
An Approach to Formalization and Analysis

of Message Passing Libraries�

Robert Palmer, Michael DeLisi,
Ganesh Gopalakrishnan, and Robert M. Kirby

School of Computing, University of Utah
{rpalmer,delisi,ganesh,kirby}@cs.utah.edu

Abstract. Message passing using libraries implementing the Message
Passing Interface (MPI) standard is the dominant communication mech-
anism in high performance computing (HPC) applications. Yet, the lack
of an implementation independent formal semantics for MPI is a huge
void that must be filled, especially given the fact that MPI will be imple-
mented on novel hardware platforms in the near future. To help reason
about programs that use MPI for communication, we have developed a
formal TLA+ semantic definition of the point to point communication
operations to augment the existing standard. The proposed semantics in-
cludes 42 MPI functions, including all 35 point to point operations, many
of which have not been formally modeled previously. We also present a
framework to extract models from SPMD-style C programs, so that de-
signers may understand the semantics of MPI by exercising short, yet
pithy, communication scenarios written in C/MPI. In this paper, we
describe (i) the TLA+ MPI model features, such as handling the ex-
plicit memory for each process to facilitate the modeling of C pointers,
and some of the widely used MPI operations, (ii) the model extraction
framework and the simplifications made to the model that help facilitate
explicit-state model checking of formal semantic definitions, (iii) a cus-
tomized model checker for MPI that performs much faster model check-
ing, and features a dynamic partial-order reduction algorithm whose cor-
rectness is directly based on the formal semantics, and (iv) an error trail
replay facility in the Visual Studio environment. Our effort has helped
identify a few omissions in the MPI reference standard document. These
benefits suggest that a formal semantic definition and exploration ap-
proach as described here must accompany every future effort in creating
parallel and distributed programming libraries.

1 Introduction

Progress in high-performance scientific computing (HPC) is fundamental to sci-
entific discovery in virtually all walks of life. The Message Passing Interface
(MPI, [1]) library has become a de facto standard in HPC, and is being actively
developed and supported through several implementations [2,3,4,5] designed to
� Supported in part by NSF award CNS-00509379, Microsoft HPC Institutes Program,

and SRC Contract 2005-TJ-1318.

S. Leue and P. Merino (Eds.): FMICS 2007, LNCS 4916, pp. 164–181, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Approach to Formalization and Analysis of Message Passing Libraries 165

run on a plethora of architectural platforms. MPI is, however, a portable stan-
dard for overall behavior, and not performance. Therefore, MPI programs are
often manually or automatically (e.g., [6]) re-tuned when ported to another hard-
ware platform, for example by changing its basic primitives (e.g., MPI_Send) to
specialized versions (e.g., MPI_Isend). The fact that MPI-1 supports over 128
primitives and MPI-2 supports over 300 is largely to facilitate such transforma-
tions.1 In this context, it is crucial that the designers performing code tuning are
aware of the very fine details of the MPI semantics. Unfortunately, such details
are far from obvious. For illustration, consider the following MPI pseudo-code
involving two processes:

P0: if(rank==0){MPI_Irecv(rcvbuf1, from 1); MPI_Irecv(rcvbuf2,from 1);..}

P1: if(rank==1){sendbuf1=6; sendbuf2=7;

MPI_Issend(sendbuf1, to 0); MPI_Isend(sendbuf2, to 0);..}

Process 1 is designed to issue two immediate mode sends (the first being a
synchronous-mode send) to process 0, while Process 0 is designed to post two
immediate-mode receives. Consider some simple questions pertaining to the ex-
ecution of this program:

1. Is it guaranteed that rcvbuf1 will eventually contain the message sent out
of sendbuf1? The answer is ‘yes,’ since MPI guarantees in-order message
delivery.

2. When can the buffers be accessed? Since all sends and receives use the im-
mediate mode, the handles that these calls return have to be tested for
completion using an explicit MPI_Test or MPI_Wait (suppressed for brevity
in our pseudo-code) before the associated buffers are allowed to be accessed
(written to or even read from).

3. Will the first receive always complete before the second? No such guarantee
exists (the second may complete first), as these are immediate mode receives
which are guaranteed only to be initiated in program order.

4. What is guaranteed about the matching receive when the first send com-
pletes? It is guaranteed that this receive has been posted. This is because the
first send is a synchronous send, which forces a rendezvous with the posting
of the first receive.

The MPI reference standard [1] is an informal, non machine-readable docu-
ment that offers English descriptions of the individual behaviors of MPI primi-
tives. It does not support answering the above kinds of simple questions in any
tractable and reliable way. Running test programs, using actual MPI libraries, to
reveal answers to the above kinds of questions is also futile, given that various
MPI implementations exploit the liberties of the standard by specializing the
semantics in various ways.

In this paper, we present a formal, high-level, and executable standard specifi-
cation for a non-trivial subset of MPI 1.1. In particular, our specification consists
1 It is widely known that MPI programs use only about a dozen or so of the 300

MPI library calls - but the precise dozen chosen depends on the applications being
programmed, as well as the hardware platform on which the program runs.

166 R. Palmer et al.

of 42 MPI 1.1 functions. We write this specification in TLA+ [7], a formal speci-
fication notation widely used in industry. Our specification is integrated with the
verification framework described in this paper. The features of this framework
are as follows:

1. It permits designers to explore the MPI semantics in the setting of MPI pro-
grams written in C by extracting a TLA+ model of the program, embedding
the MPI calls, and linking it to our TLA+ models of MPI functions. The
exploration happens through model checking [8], and not through concrete
executions. Error traces produced by the model checker are, however, dis-
played in a user-friendly way by driving the Microsoft Visual Studio debugger
to walk the original program code following the error trace.

