the polynomial invariant

2a3 + 2a2b + 2ab2 + b3 − 2abr + b2r − 2ar2 − br2 + r3 − 2a[0]3 − 2a[0]2b[0] −
2a[0]b[0]2 − b[0]3 + 2a[0]b[0]r[0] − b[0]2r[0] + 2a[0]r[0]2 + b[0]r[0]2 − r[0]3 = 0,

that is −1 + 2a3 + 2a2b + 2ab2 + b3 − 2abr + b2r − 2ar2 − br2 + r3 = 0, by initial
values substitutions.

We finally focus our attention on a special class of loops, called the affine loops, defined
as below.

DEFINITION 4.6. An imperative loop with only affine assignments is an affine loop.
Considering n ≥ 0 as the loop counter, the variables X of an affine loop satisfy the
matrix equation

X [n + 1] = A ∗ X [n] + B, (2)

with the matrix A ∈ K
m×m and the (column) vector B ∈ K

m.

In what follows, whenever we refer to an affine loop, we have in my mind an affine loop
with ignored test condition.

Conform Section 3, affine assignments of variables define C-finite recurrences.
Hence, any closed form solution of a loop variable defined by an affine relation among
the loop variables is a linear combination of polynomials and algebraically related ex-
ponentials in the summation variable n. For such cases the P-solvable loop properties
are thus fulfilled. We have the following theorem.

THEOREM 4.7. Affine loops are P-solvable. The polynomial invariant ideal for an
affine loop is algorithmically computable by Algorithm 3.1.

Unlike [14,21], in the process of inferring automatically a basis for the polynomial
invariant ideal of an affine loop, our method does not need to fix a priori the degree
of sought polynomials. Moreover, due to powerful techniques from algorithmic com-
binatorics (C-finite solving and computing algebraic dependencies of exponential se-
quences), unlike [20] where the affine assignments have to be with positive rational
eigenvalues, we do not impose any restriction on the shape of affine assignments. Based
on Theorem 4.7, many interesting properties of affine loops can be thus automatically
derived by symbolic summation algorithms.
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EXAMPLE 4.8. Consider the affine loop given below, implementing an algorithm for
computing the cubic root r for a given integer number a [11,20].

x := a; r := 1; s := 13/4;
While[x − s > 0, x := x − s; s := s + 6 ∗ r + 3; r := r + 1].

By applying Algorithm 3.1 and using Aligator, we obtain the polynomial invariant

−3r2 + s + 3r[0]2 − s[0] = 0 ∧
r − 3r2 + 2r3 + 2x − r[0] + 3r[0]2 − 6rr[0]2 + 4r[0]3 + 2rs[0] − 2r[0]s[0] − 2x[0] = 0,

yielding

−1 − 12r2 + 4s = 0 ∧ −1 − 4a + 3r − 6r2 + 4r3 + 4x = 0,

by initial values substitutions.

5 Conclusions

In this paper, we present interesting properties of P-solvable loops with assignments
only. These properties involve algebraic reasoning for automatically inferring polyno-
mial invariants. Our approach is implemented in a new software package Aligator,
in top of the computer algebra system Mathematica.

Our experiments show that many non-trivial algorithms working on numbers can
be implemented using P-solvable loops. A collection of examples successfully worked
out using the framework is presented in [12], some of them are given in this paper.
For all these examples a basis of the polynomial invariant ideal has been automatically
derived. The generated polynomial invariants, together with additional non-polynomial
properties asserted by the user, can be subsequently used for verifying properties of
programs.

Acknowledgements. The author wishes to thank Tudor Jebelean, Andrei Voronkov,
Deepak Kapur and Manuel Kauers for their help and comments.
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Abstract. A method for translation from SDL into Coloured Petri Nets (CPN) 
is presented. A tool STSV (SDL Telecommunications Systems Verifier) 
including a translator from SDL into CPN, a verifier of the net models and 
using CPN Tools [16] for simulation of CPN is described. For verification, the 
tool STSV uses a model-checking method. As case studies, we apply the tool 
STSV to RE-protocol [3], ATMR-protocol [8] and to detection of features 
interaction in telephone networks. 

1   Introduction 

The analysis, validation and verification of telecommunications systems are a 
challenge for computer science. In spite of considerable progress in theoretical 
research, obtained results find a limited use in modern practice. The formal 
description technique SDL accepted as an international standard [17] is widely used 
to represent telecommunications systems. Therefore, development of methods and 
tools for analysis and verification of SDL specified telecommunications systems is an 
important problem. It should be noted that high expressive power of SDL increases 
difficulties in verification of telecommunications systems. 

A natural approach to overcome the problem is to use the models like finite state 
machines, Petri nets or their generalizations. Coloured Petri Nets (CPN) [9] should be 
distinguished among them because they have significant expressive power, a wide 
application, and simulation and analysis tools available [12, 16]. 

However, constructing the models of telecommunications systems manually is 
unreliable. Therefore, the problem of automatic construction of the net models arises 
for SDL specifications. A method for translation from SDL into high level Petri nets 
called hierarchical timed typed nets has been presented in [14]. Translation from SDL 
into so-called SDL time nets which extend conventional Petri nets by time intervals 
and guards for transitions has been described in [4]. Translation from SDL into high 
level Petri nets called M-nets has been described in [5]. A method for translation from 
an SDL dialect called TNSDL and from the standard SDL into high level Petri nets 
similar to Predicate / Transition nets has been described in [7] and [1], respectively. 
The problem of translation from SDL into CPN was mentioned in [9] (vol.3) as an 
open problem. 
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Different tools have been implemented for the analysis, simulation and verification 
of these net models. Such tools as SITE [4], PEP [6], Emma [7], Maria [1], 
Design/CPN [12], CPN Tools [16] and SPV [14] should be mentioned. A model-
checking method is used by the tools SPV, PEP, Emma and Maria for verification of 
the net models. 

The purpose of the paper is to describe a method for translation from SDL into 
CPN, a tool STSV (SDL Telecommunications Systems Verifier) and its application to 
modeling and verification of telecommunications systems. The paper consists of 5 
sections. The translation method is described in Section 2. The tool STSV is presented 
in Section 3. Application of the tool STSV to RE-protocol [3] and ATMR protocol [8] 
as well as to detection of features interaction in telephone networks [10] is outlined in 
Section 4. Results and perspectives of our approach are discussed in Section 5. 

This work is partly supported by Russian Foundation for Basic Research under 
grant 07-07-00173. 

2   Translation of SDL Specifications into Coloured Petri Nets   

A nonhierarchical CPN consists of three parts: a net structure, declarations and a net 
marking. A hierarchical coloured net is a composition of a number of nonhierarchical 
nets called pages. Pages can contain a special kind of transitions called modules. 
Modules are connected with places on a page in the same way as transitions. A 
module is a subnet placed on a separate page. The behavior of a hierarchical net is 
equivalent to the behavior of a nonhierarchical net in which each module is replaced 
by the corresponding subnet. Connections within nonhierarchical nets are those that 
obtained by substitution of transitions in hierarchical nets: each prototype is glued 
with all its copy-places. 

Translation of a SDL specification to a CPN is made by stepwise refinement. 
Details of our translation method can be found in [2]. At the first step, we build a 
CPN which represents the general structure of the SDL specification. This net is 
placed at the first page and contains one module for each block.  

At the second step, each module is replaced by a subnet which represents a block 
substructure and it is placed on a separate page. The subnet can also contain other 
modules. At the next steps, processes and transitions of the SDL system are translated 
into modules or CPN transitions (N-transitions).  

Modeling is based on the fact that each unit has its fixed place in a hierarchical 
structure of units defining the system at different levels. The process definition 
describes an arbitrary set of the process instances. SDL provides a static 
communication interface for SDL processes. A system is modeled by a net, and the 
process instances are modeled by tokens. 

Different instances of one process will be modeled by one subnet constructed 
according to the description of this process but by different tokens in the places of the 
net. Tokens in all places, except otherwise specified, will be marked by PId value 
(process identifier) of the process instances. All tokens relating to a process instance 
are marked by the same PId value.  

Declarations of the user data types and signals are translated to the sets of colours. 
The net declarations should contain the sets of colours which represent data types: 
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integer, boolean and real. SDL uses the sorts which are generated using patterns and 
sorts defined before. For example, such a sort is an array represented in the net by a 
list. To represent a queue of signals, a set of colours list is also used. The type record 
is represented in the net by colour sets formed with the constructor product or record. 

Generation of top-level nets. One module corresponds to a block definition in the 
net. Channels which connected blocks to the system boundary are represented by 
places connected by arcs with the modules. A one-direction channel becomes   one 
place, and a bi-direction channel becomes two places, where one of them is the entry 
place, another is the exit place of the block.  

Net transition guards are not defined at this step, because modules corresponding 
to the blocks will be replaced by subnets during further construction. 

The service place NewPId is created for the PId value generation. This place contains 
one token. The initial marking is one token with the value n+1, where n is the number 
of instances created at the system initiation. The place NewPId is the input and output 
place for each transition which models the block containing the CREATE construction. 

During translation of each construction OUTPUT, potential receiver processes are 
defined. A service place InstPIds is created which contains one token for each 
process. Initially each token carries the value which consists of the process PId and a 
list of identifiers of the process instances.   

As a result of translation of OUTPUT, at the top page the places are created which 
model the queues of signals coming into processes inside the blocks.  

 

[packet] 

[packet] 

signal data(Integer), 
control(CommandType), 
conf(Integer), packet(PId, 
Integer); 

 

System S 
 

Router
[conf,
data] 

Users 

CInt
COut1 

COut2 

[data, 
control] 

 

Fig. 1. The system S 

A net for the system S given on Fig.1 is shown on Fig.2. The net declarations are 
omitted to avoid overloading of the figure. For clarity, the names of the blocks and 
channels are used in the paper as the transition and place names. The system S contains 
three channel definitions and two block definitions. The net contains the modules User 
and Router and seven places. For example, the places COut1_1 and COut1_2 model the 
bi-direction channel COut1. The places MQueue and UQueue are created after 
translation of the OUTPUT construction, the places Mqueue and UQueue model the 
ports of the process which are inside the Users and Router blocks, correspondingly. 
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Router Users 

COut1_1 

COut1_2 

COut2 

MQueue

InstPIdsNewPId

UQueue

 

Fig. 2. The net for the system S 

Only one token corresponds to a queue, so any place representing the queue is 
input and output for the net transition which operates the queue. Signal transmitting 
directions are shown on Fig. 2 by dotted lines which do not belong to the net.  

Further, in the net construction, the net declarations are supplemented with 
variables included in arc expressions and guards of the transitions and, sometimes, 
with new sets of colours provided that the block and process definitions contain their 
own definitions of sorts, signals and lists of signals. 

Block and Process modeling. A subnet for a block is created similar to the top-level 
net. The subnet contains one module for each new block, one or two places 
(depending on whether the channel is one- or bi-directional) for each new channel.  

On the lower hierarchical level, a block definition contains at least one process 
definition. Each block definition which contains the processes is translated into CPN 
similar to the block substructure. One module is set according to each process 
definition.  

At the next step, each module is replaced by a subnet which represents the inner 
structure of the process definition and is placed on a separate page. The subnet 
contains one module for each SDL-transition of the process. All data types defined in 
the process, as well as a set of states, signal definitions and signal list definitions, are 
transformed to sets of colours. The subnet contains one place for each variable 
(including arrays).  

The set of colours assigned to the place modeling the variable is a record, where 
the second field is a set of colours obtaned after mapping the descriptions of the 
variable. The value of the first field of the token at the place-variable is the PID value 
of the process instance.  

The subnet contains the service places Queue and State. The place State is the 
input and output place of each module modeling the SDL-transition. The value of the 
second field is defined by the states of this instance.  The service place Queue models 
the input ports of all instances of the same process and contains the tokens of the type 
list. This place is an input and output place for each transition corresponding to the 
SDL-transition, except for transitions of the construction of a continuous signal. 

At this step the service transitions Link are created. They permit us to connect the 
places corresponding to the input channels with the places which model ports of the 
processes. The service transition Delete is created to model removing of a signal from 



364 V. Nepomniaschy et al. 

the process port in the case when the process instance being in a certain state does not 
interpret the signal which comes first in the signal queue.  

In all process instances, three values may be used: sender, parent, offspring. So, a 
subnet modeling the process definition has service places with the same names. At the 
service place, tokens are also marked by the PId value. 

In the net corresponding to the process whose instance is created at the 
initialization of the system, as many tokens appear at each service place as the number 
of instances created. 

Initially all places in the net modeling the process whose instances are dynamically 
created have no tokens. Thus, only that "net pattern" will be created, where tokens 
appear after firing of the transition, modeling the CREATE statement in the net 
corresponding to the process parent. 

Let us consider the generation of offspring processes. The place Create_id, where 
id is the process name, is created. This place is an input for the module representing 
the process offspring and an output for the module representing the process parent.  

A service transition Create is build in the net representing a process whose 
instances are dynamically created. Each service place and the places modeling the 
parameters, timers and variables are output places for it. At the transition Create 
firing, each output place gets one token. All tokens are marked by the PId value of the 
creating instance. 

The procedure definition is translated into the net in the same way as a process 
definition. 

