

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 68–84, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Integration of Formal Analysis into a Model-Based
Software Development Process

Michael Whalen1, Darren Cofer1, Steven Miller1, Bruce H. Krogh2,
and Walter Storm3

1 Rockwell Collins Inc., Advanced Technology Center
400 Collins Rd, Cedar Rapids, IA 52498

2 Carnegie Mellon University, Dept. of Electical & Computer Engineering
5000 Forbes Ave., Pittsburgh, PA 15123

3 Lockheed Martin Aeronautics Company, Flight Control Advanced Development
P.O. Box 748, Ft. Worth, TX 76101

{mwwhalen, ddcofer, spmiller}@rockwellcollins.com,
krogh@ece.cmu.edu, walter.a.storm@lmco.com

Abstract. The next generation of military aerospace systems will include
advanced control systems whose size and complexity will challenge current
verification and validation approaches. The recent adoption by the aerospace
industry of model-based development tools such as Simulink® and SCADE
Suite™ is removing barriers to the use of formal methods for the verification of
critical avionics software. Formal methods use mathematics to prove that soft-
ware design models meet their requirements, and so can greatly increase confi-
dence in the safety and correctness of software. Recent advances in formal
analysis tools have made it practical to formally verify important properties of
these models to ensure that design defects are identified and corrected early in
the lifecycle. This paper describes how formal analysis tools can be inserted
into a model-based development process to decrease costs and increase quality
of critical avionics software.

Keywords: Model checking, Model-based development, Flight control,
software verification.

1 Introduction

Emerging military aerospace system operational goals will require advanced safety-
critical control systems with more demanding requirements and novel system archi-
tectures, software algorithms, and hardware implementations. These emerging control
systems will significantly challenge current verification tools, methods, and proc-
esses. Ultimately, transition of advanced control systems to operational military sys-
tems will be possible only when there are affordable V&V strategies that reduce costs
and compress schedules. The AFRL VVIACS program documented these challenges
in detail [1].

Current software validation and verification for critical systems centers on testing
of English-language requirements. While testing is currently the only way to examine

 Integration of Formal Analysis into a Model-Based Software Development Process 69

the behavior of a system in its final operational environment, it is incomplete and
resource intensive. The incompleteness of testing is due to the extremely large state
space of even small control systems.

To illustrate, the number of possible states of a program with ten 32-bit integers is
1096, which exceeds the number of atoms in the universe (around 1080). To exhaus-
tively test such systems is clearly impractical. Extremely large numbers of tests must
be run to gain confidence in the correctness of programs, and these test suites are still
insufficient to determine whether or not a system meets its requirements.

Further complicating the issue is that the requirements for the system are usually
specified in English. It is often the case that these requirements are ambiguous, in-
complete, and inconsistent, meaning that developers may legitimately disagree as to
whether the system meets its requirements, or even that it is not possible to implement
a program that meets all of the requirements.

While the benefits of formal methods have been understood for over twenty years,
their use has been hampered by the lack of specification languages acceptable to prac-
ticing engineers and the level of expertise required to effectively use formal verifica-
tion tools such as theorem provers. Over the last few years these hurdles have been
greatly reduced by two trends: 1) the growing adoption of model-based development
for safety-critical systems; and 2) the development of powerful verification tools that
are easier for practicing engineers to use. The result will be a revolution in how
safety-critical software is developed.

Lockheed Martin, Rockwell Collins, and Carnegie Mellon University are working
together under AFRL’s Certification Technologies for Advanced Flight Critical Sys-
tems (CerTA FCS) program. Our team is tasked with determining the applicability of
formal methods to avionics verification concerns for next-generation control systems.
Rockwell Collins has built a set of tools that translate Simulink models into the lan-
guages of several formal analysis tools, allowing “push button” analysis of Simulink
models using model checkers and theorem provers. The project is split into two
phases which analyze finite and infinite state models, respectively.

This paper describes the process used and the results obtained in the first phase of
the project, in which we successfully and cost-effectively analyzed large finite-state
subsystems within a prototype UAV controller modeled in Simulink. During the
analysis, over 60 formal properties were verified and 10 model errors and 2 require-
ments errors were found in relatively mature models. These results are similar to
previous applications of this technology on large avionics models at Rockwell Collins
[2][3][10].

To use formal methods most effectively, some changes must be made to the tradi-
tional development cycle, and formal analysis should be considered when creating
requirements and designing models. This paper focuses on processes and techniques
for using formal methods effectively within the design cycle for critical avionics
applications.

2 Formal Methods in a Model-Based Development Process

Model-Based Development (MBD) refers to the use of domain-specific modeling
notations such as Simulink or SCADE that can be analyzed for desired behavior

70 M. Whalen et al.

before a digital system is built. The use of such modeling languages allows a system
engineer to create a model of the desired system early in the lifecycle that can be
executed on the desktop, analyzed for desired behaviors, and then used to automati-
cally generate code and test cases. Also known as correct-by-construction develop-
ment, the emphasis in model-based development is to focus the engineering effort on
the early lifecycle activities of modeling, simulation, and analysis, and to automate
the late life-cycle activities of coding and testing. This reduces development costs by
finding defects early in the lifecycle, avoiding rework that is necessary when errors
are discovered during integration testing, and by automating coding and the creation
of test cases. In this way, model-based development significantly reduces costs while
also improving quality.