2. The framework includes two model checkers: MPI-TLC, a model checker that
works directly off the formal semantic definitions using the TLA+ model
checker, TLC [9]; and MPIC [10], a model checker that embodies the com-
munication semantics of MPI directly as C# program code.

3. The communication semantics of a small representative subset of MPI were
incorporated into MPIC by faithfully following our TLA+ definitions. In
addition, MPIC implements a dynamic partial-order reduction algorithm
(DPOR) (adapted from [11]) for efficient state-space traversal. The DPOR
algorithm avoids commuting independent actions, where the notion of inde-
pendence was stated and manually proved using a simplified version of our
MPI formal semantics.

Experimental results from MPIC are provided in Figure 11. A more detailed
coverage of MPIC or our DPOR algorithm are outside the scope of this paper,
but may be found in [10].2

The questions raised on Page 165 can be answered by writing an MPI program
such as the one in Figure 1 and analyzing this program using our framework.
The four questions can be answered, in order, as follows:

1. Assert that the data read by process 0 is: rcvbuf1 == 6&&rcvbuf2 == 7.
If it is possible under the semantics for other values to be assigned to these
two variables, then the TLC model checker will find the violation.

2. Move the assertions mentioned in the response to the previous question to
any other point before the corresponding waits. The model checker then
finds violations—meaning that the data cannot be accessed on the receiver
until after the wait. If one adds an assignment to the variable being transmit-
ted, i.e., after the MPI_Issend yet before the MPI_Wait, the model checker
discovers the violation as the wrong value will be passed to the receiver.

3. We can reverse the order of the MPI_Wait commands. If the model checker
does not find a deadlock then it is possible for the operations to complete in
either order.

4. To answer this question, we employ the program in Figure 1. The MPI se-
mantics for immediate mode ready send requires the corresponding receive to

2 The entire modeling framework described in this paper may be downloaded from
http://www.cs.utah.edu/formal verification/verification environment

An Approach to Formalization and Analysis of Message Passing Libraries 167

1 #include "mpi.h" 22 data2 = 6;
2 23 MPI_Issend(&data1, 1, MPI_INT, 0,
3 int main(int argc, char** argv) 24 1, MPI_COMM_WORLD, &req1);
4 { 25 }
5 int rank, size, data1, data2, data3, flag; 26 if(rank == 1){
6 MPI_Request req1, req2, req3; 27 MPI_Wait(&req1, &stat);
7 MPI_Status stat; 28 MPI_Irsend(&data2, 1, MPI_INT, 0,
8 MPI_Init(&argc, &argv); 29 0, MPI_COMM_WORLD, &req2);
9 MPI_Comm_rank(MPI_COMM_WORLD, &rank); 30 MPI_Irsend(&data3, 1, MPI_INT, 0,

10 MPI_Comm_size(MPI_COMM_WORLD, &size); 31 2, MPI_COMM_WORLD, &req3);
11 if(rank == 0){ 32 } else {
12 data1 = 0; 33 MPI_Wait(&req2, &stat);
13 data2 = 0; 34 }
14 MPI_Irecv(&data1, 1, MPI_INT, 1, 35 if(rank == 0){
15 0, MPI_COMM_WORLD, &req1); 36 MPI_Wait(&req1, &stat);
16 MPI_Irecv(&data2, 1, MPI_INT, 1, 37 } else {
17 1, MPI_COMM_WORLD, &req2); 38 MPI_Wait(&req2, &stat);
18 MPI_Irecv(&data3, 1, MPI_INT, 1, 39 }
19 2, MPI_COMM_WORLD, &req3); 40 MPI_Finalize();
20 } else { 41 return 0;
21 data1 = 7; 42 }

Fig. 1. The C program used to answer Question 4 on Page 165

be posted before the MPI_Irsend. We cause the tag of the messages to force
the second MPI_Irecv to match the MPI_Issend. We execute the MPI_Wait
corresponding to the MPI_Issend and then post two MPI_Irsend operations.
Now we observe that the model checker (in performing a breadth first search)
finds the first MPI_Irsend posts without error, but the second MPI_Irsend
violates the semantics. Thus we conclude that when the MPI_Wait of process
1 returns, process 0 is guaranteed to have executed the second MPI_Irecv,
but is not guaranteed to have executed any further.

1.1 Related Work

The idea of writing formal specifications of standards and building executable
environments is a vast area. The IEEE Floating Point standard [12] was initially
conceived as a standard that helped minimize the danger of non-portable float-
ing point implementations, and now has incarnations in various higher order
logic specifications (e.g., [13]), finding routine applications in formal proofs of
modern microprocessor floating point hardware circuits. Formal specifications
using TLA+ include Lamport’s Win32 Threads API specification [14] and the
RPC Memory Problem specified in TLA+ and formally verified in the Isabelle
theorem prover by Lamport, Abadi, and Merz [15]. In [16], Jackson presents a
lightweight object modeling notation called Alloy, which has tool support [17,18]
in terms of formal analysis and testing based on Boolean satisfiability methods.

Each formal specification framework solves modeling and analysis issues spe-
cific to the object being described. In our case, we were initially not sure how to
handle the daunting complexity of MPI nor how to handle its modeling, given
that there has only been very limited effort in terms of formal characterization of
MPI. The architecture of our framework that incorporates solutions that finally
worked are described in Section 2.