Transition modeling. Each module corresponding to an SDL-transition is replaced 
by the net allocated on the page associated with this module. This step is the last step 
of the translation, if the SDL-transition can be modeled by one N-transition. In this 
case the guard and the expressions on the surrounding arcs are defined. These SDL-
transitions are called simple transitions, and others are called complex.  

The guards are defined by signals and states indicated after the keywords INPUT 
and STATE, respectively, in the SDL-transition. Each input arc has an arc expression. 
The first variable in the arc expression is the same as in expressions of other input 
arcs of this transition, except for the arcs connected to the places. Since all entrances 
of a variable into the guard and arc expressions are replaced with the same value, 
tokens belonging to one process instance are bound at firing the transitions. The 
statement NEXTSTATE and the statements of the SDL-transition define the arc 
expressions. 

The copies of all places which are connected with the module are presented at this 
page. The input/output arcs repeat connection of the prototype places with the 
module. 

A global state of a process instance is defined by its state, by a queue of signals in 
its port and by the values of all its variables. The global state is modeled by the net 
marking. Firing of a net transition that models a simple SDL-transition is possible on 
some marking if and only if this SDL-transition can be executed in the corresponding 
global state. The definition of coloured nets ensures that the execution of a simple 
SDL-transition and firing of the corresponding net transition result in an equivalent 
change of the global state of the process instance and the net marking, respectively. 

Let us consider the SDL transition of the process PSender (Fig. 3).  
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process  PSender(1,1); 

   … 
state prior_send; 
input switch_norm; 
nextstate norm_send; 
       … 
endprocess Sender; 

 
Fig. 3. The process 
PSender 

SQueue

prior_ send_switch_norm

State sender End

(pid,  e)
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(pid, 0)
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Q 1

(pid, S_lq)

(pid,{ send=sendpi d, sigm=switch_norm } :: S_lq)

 

Fig. 4. The net modeling the SDL transition 
 

 
The process has one instance. Let us suppose that this instance is modeled by 

tokens marked by the PId value pid. The SDL-transition in the net (see Fig. 4) is 
presented by one N-transition. 

The complex SDL-transition is divided into fragments. Each fragment is translated 
separately and is represented by a subnet. The subnets are connected consequently by 
means of the connective places Connect. Two service transitions begin and end restrict 
the chain of subnets representing the body of a complex SDL transition. Then we can 
speak about the first and last transitions of the net modeling the SDL-transition.  

The execution of a complex SDL-transition is modeled by consequent firing of all 
net transitions from begin to end. The place State is the input place of the transition 
begin and the output place of the transition end. Thus, the atomicity of execution of 
the SDL-transition is guaranteed. 

The action CREATE is represented in the net by transitions Generate, GenerateNul 
and Create. The transitions Generate и GenerateNul belong to the subnet 
corresponding to the parent process. Firing of the transition Create models the 
creation of the process instance. The transition GenerateNul fires when the maximum 
allowable number of instances of the process are generated.  

Destruction of the process instance is performed by removing the tokens which 
model it. 

Modeling of the construction SET. Let us consider an SDL-transition which 
contains the construction SET(N, t). The modeling net is shown on Fig. 5. For 
mapping the timer t in the net, the place T has been created. If instances of the process 
are created at the initiation time of the SDL system, this place contains tokens with 
the value (pid,-1), where pid is a PId value of the process instance. The token (pid,-1) 
means that the timer of this process is inactive. The token (pid, 0) means that a signal 
from the timer is in the queue of this process instance. A token of any other colour 
means that the timer is set, but its value is greater than the current time in the model.  
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Set 
Connect 

integer 

 

    SaveQTmp 
S_Queue_type 

1`(3,[]) 

pid 

    Queue 
S_Queue_type 

1`(3,[]) 

(pid,DelQSig_S_T(S_lq)) (pid, S_lq) 

T 
                 pair 

1`(3,~1) 

Connect 
integer 

 

pid 

(pid, S_lq2) 

(pid,DelQSig_S_T(S_lq2)) 

(pid, timerval) @+9999 (pid, 1) @+ 5 

 
Fig. 5. A net for the statement SET 

The N-transition Send models the firing of the timer in SDL. This transition can 
fire if the value of  the token is (pid, 1) and the time stamp of  the token is equal to the 
current model time. 

Consumption of a signal from a timer by a simple SDL-transition is modeled by 
firing of a corresponding N-transition. This transition removes the first record 
corresponding to a signal of the timer from the process queue. After that, the timer of 
this process becomes inactive. Consumption of  a signal from the timer by a complex 
SDL-transition is modeled by firing of the transition begin in the subnet 
corresponding to this SDL-transition.  

A new setting of the timer should cancel the previous setting. Two variants are 
possible in this case, depending on whether a signal from the timer was sent to the 
queue of the process instance at the previous setting, i.e., whether the current time of 
the system reached the value set by the previous timer setting. If a signal from the 
timer has not been sent to the queue yet, then a new setting of the timer should change 
the previous timer value, otherwise a signal from the previous timer setting should be 
deleted from the queue of signals of this process instance. For this purpose a special 
function is created. 

Modeling of the statement RESET is made in a similar way. 

Optimization and net size bound. As a result of the translation, the number of pages, 
as well as the sets of objects which are placed on each page, are defined. Then the net 
optimization is made for each page. Using some patterns, the constructions which can 
be substituted by more simple ones are defined. Coordinates are assigned to the page 
objects. The page objects are placed into several columns so that the overwhelming 
majority of the arcs connect the objects of the neighbor columns. 

In order not to take into account modules and copy-places, we consider a bound of 
an equivalent nonhierarchical net. The net size linearly depends on the number of 
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statements, variables, SDL transitions, channels and processes. However, the net 
bound becomes quadratic with respect to n for each OUTPUT, where п is the number 
of the processes which can receive a signal from this OUTPUT. 

3   Software Environment 

STSV is a complex solution for modeling and verification of telecommunications 
systems specified in SDL or using Colored Petri Nets (CPN). This solution consists of 
the following modules: 

SDL -> CPN translator. Given a SDL specification, this translator builds a 
corresponding CPN model. 

Simulator. For simulation of CPNs we use CPN Tools. 

Reachability graphs builder. CPN Tools builds reachability graphs in its internal 
format. We use our reachability graphs builder to transform it to our format and to 
build full description of each vertex, which represents the state of the modeled 
system. 

Predicates builder. Given a reachability graph with full description and a file with 
description of properties, this module identifies “predicates” – sets of graph vertices 
where each property holds. 

Model checker. It takes 3 files as an input: a model (reachability graph), a             
mu-formula  and a predicate description. The predicate description is required 
because usually mu-formulas depend on predicates. Details of the model checker can 
be found in [11]. 

4   Case Studies  

Ring Protocols. The first two systems we verified were ring network protocols: RE-
protocol and ATMR-protocol. Their SDL specifications were translated to CPN, then 
the reachability graphs were built and model checking was performed. 

The first case study was held for RE-protocol. In this protocol each station sends a 
frame fulfilled with data to its downstream neighbor. The frame has two special 
service bits – R and E – which are used to control the correctness of network 
functioning. This control is performed by a special kind of a station in the ring – a 
monitor. According to values of R and E bits the monitor decides which action to 
perform – reinitialize the ring or do nothing. 

The RE-protocol was studied for cases of reliable and unreliable medium with up 
to 3 stations and a monitor. It was checked to be satisfying the following properties: 

1. Presence of deadlocks. This property can be identified at the stage of reachability 
graph construction or with mu-formula ¬<to>true, where true corresponds to all 
states in the model. RE-protocol in cases studied has no deadlocks. 

2. Safety. This property can be described with mu-formula µX.(<to>(received ∨ X)), 
and it holds in systems where it is possible to receive all sent messages. The 
predicate received corresponds to states in the model where a message is received. 
This property holds for RE-protocol in all cases studied. 
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3. Extended safety. Described with formula sent → µX.(received ∨ [to] X), this 
property means “all sent messages are received”. The predicate sent corresponds 
to states in the model where a message is sent. This property holds only for cases 
with reliable medium. 

4. Repeating messages. We found that if the medium is unreliable, the message sent 
by one station to another may eventually come more than one time to its recipient. 
This property can be described with the following mu-formula: 
received ∧ <to>(µX.(received ∨ ( ¬ sent ∧ <to>X))). Our verification experiment 
confirmed that in case of unreliable medium the repetition of messages appears. 
This is not happening for models with reliable medium. 

The second protocol to verify was ATMR-protocol. It is also a ring protocol and 
it’s similar to RE-protocol in its basics, however there’s no special station to control 
the correctness of network functioning. The ATMR-protocol is a high-speed protocol 
and it has no unreliable medium handler, it is supposed that high-level protocols 
should take care of re-sending messages. That’s why we studied ATMR-protocol for 
cases with reliable medium only. The example ring-networks had 3 stations. We 
checked the same properties as for the RE-protocol. ATMR protocol appeared to have 
no deadlocks, satisfy safety and extended safety and have no repeating messages. And 
that was quite expected, since the medium was reliable. 

Such experiments were fulfilled with these protocols using the tool SPV and HTT-
nets  [14]. As for model size and performance, we achieved better results with CPN 
comparing to HTT-nets. In most cases, nets and reachability graphs were smaller for 
CPNs comparing to corresponding HTT-nets.  

Feature Interaction Problem in Telephone Networks. The next case study was the 
feature interaction problem (FIP) in telephone networks. Our approach to modeling 
was building CPN directly using the CPN Tools.  

The modeling of telephone networks always begins with modeling of Basic Call 
State Model (BCSM). It is a set of basic rules which work in every telephone network 
and allow subscribers to call each other. For example: “if an idle subscriber off-hooks, 
he will receive the dial tone”. 

We built the CPN for BCSM using the following basic principles: 

1) For each state of a subscriber we created a place with integer color. So, each 
integer token represents a subscriber. For example, marking {1’1, 1’2} in 
IDLE place means that subscribers 1 and 2 are idle. 

2) For each possible subscriber action in each place we create appropriate 
transitions. For example, we create an unconditional transition from IDLE to 
DIALTONE. This is for the situation when idle subscriber off-hooks and 
receives the dial tone. 

We built this CPN in all-in-one style, when the subscriber logic and the telephone 
station logic are united. 

After we had built the CPN for the Basic Call State Model, we added several 
features to it: 

• Call Waiting (CW). Suppose the subscriber A has this feature enabled. If he 
is in a call with the subscriber B, and the subscriber C calls him, he will be 
able to see this incoming call and answer it. 
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• Call Forwarding when Busy (CFB). Suppose the subscriber A has this 
feature enabled, and the forwarding phone number is D. If he is in a call with 
the subscriber B, and the subscriber C calls him, the incoming call will be 
forwarded to D. 

• Denied Termination (DT). All incoming calls for subscribers of this feature 
will be denied – a caller will receive the busy tone. 

• Direct Connect (DC). If the subscriber A has this feature enabled and it 
points to the phone number B, then each time A off-hooks, he’ll be instantly 
connected to B. 

• Emergency Call (EMG). This feature is used for emergency calls in 
organizations like police. Suppose the subscriber A is police with EMG 
enabled. When B is talking to A and drops the call (on-hooks), the call won’t 
actually be dropped. Instead, it will be put on hold until B off-hooks again. 

We added these features by appending new conditions to transitions, new 
transitions and places. 

We built several models with different combinations of these features. The 
properties we studied were: 

1. Presence of deadlocks. This is the same property as we checked for the ring 
protocols. 

2. Presence of loops. The presence of loops which don’t go through initial state. 
Since none of the models had deadlocks, we could identify the presence of 
such loops by checking the formula µX.(<to>(begin ∨ X)), where begin is a 
predicate which is true in initial state. 

3. Non-determinism. The presence of two conflicting transition in the CPN 
model, which correspond to two features. The formulae for this property are 
feature-dependent. In general, it can be easily created from the following 
statement: “the non-determinism occurs when in some state both features A 
and B can trigger, and in the next state feature A is triggered, while B 
becomes disabled”. 

4. Conditions violation. In the set of features we studied only DT has a 
condition: “No one can call the subscriber of DT feature”. This property 
doesn’t require model checking to be discovered. It is easily described in 
terms of CPN and is identified with the predicate builder. 

The results of our studies are given in the following table: 
 

Features Dead-
locks 

Loops Non-
determinism 

Conditions 
violation 

CW + CFB false false true false 
CW + DT false false true true 
CFB + DT false false true true 

CFB + CFB false true false false 
DC + DT false false false true 

EMG + EMG false true false false 
CW+CFB+DT false false true true 
CW+DC+DT false false true true 
All Features false true true true 
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5   Conclusion 

To the best of our knowledge, our translation method is the first one that gives a 
solution the open problem of translation of SDL specifications into CPN. 

Our approach has the following advantages: 

- The translation method covers all basic SDL constructs including ones which are 
difficult for translation such as dynamic ones, procedures, constructs for mapping 
signal routes onto channels. 
- An efficiency of the translation method is confirmed by linear bounds of the size of 
resulted nets in many cases.  
- The tool STSV based on the translation method allows us to perform simulation, 
analysis and verification of SDL specified telecommunications systems using both 
STSV means and the power of CPN Tools.  
- The tool STSV extends CPN Tools by our  model checker [11]. 

