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Abstract. In this paper we propose an abstract certification technique
for Java which is based on rewriting logic, a very general logical and se-
mantic framework efficiently implemented in the functional programming
language Maude. Starting from a specification of the Java semantics writ-
ten in Maude, we develop an abstract, finite-state operational semantics
also written in Maude which is appropriate for program verification. As
a by-product of the abstract verification, a dependable safety certificate
is delivered which consists of a set of (abstract) rewriting proofs that
can be easily checked by the code consumer using a standard rewriting
logic engine. Our certification methodology extends to other program-
ming languages by simply replacing the concrete semantics of Java by a
semantics for the programming language at hand. The abstract proof-
carrying code technique has been implemented and successfully tested
on several examples, which demonstrate the feasibility of our approach.

1 Introduction

As an emerging research field, code mobility is generating a growing body of sci-
entific literature and industrial development. Proof-carrying code (PCC), orig-
inated by Necula [18,19], is a mechanism for ensuring the safe behavior of
programs that is useful for general software development, and particularly ad-
vantageous for the development of mobile code. In PCC, a program contains
both the code and an encoding of an easy–to–check proof whose validity entails
compliance with a predefined safety policy supplied by the code consumer. The
safety certificate is automatically generated by the software producer, and then
packaged along with the verified code. The crucial issues for a practical realiza-
tion of PCC are: (i) the expresiveness of the language used to specify the policies,
(ii) the size of the transmitted certificate, and (iii) the performance of validation
at the consumer side. The main technologies commonly applied in PCC are type
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analysis [2,13], and theorem proving [3,21]. Recently, abstract interpretation has
been also proposed as an enabling technology for PCC [1,3].

Rewriting logic [16] is a flexible and expressive logical framework in which a
wide range of logics and models of computation can be faithfully represented.
It also provides an easy and inexpensive way to develop formal definitions of
programming languages which are directly executable [17] as interpreters in a
rewriting logic language such as Maude [7]. The verification of embedded and
reactive systems in rewriting logic offers a good number of advantages, an impor-
tant one being the maturity, generality and sophistication of the formal analysis
tools available for it (see e.g. [7]).

In this paper, we develop an abstraction-based, PCC technique for the certi-
fication of Java source code which exploits the automation, expressiveness and
genericity of rewriting logic. We focus on safety properties, i.e., properties of a
system that are defined in terms of certain events not happening, which we char-
acterize as unreachability problems in rewriting logic: given a concurrent system
described by a term rewriting system and a safety property that specifies the
system states that should never occur, the unreachability of all these states from
the considered initial state allows us to infer the desired safety property. The
safety policy is expressed in JML [15], a standard property specification lan-
guage for Java modules. In order to provide a decision procedure, we enforce
finite-state models of programs by using abstract interpretation [8]. The code
consumer annotates each variable in the Java code with an abstract domain.

Our methodology is as follows. Starting from a definition of the Java seman-
tics in rewriting logic formalized in [10], we develop an analysis technique for
source code certification which is parametric w.r.t. the abstract domains. The
key idea for the analysis is to test the unreachability of Java states that repre-
sent the counterpart of the safety property fulfilment using the standard Maude
(breadth-first) search command, which explores the entire (finite) state space of
the program. In the case when the test succeeds, the corresponding rewriting
proofs demonstrating that those states are indeed never reachable are delivered
as the expected outcome certificate. In order to lower the computational costs of
validation and avoid specification burdens to the experts, certificates are encoded
as (abstract) rewriting sequences that, together with an encoding in Maude of
the abstraction, can be checked by standard reduction. As far as we know, the use
of rewriting logic for the purpose of Java certification has not been investigated
to date. Moreover, our methodology extends to other mainstream conventional
languages or lower level languages (e.g. Java bytecode) by simply replacing the
concrete semantics by a semantics for the programming language at hand (for
instance, a rewriting logic semantics for Java bytecode can be found in [11]).

Our approach differs from other PCC approaches based on abstract inter-
pretation in several aspects. With regard to the abstraction carrying code ACC
approach of [1] for constraint logic programs, we share the high flexibility due to
the parametericity on different abstract domains, the lightness of the (static
analysis) proof checker on the consumer side, and the fact that both tech-
niques are defined at the source-level (which is Ciao-Prolog in the case of ACC).
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However, their certificate is produced by means of a static analizer, and takes
the form of a particular subset of the (fixpoint) analysis result that the consumer
validates by means of a simpler abstract interpreter. Our certificate is mainly
an encoding of the unreachability (abstract) rewriting proofs, which is closer to
the original PCC [18,19] where the safety certificate was a proof in first-order
logic. [3] also focuses on abstract interpretation without relying on any theorem
prover or type analysis tool, but their certificates take the form of strategies for
reconstructing a fixpoint. Abstract interpretation is used in this case to reduce
the proofs that are generated and checked by the theorem prover Coq for (a
subset of) Java bytecode by a technique for fixpoint compression. It is worth
noting that, in our framework, the abstract Java semantics is directly available
to the code consumer, which can be verified once for all and trusted henceforth.

Let us motivate our work by focusing on some simple Java programs borrowed
from the related literature, that we want to certify. A brief explanation of the
JML notation used in the examples is found in Section 2.