168 R. Palmer et al.

In [19], Georgelin and Pierre specify some of the MPI functions in LOTOS
[20]. In [21], Siegel and Avrunin describe a finite state model of a limited number
of MPI point-to-point operations. This finite state model is embedded in [22].
In [23], the authors support a limited partial-order reduction method – one that
handles wild-card communications in a restricted manner, as detailed in [10].
In [24], additional ‘non-blocking’ MPI primitives are modeled in Promela. Our
own past efforts in this area are described in [25,26,27,28]. None of these efforts:
(i) approach the number of MPI functions we handle, (ii) have the same style
of high level specifications (TLA+ is much closer to mathematical logic than
finite-state Promela or LOTOS models), (iii) have a model extraction frame-
work starting from C/MPI programs, (iv) incorporate a dynamic partial-order
reduction algorithm that handles the difficulties of wildcard communications
more generally, and (v) have a practical way of displaying error traces in the
user’s C code. Section 3 describes the architecture of our implementation.

In the act of writing our formal specification, we noticed serious omissions in
the English standard (confirmed by experts [29]). While these omissions were
found largely by luck, the opposite problem – namely, that of our specification
itself not correctly implementing the intent of the MPI English standard writers
– needs much more care to avoid. We have taken some precautions to avoid such
errors. First, our specification is organized for easy traceability: many clauses
in our specification are cross-linked with [1] to particular page/line numbers of
[1]. Second, the “formal semantic calculator” provided by our approach using
familiar programming and debugging environments (e.g., TLC, Phoenix, and
Visual Studio) may help engage expert MPI users (who may not be formal
methods experts) into experimenting with our semantic definitions.

More work is needed to exploit the full potential of formal semantic definitions,
as well as a framework such as ours. One can state and prove theorems that link
concepts spread across multiple pages, as is the case with the current reference
document [1]. These, and other concluding remarks are provided in Section 4.

2 Communication Semantics Model of MPI

We have tried to make this section intuitive even for those not familiar with
MPI: they may focus on the higher level points that we have expressed, as these
issues are bound to arise in any such endeavor as this.

The TLA+ model of MPI is intended to capture the semantic details that are
both explicitly and tacitly referenced in the natural language standard, while
abstracting away the implementation specific issues that are not specified. Our
model broadly implements the architecture shown in Figure 2. We preserve the
MPI API such that application of an MPI operation has the same external
interface as an MPI procedure call in C. The main pieces of the model are
point-to-point operations, collective operations, and constants.

Point-to-point and collective operations are coupled using a communicator.
We model the communicator as a context and a group (MPI additionally has
topologies and attributes, which we consider to be future work). The context

An Approach to Formalization and Analysis of Message Passing Libraries 169

Requests Collective

Context Group

CommunicatorCommunicator

Point to Point
Operations

Collective
Operations

Constants
Operations Operations

MPI 1.1 API

Fig. 2. TLA+ MPI model architecture

MPI Get count MPI Request free MPI Test canceled
MPI Buffer attach MPI Waitany MPI Send init
MPI Buffer detach MPI Testany MPI Bsend init
MPI Isend MPI Waitall MPI Ssend init
MPI Ibsend MPI Testall MPI Rsend init
MPI Issend MPI Waitsome MPI Recv init
MPI Irsend MPI Testsome MPI Start
MPI Irecv MPI Iprobe MPI Startall
MPI Wait MPI Probe
MPI Test MPI Cancel

Fig. 3. Point-to-point operations included in the TLA+ specification

houses all information about messages that are currently available for commu-
nication. Groups define the set of processes allowed to access a communicator
and their respective ranks (used for message addressing).

2.1 Modeling Approach

The MPI standard [1] contains some 128 operations that provide a rich collec-
tion of communication options. A full 35 of these operations are dedicated to
pair-wise exchanges of messages between processes. Our model contains those
operations that we could represent using exactly one TLA+ atomic transition
(primed variables equated to unprimed variables, as in Figures 6 and 7). The
operations included are shown in Figure 3. We model the remaining seven opera-
tions as sequential compositions of those shown in Figure 3. Thus MPI Send be-
comes MPI Isend and MPI Wait issued in that order. Similarly, MPI Sendrecv
becomes MPI Isend, MPI Irecv, and two MPI Wait operations issued sequen-
tially, and so on. The reason for this decision is that the additional overhead
involved in modeling these operations directly would significantly complicate
our model. For example, consider the additional information needed to model
MPI Ssend directly. For doing this, we would require, for each process, a map
from the program counter (pc) to the next operation to be performed when
MPI Ssend is enabled. In this manner, we can determine when a corresponding

170 R. Palmer et al.

MPI Barrier MPI Group size MPI Group rank
MPI Comm size MPI Comm rank MPI Comm compare
MPI Init MPI Finalize MPI Initialized
MPI Abort

Fig. 4. Additional MPI operations modeled to enable tool-based reasoning on MPI
based parallel programs

MPI Recv could be executed by the receiving process, and then cause both pro-
cesses to jointly execute their state transition steps. However, since there is no
restriction on what type of receive could be matched with MPI Ssend (it could
be MPI Recv, MPI Irecv, MPI Sendrecv, etc.), nor are there restrictions on the
blocking nature of the receives (some block the receiving process while others
do not), supporting each of the variants becomes quite laborious, in addition to
resulting in unreadable model descriptions.

Additional supporting operations included in the model are shown in Figure 4.
Each of the operations has the same parameters in the same order as the MPI
standard, with two additions. First, there is no way for TLA+ operations to
query the system to discover which process is executing, short of having a globally
visible state element. Therefore, the PID of the process executing an MPI call
is passed as a parameter, which appears after the parameters specified in the
standard. We also have not determined a graceful way to provide return values of
MPI function calls. The return address is, therefore, also provided as a parameter
(although handling return values other than MPI SUCCESS remains as future
work).

