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Abstract. The next generation of military aerospace systems will include  
advanced control systems whose size and complexity will challenge current 
verification and validation approaches. The recent adoption by the aerospace 
industry of model-based development tools such as Simulink® and SCADE 
Suite™ is removing barriers to the use of formal methods for the verification of 
critical avionics software. Formal methods use mathematics to prove that soft-
ware design models meet their requirements, and so can greatly increase confi-
dence in the safety and correctness of software. Recent advances in formal 
analysis tools have made it practical to formally verify important properties of 
these models to ensure that design defects are identified and corrected early in 
the lifecycle. This paper describes how formal analysis tools can be inserted 
into a model-based development process to decrease costs and increase quality 
of critical avionics software.  
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1   Introduction 

Emerging military aerospace system operational goals will require advanced safety-
critical control systems with more demanding requirements and novel system archi-
tectures, software algorithms, and hardware implementations. These emerging control 
systems will significantly challenge current verification tools, methods, and proc-
esses. Ultimately, transition of advanced control systems to operational military sys-
tems will be possible only when there are affordable V&V strategies that reduce costs 
and compress schedules. The AFRL VVIACS program documented these challenges 
in detail [1].   

Current software validation and verification for critical systems centers on testing 
of English-language requirements. While testing is currently the only way to examine 
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the behavior of a system in its final operational environment, it is incomplete and 
resource intensive. The incompleteness of testing is due to the extremely large state 
space of even small control systems.   

To illustrate, the number of possible states of a program with ten 32-bit integers is 
1096, which exceeds the number of atoms in the universe (around 1080). To exhaus-
tively test such systems is clearly impractical. Extremely large numbers of tests must 
be run to gain confidence in the correctness of programs, and these test suites are still 
insufficient to determine whether or not a system meets its requirements.   

Further complicating the issue is that the requirements for the system are usually 
specified in English. It is often the case that these requirements are ambiguous, in-
complete, and inconsistent, meaning that developers may legitimately disagree as to 
whether the system meets its requirements, or even that it is not possible to implement 
a program that meets all of the requirements.   

While the benefits of formal methods have been understood for over twenty years, 
their use has been hampered by the lack of specification languages acceptable to prac-
ticing engineers and the level of expertise required to effectively use formal verifica-
tion tools such as theorem provers. Over the last few years these hurdles have been 
greatly reduced by two trends: 1) the growing adoption of model-based development 
for safety-critical systems; and 2) the development of powerful verification tools that 
are easier for practicing engineers to use. The result will be a revolution in how 
safety-critical software is developed. 

Lockheed Martin, Rockwell Collins, and Carnegie Mellon University are working 
together under AFRL’s Certification Technologies for Advanced Flight Critical Sys-
tems (CerTA FCS) program. Our team is tasked with determining the applicability of 
formal methods to avionics verification concerns for next-generation control systems.  
Rockwell Collins has built a set of tools that translate Simulink models into the lan-
guages of several formal analysis tools, allowing “push button” analysis of Simulink 
models using model checkers and theorem provers. The project is split into two 
phases which analyze finite and infinite state models, respectively.     

This paper describes the process used and the results obtained in the first phase of 
the project, in which we successfully and cost-effectively analyzed large finite-state 
subsystems within a prototype UAV controller modeled in Simulink. During the 
analysis, over 60 formal properties were verified and 10 model errors and 2 require-
ments errors were found in relatively mature models. These results are similar to 
previous applications of this technology on large avionics models at Rockwell Collins 
[2][3][10].   

To use formal methods most effectively, some changes must be made to the tradi-
tional development cycle, and formal analysis should be considered when creating 
requirements and designing models. This paper focuses on processes and techniques 
for using formal methods effectively within the design cycle for critical avionics  
applications. 

2   Formal Methods in a Model-Based Development Process 

Model-Based Development (MBD) refers to the use of domain-specific modeling 
notations such as Simulink or SCADE that can be analyzed for desired behavior  



70 M. Whalen et al. 

 

before a digital system is built. The use of such modeling languages allows a system 
engineer to create a model of the desired system early in the lifecycle that can be 
executed on the desktop, analyzed for desired behaviors, and then used to automati-
cally generate code and test cases. Also known as correct-by-construction develop-
ment, the emphasis in model-based development is to focus the engineering effort on 
the early lifecycle activities of modeling, simulation, and analysis, and to automate 
the late life-cycle activities of coding and testing. This reduces development costs by 
finding defects early in the lifecycle, avoiding rework that is necessary when errors 
are discovered during integration testing, and by automating coding and the creation 
of test cases. In this way, model-based development significantly reduces costs while 
also improving quality. 