Formal methods may be applied in a MBD process to prevent and eliminate re-
quirements, design and code errors, and should be viewed as complementary to test-
ing. While testing shows that functional requirements are satisfied for specific input
sequences and detects some errors, formal methods can be used to increase confi-
dence that a system will always comply with particular requirements when specific
conditions hold. Informally we can say that testing shows that the software does work
for certain test cases and formal, analytical methods show that it should work for all
cases. It follows that some verification objectives may be better met by formal, ana-
lytical means and others might be better met by testing.

Although formal methods have significant technical advantages over testing for
software verification, their use has been limited in industry. The additional cost and
effort of creating and reasoning about formal models in a traditional development
process has been a significant barrier. Manually creating models solely for the pur-
pose of formal analysis is labor intensive, requires significant knowledge of formal
methods notations, and requires that models and code be kept tightly synchronized to
justify the results of the analysis.

The value proposition for formal methods changes dramatically with the introduc-
tion of MBD and the use of completely automated analysis tools. Many of the nota-
tions in MBD have straightforward formal semantics. This means that it is possible to
use models written in these languages as the basis for formal analysis, removing the
incremental cost for constructing verification models. Also, model checkers are now
sufficiently powerful to allow “push-button” analysis of interesting properties over
large models, removing the manual analysis cost. If a property is violated, the model
checker generates a counterexample, which is simply a test case that shows a scenario
that violates the property. The counterexamples generated by model checkers are
often better for localizing and correcting failures than discovering failures from test-
ing and simulation because they tend to be very short (under 10 input steps) and tai-
lored towards the specific requirement in question.

The Rockwell Collins translation framework is illustrated in Figure 1. Under a five
year project sponsored in part by the NASA Langley Research Center, Rockwell
Collins developed highly optimizing translators from MATLAB Simulink and
SCADE Suite™ models to a variety of implicit state model checkers and theorem
provers. These automated tools allow us to quickly and easily generate models for
verification directly from the design models produced by the MBD process. The

 Integration of Formal Analysis into a Model-Based Software Development Process 71

counterexamples generated by model checking tools can be translated back to the
MBD environment for simulation. This tool infrastructure provides the means for
integration of formal methods directly and efficiently into the MBD process.

Design
Verifier

SCADE

Lustre

NuSMV

PVS

Safe State
Machines

SAL

ICS

Symbolic
Model Checker
Bounded
Model Checker

Infinite
Model Checker

Simulink

StateFlow

Reactis

ACL2

Prover

Rockwell Collins
translation framework

Translation paths
provided by others

Fig. 1. Rockwell Collins model translation framework

There are at least two different ways that model checking can be integrated into a
MBD process. First, it can be performed as part of the traditional verification process
in a traditional waterfall model in addition to testing. This was the approach used in
the first phase of the CerTA FCS project. In this approach, the model checker simply
provides a significantly more rigorous verification step to ensure that the model works
as intended. However, if this step is performed late in the development cycle, much of
the benefit of early detection and quick removal of defects is lost.

A better approach for integrating model checking technology is to include formal
analysis as an extension of a spiral development process. In an MBD process, it is
common during the model design phase to use simulation as a “sanity check” to make
sure that the model is performing as intended with respect to some system require-
ments of interest. When performed at the subsystem level, model checking allows a
much more rigorous analysis based directly on the requirements of the system. If the
subsystem requirements have been captured as “shall” statements, it is usually the
case that these statements can be easily re-written as formal properties. Although
model checking is a rigorous application of formal methods, for many kinds of mod-
els it does not require a significant amount of manual effort.

The spiral approach was used in a previous effort during the model development
process for a complex cockpit displays application [2]. After each modification of the
design, Simulink models were re-analyzed against a large set of requirements in a
matter of minutes. By the end of the project, the model had been proven correct
against all of their requirements (573 formal properties) and 98 errors had been
corrected.

The guidance in this paper focuses on the use of implicit state model checkers, be-
cause this is the most mature of the “push-button” analysis tools, and these tools were
the focus of Phase I of the CerTA FCS project. In order to reap the maximum benefit
of formal analysis, models must be designed for analysis, much as they are designed

72 M. Whalen et al.

for autocode or test case generation in current processes. The rest of this section pro-
vides guidelines for determining whether implicit state model checking is an appro-
priate technique for the model being constructed, and for using model checking
successfully within the development process.

Implicit state model checkers are designed to analyze models with discrete vari-
ables that have relatively small domains: Boolean and enumerated types, or relatively
small subranges of integers. The performance of the tools is primarily determined by
four things: 1) the number of inputs to the model, 2) the number of latches (delays) in
the model, 3) the size of each variable (number of bits), and 4) the complexity of the
assignment equations for the variables. Implicit state model checkers do not have the
ability to analyze models with real or floating point variables.