Experiments with RE-protocol and ATMR-protocol have been successfully 
performed. The ineffectiveness of RE-protocol has been proven using the model 
checking method. Also a modified effective version of the protocol has been verified. 

Another application of our approach was features interaction detection in telephone 
networks. We used CPN Tools to build CPN models for telephone networks with 
features and STSV tool to detect features interaction in these models. In difference to 
the paper [13], where CPN models are used, we applied the automated model 
checking method to features interaction detection.  

It is supposed to apply the tool STSV to verification of different communication 
protocols and telecommunication systems with additional features.  
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Abstract. Our weakly random additive preconditioners facilitate the
solution of linear systems of equations and other fundamental matrix
computations. Compared to the popular SVD-based multiplicative pre-
conditioners, these preconditioners are generated more readily and for
a much wider class of input matrices. Furthermore they better preserve
matrix structure and sparseness and have a wider range of applications,
in particular to linear systems with rectangular coefficient matrices. We
study the generation of such preconditioners and their impact on con-
ditioning of the input matrix. Our analysis and experiments show the
power of our approach even where we use very weak randomization and
choose sparse and/or structured preconditioners.
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1 Introduction

1.1 Background: Multiplicative Preconditioning

Originally, preconditioning of a linear systems of equations Ay = b meant the
transition to an equivalent but better conditioned linear systems MAy = Mb,
ANx = b, or more generally MANx = Mb for y = Nx and readily computable
nonsingular matrices M and/or N , called preconditioners (see [1]–[3] and the
bibliography therein). Such systems can be solved faster and/or more accurately.
Generally, however, Gaussian elimination is less costly than computing desired
multiplicative preconditioners M and N , and so preconditioning only florishes
for large but special classes of matrices A.
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1.2 Additive Preprocessing

As an alternative or complementary tool, we propose weakly random additive
preprocessing A ← C = A + P , i.e., we add a matrix P (a preconditioner,
having a smaller rank and/or structured) to the input matrix A to obtain its
additive modification C with a smaller condition number. Hereafter we use the
abbreviations “A-” for “additive”, “APPs” for A-preprocessors, “AC” for “A-
complements”, and “APCs” for “A-preconditioners”. ACs (resp. APCs) are the
APPs P such that the input matrix A is rank deficient (resp. ill conditioned),
whereas the matrix C = A + P is not.

For ill conditioned matrices A with at most r small singular values, we arrive
at well conditioned matrices C quite regularly provided P is a random matrix of a
rank of at least r and the ratio ||A||/||P || is neither large nor small. The concepts
“large”, “small”, “well” and “ill” are commonly quantified in the context of the
computational tasks and computer environment. In our presentation we assume
the customary IEEE model of numerical computing.

The cited power of random APPs actually holds for very weakly random APPs
P , e.g., APPs whose randomization is restricted by specified patterns of structure
and sparseness. Random multiplicative preconditioning does not work because
random matrices tend to be well conditioned and because condA ≤ ∏

i cond Fi

if A =
∏

i Fi.
To sum up, our APCs are generated more readily and for a much larger

class of matrices than multiplicative preconditioners. Furthermore they better
preserve matrix structure and sparseness and have a wider range of applications.
In particular they remain effective for rectangular and rank deficient matrices A.

In this paper we generate ACs and APCs and study their impact on con-
ditioning. Further material, including the results of our extensive tests and
acknowledgements, can be found in [4]. The paper [5], the references therein,
and a number of Tech. Reports by the first author with coauthors cover ef-
fective applications of such APCs to the solution of singular and nonsingular
linear systems of equations, eigen-solving, and the computation of determi-
nants. See Tech. Reports in the Ph.D. (Doctoral) Program in Computer Science
of the Graduate Center of the City University of New York in 2005–2008 at
http://www.cs.gc.cuny.edu/tr/files/TR-200xxxx.pdf

1.3 Organization of Our Paper

We organize our paper as follows. We begin with the definitions in the next
section. We generate random AC and APCs in Section 3 and sparse and struc-
tured APCs in Section 5. We study conditioning of A-modifications of an input
matrix A theoretically in Section 4 and experimentally in [4]. In Section 6 we
sketch a further extension of our approach with application to the solution of
linear systems of equations. Our numerical tests have been designed by the first
author and performed by his coauthors. Otherwise this work with all typos and
other errors is due to the first author.

http://www.cs.gc.cuny.edu/tr/files/TR-200xxxx.pdf
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2 Basic Definitions

Most of our basic definitions reproduce or slightly modify the customary defi-
nitions in [6], [7] for matrix computations, in particular, for Hermitian, unitary
(orthogonal), singular, full-rank and rank deficient matrices, the k × k identity
matrices Ik, k × l matrices 0k,l filled with zeros, the transpose AT and the Her-
mitian transpose AH of an m × n matrix A, its rank ρ = rankA, singular values
σj(A), j = 1, . . . , ρ, in nonincreasing order, 2-norm ||A|| = σ1(A), and the
condition number condA, its Moore-Penrose generalized inverse A+ (also called
pseudo inverse and equal to the inverse A−1 for nonsingular matrices A), left
nullity lnulA = m − ρ, right nullity rnulA = n − ρ, and nullity nulA = l − ρ
for l = min{m, n}. A matrix A is normalized if ||A|| = 1. We write n � d
where the ratio n/d is large. We say that r = nnulA is the numerical nullity and
l−r = nrankA is the numerical rank of the matrix A if the ratio σ1(A)/σl−h(A) is
not large, whereas σ1(A) � σl−h+1(A), that is if the matrix has exactly r singu-
lar values that are small relative to ||A|| = σ1(A). (B1, . . . , Bk) and diag(Bi)k

i=1
denote the 1 × k block matrix with the blocks B1, . . . , Bk and k × k block diag-
onal matrix with the diagonal blocks B1, . . . , Bk, respectively. We write Q(M)
for the Q-factor of the size m × n in the thin QR factorization of an m × n
matrix M of the full rank where the R-factor has positive diagonal entries. We
represent an m × n APPs P of a rank r by a pair of generators U of size m × r
and V of size n × r such that P = UV H . C is the field of complex numbers.

3 Generation of ACs and APCs

3.1 The Basic Theorem for ACs

Suppose A, C ∈ C
n×n, U, V ∈ C

n×r, and U and V have full rank r. Then

{rankC = n} =⇒ {r ≥ nul A},

{r ≥ nul A for random U and V } =⇒ {rankC = n (likely)}.

Let us formalize these simple relationships.
Random sampling of elements from a finite set Δ is their selection from the

set Δ at random, independently of each other, under the uniform probability
distribution on Δ. A matrix is random if its entries are randomly sampled (from
a fixed finite set Δ). A k × l random unitary matrix is the k × l Q-factor Q(M)
in the QR factorization of random k× l matrix M of full rank. (QR factorization
reveals if a matrix has full rank, and if not, we can generate a new matrix M .)

Lemma 1. [8] (cf. also [9], [10]). For a finite set Δ of cardinality |Δ| in a ring
R, let a polynomial in m variables have total degree d, let it not vanish identically
on the set Δm, and let the values of its variables be randomly sampled from the
set Δ. Then the polynomial vanishes with a probability of at most d/|Δ|.
Theorem 1. For a finite set Δ of cardinality |Δ| in a ring R and four matrices
A ∈ Rn×n of a rank ρ, U and V in Δr×n, and C = A + UV T , we have
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a) rankC ≤ r + ρ,
b) rankC = n with a probability of at least 1 − 2r

|Δ| if r + ρ ≥ n and either the
entries of both matrices U and V have been randomly sampled from the set
Δ or U = V and the entries of the matrix U have been randomly sampled
from this set,

c) rankC = n with a probability of at least 1 − r
|Δ| if r + ρ ≥ n, the matrix U

(respectively V ) has full rank r, and the entries of the matrix V (respectively
U) have been randomly sampled from the set Δ.

Proof. Part a) is verified immediately. Now let r+ρ ≥ n. Then clearly, rankC =
n if U = V and if the entries of the matrix U are indeterminates. Since detC is
a polynomial of a total degree of at most 2(n − ρ) ≤ 2r in these entries, part b)
follows from Lemma 1. Part c) is proved similarly to part b).

3.2 Generation of Randomized ACs and APCs

In virtue of Theorem 1 a random APP UV H of a rank r is likely to be an AC if
r ≥ nul A, whereas an APP of a rank r is never an AC otherwise. Randomized
linear or binary search for the value nulA can rely on these properties.

Likewise, assuming M ∈ C and nnulM = r, we can generate APCs based on
the following extension of our sketch of Theorem 1:

{nrankC = n} =⇒ {r ≥ nnul A},

{r ≥ nnul A and random unitary U and V } =⇒ {nrankC = n (likely)}.

Seeking nnulA, however, we should choose well conditioned APPs which are
properly scaled, so that the ratio ||UV H)||/||A|| would be neither large nor small,
and surely in such a search we should test the candidate A-modifications for
being well conditioned rather than having full rank. The algorithm only requires
a random number generator and crude estimates for the condition numbers of
the candidate matrices P = UV H and C and for the ratio ||UV H ||/||A|| (cf.
[6, Sections 2.3.2, 2.3.3, 3.5.4, and 12.5] and [7, Sections I.5.3 and I.5.4] on the
2-norm and condition estimators).

In the unlikely case where our randomization works poorly, we can apply some
effective refinement techniques in [11], [12] to APPs. Alternatively we can just
reapply A-preconditioning with a new (weakly) random APP. Both ways have
very good chances for success, according to the test results in [4].

4 APPs and Conditioning

In this section we estimate the ratio (condA)/ cond C from above but first recall
the following sharp lower bound from [11]).

Theorem 2. For any n × n nonnegative definite matrix A ≥ 0, we have

min
P≥0,rank P≤k

cond(A + P ) = σ1(A)
σn−k(A) .
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4.1 Randomized Upper Estimates (The Objective and the Two
Main Steps)

Our analysis and extensive tests show that the value cond C is likely to be
roughly of the order of σ1(A)/σn−r(A) provided A is an n × n matrix and an
APP UV H of a rank r is well conditioned, (weakly) random and scaled so that
the ratio ||UV H ||/||A|| is neither large, nor small. We first show this property for
a singular well conditioned matrix A with a nullity r. Then in Sections 4.4 and
4.5 we extend our study to nonsingular ill conditioned matrices A with numerical
nullity r = nnulA.

4.2 ACs and Conditioning: The Basic Estimates

We first factorize the A-modification C.

Theorem 3. Let A = Σ = diag(ΣA, 0r) be an n × n diagonal matrix of a rank
ρ = n − r where ΣA = diag(σj)

ρ
j=1 is the diagonal matrix of the (positive)

singular values of the matrix A. Let U and V be n × r matrices such that the
n × n matrix C = A + UV H is nonsingular. Write

U =
(

Uρ

Ur

)
, V =

(
Vρ

Vr

)
, RU =

(
Iρ Uρ

0 Ur

)
, RV =

(
Iρ Vρ

0 Vr

)

where Ur and Vr are r × r block submatrices. Then

a) C = RU diag(ΣA, Ir)RH
V and

b) the matrices RU , RV , Ur, and Vr are nonsingular.

Proof. Observe that

C = Σ + UV H , RUΣRH
V = Σ, U = RU

(
0
Ir

)
, and V = RV

(
0
Ir

)
.

Deduce that C̃ = RUΣRH
V +RU diag(0, Ir)RH

V = RU diag(ΣA, Ir)RH
V and arrive

at part a). Part b) follows because the matrix C is nonsingular.

Corollary 1. Under the assumptions of Theorem 3 we have

|| diag(ΣA, Ir)||
||R−1

U || ||R−1
V || ≤ ||C|| ≤ || diag(ΣA, Ir)|| ||RU || ||RV ||,

|| diag(Σ−1
A , Ir)||

||RU || ||RV || ≤ ||C−1|| ≤ || diag(Σ−1
A , Ir)|| ||R−1

U || ||R−1
V ||,

so that

cond diag(ΣA, Ir)
(condRU ) cond RV

≤ cond C ≤ (cond RU )(cond RV ) cond diag(ΣA, Ir).

Proof. The corollary follows from Theorem 3 because condM = ||M || ||M+||
and ||MH || = ||M || for any matrix M .
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4.3 ACs and Conditioning: Refined Estimates

Lemma 2. For any pair of matrices X and Y of compatible sizes we have

max{||X ||, ||Y ||} ≤ ||(X, Y )|| = ||(X, Y )H || ≤
√

||X ||2 + ||Y ||2.

Proof. Let ||(X, Y )
(
u
v

)
|| = ||(X, Y )|| for two vectors u and v such that

||
(
u
v

)
||2 = ||u||2 + ||v||2 = 1.

Recall that (X, Y )
(
u
v

)
= Xu + Y v and deduce that

||(X, Y )|| = ||Xu + Y v|| = ||(X, Y )
(
u
v

)
||.

Apply Cauchy–Schwartz bound and obtain that

||(X, Y )||2 ≤ (||X ||2 + ||Y ||2)(||u||2 + ||v||2) = ||X ||2 + ||Y ||2,
which is the claimed upper bound. Now let ||Xw|| = ||X || where ||w|| = 1. Then

||X || = ||(X, Y )
(
w
0

)
|| ≤ ||(X, Y )||. Similarly we obtain that ||Y || ≤ ||(X, Y )||.

