
S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 218–233, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Reverse Engineered Formal Models for GUI Testing*

Ana C.R. Paiva1, João C.P. Faria1,2, and Pedro M.C. Mendes1

1 Engineering Faculty of the University of Porto, 2 INESC Porto
Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
{apaiva, jpf, pedro.mendes}@fe.up.pt

http://www.fe.up.pt

Abstract. This paper describes a process to reverse engineer structural and be-
havioural formal models of a GUI application by a dynamic technique, mixing
manual with automatic exploration. The goal is to diminish the effort required
to construct the model and mapping information needed in a model-based GUI
testing process. A skeleton of a state machine model of the GUI, represented in
a formal pre/post specification language, is generated automatically by the ex-
ploration process. Mapping information between the model and the implemen-
tation is also generated along the way. The model extracted automatically is
then completed manually in order to get an executable model which can be used
as a test oracle. Abstract test cases, including expected outputs, can be gener-
ated automatically from the final model and executed over the GUI application,
using the mapping information generated during the exploration process.

Keywords: Reverse engineering; model-based GUI testing.

1 Introduction

GUI testing, with the purpose of finding bugs in the GUI or in the overall application,
is a necessary but very time consuming V&V activity. The application of model-based
testing techniques and tools can be very helpful to systematize and automate GUI test-
ing. An example of a model-based GUI testing approach, based on the Spec# pre/post
specification language [1] and extensions to the Spec Explorer model-based testing
tool [2], is described in [8,9,10].

However, the effort required to construct a detailed and precise enough model for
testing purposes (in order to be able to generate not only test inputs but also expected
outputs), together with mapping information between the model and the implementa-
tion (in order to be able to execute abstract test cases derived from the model on a
concrete GUI), are obstacles to the wide adoption of these techniques. One way to
relief the effort mentioned is to produce a partial "as-is" model, together with map-
ping information, by an automated reverse engineering process. This model will have
to be validated and detailed manually, in order to obtain a complete" should-be"

* Work partially supported by FCT (Portugal) and FEDER (European Union) under contract

POSC/EIA/56646/2004.

 Reverse Engineered Formal Models for GUI Testing 219

model at the level of abstraction desired. Some defects in the application can be dis-
covered in this stage. Overall, the goal is to automate the interactive exploratory proc-
ess that is commonly followed by testers to obtain a model for an existing application.

In this paper we present a dynamic GUI reverse engineering approach to achieve
such goal. The application under test (AUT) is automatically explored through its
GUI to discover as much as possible the GUI structure and behaviour and to generate
a corresponding GUI model in Spec#, together with mapping information between the
model and the implementation. Automatic exploration can be intermixed with manual
exploration to allow accessing functionalities that are protected by a key or are in
some other way difficult to access automatically. During the exploration process, the
intermediate code of the AUT is instrumented with Aspect-Oriented Programming
(AOP) techniques in order to be able to recognize and capture a wider range of GUI
controls and events, beyond native ones. The model generated automatically is subse-
quently validated and completed manually.

An "Address Book" application (Fig. 1) built in Java with the Standard Widget
Toolkit (SWT) provided by the Eclipse/Rich Client Platform (RCP) will be used as an
example to illustrate the approach proposed.

Fig. 1. Address Book main window

This paper is structured as follows: next section gives an overview of the reverse
engineering and model-based GUI testing process; section 3 describes the desired
characteristics of the target GUI model; section 4 describes the GUI reverse engineer-
ing process, while the details of the generation of the GUI model and mapping infor-
mation are presented in section 5; section 6 describes model validation techniques;
section 7 describes related work and the last section presents the conclusions and
future work.

2 Overview of the Reverse Engineering and Model-Based GUI
Testing Process

The goal of model-based testing is to check the conformity between the implementa-
tion and the specification (model) of a software system. The main activities of the
model-based GUI testing process proposed are presented in Fig. 2.