There are four primary questions in determining the applicability of implicit state
model checkers in an MBD process.

• Does tool support exist (or can it be created) to automatically translate the MBD

notation to the notation of the analysis tool? A handful of tools have model check-
ing support built into the tool (e.g., Esterel Technologies SCADE, i-Logix State-
Mate), and several more academic and commercial projects support translation into
analysis tools from Simulink and Stateflow.

• If the model contains large-domain integers or floating point numbers, can these be
abstracted or restructured away from the “core” of the model? Implicit state model
checkers cannot reason about floating point numbers, and do not scale well with
large-domain integers. However, it is often the case that there is a complex mode
logic “core” that can be analyzed separately via model checking, while the sur-
rounding code that manages the floating point or large-domain integers can be ana-
lyzed using other means.

• Can the model be partitioned into subsystems that have intrinsically interesting
properties and that are of reasonable size? Model checking has been shown to be
very effective at verification and validation of large software models in a model-
development process. However, there are scalability limits for implicit state tools
that limit the size of models that can be analyzed effectively. In Section 5, we de-
scribe strategies for structuring requirements such that requirements over the entire
model are entailed by simpler obligations over subsystems within the model.

• Can the requirements be formalized? Traditional English requirements documents
are often well-suited to formalization [3], so this may not be a significant a barrier
to use. Also, designers tend to have an intuitive notion of the expected behavior of
a subsystem, and when formalized, these properties can form excellent documenta-
tion about the behavior of a model.

If the answers to each of these questions is ‘yes’, then implicit state model checking is
an efficient and low-cost approach for analyzing the behavior of models.

3 Changes to the Verification Process

In our experience, the introduction of model checking changes the nature of the veri-
fication process. Instead of focusing on the creation of test vectors, the focus is on the

 Integration of Formal Analysis into a Model-Based Software Development Process 73

creation of properties and environmental assumptions. The properties are translations
of natural language requirements into a formal notation, and the environmental as-
sumptions are constraints on the inputs of the model that describe the intended operat-
ing environment for the model.

Figure 2 illustrates the difference between a test-based process and analysis-based
verfication. In a test-based verification process, test cases must be developed for each
requirement. Each test case defines a combination of input values (a test vector) or a
sequence of inputs (a test sequence) that specifies the operating condition(s) under
which the requirement must hold. The test case must also define the output to be pro-
duced by the system under test in response to the input test sequence.

Requirement

Test
Sequence

Required
Output

Environmental
Assumptions

Or Constraints

Properties
over all

Reachable
States

Requirements

Fig. 2. Test-based verification (left) vs. Analysis-based verification (right)

An analysis-based verification process may be thought of in the same way. We
normally consider a group of requirements, with related functionality for a particular
subsystem. The environmental assumptions or constraints specify the operating condi-
tions under which the requirements must hold. The properties define subsystem be-
haviors (values of outputs or state variables) that must hold for all system states
reachable under the specified environmental assumptions.

The essential difference is one of precision: model checking requires the specifica-
tion of exactly what is meant by specific requirements and determines all possible
violations of those requirements at the subsystem level. This precision can be chal-
lenging, because an engineer is no longer allowed to rely on an intuitive understand-
ing to create test vectors. Also, in some cases, the notation used for properties (such
as CTL and LTL [4]) can be confusing, though there are a variety of notations
(including the MBD languages themselves!) that can be used to mitigate this diffi-
culty. Also, precise is not the same as correct. If a property is incorrectly written, then
obviously a formal analysis tool may be unable to uncover incorrect behavior within a
model. Therefore, it is very important that properties are carefully written and re-
viewed to ensure that they match the intuitive understanding of the requirement.

The fact that a model checker generates a counterexample from the set of all possi-
ble violations of a property often leads to ‘nonsensical’ counterexamples in which the
model inputs change in ways that would be impossible in the real environment. In
order to remove these counterexamples that will not occur in the real system, it is
sometimes necessary to describe environmental constraints that describe how the

74 M. Whalen et al.

inputs to the model are allowed to evolve. On the bright side, these constraints serve
as a precise description of the environmental assumptions required by the component
to meet its requirements.

We next describe specific changes to the verification process to facilitate the use of
model checking tools.

Creating Formalizable Requirements

There are many different notations and tools used for capturing requirements in the
avionics domain. These notations include traditional structured English “shall” state-
ments, use cases, SCR specifications [5], CoRE documents [6], and others. Most
avionics systems still use “shall” statements as the basis of their requirements. In our
experience, shall statements are actually a good starting place for creating formalized
requirements. Their prevalence indicates they are a natural and intuitive way for de-
signers to put their first thoughts on paper.

The problem with shall statements has been that inconsistencies, incompleteness,
and ambiguities are not found until the later phases of the project. The process of
formalizing the requirements into properties helps remove the problem of ambiguity.
When formalizing a property, by necessity, one must write an unambiguous state-
ment. The issue then becomes whether the formalization matches the intention of the
original English requirement.