Formal methods may be applied in a MBD process to prevent and eliminate re-
quirements, design and code errors, and should be viewed as complementary to test-
ing. While testing shows that functional requirements are satisfied for specific input 
sequences and detects some errors, formal methods can be used to increase confi-
dence that a system will always comply with particular requirements when specific 
conditions hold. Informally we can say that testing shows that the software does work 
for certain test cases and formal, analytical methods show that it should work for all 
cases. It follows that some verification objectives may be better met by formal, ana-
lytical means and others might be better met by testing. 

Although formal methods have significant technical advantages over testing for 
software verification, their use has been limited in industry. The additional cost and 
effort of creating and reasoning about formal models in a traditional development 
process has been a significant barrier. Manually creating models solely for the pur-
pose of formal analysis is labor intensive, requires significant knowledge of formal 
methods notations, and requires that models and code be kept tightly synchronized to 
justify the results of the analysis.  

The value proposition for formal methods changes dramatically with the introduc-
tion of MBD and the use of completely automated analysis tools.  Many of the nota-
tions in MBD have straightforward formal semantics. This means that it is possible to 
use models written in these languages as the basis for formal analysis, removing the 
incremental cost for constructing verification models. Also, model checkers are now 
sufficiently powerful to allow “push-button” analysis of interesting properties over 
large models, removing the manual analysis cost. If a property is violated, the model 
checker generates a counterexample, which is simply a test case that shows a scenario 
that violates the property. The counterexamples generated by model checkers are 
often better for localizing and correcting failures than discovering failures from test-
ing and simulation because they tend to be very short (under 10 input steps) and tai-
lored towards the specific requirement in question.  

The Rockwell Collins translation framework is illustrated in Figure 1. Under a five 
year project sponsored in part by the NASA Langley Research Center, Rockwell 
Collins developed highly optimizing translators from MATLAB Simulink and 
SCADE Suite™ models to a variety of implicit state model checkers and theorem 
provers. These automated tools allow us to quickly and easily generate models for 
verification directly from the design models produced by the MBD process. The  
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counterexamples generated by model checking tools can be translated back to the 
MBD environment for simulation. This tool infrastructure provides the means for 
integration of formal methods directly and efficiently into the MBD process.   
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Fig. 1. Rockwell Collins model translation framework 

There are at least two different ways that model checking can be integrated into a 
MBD process. First, it can be performed as part of the traditional verification process 
in a traditional waterfall model in addition to testing. This was the approach used in 
the first phase of the CerTA FCS project. In this approach, the model checker simply 
provides a significantly more rigorous verification step to ensure that the model works 
as intended. However, if this step is performed late in the development cycle, much of 
the benefit of early detection and quick removal of defects is lost. 

A better approach for integrating model checking technology is to include formal 
analysis as an extension of a spiral development process. In an MBD process, it is 
common during the model design phase to use simulation as a “sanity check” to make 
sure that the model is performing as intended with respect to some system require-
ments of interest. When performed at the subsystem level, model checking allows a 
much more rigorous analysis based directly on the requirements of the system. If the 
subsystem requirements have been captured as “shall” statements, it is usually the 
case that these statements can be easily re-written as formal properties. Although 
model checking is a rigorous application of formal methods, for many kinds of mod-
els it does not require a significant amount of manual effort.    

The spiral approach was used in a previous effort during the model development 
process for a complex cockpit displays application [2]. After each modification of the 
design, Simulink models were re-analyzed against a large set of requirements in a 
matter of minutes. By the end of the project, the model had been proven correct 
against all of their requirements (573 formal properties) and 98 errors had been  
corrected.   

The guidance in this paper focuses on the use of implicit state model checkers, be-
cause this is the most mature of the “push-button” analysis tools, and these tools were 
the focus of Phase I of the CerTA FCS project. In order to reap the maximum benefit 
of formal analysis, models must be designed for analysis, much as they are designed 
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for autocode or test case generation in current processes. The rest of this section pro-
vides guidelines for determining whether implicit state model checking is an appro-
priate technique for the model being constructed, and for using model checking  
successfully within the development process.   