Example 1. Consider a simple Java program, borrowed from [22], with the re-
quirement to produce an even number as a result. We express this requirement
as a safety policy in the assertion language JML by using the ensures clause
and the operator \result. Namely, we require that the Java outcome is not an
odd number when the execution of the method is completed.

static int even16()
{ /*@ Safety Specification:

@ ensures \result % 2 != 1; @*/
int x = 4; int y = x + 8;
return x+y;

}

A dedicated, standard verification tool for Java such as JavaFAN [11] can help
verify the program above since there is only one initial state and its space state is
finite. This can be done either by symbolic simulation or by explicit-state model
checking of the property (specified in linear temporal logic). Unfortunately, no
safety certificate would be delivered that could be inexpensively tested at the
consumer side.
Example 2. Consider a more elaborated Java program together with a similar
“even” safety policy required on both, the input and the output of the function.

static int evenOdd(int j)
{ /*@ Safety Specification:

@ ensures ((j % 2) == 0) ==> ( \result % 2 == 0); @*/
int u = 3; int v,z = 4;
z += 30;
v = u*8 + j;
return z - v;

}

Here an infinite number of initial states is considered, although the search space
is finite for each of them. Existing Java verification tools such as JavaFAN do not
support program abstraction. Thus, for the infinite-state program of Example 2
above, JavaFAN can only be used as a semi-decision procedure to look for safety
violations starting from specific initial states.

Our last example is more realistic, involving loops and conditionals, as follows.
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Example 3. Consider a more realistic Java program, requiring a more involved
condition on the input to ensure the fulfillment of the considered safety property.
The parity of the output is again required to be “even” under a more complex
“modulo 4” safety policy on the input parameter.

static int summation(int n)
{ /*@ Safety Specification:

@ ensures ((n % 4) == 0 | (n % 4) == 3)
@ ==> ( \result % 2 == 0); @*/

int sum ; int i = 0;
while (i<=n) { sum += i; i++; }
return sum;

}

Other safety properties that are routinely checked in PCC include data shape/
size, bounds on resource consumption, and procedure level properties such as
termination. In all these cases, PCC has the advantage to replace a (potentially)
costly re-verification process by an easy–to–check proof at the consumer side. In
this paper we do not address these different policies, which we consider as future
work. Nevertheless, some of them are still plausible in the abstract interpretation
framework and clearly not difficult to define in our setting, since all the necessary
Java state elements such as memory, stacks, I/O, etc. are explicitly considered;
see Section 3.

InSection2webriefly introduce theJavaModelingLanguage. InSection3wede-
scribe the rewriting logic semantics of Java considered in this paper and inSection 4
wepresent its abstract version, discussing all the difficulties that wehave found and
their solutions. Finally, in Section 5 we present our certification methodology, in
Section 6 we demonstrate the practicality of our proposal with some experimental
results, and conclude with some related work and future work in Section 7.

2 The Java Modeling Language

The Java Modeling Language [15] is a behavioral interface specification language
that allows Java programmers to write specifications of Java classes, interfaces
and modules without the difficulty of learning a language-independent formal
specification language like OCL [5]. JML has been designed as an easily acces-
sible specification language that combines the design by contract method and
the model-based approach to specification to guarantee that a program satisfies
its specification at execution time. That is, it contributes to the idea of includ-
ing specifications into the code and then pre-compiling them into runtime checks
embedded in the Java code. Java developers can specify with JML the functional
properties of their programs in a generalization of Hoare logic, tailored to Java.
As an interface specification language, JML can describe the names and static
information found in Java declarations of Java modules with preconditions (in
requires clauses), normal postconditions (in ensures clauses), invariants and
exceptional preconditions (with the signals clauses), that express first-order
logic statements. JML notation includes quantifiers \forall and \exists and
specification-only fields and methods that allow more precise and complete spec-
ifications. As a behavior specification language, JML can also describe how the
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module will behave when used with assertions intermixed with the Java code.
JML comes with a library with Java types that can be used for describing behav-
ior mathematically like sets, sequences and relations. In this paper, we consider
the simplest JML clauses: the ensures clause to indicate the result of a func-
tion expected by the code consumer and the requires clause to indicate any
precondition on an input parameter of a function.

The JML specifications of a Java program can either be written as code anno-
tations in Java program files or in separate files. The JML specifications as code
annotations are treated like Java comments that are ignored by the compiler.
The text of an annotation could be either in one line, after the marker //@ or,
in many lines enclosed between the markers /*@ and @*/.

/*@ requires <precondition>;
@ ensures <postcondition if no exception raised>;
@ signals(E) <postcondition when exception E raised>;
@ assignable <modified fields and variables> @*/

3 The Rewriting Logic Semantics of Java

We assume some basic knowledge of term rewriting [20] and rewriting logic [16].
In the following, we briefly describe the rewriting logic semantics of Java given
in [10] and used by the JavaFAN verification tool [11,12]. Its novelty and inter-
est are based on the following four advantages: (i) formal specifications provide
a rigorous semantic definition for a language that can be mathematically scruti-
nized; (ii) such formal specifications can be developed with relatively little effort,
even for large languages like Java [11] and the JVM [12]; (iii) the Maude program-
ming language [7], which implements rewriting logic, provides a formal analysis
infrastructure, so that its formal analysis tools (such as state-space breadth-first
search and LTL model checking) become available for free for each programming
language that is specified in Maude; and (iv) in spite of their generality, those
formal analyses can be performed with competitive performance (see [11]).