Inconsistencies can be detected in several ways. First, if all requirements are for-
malized, then it is not possible to simultaneously prove all properties over a model if
the set of properties are inconsistent. With additional translation support, it is also
possible to query a model checker to determine whether any model can satisfy all of
the properties simultaneously. There are also current research projects to define met-
rics for requirements completeness over a given formal model using model checking
tools [7], but this research is not yet usable on an industrial scale.

Testable requirements are also analyzable, so this is a good starting point for de-
termining whether requirements are suitable for analysis. On the other hand, there are
classes of requirements that are not testable but are, in fact, analyzable. For example,
requirements such as:

• the system shall never allow behavior x,
• given y, the system shall always eventually do z

can be analyzed formally, but are not suitable for testing as they require an unbounded
number of test cases.

Other system requirement techniques such as use cases are also possible sources of
properties. While more structured than shall statements, as practiced today use cases
normally lack a precise formal semantics and suffer from the same problems of incon-
sistency, incompleteness, and ambiguity as shall statements. While not part of this
experiment, it seems reasonable that it should be possible to express use cases as a
sequence of properties describing how the system responds to its stimuli, and to verify
these sequences through simulation and formal analysis. In this way, the consistency
and completeness of use cases could be improved in the same manner as was done for
shall statements.

 Integration of Formal Analysis into a Model-Based Software Development Process 75

Creating Environmental Assumptions

One significant change when moving from a testing-based verification process to a
formal process is that much more attention must be focused on environmental as-
sumptions for the system being analyzed. Often, there are a significant number of
environmental assumptions that are built into the design of the control software that
cause it to fail when those assumptions are violated, and these assumptions are
often not well documented. In testing, it is usually the case that the tester has an
intuitive understanding of the system under test and is unlikely to create test scenar-
ios where the plane is “flying upside-down and backwards”. The model checker, on
the other hand, will often find requirements violations that occur under such scenar-
ios if environmental constraints that rule out impossible conditions are not stated
explicitly.

It is often not possible to verify interesting safety properties on a large model in a
completely unconstrained environment. As part of the analysis process, we examine
the environmental assumptions in the requirements document to create constraints on
the possible values of inputs into the system. Each of the model checking tools that
we have examined supports invariants that allow engineers to specify constraints on
the behavior of the environment. Here, “environment” means any inputs or parame-
ters that can affect the behavior of the model being verified, and invariants are restric-
tions on these environmental variables. These invariants should be as simple as
possible so as to not impact unduly the efficiency of the verification algorithm, but
they must be sufficiently complex to assure that the specification is being evaluated
for the relevant conditions. For example, for specifications for a controller model that
are related to the closed-loop behavior of the system, the appropriate invariant may
require the creation of a “plant model” representing a reactive environment that re-
sponds dynamically to the controller outputs.

Although invariants are necessary to prove “interesting” properties over subsys-
tems, they are also dangerous to the soundness and applicability of the analysis. If
conflicting invariants are specified, then there are no states that satisfy the invariants,
so all properties are trivially true. Similarly, if invariants restrict the set of allowed
inputs so that it is a subset of the possible inputs to the real system, then our analysis
will be incomplete. Finally, just because constraints are specified in the requirements
document does not mean that the environment, which can include other subsystems,
will actually obey these constraints.

Therefore, although we formalize the invariants in this step we do not use them in
our initial model checking analysis. If the initial subsystem analyses return counter-
examples, we analyze the counterexamples to see whether they are due to violations
of our invariants or due to incorrect behavior within the model. Even if counterexam-
ples are due to invariant violations, we prefer to strengthen the model behavior, when
possible, to deal with abnormal environments rather than use system invariants. If it is
determined that there is no good way to handle abnormal environments within the
model, then we finally begin to use the invariants derived from the environmental
assumptions.

It is worth noting that such environmental assumptions were precisely the cause of
the Arianne V disaster [8], when an assumption about the lateral velocity of the rocket

76 M. Whalen et al.

shortly after liftoff was violated when the control software was reused from the
Arianne IV, causing it to fail catastrophically. By requiring developers to make their
assumptions about the operating environment explicit and precise, a formal analysis
process can help to eliminate this type of error.

Interpreting Counterexamples

One of the benefits of using a model checker in the verification process is the gen-
eration of counterexamples that illustrate how a property has been violated. How-
ever, for large systems it can be difficult and time consuming to determine the root
cause of the violation by examining only the model checker output. Instead, the
simulation capabilities of the MBD tools should be utilized to allow playback of a
counterexample.

Both Simulink and SCADE have sophisticated simulation capabilities that allow
single-step playback of tests and easy “drill down/drill up” through the structure of
the model. These capabilities can be used to quickly localize the cause of failure for a
counterexample. Third-party tools such as Reactis [11] for Simulink also allow a
“step back” function so that it is possible to rewind and step through a sequence of
steps within a counterexample, adding to the explanatory power of the tool.