Implicit state model checkers are designed to analyze models with discrete vari-
ables that have relatively small domains: Boolean and enumerated types, or relatively 
small subranges of integers. The performance of the tools is primarily determined by 
four things: 1) the number of inputs to the model, 2) the number of latches (delays) in 
the model, 3) the size of each variable (number of bits), and 4) the complexity of the 
assignment equations for the variables.  Implicit state model checkers do not have the 
ability to analyze models with real or floating point variables.  

There are four primary questions in determining the applicability of implicit state 
model checkers in an MBD process. 

 
• Does tool support exist (or can it be created) to automatically translate the MBD 

notation to the notation of the analysis tool? A handful of tools have model check-
ing support built into the tool (e.g., Esterel Technologies SCADE, i-Logix State-
Mate), and several more academic and commercial projects support translation into 
analysis tools from Simulink and Stateflow.   

• If the model contains large-domain integers or floating point numbers, can these be 
abstracted or restructured away from the “core” of the model? Implicit state model 
checkers cannot reason about floating point numbers, and do not scale well with 
large-domain integers. However, it is often the case that there is a complex mode 
logic “core” that can be analyzed separately via model checking, while the sur-
rounding code that manages the floating point or large-domain integers can be ana-
lyzed using other means.   

• Can the model be partitioned into subsystems that have intrinsically interesting 
properties and that are of reasonable size? Model checking has been shown to be 
very effective at verification and validation of large software models in a model-
development process. However, there are scalability limits for implicit state tools 
that limit the size of models that can be analyzed effectively. In Section 5, we de-
scribe strategies for structuring requirements such that requirements over the entire 
model are entailed by simpler obligations over subsystems within the model.   

• Can the requirements be formalized? Traditional English requirements documents 
are often well-suited to formalization [3], so this may not be a significant a barrier 
to use. Also, designers tend to have an intuitive notion of the expected behavior of 
a subsystem, and when formalized, these properties can form excellent documenta-
tion about the behavior of a model. 
 

If the answers to each of these questions is ‘yes’, then implicit state model checking is 
an efficient and low-cost approach for analyzing the behavior of models. 

3   Changes to the Verification Process 

In our experience, the introduction of model checking changes the nature of the veri-
fication process.  Instead of focusing on the creation of test vectors, the focus is on the 
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creation of properties and environmental assumptions. The properties are translations 
of natural language requirements into a formal notation, and the environmental as-
sumptions are constraints on the inputs of the model that describe the intended operat-
ing environment for the model.   

Figure 2 illustrates the difference between a test-based process and analysis-based 
verfication. In a test-based verification process, test cases must be developed for each 
requirement. Each test case defines a combination of input values (a test vector) or a 
sequence of inputs (a test sequence) that specifies the operating condition(s) under 
which the requirement must hold. The test case must also define the output to be pro-
duced by the system under test in response to the input test sequence.   
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Fig. 2. Test-based verification (left) vs. Analysis-based verification (right) 

An analysis-based verification process may be thought of in the same way. We 
normally consider a group of requirements, with related functionality for a particular 
subsystem. The environmental assumptions or constraints specify the operating condi-
tions under which the requirements must hold. The properties define subsystem be-
haviors (values of outputs or state variables) that must hold for all system states 
reachable under the specified environmental assumptions.   

The essential difference is one of precision: model checking requires the specifica-
tion of exactly what is meant by specific requirements and determines all possible 
violations of those requirements at the subsystem level. This precision can be chal-
lenging, because an engineer is no longer allowed to rely on an intuitive understand-
ing to create test vectors. Also, in some cases, the notation used for properties (such 
as CTL and LTL [4]) can be confusing, though there are a variety of notations  
(including the MBD languages themselves!) that can be used to mitigate this diffi-
culty. Also, precise is not the same as correct. If a property is incorrectly written, then 
obviously a formal analysis tool may be unable to uncover incorrect behavior within a 
model. Therefore, it is very important that properties are carefully written and re-
viewed to ensure that they match the intuitive understanding of the requirement. 

The fact that a model checker generates a counterexample from the set of all possi-
ble violations of a property often leads to ‘nonsensical’ counterexamples in which the 
model inputs change in ways that would be impossible in the real environment. In 
order to remove these counterexamples that will not occur in the real system, it is 
sometimes necessary to describe environmental constraints that describe how the  
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inputs to the model are allowed to evolve. On the bright side, these constraints serve 
as a precise description of the environmental assumptions required by the component 
to meet its requirements.   