Finally recall that ||L|| = ||LH || for any matrix L.

Theorem 4. Suppose the matrices U and V have full rank. Then we have

max{1, ||U ||2} ≤ ||RU ||2 ≤ 1 + ||U ||2,
max{1, ||V ||2} ≤ ||RV ||2 ≤ 1 + ||V ||2,

1 ≤ ||R−1
U ||2 ≤ 1 + (1 + ||U ||2)||U−1

r ||2,
1 ≤ ||R−H

V ||2 = ||R−1
V ||2 ≤ 1 + (1 + ||V ||2)||V −1

r ||2.
Proof. The bounds on the norms ||RU || and ||RV || follow from Lemma 2 because

RU = (In,ρ, U) and RV = (In,ρ, V ) where In,ρ =
(

Iρ

0

)
. The lower bounds on the

norms ||R−1
U || and ||R−1

V || are obvious. To bound the norm ||R−1
U ||, first observe

that R−1
U = diag(Iρ, 0)+

(−Uρ

Ir

)
U−1

r . Now apply Lemma 2 at first to this matrix

and then to the matrix
(−Uρ

Ir

)
and obtain that

||R−1
U ||2 ≤ 1 + ||

(−Uρ

Ir

)
U−1

r ||2 ≤ 1 + ||
(−Uρ

Ir

)
||2||U−1

r ||2

and

||
(−Uρ

Ir

)
||2 ≤ 1 + ||U ||2.

By combining the latter bounds obtain the desired estimate for the norm ||R−1
U ||.

The norm ||R−1
V || is estimated similarly.



378 V.Y. Pan et al.

The next two theorems are immediately verified,

Theorem 5. Under the assumptions of Theorem 3, suppose that

σn−r ≤ 1 ≤ σ1. (4.1)

Then || diag(ΣA, Ir)|| = ||A|| and ||(diag(ΣA, Ir))−1|| = σn−r.

Theorem 6. Let us write θ = ||UV H ||/||A||. Then we have

|1 − θ| ≤ ||C||/||A|| ≤ (1 + θ).

Corollary 2. Write

θ = ||UV H ||/||A||, q = ||RU || ||RV || and p = ||R−1
U || ||R−1

V ||,

so that

max{1, ||U ||, ||V ||, ||U || ||V ||} ≤ q ≤
√

(1 + ||U ||2)(1 + ||V ||2),

1 ≤ p2 ≤ (1 + (1 + ||U ||2)||U−1
r ||2)(1 + (1 + ||V ||2)||V −1

r ||2).
Then under the bounds (4.1) and the assumptions of Theorems 3 and 6 we have

a) max{|1 − θ|, 1/p} ≤ ||C||/||A|| ≤ min{1 + θ, q},
b) 1/q ≤ σn−r||C−1|| = ||C−1||/||A+|| ≤ p,
c) max{|1 − θ|, 1/p}/q ≤ (cond C)/ condA ≤ min{1 + θ, q}p.

Proof. Parts a) and b) follow from Corollary 1 and Theorems 4-6. Part c) follows
from parts a) and b).

The corollary shows that the transition A → C tends to yield the full rank
property but changes the norms and condition numbers of the matrices only
within the factors p and q. Clearly we can nicely bound the parameter q by
properly scaling the matrices U and V . We estimate the bound p in Section 4.5.

Now suppose we represent an ill conditioned matrix of full rank as the sum
A + E where E is a small norm matrix and A is a well conditioned and rank
deficient matrix. Then perturbation by the matrix E little affects our analysis,
and so our next results extend it to the A-modification C = A + E + UV H for
a random APP UV H .

4.4 The Impact of A-Modification on Full Rank Matrices

Hereafter M ≥ 0 means that M is a nonnegative definite Hermitian matrix. We
extend the bounds of Corollary 2 in the cases where ||E|| is small or C ≥ 0 and
E ≥ 0.

Theorem 7. Let the matrices C and C̃ = C+E be nonsingular. Write δ = ||E||
and δC = δ||C−1||. Then we have
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a) ||C̃|| ≤ δ + ||C||,
b) if δC < 1, then ||C̃−1|| ≤ ||C−1||/(1 − δC),

so that cond C̃ ≤ (cond C + δC)/(1 − δC),
c) if C ≥ 0 and E ≥ 0, then ||C̃−1|| ≤ ||C−1||,

so that cond C̃ ≤ (1 + δ/||C||) condC.

Proof. Parts a) and c) follow immediately. Part b) follows because

||C̃−1|| = 1/σn(C̃) ≤ 1/(σn(C) − δ) = 1/(1/||C−1|| − δ).

4.5 Further Comments

1. Bounds (4.1) in Corollary 2 are no loss of generality because the ratios
||C||/||A||, ||C−1||/||A+||, and (condC)/ cond A do not change, whereas
σj → sσj if the matrices A, UV H , and C = A + UV H are scaled by the
same scalar s.

2. An APP UV H cannot be an APC if the ratio θ = ||UV H ||/||A|| is small
because σn(C) ≤ σn(A) + ||UV H ||. Furthermore, an APP UV H cannot be
an APC if the ratio θ is large and if rank(UV H) < rankC. Corollary 2
provides us, however, with reasonable bounds on the ratio (condC)/ condA
as long as the norms ||U ||, ||V ||, ||U−1

r ||, and ||V −1
r || are reasonable. We

can assume that ||U || = ||V || = 1 and then obtain that 1 ≤ q ≤ 2 and
1 ≤ p2 ≤ (1 + 2||U−1

r ||)(1 + 2||V −1
r ||) in Corollary 2.

3. The value p in Corollary 2 is expected to be reasonably small if the matrices
Ur and Vr are well conditioned. Practically we just need to randomize these
matrices because there is huge empirical evidence that random matrices tend
to be well conditioned. This observation also has some formal support in [13]
and the references therein. Clearly the matrices Ur and Vr are random if so
are the matrices SU and TV . The latter matrices are random where the
generators U and V are random or just independent of the matrices S and
T , respectively. Realistically this is a very light restriction, which explains
why we regularly yield APCs P = UV H for generators U and V endowed
with various patterns of structure and sparseness (see Section 5 and the
Appendix).

4. For our random APPs the value condC is expected to be reasonably
bounded, but if it is not, we can readily detect this at a low computational
cost and then resample the random matrices U and V .

5. In virtue of Theorem 1, random APPs of appropriate rank are ACs with a
high probability for a rank deficient matrix A. Corollary 2 shows that they
are likely to preserve the order of the condition number condA in the transi-
tion to the full rank matrix C. We can turn an ill conditioned matrix A into
a well conditioned matrix of a smaller rank by zeroing the smallest singular
values. For a very large class of ill conditioned matrices, this transforma-
tion and its reverse are just small-norm perturbations, which must keep the
matrices well conditioned in virtue of Theorem 7b. In virtue of Theorem
7c, the same property holds for a Hermitian and nonnegative definite input
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matrix A, even where the above perturbation has a large norm. (This class
is highly important [6], [7] and quite universal because a nonsingular linear
system Ay = b is equivalent to the Hermitian and positive definite systems
AHAy = AHb and AAHx = b, y = AHx.)

6. The bounds in Theorem 7b rely on the worst case assumption that the
perturbation by the matrix E is directed strictly towards decreasing the
value σn(C) = 1/||C−1||, that is destroying the effect of random A-
preconditioning. Such a behavior, however, is completely opposite to the
known effect of random perturbation (see [13] and the references therein),
which means that the bounds in Theorem 7b are overly pessimistic. Our
tests have confirmed this conclusion.

7. According to our extensive tests (see the Appendix), the estimated impact
of A-preconditioning on the singular values is quite regular so that random
APPs can be used for detecting large jumps in the spectra of the singular
values and for computing numerical rank and numerical nullity. This appli-
cation can be reinforced with the techniques in the next section.

5 Structured and Sparse APPs

All APPs of small ranks are structured, but next we supply various examples of
sparse and/or structured APPs of any rank. In our extensive tests, these APPs
were typically APCs for all classes of tested input matrices. Hereafter we call
these APPs pseudo random. We hope to welcome more such examples from the
readers.

Example 1. Circulant APPs. UV H = F−1DrF for the n × n unitary matrix

F =
1√
n

(exp
2πij

√−1
n

)n−1
i,j=0

of the discrete Fourier transform at the n-th roots of unity and for the n × n
diagonal matrix Dr = diag(di)n−1

i=0 that has exactly r nonzero entries fixed or
sampled at random in r fixed sets S1, . . . , Sr and placed at r fixed or random
positions on the diagonal. Such an APP UV H is a circulant matrix of the rank
r that has the first column F−1d for d = (di)n−1

i=0 (cf., e.g., [14, Theorem 2.6.4]).
It is sufficient to perform O(n max{r, log n}) ops to multiply it by a vector. The
bound decreases to O(n log r) where the r nonzeros occupy r successive positions
on the diagonal. If S1, . . . , Sr are real sets, then the APP is Hermitian. If the
sets S1, . . . , Sr lie in the annulus {x : d− ≤ |x| ≤ d+}, then cond(UV H) =
condDr ≤ d+/d−.

Example 2. f-circulant APPs [14, Section 2.6]. In the previous example replace
the matrix F with the matrix FD− where D− = diag(gi)n−1

i=0 and g is a primitive
n-th root of a nonzero scalar f . In this case the APP is f -circulant. (It is circulant
for f = 1 and skew-circulant for f = −1.) As in the previous example, one can
readily bound the condition number of the APP and the arithmetic cost of its
multiplication by a vector.
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Example 3. Toeplitz-like APPs I. Define an n × r well conditioned Toeplitz
matrix U of full rank. Either fix such a matrix or define it by varying u random
parameters for a nonnegative integer u < n+ r until you yield well conditioning.
Output FAILURE if this does not work. Define a matrix V a) either similarly
or b) set V = U (to produce a Hermitian APP). The APP UV H has a rank of
at most r and a displacement rank of at most four and can be multiplied by a
vector in O(n log r) ops (cf. [14]).

Example 4. Structured or sparse APPs I. Define a matrix U = PW, P for
a fixed or random n × n permutation matrix P (in the simplest case P = In)
and a fixed or random n× r block W of the n×n matrix of the discrete Fourier,
sine or cosine transform [14, Section 3.11], or of another well conditioned matrix
with a fixed structure such as the sparseness structure [15], the displacement
structure of Toeplitz, Hankel, Vandermonde, or Cauchy types (cf. [14] and the
bibliography therein), or the semi- and quasi-separable (rank) structure (cf. the
bibliography in [16]). One can apply random diagonal scaling to sparse and
semi- and quasi-separable matrices. Example 3 is the special case where P = In

and W is a Toeplitz matrix. Define a matrix V a) either similarly or b) set
V = U (to produce a Hermitian APP). Define an APP UV H . The complexity
of its multiplication by a vector can be linear or nearly linear, depending on its
structure.

Example 5. Toeplitz-like APPs II. Define an n × r Toeplitz matrix

U = (T1, 0r,n1, . . . , Tk, 0r,nk
)T .

Here Ti are r × r Toeplitz matrices, 0r,ni are r × ni matrices filled with zeros
for i = 1, . . . , k, and k, n1, . . . , nk are positive integers (fixed or random) such
that kr + n1 + · · · + nk = n. Fix or choose at random the Toeplitz matrices
Ti such that the resulting matrix U is well conditioned. Ti can denote general
Toeplitz matrices or special, e.g., circulant, f -circulant, triangular Toeplitz or
banded Toeplitz matrices. Define a matrix V a) either similarly or b) set V = U
(to produce a Hermitian APP). For general Toeplitz matrices T1, . . . , Tk and
the shift operators associated with the Toeplitz structure, the APP UV H has a
displacement rank of at most 2k ≤ 2
n/r� and can be multiplied by a vector in
O(kr log r) flops. For banded Toeplitz matrices Ti with a constant bandwidth we
only need O(kr) flops to multiply the APP by a vector. For Ti = ciIr the matrix
U has orthogonal columns, and we make it unitary by choosing the scalars c1,
. . . , ck such that c2

1 + · · · + c2
k = 1.

Example 6. Structured or sparse APPs II. Define a well conditioned matrix

U = P (T1, 0r,n1, . . . , Tk, 0r,nk
)T

for an n × n permutation matrix P and integers k, n1, . . . , nk chosen as in
Example 5 but for all i let Ti be r×r fixed or random structured matrices, e.g., the
matrices of the discrete Fourier, sign or cosine transforms, matrices with a fixed
displacement structure, semi- and quasi-separable (rank structured) matrices, or
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sparse matrices with fixed patterns of sparseness (see the bibliography listed in
Example 4). Define a matrix V a) either similarly or b) set V = U (to produce
a Hermitian APP). Define an APP UV H . Example 5 is the special case where
P = In and Ti are Toeplitz matrices.

Finally, we can generate APCs by appending pairs of (block) rows and (block)
columns that preserve any structure of an input matrix, e.g., the structure of a
block Hankel matrix with Hankel blocks.

6 Discussion

Define rangeM , the linear space spanned by the columns of a matrix M , and
its null space N(M) = {z : Mz = 0}. A matrix B is a null matrix basis for M
if rangeB = N(M).

Now let us sketch a modification of A-preconditioning for computing a null
matrix basis for a matrix A (see some details in [17]). The solution of a linear

system Ay = b is a special case because (−b, A)
(

1
y

)
= 0.