When a counterexample is discovered, it is classified by its underlying cause and
appropriate corrective action taken. The cause may be one or more of the following:

• Modeling error
• Property formalization error
• Incorrect/missing invariants for the subsystem
• High-Level requirements error

4 Changes to the Modeling Process

Flight control models, such as the Lockheed Martin operational flight program (OFP)
model analyzed in our CerTA FCS project, are too large to be efficiently analyzed by
current model checkers. There are several development practices that should be
adopted within a MBD process to create models that are suitable for analysis. These
practices will yield models that will be simpler to analyze.

Partitioning the System

The first step in analyzing the model is to divide the requirements and model into
subsystems that can be automatically analyzed. Analysis partitions are created by
splitting the original model into different subsystems and assigning a set of system
requirements that will be analyzed on the subsystem (Figure 3). After the subsystems
have been created, each subsystem is separately analyzed. The result of the analysis
process may require changes to the subsystem under analysis, to another subsystem,
or to the system-level requirements or environmental assumptions.

 Integration of Formal Analysis into a Model-Based Software Development Process 77

Subsystem LevelSystem Level

System
Requirements

System
Requirements

System
Simulink

Model

System
Simulink

Model

Group
Related

Requirements

System
Environmental
Assumptions

System
Environmental
Assumptions

Create
Analysis
Models

Related
System
Reqs

Related
System
Reqs

Subsystem
Simulink
Models

Subsystem
Simulink
Models

Formalize
Reqs

Subsystem
Properties

Subsystem
Properties

Determine
Subsystem

Environmental
Assumptions

Subsystem
Assumptions
(Invariants)

Subsystem
Assumptions
(Invariants)

Fig. 3. Process for creating analysis partitions

There are several steps necessary to create the analysis partitions.

Group Related Requirements. To create analysis partitions, we first try to group
system requirements into sets that can be checked against a portion of the system
Simulink model. In our experience with the WM and the FCS 5000 [3], it is usually
the case that the properties naturally partition into sets that are functionally related to
one another, and that the truth or falsehood of these property sets can be determined
by examining a relatively small portion of the entire Simulink model.

Create Analysis Models. After grouping the properties, we split the system model
into reasonably-sized analysis models that are sufficient to check one or more of the
requirements groups. We would like to make each subsystem small enough that it is
quick to analyze using our BDD-based model checking tools.

Formalizing Requirements. The next step in analyzing the model involves formaliz-
ing the functional and safety requirements as properties. For a synchronous system
where the requirements are specified as “shall” statements over system inputs and
outputs, this process is often straightforward. In [2], [3], and [10], we described the
process of translating these informal statements into safety properties in more detail.

The system requirements document is not the only source of properties to be
analyzed. Properties also emerge from discussions with developers about the func-
tionality of different subsystems, or even from a careful review of a particular imple-
mentation detail of the Simulink model. In some cases, these properties can be
thought of as validity checks for particular implementation choices, but on occasion
they lead to additions to the system requirements document.

Using Libraries

The construction of analysis partitions can be simplified by splitting the original model
into libraries. Both Simulink and SCADE support packaging of subsystems into librar-
ies, which are really just additional “source” files for the model. Just as it makes sense

78 M. Whalen et al.

to construct a large C program using several source files (for various reasons, including
version control), it makes sense to construct models using library files.

If a Simulink or SCADE model is created from a set of libraries, it is possible to
generate the analysis models with very little effort. A benefit of this approach is that
the subsystems within the libraries can evolve without requiring changes to the analy-
sis models, as long as the subsystem interfaces remain stable. Therefore, once the
analysis models are created, they can be used for regression testing without any addi-
tional effort.

Using Supported Blocks

Most MBD environments were originally constructed for the purpose of modeling and
simulation, or for autogeneration of source code, and not for design analysis. It is usu-
ally necessary to restrict the use of certain constructs within a MBD language that
complicate the semantics of the language, or that have potentially undefined behavior
outside of the simulation environment. Some languages, such as SCADE, were built
for formal analysis, and so almost all features of the SCADE environment (i.e., all
aspects that do not involve use of a ‘host’ language, such as C, to implement function-
ality) can be formally analyzed. Simulink contains an extremely wide range of block
sets with varying levels of formality. None of the current model checking tools for
Simulink/StateFlow support all of the block sets that can be used within the language.

The Rockwell Collins translation tools support a wide range of Simulink/StateFlow
constructs. This toolset is tailored for critical avionics software, and is able to analyze
all of the blocks used in the OFP model.

Structuring for Analysis

Design choices that lead to code-bloat or poorly cohesive systems also affect the
performance of the model checker. A rule of thumb is that the larger the number of
blocks within a model, the longer it will require to analyze. Therefore, model re-
factoring is not only a useful design activity, but often necessary to successfully ana-
lyze large subsystem models.

In our experience, we have re-factored models in which some piece of functionality
(e.g., display application placement) is replicated (e.g., left-side and right-side display
application placement) by “copy and paste reuse”. By properly packaging the func-
tionality into subsystems, we can split the analysis task into independent parts, lead-
ing to much faster analysis.