We next describe specific changes to the verification process to facilitate the use of 
model checking tools. 

Creating Formalizable Requirements 

There are many different notations and tools used for capturing requirements in the 
avionics domain. These notations include traditional structured English “shall” state-
ments, use cases, SCR specifications [5], CoRE documents [6], and others. Most 
avionics systems still use “shall” statements as the basis of their requirements. In our 
experience, shall statements are actually a good starting place for creating formalized 
requirements. Their prevalence indicates they are a natural and intuitive way for de-
signers to put their first thoughts on paper.  

The problem with shall statements has been that inconsistencies, incompleteness, 
and ambiguities are not found until the later phases of the project. The process of 
formalizing the requirements into properties helps remove the problem of ambiguity. 
When formalizing a property, by necessity, one must write an unambiguous state-
ment. The issue then becomes whether the formalization matches the intention of the 
original English requirement.   

Inconsistencies can be detected in several ways. First, if all requirements are for-
malized, then it is not possible to simultaneously prove all properties over a model if 
the set of properties are inconsistent. With additional translation support, it is also 
possible to query a model checker to determine whether any model can satisfy all of 
the properties simultaneously. There are also current research projects to define met-
rics for requirements completeness over a given formal model using model checking 
tools [7], but this research is not yet usable on an industrial scale. 

Testable requirements are also analyzable, so this is a good starting point for de-
termining whether requirements are suitable for analysis.  On the other hand, there are 
classes of requirements that are not testable but are, in fact, analyzable.  For example, 
requirements such as:  

 
• the system shall never allow behavior x,  
• given y, the system shall always eventually do z 

 
can be analyzed formally, but are not suitable for testing as they require an unbounded 
number of test cases.   

Other system requirement techniques such as use cases are also possible sources of 
properties. While more structured than shall statements, as practiced today use cases 
normally lack a precise formal semantics and suffer from the same problems of incon-
sistency, incompleteness, and ambiguity as shall statements. While not part of this 
experiment, it seems reasonable that it should be possible to express use cases as a 
sequence of properties describing how the system responds to its stimuli, and to verify 
these sequences through simulation and formal analysis. In this way, the consistency 
and completeness of use cases could be improved in the same manner as was done for 
shall statements. 
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Creating Environmental Assumptions 

One significant change when moving from a testing-based verification process to a 
formal process is that much more attention must be focused on environmental as-
sumptions for the system being analyzed. Often, there are a significant number of 
environmental assumptions that are built into the design of the control software that 
cause it to fail when those assumptions are violated, and these assumptions are 
often not well documented. In testing, it is usually the case that the tester has an 
intuitive understanding of the system under test and is unlikely to create test scenar-
ios where the plane is “flying upside-down and backwards”. The model checker, on 
the other hand, will often find requirements violations that occur under such scenar-
ios if environmental constraints that rule out impossible conditions are not stated 
explicitly.   

It is often not possible to verify interesting safety properties on a large model in a 
completely unconstrained environment. As part of the analysis process, we examine 
the environmental assumptions in the requirements document to create constraints on 
the possible values of inputs into the system. Each of the model checking tools that 
we have examined supports invariants that allow engineers to specify constraints on 
the behavior of the environment. Here, “environment” means any inputs or parame-
ters that can affect the behavior of the model being verified, and invariants are restric-
tions on these environmental variables. These invariants should be as simple as  
possible so as to not impact unduly the efficiency of the verification algorithm, but 
they must be sufficiently complex to assure that the specification is being evaluated 
for the relevant conditions. For example, for specifications for a controller model that 
are related to the closed-loop behavior of the system, the appropriate invariant may 
require the creation of a “plant model” representing a reactive environment that re-
sponds dynamically to the controller outputs.   

Although invariants are necessary to prove “interesting” properties over subsys-
tems, they are also dangerous to the soundness and applicability of the analysis. If 
conflicting invariants are specified, then there are no states that satisfy the invariants, 
so all properties are trivially true. Similarly, if invariants restrict the set of allowed 
inputs so that it is a subset of the possible inputs to the real system, then our analysis 
will be incomplete. Finally, just because constraints are specified in the requirements 
document does not mean that the environment, which can include other subsystems, 
will actually obey these constraints.   