Assume a (possibly ill conditioned) matrix A ∈ C
n×n, extend our study in

Section 4, and deduce that for a sufficiently large integer k < n and a (weakly)
random matrix B ∈ C

n×k, the matrix Ã = (B, A) is likely to be well conditioned.
Generate such a matrix B for a possibly smaller integer k and apply any of the
two recipes below to compute an integer s = nul Ã < n and a null matrix basis
Z ∈ C

(n+k)×s for the matrix Ã.

Next write Z =
(

Z0
Z1

)
where Z0 ∈ C

s×k, and compute a null matrix basis

X ∈ C
s×r for the matrix Z0. Finally obtain a null matrix basis Z1X for the

matrix A. To compute a null matrix basis X we can reapply the same algorithm,
noting that s < n.

Here are two recipes for computing a null matrix basis Z by solving nonsin-
gular well conditioned linear systems of equations.

1. Generate a random unitary matrix W ∈ C
(n+k)×(n+k) (we can use its ap-

proximation), compute the matrix C = ÃW = (B, A)W , observe that
condC = cond Ã, write C = (C0, C1) where C0 ∈ C

n×n, and extend our
analysis in Sections 3 and 4 to deduce that the matrix C0 is expected to
be nonsingular and to have the condition number of the order of condC.

Finally compute a null matrix basis Z =
(−C−1

0 C1
Ik

)
.

2. Generate a (weakly) random k × (n + k) matrix V , define the matrix C =(
V

Ã

)
, and extend our analysis in Sections 3 and 4 to deduce that the matrix

C0 is expected to be nonsingular and to have the condition number of the

order of cond Ã. Finally compute a null matrix basis Z = C−1
(

Ik

0

)
.
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Clearly, the same techniques can be applied where A ∈ C
m×n and m < n.

The study in [17] and extensive tests support this approach. Wherever A is an
ill conditioned matrix, the matrix Z must be computed with a higher precision.
To yield such a high precision output, the paper [17] employs extended iterative
refinement in solving linear systems in the two recipes above and, in the first of
them, computes the product C = (B, A)W with no errors.
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Abstract. We explore a simple mathematical model of network compu-
tation, based on Markov chains. Similar models apply to a broad range
of computational phenomena, arising in networks of computers, as well
as in genetic, and neural nets, in social networks, and so on. The main
problem of interaction with such spontaneously evolving computational
systems is that the data are not uniformly structured. An interesting ap-
proach is to try to extract the semantical content of the data from their
distribution among the nodes. A concept is then identified by finding
the community of nodes that share it. The task of data structuring is
thus reduced to the task of finding the network communities, as groups
of nodes that together perform some non-local data processing. Towards
this goal, we extend the ranking methods from nodes to paths. This al-
lows us to extract some information about the likely flow biases from the
available static information about the network.

1 Introduction

Initially, Web search was developed as an instance of information retrieval, op-
timized for a particularly large distributed database. With the advent of online
advertising, Web search got enhanced by a broad range of information supply
techniques where the search results are expanded by additional data, extrapo-
lated from user’s interests, and from search engine’s stock of information. From
the simple idea to match and coordinate the push and the pull of information on
the Web as a new computational platform [18] sprang up a new generation of web
businesses and social networks. Similar patterns of information processing are
found in many other evolutionary systems, from gene regulation, protein inter-
action and neural nets, through the various networks of computers and devices,
to the complex social and market structures [15].

This paper explores some simple mathematical consequences of the observa-
tion that the Web, and similar networks, are much more than mere information
repositories: besides storing, and retrieving, and supplying information, they
also generate, and process information. We pursue the idea that the Web can
be modeled as a computer, rather than a database; or more precisely, as a vast
multi-party computation [6], akin to a market place, where masses of selfish
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agents jointly evaluate and generate public information, driven by their private
utilities. While this view raises interesting new problems across the whole gamut
of Computer Science, the most effective solutions, so far, of the problem of se-
mantical interactions with the Web computations were obtained by rediscovering
and adopting the ranking methods, deeply rooted in the sociometric tradition
[11,10], and adapting them for use on very large indices, leading to the whole
new paradigm of search [19,12,13]. Implicitly, the idea of the Web as a computer
is tacitly present already in this paradigm, in the sense that the search rankings
are extracted from the link structure, and other intrinsic information, generated
on the Web itself, rather than stored in it.

Outline of the paper. In Sect. 2 we introduce the basic network model, and
describe a first attempt to extract information about the flows through a network
from the available static data about it. In Sects. 3 and 4, we describe the structure
which allows us to lift the notion of rank, described in Sect. 5, to path networks in
Sect. 6. Ranking paths allows us to extract a random variable, called attraction
bias, which allows measuring the mutual information of the distributions of the
inputs and the outputs of the network computation, which can be viewed as
an indicator of non-local information processing that takes place in the given
network. In the final section, we describe how the obtained data can be used to
detect semantical structures in a network. The experimental work necessary to
test the practical effectiveness of the approach is left for future work.

2 Networks

Basic model. We view a network as an edge-labelled directed graph A =
(
R

γ�� E
δ ��
�

�� N
)
, where N and E are, respectively, the finite sets of nodes,

and links, or edges, whereas R is an ordered field of values (in some applications
an ordered ring of functions). A link i

e→ j is thus an element e ∈ E with
δ(e) = i and �(e) = j. The value γ(e) is the cost (when positive), or payoff
(when negative) of the traffic over e. These data induce the adjacency matrix
E = (Eij)N×N and the capacity matrix A = (Aij)N×N , with the entries Eij =
{e ∈ E | i

e→ j} and Aij =
∑

e∈Eij
Ae, where Ae = 2−γ(e) is the capacity of the

link e.

Remark. The term “capacity” is used here as in network flow theory.1 The cost or
the payoff of a link may represent its value in a pay-per-click model of a fragment
of the Web; or it may denote the proximity of the web pages within the same
site, or within a group of interconnected sites. In a protein network, the energy
cost or payoff may be derived from the chemical affinities between the nodes.
While this parameter can be abstracted away, simply by taking γ(e) = 0 for all

1 The information theoretic homonym has a different, albeit related meaning, which
motivates the choice of γ(e) = − log2 Ae.
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links e, its role will become clear in Sects. 3 and 6, where it allows discounting
and eliminating some paths.

Basic dynamics. The simplest model of network dynamics is based on the
assumption that the traffic flows are distributed proportionally to the link ca-
pacities. Randomly sampling the Web traffic, we shall thus find a surfer on a
link e with the probability αe = Ae

A•
, where A• =

∑
f∈E Af .

In order to find the communities in a network, we need to detect the traffic
biases between its nodes. We assume that the traffic between the nodes within
the same community will be higher than the capacity of the links between them
would lead us to expect; and that the traffic between the different communities
will be lower than expected. To measure such traffic biases, we normalize the
capacity matrix A to get the capacity distribution α = (αij)N×N as αij = Aij

A••
,

where A•• =
∑

k,�∈N Ak�. The entry αij is thus the probability that a random
sample of traffic on A, following the simple dynamics proportional to capacity,
will be found on a link from i to j. On the other hand, the marginals of the
probability distribution α,

αi• =
∑

j∈N

αij α•j =
∑

i∈N

αij

correspond, respectively, to the probabilities that a random sample of traffic will
have i as its source, and j as its destination. Let us call αi• the out-rank of i,
and α•j the in-rank of j, because they can be viewed as the simplest, albeit
degenerate cases of the notion of rank.

If the in-rank and the out-rank are statistically independent, then (by the
definition of independence) the probability that a random traffic sample goes
from i to j will be αi•α•j . Their dependency is thus measured by the traffic bias
matrix υ = (υij)N×N with the entries υij = αij − αi•α•j falling in the interval
[−1, 1]. The higher the bias, the more unexpected traffic there is. For a set of
nodes U ⊆ N the values

Coh(U) =
∑

i,j∈U

υij Adh(U) =
∑

i∈U,j �∈U

υij + υji

can thus be construed as the cohesion and the adhesion forces: the total traffic
bias within the group, and with its exterior, respectively. A network community
U can thus be recognized as a set of nodes with a high cohesion and a low adhe-
sion [16]. The idea that semantically related nodes can be captured as members
of the same network communities, derived from the graph structure, is a natural
extension of the ranking approach, which has been formalized in [9,17].

The only problem with applying that idea to the above model is that our
initial assumption — that the traffic distribution on A is proportional to its link
capacities — is not very realistic. It abstracts away all traffic dynamics. On the
other hand, the static network model, as given above, does not provide any data
about the actual traffic. We explore the ways to solve this problem, and extract
increasingly more realistic views of traffic dynamics from a static network model.
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3 Adding Paths

A path i
a→ j in a network A is a sequence of links i

a1→ k1
a2→ k2 → · · · an→ j.

In many cases of interest, traffic dynamics on a network depends on the path
selections, rather than just on single links.

One idea is to add the paths to the structure of a network, and to annotate how
the links compose into paths, and how the paths compose into longer paths. This
amounts to generating the free category [14] over the network graph. Unfortu-
nately, adding all paths to a network usually destroys some essential information,
just like the transitive closure of a relation does. E.g., in a social network, a friend
of a friend is often not even an acquaintance. Taking the transitive closure of the
friendship relation obliterates that fact. Moreover, the popular “small world”
phenomenon suggests that almost every two people can be related through no
more than six friends of friends of friends. . . So already adding all paths of length
six to a social network, with a symmetric friendship relation, is likely to generate
a complete graph. In fact, the average probability that two of node’s neighbors
in an undirected graph are also linked with each other is an important factor,
called clustering coefficient [21]. On the other hand, in some networks, e.g. of
protein interactions, a link i → k which shortcuts the links i → j → k often
denotes a direct feed-forward connection, rather than a composition of the two
links, and leads to essentially different dynamics.

So only “short” paths must be added to a network: composition must be
penalized.

Definition 1. For a given network A =
(
R

γ�� E
δ ��
�

�� N
)
, a cutoff value

v ∈ R, and a composition penalty d ∈ R, we define the v-completion to be the

network A∗v =
(
R

γ�� E∗v
δ ��
�

�� N
)
, where

E∗v = {a ∈ E∗ | γ(a) ≤ v} and

γ
(
i0

a1→ i1
a2→ i2 → · · · an→ in

)
= (n − 1)d + γ(a1) + · · · + γ(an)

and E∗ is the set of all nonempty paths in A.

Remarks. E∗ can be obtained as the matrix of sets E∗ =
∑∞

n=0 En where each
En is a power of the adjacency matrix E. If the entry Eij is viewed as the set
of links {i

e→ j}, then the entry E2
ij =

∑N
k=1 Eik · Ekj corresponds to the set of

2-hop paths {i
e1→ k

e2→ j} through the various nodes k; the matrix E3 similarly
corresponds to the matrix of 3-hop paths, and so on.

The v-closed network A∗v is closed under the composition of low cost paths,
but not if the cost is greater than v. It is not hard to see that the v-completion is
an idempotent operation, i.e. A∗v∗v = A∗v, but it may fail to be a proper closure
operation, because a link e in A, with γ(e) > v, may lead to A �⊆ A∗v.

In the rest of the paper, we assume that the networks are v- complete for some
v, i.e. A = A∗v. This means that the relevant pathways are already represented
as links, with the composition penalty absorbed in the cost.
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4 Network Dynamics

In order to derive network dynamics from a static network model, one first
specifies the way in which the behavior of a computational agent, processing data
on the network, is influenced by the network structure, and then usually derives
a Markov chain that drives the traffic. The network features that influence its
dynamics can then be incrementally refined, yielding more and more information.

4.1 Forward and Backward

Random walks on networks are often represented in terms of the behavior of
surfers on the Web, following the hyperlinks.2 The simplest surfer behavior
chooses an out-link uniformly at random at each node. A visitor of a node i will
thus proceed to a node j with probability A�

ij = Aij

Ai•
, where Ai• =

∑N
k=1 Aik

is the out-degree of i. The row-stochastic matrix A� = (A�

ij)N×N represents
forward dynamics of a network A. The entries A�

ij are called the pull coefficients
of i by j.

Dually, backward dynamics of a network A is represented by a column-
stochastic matrix A� = (A�

ij)N×N , where the entry A�

ij = Aij

A•j
, with A•j =

∑N
k=1 Akj denoting the in-degree of j, describes the probability that a surfer

who is on the node j came there from the node i. The entries A�

ij are called the
push coefficients.

Remark. Note that the capacity matrix can be normalized to get A� and A� as
above only if no rows, resp. columns, consist of 0s alone. This means that every
node of the network must have at least one out-link, resp. at least one in-link.
Networks that do not satisfy this requirement need to be modified, in one way or
another, in order to enable analysis. Adding a high-cost link between every two
nodes is clearly the minimal perturbation (with maximal entropy) that achieves
this. Alternatively, the problem can also be resolved by adjoining a fresh node,
and the high-cost links in and out of it [2]. Either way, the quantitative effect of
such modifications can be made arbitrarily small by increasing the cost of the
added links.