2.2 What Is Not Modeled

It is important to point out that we have not modeled all of the semantics of
MPI in our work. In addition to the restrictions stated in the previous section,
we have not modeled the following items.

Data: Most data. Data, such as arrays of floating point values, objects, etc., could
be modeled using TLA+. It is, however, not necessary in most cases to retain the
actual data values of a distributed computation to verify reactive properties of
the participating nodes. Therefore we allow a placeholder for data in our formal
model in such a way that it can be included when necessary. We currently do
allow for the preservation of data values, if they are used in assert statements.
Similarly, there are many data manipulation operations, and also operations to
pack data. These are not currently modeled.

Operations on communicators and topologies: Operations on communicators and
topologies are modeled to a limited extent to enable point-to-point communi-
cations on intracommunicators. We currently model the operations shown in
Figure 4 in addition to the point-to-point operations of Chapter 3 of MPI 1.1
shown in Figure 3. Operations on communicators and topologies are planned to
be modeled in the next version of our semantics.

An Approach to Formalization and Analysis of Message Passing Libraries 171

Implementation details: To the greatest extent possible we have avoided assert-
ing implementation-specific details in our formal semantics. One obvious ram-
ification of this omission is that modeling return codes of MPI operations is
completely eliminated (cf. [1, Page 11]).

Handling Implementation-dependent Buffer Availability: As far as the standard
mode sends (e.g., MPI Send, MPI Isend, MPI Send init) go, we require the sys-
tem to either eventually buffer these requests or to not buffer them at all. The
standard allows for an implementation to switch between these policies in a
time-varying manner; we do not know how to attain such generality without
complicating our semantics drastically.

2.3 Modeling Granularity to Preserve the Corner Cases

A formal model for a communications library must model at the right level of
granularity in order to not mask corner cases. In order to achieve this objective,
we introduced three additional rules that are allowed to interleave with the
actions of an individual processes. These rules facilitate message pairing, message
buffering, and message transmission.

Figure 5 shows the interleaved rule that transmits messages from one process to
another. This rule is enabled when there exists process i, and request j on process
i such that the request is started, is globally active, has not been canceled, has not
been transmitted, and has already been paired with another request on some other
process. It is necessary to pair and transmit messages separately because there is

1 Transmit ==
2 /\ \E i \in 0..(N-1) :
3 \E j \in 1..Len(requests[i]) :
4 LET m == requests[i][j] IN
5 /\ m.started
6 /\ m.globalactive
7 /\ \lnot m.canceled
8 /\ \lnot m.transmitted
9 /\ m.match /= <<>>

10 /\ requests’ = [requests EXCEPT ![i] =
11 [@ EXCEPT ![j] =
12 [@ EXCEPT !.transmitted = TRUE]]]
13 /\ IF \lnot requests[m.match[1]][m.match[2]].transmitted
14 THEN
15 IF m.message.state = "recv"
16 THEN Memory’ = [Memory EXCEPT ![i] = [@ EXCEPT ![m.message.addr] =
17 Memory[m.match[1]][requests[m.match[1]][m.match[2]].message.addr]]]
18 ELSE Memory’ = [Memory EXCEPT ![m.match[1]] =
19 [@ EXCEPT ![requests[m.match[1]][m.match[2]].message.addr] =
20 Memory[i][m.message.addr]]]
21 ELSE
22 UNCHANGED <<Memory>>
23
24 /\ IF m.ctype = "bsend"
25 THEN
26 message_buffer’ = [message_buffer EXCEPT ![i] = @ - 1]
27 ELSE
28 UNCHANGED << message_buffer >>
29 /\ UNCHANGED << group, communicator, bufsize, initialized, collective >>

Fig. 5. Message transmission

172 R. Palmer et al.

no requirement for ordering of message completion in the MPI standard [1]. Con-
sider the case where two messages are sent from process 1 to process 2 where the
first message is very large and the second message is very small. The MPI stan-
dard requires that the first message sent be matched with the first receive posted
in program order on both processes. However this makes no statement about when
the messages will complete. In our example, it should be possible for the smaller
message to complete first. The use of a separate transmit rule allows us to facili-
tate the modeling of MPI Cancel which is used to cancel pending MPI messages.
Further discussions are provided in Section 2.5.

Continuing with Figure 5, the final three conjuncts in the model of MPI_Wait
define the values of Memory, requests, and the message buffer in the next
state. In MPI, the event marking the completion of the transmission on the
sender side may become visible before the event on the receiver side, or vice
versa. Therefore, in our model, only one request is updated to show that the
transmitting step has completed. We do move some data between processes. We
currently have abstracted the programs modeled such that the value in only one
memory location can be transmitted between processes. We also have abstracted
the notion of buffering such that a counting semaphore tracks the number of
messages that can be buffered using the explicit space provided by the user —
rather than modeling the number of bytes being sent per message.

2.4 A Complete Definition: MPI Wait

Figures 6 and 7 contain the TLA+ model definition of MPI Wait, commonly
used to complete communications. As with all MPI operations (except for MPI
Initialized), MPI Init must have been called prior to the application of this op-
eration. The model checks this as an assertion on line 3 of the operation. The
comments are of two types: regular and cross references into the natural lan-
guage version of the standard. The cross references are numbered as “page.line”
following the TLA+ comments (*), and allow our assertions to be traced. We
now examine a few aspects of the specification of MPI Wait. The main conjunct
in the specification causes the group, communicator, bufsize, message buffer,
initialized, and finalized to remain unchanged in the next state. It then con-
siders two cases: when the request is the special MPI REQUEST NULL value,
or when it is a non-null request handle. For the non-null case, the operation
becomes enabled when (i) the request is locally active — meaning it has not
been previously completed by some wait or test, and (ii) the request indicates
that the message has been transmitted, canceled, or buffered. In this case, if
the source and destination referenced in the request are non-null, the memory
of the executing process is updated to indicate that the message has completed
by filling the fields of the status object (lines 16–22). Otherwise, the status
fields are set to reflect that the completion has occurred on a request referencing
MPI PROC NULL. In either case the request handle is appropriately set, and
we also mark the status fields in memory.