Therefore, although we formalize the invariants in this step we do not use them in 
our initial model checking analysis. If the initial subsystem analyses return counter-
examples, we analyze the counterexamples to see whether they are due to violations 
of our invariants or due to incorrect behavior within the model. Even if counterexam-
ples are due to invariant violations, we prefer to strengthen the model behavior, when 
possible, to deal with abnormal environments rather than use system invariants. If it is 
determined that there is no good way to handle abnormal environments within the 
model, then we finally begin to use the invariants derived from the environmental 
assumptions. 

It is worth noting that such environmental assumptions were precisely the cause of 
the Arianne V disaster [8], when an assumption about the lateral velocity of the rocket  
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shortly after liftoff was violated when the control software was reused from the 
Arianne IV, causing it to fail catastrophically. By requiring developers to make their 
assumptions about the operating environment explicit and precise, a formal analysis 
process can help to eliminate this type of error.   

Interpreting Counterexamples 

One of the benefits of using a model checker in the verification process is the gen-
eration of counterexamples that illustrate how a property has been violated. How-
ever, for large systems it can be difficult and time consuming to determine the root 
cause of the violation by examining only the model checker output. Instead, the 
simulation capabilities of the MBD tools should be utilized to allow playback of a 
counterexample.   

Both Simulink and SCADE have sophisticated simulation capabilities that allow 
single-step playback of tests and easy “drill down/drill up” through the structure of 
the model. These capabilities can be used to quickly localize the cause of failure for a 
counterexample. Third-party tools such as Reactis [11] for Simulink also allow a 
“step back” function so that it is possible to rewind and step through a sequence of 
steps within a counterexample, adding to the explanatory power of the tool. 

When a counterexample is discovered, it is classified by its underlying cause and 
appropriate corrective action taken.  The cause may be one or more of the following: 

 
• Modeling error 
• Property formalization error 
• Incorrect/missing invariants for the subsystem 
• High-Level requirements error 

4   Changes to the Modeling Process 

Flight control models, such as the Lockheed Martin operational flight program (OFP) 
model analyzed in our CerTA FCS project, are too large to be efficiently analyzed by 
current model checkers. There are several development practices that should be 
adopted within a MBD process to create models that are suitable for analysis. These 
practices will yield models that will be simpler to analyze.   

Partitioning the System 

The first step in analyzing the model is to divide the requirements and model into 
subsystems that can be automatically analyzed. Analysis partitions are created by 
splitting the original model into different subsystems and assigning a set of system 
requirements that will be analyzed on the subsystem (Figure 3). After the subsystems 
have been created, each subsystem is separately analyzed. The result of the analysis 
process may require changes to the subsystem under analysis, to another subsystem, 
or to the system-level requirements or environmental assumptions.     
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Fig. 3. Process for creating analysis partitions 

There are several steps necessary to create the analysis partitions. 
 
Group Related Requirements. To create analysis partitions, we first try to group 
system requirements into sets that can be checked against a portion of the system 
Simulink model. In our experience with the WM and the FCS 5000 [3], it is usually 
the case that the properties naturally partition into sets that are functionally related to 
one another, and that the truth or falsehood of these property sets can be determined 
by examining a relatively small portion of the entire Simulink model. 
 
Create Analysis Models. After grouping the properties, we split the system model 
into reasonably-sized analysis models that are sufficient to check one or more of the 
requirements groups. We would like to make each subsystem small enough that it is 
quick to analyze using our BDD-based model checking tools.   
 
Formalizing Requirements. The next step in analyzing the model involves formaliz-
ing the functional and safety requirements as properties. For a synchronous system 
where the requirements are specified as “shall” statements over system inputs and 
outputs, this process is often straightforward. In [2], [3], and [10], we described the 
process of translating these informal statements into safety properties in more detail.   

 
The system requirements document is not the only source of properties to be  
analyzed. Properties also emerge from discussions with developers about the func-
tionality of different subsystems, or even from a careful review of a particular imple-
mentation detail of the Simulink model. In some cases, these properties can be 
thought of as validity checks for particular implementation choices, but on occasion 
they lead to additions to the system requirements document.  

Using Libraries 

The construction of analysis partitions can be simplified by splitting the original model 
into libraries. Both Simulink and SCADE support packaging of subsystems into librar-
ies, which are really just additional “source” files for the model. Just as it makes sense 
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to construct a large C program using several source files (for various reasons, including 
version control), it makes sense to construct models using library files.   