4.2 Forward-Out and Backward-In Dynamics

The next example can be interpreted in two ways, either to show how forward
and backward dynamics can be refined to take into account various navigation
capabilities, or how to abstract away irrelevant cycles. Suppose that a surfer
searches for the hubs on the network: he prefers to follow the hyperlinks that
lead to the nodes with a higher out-degree. This preference may be realized
by annotating the hyperlinks according to the out-rank of their target nodes.
Alternatively, the surfer may explore the hyperlinks ahead, and select those
2 The surfers deserve their name by following the “waves”, i.e. obeying the same

dynamics.
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with the highest out-degree; but we want to ignore the exploration part, and
simply assume that he proceeds according to the out-rank of the nodes ahead.
The probability that this surfer will move from i to j is thus

A�

ij = A�

ij · αj• =
AijAj•
Ai•A••

We call this the forward-out dynamics. In the dual, backward-in dynamics, the
surfers are more likely to arrive to j from i if this is a frequently visited node,
i.e. if its in-rank is higher

A�

ij = α•i · A�

ij =
A•iAij

A••A•j

These dynamics will be the particularly convenient to demonstrate an example
of bias analysis in Sect. 6, because they clearly display clearly how the simple
traffic bias υ from Sect. 2 can be refined by the various dynamics factors.

4.3 Teleportation and Preference

The main point of formulating network dynamics, especially in the Markov chain
form, is to be able to compute the node ranking as its invariant distribution. How-
ever, since the network graphs are usually not strongly connected, the Markov
chains, derived from their structure, are often reducible to classes of nodes with
no way out.

The simplest remedy is the idea of teleportation, going back to [19]. A general
interpretation is that, whichever dynamics a surfer might follow, at each node
he tosses a biased coin, and with a probability d ∈ (0, 1) follows that dynamics.
Otherwise, with a probability 1 − d, he “teleports” to a randomly chosen node,
ignoring all hyperlinks and other structure. Following, say, forward dynamics,
the probability that he will go from i to j is thus AP

ij = dA�

ij + 1−d
N . This

is roughly the PageRank dynamics, from which the Google search engine had
started [19]3. The induced dynamics is thus AP = dA� + (1 − d)P , where
P = (Pij)N×N has all entries Pij = 1

N . In the networks without a cost function,
this is interpreted as adding a link between every two nodes. The influence of
such links can be controlled using the cost functions. In any case, the resulting
Markov chains become irreducible, and their stationary distributions do not get
captured in any closed components. Furthermore, the model can be personalized
by capturing surfer’s preferences in terms of the biases in P : the entries Pij can
be interpreted as i’s trust in j [8]. The extensions of the backward dynamics by
teleportation yields to different interpretations, which the reader may wish to
consider on her own.

3 The original version allowed A�

ij to be 0, if Ai• is 0, i.e. if i is a “sink-hole”, and
the teleportation factor was added to save dynamics from such sinkholes. Other
modifications were introduced later.
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5 Ranking

Intuitively, the rank of a node is the probability that randomly sampled traffic
will be found to visit that node. In search, this is taken as a generic relevance
measure. The technical implication is that the rank can be obtained as a sta-
tionary distribution of the Markov chain capturing dynamics. Each notion of
dynamics thus induces a corresponding notion of rank. Since a Markov chain
can be viewed as a linear, and hence continuous transformation of the simplex
of distributions, which is closed and compact, already Brouwer’s fixed point the-
orem guarantees that the rank always exists. Finding a meaningful, useful notion
of rank is another matter.

First of all, as already mentioned, networks often decompose into loosely con-
nected subnets. In the long run, all traffic is likely to get captured in some such
subnet. This results in multiple stationary distributions, each concentrated in
a closed subnet, zero otherwise. Dynamics derived directly from the network
graph therefore result in uninformative ranking data. In order to assure that the
relevant Markov chains are irreducible and aperiodic, and thus induce unique
and nondegenerate stationary distributions, network dynamics usually need to
be perturbed, using a damping and stabilizing factor such as teleportation. An-
other sort of problems arise when the unique stationary distribution is not an
attractor, or when the rate of convergence is unfeasibly slow [7,3].

While very important in concrete applications, these problems, and their so-
lutions, have less impact on the conceptual analyses pursued in this paper. We
shall henceforth assume that all processes have been adjusted to induce unique
and effectively computable ranking.4

5.1 Promotion and Reputation

We now explain the intuition behind the simplest notions of rank.
In social terms, the push coefficient A�

ij = Aij

A•j
can be interpreted as measuring

how much i supports (or advocates) j. The concept of promotion can then be
formalized as a probability distribution r�, such that r�

i =
∑N

k=1 A�

ikr�

k . In
words, the promotion rank (or push rank) r�

i of a node i is the sum of the
promotion ranks r�

k of its children nodes, each allocated to i according to the
push coefficient A�

ik, measuring i’s support for k.
Dually, the pull coefficient A�

ij can be interpreted as measuring how much
i trusts j. The concept of reputation can then be formalized as a probability
distribution r�, such that r�

j =
∑N

k=1 r�

k A�

kj . This reputation rank (or pull
rank) r�

i of a node i is thus the sum of the reputation ranks r�

k of its parent
nodes, each allocated according to the pull coefficient A�

kj , of k’s trust in j.
Gathering the promotion values in a column vector r� and the reputation

values in a row vector r�, we can rewrite the definitions of r� and r� in the
matrix form

r� = A�r� r� = r�A�

4 This implies that all notions of dynamics that we consider have a tacit damping
factor. We do not display it only because it needlessly complicates formulas.
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The refined notions of promotion r� and reputation r� are defined and inter-
preted along the same lines, as the stationary distributions of the processes A�

and A� respectively.

5.2 Expected Flow

While dynamics of reputation has been studied for a long time [11,10], and with
increased attention recently, since it become a crucial tool of Web search [19,13],
the dual dynamics of promotion does not seem to have attracted much attention.
We need both notions to define the expected traffic flow.

The expected flow from j to k, under the assumption that they are indepen-
dent, is caused only by a “traffic pressure”, resulting from the pull to j and the
push from k. Following this idea, we define

r��

jk = r�

j r�

k (1)

The expected flow r�� is thus a probability distribution over N × N , which can
be represented as the matrix r�� = r� · r�, obtained by multiplying the column
vector r� and the row vector r�. Since r� and r� are the principal eigenvectors
of A� and A�, r�� is the unique distribution satisfying r�� = A� · r�� · A�, i.e.
r��

jk =
∑N

i=1
∑N

�=1 A�

ijr
��

i� A�

k�. Intuitively, this means that the flow pressure from
i to � propagates to cause a flow pressure from j to k proportionally to the force
of the traffic from i to j and to the force of traffic flows from k to � — provided
that j and k are independent. In order to measure their dependency, we attempt
to capture how the actual flows from i to � (rather than mere flow pressure) may
get diverted, say by the high costs and the low capacities, to cause actual flows
from j to k.

6 Path Networks

Definition 2. Given a v-closed network A =
(
R

γ�� E
δ ��
�

�� N
)
, we define

the path network

Â =
(
R

γ�� Ê
δ ��
�

�� N̂
)
, where N̂ = E, and Ê =

∑
a,b∈E Êab, with

Êab =
{
f = 〈f0, f1〉 ∈ Eij × Ek� | γ(f0) + γ(b) + γ(f1) − γ(a) ≤ v − 2d

}
(2)

γ(f) = 2d + γ(f0) + γ(b) + γ(f1) − γ(a) (3)

i

a

��

f0

���������

j

b
��
k

f1���������

�
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Dynamics of path selection. Recalling that Âab =
∑

f∈Êab
2−γ(f), we define

the forward and the backward dynamics, and the pull rank and the push rank
just like before:

Â�

ab =
Âab

Âa•
Â�

ab =
Âab

Â•b

r̂b =
∑

a∈N̂

r̂aÂ�

ab r̂�

a =
∑

b∈N̂

Â�

abr̂
�

b

Intuitively, Â�

ab is now the probability that traffic through a is diverted to b

(rather than to some other path); while Â�

ab is the probability that traffic through
b is diverted from a (and not from some other path). The pull rank r̂b, i.e. the
probability that b will be traversed, can thus be understood as its attraction;
whereas r̂�

a is the probability that a will be avoided.
Using the pull rank of the paths, we can now define the node attraction be-

tween j and k to be the total attraction of all paths between them:

r̂jk =
∑

j→
b

k

r̂b (4)

The idea is that this notion of attraction the nodes will allow us to refine the
estimate of the traffic bias υ as described in Sect. 2. In particular, consider
attraction bias

Υjk = r̂jk − r��

jk (5)

To motivate this, note that expanding the formula for r��

jk in Sect. 5.2 shows that

r�� is the stationary distribution of the Markov chain A�� =
(
A��

(ij)(k�)

)

N2×N2
,

where

A��

(ij)(k�) =
AijAj•A•kAk�

Ai•A2••A•�
and r��

jk =
∑

i,�∈N

A��

(ij)(k�)r
��

i�

On the other hand, the node attraction r̂ turns out to be a stationary distribution
of a process that refines A��.

Definition 3. Given a network A, its attraction dynamics is a Markov chain
Â =

(
Â(ij)(k�)

)

N2×N2
, with the entries

Â(ij)(k�) =
AijAjkAk�

Ai•A••A•�
(6)

where Ai•A••A•� =
∑

m,n∈N AimAmnAn�.
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Proposition 1. Suppose that a given network A is v-complete for a sufficiently
large v. Then the node attraction r̂, defined in (4), is the stationary distribution
of its attraction dynamics (6). In other words, for every j, k holds

r̂jk =
∑

i,�∈N

Â(ij)(k�) r̂i� (7)

The proof can be found in [20]. It is based on the following lemma.

Lemma 1. For a network A, which is v- complete for a sufficiently large cutoff
value v, the following equations hold for i

a→ � and j
b→ k

Âab =
Ab

4dAa
AijAk� (8)

∑

j→
c

k

Âac =
1

4dAa
AijAjkAk� (9)

Âa• =
1

4dAa
Ai•A••A•� (10)

On the other hand, proposition 1 implies the following corollary, which estab-
lishes that formula (5) can be used to measure the attraction bias, as intended.

Corollary 1. The directed reputation and promotion ranks are the marginals of
the node attraction

∑

k∈N

r̂jk = r�

j (11)

∑

j∈N

r̂jk = r�

k (12)

All proofs are in the Appendix of [20].

Interpretation. To understand the meaning of attraction bias, consider a v-
complete network A, with the forward-out and backward-in dynamics. The pull
rank r�

j tells how likely it is that a randomly sampled traffic path arrives to j;
whereas the push rank r�

k tells how likely it is that a randomly sampled traffic
path departs from k.

On the other hand, the attraction dynamics in the induced path network Â
gives the node attraction r̂jk, which tells how likely it is that a randomly sampled
traffic path traverses a path from j to k. In summary, we have

r�

j = Prob
(• ξ→ j | ξ ∈ A�

)

r�

k = Prob
(
k

ξ→ • | ξ ∈ A�

)

r̂jk = Prob
(
j

ξ→ k | ξ ∈ Â
)
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Although the notation suggests that r�, r�, and r̂ are sampled from different
processes, corollary 1 establishes that r̂ is in fact the joint distribution of r�

and r�.
Nevertheless, a diligent reader will surely notice a twist of j and k in the last

three equations, and wonder why is the probability that traffic goes from j to
k related with the probabilities that it arrives to j, and that it departs from
k? — The answer to this question makes the forward-out and the backward-
in dynamics into a more interesting example than its many dynamical cousins.
Briefly, if the surfers are more likely to flow with •→j if the capacity of the links
out of j is higher, and if they are more likely to flow with k→• if the capacity
of the links into k is higher, then the surfers are most likely to follow both these
flows, i.e. into j and out of k — if there is a high capacity of the links j → k.

Mutual information of the inputs and the outputs. The fact that r̂ is the
joint distribution of the processes expressed by r� and r� allows us to extract
their mutual information [4]

I(r� ; r�) = D(r̂ || r��) =
N∑

j=1

N∑

k=1

r̂jk log
r̂jk

r�

j r�

k

Its expression in terms of relative entropy D(r̂ || r��) [ibidem] shows that it
measures how much we lose, in the efficiency of encoding of r̂ if we assume that r�

and r� are mutually independent. Intuitively, the mutual information I(r� ; r�)
can thus be taken as a measure of the locality of information processing in A. If
this is an entirely local process, then every path must begin and end at the same
node, and the random walks δ and �, selecting the sources and the destinations
of the paths, must coincide. But if δ = �, then the push rank and the pull rank
must obey the same distribution r� = r� = r, and their mutual information is
I(r� ; r�) = H(r), their entropy. In the other extreme case, the random walks
δ and � are independent, and their joint distribution is just the product of their
distributions r̂jk = r�

j r�

k . Their mutual information is then I(r� ; r�) = 0.