The request sequence for the executing process must also be updated (lines
34–58. When a communication between processes i and j is initiated by i using

An Approach to Formalization and Analysis of Message Passing Libraries 173

1 MPI_Wait(request, status, return, proc) ==
2 LET r == requests[proc][Memory[proc][request]] IN
3 /\ Assert(initialized[proc] = "initialized", * 200.10-200.12
4 "Error: MPI_Wait called with proc not in initialized state.")
5 * 41.32-41.39 The request handle is not the null handle.
6 /\ \/ /\ Memory[proc][request] /= MPI_REQUEST_NULL
7 /\ r.localactive * The request is active locally.
8 /\ \/ /\ r.message.src /= MPI_PROC_NULL * The message src is not null
9 /\ r.message.dest /= MPI_PROC_NULL * The message dest is not null

10 * 41.32 - Blocks until complete
11 /\ \/ r.transmitted * The message was transmitted or
12 \/ r.canceled * canceled by the user program or
13 \/ r.buffered * buffered by the system
14 /\ Memory’ =
15 [Memory EXCEPT ![proc] = * 41.36
16 [@ EXCEPT ![Status_Canceled(status)] =
17 /\ r.canceled
18 /\ \lnot r.transmitted, * 54.46
19 ![Status_Count(status)] = r.message.numelements,
20 ![Status_Source(status)] = r.message.src,
21 ![Status_Tag(status)] = r.message.msgtag,
22 ![Status_Err(status)] = r.error,
23 ![request] = * 41.32-41.35, 58.34-58.35
24 IF r.persist
25 THEN @
26 ELSE MPI_REQUEST_NULL]]
27 \/ /\ \/ r.message.src = MPI_PROC_NULL
28 \/ r.message.dest = MPI_PROC_NULL
29 /\ Memory’ = [Memory EXCEPT ![proc] = * 41.36
30 [@ EXCEPT ![Status_Canceled(status)] = r.canceled,
31 ![Status_Count(status)] = 0,
32 ![Status_Source(status)] = MPI_PROC_NULL,
33 ![Status_Tag(status)] = MPI_ANY_TAG,
34 ![Status_Err(status)] = 0,
35 ![request] = * 41.32-41.35, 58.34-58.35
36 IF r.persist
37 THEN @
38 ELSE MPI_REQUEST_NULL]]

Fig. 6. The first half of the TLA+ model of MPI Wait. The rest of MPI Wait is shown
in Figure 7.

a buffered send (such as MPI Send) or when using MPI Cancel, it is possible for
the Wait to become enabled before the matching request is posted on process
j. This is apparent when r.match =<<>> on line 34. In the true case, the
previously paired request is marked globally inactive, in addition to the local
request being marked locally inactive and globally inactive. In the false case,
only the local request is marked locally inactive. Again, the status fields are
marked as required by the standard.

2.5 Issues Raised by Modeling

While creating the model we became aware of some specific issues that had not
been discussed in the MPI natural language version of the standard. The following
descriptions are helpful in understanding the issues identified. MPI Probe takes a
process rank j and some additional message envelope information, and becomes
enabled when there is a matching request posted on process j. MPI Cancel takes
a request handle as an argument and attempts to cancel the corresponding

174 R. Palmer et al.

39 /\ requests’ =
40 IF r.match /= << >>
41 THEN
42 [requests EXCEPT ![proc] = * 58.34
43 [@ EXCEPT
44 ![Memory[proc][request]] =
45 IF r.persist
46 THEN
47 IF requests[r.match[1]][r.match[2]].localactive
48 THEN [@ EXCEPT !.localactive = FALSE,
49 !.globalactive = FALSE]
50 ELSE [@ EXCEPT !.localactive = FALSE]
51 ELSE
52 IF requests[r.match[1]][r.match[2]].localactive
53 THEN [@ EXCEPT !.localactive = FALSE,
54 !.globalactive = FALSE,
55 !.deallocated = TRUE]
56 ELSE [@ EXCEPT !.localactive = FALSE,
57 !.deallocated = TRUE]],
58 ![r.match[1]] =
59 [@ EXCEPT ![r.match[2]] =
60 IF requests[r.match[1]][r.match[2]].localactive
61 THEN requests[r.match[1]][r.match[2]]
62 ELSE [@ EXCEPT !.globalactive = FALSE]]]
63 ELSE
64 [requests EXCEPT ![proc] = * 58.34
65 [@ EXCEPT ![Memory[proc][request]] =
66 IF r.persist
67 THEN [@ EXCEPT !.localactive = FALSE]
68 ELSE [@ EXCEPT !.localactive = FALSE,
69 !.deallocated = TRUE]]]
70 \/ /\ \/ Memory[proc][request] = MPI_REQUEST_NULL * 41.40-41.41 The
71 \/ /\ Memory[proc][request] /= MPI_REQUEST_NULL * request handle is
72 /\ \lnot r.localactive * null or the request is not active
73 /\ Memory’ = [Memory EXCEPT ![proc] = * 41.36
74 [@ EXCEPT ![Status_Canceled(status)] = FALSE,
75 ![Status_Count(status)] = 0,
76 ![Status_Source(status)] = MPI_ANY_SOURCE,
77 ![Status_Tag(status)] = MPI_ANY_TAG,
78 ![Status_Err(status)] = 0]]
79 /\ UNCHANGED << requests >>
80 /\ UNCHANGED << group, communicator, bufsize, message_buffer,
81 initialized, collective >>