If a Simulink or SCADE model is created from a set of libraries, it is possible to 
generate the analysis models with very little effort. A benefit of this approach is that 
the subsystems within the libraries can evolve without requiring changes to the analy-
sis models, as long as the subsystem interfaces remain stable. Therefore, once the 
analysis models are created, they can be used for regression testing without any addi-
tional effort. 

Using Supported Blocks 

Most MBD environments were originally constructed for the purpose of modeling and 
simulation, or for autogeneration of source code, and not for design analysis. It is usu-
ally necessary to restrict the use of certain constructs within a MBD language that 
complicate the semantics of the language, or that have potentially undefined behavior 
outside of the simulation environment. Some languages, such as SCADE, were built 
for formal analysis, and so almost all features of the SCADE environment (i.e., all 
aspects that do not involve use of a ‘host’ language, such as C, to implement function-
ality) can be formally analyzed. Simulink contains an extremely wide range of block 
sets with varying levels of formality. None of the current model checking tools for 
Simulink/StateFlow support all of the block sets that can be used within the language. 

The Rockwell Collins translation tools support a wide range of Simulink/StateFlow 
constructs. This toolset is tailored for critical avionics software, and is able to analyze 
all of the blocks used in the OFP model.   

Structuring for Analysis 

Design choices that lead to code-bloat or poorly cohesive systems also affect the  
performance of the model checker. A rule of thumb is that the larger the number of 
blocks within a model, the longer it will require to analyze. Therefore, model re-
factoring is not only a useful design activity, but often necessary to successfully ana-
lyze large subsystem models.   

In our experience, we have re-factored models in which some piece of functionality 
(e.g., display application placement) is replicated (e.g., left-side and right-side display 
application placement) by “copy and paste reuse”. By properly packaging the func-
tionality into subsystems, we can split the analysis task into independent parts, lead-
ing to much faster analysis.   

Similarly, when creating the analysis models, it is possible to indirectly analyze 
subsystem coupling by examining the complexity of invariants between the outputs of 
one subsystem and the inputs of another subsystem. If complex invariants are required 
to prove properties about a subsystem, then it is likely that the subsystem is tightly 
coupled to the subsystem that generates the outputs. These cases should be examined 
to determine if it is possible to re-factor the design to simplify the analysis invariants. 

Structuring for Predicate Abstraction 

If models contain several large-domain integers and/or real numbers, they will not be 
analyzable by current tools. However, it is often the case that these variables can be 
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factored out of modules that contain the complex behavior that would benefit most 
from formal analysis. The idea is to either abstract the conditions that involve numeric 
constraints or the ranges of the constants and variables involved in the conditions.   

Subsystems that compute system modes often contain a handful of large-domain 
integers that are used for comparisons in conditions within the mode computation, 
e.g., Altitude > PreSelectAlt + AltCapBias. If the ranges of these integers are  
large, e.g., zero to 50000 feet, analysis may become intractable, even though  
they only influence a few conditions within the logic. In this case, it is much  
simpler for formal analysis if the original comparisons in the mode logic are  
replaced with Boolean inputs representing the result of the comparison (e.g., Alti-
tude_Gt_PreSelect_Plus_AltCapBias). This input is then computed by an external 
subsystem which can be separately (and usually trivially) checked for correctness.  
This kind of model factoring is called predicate abstraction [9], and can reduce the 
analysis time required from hours to seconds in the original subsystem.   

If the model contains a significant number of variables and the constraints involv-
ing those variables are related, or if it uses the variables to compute numeric outputs, 
predicate abstraction is less useful. In these cases, it is often possible to perform do-
main reductions in order to scale the ranges so as to be able to analyze the models 
successfully.   

Reducing State through Type Replacement 

A primary limiting factor when using the model checker is the size of the state space. 
In this section, we describe strategies to reduce the size of the model state space in 
order to apply implicit state model checking technology. 
 
Using Generic Types. The implicit state model-checking tools that we use are unable 
to reason about real numbers. Fortunately, it is often the case that the interesting 
safety-related behavior is preserved by replacing real-valued variables by integers for 
the purpose of analysis [9].  We have used a simplified version of predicate abstrac-
tion, which attempts to reduce the domain of a variable while preserving the interest-
ing traces of the system behavior, i.e., the ones that can lead to a counterexample. The 
idea is to preserve enough values such that all conditions involving real numbers will 
be completely exercised.   

From a design-for-analysis perspective, both Simulink and SCADE support a no-
tion of generic types that allow models to be constructed that can use either integers 
or reals. The only place where the types must be specified is at the “top-level” inputs. 
If models are constructed using library blocks, then very little effort is required to 
derive analysis models from the original models.   
 