The specification of Java operational semantics is a rewrite theory, that is,
a triple RJava = (ΣJava, EJava, RJava), with ΣJava an order-sorted signature,
EJava = ΔJava � BJava a set of ΣJava-equational axioms where BJava are ax-
ioms such as associativity, commutativity and identity and ΔJava are a set of
terminating and confluent (modulo BJava) set of ΣJava-rewrite rules, and RJava

a set of ΣJava-rewrite rules. Intuitively, the sorts and function symbols in ΣJava

describe the static structure of the Java program state space as an algebraic data
type, the equations in ΔJava describe the operational semantics of its determinis-
tic features, and the rules in RJava describe its concurrent features. Following the
rewriting logic framework [20,16], we denote by u →r

Java v the fact that concrete
terms u, v, denoting Java program states, are rewritten (at the top position, see
[10]) by using r, which is either a rule in RJava or an equation in ΔJava both ap-
plied modulo BJava. We simply write u →Java v when no confusion can arise. We
denote by →∗

Java the extension of →Java to multiple rewrite steps, i.e., u →∗
Java v

if there exist u1, . . . , uk such that u →Java u1 →Java u2 · · ·uk →Java v. Asso-
ciativity, commutativity and unity (written ACU) axioms of binary operations
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in BJava allow us to elegantly and effectively define (and implicitly implement)
the crucial infrastructure of the Java programming language, including environ-
ments, threads, memory, input/output, synchronization information, and stores
as well as the lookup operations on them; all of them implemented as a multiset
union operation that builds up a “soup” of elements; see [10]. The rewrite theory
RJava is defined as terms of a concrete sort State, with the main state attributes
(i.e., constructors of the algebraic type State) such as in, out, mem, or store.
They define an algebraic structure which is parametric on a generic sort Value
that defines all the possible values returned by Java functions, or stored in the
memory, etc. For instance, the int and bool constructors describe Java, inte-
ger and boolean values and are defined in Maude as “op int : Int -> Value .”
and “op bool : Bool -> Value .”, where Int and Bool are the internal built–in
Maude sorts to define integers and booleans. Intuitively, equations in ΔJava and
rules in RJava are used to specify the changes to the program state, i.e., the
changes to the memory, threads, input/output, etc.

In [10], a sufficiently large subset of full Java 1.4 language is specified in
Maude, including multithreading, inheritance, polymorphism, object references,
and dynamic object allocation. However, Java native methods and many of the
Java built-in libraries available are not supported. The semantics of Java is
defined modularly, i.e., different features of the language are defined in sepa-
rate Maude modules so to ease extensions and maintenance. See [10] for further
details.

The semantics of Java is defined in a continuation-based style. Continuations
maintain the control context of each thread, which explicitly specifies the next
steps to be performed by the thread. Continuations are a typical technique to
transform the uncontrollable control context into controllable data context, by
stacking the sequence of actions that still need to be executed. Once the expres-
sion e on the top of a continuation (e -> k) is evaluated, its result will be passed
to the remaining continuation k. Continuations significantly ease the definition
of flow-control instructions, such as break, continue, return, and exceptions. For
instance, the Java addition operation on Java integers is specified1 in Figure 1
using continuations, where k is the constructor symbol used to denote a continua-
tion in a thread, -> is the constructor symbol used to concatenate continuations,
int is the constructor symbol used to denote a Java integer, and + with2 arity
2 and inside the constructor int is the Maude addition symbol, whereas + with
arity 2 but outside the constructor int is the Java addition symbol, and + with
arity 0 is a continuation symbol used to remember that the Java addition action
is being stacked. The Java less-or-equal boolean operation on Java integers is
specified in a similar way in Figure 2.

1 The Maude syntax is almost self-explanatory. The general point is that each item:
a sort, a subsort, an operation, an equation, a rule, etc., is declared with an obvious
keyword: sort, subsort, op, eq, rl, etc., with each declaration ended by a space and
a period. We use uppercase letters to denote Maude variables and lowercase letters
to denote Maude constructor symbols. See [7] for details.

2 The Maude syntax allows overloading of operators, with different arities.
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--- First evaluate arguments
eq k((E + E) -> K) = k((E, E) -> (+ -> K)) .
--- Once arguments are evaluated to integers, compute addition
eq k((int(I), int(I)) -> (+ -> K)) = k(int(I + I) -> K) .

Fig. 1. Continuation-based equations for Java addition operator on integers

--- First evaluate arguments
eq k((E <= E’) -> K) = k((E, E’) -> (<= -> K)) .
--- Once arguments are evaluated to integers, compute boolean
eq k((int(I), int(I’)) -> (<= -> K)) = k(bool(I <= I’) -> K) .

Fig. 2. Continuation-based equations for Java less-or-equal operator on integers

A relevant construction in the Java semantics is the buildEnv continuation
symbol shown in Figure 3, that gives a new location in the memory store to
each new variable. It involves the following four elements of the Java state:
the thread adding new variables (denoted by constructor t), the environment
inside the thread (denoted by constructor env), the store shared by all threads
(denoted by constructor store), and a counter for the last used location in the
store (denoted by constructor nextLoc).

Another important aspect of the semantics is the use of Java variables. In
Figure 4 we show how the content of a Java variable is retrieved from the store
in the Java state. The assignment operator for Java variables is specified in
Figure 5. Note that the relative order among assignment and retrieval operations
is relevant since multiple threads can try to concurrently assign a value to a
variable or read its value from the store; hence a rule, instead of an equation,
is used to represent the physical assignment as well as the physical retrieval
from the store. In other words, the assignment operator and the retrieval of a
variable value are non-deterministic due to the presence of different threads and
are specified with Maude rules instead of Maude equations.