Fig. 7. The second half of the TLA+ model of MPI Wait

communication. The standard says the message may still complete, and it is up to
the user to program appropriately. A third operation MPI Rsend, and variants,
requires the matching receive operation to have been previously posted, barring
which the operation is in error. In this context, here are some specific issues we
identified:

– There are numerous ways that MPI Probe and MPI Cancel can interact,
resulting in an undefined system state. In particular, any time a message
is probed successfully, it is not specified whether it is still possible for the
message to be canceled or if the message must at that point be delivered.

– MPI Cancel also creates an undefined system state when used with ready
mode send (MPI Irsend). Consider the following execution trace: “MPI Irecv;
MPI Irsend; MPI Cancel; ...” If the ready send is successful, can the receive
still be canceled?

An Approach to Formalization and Analysis of Message Passing Libraries 175

– Continuing with Cancel, what happens if the null request is canceled?
– The MPI system allows the user to specify a buffer for outgoing messages.

To ensure that all buffered messages have been sent, the user must call
MPI Buffer detach. What is the state of the system when no buffer has been
specified and MPI Buffer detach is called?

It is encouraging to note that even a few weeks invested in the process of writing
a formal semantics forced us to conduct a thorough walk-through of the MPI
standard, spotting the above omissions.

3 Modeling Framework

We have developed a modeling framework based on the Microsoft Phoenix [30]
compiler which allows developers to insert a compilation phase between existing
compiler phases in the process of lowering a program from language independent
MSIL to device specific assembly. We place our phase at the point where the in-
put program has been simplified into a single static assignment form, with a
homogenized pointer referencing style, where the instructions are still device in-
dependent. Our phase reads the Phoenix intermediate representation and builds
from it a state-transition system (the MPIC IR) for each function, similar in
spirit to a control flow graph. Control locations in the program are represented
by states, and program statements are represented using transitions.

The architecture of the verification framework is shown in Figure 8. From
the MPIC IR, we can output different formats, including TLA+, Dot[31], and
MPIC. The framework integrates both TLC and a new model checker MPIC to
perform the verification tasks. If an error is found, the error trail is then made
available to the verification environment, and can be used by our tool to drive
the Visual Studio debugger to replay the trace to the error. The remainder of
this section describes the simplification and replay capabilities of our framework.
We report the MPIC tool primarily in [10].

Visual Studio
2005

Verification
Environment2005 Environment

Phoenix Compiler

MPIC IRMPIC IR

TLA+ MPI
Library Model

TLA+ Program
Model

MPIC Program
ModelLibrary Model Model Model

MPIC Model
TLC Model Checker

MPIC Model
Checker

Fig. 8. System architecture

176 R. Palmer et al.

3.1 Simplification

From the extracted state-transition format, it would be possible to emit a TLA+
model directly. However, the TLA+ model would have to have sufficient mech-
anisms to handle function calls and returns. Although this is possible with
TLA+ [32]–the scientific computing applications we have considered would not
benefit from the additional functionality. As such we propose the following se-
quence of transformations, intended to reduce the complexity of model checking
while preserving the properties of interest, before applying model checking based
analysis. The simplifications are as follows:

– Inline all user defined functions: We assume (i) that all parameters are pass
by value, (ii) that there are no function pointers, and (iii) there is no recur-
sion.

– Remove operations foreign to the model checking framework: Examples in-
clude printf.

– Slice the model with respect to communications and user assertions: The
cone of influence of variables is computed using a chaotic iteration over the
program graph, similar to what is described in [33].

– Eliminate redundant counting loops: This is a heuristic to handle loops that
occur frequently in MPI programs.

3.2 Program Modeling

Our model of MPI is intended to capture the semantics while abstracting away
the possible implementation details. However there are some implementation
details retained that are common to all present-day computer systems, and that
are implied by the standard. The first of these is the notion of memory: it
is assumed that each process operates in a disjoint memory space. As such, we
allocate an array of TLA+ variables that represent the local store of each process.
More formally, memory is modeled as a function memory : IN → IN where
allocated addresses are mapped onto values. Variable names are represented by
an array of address that use symbols, (i.e., strings) for indices. These are again
functions that map strings onto addresses. The mention of memory brings to
the fore the first of several abstractions that are imposed on the model. Only
values in IN are considered valid memory contents. With an explicit notion of
memory and addresses, it is possible to have explicit pointers in the model. This
we support, allowing for arbitrary dereferences. We also never allocate address
0, allowing for null pointer dereference violations to be discovered.

It is possible to allocate memory using the operator in Figure 9. This operator
updates the function representing process memory by changing the function for
process i such that there are size new memory locations at the end, each having
uninitialized memory contents. The operator also writes the address of the first
uninitialized location into the memory location of the pointer.