Limiting Integer Ranges. To efficiently model-check a specification, we would like 
to determine the minimal range necessary to represent the behavior of each variable in 
the model. This is because the performance of BDD-based model checkers is directly 
correlated to the ranges of the variables in the model. The Rockwell Collins transla-
tion tools currently allow a high degree of control over the integer range of each vari-
able within the model. It is possible for the user to specify both the default range of all 
integer variables within the model, and also to set the ranges for individual variables 
within the model. This allows us to trim unreachable values of variables and reduce 
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the system state space. If we inadvertently eliminate a reachable value, the model 
checker will detect this and the variable range can be corrected.   

5   Analysis Results 

In this section, we discuss the application of the process described here to the analysis 
of finite-state models from the Lockheed Martin OFP Simulink model. In this analysis 
we focused on the Redundancy Manager (RM) component of the OFP.    
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Fig. 4. Simulink model for triplex voter subsystem of the Redundancy Manager 

Redundancy Manager Verification Results 

The redundancy manager model originally consisted of two main subsystems: tri-
plex_voter, which implements sensor fusion and failure detection for a triply redun-
dant sensor, and reset_manager, which implements the pilot and global failure reset 
functionality for the sensors and control surfaces for the aircraft. The triplex_voter 
(see Figure 4) contains a fault monitor that detects failed sensors, failure isolation 
logic to prevent failed sensors from influencing the output, and a sensor fusion func-
tion to synthesize the correct sensor output. It also contains a fault logging function 
called the fault history table (FHT) that introduces a significant amount of state but is 
functionally isolated from the rest of the voter. Therefore, we factored this FHT func-
tionality into a third subsystem, failure processing.   

These models contained a mix of Simulink and StateFlow subsystems, and initially 
the triplex voter model contained floating-point inputs and outputs. Some of the more 
complex model features used were data stores with multiple reads/writes within a 
step, triggered and enabled subsystems with merge blocks, boundary-crossing and 
directed acyclic transitions through junctions, variables that were used both as  
integers and as bit flags, bit-level operations (shifts, masks, and bit-level ANDs and 
ORs), and StateFlow truth tables and functions. As shown in Table 1, during the 
course of our analysis we derived three analysis models from the RM model, checked 
62 properties and found 12 errors. The complete analysis of all the properties using 
the NuSMV model checker takes approximately 7 minutes.   
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Table 1. Model size and analysis results for Redundancy Manager 

Subsystem Number of Simulink 
subsystems / blocks 

Reachable 
State Space Properties Confirmed 

Errors 

Triplex voter without FHT 10 / 96 6.0 * 1013 48 5 

Failure processing 7 / 42 2.1 * 104 6 3 

Reset manager 6 / 31 1.32 * 1011 8 4 

Totals 23 / 169 N/A 62 12 

As an illustration of the properties analyzed for the Redundancy Manager, one re-
quirement states that: 

 
A single frame miscompare shall not cause a sensor to be declared failed.   
 
A miscompare occurs when one of the three sensors disagrees with the other two 

sensors by more than a predefined tolerance level.  This requirement states that a 
transient error on one of the sensors will not cause the sensor to be declared failed.   

In the RM model, failures are recorded in the device status table (DST), and the 
sensor values are input to the model as input_a, input_b, input_c.  From 
the requirements, we create variables representing when a sensor value miscompares 
with the other sensor values:  

 
DEFINE 

a_miscompare :=  
 (abs(input_a – input_b) > trip_level) &  
 (abs(input_a – input_c) > trip_level) &  
 (abs(input_b – input_c) <= trip_level); 

 b_miscompare := ... 
 c_miscompare := ... 
 
These variables state that a sensor miscompares if it is outside of tolerance 

(trip_level) with the other two sensors and the other two sensors are within tol-
erance of each other. In a single frame miscompare, the sensor does not miscompare 
in the current frame but does miscompare in the next frame.  In this case, the sensor 
must not be marked failed in the next frame.   

Given these definitions, we can encode the property in CTL as follows:  
 

AG((!a_miscompare) ->  
 AX(failure_report != a_failed));  
AG((!b_miscompare) ->  
 AX(failure_report != b_failed)); 
AG((!c_miscompare) ->  
 AX(failure_report != c_failed)); 

 
This property was violated in the original triplex voter model. The root cause of 

this error is that the model used a single counter to record the number of consecutive 
miscompares to determine whether to fail a sensor. If one sensor miscompares for 
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several frames and then another sensor miscompares for a single frame at the failure 
threshold, then the second sensor will be declared failed.   