The state space associated to a rewrite theory is determined in Maude only by
the program rules, since equations are deterministic. That is, rules and equations
are applied in the same way but Maude only keeps track of the rules applied
and omits the information about the equations applied. Therefore, the number
of rules and equations is relevant and the smaller the number of rules, the more
efficient the verification analysis, since the search space is smaller. According to
[10], the Java operational semantics contains about 424 equations and only 7
rules, which considerably saves memory and execution time.

The following example illustrates the mechanization of the Java semantics.

--- No new variable, end buildEnv continuation
eq k(buildEnv(noParameters, noValues) -> K) = k(K) .
--- New variable with name Var and value Val assigned to Location I’ + 1
eq t(k(buildEnv(((T d(Var)), Pl), (Val, Vl)) -> K) env(Env) TC)

store(ST) nextLoc(I’)
= t(k(buildEnv(Pl, Vl) -> K) env([Var, l(I’ + 1)] Env) TC)
store([l(I’ + 1), Val] ST) nextLoc(I’ + 1) .

Fig. 3. Continuation-based equations for building the environment
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--- First obtain location in store from variable name
eq k(Var -> K) env([Var, Loc] env) = k(#(Loc) -> K) env([X, Loc] env) .
--- Then obtain value stored in such location
rl t(k(#(Loc) -> K) TC) store([Loc, Value] Store)
=> t(k(Value -> K) TC) store([Loc, Value] Store) .

Fig. 4. Continuation-based equations for variable content retrieval

--- First obtain location in store of the variable
--- while keeping expression in the continuation
eq k((Var = E) -> K) = k(getLocation(Var) -> (=(E) -> K)) .
--- Once the location is obtained, evaluate expression
--- while keeping location in the continuation
eq k(Loc -> (=(E) -> K)) = k(E -> (=(Loc) -> K)) .
--- Once the expression is computed, assign to location
eq k(Value -> (=(L) -> K)) = k([Value -> L] -> (V -> K)) .
--- General procedure to update a location in the shared memory
rl t(k([Value -> L] -> K) TC) store([L, Value’] ST)
=> t(k(K) TC) store([L, Value] ST) .

Fig. 5. Continuation-based equations and rules for Java assignment operator

Example 4. Consider the Java program of Example 1 together with the following
Java main function:

void main() { System.out.println(addition()); }

The Maude command search provides us built–in breadth-first search, i.e., it
provides all the sequences of rules (recall that the application of equations is
omitted within the search space) from an initial term (without variables) to
a final term (possibly with variables) [7]. Note that the initial term (without
variables) describes a concrete initial Java state and the final term (possibly
with variables) describes a (possibly infinite) set of final Java states. In the
search command below we ask for all possible values returned by the main Java
function of Example 1 and, therefore, a variable term denotes the goal state to
be reached. Note that the code of the two Java functions addition and main
is embedded within the search command, as well as the initial call to main (see
[10] for details on how to build an initial Java state).

search in PGM-SEMANTICS : java((preprocess(default class ’Safe1Even1
extends Object implements none {
(default static) int ’addition(noPara)throws(noType)
{int d(’x) = i(4) ; int d(’y) = ’x + i(8) ; 12 @ return ’x + ’y ;}

(public static) void ’main(t(’String)[] d(’args))throws(noType)
{5 @ (’System . ’out . ’println < ’addition < noExp > > ;)}

})
t(’Safe1Even1) . ’main < new string [i(0)] > noVal))
=>! X:ValueList .

Solution 1 (state 0)
X:ValueList --> int(16)

The search command returns that one unique possible Java execution trace is
possible, which leads to the Java value 16 as the outcome of the Java instruction
“System.out.println(addition());”. The whole rewriting sequence leading to
this Java value is also delivered by Maude.
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4 The Abstract Rewriting Logic Semantics of Java

In this section, we develop an abstract version of the rewriting logic seman-
tics of Java, described by the rewrite theory RJava# = (ΣJava# , EJava# , RJava#),
EJava# = ΔJava# � BJava# and its corresponding →Java# rewriting relation. Re-
call that the rewrite theory RJava is defined on a generic sort Value. Our approach
consists in extending RJava (taking advantage of its modularity) by creating ab-
stract domains as subsorts of the sort Value and adding the appropriate versions
of the Java constructions and operators for the abstract domains.

An abstract interpretation (or abstraction) [8] of the program semantics is
given by an upper closure operator α : ℘(State) → ℘(State), that is monotonic
(for all SSt1, SSt2 ∈ ℘(State), SSt1 ⊆ SSt2 implies α(SSt1) ⊆ α(SSt2)), idem-
potent (for all SSt ∈ ℘(State), α(SSt) ⊆ α(α(SSt))), and extensive (for all
SSt ∈ ℘(State), SSt ⊆ α(SSt)). The intuition of this definition is that each
Java program state St ∈ State is abstracted by its closure α({St}). Closure
operators have many interesting properties. For instance, when the considered
domain is a complete lattice, e.g. 〈α(State),⊆〉, each closure operator is uniquely
determined by the set of its fixed points. In the context of abstract interpreta-
tion, closure operators are important because abstract domains can be equiva-
lently defined by using them or by Galois insertions, as introduced in [9]. Let
ι : α(℘(State)) → A be an isomorphism. Then, given an upper closure opera-
tor α : ℘(State) → ℘(State), the structure (℘(State), α ◦ ι, ι−1, A) is a Galois
insertion, where α ◦ ι and ι−1 are the abstraction and concretization functions,
respectively (see [9] for further details).