Many constants are used by MPI and consequently in our model. Since the
model is automatically extracted from the program while it is being compiled,
it is necessary that the constants used in our model match those used by the

An Approach to Formalization and Analysis of Message Passing Libraries 177

1 AllocateMemory(ptr, pid, size) ==
2 /\ Memory’ = [i \in 0..(N-1) |->
3 IF i = pid
4 THEN [j \in 1..(Len(Memory[i]) + size) |->
5 IF j <= Len(Memory[i])
6 THEN
7 IF ptr = j
8 THEN Len(Memory[pid]) + 1
9 ELSE Memory[i][j]

10 ELSE "uninitialized memory space"]
11 ELSE Memory[i]]

Fig. 9. Memory allocation in TLA+

\/ /\ pc[pid] = state_pc

/\ pc’ = [pc EXCEPT ![pid] = next_pc]

/\ guard

/\ action

/\ UNCHANGED << variables not mentioned in the action >>

Fig. 10. Transition template for TLA+ program model

implementation of MPI used with the program being analyzed. Constants are
provided in a separate TLC configuration file. These constant definitions gen-
erally match the values used in the corresponding C header files (mpi.h). Since
not all values can be used (e.g., no floating point values, etc.) we make manual
changes to the configuration and corresponding header files when necessary.

The individual transitions are formatted as shown in Figure 10, combined
with the initial values of the memory array and the map from variable names
to their addresses and written to disk. The constants, program model, and MPI
model are then given to the TLC model checker.

Error Trail Generation. In the event that the model contains an error, an
error trail is produced by the model checker and returned to the verification
environment. To map the error trail back onto the actual program we observe
the changes in the error trail to variable values that appear in the program text.
For each such change, we step the Visual Studio debugger until the corresponding
value of the variable in the debugger matches. We also observe which process
moves at every step in the error trail and context switch between processes in
the debugger at corresponding points. When the error trail ends, the debugger is
within a few steps of the error with the process that causes the error scheduled.

4 Examples

We have applied our semantic evaluation framework to a small number of ex-
amples and show the results of a few verification tasks in this section. The
two tables shown in Figure 11 shows the number of states generated / execu-
tion time for the following examples: (i) an example code from [34], (ii) the 2D

178 R. Palmer et al.

MPI-TLC MPIC without DPOR MPIC with DPOR

Trap 724/2 331/0 66/0

Diffusion 2D timeout timeout 19,807,253/623

Scenario 4 310/2 N/A N/A

Fig. 11. Number of states generated / execution time (seconds)

diffusion example from [35], and (iii) the last scenario described in Section 1,
namely “What is guaranteed about the matching receive when the first send
completes?” Each of the experiments was run on a dual core 2GHz processor
with 2GB of memory. When TLC was applied, two worker threads were used.

The Trap example from [34] computes the integral under a curve by applica-
tion of the trapezoidal integration rule. The program is written in the SPMD
style and is typical of “textbook examples” in this area. We verify the example
as written for the absence of deadlocks and the default assertions provided by
the respective model checkers for two model processes.

The Diffusion 2D example computes the diffusion of a substance through a
two dimensional grid of cells. We could not verify the pseudo-code given in [35]
because we require actual C program code. To facilitate this requirement, we im-
plemented the program as described. We then optimized the code to overlap the
preparation for communication with the actual communication operations. This
is accomplished by changing the program to communicate via immediate mode
synchronous sends and immediate mode receives (MPI Issend and MPI Irecv)
coupled with MPI Wait and then moving the message initiations as far from the
completions as possible. We then were able to verify this code using MPIC using
dynamic partial-order reduction, for the absence of deadlocks and the default
set of assertions for 4 model processes.

The final example requires an additional MPI procedure, namely MPI Irsend,
which requires that the matching receive be posted before the “ready” mode
send can be posted. We cause the first send to match the second receive using
the tag field of the message. We then post the ready mode send immediately
after the MPI Wait corresponding to the MPI Issend. We post a second ready
mode send that can match only the third receive. Successful posting of the first
MPI Irsend implies that the receiver is guaranteed to be beyond that program
point. Failed posting of the second MPI Irsend implies that no guarantee can
be made about further progress: thus the receiver is guaranteed to have posted
the corresponding receive and no more (Figure 1). This verification task requires
only two model processes.

5 Concluding Remarks

To help reason about programs that use MPI for communication, we have devel-
oped a formal TLA+ semantic definition of the point-to-point communication
operations to augment the existing standard. We described this formal specifica-
tion, as well as our framework to extract models from SPMD-style C programs.

An Approach to Formalization and Analysis of Message Passing Libraries 179

We discuss how the framework incorporates high level formal specifications,
and yet allows designers to experiment with these specifications, using model
checking, in a familiar debugging environment. Our effort has helped identify a
few omissions in the original MPI reference standard document. The experience
gained so far suggests that a formal semantic definition and exploration approach
as described here must accompany every future effort in creating parallel and
distributed programming libraries.

Our future plans include overcoming the limitations of our current framework
in terms of handling communication topologies. Another area where formal se-
mantic definitions can help is in extensions of MPI to support different levels
of threading. As pointed out in [36], even short MPI programs which employ
threading can have nasty corner cases. Formal specifications, as well as direct
execution methods for these specifications can have maximal impact in these
areas, in that we will not be capacity limited in terms of model checking, and
yet be able to shed light on the semantic intricacies, and pitfalls to avoid.