Similarly, when creating the analysis models, it is possible to indirectly analyze
subsystem coupling by examining the complexity of invariants between the outputs of
one subsystem and the inputs of another subsystem. If complex invariants are required
to prove properties about a subsystem, then it is likely that the subsystem is tightly
coupled to the subsystem that generates the outputs. These cases should be examined
to determine if it is possible to re-factor the design to simplify the analysis invariants.

Structuring for Predicate Abstraction

If models contain several large-domain integers and/or real numbers, they will not be
analyzable by current tools. However, it is often the case that these variables can be

 Integration of Formal Analysis into a Model-Based Software Development Process 79

factored out of modules that contain the complex behavior that would benefit most
from formal analysis. The idea is to either abstract the conditions that involve numeric
constraints or the ranges of the constants and variables involved in the conditions.

Subsystems that compute system modes often contain a handful of large-domain
integers that are used for comparisons in conditions within the mode computation,
e.g., Altitude > PreSelectAlt + AltCapBias. If the ranges of these integers are
large, e.g., zero to 50000 feet, analysis may become intractable, even though
they only influence a few conditions within the logic. In this case, it is much
simpler for formal analysis if the original comparisons in the mode logic are
replaced with Boolean inputs representing the result of the comparison (e.g., Alti-
tude_Gt_PreSelect_Plus_AltCapBias). This input is then computed by an external
subsystem which can be separately (and usually trivially) checked for correctness.
This kind of model factoring is called predicate abstraction [9], and can reduce the
analysis time required from hours to seconds in the original subsystem.

If the model contains a significant number of variables and the constraints involv-
ing those variables are related, or if it uses the variables to compute numeric outputs,
predicate abstraction is less useful. In these cases, it is often possible to perform do-
main reductions in order to scale the ranges so as to be able to analyze the models
successfully.

Reducing State through Type Replacement

A primary limiting factor when using the model checker is the size of the state space.
In this section, we describe strategies to reduce the size of the model state space in
order to apply implicit state model checking technology.

Using Generic Types. The implicit state model-checking tools that we use are unable
to reason about real numbers. Fortunately, it is often the case that the interesting
safety-related behavior is preserved by replacing real-valued variables by integers for
the purpose of analysis [9]. We have used a simplified version of predicate abstrac-
tion, which attempts to reduce the domain of a variable while preserving the interest-
ing traces of the system behavior, i.e., the ones that can lead to a counterexample. The
idea is to preserve enough values such that all conditions involving real numbers will
be completely exercised.

From a design-for-analysis perspective, both Simulink and SCADE support a no-
tion of generic types that allow models to be constructed that can use either integers
or reals. The only place where the types must be specified is at the “top-level” inputs.
If models are constructed using library blocks, then very little effort is required to
derive analysis models from the original models.

Limiting Integer Ranges. To efficiently model-check a specification, we would like
to determine the minimal range necessary to represent the behavior of each variable in
the model. This is because the performance of BDD-based model checkers is directly
correlated to the ranges of the variables in the model. The Rockwell Collins transla-
tion tools currently allow a high degree of control over the integer range of each vari-
able within the model. It is possible for the user to specify both the default range of all
integer variables within the model, and also to set the ranges for individual variables
within the model. This allows us to trim unreachable values of variables and reduce

80 M. Whalen et al.

the system state space. If we inadvertently eliminate a reachable value, the model
checker will detect this and the variable range can be corrected.

5 Analysis Results

In this section, we discuss the application of the process described here to the analysis
of finite-state models from the Lockheed Martin OFP Simulink model. In this analysis
we focused on the Redundancy Manager (RM) component of the OFP.

4

input_sel

3

total izer_cnt

2

persistence_cnt

1

fai lure_report

pc

trigger

input_a

input_b

input_c

DST_index

input_sel

triplex_input_selector

input_a

input_b

input_c

trip_lev el

persist_lim

MS

f ailreport

pc

tc

triplex_input_monitor

trip_level

trip_level1

persist_lim

persistence l imit

[DST i]

[C]

[B]

[status_c]

[status_b]

[status_a]

[A]

[trigger]

[DSTi]
[MS]

[MS]

[DST i][A]

[prev_sel]

[prev_sel]

[DSTi]

[trigger]

[trigger]

[status_c]

[status_b]

[status_a]

[A]

[A]

Index
Vector

[C]

[B]

[C]

[B]

[C]

[B]

failure_report

dst_index

Failure_Processing

mon_f ailure_report

status_a

status_b

status_c

prev _sel

input_a

input_b

input_c

failure_report

Failure_Isolation

Extract Bits
[0 3]

Extract Bits

DOC

Text

double

DST

Data Store
Read

8

dst_index

7

status_c

6

status_b

5

status_a

4

input_c

3

input_b

2

input_a

1

sync

persist_lim

totalizer_cnt<tc>

trip_lev el

persistence_cnt<pc>

sy nc<>

failreport

triplex
monitor

failure isolation

sensor fusion failure
processing
(logging)

Fig. 4. Simulink model for triplex voter subsystem of the Redundancy Manager

Redundancy Manager Verification Results

The redundancy manager model originally consisted of two main subsystems: tri-
plex_voter, which implements sensor fusion and failure detection for a triply redun-
dant sensor, and reset_manager, which implements the pilot and global failure reset
functionality for the sensors and control surfaces for the aircraft. The triplex_voter
(see Figure 4) contains a fault monitor that detects failed sensors, failure isolation
logic to prevent failed sensors from influencing the output, and a sensor fusion func-
tion to synthesize the correct sensor output. It also contains a fault logging function
called the fault history table (FHT) that introduces a significant amount of state but is
functionally isolated from the rest of the voter. Therefore, we factored this FHT func-
tionality into a third subsystem, failure processing.