The starting activity proposed is the construction of a preliminary GUI model by a
reverse engineering process supported by the new REGUI2FM tool. This tool pro-
duces a preliminary GUI model in Spec# [1] and mapping information between the
model and the implementation.

220 A.C.R. Paiva, J.C.P. Faria, and P.M.C. Mendes

Fig. 2. Overview of the model-based GUI testing process with reverse engineering

The model obtained by the reverse engineering process captures structural informa-
tion about the GUI (the hierarchical structure of windows and interactive controls
within windows and their properties) and some behavioural information. The model
describes at a high-level of abstraction the state of each window and window control
(enabled/disabled status, content of text boxes, etc.) and the actions the user can per-
form on the window controls (e.g., press a button, fill in a text box). Besides the sig-
nature of each action, some pre and post-conditions are also generated, describing the
states where each action is available (in the pre-condition) and navigation among
windows caused by user actions (in the post-condition).

The mapping information comprise a XML file (GUI object map), describing
physical properties of the GUI objects, and adaptor C# code with methods that simu-
late the user actions over the GUI, which are automatically bound to model actions.
This information is needed to execute abstract test cases derived from the model on a
concrete GUI.

In order to assure that the model is consistent with the application requirements
and can be effectively used for test case generation and test output evaluation (as a
test oracle), the preliminary model obtained by the reverse engineering process must
be validated and completed manually with additional behaviour specifications.

 Reverse Engineered Formal Models for GUI Testing 221

Typically, executable method bodies must be added manually. Completeness and
correctness of the model can be checked visually by defining views with the help of
the Spec Explorer tool.

The final GUI model is then used to generate a test suite automatically, using the
Spec Explorer tool [2]. Spec Explorer automatically generates test cases from a Spec#
specification in two steps. In the first step, a finite state machine (FSM) is generated
from the given Spec# specification. In the second step, a test suite that fulfils some
coverage criteria is generated from the FSM (e.g., full transition coverage, shortest
path or random walk). A test suite is a set of test segments with sequences of opera-
tions that model user actions (with input parameters) interleaved with operations to
check the outcomes of those actions.

Test execution is also supported by the Spec Explorer tool. Conceptually, during test
case execution, related actions (obtained from the mapping information) run in both the
specification and implementation levels, in a "lock-step" mode, being their results
compared after each step. Whenever an inconsistency is detected, it is reported.

3 Characteristic of the Target GUI Model

In the approach proposed, the main output of the reverse engineering process is a
preliminary GUI model in Spec#, which is subsequently refined and provided as input
to the Spec Explorer model-based testing tool. Hence, before explaining in more de-
tail the reverse engineering process, it is important to describe how GUIs can be ade-
quately modelled in Spec#, for model-based testing purposes.

Spec# is a pre/post specification language that extends the C# programming lan-
guage with pre-conditions (written as requires clauses), post-conditions (written as
ensures clauses), invariants, logical quantifiers, and other high-level constructs. A
specification written in Spec# is executable: besides method pre/post conditions, one
can write executable method bodies (also called model programs). This allows the
specification to be used as a test oracle. Models written in Spec# can be the input for
the Spec Explorer model-based testing tool.

For conformance testing purposes, a model written in Spec# can be seen as a de-
scription of a possibly infinite transition system. The states of the transition system
are given by the values of the state variables. The transitions are executions of meth-
ods annotated as Action. Method pre-conditions indicate which actions are enabled in
each system state. Spec# provides four kinds of actions: controllable, probe, observ-
able and scenario. Controllable actions (the default ones) describe actions that are
controlled by the user (or test driver) of the AUT; these actions may update the sys-
tem state. Probe actions describe actions that only read the system state; they are
invoked by the test harness in every state where their pre-condition holds, to check the
actual AUT state against the model state. Observable actions are asynchronous and
describe the spontaneous execution of an action in the AUT possibly caused by some
internal thread; they are not used in the context of this work. Scenario actions de-
scribe composite actions; they are useful to drive the system into a desired initial state
or to reduce the size of the test suite. When a scenario action is explored for test case
generation, Spec Explorer records the sequence of atomic actions called and the in-
termediate states traversed.