This error was corrected by creating separate persistence counters for each input so 
that miscompares for one sensor will not cause another sensor to be declared failed.   

Effort Required 

The total effort required to perform the formal analysis was 399.8 hours. As shown in 
Figure 5, we broke down the analysis time along two axes: the phases of the analysis 
process and the type of effort. The three main phases of the analysis process are: 

 
• Preparation: This task described the effort necessary to extend the analysis tools 

and condition the models for analysis. 
• Initial Verification: This task described the effort necessary to perform the initial 

formal analysis of the models. 
• Rework: This task described the effort necessary to fix the models and complete 

the analysis. 
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Fig. 5. Categorization of verification effort 

We identified two types of effort: tool modification (one-time tasks extending the 
capabilities of the tools for this project) and verification activites (tasks that would be 
carried out for each application). The largest effort for this project was tool modifica-
tion, extending the Rockwell Collins translators to handle the subset of Simulink / 
StateFlow used by Lockheed Martin in the CerTA FCS models. This is a non-
recurring cost that can be amortized in future analysis projects. This tool modification 
effort occurred both during the preparation phase (the initial tool up) and in the initial 
verification phase (where additional tool optimizations were discovered to speed the 
analysis).   

The majority of the one-time tool modification costs occurred during preparation, 
when we were extending the translation tools to handle the additional blocks used in 
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the CerTA FCS models. The remaining tool modifications costs were due to a handful 
of bugs in the tool extensions that were found during the verification effort.   

The verification activities, which represent recurring costs, were fairly evenly dis-
tributed between the preparation, initial analysis, and rework. A significant fraction of 
the verification time went towards model preparation because the models were not 
initially constructed for analysis, so several of the “design for analysis” steps detailed 
in Section 4 had to be performed. Had the formal analysis been integrated into the 
design cycle, much of this work would have been unnecessary.   

After the initial verification and rework effort on the original model, Lockheed 
Martin provided a modified version of the triplex voter with 10 additional require-
ments. Since the model had already been structured for automatic translation and 
analysis, only minor changes were needed. There included addition of input and out-
put ports, definition of appropriate type replacements, and specification of the new 
properties. In this case, six of the new properties failed due to a single logic error in 
the new design. The modifications, verification, and results analysis were accom-
plished in approximately eight hours. This further illustrates the potential for cost 
savings.   

6   Conclusion 

This paper describes how formal methods (model checking) can be successfully in-
jected into an avionics software development cycle and how this can lead to early 
detection and removal of errors in software designs. As a demonstration, we applied 
this technology to one of the major subsystems of an existing Lockheed Martin 
Aeronautics Company operational flight plan model, analyzing 62 properties and 
discovering 12 errors. These results are similar to previous applications of this tech-
nology on large avionics models at Rockwell Collins.   

In this effort, we performed model checking as an augmentation of the traditional 
verification process after the models had been developed. In this approach, the model 
checker provides a verification step that is significantly more rigorous than simulation 
to ensure that the model works as intended. The total (recurring) time required for 
analysis was approximately 130 hours, of which about 70 hours were required to 
prepare the models and perform the initial verification.   

Although we were successful, we believe that formal verification can have an even 
greater impact if its use is anticipated from the outset in the design process. In this 
paper, we described how model checking can be integrated into the design cycle for 
models to yield additional benefits. The changes to the development process focused 
on designing models for analysis and regular use of the model checker during design. 
The former change significantly reduces the time required to prepare models for 
analysis, and the latter allows bugs to be found very early in the development cycle, 
when they are cheapest to fix.     

In the next phase of the CerTA FCS project, we will attempt to analyze models that 
contain large-domain integers and reals. This will be a significant challenge, and will 
involve investigating new model checking algorithms and theorem provers. On the 
model checking side, we will be investigating tools that use two recent checking algo-
rithms: k-induction and interpolation, which can be used to analyze the behavior of 
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models containing large-domain integers and reals. Unfortunately, these model check-
ing algorithms have a significant restriction in that they only analyze models contain-
ing linear arithmetic. Therefore, we will also be investigating the use of theorem 
provers that can analyze arbitrarily complex non-linear models, but require greater 
expertise on the part of users.   
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