7 Conclusions and Future Work

When the Web is viewed as a global data store, the problem of its semantics
is the problem of determining a uniform meaning for the data published by its
various participants. The search engines are dealing with this problem on the
level of the human-Web interaction (e.g., distinguishing the meanings of the
word “jaguar”, sometimes denoting a car, sometimes an animal [12], or deciding
whether “Paris Hilton”, in a given context, refers to a person or to a hotel, etc.),
whereas the Semantic Web project [1] deals with the computer-Web interactions.
When the Web is viewed as a computer, the problem of its semantics is not just
a matter of assigning some meanings to some data stored in it, but also to its
data processing operations. For programming languages, this is what we usually
call operational semantics. However, unlike a programming language, the Web,
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and other spontaneously evolving networks, do not have a formally defined set
of data structures and operations: data are transformed by many random walks,
running concurrently. Operational semantics of network computation requires a
toolkit for incremental analysis of such processes. In this paper, we described
a path ranking method, which is may become a useful piece of that toolkit.
Now we sketch a way to test it experimentally. Using the notion of attraction
bias, we lift the graph theoretic notion of (maximal) clique into rank analysis,
while retaining network dynamics as a graph structure over such generalized
cliques. We call these generalized cliques concepts and the links between them
associations.

Communities and concepts. Taking the notion of attraction bias back to the
idea of communities as sets of nodes with high cohesion, from which we started
in the Introduction, we now reformulate the notion of cohesion in a different
norm (�∞ instead of �1), and define cohesion of a set of nodes U ⊆ N to be their
minimal symmetric attraction bias

Υ (U) =
∧

i,j∈U

(Υij ∨ Υji)

For each ε ∈ [0, 1], we define an ε- community to be a set of nodes U ⊆ N
such that Υ (U) ≥ ε. Denoting by ℘εN the set of ε-communities, note that
ε1 ≤ ε2 implies that ℘ε1N ⊇ ℘ε2N . The partial ordering of U, V ∈ ℘εN is
given by U � V ⇐⇒ U ⊆ V ∧ Υ (U) ≤ Υ (V ) This gives a directed complete
partial order (dcpo). It is not a lattice because some communities cannot be
extended by new nodes without decreasing their cohesion; so there are pairs of
communities that cannot be joined, and do not have an upper bound. However,
directed sets of communities (i.e., where each pair has an upper bound) do have
least upper bounds, which are just their set theoretic unions. Directed complete
partial orders are often used in denotational semantics of programming languages
[5]. According to that interpretation, communities can be thought of as pieces
of partial information, their �- ordering as the increase of information, and
the existence of an upper bound of two communities as the consistency of the
informations that they carry.

The maximal elements of ℘εN , i.e. the communities that cannot be extended
by new nodes without losing cohesion, can be construed as ε-concepts. A set
U ∈ ℘εN is thus an ε-concept if Υ ({i, j}) ≥ ε holds for all i, j ∈ U , but for
every k ∈ N \ U there is a j ∈ U such that Υ ({k, j}) < ε.

The community and concept structure of a network A can be analyzed
by studying the sequence of hypergraphs Aε, where the ε-concepts, or the ε-
communities approximating them, are viewed as hyperedges. The sequence
(Aε)ε∈[0,1] decreases as the cohesion parameter ε increases, and the highly cohe-
sive communities and concepts can be feasibly analyzed.

A level further, concepts and communities can be viewed as the nodes of a
network. The most interesting definition of the links between them, intuitively
thought of as associations, is based on a variant of a path network, complement-
ing definition 2. A sketch of this definition is in the next, final subsection.
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Associations. Let N ε denote the set of ε-concepts in a network A. The concept
network Aε, induced by a network A, has the ε-concepts as its nodes. Its edges
are called concept associations. The set of associations between U, V ∈ N ε is

Eε
UV =

∑

U→
a

U∩V

∑

U∩V →
b

V

Ẽab

where U
ξ→ V abbreviates δ(ξ) ∈ U ∧ �(ξ) ∈ V , and

Ẽab =
{
f = 〈f0, f1〉 ∈ Eij × Ek� | γ(f0) + γ(b) ≤ v − d and γ(a) + γ(f1) ≤ v − d

}

An association f ∈ AUV is thus a quadruple f = 〈a, b, f0, f1〉

i

a

��

f0 �� j

b

��
k

f1

�� �

such that i, j, k ∈ U and j, k, � ∈ V . Its cost is γ(f) = γ(f0)+γ(b)−γ(a)−γ(f1).
The cost of an association from U to V is lower if the traffic from i ∈ U to � ∈ V
gets less costly when it crosses to V earlier.

While the general network analysis tools apply to concept networks, the var-
ious notions of dynamics acquire new meanings on this level. At this point,
understanding which of the possible interpretations may lead to useful tools for
extracting and analyzing the relevant concepts, processed in a network, seems
to call for experimentation with real data.
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Abstract. Attributed graphs are often used in software engineering.
Mainly algorithms concerning programs and models transformations are
based on rewriting techniques. We suggest a unified categorical approach
for the description and the verification of such algorithms and programs.
This contribution which is a generalization of the double pushout ap-
proach can be seen as a mix between pushout and pullback. This will
facilitate the computations on attributes within a unified framework. It
should be particularly helpful for model to model transformation in the
domain of “Model Driven Architecture”.

1 Introduction

When dealing with graphs, there are generally two points of view. The first
one concentrates mostly on a static analysis of graph properties such as the
shortest path or the maximal flow, cycles, connected components; such an ap-
proach is nowadays mainly found in mathematics. The second one is more on
the dynamic side. Here the graphs are used to describe the transitions from
one state to another when an “action” is performed. Since the 1970s the de-
scription of such processes can be done in a formal way through the use of
“graph grammars” which are a generalization of the textual Chomsky’s gram-
mars applied to graphs. The concept of graph grammars has been successfully
used in many scientific domains. Many topics in computer science can be ad-
dressed using graph grammars. Let us quote some: program optimisation and/or
transformation [3], image processing [2,18], software engineering. Since nearly a
decade, the so called Model Driven Architecture (abbreviated MDA) has in-
creased graph notation and language popularity [13]. Subsequently, the theory
of graph grammars has known a considerable revival of activity [4]. In fact, mod-
eling and meta modeling in software engineering is mainly based on attributed
graph rewriting. Among the formalisms with the most solid theoretical foun-
dations, Ehrig’s double pushout approach has already a long tradition [8] and
various applications [9]. These seminal works are very interesting because they
allow not only to implement structural transformations but also to compute
attributes that decorate the structures. In fact, software engineering, in con-
trast e.g. to image processing where structural transformations are primordial,
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needs to attach semantic information to the nodes or edges of graphs: attributes
for models or semantic networks, tokens for Petri nets, etc. For Ehrig and his
colleagues, the background of their rewriting systems mainly relies on graph
categories and pushout operations. These characteristics are very convenient to
define structural transformations but not sufficient to implement computations
with attributes. Because of certain difficulties with the direct approach, Ehrig
suggests to use another formalism (Σ-algebras) [12]. This combination leads to
a hybrid theoretical construction which can be cumbersome theoretically and
practically. Our contribution aims at a homogeneous theoretical framework for
graph rewriting unifying in a common formalism structural transformations and
computations with attributes.

This paper is organized as follows: in section 2, the current solutions are
discussed, in section 3, the basic definitions of our contribution are presented
and in section 4 and 5 the method to construct pushouts and graph rewritings
in our framework is given.

2 The Current Solutions

For textual grammars, rewriting is based on manipulations of linear strings of
characters such as substitution or concatenation. For graphs grammars, opera-
tions on strings are no more sufficient. Many generalizations are possible: e.g.,
the connexion relations in the “node replacement” approach or the external
nodes in the “hyperedge replacement” approach [20]. The operations based on
the (double) pushout are really interesting because they offer an algebraic frame-
work that rests on category theory to perform the rewriting. The first uses of the
pushout to rewrite graphs, by Hartmut Ehrig, can be found in [8,11]. There,
a rewriting rule p is given by three graphs K, L and R and two morphisms
l : K → L and r : K → R. The elements of L with no pre-image by l will be
deleted by the application of the rule and the elements of R with no pre-image
by r will be created. The graph K is the “glue” graph linking the graphs L and
R. The application of such rules on a graph G is decomposed in three steps:
finding a morphism between L and G, construction of the pushout-complement
and construction of the pushout. To have a unique solution, the morphism be-
tween L and G is often restricted to injective morphisms. A useful property of
this theory is that all rewriting rules are reversible.

In the last decades, this theory has evolved in order to generalize the graphs
which can be rewritten. One of the most advanced solutions is given by the
double pushout approach (abbreviated as DPO approach) in the “adhesive high
level replacement categories” (see [12]) in which the graphs can be attributed
and typed. The adhesive HLR categories (based on the adhesive categories in-
troduced by Lack and Sobocinski in [17]) are a concept which permits to get
certain interesting properties for graph rewriting systems, for example, the local
Church-Rosser and parallelism properties, confluence or critical pair analy-
sis, etc. Some refinements of this approach have been studied: e.g., the work of
Kastenberg [16] can be cited. We now give some definitions and propositions of
the HLR approach.
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Definition 1. An E-graph G = (V1, V2, E1, E2, E3, (sourcei, targeti)i∈�1,3�) is
given by five sets: V1 and V2 respectively called graph nodes set and data nodes
set, E1, E2, and E3 respectively called edges set, node attributes set and edge
attributes set and six functions giving for each set of edges the source and the
target of the edges.

An E-graph morphism f : G1 → G2 is given by five functions (fV1 , fV2 , fE1 ,
fE2 , fE3) with fVi : G1,Vi → G2,Vi for i ∈ �1, 2� and fEj : G1,Ej → G2,Ej for
j ∈ �1, 3� such that all these functions commute with all the functions source
and target of G1 and G2.

Definition 2. Let us give a data signature DSIG = (SD, OPD) with the at-
tribute value sorts S′

D ⊂ SD. An attributed graph AG = (G, D) is given by an
E-graph G and a DSIG-algebra D such that

⋃
s∈S′

D
Ds = GV2 .

The class of all attributed graphs with the attributed graph morphisms consti-
tutes an adhesive HLR category. Consequently, all the properties already given
are present in the framework. The definition of the rules are very similar to the
definition with simple graphs: some conditions on the morphisms l and r are
added in order to ensure that rewriting is possible.

Definition 3. A transformation rule p : L ← K → R is given by three attributed
graphs (with variables) K, L, and R and two morphisms l : K → L and r : K →
R which have to be injective on the graph structure and isomorphic over the
graph attributes.

In order to describe computations on the attributes, we have to use terms that
contain variables; for example, in the graph R, an attribute x + y can be found
if in the graph K the variables x and y are present.

The main drawback of this approach is the heterogeneous structures used to
define a graph (sets and algebraic signatures). The way of dealing with attributes
leads to a huge graph: a node is created for each value of a variable. Changing the
value of an attribute attached to a node consists in canceling the edge connected
to the old value to the node and creating a new edge whose target is the new
value. If this solution is theoretically acceptable, it cannot be easily implemented.
For this reason, in the AGG environment [21] the computations of attributes are
directly executed in an external programming language.

3 The “Double Pushout Pullback” Approach

The main idea of our study was to find a uniform framework to describe the
graphs and the morphisms. Keeping to the same conceptual scheme as in the
above constructions, the goal was to put the attribute computation to work
in a more uniform way. We would like to remain within the same theory for
implementing computations.

The Double Pushout Pullback solution (abbreviated as DPoPb) uses induc-
tive types to code the attributed graphs: finite types to describe the structure
of the graphs and general inductive types to define the data types. This choice
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has been mainly made for two reasons. The first one was to take advantage
of the power of type theory in order to be able to prove some logical proper-
ties on the graph transformations (e.g. giving pre-conditions and post-conditions
for a transformation for each rule of the system). The second reason concerns
the future implementation of this theory: some proof assistants like Coq [7] are
very efficient to work with the inductive types; moreover, in Coq, libraries for
categorical computations (such as pushout or pullback) are available.

One of the earlier problems met was working with the attributes: for example,
how to copy the value of an attribute during the transformation? This transfor-
mation has to stand during the second pushout because it is a creation process.
So we have an attribute attached to a node of the graph K and we want to
copy it to the graph R. With a classical morphism from K to R, this attribute
can have only one image in the graph R and it is then impossible to share the
information it is carrying between the two copies.

The central idea of the DPoPb approach is to use the power of the pullback for
computing attribute values. E.g., in the theory of graph transformations based
on pullback (see for example the introduction of [15]), copies of arbitrary graphs
are easily described using only one rule, while in the pushout approach, one rule
is needed for each graph. The use of the pullback is justified by the possibility of
reversing the arrows between the attributes (see definitions below). The whole
construction can be seen as a pushout in a suitable category, but also, for a more
intuitive point of view, as a mix between a pushout and a pullback.

We will now proceed in giving the formal definitions for the category of at-
tributed graph used for the DPoPb approach.

Structure. The following definition uses “Coq-style” notation [7]:

Definition 4. The graph structure G consists of an inductive finite type for the
nodes SG = Ind()(SG : Set := s1 : SG, . . . , sn : SG), with a function AG for the
edges. This function is typed by AG : (x : SG)(y : SG)FiniteT ypes.

The number of constructors si in the type SG gives the number of the nodes in
the graph. Similarly, for each pair of nodes (s1, s2), the number of constructors
in AG(s1, s2) stands for the number of edges starting from s1 and arriving on s2.

Attributes. For clarity, only attributes on the nodes will be considered below.
The extension of definitions to data on edges can be given in a similar way.

To attach attributes to the structure, we will proceed in two steps. The first
step consists in giving to each node the types of the attributes we want to bind
to the node. Then, the values of the attributes are defined.