222 A.C.R. Paiva, J.C.P. Faria, and P.M.C. Mendes

Spec# can be used to model the GUI structure and behaviour at any level of ab-
straction desired. We describe next a choice of level of abstraction that we found
appropriate for most form-based GUIs. Top-level windows of the AUT are modelled
as separate classes or modules (namespaces). The internal state of each top-level win-
dow (content of text fields, etc.) is modelled by state variables. The actions available
to the user inside each top-level window (enter a string into a text field, press a but-
ton, select a menu option, etc.) are modelled as Action methods. Pre-conditions de-
scribe the states in which the actions are available to the user. Post-conditions and
method bodies describe the effect of the user actions on the system state. Probe meth-
ods are used to model the observation of GUI state by the user. Scenario methods are
optionally used to model typical usage scenarios – sequences of steps (execution of
lower level scenarios and atomic actions) the user should follow to achieve a goal.
These scenarios need not represent end-to-end usage sequences, because scenario
actions and atomic actions can be intermixed in the test cases generated.

An example of part of a Spec# model of the "Find" dialog box (Fig. 3) of the Ad-
dress Book application is shown in Fig. 4. The "Find what" text box is modelled by a
state variable (findWhat) and set and get action and probe methods. Check boxes
are modelled by Boolean state variables (matchCase and matchWholeWord) and
associated set and get methods. The "Direction" radio group and the "Column"
combo box (with a closed list of options) are modelled by state variables (direction
and column) of enumerated types and associated set and get methods. The "Find"
button is modelled by an action method. All methods modelling user actions over
GUI objects have a pre-condition that checks if their container window is enabled,
and may have additional pre-conditions. For example, the Find button has an addi-
tional pre-condition to represent the fact that it is enabled only when the "Find what"
text box is filled in. The example also includes calls to a reusable window manage-
ment library that keeps track of the collection of windows open and of their en-
abled/disabled status (when a modal window is opened the other windows of the AUT
are disabled).

Fig. 3. "Find" dialog window of the Address Book application

 Reverse Engineered Formal Models for GUI Testing 223

namespace Find;

enum DirectionEnum { "Up", "Down" };
enum ColumnEnum {"Last Name", "First Name",
 "Business Phone", "Home Phone", "Email", "Fax"};

var string findWhat = "";
var bool matchCase = false;
var bool matchWholeWord = false;
var DirectionEnum direction = "Down";
var ColumnEnum column = "Last Name";

public string FindWhat {
 [Action(kind=Probe)] get
 requires IsEnabled("Find"); { return findWhat; }
 [Action] set
 requires IsEnabled("Find"); { findWhat = value; }
}

// similar properties for Column, MatchCase, MatchWholeWord
// and Direction

[Action] public void Find()
requires IsEnabled("Find") && findWhat != ""; {
 AddressBookWnd.FindNext(findWhat, column, matchCase,
 matchWholeWord, direction);
}

[Action] public void Cancel()
requires IsEnabled("Find");
ensures IsClosed("Find"); {
 RemoveWindow("Find");
}

Fig. 4. Spec# model for the "Find" dialog window of the Address Book application

4 The GUI Reverse Engineering Process

The aim of the GUI reverse engineering tool (REGUI2FM) is to reduce the effort
involved in the construction of the GUI model. As already mentioned in the overview,
the GUI reverse engineering tool extracts structural and behavioural information
about the GUI under test by a dynamic exploration process that mixes automatic and
manual exploration. Its architecture is depicted in Fig. 5. The tool provides a
front-end that gives access to a GUI Spy&Act tool, for automatic exploration (explo-
ration mode), and a GUI Record tool, for manual exploration (record mode).