In our approach, the code consumer can assign a different abstract domain
to each variable in the Java code to obtain a finite-state model of the program.
This is an important point, since a potential user of the tool only has to select
some source variables to be abstracted together with the selected abstraction. A
graphical interface equipped with user–friendly advisory facilities can help her
in this process. Furthermore, the user could simply annotate the source code
with JML assertions encoding the required safety policy so that the critical vari-
ables (together with their appropriate abstract domains) might be automatically
inferred, although in this case the abstraction might be less accurate.

For the process of assigning an abstract domain to a source variable, we have
a twofold situation, considering the theoretical and practical levels. On the the-
oretical level, we define an abstract function for each Java variable name x, e.g.,
αx : ℘(Int) → ℘(Int), and homomorphically extend those abstract functions to
an abstract function α : ℘(State) → ℘(State). Indeed, for each variable x, α
abstracts the values stored in the Java memory for x using αx, which can be the
identity function if no abstract domain is selected. As mentioned before, these
assignments of an abstract domain to a source variable can be inferred from the
JML annotations, e.g. “\result % 2” or “n % 4”, in the Java source code. The
following example shows some abstract domains which are relevant for this work.

Example 5. Let us consider an abstract function that classifies Java integers into
even and odd classes, i.e., mod2 : ℘(int(Int)) → ℘(int(Int)) where int(Int)
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Fig. 6. Lattice of integers for the mod2 and mod4 abstractions

denotes the Maude terms of sort Value that correspond to the Java integers.
This abstraction is relevant for Examples 1, 2, and 3. We can choose the follow-
ing abstract symbols A = {even, odd, top, bot} to denote the following subsets
top = int(Int), bot = ∅, even = {int(n) | n mod 2 = 0}, and odd = {int(n) |
n mod 2 = 1}. We can even refine such abstract domain by including the ab-
straction for Java integers modulo 4, i.e., mod4 : ℘(int(Int)) → ℘(int(Int)).
This abstraction is relevant for Example 3. We can have the following abstract
symbols A = {top, bot, #0, #1, #2, #3} where #k = {int(n) | n mod 4 = k} for
k ∈ {0, 1, 2, 3}. The lattice induced by the relation ⊆ on sets of Java integers is
shown in Figure 6.

On the practical level, we have to supplement the original Java semantics with
a new Maude function, called inAbsDomain, that records the abstract domain
associated to each variable name and that it will be used in two points: when
the variable is initially created in the Java memory and everytime its value is
updated in the memory. For instance, Figure 7 shows the code of inAbsDomain
for variables x,y of Example 1 according to the JML annotations, together with
the Maude code for the abstract functions mod2 and mod4. We also have to
add a call to the inAbsDomain function in the buildEnv continuation symbol of
Figure 3 and the Java assignment operator of Figure 5; all these modifications
are shown in Figure 8. Obviously, we have to provide abstract versions of all
the Java operators in the Java semantics dealing with such kind of values, e.g.,
we must provide an approximation of integer addition, less-or-equal boolean
operator, etc. dealing with the new abstract domains for integers. For instance,
given the abstract function mod2, the addition operation on integers is specified
in Figure 9.

--- Define abstract domains
sorts Mod2 Mod4 . subsort Mod2 Mod4 < Value .
ops even odd : -> Mod2 .
op #_: Int -> Mod4 .
--- Define abstraction functions
op mod2 : Value -> Mod2 .
eq mod2(int(I)) = if (I rem 2 == 0) then even else odd fi .
op mod4 : Value -> Mod4 .
eq mod4(int(I)) = #(I rem 4) .
--- Equations for abstracting concrete values
op inAbsDomain : Qid Value -> Value .
eq inAbsDomain(’x,int(I)) = mod2(int(I)) .
eq inAbsDomain(’y,int(I)) = mod2(int(I)) .
eq inAbsDomain(Var,Value) = Value [owise] .

Fig. 7. Abstract domain and association of abstract domain to variable name
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--- BuildEnv modified equation
eq t(k(buildEnv(((T d(Var)), Pl), (Value, Vl)) -> K) env(Env) TC)

store(ST) nextLoc(I’)
= t(k(buildEnv(Pl, Vl) -> K) env([Var, l(I’ + 1)] Env) TC)
store([l(I’ + 1), inAbsDomain(Var,Value)] ST) nextLoc(I’ + 1) .

--- Assignment modified equations
op = : Exp Qid -> Continuation . --- new definition
op = : Location Qid -> Continuation . --- new definition
eq k((Var = E) -> K) = k(getLocation(Var) -> (=(E,Var) -> K)) .
eq k(Loc -> (=(E,Var) -> K)) = k(E -> (=(Loc,Var) -> K)) .
eq k(Val -> (=(Loc,Var) -> K)) = k([inAbsDomain(Var,Val) -> Loc] -> (Val -> K)) .

Fig. 8. Modified continuation-based equations for building environment and Java as-
signment

--- Execute abstract mod2 values
eq k((even, even) -> (+ -> K)) = k(even -> K) .
eq k((even, odd) -> (+ -> K)) = k(odd -> K) .
eq k((odd, even) -> (+ -> K)) = k(odd -> K) .
eq k((odd, odd) -> (+ -> K)) = k(even -> K) .
--- Combine with standard integer values
eq k((int(I), Val) -> (+ -> K)) = k((mod2(int(I)), Val) -> (+ -> K)) .
eq k((Val, int(I)) -> (+ -> K)) = k((Val, mod2(int(I))) -> (+ -> K)) .