References

1. The Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
(1995), http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

2. Gropp, W., Lusk, E.L., Doss, N.E., Skjellum, A.: A high-performance, portable
implementation of the mpi message passing interface standard. Parallel Comput-
ing 22(6), 789–828 (1996)

3. Microsoft: Microsoft windows compute cluster 2003 (2006),
www.microsoft.com/windowsserver2003/ccs/faq.mspx

4. Squyres, J.M., Lumsdaine, A.: A Component Architecture for LAM/MPI. In: Don-
garra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003. LNCS, vol. 2840,
pp. 379–387. Springer, Heidelberg (2003)

5. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, pp. 97–104 (2004)

6. Danalis, A., Kim, K.Y., Pollock, L., Swany, M.: Transformations to parallel codes
for communication-computation overlap. In: SC 2005: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, Washington, DC, USA, p. 58. IEEE
Computer Society, Los Alamitos (2005)

7. Lamport, L.: Specifying concurrent systems with TLA (1999)
8. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge

(1999)
9. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,

L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Heidel-
berg (1999)

10. Palmer, R., Gopalakrishnan, G., Kirby, R.M.: Semantics Driven Dynamic Partial-
order Reduction of MPI-based Parallel Programs. In: PADTAD 2007 (2007),
http://www.cs.utah.edu/formal verification/verification environment

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
www.microsoft.com/windowsserver2003/ccs/faq.mspx
http://www.cs.utah.edu/formal_verification/verification_environment

180 R. Palmer et al.

11. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: POPL 2005: Proceedings of the 32nd ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pp. 110–121. ACM Press, New
York (2005)

12. IEEE: IEEE Standard for Radix-independent Floating-point Arithmetic,
ANSI/IEEE Std 854–1987 (1987)

13. Harrison, J.: Formal verification of square root algorithms. Formal Methods in
System Design 22(2), 143–154 (2003); Guest Editors: Gopalakrishnan, G., Hunt,
W., Jr.

14. Lamport, L.: The Win32 Threads API Specification (1996),
http://research.microsoft.com/users/lamport/tla/threads/threads.html

15. Abadi, M., Lamport, L., Merz, S.: A tla solution to the rpc-memory specification
problem. In: Formal Systems Specification, pp. 21–66 (1994)

16. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering Methodologies 11(2), 256–290 (2002)

17. Jackson, D., Schechter, I., Shlyahter, H.: Alcoa: The alloy constraint analyzer. In:
ICSE 2000: Proceedings of the 22nd international conference on Software engineer-
ing, pp. 730–733. ACM Press, New York (2000)

18. Jackson, D.: Alloy: A new technology for software modeling. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280. Springer, Heidelberg (2002)

19. Georgelin, P., Pierre, L., Nguyen, T.: A formal specification of the MPI primitives
and communication mechanisms. Technical report, LIM (1999)

20. Eijk, P.V., Diaz, M. (eds.): Formal Description Technique Lotos: Results of the
Esprit Sedos Project. Elsevier Science Inc., New York, NY, USA (1989)

21. Siegel, S.F., Avrunin, G.: Analysis of mpi programs. Technical Report UM-CS-
2003-036, Department of Computer Science, University of Massachusetts Amherst
(2003)

22. Holzmann, G.: The model checker SPIN. IEEE Transactions on Software Engineer-
ing 23(5), 279–295 (1997)

23. Siegel, S.F., Avrunin, G.S.: Modeling wildcard-free MPI programs for verification.
In: SIGPLAN Symposium, A.C.M. (ed.) ACM SIGPLAN Symposium on Principles
and Practices of Parallel Programming, Chicago, pp. 95–106 (2005)

24. Siegel, S.F.: Model Checking Nonblocking MPI Programs. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 44–58. Springer, Heidelberg (2007)

25. Barrus, S., Gopalakrishnan, G., Kirby, R.M., Palmer, R.: Verification of MPI pro-
grams using SPIN. Technical Report UUCS-04-008, The University of Utah (2004)

26. Palmer, R., Barrus, S., Yang, Y., Gopalakrishnan, G., Kirby, R.M.: Gauss: A frame-
work for verifying scientific computing software. In: SoftMC: Workshop on Software
Model Checking. ENTCS, vol. 953 (2005)

27. Pervez, S., Gopalakrishnan, G., Kirby, R.M., Thakur, R., Gropp, W.: Formal ver-
ification of programs that use MPI one-sided communication. In: Mohr, B., Träff,
J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS, vol. 4192, pp.
30–39. Springer, Berlin, Heidelberg (2006)

28. Palmer, R., Gopalakrishnan, G., Kirby, R.M.: The communication semantics of
the message passing interface. Technical Report UUCS-06-012, The University of
Utah (2006)

29. Gropp, W.D.: Personal communication (2006)

30. Microsoft: Phoenix academic program (2007),
http://research.microsoft.com/phoenix

http://research.microsoft.com/users/lamport/tla/threads/threads.html
http://research.microsoft.com/phoenix

An Approach to Formalization and Analysis of Message Passing Libraries 181

31. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz – open
source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001.
LNCS, vol. 2265, p. 483. Springer, Heidelberg (2002)

32. Lamport, L.: A +CAL user’s manual (2006),
http://research.microsoft.com/users/lamport/tla/p-manual.pdf

33. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus, NJ, USA (1999)

34. Pacheco, P.S.: Parallel programming with MPI. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (1996)

35. Siegel, S.F., Avrunin, G.S.: Verification of mpi-based software for scientific compu-
tation. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 286–303.
Springer, Heidelberg (2004)

36. Gropp, W., Thakur, R.: Issues in developing a thread-safe MPI implementation. In:
Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS,
vol. 4192, pp. 12–21. Springer, Heidelberg (2006)

http://research.microsoft.com/users/lamport/tla/p-manual.pdf

	An Approach to Formalization and Analysis of Message Passing Libraries
	Introduction
	Related Work

	Communication Semantics Model of MPI
	Modeling Approach
	What Is Not Modeled
	Modeling Granularity to Preserve the Corner Cases
	A Complete Definition: MPI_Wait
	Issues Raised by Modeling

	Modeling Framework
	Simplification
	Program Modeling

	Examples
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