The GUI Spy&Act tool captures information about the GUI objects that are present
in the AUT, in a way similar to the Spy++ tool that ships with Microsoft Visual Stu-
dio, and, based on that information, acts on the GUI objects simulating a user (e.g.,
click a button, select a menu option, or fill in a textbox), in a way similar to a smart
monkey testing [7] tool. Since the Spy&Act tool interacts with the AUT through the
operating system window manager, it is independent of the development language of
the AUT.

224 A.C.R. Paiva, J.C.P. Faria, and P.M.C. Mendes

Fig. 5. Architecture of the reverse engineering tool (REGUI2FM)

A preliminary GUI model in Spec# is abstracted from the GUI states and transi-
tions observed (in response to the actions performed), together with mapping infor-
mation between the model and the physical GUI. Each window gives rise to a Spec#
module. Interactive controls give rise to instance variables (e.g., there is a string
variable for each text box) and methods (e.g., methods to read/write the text from/to
a textbox), following the modelling style described in section 3 and illustrated in
Fig. 4.

The Spec# state variables and actions (either controllable or probe) that the GUI
Spy&Act tool should generate for each kind of GUI object can be configured in a
XML file, as illustrated in Fig. 6. In this example, it will be generated a string in-
stance variable and associated set and get methods for each textbox found, and a
method corresponding to the Click action for each button found. This configuration
information is also used by the tool to determine which kind of actions it should exe-
cute over physical GUI objects during the exploration. This file needs to be con-
structed only once and may be reused by other GUI reverse engineering processes.

 Reverse Engineered Formal Models for GUI Testing 225

<InteractiveObjects>
 <obj>
 <ClassName>TextBox</ClassName>
 <statevariable>string</statevariable>
 <controllable>set</controllable>
 <probe>get</probe>
 </obj>
 <obj>
 <ClassName>Button</ClassName>
 <controllable>Click</controllable>
 </obj>
 <obj> ... </obj>
 ...
</InteractiveObjects>

Fig. 6. XML configuration file

The GUI Spy&Act tool might not be able to reach application functionality that is
protected by a key or is in any other way difficult to access without further knowl-
edge. Two solutions are available to overcome this problem:

− the first one is to provide in advance some domain values that can be used dur-
ing the automatic exploration process when interacting with controls;

− the other one is to switch to manual exploration mode, so that the user can inter-
act with the GUI to supply the data or perform the steps required to access the
hidden functionality, and switch back to automatic exploration thereupon.

The GUI Record tool captures the actions performed by the user, together with the
GUI states traversed, in a way conceptually similar to a capture-replay tool. The se-
quence of actions performed by the user is abstracted to a Spec# method annotated as
scenario.

At the end, the following files are generated:

− a XML file (GUI Object Map) gathering information about the windows and
interactive controls detected, including physical identifying properties and
logical names assigned;

− a Spec# file with the reversed GUI model, describing possible user actions
over the GUI (behaviour model);

− a C# file (adaptor code) with methods to simulate concrete user actions over
the GUI under test, corresponding to the abstract actions described in the
Spec# model (needed for conformance checking during test execution).

The main activities and artifacts involved will be explained in next sections.

4.1 Automatic Exploration

The exploration starts from the application main window. In each step, it is captured
information about interactive controls inside windows of the AUT. The information
captured comprises: the hierarchical structure of GUI objects (windows and controls
within windows); the type of each GUI object (window, button, textbox, etc.); values

226 A.C.R. Paiva, J.C.P. Faria, and P.M.C. Mendes

of identifying properties (e.g., parent window and id), control state properties (e.g.,
enabled/disabled), and data state properties (e.g., text content) for each GUI object.
The set of properties that should be captured for each type of GUI object can be con-
figured by the user.

After identifying the interactive controls existing in an AUT window, the tool
starts interacting with them simulating a user, e.g., click on buttons and menus, send
text to textboxes, and select combo box options. The actions to explore upon each
type of control and their input values can be configured by the user.