+ even odd

even even odd

odd odd even

Fig. 9. Abstract definition and equations for abstract Java addition operator

In abstract interpretation, it is common to compress several computation
steps into one abstract computation step, to reflect the fact that several distinct
behaviors are mimicked by an abstract state. Consider for instance the Java less-
or-equal operator <= of Figure 2 and the abstract function mod2. For the case of
comparing two even expressions with <=, an (inaccurate) approximation of the
result is the union of true and false, which is denoted by the symbol top. A
näıve implementation of this idea would mean including the following equation
in the abstract Java semantics RJava# (following the definition of operator <= in
Figure 2):

eq k((even, even) -> (<= -> K)) = k(top -> K) .

This instrumentalization of the Java semantics to deal with abstraction implicitly
means too many modifications, since completely different Java states could be
generated that have to be packed together into a unique abstract state. For
instance, consider a Java expression “if eb then et else ef” such that the
expression eb returns top so that we have to represent within a single Java state
both, the case when we reach a Java state continued by executing instruction et
and also the case when we reach a Java state continued with the instruction ef.
This would amount to a deep modification of the whole Java semantics, in order
to cope with sets of Java states. Therefore, we adopt a different approach. When
several →Java rewrite steps are mimicked by an abstract Java state and those
rewrite steps apply different rules or equations, we use concurrency at the Maude
level. That is, we add rules to RJava# to reflect the different possible evolutions
of the system. Following this approach, the Java less-or-equal operator is defined
as follows, describing that the comparison operator <= can return true or false
indifferently:
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rl k((even, even) -> (<= -> K)) = k(bool(true) -> K) .
rl k((even, even) -> (<= -> K)) = k(bool(false) -> K) .

Now, we are ready to formalize the abstract rewriting relation →Java# , which
intuitively develops the idea of applying only one rule or equation from the
concrete Java semantics to an abstract Java state while exploring the different
alternatives in a non-deterministic way. By abuse, we denote the abstraction of
a rule α({l}) → α({r}) by α({l} → {r}).
Definition 1 (Abstract rewriting). Let α : ℘(State) → ℘(State) be an ab-
straction. We define the approximated version of rewriting →Java#⊆ ℘(State) ×
℘(State) by:

SSt1 →Java# SSt2 using α({l} → {r}) ∈ (RJava# ∪ ΔJava#)
iff ∀u ∈ α(SSt1), ∃v ∈ SSt2 s.t. u →Java v, using l → r ∈ RJava ∪ ΔJava.

We denote by →∗
Java# the extension of →Java# to multiple rewrite steps. The

following result follows straightforwardly by monotonicity, idempotency, and ex-
tensitivity of the upper closure operator α.

Theorem 1 (Correctness & Completeness). Let α : ℘(State) → ℘(State)
be an abstraction. Let SSt1, SSt2 ∈ ℘(State). If SSt1 →∗

Java# SSt2, then for all
u ∈ α(SSt1), there is v ∈ SSt2 such that u →∗

Java v. Let St1, St2 ∈ State. If
St1 →∗

Java St2, then there exists SSt3 ⊆ ℘(State) s.t. α(St1) →∗
Java# SSt3 and

St2 ∈ SSt3.

The breadth-first search for the abstract finite state system (finite due to the
use of finite abstract domains) gives us a useful tool for symbolic execution,
while keeping simple the modifications of the Java semantics in Maude. Actually,
verification simply boils down to the exploration of all the rewriting sequences.

Example 6. Consider the Java functions addition and main of Example 4 and
the abstract Java semantics shown above with the inAbsDomain function of Fig-
ure 7. The call to function main is now as follows. Note that, for the search com-
mand, the only change we need in this case is the replacement of PGM-SEMANTICS
with PGM-SEMANTICS-ABSTR, since the considered Java function addition of Ex-
ample 1 has no input parameters.

search in PGM-SEMANTICS-ABSTR : java((preprocess(default class ’Safe1Even1
extends Object implements none
{(default static) int ’addition(noPara)throws(noType)

{((int d(’x) = i(4) ;) (int d(’y) = ’x + i(8) ;)) 12 @ return ’x + ’y ;}
(public static) void ’main(t(’String)[] d(’args))throws(noType)

{5 @ (’System . ’out . ’println < ’addition < noExp > > ;)}})
t(’Safe1Even1) . ’main < new string [i(0)] > noVal))
=>! X:ValueList .

This search command now returns the following result, meaning that exactly
one abstract Java execution trace is proven, which returns the abstract value
even as a result of the Java instruction “System.out.println(addition());”:

Solution 1 (state 0)
X:ValueList --> even
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and therefore every real execution of the Java program of Figure 1 also returns
an even value, according to Theorem 1.

However, the abstraction defined in Example 5 is not accurate enough for the
Java program of Example 3, as shown in the following example.

Example 7. Consider the code of Example 3 with the following function main:

void main() { System.out.println(sum(0)); }

We provide the following assignment of abstract domains for the variables in the
Java program:

op inAbsDomain : Qid Value -> Value .
eq inAbsDomain(’n,int(I)) = mod4(int(I)) .
eq inAbsDomain(’i,int(I)) = mod4(int(I)) .
eq inAbsDomain(’sum,int(I)) = mod2(int(I)) .
eq inAbsDomain(Var,V) = V [owise] .