These models contained a mix of Simulink and StateFlow subsystems, and initially
the triplex voter model contained floating-point inputs and outputs. Some of the more
complex model features used were data stores with multiple reads/writes within a
step, triggered and enabled subsystems with merge blocks, boundary-crossing and
directed acyclic transitions through junctions, variables that were used both as
integers and as bit flags, bit-level operations (shifts, masks, and bit-level ANDs and
ORs), and StateFlow truth tables and functions. As shown in Table 1, during the
course of our analysis we derived three analysis models from the RM model, checked
62 properties and found 12 errors. The complete analysis of all the properties using
the NuSMV model checker takes approximately 7 minutes.

 Integration of Formal Analysis into a Model-Based Software Development Process 81

Table 1. Model size and analysis results for Redundancy Manager

Subsystem Number of Simulink
subsystems / blocks

Reachable
State Space Properties Confirmed

Errors

Triplex voter without FHT 10 / 96 6.0 * 1013 48 5

Failure processing 7 / 42 2.1 * 104 6 3

Reset manager 6 / 31 1.32 * 1011 8 4

Totals 23 / 169 N/A 62 12

As an illustration of the properties analyzed for the Redundancy Manager, one re-
quirement states that:

A single frame miscompare shall not cause a sensor to be declared failed.

A miscompare occurs when one of the three sensors disagrees with the other two

sensors by more than a predefined tolerance level. This requirement states that a
transient error on one of the sensors will not cause the sensor to be declared failed.

In the RM model, failures are recorded in the device status table (DST), and the
sensor values are input to the model as input_a, input_b, input_c. From
the requirements, we create variables representing when a sensor value miscompares
with the other sensor values:

DEFINE

a_miscompare :=
 (abs(input_a – input_b) > trip_level) &
 (abs(input_a – input_c) > trip_level) &
 (abs(input_b – input_c) <= trip_level);

 b_miscompare := ...
 c_miscompare := ...

These variables state that a sensor miscompares if it is outside of tolerance

(trip_level) with the other two sensors and the other two sensors are within tol-
erance of each other. In a single frame miscompare, the sensor does not miscompare
in the current frame but does miscompare in the next frame. In this case, the sensor
must not be marked failed in the next frame.

Given these definitions, we can encode the property in CTL as follows:

AG((!a_miscompare) ->
 AX(failure_report != a_failed));
AG((!b_miscompare) ->
 AX(failure_report != b_failed));
AG((!c_miscompare) ->
 AX(failure_report != c_failed));

This property was violated in the original triplex voter model. The root cause of

this error is that the model used a single counter to record the number of consecutive
miscompares to determine whether to fail a sensor. If one sensor miscompares for

82 M. Whalen et al.

several frames and then another sensor miscompares for a single frame at the failure
threshold, then the second sensor will be declared failed.

This error was corrected by creating separate persistence counters for each input so
that miscompares for one sensor will not cause another sensor to be declared failed.

Effort Required

The total effort required to perform the formal analysis was 399.8 hours. As shown in
Figure 5, we broke down the analysis time along two axes: the phases of the analysis
process and the type of effort. The three main phases of the analysis process are:

• Preparation: This task described the effort necessary to extend the analysis tools

and condition the models for analysis.
• Initial Verification: This task described the effort necessary to perform the initial

formal analysis of the models.
• Rework: This task described the effort necessary to fix the models and complete

the analysis.

Preparation
Initial

Verif ication Rew ork

0

50

100

150

200

250

H
ou

rs

Recurring cost

Tool extension

Fig. 5. Categorization of verification effort

We identified two types of effort: tool modification (one-time tasks extending the
capabilities of the tools for this project) and verification activites (tasks that would be
carried out for each application). The largest effort for this project was tool modifica-
tion, extending the Rockwell Collins translators to handle the subset of Simulink /
StateFlow used by Lockheed Martin in the CerTA FCS models. This is a non-
recurring cost that can be amortized in future analysis projects. This tool modification
effort occurred both during the preparation phase (the initial tool up) and in the initial
verification phase (where additional tool optimizations were discovered to speed the
analysis).

The majority of the one-time tool modification costs occurred during preparation,
when we were extending the translation tools to handle the additional blocks used in

 Integration of Formal Analysis into a Model-Based Software Development Process 83

the CerTA FCS models. The remaining tool modifications costs were due to a handful
of bugs in the tool extensions that were found during the verification effort.