Some of the actions performed may cause navigation among windows (open a new
window, close the current window and return to a previously visited window, etc.). In
each step, the tool acts upon the window that has the input focus.

The tool keeps track of the collection of windows already reached and of the con-
trols detected in those windows, using their identifying properties to avoid duplicates,
as well as of the actions already performed on those controls.

The exploration process stops when all the relevant actions in all the windows
reached have been explored, or when it is unable to make progress for some reason.

4.2 Manual Exploration

When the exploration algorithm stops before capturing information about all the win-
dows of the application (e.g., there is a part of the application which is protected by a
key), the user can switch to record mode.

In record mode it is assumed that the AUT runs on an AO (aspect oriented) en-
abled virtual machine and that it was built using the object-oriented programming
paradigm [4,11]. When running the application in such an environment, the devel-
oped aspects extend the GUI object’s “construction” process, by adding extra event
listeners. These listeners are enabled only when an environment variable indicates
that the current exploration mode is manual mode. The listeners intercept all possi-
ble user actions on standard GUI objects. Interaction with customized GUI objects
extending standard ones requires adding some extra advice code using the chosen
AO programming language for the purpose at hand. The advantage of this AOP
technique is the ability to recognize a wide range of GUI controls, beyond native
ones.

The advice code is responsible for logging user actions while interacting with GUI
controls saving them in a Spec# scenario action such as the one that can be seen in
Fig. 8.

5 Generation of the GUI Model and Mapping Information

5.1 Generation of the GUI Object Map (XML)

The GUI object map (Fig. 7) enumerates the GUI objects (windows and controls) of
the AUT, and relates logical GUI object names with physical identifying properties. It
is stored in a XML file. Logical names are assigned based on some heuristics (cap-
tion, nearest label, etc.).

 Reverse Engineered Formal Models for GUI Testing 227

<window name="Find">
 <caption>Find</caption>
 <class>#32770</class>
 <control name="Cancel">
 <caption>Cancel</caption>
 <class>Button</class>
 <id>2</id>
 <childPos>8</ChildPos>
 </control>
 <control ...>
 ...
 </control>
 ...
</window>

Fig. 7. GUI object map (XML)

5.2 Generation of the GUI Model (Spec#)

A preliminary GUI model in Spec# is generated by the REGUI2FM tool as explained
in the next sub-sections.

5.2.1 Generation of the Overall Model Structure and Pre/Post Conditions
As already mentioned in section 3, the top-level windows of the application are mod-
elled in separate namespaces or classes (for modularity reasons).

Inside each module (namespace or class) corresponding to a top-level window,
state variables are used to model its abstract state and the state of the controls inside
it. Each action that can be performed by the user within each top-level window
(set/get the content of a control, press a button, etc.) is represented in Spec# by an
Action method with a pre-condition that checks if the container window is enabled. In
the case of actions that cause navigation among windows, it is also generated a
post-condition that checks the open/closed and/or enabled/disabled status of the af-
fected windows and a default method body (see the Cancel method in Fig. 4).

Besides keeping track of window navigation effects caused by the actions ex-
plored, the reverse engineering tool also keeps track of enabling/disabling and content
update effects on GUI controls. Some of these dependencies among GUI controls
can also be represented through pre and post-conditions, according to the type of
dependency:

− "Setting the content of an object A to some condition enables an object B" – e.g., in
the Find dialog shown in Fig. 4, the Find button is enabled when the findWhat text
box is filled in. This dependency may be represented in Spec# by adding a
pre-condition that checks the state of A to the methods that describe possible ac-
tions on object B. This avoids the addition of an extra state variable to represent the
enabled/disabled status of B.

[Action] ... BMethods(...)
requires IsEnabled("WindowOfB") && A.State == S

A
;

...

228 A.C.R. Paiva, J.C.P. Faria, and P.M.C. Mendes

− "Performing an action on an object A updates the content of an object B" – e.g.,
pressing a Clear button may erase the fields in a form. This dependency may be
represented in Spec# by a post-condition of the method that describes that specific
action on A. A default method body is also generated.