During the first step, we want to retain the possibility to put on a node several
attributes of the same type. For this reason, we use a relation rather than a
partial function as described in [14]. It must also be possible to distinguish these
attributes. To that purpose, we use the notion of conform copies of inductive
types (see [5]). An inductive type T ′ will be called a conform copy of the inductive
type T if T ′ differs from T only in the names of the constructors.
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Definition 5. A labelling relation is a relation between the nodes of a graph and
the copies of the inductive types (we have to define before how many copies of a
given inductive type are needed for the graph).

This relation allows to provide each node with the types of the possible data we
want to attach to this node.

For a graph G, the labelling relation will be denoted by RG and for a node s
in SG, RG

s will denote the set of data type in relation with the node s.
Now, we define a function that takes a node from a graph and a data type in

relation with this node and gives the attribute. An attribute does not have to be
in the inductive type: it can also be undefined, it will then be called a joker and
be denoted by ❀. This possibility will be useful for the graph transformations:
the joker will play the role of a variable.

Definition 6. For the structure of a graph G and a labelling relation RG, the
attribution function is a map of type:

ASG :
(∏

s : SG

( ∏
DT : RG

s (DT ∪ ❀)
))

.

Definition 7. An attributed graph will be given by a structure (nodes SG and
edges AG), a labelling relation RG, and an attribution function ASG.

This definition shows a main difference between the DPoPb approach and the
HLR theory. In [10], the attributes are encapsulated in some special nodes of
the graph. So in order to attach information to a node s of the structure, it is
necessary to put an edge between s and the node which carries the right value for
the attribute. As a consequence, if a sort has an infinity numbers of values, the
resulting graph will theoretically speaking be infinite. With the above definitions,
we only attach the required attributes to nodes.

Let G and H be two attributed graphs. Now, the notion of morphism between
G and H is defined.

Structure morphisms. On the structure, the morphism will just be defined
by classical functions: fS : SG → SH for the nodes and fA of type (x : SG

n )(y :
SG

n )(AG(x, y) −→ AH(fS(x), fS(y)) for the edges. In order to avoid losing infor-
mation during morphism application, a new compatibility condition is added.
For each node, its image by fS must contain at least the same data types; i.e.,
for each node s in the graph G and for each data type DT in relation with s then
DT is also in relation with fS(s). In the following, the pair (fS , fA) is denoted
by “structural morphism”.

Data type morphisms. We now suppose that we have a structural morphism
f = (fS , fA) from the graph G to the graph H . The intuitive idea in the definition
of morphisms on the attributes is the following: unlike the arrows between the
nodes and the edges, the arrows between the data types are starting from the
graph H and finishing on the graph G. The first step of the construction is
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to detect which attributes of H are related to those of G (definition 9 and
definition 10). With this construction, the morphisms between data types can be
constituted by arrows with multiple sources (but only one target). Such “arrows”
are called trees and can describe complex relations: for example, if we want to add
two natural numbers, we will get a tree with two sources (the numbers to add)
and the target will be the result. In the second step, for each tree, a computation
function will be added in order to describe the computation (definition 11).

Definition 8. Let A and B be two sets. A multi-valued relation between A and
B is a relation which allows a ∈ A and b ∈ B to be in relation several times.
Formally, a multi-valued relation can be seen as a multiset on the Cartesian
product A × B.

The first requirement about this relation is that a data type DT attached to the
node s in the graph G has to be in relation with the same data type attached to
the node fS(s) in the graph H (this data type exists in H due to the condition
on the morphism in section 3). With this condition, the information carried by
the attributes is not lost during the application of the morphism.

Definition 9. Let Rf be a multi-valued relation between the dependent types(∏
s : SH RH

s

)
and

(∏
s : SG RG

s

)
. This relation will be compatible with the

structural morphism f if the following condition holds: for all node s in SG, for
all data type DT in relation with s,

(s, DT ) Rf (fS(s), DT ) .

This condition defines the “necessary elements” of a compatible relation. The
(multi-)set of the data types in the graph H in relation with (s, DT ) is denoted
Rf

(s,DT ) .

The following definition explains how other attributes of the graph G can influ-
ence attributes of the graph G.

Definition 10. Let Rf be a relation compatible with f . A partitioning associated
to f and Rf is given by a partition of Rf

(s,DT ) for each node s ∈ SG and each
data type DT in relation with s.

Each element of one of these partitions will be called a tree. The compatible
relation with f and the partitioning will then be called the forest of the morphism.

Attribute morphisms. As we now have defined how data types are related
to the others, it is possible to show the way how this relation works. For this
purpose, for each tree of the morphism, an application is defined.

Definition 11. A computation function is a function defined for each tree of a
morphism. Its domain is the Cartesian product of the data types at the leaves of
the tree (corresponding to the graph H) and its codomain is the data type at the
root (corresponding to the graph G). Is is coherent with the graph G and H if
the image of the attributes at the leaves of the tree is equal to the attributes on
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the root. In case of jokers, the condition is weaker: a computation function can
send any attribute on a joker, but a joker is necessarily sent on a joker.

Definition 12. A morphism between two attributed graphs is given by a struc-
tural morphism, a forest, and for each tree of the forest, a computation function.

Theorem 1. The class of attributed graphs forms a category, called AttGraph,
with the morphisms as arrows.

The importance of reversing arrows for computation functions. To understand
the reasons to change the orientation of arrows for computation functions, let
us study a simple example. Figure 1(a) shows the transformation we want to
apply to a source graph: the two attributes of the graph G have to be added and
the result has to be stored in an attribute of H (the node carrying the second
attribute is deleted during the transformation); parallely, a new node is created
on H with a copy of the string in the source graph G.

Since the context graph of such transformation contains only two nodes and
two data types (Nat and String), addition of two natural numbers has to take
place during the first pushout. We have then to define a function between the
Nat data type of the context graph and the two Nat data types of the source
graph G summing the two numbers. It is then more natural to start from the
graph G. Then the computation function will follow the intuitive definition of
the transformation. Moreover, it is impossible to find an inverse function to the
summing function. Looking for having the arrows for compution functions in the
same direction as the ones for the structure is then no use. The other part of the
transformation is similar: since there is only one String data type in the context
graph, the copy of the word key has to be done in the second pushout. With a
classical function, the value of an attribute can only be sent to one place; but by
changing the orientation of the arrows for the functions, the attribute in graph
R can easily “go and pick up” any value of attributes in the graph K; then,
several attributes can then share the same value.

5 3

key G H

8

keykey

(a) A graph rewrite

❀:String

❀:Nat

❀:Nat❀:Nat❀:Nat

❀:String ❀:String ❀:String

L R

K

IdString

Sum

IdString

IdString

IdNat

(b) The computation functions of the rule

Fig. 1. Reversing the arrows
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4 The Pushout

Let A, B, and C be three attributed graphs and b : A → B and c : A → C two
morphisms.

Definition 13. The pushout of b and c is given by an attributed graph D with
two morphisms b′ : C → D and c′ : B → D such that the square ABCD is
commutative (i.e. c′ ◦ b = b′ ◦ c) and the following universal property is fulfilled:
for all attributed graph D′ and morphisms b̃ : C → D′ and c̃ : B → D′ with
c̃ ◦ b = b̃ ◦ c, there is a unique morphism d : D → D′ such that b̃ = d ◦ b′ and
c̃ = d ◦ c′.

Intuitively speaking, this construction allows to glue the graphs B and C along
a pattern (the graph A).

This leads to another question: if the morphisms b and c′ are given, is it
possible to find a graph C and morphisms c and b′ in order to complete the
square? The solution to this problem is called the pushout-complement of b
and c′.

In the category of simple graphs, the objects are built with sets (one set for
the nodes and another one for the edges). Due to this fact, the pushout of two
morphisms always exists, since we know how to construct arbitrary pushouts in
the category of sets.

In the category AttGraph, due to the trees and the computation functions,
it is not possible to use the same simple method to find the pushout of two
morphisms. Moreover, it is very easy to find examples where the construction
is impossible. For example, contradictions may arise in the placement of the
computation functions: on the same tree, we would have to attach two different
values of the associated computation function. In order to avoid these drawbacks,
we will impose some conditions on the morphisms. These conditions will not be
very restrictive for graph rewriting: most of them could be seen as natural for a
transformation rule.

The first class of morphisms we will define is used to describe graph transfor-
mations. In a first time, two technical conditions are imposed for this class to
ensure the existence of the pushout in the most general case. In section 5, it will
be explained how to get around of this restrictions.

Definition 14. The class M of morphisms of attributed graphs is composed
by the morphisms of which the structural part is injective and the computation
functions are bijective.

The second class will be useful in order to extract exactly a graph into a larger
one: the morphism has to be injective on the structure (the condition a of the
definition 15) and the attributes should be equal in the two graphs (except on
the jokers) (the conditions b and c).

Definition 15. The class N of morphisms of attributed graphs is composed by
the morphisms verifying the following properties:
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a. the structural part is injective;
b. the relation between data types is restricted to the necessary elements;
c. the computation functions are the identity functions.

From the intuitive point of view, since the arrows for computation functions are
reversed, the construction of the pushout in the category AttGraph can be seen
as a pullback construction for these computation functions. Hence, we call our
approach the “Double Pushout Pullback” approach, even if we do not compute
effectively any pullback during a graph transformation.

Theorem 2. If the morphism b is in the class M and the morphism c is in
the class N , then the pushout of b and c exists up to the verification of the
compatibility of the attributes.

Theorem 3. Similarly, the construction of the pushout-complement of a mor-
phism b ∈ M and a morphism c′ ∈ N exists up to the verification of the com-
patibility of the attributes.

In these two theorems, the construction of the new attributed graph can be
blocked by differences of concrete values of some attributes. This problem is not
just a theoretical complication but reflects real modeling situations: if we want to
merge two attributes with different values, it is normal to stop on this difficulty
because we cannot choose a natural value for the new attribute.

There are several ways to address this problem. The conservative one is to say
that the transformation is impossible. We are then certain to get no incoherent
result. The second solution consists in “factorizing” the data types correspond-
ing to problematic attributes in order to identify the incompatible values (the
constrains resolution induced by this identification may lead in some cases to a
data type with only one element). With this approach, even if some information
is lost during the pushout, the construction can be completed and in some cases,
it could be interesting to always get a result, even if it is partial.

5 Graph Rewriting

Before explaining how graphs are rewritten, we describe how to generalize the
above construction of the pushout by getting around of the restrictions imposed
in the definition of the class M. In the explicit constructions of the pushout
and the pushout-complement, the following observations can be made: the con-
dition of injectivity on the structural part of the morphism b is useless in the
construction of the pushout and the condition on the computation functions of
b is useless in the construction of pushout-complement. These observations are
very important for the description of transformation rules. The first step in the
application of a transformation is a computation of a pushout-complement, so
in the left-hand part of the rule, the morphism does not need to have isomorphic
computation functions. This allows to do complex computations with the at-
tributes. The second step of the transformation is the construction of a pushout,
so the right-hand part of the rule could be non-injective and then the merging
of nodes or edges will be possible.
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Definition 16. The class M′ of morphisms of attributed graphs is composed by
the morphisms which the structural part is injective.

Definition 17. The class M′′ of morphisms of attributed graphs is composed
by the morphisms with isomorphic computation functions.

Definition 18. A transformation rule in the DPoPb approach is given by the
attributed graphs K, L and R and two morphisms l : K → L belonging to the
class M′ and r : K → R belonging to the class M′′.

To apply such a rule to a graph G, we have to find a match of the graph L in
the graph G, i.e. a morphism m : L → G in the class N . Then we compute
the pushout-complement of l and m to find a new graph D with a morphism
m′ : K → D. This construction is useful to delete elements of the structure and
make complex computations on the attributes. Finally we compute the pushout
of m′ and r to find the result. During this step, structural elements can be
created and attributes be copied.

6 Example

We give here an example corresponding to the transformation of syntax trees for
arithmetic expressions into direct acyclic graphs. This transformation, detailed

❀: Var ❀: Var

❀: Var❀: Var ❀: Var

L

K

R

Id

Id

(a) Merging variables

❀: Op❀: Op ❀: Op

❀: Op❀: Op

RL

K

Id

Id

(b) Merging operations

Fig. 2. The two rules to transform a syntax tree
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in [1], consists in recognizing identical subtrees in the original tree in order to
reduce its size. The rewriting consists in a first step to merge the nodes with the
same variable and in a second step to merge nodes and edges representing the
same sub-expression. The two rewriting rules are shown in figure 2. For clarity,
only the non trivial computation functions are represented on the schemes. For
these two rules, the left hand side is the identity, thus we can simplify the
construction of the transformation by computing only one pushout. Moreover,
in order to ensure the correct application of these rules, some negative application
conditions need to be added (see [19] for more details).

7 Conclusion

We outline the difficulties of the heterogeneous character of attributed graph
transformations and the computations which are concerned. We suggest a com-
bined approach by pushouts and pullbacks which can express many kinds of
computations. The use of inductive types opens a way for efficient use of very
established proof assistant systems like Coq. It is to be noticed that this formal
framework offers all the interesting properties required to work efficiently with a
graph rewriting system (the local Church-Rosser and parallelism properties,
confluence, or critical pair analysis). Moreover, like in the DPO approach in the
adhesive HLR categories, transformations of typed graph are possible. A work
dedicated to implementation will be a natural continuation of this study.
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