The verification activities, which represent recurring costs, were fairly evenly dis-
tributed between the preparation, initial analysis, and rework. A significant fraction of
the verification time went towards model preparation because the models were not
initially constructed for analysis, so several of the “design for analysis” steps detailed
in Section 4 had to be performed. Had the formal analysis been integrated into the
design cycle, much of this work would have been unnecessary.

After the initial verification and rework effort on the original model, Lockheed
Martin provided a modified version of the triplex voter with 10 additional require-
ments. Since the model had already been structured for automatic translation and
analysis, only minor changes were needed. There included addition of input and out-
put ports, definition of appropriate type replacements, and specification of the new
properties. In this case, six of the new properties failed due to a single logic error in
the new design. The modifications, verification, and results analysis were accom-
plished in approximately eight hours. This further illustrates the potential for cost
savings.

6 Conclusion

This paper describes how formal methods (model checking) can be successfully in-
jected into an avionics software development cycle and how this can lead to early
detection and removal of errors in software designs. As a demonstration, we applied
this technology to one of the major subsystems of an existing Lockheed Martin
Aeronautics Company operational flight plan model, analyzing 62 properties and
discovering 12 errors. These results are similar to previous applications of this tech-
nology on large avionics models at Rockwell Collins.

In this effort, we performed model checking as an augmentation of the traditional
verification process after the models had been developed. In this approach, the model
checker provides a verification step that is significantly more rigorous than simulation
to ensure that the model works as intended. The total (recurring) time required for
analysis was approximately 130 hours, of which about 70 hours were required to
prepare the models and perform the initial verification.

Although we were successful, we believe that formal verification can have an even
greater impact if its use is anticipated from the outset in the design process. In this
paper, we described how model checking can be integrated into the design cycle for
models to yield additional benefits. The changes to the development process focused
on designing models for analysis and regular use of the model checker during design.
The former change significantly reduces the time required to prepare models for
analysis, and the latter allows bugs to be found very early in the development cycle,
when they are cheapest to fix.

In the next phase of the CerTA FCS project, we will attempt to analyze models that
contain large-domain integers and reals. This will be a significant challenge, and will
involve investigating new model checking algorithms and theorem provers. On the
model checking side, we will be investigating tools that use two recent checking algo-
rithms: k-induction and interpolation, which can be used to analyze the behavior of

84 M. Whalen et al.

models containing large-domain integers and reals. Unfortunately, these model check-
ing algorithms have a significant restriction in that they only analyze models contain-
ing linear arithmetic. Therefore, we will also be investigating the use of theorem
provers that can analyze arbitrarily complex non-linear models, but require greater
expertise on the part of users.

Acknowledgments. This work was supported in part by AFRL and Lockheed Martin
Aeronautics Company under prime contract FA8650-05-C-3564.

References

1. Buffington, J.M., Crum, V., Krogh, B.H., Plaisted, C., Prasanth, R., Bose, P., Johnson, T.:
Validation & verification of intelligent and adaptive control systems (VVIACS)*. In:
AIAA Guidance, Navigation and Control Conference (August 2004)

2. Whalen, M.W., Innis, J.D., Miller, S.P., Wagner, L.G.: ADGS-2100 Adaptive Display &
Guidance System Window Manager Analysis, NASA Contractor Report CR-2006-213952
(February 2006)

3. Miller, S., Heimdahl, M.P.E., Tribble, A.C.: Proving the Shalls. In: Proceedings of FM
2003: the 12th International FME Symposium, Pisa, Italy, September 8-14 (2003)

4. Clarke, E., Grumberg, O., Peled, P.: Model Checking. The MIT Press, Cambridge (2001)
5. Heitmeyer, C., Jeffords, R., Labaw, B.: Automated Consistency Checking of Requirements

Specification. ACM Transactions on Software Engineering and Methodology (TOSEM)
5(3), 231–261 (1996)

6. Faulk, S., Brackett, J., Ward, P., Kirby Jr, J.: The CoRE Method for Real-Time Require-
ments. IEEE Software 9(5), 22–33 (1992)

7. Chockler, H., Kupferman, O., Vardi, M.Y.: Coverage metrics for formal verification. In:
Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 111–125. Springer,
Heidelberg (2003)

8. Lions, J.L.: Arianne 5 Flight 501 Failure Report by the Inquiry Board, ESA Technical Re-
port No. 33-1996 (July 1996)

9. Choi, Y., Heimdahl, M.P.E., Rayadurgam, S.: Domain reduction abstraction. Technical
Report 02-013. University of Minnesota (April 2002)

10. Tribble, A.C., Lempia, D.D., Miller, S.P.: Software Safety Analysis of a Flight Guidance
System. In: Proceedings of the 21st Digital Avionics Systems Conference (DASC 2002),
Irvine, California, October 27-31 (2002)

11. Reactive Systems, Inc, Reactis Home Page, http://www.reactive-systems.com

	Integration of Formal Analysis into a Model-Based Software Development Process
	Introduction
	Formal Methods in a Model-Based Development Process
	Changes to the Verification Process
	Changes to the Modeling Process
	Analysis Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