[Action] ... AMethod(...)
ensures B.state == S

B
;

{ B.state = S
B
; ... }

In some cases, these dependencies can be discovered automatically by the explora-

tion process. That would be the case of buttons that are only enabled when some text
box is filled in, and buttons that erase the context of text boxes.

5.2.2 Generation of Default Method Bodies
Default method bodies are generated for set/get methods (see Fig. 4), and methods
that cause navigation (see Cancel method in Fig. 4). Those method bodies must be
checked and completed by the user, to take into account complex behaviours and side
effects. For example, the method body of the Find action in Fig. 4 has to be con-
structed manually. All the other method bodies are generated automatically.

5.2.3 Generation of Scenario Methods
The sequences of actions performed by the tester while in record mode are captured
by the REGUI2FM tool as scenario actions (Fig. 8) supported by Spec Explorer, as
explained before. If desired, the scenarios generated can be subsequently edited by the
modeller/tester. E.g., concrete values can be replaced by parameters to make the sce-
narios more generic and reusable.

Scenarios are useful for testing purposes in different ways: as a technique to drive
the application into a desirable specific state, overcoming the problem of functionality
protected by a key (Fig. 8), as explained before; as a way to describe test conditions
that would be covered by manual tests and that can be seen as the minimum set of
conditions to automatically test; and as a technique to prune the model exploration
and test case generation process [2].

[Action(Kind=
ActionAttributeKind.Scenario)])
void PasswordScenario()
requires IsEnabled("Password");
{
 Password.Text = "mypassword";
 Password.Ok();
}

Fig. 8. Manual exploration sequence of a password dialog box recorded as a scenario action

 Reverse Engineered Formal Models for GUI Testing 229

5.3 Generation of the GUI Adapter Code (C#)

The C# code needed to execute the abstract test suit upon the real GUI, simulating the
user actions, has a method for each (abstract) action described in the Spec# model. As
an example, Fig. 9 illustrates the C# code generated for the portion of the Find name-
space shown in Fig. 4.

The C# code generated is based on calls to a reusable GUI Test Library that pro-
vides methods to simulate the actions of a user interacting with a GUI application and
observe the content of GUI objects. This library was constructed in C# extending a
previous existing library to best fit our needs.

#region automatically generated code
 class GUIAdapter {
 public static void Find_SetFindWhat(string p0){
 UserEvents.SetText("Find.FindWhat, p0);
 }
 public static string Find_GetFindWhat(){
 return UserEvents.GetText("Find.FindWhat");
 }
 public static void Find_matchCase(bool p0) {
 UserEvents.SelectCheckBok("Find.MatchCase", p0);
 }
 public static void Find_matchWholeWord(bool p0) {
 UserEvents.SelectCheckBok("Find.MatchWholeWord", p0);
 }
 public static void Find_Find() {
 UserEvents.Click("Find.Find");
 }
 public static void Find_Cancel() {
 UserEvents.Click("Find.Cancel");
 }
 //...
}
#endregion

Fig. 9. C# code to simulate user actions for test execution

6 Model Validation

After completing the GUI model manually, it is possible to construct a view [10] of
the navigation map using Spec Explorer (Fig. 10). Visual inspection of this map is a
way to validate the model obtained.

Each state in Fig. 10 indicates the windows of the GUI that are enabled. In the
presence of modeless windows, there may be more than one window enabled at
the same time, in which case, a state may have more than one window name. This is
the case of the Find&AddressBook state. While a modal dialog window is opened, as
is the case of Open, Save and Contact windows in Fig. 10, user interaction with all
other currently open windows of the same application is disabled.

230 A.C.R. Paiva, J.C.P. Faria, and P.M.C. Mendes

The transitions visible at this level of abstraction are transitions that open/close
windows of the GUI application. All transitions that occur inside a window/dialog are
abstracted as one transition from the state that represents the dialog/window to itself.