When we search for all the results of the function main

search in PGM-SEMANTICS-ABSTR : java((preprocess(default class ’Safe1Even1
extends Object implements none {
(default static) int ’sum(int d(’n))throws(noType)

{(((int d(’sum) ;) (int d(’i) = i(0) ;)) 17 @ (while ’i <= ’n
17 @ {(15 @ (’sum += ’i ;)) 16 @ (’i ++ ;)})) 18 @ return ’sum ;}

(public static) void ’main(t(’String)[] d(’args))throws(noType)
{7 @ (’System . ’out . ’println < ’sum < i(0) > > ;)}})

t(’Safe1Even1) . ’main < new string [i(0)] > noVal))
=>! X:ValueList .

Maude delivers the following two results
Solution 1 (state 2) Solution 2 (state 5)
X:ValueList --> even X:ValueList --> odd

which are useless since both, an even and an odd output value are possible. The
problem is that the boolean condition (i <= n) returns both true and false
(in a non-deterministic way) under the mod2 and mod4 abstraction operators in
too many situations.

In order to improve accuracy, we define a new, more precise abstract domain
leq#

x,y that is parametric w.r.t. two Java variable names x, y (which have different
abstraction domains). For the previous example, this can be used to abstract
variable i w.r.t. n. On the theoretical level, there are two abstract domains
αx, αy : ℘(Int) → ℘(Int) that are used for the values stored in the Java memory
for variables x, y, respectively. The extension leq#

x,y : ℘(State) → ℘(State) takes
those abstract domains αx, αy and captures also whether x ≤ y or x > y. On the
practical level, we use the abstract symbols leq# and gt# defined in Maude as
“leq# : Abst Qid -> AbstLeqN” and “gt# : Abst Qid -> AbstLeqN” where
the first argument denotes the abstract domain for variable x (i.e., αx) and
the second argument is just y (the name of the second variable), e.g. for the
previous example we will have an abstract expression for variable i such as
leq#(#0,’n) denoting that the current value of variable i modulo 4 is 0 and
that variable i is less or equal to variable n, whatever value n has been assigned in
the execution. The appropriate version of the Java operators relevant for this new
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<= any value
leq#(Val,V) true
gt#(Val,V) false

++

leq#(#(I),V) leq#(mod4(I + 1),y) if y = #(I’) ∧ I < I’
leq#(#(I),V) gt#(mod4(I + 1),y) if y = #(I’) ∧ I ≥ I’

gt#(#(I),V) gt#(mod4(I + 1),y)

--- Two equations for the Java less-or-equal operator on integers
eq k((leq#(Val1,Var),Val2) -> <= -> K) = k(bool(true) -> K) .
eq k((gt#(Val1,Var),Val2) -> <= -> K) = k(bool(false) -> K) .
--- This equation is the core of the new abstract domain
--- The value of Var in memory has to be obtained before incrementing
ceq t(k(leq#(#(I),Var) -> ++’(Loc) -> K) env([Var, Loc’] Env) TC)

store([Loc’,#(I’)] Store)
= t(k([NewVal -> Loc] -> leq#(#(I),Var) -> K) env([Var, Loc’] Env) TC)

store([Loc’,#(I’)] Store)
if NewVal := if (I + 1 <= I’) then leq#(mod4(int(I + 1)),Var)

else gt#(mod4(int(I + 1)),Var) fi .
--- This other equation complements the previous one
eq k(gt#(#(I),Var) -> ++’(Loc) -> K)
= k([gt#(mod4(int(I + 1)),Var) -> Loc] -> gt#(mod4(int(I + 1)),Var) -> K) .

Fig. 10. Continuation-based equations for Java less-or-equal operator on integers

abstract domain are shown in Figure 10. Note that we cannot use the abstract
domain above for the second variable instead of its name, since the value of this
variable can change dynamically. Consider, for instance, the following variant
of Example 3 where the loop therein contains the assignment n -= 1, and thus
variable n changes in each iteration.

Example 8. Let us reconsider now Example 7. The code of function inAbsDomain
for Example 3 is as follows, denoting that variables i and n have domains mod4,
variable sum has domain mod2 and that the relation i ≤ n is also represented in
the abstract domain:

op inAbsDomain : Qid Value -> Value .
eq inAbsDomain(’n,int(I)) = mod4(int(I)) .
eq inAbsDomain(’i,int(I)) = leq#(mod4(int(I),’n) .
eq inAbsDomain(’sum,int(I)) = mod2(int(I)) .
eq inAbsDomain(Var,V) = V [owise] .

When we search for solutions for the Java function main using the following
command

search in PGM-SEMANTICS-ABSTR : java((preprocess(default class ’Safe1Even1
extends Object implements none {
(default static) int ’sum(int d(’n))throws(noType)

{(((int d(’sum) ;) (int d(’i) = i(0) ;)) 17 @ (while ’i <= ’n
17 @ {(15 @ (’sum += ’i ;)) 16 @ (’i ++ ;)})) 18 @ return ’sum ;}

(public static) void ’main(t(’String)[] d(’args))throws(noType)
{7 @ (’System . ’out . ’println < ’sum < i(0) > > ;)}})

t(’Safe1Even1) . ’main < new string [i(0)] > noVal))
=>! X:ValueList .

we get the following unique output, meaning that exactly one abstract Java
execution trace is proven, which returns the abstract value even as a result of
the Java instruction “System.out.println(sum(0))”:
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Solution 1 (state 2)
X:ValueList --> even

This certifies that every possible Java execution starting with an integer n such
that n mod 4 = 0 does always return an even value. Indeed, we can verify that
initial calls “System.out.println(sum(0))” and “System.out.println(sum(3))”
always return even whereas “System.out.println(sum(1))” and
“System.out.println(sum(2))” return odd.