This view can be expressed mathematically as the projection of the model states
onto the state variable that holds the set of enabled windows.

Fig. 10. Navigation map graph

7 Related Work

Reverse engineering is the process of analyzing a subject system to create representa-
tions of the system at a higher level of abstraction [3]. It may be performed by static
and dynamic analysis. Static analysis is performed on software code and does
not involve its execution. Dynamic analysis extracts information from software by
executing it.

Reverse engineering can be useful in several contexts like documentation, mainte-
nance and specification-based testing. Another common application of reverse engi-
neering is within a re-engineering process, for instance, to exchange legacy systems to
different newer technologies.

The world is full of legacy systems. The technology is in constant change and
some companies need to update their old systems. Reverse engineering tools can be
used to build the model of existing applications that can be used by UIMSs to gener-
ate new GUIs with the same functionality of the older ones, but implemented in more
recent technologies, or to be accessed from other computer platforms with specific
characteristics.

One common example is the migration of legacy user interfaces to web-accessible
platforms in order to support e-commerce activities. Stroulia et al. describe the CelL-
EST system within which a new process for migrating legacy systems for the Web
was developed [12,13].

 Reverse Engineered Formal Models for GUI Testing 231

Vanderdonckt et al. describe a reverse engineering process of Web user interfaces
[14]. The goal is to extract models of Web applications that were not constructed
using a model-based approach and then use those models to generate UIs for other
computer platforms, like palms, pocket computers, and mobile phones, without losing
the effort deployed in the construction of the initial application.

The use of reverse engineering techniques to extract models to be used in a speci-
fication-based testing process is not so common. However, there is at least one ex-
ample of this approach developed by Memon [5]. Memon claims that constructing a
GUI model that can be used for test case generation is difficult, so he developed an
approach to reverse engineer a model directly from an executable GUI. A so-called
GUI ripping process opens automatically all the windows of the GUI under test and
extracts their widgets, properties, and values. In the end, it is generated a GUI model
that represents the GUI structure as a GUI forest, and its execution behaviour as an
event-flow graph and an integration tree. However, the tool does not allow editing
the model generated. Memon reports experiences where the ripping process is ap-
plied to extract a model from a correct GUI; the model extracted is then used to test
an incorrect GUI. In industrial environments, such approach is helpful for regression
testing.

Our approach distinguishes from the Memon's approach [5] mainly because of the
expressiveness of the behavioural model that can be obtained, which is not limited to
describe dependencies between pairs of user events (by an event-flow graph), but
comprises also an explicit representation of the GUI state and pre/post conditions
expressing dependencies between user events and the GUI state. This allows the same
model to be used for the generation of valid test input sequences and outputs ex-
pected. In the Memon's approach, a separate pre/post model might be used as a test
oracle, i.e., for the generation of the outputs expected [6], and the test sequences gen-
erated in first hand may not be valid because of state dependencies that are not taken
into account.

8 Conclusions and Future Work

It was presented a dynamic GUI reverse engineering process, mixing automatic and
manual exploration, with the goal of diminishing the effort required in constructing a
GUI model for model-based testing purposes. Manual exploration mode is used to
overcome situations when the automatic exploration process cannot progress because
of dependencies that it cannot discover or because of functionalities that are protected
by a password.

The outcome of the reverse engineering process is a preliminary behavioural GUI
model in Spec#, together with mapping information between the model and the im-
plementation (needed for test execution). The Spec# model describes at a high level
of abstraction the actions available to the user and their effect on the GUI state. The
mapping information comprises a XML file that stores information about the physical
properties of the GUI objects, and a C# code file that bridges the gap between the
abstract actions described in the model and simulated user actions upon the physical
GUI objects.

232 A.C.R. Paiva, J.C.P. Faria, and P.M.C. Mendes

The model generated automatically by the reverse engineering process has to be
validated and completed manually so that it can be used as a test oracle. Test cases are
generated from this model and then executed to check the conformity between the
model and an implementation with the help of the Spec Explorer tool.

Preliminary results of using the reverse engineering tool (REGUI2FM) in small
GUI applications show that the majority (around 70%) of the model can be built
automatically.

We are currently enhancing the REGUI2FM tool to deal with more complex GUI
applications and to use in the automatic exploration mode the same AOP mechanisms
that are used to record user actions in manual exploration mode. By proceeding with
this evolution, the scope of recognizable objects is expected to broaden, and the effort
required to build the models is expected to be further reduced.

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An Overview.
In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004.
LNCS, vol. 3362. Springer, Heidelberg (2005)

2. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.:
Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer, Microsoft
Research, MSR-TR-2005-59 (May 2005)

3. Chikofsky, E.J., Cross, J.H.: Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Software 7(1), 13–17 (1990)

4. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J.: Aspect-Oriented Programming. In: M. A. a. S. M. (eds.) Proceedings of the European
Conference on Object-Oriented Programming (1997)

5. Memon, A., Banerjee, I., Nagarajan, A.: GUI Ripping: Reverse Engineering of Graphical
User Interfaces for Testing. In: Proceedings of the WCRE 2003 - The 10th Working Con-
ference on Reverse Engineering, Victoria, British Columbia, Canada, November 13–16
(2003)

6. Memon, A.M., Pollack, M.E., Soffa, M.L.: Automated Test Oracles for GUIs. In: Proceed-
ings of the FSE (2000)

7. Nyman, N.: In Defense of Monkey Testing (conferred in May 2006)
8. Paiva, A.C.R.: Automated Specification-Based Testing of Graphical User Interfaces, Ph.D,

Engineering Faculty of Porto University (Ph.D thesis), Department of Electrical and Com-
puter Engineering (2007),
http://www.fe.up.pt/~apaiva/PhD/PhDGUITesting.pdf

9. Paiva, A.C.R., Faria, J.C.P., Tillmann, N., Vidal, R.F.A.M.: A Model-to-implementation
Mapping Tool for Automated Model-based GUI Testing. In: Lau, K.-K., Banach, R. (eds.)
ICFEM 2005. LNCS, vol. 3785. Springer, Heidelberg (2005)

10. Paiva, A.C.R., Tillmann, N., Faria, J.C.P., Vidal, R.F.A.M.: Modeling and Testing Hierar-
chical GUIs. In: Proceedings of the ASM 2005 - 12th International Workshop on Abstract
State Machines, Paris - France, March 8–11 (2005)

11. Sabbah, D.: Aspect-Oriented software development. In: Proceedings of the Third Interna-
tional Conference on Aspect-oriented Software Development, Lancaster, UK (2004)

 Reverse Engineered Formal Models for GUI Testing 233

12. Stroulia, E., El-Ramly, M., Iglinski, P., Sorenson, P.: User Interface Reverse Engineering
in Support of Interface Migration to the Web. Automated Software Engineering 10, 271–
301 (2003)

13. Stroulia, E., El-Ramly, M., Kong, L., Sorenson, P., Matichuk, B.: Reverse Engineering
Legacy Interfaces: An Interaction-Driven Approach. In: Proceedings of the WCRE 1999
(1999)

14. Vanderdonckt, J., Bouillon, L., Souchon, N.: Flexible Reverse Engineering of Web Pages
with VAQUISTA. In: Proceedings of the IEEE 8th Working Conf. on Reverse Engineering
(2001)

	Reverse Engineered Formal Models for GUI Testing
	Introduction
	Overview of the Reverse Engineering and Model-Based GUI Testing Process
	Characteristic of the Target GUI Model
	The GUI Reverse Engineering Process
	Automatic Exploration
	Manual Exploration

	Generation of the GUI Model and Mapping Information
	Generation of the GUI Object Map (XML)
	Generation of the GUI Model (Spec#)
	Generation of the GUI Adapter Code (C#)

	Model Validation
	Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