5 Certifying Java

Examples 4, 6, 7, 8 above illustrate how our methodology generates a safety
certificate which essentially consists of the set of (abstract) rewriting proofs of
the form t1 →r1

Java# t2 · · · →rk−1

Java# tk that describe the program states which
can and cannot be reached from a given (abstract) initial state. Since these
proofs correspond to the execution of the abstract Java semantics specification,
which is made available to the code consumer, the certificate can be unexpen-
sively checked on the consumer side by any standard rewrite engine by means
of a rewriting process that can be very simplified. Actually, it suffices to check
that each abstract rewriting step in the certificate is valid and no other valid
rewritings have been disregarded, which essentially amounts to use the matching
infrastructure within the rewriting engine. Note that, according to the different
treatment of rules and equations in Maude, where only transitions caused by
rules create new states in the space state, an extremely reduced certificate can
be delivered by just recording the rewrite steps given with the rules, while the
rewritings with the equations are omitted.

The certification methodology presented here has been implemented in Maude
and is publicly available at http://www.dsic.upv.es/~sescobar/JavaACC/.
In developing and deploying the system, we fixed the following requirements:
1) define a system architecture as simple as possible, 2) make the certification

Fig. 11. JavaACC Snapshot

Fig. 12. JavaACC Reply

Fig. 13. JavaACC Certificate
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Table 1. Sizes of source code and certificates, and times ofcertificate generation and
validation times

Source Full Cert. Red Cert. Full Cert. Red Cert. Full Cert. Red Cert.
Code example Size Size Size F/R Gen. Time Gen. Time Val. Time Val. Time

(bytes) (Kbytes) (Kbytes) (ms) (ms) (ms) (ms)
even16 562 117 0.93 126 ∼0 ∼0 ∼0 ∼0
even16∗ 767 401 3.58 112 6 4 4 2
evenOdd 671 312 1.08 288 ∼0 ∼0 ∼0 ∼0

summation 870 1551 39.03 40 2294 146 1628 103

service available to every Internet requestor, and 3) hide the technical details
from the user. The prototype system JavaACC offers a rewriting-based program
certification service, which is able to analyze safety properties of Java code which
are related to the safe use of types. A snapshot of JavaACC is shown in Figures
11, 12, and 13.

6 Experiments

In Table 1, we study two key points for the practicality of our proposal: the
size of the reduced versus full certificates and the relative efficiency of checking
certificates w.r.t. their generation. The experiments have been performed on a
MacBook with 2 Gb RAM. Programs even16, evenOdd, and summation are the
Java programs of Examples 1, 2, and 3, respectively. Program even16∗ performs
more involved arithmetic computations than even16, including subtraction and
multiplication, while returning the same result. The first column contains the size
(in bytes) of the source code for each benchmark program. The three columns
for Full Cert. show the size in Kbytes, the generation time, and the validation
time, respectively, for the full certificates. Similarly for the three columns of
Red. Cert. Running times are given in milliseconds and were averaged over a
sufficient number of iterations. Our figures demonstrate that the reduction in
size of the certificate is very significant in all cases, ranging the quotient F/R
(Full Cert. Size/Red. Cert. Size) from 288 in even16∗ to 40 for summation. When we
compare the time employed to generate the (full and reduced) certificates w.r.t.
the corresponding validation time, we have that the validation time is reduced
by a factor up to 50%. Thus we conclude that, by minimizing the number of
equations in the certificate, we achieve a simpler and indeed superior certificate
that can be verified much more efficiently.

7 Conclusions and Related Work

Correctness of JML specifications can be verified either during runtime or stat-
ically. The most basic static tool support for JML is type checking and parsing
(see [5]). At runtime an exception is raised if a JML condition fails.

There are several tools for static verification of Java programs using JML
as specification language. The main differences between these tools regard its
soundness, its level of automation, its language coverage and whether they are
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proof tools or just validation tools. The ESC/Java tool [14] offers a higher level
of automation without any user interaction and relies on a complete (but un-
sound [4]) automatic prover to check null pointers or array bounds limits which
uses its own specification language. The ESC/Java2 tool [6] extends ESC/Java
to support more of the JML syntax and to add other functionality but it is also
unsound and incomplete. It supports Java 1.4 code with JML annotations but
we can not generate certificates whenever the validation succeds. Another draw-
back is that there is no arithmetic axiomatization that enables reasoning within
ESC/Java2 about programs with integer computation [5].

As a conclusion, as far as we know our approach is the first sound and com-
plete, fully automatic certification tool that applies to the verification of source
Java code. The proposed methodology features quality attributes (notably reli-
ability and security, but also good performance) through rigorous mechanisms
which integrate a wide range of well-established programming language tech-
niques (abstract interpretation, program semantics, meta-programming, etc).
Our approach is based on a rewriting logic semantics specification of the full
Java 1.4 language [10], and thus works with the full Java 1.4 language. Our
certification methodology extends to other programming languages by simply
replacing the concrete semantics by a semantics for the programming language
at hand. Different safety policies can be defined using different (abstract) terms
denoting the states that should not be reached. Such safety policies are certified
by the code producer and easily checked by the code consumer using a rewrit-
ing process that can be very simplified. Certificates are encoded as (abstract)
rewriting sequences which can be checked in the abstract Java semantics writ-
ten in Maude on the consumer side by standard reduction. We are currently
investigating how other formal verification techniques such as (abstract) model
checking can be fruitfully combined with the abstraction methodology presented
here to produce a more powerful methodology.

Acknowledgments. We thank Andrea Schiavinato for developing a useful web
interface for our PCC tool.
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